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Abstract

The PID controllers are the most popular and widely used controllers in industry

because of their simplicity; robustness and successful practical application that can provide

excellent control performance despite the varied dynamic characteristics of plant

.Determination or tuning of the PID parameters continues to be important as these parameters

have a great influence on the stability and performance of the control system. Most of the

processes are complex and nonlinear in nature resulting into their poor performance when

controlled by traditional methods. The need for improved performance of the process has led

to the development of optimal controllers. In this project, two modern heuristic techniques

which are particle swarm optimization (PSO) and Differential evolution algorithm (DE) are

used for tuning and optimizing PID parameters. A classical method, which is Ziegler and

Nichols method, is also used. Finally, a comparison is made between classical method (ZN)

and optimization methods (PSO and DE) are applied on high order system, the proposed

methods were indeed more efficient and robust in improving the control performances of the

PID algorithm.



IV

Table of Contents

Dedication I

Acknowledgment II

Abstract III

Table of Contents IV

List of Tables VII

List of Figures VIII

General Introduction............................................................................................. ……1

Chapter I: PID Controller

1.1 Introduction ...................................................................................................................... 3

1.2 PID controller definition ................................................................................................. 3

1.3 Main structure .................................................................................................................. 4

1.4 PID representation............................................................................................................ 4

1.5 PID controller theory ....................................................................................................... 5

1.5.1 Proportional term.............................................................................................. 6

1.5.2 Integral term...................................................................................................... 7

1.5.3 Derivative term ..................................................................................................9

1.6 Stability............................................................................................................................ 10

1.7 The characteristics of P, I & D controller ..............................................................10

Chapter II: PSO & DE Algorithms

2.1 Introduction ..................................................................................................................... 12

2.2 Particle swarm optimization algorithm ....................................................................... 12

2.2.1 Historical background.................................................................................... 12

2.2.2 Theory of PSO ................................................................................................ 13



V

2.2.3 PSO parameter selection ............................................................................... 15

2.2.4 Neighborhood Topologies............................................................................. 16

2.2.5 PSO applications ............................................................................................ 18

2.2.6 Advantages and Disadvantages of the PSO................................................ 19

2.2.6.1 Advantages of the PSO algorithm .................................................19

2.2.6.2 Disadvantages of the PSO algorithm ............................................19

2.3 Differential evolution algorithm................................................................................... 20

2.3.1 Historical background ................................................................................. 20

2.3.2 The theory of Differential evolution .......................................................... 20

2.3.3 DE Parameter selection ............................................................................... 22

2.3.4 Advantages and disadvantage of DE algorithm ....................................... 23

2.3.4.1 Advantages of the DE algorithm..................................................23

2.3.4.2 Disadvantages of the DE algorithm .............................................23

2.3.5 DE Applications ............................................................................................ 24

Chapter III: Tuning PID Controller

3.1 Introduction ..................................................................................................................... 25

3.2 The Ziegler-Nichols PID tuning rule ........................................................................... 25

3.2.1 The Ziegler-Nichols’ PID tuning procedure ............................................... 26

3.3 Implementation of PSO-PID Controller...................................................................... 27

3.3.1 Fitness function .............................................................................................. 28

3.3.2 Tuning procedure ............................................................................................29

3.4 Implementation of DE-PID Controller ........................................................................ 32

3.4.1 Optimization procedures of DE-PID ........................................................... 32

Chapter IV: Simulation and Results

4.1 Introduction ..................................................................................................................... 38



VI

4.2 Simulation results without PID .................................................................................... 38

4.3 Simulation results using DE PID controller ............................................................... 39

4.4 Simulation results using PSO PID controller ............................................................. 45

4.5 Discussion ....................................................................................................................... 50

4.6 PID controller parameters tuned by Ziegler-Nichols method .................................. 51

4.7 Comparison between PSO and DE with Z-N tuning methods ................................. 52

4.8 Conclusion ..................................................................................................................... 53

General Conclusion .................................................................................... …………..54

References



VII



List of Tables

VII

Chapter I: PID Controller

Table 1.1: The effects of PID parameters on a closed loop system.……………………………..(11)

Chapter III: Tuning PID Controller

Table 3.1: Controller parameters for closed loop Ziegler-Nichols method………………..(27)

Chapter IV: Simulation and Results

Table 4.1: DE parameters selection………………………………………………………...(39)

Table 4.2: Step response performance for DE PID controllers………………………….....(44)

Table 4.3: PSO parameters selection…………………………………………..…………........(45)

Table 4.4: Step response performance for PSO PID controllers…………………..…….....(50)

Table 4.5: Ziegler-Nichols PID Tuning Values…………………..…………………….......(51)

Table 4.6: Comparison Performance between PSO and DE and Z-N.……………………..(53)



List of Figures

VIII

Chapter I: PID Controller

Figure 1.1: Block diagram of the simplest closed‐loop system…………………...…………(4)

Figure 1.2: PID controller representations…………………………………………....……..(5)

Figure 1.3: Block Diagram of PID Controller……………….………………..……………..(6)

Figure 1.4: Block diagrams for proportional control term……………………..……………(7)

Figure 1.5: process variable versus time with different kp values…………………….....….(7)

Figure 1.6: Block diagrams for integral control term………………………………….....….(8)

Figure 1.7: process variable versus time with different ki values…………………….……..(8)

Figure 1.8: Block diagrams for derivative control term……………………………….….....(9)

Figure 1.9: process variable versus time with different kd values…………….……….……(9)

Chapter II: PSO & DE Algorithms

Figure 2.1: General Concept of modification of search point by PSO………………….….(13)

Figure 2.2: Neighborhood topologies…………………………………………………...….(17)

Figure 2.3: Flow graph of differential evolution algorithm………………………………..(21)

Chapter III: tuning PID Controller

Figure 3.1: the stability of the system according to Ziegler and Nichols……….………….(25)

Figure 3.2: The tuning phase of the Ziegler-Nichols’ closed-loop……………….……..…(26)

Figure3.3: PSO based PID…………………………………………………….………...…(27)

Figure 3.4: Flow chart of PSO-BASED PID tuning……………………………..………....(31)

Figure 3.5: DE-PID controller block diagram………………………………….……….….(32)

Figure 3.6: the block diagram of population and its corresponding fitness value……....….(33)

Figure 3.7.Mutation process…………………………………………………………..……(34)

Figure 3.8: Crossover process………………………………………………………...……(35)

Figure 3.9: Selection process…………………………………………………………..…...(36)

Figure 3.10: Flow chart of DE-BASED PID tuning ……………………………..………...(37)

Chapter IV: Simulation and results

Figure 4.1: step response of the system without PID controller…………………………....(38)

Figure 4.2: step response with Fitness function = IAE…………………………………….(40)

Figure 4.3: convergence tendency with Fitness function =IAE ……………………..…….(40)

Figure 4.4: step response with Fitness function = ITAE………………………………..….(40)

Figure 4.5: convergence tendency with Fitness function =ITAE ………………………….(40)



List of Figures

IX

Figure 4.6: step response with Fitness function = ISE……………………………………..(41)

Figure 4.7: convergence tendency with Fitness function =ISE ……………………...…….(41)

Figure 4.8: step response with Fitness function = ITSE………………………………..….(41)

Figure 4.9: convergence tendency with Fitness function =ITSE ………………………….(41)

Figure 4.10: step response with Fitness function = F(k)……...……………...…………….(42)

Figure 4.11: convergence tendency with Fitness function =F(k) …………...……….....….(42)

Figure 4.12: step response with Fitness function = F(k)*IAE..……………...…………….(42)

Figure 4.13: convergence tendency with Fitness function =F(k)*IAE ………….……..….(42)

Figure 4.14: step response with Fitness function = F(k)*ITAE..………..…...…………….(43)

Figure 4.15: convergence tendency with Fitness function =F(k)*ITAE …………….....….(43)

Figure 4.16: step response with Fitness function = F(k)*ISE..……………...…….……….(43)

Figure 4.17: convergence tendency with Fitness function =F(k)*ISE …………..……..….(43)

Figure 4.18: step response with Fitness function = F(k)*ITSE..……………...…...……….(44)

Figure 4.19: convergence tendency with Fitness function =F(k)*ITSE …………..…...….(44)

