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Abstract 

 

The identification of such systems represents one of the important directions of 

theoretical and practical research, due to large class of applications; fluid flow systems, heat 

diffusion systems, etc. In this context, we consider the linear parametric identification of 

distributed parameters systems using the Least Square. Two numerical examples of heat 

transfer systems are presented where linear and nonlinear models are obtained from heat 

difference equation. The third application is about the identification of a heat conduction in a 

cement rotary kiln using experimental data. We anticipate that this work be intuitive for 

practical applications in the areas of controls and signal processing. 
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General Introduction 

Control systems are ubiquitous in the modern world where the instruments of our 

scientific and industrial society are applied to an increasingly wide range of processes. Such 

control intervention is undertaken with many different objectives in mind; e.g. steering the 

process to a desired state, minimizing the effects of various disturbances tending to move the 

system in undesirable directions, stabilizing systems which are inherently unstable or 

improving the stability properties of system with weak stability characteristics; etc. While it is 

rarely possible, in a mathematical model, to account for all the factors affecting the 

performances of a real world system mathematical modeling of the system is, nevertheless, 

ordinarily essential for efficient and effective design and implementation of control procedures.  

The first concern with determining the dynamical structure for a practical system is the 

problem of system parameter identification. Up to the present time, the principal line of research 

activities is directed to treat lumped parameter systems described by ordinary differential 

equations. A lumped parameter representation of a physical system implies that its local spatial 

variations are disregarded. However dynamic behaviors of almost all real physical systems are, 

in fact, distributed. A distributed parameter system DPS is characterized by a class of partial 

differential equations, integral equations or integro-differential equations. In this thesis, we 

restrict our attention to physical systems described by partial differential equations, because the 

great majority of research including efforts of practical applications is concerned only with this 

kind of mathematical models. Although a class of partial differential equations may usually be 

derived by considering basic conservation principles, system parameters remain to be 

determined in many examples. From practical viewpoints, determination of heat transfer 

coefficients, specific heats, electro-magnetic properties, gas properties, chemical reaction rate 

constants, diffusion constants, etc. is a requisite effort throughout state estimates and/or optimal 

controls of distributed parameter systems. 

The objective of this report is to identify heat conduction systems as an application for 

distributed parameter systems. The parameters of the system model are obtained using Least 

Square Method, a parametric approach based on the minimization of the sum of squared 

residuals; the difference between the observed value and fitted value by a model. 

To achieve this objective, the report is divided into three chapters. The first chapter is 

about the techniques used in system identification. These techniques are divided according to 

the system model; parametric and non-parametric approaches for linear and nonlinear models 
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in time and frequency domains. The second chapter is about the distributed parameter system, 

its features and characteristics. The third is about application of the chosen approach (Least 

Square Method) in two numerical examples and to experimental data obtained from a cement 

rotary kiln.    

 

 

 



 

 

 

System Identification 

Techniques 
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CHAPTER 1              SYSTEM IDENTIFICATION TECHNIQUES 2016 

1. Introduction 

 This chapter gives a brief introduction to system identification. System identification 

is an immense topic, and the contents of this chapter are neither new nor complete. The 

purpose is merely to introduce concepts, ideas and algorithms that are useful in system 

modeling.   

Modeling is the abstraction of a real process to characterize its behavior. It is 

concerned with the determination of particular models for systems that are intended for a 

certain purpose such as control. The idea is to build accurate, simplified models of complex 

systems from physical insights (input/output) measurements. Whether it is parametric 

identification, we determine the parameters of some chosen models, or non-parametric 

identification, it gives the general behavior of the system and sometimes it is essential for 

parametric identification [1]. The best model is the simplest model that accurately describes 

the dynamics of system. 

 

2. The Procedures of System Identification 

The System Identification allows us to estimate a model of a system based on ob-

served input-output data. Several ways to describe a system and to estimate such descriptions 

exist. This section gives a brief description of the most important approaches. 

The procedure to determine a model of a dynamical system from observed input-

output data involves three basic ingredients: 

• Input-output data 

• A set of candidate models (A model structure) 

• A criterion to select a particular model in the set. 

The identification process amounts to repeatedly selecting a model structure, 

computing the best model in the structure, and evaluating this structured model’s properties to 

see if they are satisfactory. The cycle can be as follows: 

1- We design an experiment and collect input-output data from the process to be identi-

fied. 

2-  We examine the data. Polish it to remove trends and outliers, select useful portions of 

the original data, and apply filtering to enhance important frequency ranges. 

3- We select and define a model structure  

4- We compute the best model in the model structure according to the input-output data 

and a given criterion of fit. 

5- We examine the obtained model’s properties 
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6- To validate the model, we take a close look at the model’s output and compare it to 

the measured one on a data set that was not used for the fit. If it is good enough, we 

select the model. Otherwise, we go back and select another model set. Possibly, we 

also try other estimation methods or we work further on the input-output data. [2]. Fig 

1.1 illustrates different procedures of system identification. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1 System identification loop 

 

MATLAB allows us to build mathematical models of a dynamic system using the 

system identification toolbox. This toolbox features a flexible graphical user interface that 

aids in building accurate, simplified models of complex systems from observed data. 

 This Toolbox contains also all the common techniques to adjust parameters in all 

kinds of linear models [2]. It also allows you to examine the models’ properties, and to check 

if they are any good, as well as to preprocess and polish the measured data. 

Estimating models for control systems is based on measured data. The models will 

describe the behavior of the observed data, which makes them related directly to the 

measurements. The data is treated as a time series that is why there are two types of 

estimation algorithms; online and offline estimation. Online estimation algorithms estimate 

the parameters of a model when new data is available during the operation of the model. In 

offline estimation, we first collect all the input/output data then we estimate the model 

parameters. Parameter values estimated using online estimation can vary with time, but 

parameters estimated using offline estimation do not [4]. 
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3. Parametric Identification 

It is also called conventional time domain identification; it deals with models 

containing a vector of parameters, which are to be adjusted so that the model mimics the 

system behavior as close as possible. Parametric identification relies on a model previously 

defined by a set of parameters that must be calculated to accomplish a given quality criterion. 