Figure 4.20: step response with Fitness function = IAE…………………………………...(45)

Figure 4.21: convergence tendency with Fitness function =IAE ………………………….(45)

Figure 4.22: step response with Fitness function = ITAE………………………………….(46)

Figure 4.23: convergence tendency with Fitness function =ITAE …………………..…….(46)

Figure 4.23: step response with Fitness function = ISE……………………………………(46)

Figure 4.25: convergence tendency with Fitness function =ISE …………………….…….(46)

Figure 4.26: step response with Fitness function = ITSE………………………………….(47)

Figure 4.27: convergence tendency with Fitness function =ITSE …………………..…….(47)

Figure 4.28: step response with Fitness function = F(k)……...……………...…………….(47)

Figure 4.29: convergence tendency with Fitness function =F(k) …………...……….....….(47)

Figure 4.30: step response with Fitness function = F(k)*IAE..……………...…………….(48)

Figure 4.31: convergence tendency with Fitness function =F(k)*IAE ………….……..….(48)

Figure 4.32: step response with Fitness function = F(k)*ITAE..………..…...…………….(48)

Figure 4.33: convergence tendency with Fitness function =F(k)*ITAE …………….....….(48)

Figure 4.34: step response with Fitness function = F(k)*ISE..……………...…….……….(49)

Figure 4.35: convergence tendency with Fitness function =F(k)*ISE …………..……..….(49)

Figure 4.36: step response with Fitness function = F(k)*ITSE..……………...…...……….(49)

Figure 4.37: convergence tendency with Fitness function =F(k)*ITSE …………..…...….(49)

Figure 4.38: Root locus plot for the system…………………………………………….….(51)

Figure 4.39: step response using Z-N method………………………………………..…….(52)

Figure 4.40: step response of PSO and DE and Z-N based PID controller……………..….(53)



General Introduction
PID control is a generic feedback control technology and it makes up 90% of automatic

controllers in industrial control systems. The PID control was first placed in the market in

1939 and has remained the most widely used controller in process control until today. Its

widespread acceptability can be recognized by: the familiarity with which it is perceived

amongst researchers and practitioners within the control community, relative ease and high

speed of adjustment with minimal down-time and wide range of applications where its

reliability and robustness produces excellent control performances. Other factors that attracted

industries to choose PID could be due to low cost, easy to maintain, as well as simplicity in

control structure and easy to understand. However, improper PID parameters tuning could

lead to cyclic and slow recovery, poor robustness and the worst case scenario would be the

collapse of system operation because many industrial plants are often burdened with problems

such as high order, time delays, and nonlinearities. Traditionally, these parameters are

determined by a trial and error   approach. Manual tuning of PID controller is very tedious,

time consuming and laborious to implement, especially where the performance of the

controller mainly depends on the experiences of design engineers. In recent years, many

tuning methods have been proposed for the tuning of PID controllers, such as  Gain-phase

margin, Cohen-Coon method and classical tuning rules proposed by Ziegler and Nichols,  but

in general,  it is often hard to determine optimal or near optimal PID parameters using these

methods [5].

For these reasons, it is highly desirable to increase the capabilities of PID controllers by

adding new features. Differential Evolution (DE) and Particle Swarm Optimization (PSO) are

one of the modern heuristic optimization algorithms. DE has been found to be a promising

algorithm in numeric optimization problems. It has been proposed by Storn and Price. PSO

first introduced by Kennedy and Eberhart. It was developed through simulation of a simplified

social system, these techniques have been found to be robust in solving continuous nonlinear

optimization problems. In addition, they can generate a high-quality solution within shorter

calculation time and stable convergence characteristic than other stochastic methods.

In this work, tuning PID controller using two popular heuristic optimization

approaches, the DE and PSO are proposed. The performance of DE and PSO in searching

globally optimal PID parameters and its reliability to maintain the optimum value for several

independent trials has been investigated for a high order open loop control systems, one of the

most important step in applying these algorithms is to choose the fitness functions that are

used to evaluate the goodness of each particle.



General Introduction
The overall performance (speed of convergence, efficiency, and optimization

accuracy) of these algorithms depends on Fitness Function (FF). Our project constitutes the

following chapters: the first chapter explains briefly the basic theory and the fundamental of

PID controller. The second chapter introduces the PSO and DE methods and shows their

importance in solving engineering optimization problems. The third chapter describes the

implementation of PID tuning using PSO and DE techniques and Ziegler-Nichols tuning

method. Finally the fourth chapter shows the result obtained through simulation on high order

system.



CHAPTER I PID Controller

Page 3

1.1 Introduction:

Control system represents a very common class of embedded systems. A control

system seeks to make a physical system’s output track a desired reference input by setting

physical system inputs. It consists of subsystem and process assembled for controlling the

output of the process. One of the main components of a control system is PID controller, it is

the brain of the control system. The controller receives the signal transmitted by the

transmitter and compares it with the desired value. Depending upon the result of the

comparison the controller decides what to do to maintain the output at the desired value.

Through this chapter we will explain briefly the basic theory and the fundamental of PID

controller.

1.2 PID controller definition

A proportional–integral–derivative controller (PID controller) is a control loop feedback

mechanism (controller) commonly used in industrial control systems. The mnemonic PID

refers to the first letters of the names of the individual terms that make up the standard three-

term controller. These are P for the proportional term, I for the integral term and D for the

derivative term in the controller. This means that the control action has three basic modes.

The first one is directly interacts with a function or an input signal, the second one interacts

directly with the integration of the input function, and the third one interacts directly with the

derivative of the input function. These three basic modes can control any process separately,

so that only one can be used, two or all of them in the process control because Some

applications may require using only one or two terms to provide the appropriate system

control. This is achieved by setting the other parameters to zero.

PID controller remains an important control tool for three reasons: past record of

success, wide availability and simplicity in use. These reasons reinforce one another, thereby

ensuring that the more general framework of digital control with higher order controllers has

not really been able to displace PID control. It is really only when the process situation

demands a more sophisticated controller or a more involved controller solution to control a

complex process that the control engineer uses more advanced techniques. Even in the case

where the complexity of the process demands a multi-loop or multivariable control solution, a

network based on PID control building blocks is often used [1].



CHAPTER I PID Controller

Page 4

1.3 Main structure

PID control is the method of feedback control that use the PID controller as the main

tool, the basic structure of conventional feedback control system is shown in Figure 1.1 using

a block diagram representation. In this figure, the process is the object to be controlled .the

purpose of control is to make the process variable follow the set-point value r, to achieve

this purpose, the manipulated variable is changed at the command of the controller.

Figure 1.1: Block diagram of the simplest closed‐loop system.

 The error is defined by = r – y

Early the PID control system had exactly the structure of Figure 1.1 .where the PID

controller is used as the compensator C(s) .when used in this way, the three elements of the

PID controller produce outputs with the following nature:

 P element: proportional to the error at the instant t, which is the “present" error. For

example, if the error is large and positive, the control output will also be large and

positive.

 I element: proportional to the integral of the error up to the instant t, which can be

interpreted as the accumulation of the “past” error. For example, if the current output

is not sufficiently strong, error will accumulate over time, and the controller will

respond by applying a stronger action.

 D element: proportional to the derivative of the error at the instant t , which can be

interpreted as the prediction of the “future” error , based on its current rate of change.

Thus, the PID controller can be understood as a controller that takes the present, the past, and

the future of the error into consideration [3].

1.4 PID representation

Some applications may require using only one or two terms to provide the appropriate

system control. This is achieved by setting the other parameters to zero. A PID controller will

be called a PI, PD, P or I controller in the absence of the respective control actions [2].
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The theoretical basis for analyzing the performance of PID control is considerably aided

by the simple representation of an Integrator by the Laplace transform [ ] and a

Differentiator using [s]. Conceptually, the PID controller is quite sophisticated and three

different representations can be given. First, there is a symbolic representation (Figure 1.2(a)),

where each of the three terms can be selected to achieve different control actions. Secondly,

there is a time domain operator form (Figure 1.2(b)), and finally, there is a Laplace transform

version of the PID controller (Figure 1.2(c)). This gives the controller an s-domain operator

interpretation and allows the link between the time domain and the frequency [1].

Figure 1.2: PID controller representations.