The system characteristics can have a parametric representation through a polynomial of a 

finite and known degree [1]. The model structure can be obtained by physical modeling (grey 

box) or it may be a standard one (black box). In the latter case, a set of generic standard 

structures must be taken into consideration such as Auto Regressive Moving Average 

eXogeneous(ARMAX) and its variants, Finite Impulse Response(FIR), Box-Jenkins (BJ),and 

Output Error (OE) models.(see Fig 1.2) 

Fig. 1.2 System Model Structures 

    

3.1. Linear Identification 

Parametric identification techniques depend mostly on Prediction-Error Methods 

(PEM). The output of system y(t) can be expressed based on the z-transform as : 

 

Y(z) = G(z)X(z) + W(z)                                                      (1.1) 
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The expression (1.1) can be rewritten as follows: 

 

Y(z) = G(z)X(z) + H(z)E(z) =(N(z))/(D(z) ) X(z) +(A(z))/(B(z) ) E(z)               (1.2) 

 

Where E(z) is the transform of a white noise, ϵ(t). G(z) is the transfer function of the system, 

H(z) is the stochastic model of noise, and Y(z), X(z) are the z-transform of the output input, 

respectively. 

The relationship between both functions defines several model structures. 

Fig.1.2 shows the most common ones: Auto Regressivee Xogeneous(ARX) model, Auto 

Regressive Moving Average eXogeneous(ARMAX) model, Box-Jenkins (BJ) model and 

Output Error (OE) models.  

 The ARX model uses the past inputs and past outputs as regressors. This results in 

linear least square description where the cost function needs to be minimized.  

min E {∑ (ŷ
k+

2

k

(θ) −  yk+2)2̂N−δ
k=1 }                                          (1.3) 

 

Where  (ŷ
k+

2

k

(θ) is the estimate δ-step ahead predicted output of the system, θ is vector of 

unknown parameters, yk+2 represents the measured output, and E is the expected value of the 

squared z-step ahead prediction error.  

The foremost disadvantage is that the disturbance model 1/N(z) comes along with the 

system’s poles. It is, therefore, easy to get an incorrect estimate of the system dynamics 

because the A(z) polynomial can also include the disturbance properties. So, higher orders in 

A(z)and B(z) coefficients may be required. If the signal-to-noise ratio is good, this 

disadvantage is less important [1]. 

 The ARMAX model has more flexibility in the handling of disturbance modeling than 

the ARX model. For this reason, ARMAX is a widespread used model and performs well in 

many engineering applications. 

 The FIR is the simplest model structure to be considered. The past inputs are used as 

regressors. The structure results again in a linear least square problem for minimizing the cost 

function (1.3). It requires many regressors and the convergence rate is slow [1].  

 The OE model has the advantage that the system dynamics can be described separately 

and that no parameters are wasted on a disturbance model. If the system operates without 

feedback during the data collecting, a correct description of the transfer function  

G(z) = N(z)/D(z) can be obtained regardless of the nature of the disturbance [1].  

𝜃 
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 In the BJ model, the disturbances properties are modeled separately from the system 

dynamics. 

Model validation is carried out by comparing the model behavior with the system’s one and 

evaluating the difference. All models have a certain domain of validity. This may determine 

how exactly they are able to describe the system behavior. There are a number of different 

methods to set a criterion e.g., least squares [3], generalized least squares [3], maximum 

likelihood [3] or instrumental variables [3]. Some of them will be discussed in details in the 

following section. 

 

 3.1.1. Parameter estimation  

Assuming that a certain model structure ℳ has been chosen. ℳ(θ) denotes a 

particular model in the model set parameterized using the parameter setθ. The aim is to find 

the "best" model within the model set ℳ* 

 

ℳ* = { ℳ (θ)| θ ∈  𝒟ℳ}                                             (1.3) 

 

Where 𝒟ℳis a closed subset of  ℛd, and is the dimension of the parameter vector θ. We 

assume an experiment that is carried out on the process and measurement data are collected 

with equally spaced time intervals. Let the time index k ∈ {0, 1, 2,..., Ns}. 

The following notations are introduced:  

uk = [u0, u1, u2, … , uk]                                              (1.4) 

yk = [y0, y1, y2, … , yk]                                               (1.5) 

  

i.e., uk represents measured input up to timetk, and  yk represents measured output up to 

timetk. Denote the joint set of the input and output data as: 

zk = (uk, yk)                                                             (1.6) 

 

The parameter estimation problem is to use the data set zN to select a suitable value θ̂N 

, and hence a model ℳ (θ̂N) from the model set ℳ*. Note that this is named off-line 

estimation [4], as all the measured inputs and outputs at all sampling times are used for 

parameter estimation. In some cases, it may be of interest to estimate parameters at some 

certain time tk, using all measurement data up to this time point (zk), this is termed on-line 

estimation [4], or recursive identification [5]. 
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 3.1.2. Prediction error method 

The performance of a model is judged by its ability to predict the outputs of the 

system. According to Ljung (1999), most of the methods used for parametric estimation can 

be characterized as general prediction error methods (PEM). The prediction error is defined as 

the difference between the predicted output and the measured output  

ϵ(tk, θ) = yk- yk̂                                                  (1.7) 

 

where yk and yk̂ are the measured and estimated outputs at time tkrespectively. By 

assumption, the estimated output depends on the parameter setθ, i.e., yk̂  = ŷ (tk| θ). 

The criterion may be further expanded by filtering the prediction error, through a stable linear 

filter L(q):  

ϵf(tk|θ) = L(q)ϵ(tk|θ)                                          (1.8) 

 

where L acts like a frequency weighting of the criterion. By doing this, the system properties 

in frequencies of specific interest can be emphasized. 