Such that:

 the Controller input (system error)  is : e and the   PID control signal U
 Time domain forms e(t), uc(t) and Laplace domain forms E(s), Uc(s)

 Proportional gain Kp , Integral gain Ki ,Derivative gain Kd.

1.5 PID controller theory

The PID control scheme is named after its three correcting terms, whose sum

constitutes the manipulated variable (MV). The proportional, integral, and derivative terms

are summed to calculate the output of the PID controller. Defining u(t) as the controller

output, the final form of the PID algorithm is [2].

( ) = ( ) = ( ) + ( ) + ( ) (1.1)
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Figure 1.3: Block Diagram of PID Controller

Where:

Kp: Proportional gain, a tuning parameter

Ki: Integral gain, a tuning parameter

Kd: Derivative gain, a tuning parameter

e: Error =SP (set point ) – PV (process variable)

t: Time or instantaneous time (the present)

: Variable of integration; takes on values from time 0 to the present t.

Equivalently, the transfer function in the Laplace Domain of the PID controller is( ) = + / + (1.2)

1.5.1 Proportional term

Proportional control is denoted by the P-term in the PID controller. It used when the

controller action is to be proportional to the size of the process error signal( ) = ( ) − ( ). The time and Laplace domain representations for proportional

control are given as:

 Time domain ( ) = ( ) (1.3)

 Laplace domain ( ) = ( ) (1.4)

Where the proportional gain is denoted Kp. Figure 1.4 shows the block diagrams for

proportional control [1].
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Figure 1.4: Block diagrams for proportional control term.

A high proportional gain results in a large change in the output for a given change in the error.

 If the proportional gain is too high, the system can become unstable

 If the proportional gain is too low, the control action may be too small when

responding to system disturbances.

The Figure below shows a plot of the process variable versus time for three value of Kp (Ki

and Kd held constant)

Figure 1.5: process variable versus time with different kp values.

1.5.2 Integral term

Integral control is denoted by the I-term in the PID controller. The contribution from the

integral term is proportional to both the magnitude of the error and the duration of the error.
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The integral in a PID controller is the sum of the instantaneous error over time and

gives the accumulated offset that should have been corrected previously. The accumulated

error is then multiplied by the integral gain ( Ki ) and added to the controller output.

The time and Laplace domain representations for integral control are given as:

 Time domain μ (t) = Ki ∫ e(τ)dτ (1.5)

 Laplace Domain ( ) = [ ] ( ) (1.6)

Where the integral controller gain is denoted .The time and Laplace block diagrams are

shown in Figure 1.6.

Figure 1.6: Block diagrams for integral control term.

The integral term accelerates the movement of the process towards setpoint and

eliminates the residual steady-state error that occurs with a pure proportional controller.

However, since the integral term responds to accumulated errors from the past, it can cause

the present value to overshoot the setpoint value [2].

The Figure below shows a plot of the process variable versus time for three value of Ki

( Kp and Kd held constant ).

Figure 1.7: process variable versus time with different Ki values.
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1.5.3 Derivative term

If a controller can use the rate of change of an error signal as an input, then this

introduces an element of prediction into the control action. Derivative control uses the rate of

change of an error signal and is the D-term in the PID controller. The time and Laplace

domain representations for derivative control are given as [1]:

 Time domain: μ (t) = Kd (1.7)

 Laplace domain: ( ) = [ ] ( ) (1.8)

Where the derivative control gain is denoted kd. This particular form is termed pure

derivative control, for which the block diagram representations are shown in Figure 1.8.

Figure 1.8: Block diagrams for derivative control term.

Derivative action predicts system behavior and thus improves settling time and stability of the

system.

The Figure below shows a plot of the process variable versus time for three value of Kd ( Kp

and Ki held constant ).

Figure 1.9: process variable versus time with different Kd values.
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1.6 Stability

If the PID controller parameters (the gains of the proportional, integral and derivative

terms) are chosen incorrectly, the controlled process input can be unstable, i.e., its output

diverges, with or without oscillation, Generally, stabilization of response is required and the

process must not oscillate for any combination of process conditions and setpoints.

Mathematically, the origins of instability can be seen in the Laplace domain. The total loop

transfer function is [2].( ) = ( ) ( )1+ ( ) ( ) (1.9)

Where:( ): PID transfer function( ): Plant transfer function

1.7 The characteristics of P, I & D controller

A proportional controller (KP) will have the effect of reducing the rise time and will

reduce, but never eliminate, the steady-state error. An integral control (KI) will have the effect

of eliminating the steady-state error, but it may make the transient response worse. A

derivative control (KD) will have the effect of increasing the stability of the system, reducing

the overshoot, and improving the transient response. Effects of each of the three parameters

on a closed-loop system are summarized in Table 1.1.
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Table 1.1: The effects of PID parameters on a closed loop system.

The correlations may not be exactly accurate, because Kp, Ki, and Kd are dependent

of each other. In fact, changing one of these variables can change the effect of the other two.

For this reason, the table1 should be used only as a reference when we are determining the

values for Kp, Ki and Kd.

Response Rise Time Overshoot Settling

Time

Steady-State

Error

Stability

Increasing Kp Decrease Increase Small Change Decrease Degrade

Increasing Ki Decrease Increase Increase Eliminate Degrade

Increasing Kd Small Change Decrease Decrease Small Change Improve
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2.1 Introduction

Optimization problems are widely encountered in various fields in science and

technology. Optimization algorithms are another area that has been receiving increased

attention in the past few years by the research community as well as the industry. An

optimization algorithm is a numerical method or algorithm for finding the maxima or the

minima of a function operating with certain constraints. Computational intelligence (CI) is a

successor of artificial intelligence relying on Evolutionary computation, which is a famous

optimization technique. Computational intelligence combines elements of learning; adaptation

and evolution to create programs that are, in some sense, intelligent. Computational

intelligence research does not reject statistical methods, but often gives a complementary

view. Computational intelligence finds its fundamental application in the area of fitness

function design, methods for parameter control, and techniques for multimodal optimization.

The importance of CI lies in the fact that these techniques often find optima in complicated

optimization problems more quickly than the traditional optimization methods [5].

Recently, particle swarm optimization (PSO) and differential evolution (DE) have been

introduced and particularly PSO has received increased interest from the EC community.

Both techniques have shown great promise in several real-world applications [6].

During this chapter, we will see the main steps of PSO and DE algorithms. We will

focus on their working principles.

2.2 Particle swarm optimization algorithm

2.2.1 Historical background

Particle swarm optimization (PSO) is a population based stochastic optimization

technique developed by Dr. Eberhart (electrical engineer) and Dr. Kennedy (social

psychologist) in 1995. It is a computational algorithm based on swarm intelligence. In PSO,

the potential solutions, called particles, fly through the problem space by following the

current optimum particles. This method is motivated by the observation of social interaction

and animal behaviors such as fish schooling and bird flocking. It mimics the way they find

food by the cooperation and competition among the entire population. A swarm consists of

individuals, called particles, each of which represents a different possible set of the unknown

parameters to be optimized. The swarm is initialized with a population of random solutions.

In a PSO system, particles fly around in a multi-dimensional search space adjusting its

position according to its own experience and the experience of its neighboring particle. The

goal is to efficiently search the solution space by swarming the particles towards the best
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fitting solution encountered in previous iterations with the intention of encountering better

solutions through the course of the process and eventually converging on a single minimum or

maximum solution. The performance of each particle is measured according to a pre-defined

fitness function, which is related to the problem being solved [7]. PSO has been regarded as a

promising optimization algorithm due to its simplicity, low computational cost and good

performance [5].

2.2.2 Theory of PSO

The idea of PSO is that, the system is initialized with a population of random

solutions called particles (individuals) [8]. Each particle is treated as a point in a D-

dimensional space which adjusts its “flying” according to its own flying experience as well

as the flying experience of other particles.  All particles have fitness values, evaluated

through the fitness function and velocities. The two variables which are iteratively changed

in PSO algorithm are the following ones [9]:

 Pbest (personal best): each particle keeps track of its coordinates in the solution space

which are associated with the best solution (fitness) that has achieved so far by that

particle;

 Gbest (global best): another best value that is tracked by the PSO is the best value

obtained so far by any particle in the neighborhood of that particle;

The PSO concept consists of changing velocity of each particle toward its Pbest and the

Gbest locations at each time step. Figure 2.1 shows the general concept of modification of

search point by PSO.
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Figure 2.1: General Concept of modification of search point by PSO
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Acceleration is weighted by a random term, with separate random numbers being generated

for acceleration toward Pbest and the Gbest locations. For example, the ith particle is

represented as = ( 1,… , , … , ) in the D- dimensional search space. The best

previous position of the ith particle is recorded and represented as= ( , 1, … , , , … , , ). The index of best particle among all of

the particles in the group is represented by the Gbestj The rate of the position change

(velocity) for particle i is represented as = ( , 1, … , , , … , ). The modified or the

updated velocity and position of each particle can be calculated using the current velocity and

the distance from , to as shown by equations (2.1) and (2.2) below [10]:, ( + 1) = . , ( ) + 1 1 , ( )– , ( ) + 2 2[ ( ) − , ( )] (2.1), ( + 1) = , ( ) + , ( + 1) (2.2)

Where i=1,2 ,…,n and j=1,2,…D

n number of particles in the swarm(or population);

D number of members in a particle(dimension of problem);

t current iteration number;, ( ) velocity of particle i(dimension j) at iteration t, ≤ , ( ) ≥
w         inertia weight factor;, ( ) current position of particle i at iteration t;, ( ) the individual best position of particle i until iteration t;( ) the best particle in the population at iteration t.

c1, c2     acceleration constants;

r1, r2 random numbers between 0 and 1 regenerated for each velocity update.

The first equation is used to calculate i-th particle’s new velocity by taking into

consideration three terms: the particle’s previous velocity, the distance between the particle’s

best previous and current position, and, finally, the distance between swarm’s best experience

(the position of the best particle in the swarm) and i-th particle’s current position. Then,

following the second equation, the i-th particle flies toward a new position. In general, the

performance of each particle is measured according to a predefined fitness function (performance

index), which is related to the problem to be solved [11].
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2.2.3 PSO parameter selection

There are some parameters in PSO algorithm that may affect its performance. For any

given optimization problem, some of these parameter’s values and choices have large impact on

the efficiency of the PSO method, and other parameters have small or no effect [12]. These are

described as follows:

The parameter determines the resolution, or fitness, with which regions are to be

searched between the present position and the target position. If is too high, then particles

will move beyond a good solution, If is too low, particles will be trapped in local minima.

In many experiences, was often set at 10-20% of the dynamic range of the variable on

each dimension.

The constants c1 and c2 represent the weights of the stochastic acceleration terms that pull

each particle toward the Pbest and Gbest positions. Low values allow particles to roam far from

the target regions before being tugged back. On the other hand, high values result in abrupt

movement toward, or past, target regions. Here, the acceleration constants c1 and c2 were often

set to be 2.0 according to experiences [12].

Suitable selection of inertia weight w provides a balance between global and local

explorations, thus requiring less iteration on average to find a sufficiently optimal solution. As

originally developed, w often decreases linearly from about 0.9 to 0.4 during a run. In general,

the inertia weight is set according to the following equation [13]:

= – × (2.3)

Where is the maximum number of iterations and is the current number of

iterations.

Population size is another parameter that necessitates careful selection. A big population

generates larger parts of the search space to be covered per iteration.  A large number of

particles may reduce the number of iterations need to obtain a good optimization result. In

contrast, huge amounts of particles increase the computational complexity per iteration, and

more time consuming. From a number of empirical studies, it has been shown that most of the

PSO implementations use an interval of n ϵ [20, 60] for the swarm size.
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The number of iterations to obtain a good result is also problem-dependent. A too low

number of iterations may  stop  the search process prematurely, while  too large iterations has

the consequence of unnecessary added computational complexity and more time needed [12].

2.2.4 Neighborhood Topologies

A neighborhood must be defined for each particle. This neighborhood determines the

extent of social interaction within the swarm and influences a particular particle’s movement.

Less interaction occurs when the neighborhoods in the swarm are small. For small

neighborhood, the convergence will be slower but it may improve the quality of solutions. For

larger neighborhood, the convergence will be faster but the risk that sometimes convergence

occurs earlier. To solve this problem, the search process starts with small neighborhoods size

then the small neighborhoods size is increased over time.  This technique ensures an initially

high diversity with faster convergence as the particles move towards a promising search

region.

The PSO algorithm is social interaction among the particles in the entire swarm.

Particles communicate with one another by exchanging information about the success of each

particle in the swarm. When a particle in the whole swarm finds a better position, all particles

move towards this particle. This performance of the particles is determined by the particles’

neighborhood.  Researchers have worked on developing this performance by designing

different types of neighborhood structures [12].  Some neighborhood structures or topologies

are discussed below:

a) Star topology

For star topology ach particle connects with every other particle. This topology leads to faster

convergence than other topologies, but there is a susceptibility to be trapped in local minima.

Because all particles know each other, this topology is referred to as the Gbest PSO.

b) Ring topology

For ring topology each particle is connected only with its immediate neighbors. In this

process, when one particle finds a better result, this particle passes it to its immediate

neighbors, and these two immediate neighbors pass it to their immediate neighbors, until it

reaches the last particle. Thus the best result found is spread very slowly around the ring by

all particles. Convergence is slower, but larger parts of the search space are covered than with

the star topology.
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c) Wheel topology

In wheel topology, only one particle (a focal particle) connects to the others, and all

information is communicated through this particle. This focal particle compares the best

performance of all particles in the swarm, and adjusts its position towards the best

performance particle. Then the new position of the focal particle is informed to all the

particles.

d) Four clusters topology

In four clusters topology four clusters (or cliques) are connected with two edges between

neighboring clusters and one edge between opposite clusters. These neighborhood structures

or topologies are illustrated in Figure 2.2

Figure 2.2: Neighborhood topologies [12].
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2.2.5 PSO applications

Kennedy and Eberhart established the first practical application of Particle Swarm

Optimization in 1995. It was in the field of neural network training and was reported

together with the algorithm itself. PSO have been successfully used across a wide range of

applications, for instance, telecommunications, system control, data mining, power systems

design, combinatorial optimization, signal processing, network training, and many other

areas.

Nowadays, PSO algorithms have also been applied to solve constrained problems, multi-

objective optimization problems, problems with dynamically changing landscapes, and to

find multiple solutions, while the original PSO algorithm was used mainly to solve

unconstrained, single-objective optimization problems. Various areas where PSO is

applied are listed below [12].

a) Power systems and plants

 Power control and optimization.

 Control of photovoltaic systems.

 Large-scale power plant control.

 Fault-tolerant control of compensators.

b) Control

 Automatic generation control tuning.

 Design of controllers.

 Power plants and systems control.

 Process and combustion control.

c) Communication networks

 Bluetooth networks.

 Auto tuning for universal mobile telecommunication system networks.

d) Robotics

 Control of robotic manipulators and arms.

 Motion planning and control.
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e) Signal processing

 Pattern recognition of flatness signal.

 Design of IIR filters and nonlinear adaptive filters.

2.2.6 Advantages and Disadvantages of the PSO

It is said that PSO algorithm is the one of the most powerful methods for solving the

non-smooth global optimization problems while there are some disadvantages of the PSO

algorithm. The advantages and disadvantages of PSO are discussed below: [12]

2.2.6.1 Advantages of the PSO algorithm

 PSO is based on the intelligence. It can be applied into both scientific research and

engineering use.

 PSO have no overlapping and mutation calculation. The search can be carried out by the

speed of the particle. During the development of several generations, only the most

optimist particle can transmit information onto the other particles, and the speed of the

researching is very fast.

 The calculation in PSO is very simple. Compared with the other developing

calculations, it occupies the bigger optimization ability and it can be completed easily.

 PSO adopts the real number code, and it is decided directly by the solution. The number

of the dimension is equal to the constant of the solution.

 PSO is less dependent of a set of initial points.

 Very efficient global search algorithm.

2.2.6.2 Disadvantages of the PSO algorithm

 PSO easily suffers from the partial optimism, which causes the less exact at the

regulation of its speed and the direction.

 The method cannot work out the problems of scattering and optimization.

 The method cannot work out the problems of non-coordinate system, such as the

solution to the energy field and the moving rules of the particles in the energy field.