The principle of fitting parameterized models to data is based on choosing some norm 

of the prediction error, which is often termed the loss function, and then find the parameter 

vector θ that minimizes this loss function. 

θ̂Ns
  = arg min VNs

 (θ, zNs)                                       (1.9) 

 

A general form of loss function can be represented as: 

VNs
 (θ, zNs) =

1

Ns
∑ 𝑙

Ns
k=1 (ϵf(tk| θ))                                        ( 1.10) 

 

where 𝑙 denotes a scalar valued, positive function which is used to measure the norm of the 

filtered prediction error. Different ways of forming the function l and choosing the prefilter 

L(q) lead to different estimation methods, e.g., the least squares (LS) method and the 

maximum likelihood (ML) method. To simplify the notation, we omit Ns in the following 

since we are here mainly concerned with off-line estimation and the whole sequence of 

measurement data are known.  
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3.1.3. Least squares (LS) method 

In the least squares method, the loss function is defined as a quadratic residual 

function, dependent on the parameter vectorθ. 

 

V (θ) = 
1

Ns
∑  

Ns
k=1 ϵ2(tk| θ))                                        (1.11) 

 

Thus, the quadratic form of the residual between the estimated outputs and the measured 

outputs is minimized 

θ̂ = arg min 
1

Ns
∑  

Ns
k=1 ϵ2(tk|θ))                                (1.12) 

 

which is known as a least square estimator. 

 

when each residual is multiplied with a certain weight factor, the estimator is called weighted 

least squares (WLS) estimator. 

 min 𝑉(θ) =
1

Ns
∑ αk

Ns
k=1 ϵ2(tk|θ))                                 (1.13) 

where αkis the weight factor. 

 

3.1.4. Maximum likelihood (ML) method 

The way of forming the loss function in the (LS) method is completely deterministic. 

In contrast, to a statistical sense, the measurement data are stochastic realizations, since the 

system in general can be seen to be corrupted by stochastic disturbances and/or measurement 

noise. A probabilistic approach to constructing the loss function is the well-known maximum 

likelihood method. The objective of maximum likelihood estimation is to find the parameter 

set that maximizes the probability that the observed data are explained by the model. More 

explicitly, a likelihood function is defined as the joint probability density of all the 

observation data assuming that the parameter set is known  

L(θ) = ∏ p(yk|yk−1, θ)
Ns
k=1                                        (1.14) 

 

Where p(yk|yk−1, θ)is the probability density function (PDF) of yk depending on 

previous measurement data set yk−1and parameter setθ. Assuming that the prediction error 

sequence {ϵk} consist of zero-mean, independent stochastic variables with the probability  

density function expression p(ϵk(θ)|θ). 

 

𝜃 
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The eq (1.14) can then be rewritten as: 

 

L(θ) = ∏ p(ϵk(θ)|θ)
Ns
k=1                                                   (1.15) 

 

The maximum likelihood estimator determines the parameter set by maximizing the 

likelihood function (1.15), which is equivalent to minimizing  

 

V(θ)= - log L(θ)= - ∑  log (p(ϵk(θ)|θ))
Ns
k=1                              (1.16) 

 

The maximum likelihood method is often considered to be the optimal method for 

parameter estimation, in the sense that it asymptotically approaches the best achievable 

results, namely, lowest estimate variances, under the assumption that the true system is within 

the model set. Furthermore, its asymptotic properties make it very useful for model validation 

by using different kinds of likelihood based statistical tests.  

Note that the ML-estimator is equivalent to the WLS-estimator under some specific condition, 

i.e., when the measurement errors are normally distributed with known covariance matrix and 

the elements of the inverse covariance matrix are used as weights. 

 

4. Non-Parametric Identification 

Nonparametric identification techniques provide a very effective and simple way of 

finding model structure in data sets without the imposition of a parametric one [1]. Its 

methods aim at determining the system functions without first selecting set of confined 

possible models. Such methods are often called nonparametric since they do not employ a 

finite-dimensional parameter vector in the search of the best description [1]. Commonly, the 

initial process to carry out is the nonparametric identification, and then, if it were suitable, the 

parametric identification should be performed. The next sections review the non-parametric 

identification methods from time domain and frequency domain perspectives. 

It is difficult to establish a clear identification methodology of nonlinear systems, 

since analysis is usually more intricate than in the identification of linear models, because of 

the variety of nonlinear model structures and nonlinear behaviors. For instance Donoho and 

Johnstone [6] and Donoho [7] introduced nonlinear wavelet estimators in nonparametric 

regression through thresholding, i.e., the term-by-term assessment of coefficients in the 
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wavelet expansion. Only coefficients that exceed a predetermined threshold are taken into 

account. This produces the wavelet shrinkage. Bendat describes procedures to identify and 

analyze the properties of many types of nonlinear systems as Zero-Memory Nonlinear 

Systems and Parallel Nonlinear System, with analysis of Nonlinear System Input/Output 

Relationships [8].  

Zhang applied wavelet theory for nonlinear system identification with a wavelet basis 

as a universal function approximator, with a neural network used to determine the resolution, 

and the translation coefficients of the wavelet [9]. This nonparametric estimator named 

wavelet neural network has a neural network like structure that makes use of techniques of 

regressor selection completed with back propagation procedure [9]. 

     4.1. Non-parametric Identification in Time Domain 

 4.1.1. The Impulse Response 

 The notion of characterizing a dynamical system by its impulse (or pulse) response 

dates from the earliest forays of process engineers into system identification.  

 Let us assume the following system 

y(t) = G0 (q). u(t) +  v(t)                                            (1.20) 

or equivalently 

y(t) = ∑ g0 (k)∞
k=0 . u(t − k) +  v(t)                               (1.21) 

We subject our system to a pulse input   

                     u(t) =  {
α,      t = 0
0,      t ≠ 0

                                               (1.22) 

Then the output will be 

y(t) = αg0 (t) +  v(t)                                            (1.23) 

If the noise is low, it is thus possible to determine the impulse-response coefficient 

g0(t) from an experiment with a pulse input. The estimate will be 

ĝ(t) =
y(t)

α
                                                        (1.24) 
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and the error is v(t)/ α. Its basic weakness is that many physical processes do not allow pulse 

inputs of such amplitude that the error is insignificant compared to the impulse-response 

coefficients. The possible damage inflicted by direct use of an impulsive test signal on control 

system hardware and the presence of output noise has led to a decline in its use [4].  