 Slow convergence in refined search stage (weak local search ability).
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2.3 Differential evolution algorithm

2.3.1 Historical background

At  present,  a  novel  evolutionary  algorithm  called differential  evolution  is

fashionable  in  a  variety  of evolutionary algorithms. Differential evolution  was invented by

K.Price' s and R.Storn attempt  to  solve  the  Chebychev  Polynomial fitting  problem  in

1995  and  in  the  same  year  differential evolution  was  outstanding  at  the  First

International  Contest on  Evolutionary  Computation  which  was  held  in  Nagoya.

Differential evolution turned out to be the best evolution type of algorithm for solving the

real-valued test function [14]. Differential Evolution (DE) algorithm is one of the

optimization techniques and a kind of evolutionary computation technique. The method has

been found to be an effective and robust in solving problems with non-linearity, non-

differentiability, multiple optima, and high dimensionality [15]. DE is originated from

Genetic algorithm and can be used with greatly convenience without needing of encoding and

decoding, furthermore, it has no special requirement about initial values and has fast

convergence and good adaptability to a variety of non-linear function. Therefore, the

algorithm has gained increasing attention as it was proposed [16].

2.3.2 The theory of Differential evolution

Differential evolution is similar to the overall structure of the genetic algorithm. The

main differential is mutation operation [14]. Differential evolution (DE) works with two

populations; old generation and new generation of the same population. The size of the

population is adjusted by the parameter NP. The population consists of real valued vectors

with dimension D that equals the number of design parameters control variables. The

population is randomly initialized within the initial parameter bounds. The optimization

process is conducted by means of three main operations: mutation, crossover and selection. In

each generation, individuals of the current population become target vectors. For each target

vector, the mutation operation produces a mutant vector, by adding the weighted difference

between two randomly chosen vectors to a third vector. The crossover operation generates a

new vector, called trial vector, by mixing the parameters of the mutant vector with those of

the target vector. If the trial vector obtains a better fitness value than the target vector, then the

trial vector replaces the target vector in the next generation [17].
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DE utilize mutation operator as a search mechanism and selection operation to search

directly based on prospective regions on search space. DE algorithm is applied based on

several steps. Figure 2.3 shows the flow graph of DE algorithm [18].

Figure 2.3: Flow graph of differential evolution algorithm.

Step 1: Initialization

An essential part of any evolutionary search is the generation of the initial population.

When it is generated successfully, a good solution is found and the search convergences

faster. Thus the computational time required to find the good enough solution is directly

proportional to the quality of the initial population.

If there is no prior knowledge about the optimum, it is typical to generate the initial

population randomly between the lower and upper bounds defined for each parameter [19].

The initial population is then, (0) = + (0,1). [ − ] (2.4)

Where (0,1) is a uniformly distributed random number within the range [0,1]

and indicate the lower and upper bounds of the jth parameter vectors , ,
respectively.

Step 2: Mutation

Mutation stands for sudden change. For each target vector , , a mutation vector, is generated, + 1 = 3, + . ( 1, − 2, ) (2.5)

Initialization Mutation Crossover Selection
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Where 1, 2 and 3 are randomly generated from the current population [1  NP], F is a

real and constant factor which controls the amplification of the differential variation( 1, − 2, ) [20].

Step 3: Crossover (Recombination)

Now for each target vector , , a trial vector , is generated. Here for the generation

of trial vector , binomial crossover is used. The steps for crossover are

, + 1 =
, + 1 ( ≤ CR) ( = )Xj, G Otherwise (2.6)

Where = 1,… , and is a random number between 0 and 1

CR is the crossover probability constant, which is the parameter of this algorithm and

controls the diversity of the population to help the algorithm escaping from the local optimal

solution, need to be ascertained in advance [21].

Step 4: Selection

After the crossover, DE uses simple one-to-one survivor selection where trial vector, competes against target vector , The vector with the lowest fitness function value

survives into the next generation G+1 by

, + 1 =
Ui, G , if f(Ui, G) ≤ f(Xi, G)Xi, G , Otherwise (2.7)

Where , + 1 is the j-th individual at generation G+1.

Once the new population is installed, the process of mutation, crossover, and selection is

repeated until the optimal individual is located or a pre-specified termination criterion is

satisfied, e.g., all the individuals are the same [21].

2.3.3 DE Parameter selection [22]

The choice of control parameters has great impact on performance of DE search

algorithm. Selecting the DE parameters that yield good performance has therefore been the

subject of much research. The key parameters of control are:  NP- the population size, CR- the

crossover constant,  F- the weight applied to random differential (scaling factor). It is worth

noting that DE’s control variables, NP, F and CR, are not difficult to choose in order to obtain
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promising results. Storn have come out with several rules in selecting the control parameters.

The rules are listed follow:

 The initialized population should be spread as much as possible over the objective

function surface.

 Frequently the crossover probability CR ϵ [0,1] must be considerably lower than one

(e.g. 0.3). If no convergence can be achieved, CR ϵ [0.8, 1] often helps.

 For many applications NP=10×D, where D is the number of problem dimension.  F is

usually chosen at [0.5, 1].

 The higher the population size, NP, the lower the weighting factor F should choose.

These rules of thumb for DE’s control variables which is easy to work with is one of

DE’s major contribution.

2.3.4 Advantages and disadvantage of DE algorithm

In the last decade, DE has been frequently used as an optimization algorithm because of

its effectiveness in performing difficult optimization tasks. In addition, the scheme obtains

better results in a faster and cheaper way compared to several other methods with fewer

parameters to adjust, however there still are some disadvantages of the DE algorithm [23].

The advantages and disadvantages of DE are discussed below:

2.3.4.1 Advantages of the DE algorithm

 Ability to handle non-differentiable, nonlinear and multimodal cost functions.

 Ease of use, i.e. few control variables to steer the minimization. These

variables should also be robust and easy to choose.

 Good convergence properties, i.e. consistent convergence to the global

minimum in consecutive independent trials.

2.3.4.2 Disadvantage of DE algorithm

 Parameter tuning is necessary.

 Same parameters may not guarantee the global optimum solution.

 Easy to drop into the local optimum
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2.3.5 DE Applications

The application of differential evolution algorithm can be easily found in real life

problems in the field of [24]

 electronic engineering

 electrical engineering

 combinatorial mathematics

 civil engineering

 aeronautical engineering

 operation research

 education sector

 logistic design

 other soft computing techniques
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3.1 Introduction

Determination or tuning of the PID parameters continues to be important as these

parameters have a great influence on the stability and performance of the control system.

Most of the processes are complex and nonlinear in nature resulting into their poor

performance when controlled by traditional tuned PID controllers such as Ziegler-Nichols

method [25]. For these reasons, it is highly desirable to increase the capabilities of PID

controllers by adding new features. Many artificial intelligence (AI) techniques have been

employed to improve the controller performances for a wide range of plants while retaining

their basic characteristics. Al techniques such as neural network, fuzzy system, and neural-

fuzzy logic have been widely applied to proper tuning of PID controller parameters [26].

In this chapter we will describe the implementation of PSO and DE techniques to

optimally tune PID controller and Ziegler Nichols as classical tuning method.

3.2 The Ziegler-Nichols PID tuning rule

Ziegler and Nichols published in 1942 a paper [4] where they described two methods

for tuning the parameters of P-, PI- and PID controllers. These two methods are the Ziegler-

Nichols’ closed loop method, and the Ziegler-Nichols’ open loop method. In our project

closed –loop method is presented .Ziegler and Nichols used the following definition of

acceptable stability as a basis for their controller tuning rules: The ratio of the amplitudes of

subsequent peaks in the same direction (due to a step change of the disturbance or a step

change of the set point in the control loop) is Approximately 1/4, as shown in Figure 3.1

= (3.1)

Figure 3.1: the stability of the system according to Ziegler and Nichols
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However, there is no guaranty that the actual amplitude ratio of a given control system

becomes 1/4 after tuning with one of the Ziegler and Nichols methods, but it should not be

very different from 1/4.

3.2.1 The Ziegler-Nichols’ PID tuning procedure

The tuning procedure is as follows:

1- Turn the PID controller into a P controller by setting: TI =∞ and KD= 0. Initially set gain

KP = 0.