 4.1.2. Cross-Correlation Approach 

Cross-covariance is a non-parametric identification technique and is related with the 

impulse response.  Correlation means how two variables are related together. 

The correlation between the input and output with the assumption that the mean is zero for y 

and u is the eq. (1.21):  

𝑦(𝑡) =  ∑ 𝑔0(𝑘). 𝑢(𝑡 − 𝑘)

∞

𝑘=0

+ 𝑣(𝑡) 

 

v is the noise in the system.  

If the input and output are uncorrelated, the cross covariance between them is: 

 

𝑅𝑢𝑦(𝜏) = 𝑔(𝜏) ∗ 𝑅𝑢𝑢(𝜏)                                             (1.25) 

 

That is, the cross correlation is the convolution between the impulse response and the 

autocorrelation of the input. Thus, the impulse response can be estimated from the covariance 

(correlation if both signals have zero mean) if the input is a white noise [4].  

If the input is chosen as white noise so that:𝑅𝑢𝑢(𝜏) = 𝛼𝛿𝑇0
(𝜏) 

                                       

then           𝑔0(𝜏) =
𝑅𝑢𝑦(𝜏)

𝛼
                       (1.26) 

where 𝑔0 is an estimate for the impulse response is obtained from an estimate of Ruy. 

 

4.1.3. Step-Response Analysis 

The response of the system can be determined by applying a step input: 

𝑢(𝑡) =  {
𝛼,      𝑡 ≥ 0
0,      𝑡 < 0

 

as follows  

𝑦(𝑡) = 𝛼 ∑ 𝑔0(𝑘)𝑡
𝑘=1 + 𝑣(𝑡)                                        (1.27) 

 



 

 

13 

 

CHAPTER 1              SYSTEM IDENTIFICATION TECHNIQUES 2016 

For this the estimate of g0(k) could be obtained as: 

 

    𝑔0(𝜏) =
𝑦(𝑡)−𝑦(𝑡−1)

𝛼
                                                      (1.28) 

This method is useful for obtaining qualitative information about the system; more 

specifically, it shows the transient behavior of the system through Dead Time, Static Gain and 

time constant [4].. 

 

      4.2. Non-Parametric Identification in Frequency Domain 

The frequency domain characterization of system dynamics has, like its time domain 

counterpart, a long and varied history [10]. As far as control engineering is concerned, 

however, frequency domain identification gained deep relevance with the development of 

stability and design methods based upon frequency response measurements [10].  

 

 4.2.1. Transfer Function 

The fundamental physical interpretation of the transfer function G(z) is that the 

complex number G(ejw) bears information about what happens to an input sinusoid. 

𝑢(𝑡) = 𝛼 𝑐𝑜𝑠 𝑤𝑡 t=0, 1, 2…                                      (1.29) 

then 

                       𝑦(𝑡) = 𝛼 |𝐺0(𝑒𝑗𝑤)|𝑐𝑜𝑠 (𝑤𝑡 + 𝜑) + 𝑣(𝑡)                   (1.30) 

where                                                   𝜑 = 𝑎𝑟𝑔 𝐺0(𝑒𝑗𝑤)                (1.31) 

This is known as frequency analysis and it is a simple method for obtaining detailed 

information about the system.  

  4.2.2. Frequency Response using Correlation 

With the noise component v(t), it may be cumbersome to determine |𝐺0(𝑒𝑗𝑤)| and φ 

accurately by graphic methods. Since the interesting component of y(t) is a sine function of 

known frequency, it is possible to correlate it out from the noise in the following way. From 

the sums 

𝐼𝑐(𝑁) =
1

𝑁
∑ 𝑦(𝑡) 𝑐𝑜𝑠 𝑤𝑡𝑁

𝑡=1                                 (1.32) 

 𝐼𝑠(𝑁) =
1

𝑁
∑ 𝑦(𝑡) 𝑠𝑖𝑛 𝑤𝑡𝑁

𝑡=1                                  (1.33) 

We substitute y(t) by its expression (1.32) in (1.33), we obtain 

𝐼𝑐(𝑁) =
1

𝑁
∑ 𝛼|𝐺0(𝑒𝑗𝑤)| 𝑐𝑜𝑠(𝑤𝑡 + 𝜑) 𝑐𝑜𝑠 𝑤𝑡

𝑁

𝑡=1

+  
1

𝑁
∑ 𝑣(𝑡) 𝑐𝑜𝑠 𝑤𝑡

𝑁

𝑡=1
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=
𝛼

2𝑁
|𝐺0(𝑒𝑗𝑤)| ∑[𝑐𝑜𝑠(2𝑤𝑡 + 𝜑) + 𝑐𝑜𝑠 𝜑]

𝑁

𝑡=1

+ 
1

𝑁
∑ 𝑣(𝑡) 𝑐𝑜𝑠 𝑤𝑡

𝑁

𝑡=1

 

=
𝛼

2
|𝐺0(𝑒𝑗𝑤)| 𝑐𝑜𝑠 𝜑 +  

𝛼

2𝑁
|𝐺0(𝑒𝑗𝑤)| ∑[𝑐𝑜𝑠(2𝑤𝑡 + 𝜑)]

𝑁

𝑡=1

+ 
1

𝑁
∑ 𝑣(𝑡) 𝑐𝑜𝑠 𝑤𝑡

𝑁

𝑡=1

 

(1.33) 

The second term tend to zero as N tends to infinity.  

Similarly, for (1.32) 

Is(N) = − 
α

2
|G0(ejw)| sin φ +  α|G0(ejw)|

1

2

1

N
∑ [sin(2wt + φ)]N

t=1 +

                                                
1

N
∑ v(t) sin wtN

t=1                                         

     (1.34) 

These two expressions (1.33) and (1.34)suggest the following estimates of |G0(ejw)| and φ, 

respectively 

|ĜN(ejw)| =
2√Ic

2(N)+Is
2(N)

α
                                                    (1.35) 

φ̂ = arg ĜN(ejw) = − arctan
Is(N)

Ic(N)
 +k𝜋              k=0.1.2...N          (1.36) 

Repeating this procedure for a number of frequencies, a good picture of G0(e
jw) over the 

frequency domain of interest can be obtained.  

This method allows us to obtain easily the Bode plot of the system, but many industrial 

processes do not admit sinusoidal inputs in normal operations.  

 

5. Conclusion 

In this first chapter of the thesis, we have discussed different techniques of system 

identification, such as Parametric and non-parametric methods, for linear and nonlinear 

systems, and in Time Domain and Frequency Domain.  

We have also discussed the different procedures of system identification, and how to 

identify using MATLAB toolbox starting from measuring the input and output signals of a 

given system in time or frequency domain.  

When,   model structure is selected, an estimator is applied online and offline in order 

to find estimate values for a parametric system or to determine system functions defining a 

non-parametric system. 

 

http://www.mathworks.com/help/ident/gs/about-system-identification.html#bq98vl6


Distributed Parameter 
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1. Introduction 

Distributed parameter system (DPS) is an established area of research in control that 

can trace its roots back to the sixties [11]. While the general aims are the same as for lumped 

parameter systems, to adequately describe the distributed nature of the system one needs to 

use partial differential equation (PDE) models, or the Ordinary Difference Equation (ODE).  

In this chapter, we are going to present the Distributed Parameter System; starting with 

its history and first research about it, then we speak about its characteristics and what makes 

the Distributed Parameter Systems different than Lumped Parameter Systems. Finally we 

state some examples of such systems in the industry and control domain.   

  

2. Brief Definitions of Distributed Parameter System 

Distributed effects are present in almost all physical systems. In some cases, these can 

be safely ignored but there are many interesting problems where these effects must be taken 

into account. 

Distributed Parameter Systems are systems whose state space is infinite-dimensional; 

that is why they are called infinite-dimensional systems. They can be represented or described 

using Partial Differential Equations or Delay Differential Equations, this gives rise to 

distinctive features.  

3. Mathematical Description of DPS 

It appears from the literature that Paraskevopoulos and Bounas, 1978 were the first 

investigators to study the identification of distributed parameter systems via orthogonal 

functions [12]. They used Walsh functions. The main drawback of the Walsh function 

approach is the selection of Walsh functions based on 2k where k is any positive integer. For a 

moderately large value of k this approach becomes computationally laborious. 

In the same year Tzafestas [13], 1978 has also investigated the general distributed 

parameter system identification by first transforming the model of a distributed parameter 

system into its equivalent lumped form by using Galerkin expansion .In 1983, 

Paraskevopoulos and Kekkeris, revisited the same problem of Paraskevopoulos and Bounas. 

This time they employed Tchebycheff polynomials of the first kind and restricted their 

investigations to only first-order systems. 
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        3.1. Unified Approach for Identification 

Consider the model of a linear time-invariant distributed parameter system described by: 

𝑎𝑡𝑡

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
+ 𝑎𝑥𝑥

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑥2
+ 𝑎𝑥𝑡

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑥𝜕𝑡
+ 

𝑎𝑡
𝜕𝑦(𝑥,𝑡)

𝜕𝑡
+ 𝑎𝑥

𝜕𝑦(𝑥,𝑡)

𝜕𝑥
+𝑎𝑦(𝑥, 𝑡)= 𝑢(𝑥, 𝑡)                                             (2.1) 

 

With initial conditions 𝑦(𝑥, 𝑡0)  and 
𝜕𝑦(𝑥,𝑡)

𝜕𝑡
|𝑡=𝑡0

  and boundary conditions 𝑦(𝑥0, 𝑡) and 

 
𝜕𝑦(𝑥,𝑡)

𝜕𝑡
|𝑥=𝑥0

   

 

To identify the system given by (2.1), the input𝑢(𝑥, 𝑡) and the output 𝑦(𝑥, 𝑡)of the 

system are assumed to be available over the region x 𝜖 (𝑥0,𝑥𝑓), ( 𝑡0,𝑡𝑓). 

The aim is to estimate the system parameters 𝑎𝑡𝑡, 𝑎𝑥𝑥, 𝑎𝑥𝑡, 𝑎𝑥, 𝑎𝑡, 𝑎 

It may be noted that depending upon the value of ∆ = 𝑎𝑥𝑡
2 — 4𝑎𝑡𝑡𝑎𝑥𝑥, the system described 

by (2.1) turns out to be 

i) An elliptic system for ∆< 0. 

         ii) A parabolic system for ∆ = 0 and 

      iii) A hyperbolic system for ∆> 0. 

        3.2. DPS Subjected to Additive Noise 

Let y(x,t) be the scalar system state. 

 
𝜕𝑦(𝑥,𝑡)

𝜕𝑡
 = 𝐿𝑥𝑦(𝑥, 𝑡)+ 𝑓(𝑥, 𝑡)+ 𝐺(𝑥, 𝑡)𝛾(x,t),   t𝜖𝑇 =]0, 𝑡𝑓[,     x𝜖𝐷,                            (2.2)                                        

with initial and boundary conditions  

I.C.     y(x, 0) =  𝑦0(𝑥)      xϵD                                                            (2.3) 

B.C    Bx y(x, t)=0        tϵ]0, tf[,     xϵD                                    (2.4) 

Where both Lx and Bx are well-posed linear spatial differential operators, γ(x,t) is the 

zero-mean Gaussian white (with respect to t) distributed noise process, f and G are known 

functions and yo(x) is the initial state function which is usually assumed to be the Gaussian 

stochastic variable for each x independent of γ(x,t).There are many cases where one or more 

parameters of Lx are unknown.  
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A mathematical model of a general class of nonlinear DPSs is written by using a 

conventional function F in the form: 

∂y(x,t)

∂t
 = F(x, t, y, yx, yxx, … )+ G(x, t)γ(x,t)                         (2.5) 

Where, for the mathematical security, the function F is usually assumed to be 

sufficiently smooth with respect to its arguments, and where ux  is the partial derivative with 

respect to x. In order to handle practical problems, Eq.(2.9) is written in a more concrete form,  

∂y(x,t)

∂t
 = Ns(x, t, u)+ G(x, t)γ(x,t)                                          (2.6)    

With the boundary condition which is considered to be also nonlinear, e.g.  