2- Increase KP until there are sustained oscillations in the signals in the control system (The

sustained oscillations correspond to the system being on the stability limit). This KP value

is denoted the ultimate (or critical) gain, KPU.

3- Measure the ultimate (or critical) period Pu of the sustained oscillations as it is shown

In Figure 3.2

4- Calculate the controller parameter values according to Table 3.1, and use these parameter

values in the PID controller.

Figure 3.2: The tuning phase of the Ziegler-Nichols’ closed-loop

Using the parameters Kpu and Pu, we can set the values of KP, KI and KD according to the

formula shown in Table 3.1
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Table 3.1: Controller parameters for closed loop Ziegler-Nichols method

Controller KP TI TD

P 0.5KPU ∞ 0

PI 0.45KPU 1.2 0

PID 0.6KPU 2 8
These parameters will typically give a response with an overshoot about 25% and good

settling time. We may then start fine-tuning the controller using the basic rules that relate each

parameter to the response characteristics.

3.3 Implementation of PSO-PID Controller

In chapter 2 we discussed the general structure of PSO algorithm, how it is being

established, programmed and created. In this section we discuss PSO as an alternative method

for tuning the PID controller. Here we define a three dimensional search space in which all

the three dimensions represent three different parameters of the PID. Each particular point in

the search space represent a particular combination of [KP KI KD] for which a particular

response is obtained .The performance of the point or the combination of PID parameters is

determined by a fitness function or the cost function [27]. Figure 3.3 shows the basic block

diagram of PSO algorithm based PID controller tuning.

Figure3.3: PSO based PID [27]

jjjjjjjjgjgj[[[]controller.
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3.3.1 Fitness function

In PID controller design methods, the most common performance criteria are Integrated

Absolute Error (IAE), Integrated of Time weight Square Error (ITSE) and Integrated of

Square Error (ISE) that can be evaluated analytically in frequency domain. Each criterion has

its own advantage and disadvantage. For example, disadvantage of IAE and ISE criteria is

that its minimization can result in a response with relatively small overshoot but a long

settling time, because the ISE performance  criteria weights all errors equally independent of

time. Although, ITSE performance criterion can overcome this is the disadvantage of ISE

criterion. The IAE, ISE, and ITSE performance criterion formulas are as follows: [28]

IAE =
0

( )e t dt


 (3.2)

ISE = 2

0

( )e t dt


 (3.3)

ITSE = 2

0

( )te t dt


 (3.4)

ITAE =
0

( )t e t dt


 (3.5)

In this project a time domain criterion is used for evaluating the PID controller. A set of

good control parameters P, I and D can yield a good step response that will result in

performance criteria minimization in the time domain. These performance criteria in the time

domain include the overshoot, rise time, settling time, and steady-state error. In our case,

another FF (Fitness Function) is given by equation (3.6) to serve as performance criterion for

selection optimal PID controller parameters [29].

( ) (1 )(M E ) ( )p ss s rF k e e t t      (3.6)

Where F: Fitness function and is [ , , ]
MP: Peak Overshoot

ts: Settling Time

tr :Rise Time
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Ess: steady state error.

β :Scaling Factor (Depends upon the choice of designer).

3.3.2 Tuning procedure

PSO-PID controller for searching the optimal or near optimal controller parameters kp,

ki, and kd, with the PSO algorithm. Each individual K contains three members kp, ki, and kd.

The searching procedures of the proposed PSO-PID controller were shown as below [28].

Step1:

We specify the lower and upper bounds of the three controller parameters and initialize

randomly the individuals of the population including searching points, velocities, Pbests, and

Gbest.

Step 2:

We calculate the evaluation value of each individual in the population using the evaluation

function.

Step 3:

We compare each individual‘s evaluation value with its Pbest. The best evaluation value

among the Pbest is denoted as Gbest.

Step 4:

We modify the member velocity v of each individual K According to equation (2.1)

, ( + 1) = . , ( ) + 1 1[ , ( ) – , ( )] + 2 2[ ( ) − , ( )] (2.1)

Where = 1,2,3. . . . . . . . = 1,2,3. . . . .
And we set the value of w using equation (2.3).

w = wmax – × iter (2.3)

When j is 1, , 1 represents the change in velocity of kd controller Parameter. When j is 2,

Vi,2 represents the change in velocity of kp controller parameter. When j is 3, represents the

change in velocity of ki controller Parameter. This means that for an optimization case D=3.
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Step 5:

If , ( + 1) > , then , ( + 1) =
If , ( + 1) < , then , ( + 1) =
Step 6:

We modify the member position of each individual i according to equation (2.2), ( + 1) = , ( ) + , ( + 1) (2.2)< , ( + 1) <
Where and represent the lower and upper bounds, respectively, of member j of

the individual .

Step 7:

If the number of iterations reaches the maximum, then we go to Step 9. Otherwise, we go to

Step2

Step 8:

We set the members of the individual that generates the latest as the optimal controller

parameters.

Figure 3.4 shows the general flow chart of the PSO algorithm tuning PID controller [5]
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3.4 Implementation of DE-PID Controller

The main objective of this section is to apply the DE algorithm in order to search an

optimized configuration of PID controller parameters. A new control system optimization

called DE-PID control system is proposed [30]. Figure3.5 shows the proposed controller

block diagram.

Figure 3.5: DE-PID controller block diagram [30].

The Differential Evolution (DE) algorithm will be used to search optimized PID controller

parameters.

3.4.1 Optimization procedures of DE-PID [31]

The detailed Differential Evolution algorithm used in tuning the PID controller is

presented below:

a) Setting DE optimization parameters

All the DE optimization parameter required for optimization process is listed below:

 D - Problem dimension, is set based on the number of parameters used in the objective

function is presented using Eq. (3.5). In this case, problem dimension refers to the

number of PID parameters Kp, Ki and Kd which is equal to 3. The needed parameters

of DE algorithm are specified in chapter 2 which are:

 NP, CR, F – control parameters

 G – Number of generation or stopping condition

 L,H – boundary constraints are set based on the PID parameters range
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b) Vector population initialization

Initialize all the vector population randomly in the given upper & lower bound and

evaluate the fitness of each vector., = + ( − ). (0,1) (3.6)= ( ) (3.7)

Where    i=1,...,D,     j=1,…,NP

randij (0,1) – random number between 0 and 1

Before the optimization starts the population needs to be initialized and their fitness

values need to be evaluated. The population is initialized randomly within its boundary

constraints is done using Eq. (3.6). Each of the individual in the population is used to compute

the fitness value which is computed by using Eq. (3.7). Figure 3.6 shows the block diagram of

population and its corresponding fitness value.

Figure 3.6: the block diagram of population and its corresponding fitness value.

c) Perform mutation & crossover

Whenever initialization process is done, now the optimization process starts. The

optimization process will run iteratively until the end of generations. The first individual

fitness value from the current population is set to be the target vector as shown in Figure 3.7.
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Then the trial vector is created by selecting three individuals randomly from the current

population, mutate using Eq. (2.5) and crossover with the target vector. The fitness value of

the trial vector is computed by sending its individuals to the fitness function.

 Mutant vector

For each target vector , , a mutant vector is generated according to equation (2.5), + 1 = 3, + . ( 1, − 2, ) (2.5)

Where the three distinct vectors Xr1, Xr2 and Xr3 randomly chosen from the current

population other than target vector Xj,G. The detail example how the mutant vector is

determined is shown in Figure 3.7.

Figure 3.7.Mutation process

 Crossover

The target vector is mixed with the mutated vector, using the following scheme, to yield

the trial vector , + 1
, + 1= Uij, G + 1 if (randi ≤ CR) v (Rnd = i)Xj, G otherwise (2.6)

Where = 1,… , , = 1,… ,
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Crossover is done in order to increase the diversity of the perturbed PID parameters for

each individual in the population. The block diagram on how this process is done is shown in

Figure 3.8.

Figure 3.8: Crossover process

d) Verifying the boundary constraint

If the bound (i.e. lower & upper limit of a variable) is violated then it can be brought in the

bound range (i.e. between lower & upper limit) either by forcing it to lower/upper limit

(forced bound) or by randomly assigning a value in the bound range (without forcing).¢ [ , ], = + ( − ). (0,1) (3.8)

Eq. (3.8) purposely used in order to make sure that all the parameter vectors (PID parameters)
are within its boundary constraints

.

e) Selection

Selection is performed for each target vector, , by comparing its fitness value

with that of the trial vector, , and the one with the better fitness value is admitted to the

next generation. Figure 3.9 shows how the selection process is performed.
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Figure 3.9: Selection process

f) Repeat step 3 to 5 until new population completed

When the first individual in the new population has produced, then the optimization

process will repeat for the second individual in population as it now becomes the second

target vector in the first generation, V2,1. This process will follow step 3 to 5 until new

second individual in the new population is produced. This process will repeat until all

individuals in the new population are updated.

g) Repeat step 6 until end of generations

The process in step 6 is repeated until the end of generation. At this stage, the

optimization process is completed. The global minimum of fitness value is achieved which is

referred to optimum parameter of PID controller.
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Figure 3.10 shows the general flow chart of the DE algorithm tuning PID controller

NO

YES

Figure 3.10: Flow chart of DE-BASED PID tuning

Initial Population

Is stop
Criteria met?

Stop

Start

Mutation

Crossover

Selection

G= G+1

Optimal solutions
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4.1 Introduction:

After presenting our algorithms (PSO, DE) theoretically and how they implemented to

optimally tuning PID controller parameters, in this chapter, the simulation is carried out in order to

study the performance between the these heuristic methods and classical Ziegler-Nichols methods

for high order system given by Eq. (4.1)

 Case study [31]

G(s) = . .. . . . (4.1)

4.2 Simulation results without PID

The step response of the system without PID controller is shown in Figure 4.1

Figure 4.1: step response of the system without PID controller.

The performances of the system are:

 Rise Time (tr) : 2.1972 sec

 Settling Time (ts) : 33.513 sec

 Overshoot : 7.1023 %

 Peak value : 3.2131

 Peak Time : 4.1789 sec

 Steady state value : 3



CHAPTER IV                                                                Simulation and Results

Page 39

The step response of our system is highly oscillating with a long settling time (33.5 sec) and rise

time also (2.19 sec). Furthermore, the steady-state error is very large.

During this simulation, the tuning performance of PID controller is evaluated using different fitness

functions, first we choose the fitness function to be IAE, ITAE, ISE, ITSE, F(k), then we choose it

to be F(k)*IAE, F(K)*ITAE, F(k)*ISE, F(k)*ITSE , finally we compared the step response of each

one of them . According to chapter 3 F(K) and the four performance indices are listed below:( ) = 1− (− ) ( + ) + (− ) ( − ) (3.6)= | ( )|∞

0
(3.2)

= | ( )|∞

0
(3.5)

= 2( )∞

0
(3.3)

= 2( )∞

0
(3.4)

Where k is [Kp Ki Kd], and β is the weighting factor, we can set β to be larger than 0.7 to reduce

the overshoot and steady-state error. On the other hand, we can set β to be smaller than 0.7 to

reduce the rise time and settling time, in our project we set it to be 0.5.

PSO and DE will heuristically find the optimum value of the controller parameters where the

smaller value of objective function the fitter is the individual. Finally the transient performance of

the system tuned by PSO and DE is compared with Ziegler-Nichols method.

4.3 Simulation results using DE PID controller

To start up with DE, certain parameters need to be defined. Selection of these parameters

decides to a great extent the ability of global minimization. In our work we set population size,

NP=50, crossover constant, CR=0.9, differentiation constant, F=0.6, and number of generation is

set to be 100. Since the problem is to find the optimal PID three parameters so the dimension D is

set to be 3.

Table 4.1: DE parameter selection

DE algorithm

Population size = 50

Crossover rate = 0.9

Differentiation constant  = 0.6

Generation number = 100
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a) Simulation results with IAE, ITAE, ISE, ITSE and F(k)as fitness function:

 IAE

Figure 4.2: step response with Fitness Figure 4.3: convergence tendency with
function = IAE Fitness function =IAE
Mp = 15.9% tr= 0.102 s ts= 0.552s Best Fitness = 1.885

 ITAE

Figure 4.4: step response with Fitness Figure 4.5: convergence tendency with
function = ITAE Fitness function =ITAE

Mp = 15.7% tr= 0.102 s ts= 0.557s Best Fitness = 2.36
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 ISE

Figure 4.6: step response with Fitness Figure 4.7: convergence tendency with
function = ISE                                                                                     Fitness function =ISE

Mp = 15% tr= 0.11 s ts= 0.57s Best Fitness = 1.14

 ITSE

Figure 4.8: step response with Fitness Figure 4.9: convergence tendency with
function = ITSE                                                                                     Fitness function =ITSE

Mp = 15.5% tr= 0.103 s ts= 0.56s Best Fitness = 0.0219
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 F(k)

Figure 4.10: step response with Fitness Figure 4.11: convergence tendency with
function = F(k)                                                                                     Fitness function =F(k)

Mp = 0% tr= 0.22 s ts= 0.343s Best Fitness = 0.2742

b) Simulation results with F(k)*IAE ,F(k)*ITAE, F(k)*ISE and F(k)*ITSE as Fitness
Functions

 F(k)*IAE

Figure 4.12: step response with Fitness Figure 4.13: convergence tendency with
function = F(k)*IAE Fitness function=F(k)*IAE

Mp = 0.361% tr= 0.23 s ts= 0.78s Best Fitness = 0.7443
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 F(k)*ITAE

Figure 4.14: step response with Fitness Figure 4.15: convergence tendency with
function = F(k)*ITAE Fitness function =F(k)*ITAE

Mp = 0 % tr= 0.239 s ts= 0.356s Best Fitness = 1.58

 F(k)*ISE

Figure 4.16: step response with Fitness Figure 4.17: convergence tendency with
function = F(k)*ISE Fitness function =F(k)*ISE

Mp = 0.44 % tr= 0.224 s ts= 0.344s Best Fitness = 0.3176
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 F(k)*ITSE

Figure 4.18: step response with Fitness Figure 4.19: convergence tendency with
function = F(k)*ITSE Fitness function =F(k)*ITSE

Mp = 0 % tr= 0.23 s ts= 0.78s Best Fitness = 0.2056

The best obtained results of closed-loop step response for DE PID tuning method are summarized
in Table 4.2

Table 4.2: Step response performance for DE PID controllers.

Fitness
function

Rise
time (s)

Settling
time (s)

Over
shoo (%)

Kp Ki Kd Best
fitness

IAE 0.102 0.552 15.9 4.07 6.23 10 1.885

ITAE 0.102 0.557 15.6 3.71 6.32 10 2.36

ISE 0.11 0.57 15 3.45 6.30 10 1.14

ITSE 0.103 0.56 15.5 3.60 6.15 10 0.0219

F(k) 0.22 0.34 0 1.08 5.51 4.50 0.2742

F(k)*IAE 0.23 0.78 0.361 1.83 2.69 4.21 0.7443

F(k)*ITAE 0.239 0.356 0 1.81 2.83 4.23 1.58

F(k)*ISE 0.224 0.344 0.44 1.90 2.88 4.30 0.3176

F(k)*ITSE 0.23 0.78 0 1.83 2.68 4.20 0.2056
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4.4 Simulation results using PSO PID controller:

In our work, in order to acquire better performance and fast convergence of the PSO
algorithms, parameters which are used in these algorithms have been initialized according to Table
4.3

Table 4.3: PSO parameters selection.