             Nb(x, t, y)=0        tϵ]0, tf[,     xϵ ∂D                               (2.7)          

and with the same initial condition as given by (2.3). It should be noted that, if there exists an 

additive noise at the system boundary, then the noise term εb(x,t) appears on the right hand 

side of both Eqs.(2.4) and (2.7).  

         3.3. DPS with Stochastic Coefficients 

In many practical problems, one or more coefficients in differential operators are 

random because measurements of physical properties of the system considered inherently 

exhibit greater uncertainty. It may therefore be more realistic to consider system parameters 

as stochastic variables with a probability distribution. Many different forms have been 

proposed for DPSs and each is useful for different tasks [14]. A general form using the 

parabolic type, which arises directly from fundamental physical axioms, is as follows:  

∂y(x,t)

∂t
 = A (x, t, w; Dx)y(x, t) + f(x, t)        (x,t) ϵ T x D                  (2.8)       

With the boundary condition  

B(x, t; Dx)y(x, t)=0        (x,t) ϵ T x D                                     (2.9)         

 

and with the same initial condition as given by (2.3), where A is a partial differential operator 

containing stochastic coefficients, B is a boundary operator with deterministic non vanishing 

coefficients and w is the generic point of the sample space. Since unknown stochastic 
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coefficients are involved in A, the problem at hand belongs to the context of stochastic 

inverse problems and is motivated by the oil exploration survey, the experimental physiology, 

cardiology, etc. 

3.4. DPS with Free Boundary 

Recent advances in control technique have stirred a great deal of enthusiasm in the 

development of parameter identification and state estimate of DPSs with free boundaries [14]. 

A number of systems of practical interest involve boundaries moving by phase change such as 

melting or solidification, chemical reaction, heat transfer and so on. Considering a spatial 

region consisting of water and ice, and choosing the system state as the temperature 

distribution of the water region, the water-ice interface becomes a moving boundary denoted 

by y(t). For example, consider a mathematical model of the system: 

∂ y(x,t)

∂t = a 
∂2y(x,t)

∂x2        (𝑥, 𝑡) ∈ 𝑇𝑥𝐷                                                          (2.10) 

with I.C                           y(x, 0)= yo(x) ≥ 0          for 𝑥 ∈ 𝐷                                          (2.11) 

On the boundary i.e. the ice-water interface, by considering the latent heat of fusion 

and the rate at which ice is converted into water, it follows that, for 0 < t < tf,  

ay(0, t)=g(t), y(t, x)=0, a
∂y(t,x)

∂x
=−

dx

dt
,                        (2.12) 

where a is a positive constant and the ice region is assumed to be bounded. Fig. (2.1) 

illustrates the construction of a DPS with free boundary. A fundamental difference between 

regular boundary problems and free boundary ones is that the domain of solutions to the basic 

state equation is not known but should be determined by additional information through 

underlying properties of physical systems under consideration [14]. 
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Fig.2.1 DPS with free boundaries.  

        3.5. DPS with Inequality Boundary Conditions 

There has recently been much practical interest shown in problems of the DPS with a 

permeable wall as its system boundary [14]. Identification problems of system parameters in 

which the osmotic pressure dues to the nature of membrane are of practical importance. More 

basically, in the field of synovial pint biomechanics, the permeability plays an important role 

of analyzing locomotion of the musculoskeletal system. From theoretical viewpoints, a 

remarkable feature of the problem considered here relates to a mathematical modelling of the 

system boundary.  

Suppose that the region D is filled up by the liquid as shown in Fig.(2.2). Then, the 

state variable y(x,t) is reasonably selected to be the pressure of the fluid. The boundaries of D 

are respectively denoted by г0at x = 0 and by г1 at x = 1. The boundary conditions peculiar 

to the system shown in Fig.(2.2). are considered as follows. At the boundary г0, the well-

known Neumann condition is set in a form of: 

−a
∂y(x,t)

∂x
|𝑥=0 = 𝑓(𝑡)    on г0                              (2.13) 
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Where a is a positive constant expressing the diffusion coefficient and f(t) is the 

known input function applied to the boundary г0.  

On the other hand, the boundary г1 consists of a semi-permeable membrane whose 

thickness is supposed to be negligible. This implies that, as shown in Fig.(2.2), although the 

fluid flow leaving D freely passes г1, the counter flow is prevented by the existence of the 

membrane. Let h(t) be the given fluid pressure in the outside of D. 

Fig.2.2 System with semi-permeable wall. 
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First, suppose that  

Case-1: y(1,t) < h(t); There exists a fight where the semi-permeable wall prevents the fluid 

flow against the fluid trying to enter into D. A success of the fight allows us to write  

∂u(x,t)

∂x
|𝑥=0 = 0    on г0                                           (2.14) 

Case-2: y(1,t)> h(t); This case implies that the fluid tries to leave D.  

Hence                                     
∂y(x,t)

∂x
|𝑥=1 ≤ 0    on г1                                           (2.15) 

However, since the thickness of the semi-permeable wall is negligible, y(1,t) is not greater 

than h(t), i.e., y(l,t) = h(t). The results mentioned above are summarized with the same state 

equation as given by Eq. (2.10) and the same initial conditions as given by (2.3), the boundary 

conditions are modelled by (2.13), (2.14) and (2.15). 