PSO parameter

Population size = 100

Acceleration constants,C1 =C2= 2

Inertia weight factor :Wmin= 0.4,Wmax=0.9

Iteration number = 100

a) Simulation results with IAE, ITAE, ISE, ITSE and F(k)as fitness function:

 IAE

Figure 4.20: step response with Fitness Figure 4.21: convergence tendency with
function = IAE                                                                                     Fitness function =IAE

Mp = 30 % tr= 0.06 s ts= 0.48s Best Fitness = 1.00
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 ITAE

Figure 4.22: step response with Fitness Figure 4.23: convergence tendency with
function = ITAE                                                                                     Fitness function =ITAE

Mp = 31.9 % tr= 0.068 s ts= 0.58s Best Fitness = 0.01

 ISE

Figure 4.24: step response with Fitness Figure 4.25: convergence tendency with
function = ISE                                                                                     Fitness function =ISE

Mp = 29 % tr= 0.062 s ts= 0.46s Best Fitness = 1.00
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 ITSE

Figure 4.26: step response with Fitness Figure 4.27: convergence tendency with
function = ITSE                                                                                     Fitness function =ITSE

Mp = 30 % tr= 0.061 s ts= 0.46s Best Fitness = 0.2

 F(k)

Figure 4.28: step response with Fitness Figure 4.29: convergence tendency with
function = F(k)                                                                                     Fitness function =F(k)

Mp = 1.3 % tr= 0.27 s ts= 0.41s Best Fitness = 0.1967
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b) Second simulation results with F(k)*IAE ,F(k)*ITAE, F(k)*ISE and F(k)*ITSE

 F(k)*IAE

Figure 4.30: step response with Fitness Figure 4.31: convergence tendency with
function =F(k)*IAE Fitness function =F(k)*IAE

Mp = 5 % tr= 0.17 s ts= 0.49s Best Fitness = 0.1967

 F(k)*ITAE

Figure 4.32: step response with Fitness Figure 4.33: convergence tendency with
function = F(k)*ITAE Fitness function =F(k)*ITAE

Mp = 0.41 % tr= 0.24 s ts= 0.37s Best Fitness = 0.098
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 F(k)*ISE

Figure 4.34: step response with Fitness Figure 4.35: convergence tendency with
function = F(k)*ISE Fitness function =F(k)*ISE

Mp = 0.7 % tr= 0.37 s ts= 0.60s Best Fitness = 0.061

 F(k)*ITSE

Figure 4.36: step response with Fitness Figure 4.37: convergence tendency with
function = F(k)*ITSE Fitness function =F(k)*ITSE

Mp = 2 % tr= 0.22 s ts= 0.57s Best Fitness = 0.29
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The best results of closed-loop step response for PSO PID tuning method are summarized in Table
4.4

Table 4.4: Step response performance for PSO PID controllers

4.5 Discussion

The convergence tendency graphs depict the changes of the value of the best fitness evaluated

with respect to iterations. It can be seen that these graphs start by a sudden drop, which explain that

the first positions that is randomly generated to each individual are bad and far from the best fitness

value but after the execution of the first step of PSO or DE  these latter generate a much better

fitness value. After performing a certain number of iterations, the fitness continue converging but

slowly until it reaches a low point, and remains steady for the rest of the iterations, this point

indicates the global best fitness value.

The results for closed-loop step response for DE PID tuning method gave us better

performance, the responses of the first set of fitness functions (IAE,ITAE,ISE,ITSE) are almost

indistinguishable, they gave us a good transient performance rise time tr = 0.102s and settling time

ts = 0.557s with small overshoot MP= 15%. Furthermore, the steady-state error (Ess) is now equal

to zero. For the second set of fitness functions (F(k), F(k)*IAE, F(k)*ITAE, F(k)*ISE, F(k)*ITSE),

it gives us good response compared to the first set when considering the overshoot , in this set the

obtained overshoot MP vary between 0% and 0.04%.

The obtained step response for PSO PID tuning method also gave us a good performance, for

the first set of fitness functions (IAE,ITAE,ISE,ITSE), the value of rise time tr can vary from

0.060s to 0.068s and settling time ts vary between 0.46s and 0.582s with little high overshoot MP

about 30%. For the second set of fitness functions (F(k), F(k)*IAE, F(k)*ITAE, F(k)*ISE,

Fitness
function

Rise
time (s)

Settling
time (s)

Over
shoo (%)

Kp Ki Kd Best
fitness

IAE 0.06 0.48 30 9.84 11.60 20 1.00

ITAE 0.068 0.582 31.9 19.8 16.3 16.48 0.01

ISE 0.06 0.46 29 3.51 18.9 19.6 1.00

ITSE 0.061 0.46 30 5.81 14.40 20 0.2

F(k) 0.27 0.41 1.3 2.36 1.44 3.40 0.1967

F(k)*IAE 0.17 0.49 5 3.36 3.33 5.37 0.1957

F(k)*ITAE 0.24 0.37 0.41 2.05 2.71 3.95 0.098

F(k)*ISE 0.37 0.60 0.7 2.02 1.29 2.55 0.061

F(k)*ITSE 0.22 0.57 2 2.83 2.62 4.11 0.29
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F(k)*ITSE) , it reduces the overshoot to vary between 0.41s to 5% and the values of rise time and

settling time are still approximately the same. However the choice of the fitness function is highly

relevant, we have seen that the second set of fitness functions performed by multiplying each

performance index of the first set by F(k) gives better results, its convergence tendency graphs

show more trends which explain that these fitness functions helps to provide thorough exploration

of the search space.

4.6 PID controller parameters tuned by Ziegler-Nichols method

In this part, we have implemented the PID controller using classical Ziegler-Nichols closed-

loop method. From the root locus plot we determined the ultimate gain ku = 6.66, and its ultimate

period of oscillation tu = 1.892s, from these values and according to table 4.5 we have calculated

the best parameters KP = 3.99, KI = 4.33 and KD =0.91.

Table 4.5: Ziegler-Nichols PID Tuning Values

Controller KP Ti Td

P 0.5KPU ∞ 0

PI 0.45KPU 1.2 0

PID 0.6KPU 2 8

Figure 4.38: Root locus plot for the system.
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The step response of our system tuned using Z-N closed-loop method is shown in Figure 4.39.

Figure 4.39: step response using Z-N method.

Mp = 60% tr = 0.38s ts = 11.4s

As shown in Figure 4.39, it can be found easily that classical Ziegler-Nichols did not gave us a

good result, since the step response has small oscillation before it reaches the steady state, with

slightly large overshoot MP=60% and an acceptable settling time ts= 11.4s

4.7 Comparison between PSO and DE with Z-N tuning methods:

To show the effectiveness of the proposed methods, a comparison is made between these

heuristic optimization techniques (PSO and DE) and classical Z-N methods for tuning PID

parameters. To clearly show the difference between the three methods, we plot their best responses

obtained by PSO and DE with the one obtained by Z-N in the same one graph, which is shown in

Figure 4.40. A comparison of time domain specifications peak overshoot, rise time, settling time

and steady state error is done and the results are tabulated in Table 4.6, it can be deduced that the

both tuning methods gave better performance compared to Ziegler-Nichols method especially when

the system becomes higher than 2nd order. As seen from the Table 4.6, Ziegler-Nichols gives poor

rise-time, settling time and highest overshoot. In addition, comparing between the two methods we

noticed that DE gives much better result than PSO.
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Table 4.6: Comparison Performance between PSO and DE and Z-N.

Tuning

method

KP KI KD Rise

Time(s)

Settling

time (s)

Overshoot

(%)

ESS (%)

PSO 2.05 2.71 3.95 0.24 0.37 0.41 0

DE 1.08 5.51 4.50 0.22 0.34 0 0

Z-N 3.99 4.33 0.91 0.38 11.4 60 0

Figure 4.40: step response of PSO and DE and Z-N based PID controller

4.8 Conclusion:

In this chapter, the PID controller has been designed and optimized by Particle Swarm

Optimization (PSO) and differential evolution (DE) algorithms. The proposed methods are tested

on high order system in comparison with classical Ziegler-Nichols method in order to demonstrate

its effectiveness and robustness for solution of the desired optimization problem. The simulation

results demonstrate that these heuristic methods (PSO and DE) can improve the control system

performance in terms of time domain specifications quickly and accurately compared with classical

Ziegler-Nichols method.
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Our project has been carried out to get an optimal PID tuning by using particle swarm

optimization (PSO) and Differential Evolution (DE) algorithms on high order system. The

simulation results allows us to conclude that PSO and DE can perform an efficient search for

the optimal PID controller parameters for the system with high order and subsequently prove

their viability to solve practical engineering optimization problems.

According to the obtained results, it was shown by comparison of step responses, that

these heuristic techniques have out-performed the classical Z-N method in terms of control

performances: overshoot, settling time and rising time. Therefore PSO and DE algorithm

shows more accuracy and can solve very complex optimization problems. Regarding to the

comparison between the two techniques, we have noticed that DE enhances the control

performances better than PSO, furthermore, DE is able to undertake local search with a fast

convergence rate, To this, as a  future work  we can suggest  to investigate these methods in

real time systems.
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