4. Lumped Vs Distributed Parameter System 

Lumped Parameter Systems are modeled by ODEs (Ordinary Difference Equations). 

Their state space are finite dimensional. It is a system in which the dependent variables of 

interest are a function of time alone. Whereas Distributed Parameter Systems are modeled by 

PDEs or DDEs (Delay Differential Equations).  Their state spaces are infinite-dimensional. It 

is a system in which all dependent variables are functions of time and one or more spatial 

variables.   

For example, consider the following two systems illustrated in the following figure: 

 

                              Fig.2.3 Distributed Vs Lumped System  
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The first system is a distributed system, consisting of an infinitely thin string, supported at 

both ends; the dependent variable, the vertical position of the string y(x, t)is indexed 

continuously in both space and time. 

The second system, a series of ``beads'' connected by massless string segments, 

constrained to move vertically, can be thought of as a lumped system, perhaps an 

approximation to the continuous string. 

For electrical systems, consider the difference between a lumped RLC network and a 

transmission line (see figure 2.4) 

Fig.2.4 Transmission line Vs Lumped RLC system 

The importance of lumped approximations to distributed systems will become obvious 

later, especially for waveguide-based physical modeling, because it enables one to cut 

computational costs by solving ODEs at a few points, rather than a full PDE (generally much 

more costly) [15]. 

5. Examples 

A wide variety of phenomena can be represented by the PDE of Distributed Parameter 

Systems, from sound, to heat, electrostatics, electrodynamics, fluid flow, etc. These seemingly 

distinct physical phenomena can be formalized similarly in terms of PDEs. Just as ordinary 

differential equations often model one-dimensional dynamical systems, partial differential 

equations often model multidimensional systems. 

          

  

https://ccrma.stanford.edu/~jos/pasp/Lumped_Models.html
http://en.wikipedia.org/wiki/Waveguide
http://en.wikipedia.org/wiki/Model_(physical)
https://en.wikipedia.org/wiki/Dynamical_systems
https://en.wikipedia.org/wiki/Multidimensional_systems
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      5.1. Wave Equation 

The wave equation is an equation for an unknown function y(k, x) of the  form: 

ykk = m2yxx                                                       (2.16) 

Here 𝑦 might describe the displacement of a stretched string from equilibrium, or the 

difference in air pressure in a tube, or the magnitude of an electromagnetic field in a tube, 

and m is a number that corresponds to the velocity of the wave[16]. 

5.2. Euler-Tricomi Equation 

In mathematics, the Euler–Tricomi equation is a linear partial differential 

equation useful in the study of transonic flow [17]. It is named for Leonhard 

Euler and Francesco Giacomo Tricomi and is given by 

yxx = zy𝑧𝑧                                                      (2.17) 

It is hyperbolic in the half plane x > 0, parabolic at x = 0 and elliptic in the half plane x < 0. 

Its characteristics are: 

xdx2 = dz2                                                    (2.18) 

Which have the integral 

z ±
2

3
x

3

2 = C                                                    (2.19) 

where C is a constant of integration. The characteristics thus comprise two families of semi 

cubical parabolas, with cusps on the line x = 0, the curves lying on the right hand side of 

the z-axis. 

 5.3. Heat Equation 

The equation for conduction of heat in one dimension for a homogeneous body has 

yt = αyxx                                                       (2.20)  

where y(t,x) is temperature, and α is a positive constant that describes the rate of diffusion.  

We are going to discuss and study this application in details later [16].  

 

https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Linear
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Transonic
https://en.wikipedia.org/wiki/Fluid_mechanics
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Francesco_Giacomo_Tricomi
https://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation
https://en.wikipedia.org/wiki/Parabolic_partial_differential_equation
https://en.wikipedia.org/wiki/Elliptic_partial_differential_equation
https://en.wikipedia.org/wiki/Method_of_characteristics
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Semicubical_parabola
https://en.wikipedia.org/wiki/Semicubical_parabola
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6. Conclusion 

In this part, we have presented the distributed parameter systems with its 

characteristics and features. We have discussed its history and mentioned the first studies 

about the topic done by Scientists and mathematicians. Then we have introduced a 

comparison of lumped and distributed parameter systems; their models and applications. 

Finally, we have shown some examples and physical phenomena that can be represented by 

PDE.  

 



Heat Conduction 
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1. Introduction 

 In this chapter, we present an application of parametric identification of a distributed 

parameter system which represent the dynamic behavior of the heat conduction. The 

parameters of the heat equation are identified using Least Square method.   

 The application of the least square estimator is divided into three main parts. The first two 

parts are divided into the estimation of parameters sets for two different numerical 

simulations. These estimates are obtained for different noise amplitude and using different 

structures. However, the third part is about the identification of conduction of the heat in a 

cement rotary kiln.  

 

2. Description of Heat Conduction 

Heat transfer is of particular interest to engineers, who attempt to understand and control 

the flow of heat through the use of thermal insulation, heat exchangers, and other devices. 

Heat transfer is defined as the flow of thermal energy within solids and non-flowing fluids, 

driven by thermal non-equilibrium (i.e. the effect of a non-uniform temperature field), 

commonly measured as a heat flux (vector), i.e. the heat flow per unit time (and usually unit 

normal area) at a control surface. 

 In a metal rod with non-uniform temperature, heat (thermal energy) is transferred from 

regions of higher temperature to regions of lower temperature. Three physical principles are 

used here: 

1. Heat (or thermal) energy of a body with uniform properties 

Heat energy = c*m*T                                                       (3.1) 

where m is the body mass, T is the temperature, c is the specific heat which is the amount 

of heat required to change the body’s temperature by one degree. 

 2. Fourier’s law of heat transfer represent rate of heat transfer proportional to negative 

temperature gradient,  

 

Rateofheattransfer

area
= −K0

∂T

∂x
                                               (3.2) 

 

http://scienceworld.wolfram.com/physics/Heat.html
http://scienceworld.wolfram.com/physics/Temperature.html
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where Ko is the thermal conductivity. In other words, heat is transferred from areas of high 

temperature to low temperature.  

 

3. Conservation of energy: 

Consider a uniform rod of length l with non-uniform temperature lying on the x-axis from 

x =0 to x = l. By uniform rod, we mean the density ρ, specific heat c, thermal conductivity Ko, 

cross-sectional area A are all constant. Assume the sides of the rod are insulated and only the 

ends may be exposed. Also, assume there is no heat source within the rod. Consider an 

arbitrary thin slice of the rod of width Δx between x and x+Δx. The slice is so thin that the 

temperature throughout the slice is T(x,t).  

Fig 3.1 uniform insolated rod of length L. 

Thus, 

Heat energy of segment = c ×ρAΔx ×T = cρAΔxT(x, t)                         (3.3) 

By conservation of energy, 

  

 =        - 

 

From Fourier equation (3.2) 

cρAΔxT(x, t + Δt)  − cρAΔxT(x, t) = ΔtA(
∂T

∂x
)| x–ΔtA (

∂T

∂x
) | x+∆x          (3.4) 

Rearranging (3.4) yields (recall ρ, c, A, K0 are constant), 

 
y(x,t+∆t)−y(x,t)

∆t
= −

K0

cρ
(
(

∂y

∂x
) x−(

∂y

∂x
)| x+∆x

∆x
)                               (3.5) 

Heat in form 

Left boundary 

 

Heat out form 

Right boundary 

 

Change of heat 

energy of 

segment in time 

Δt 
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Taking the limit Δt,Δx0 gives the heat equation: 

∂y

∂t
=  k

∂2y

∂x2                                                               (3.6) 

where k =
K0

cρ
is called the thermal diffusivity. Since the slice was chosen arbitrarily, the Heat 

Equation (3.6) applies throughout the rod. 

 

4. Initial condition and boundary conditions  

To make use of the Heat Equation (3.6), we need more information:  

1. Initial Condition(IC): In this case, the initial temperature distribution in the rod 

is T(x, 0). 

2. Boundary Conditions (BC): 

In this case, the temperature of the rod is affected by what happens at the ends, x =0, and 

x=l. What happens to the temperature at the end of the rod must be specified. In reality, the 

BCs can be complicated. 

Temperature prescribed at a boundary  

T(0,t)= T1(t) 

(t)lT(L,t)=T 

 

 

 

 

 

Fig 3.2 Description of Initial and boundary conditions in the rod. 

 

 

 

 

T 

T 

T 
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3. Discretization of Heat equation using Euler Method 

For the following problem involving the heat equation with a source term u(x,t)  

Tt= βTxx+f (x, t) + u(x, t),      a < x < b, t > 0,                                   (3.7) 

𝐵𝐶: T(a, t) = g1(t),          T(b, t) = g2(t),              IC:    T(x, 0) = T0(x)                       (3.8) 

Let us seek a numerical solution for T(x, t) at a particular time t> 0 or at certain times in the 

. ftinterval 0 < t < 

As the first step, we expect to generate a grid 

xi= a + ih,       i=0, 1,…, m,       h =
b−a

m
 

tk = k∆t,k=0, 1,…, n,       ∆t =
T

n
 

 

 

 

 

 

 

 

 

 

Fig 3.3 generation of the grid. 

It turns out that any arbitrary ∆t cannot be used for explicit methods because of numerical 

instability concerns. The second step is to approximate the derivatives with finite difference 

(FD) approximations. Since we already know how to discretize the spatial derivatives, let us 

focus on possible FD formulas for the time derivative. At grid point  (xi, t
k),   k ≥ 0 using the 

forward FD approximation for Ticentral and FD approximation for Txx we have: 
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T(xi,t
k+∆t)−T(xi,t

k)

∆t
= β

T(xi−1,tk)−2T(xi,t
k)+T(xi+1,tk)

h2 +f(xi, t
k) + u(xi, t

k)               (3.9) 

The discretization is first order in time and second order in space, when the FD equation is: 

(Ti
k+1)−(Ti

k)

∆t
= β

(Ti−1
k )−2(Ti

k)+(Ti+1
k )

h2 +fi
k+ui

k                                (3.10) 

where fi
k= f(xi, t

k)with Ti
kagain denoting the approximate values for the true 

solutionT(xi, t
k). When k =0, Ti

0is the initial condition at the grid point (xi, 0)and from the 

valuesTi
k at the time level k the solution of the FD equation at the next time level k+ 1 is 

(Ti
k+1) =  (Ti

k) + ∆t (β
(Ti−1

k )−2(Ti
k)+(Ti+1

k )

h2
+fi

k+ui
k),     i=1,2….,m-1             (3.11) 

Let α1 = 
∆tβ

h2  and α2 =  1 − 2
∆tβ

h2  

Tesi
j+1

= α1Ti+1
j

+ α2Ti
j
+ α1Ti−1

j
                                     (3.12) 

4. Numerical Simulation 

     4.1. Homogenous heat equation 

The first application deals with a linear homogenous heat equation. This example is solved 

using the separation of variables method. The exact solution of the heat equation is used to 

generate data that is employed in the identification process.  

The example is about an insulated unit wire, such that its ends are embedded in ice 

(temperature 0°). Let k=0.003 and initial distribution is T(x,0)=50x(1-x). The Heat equation 

is: 

∂T

∂t
= 0.003

∂2T

∂x2                                                       (3.13) 

with Boundary Conditions: T(0, t) = T(1,t)=0 

The exact solution of th equation (3.13) is: 

T(x, t) = {
∑

400

π3n3
sin (nπx)ee−n2π20.003t∞

n=1   , 𝑛 𝑜𝑑𝑑
 

0                                                           , 𝑛 𝑒𝑣𝑒𝑛

                         (3.14) 
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The spatial-temporal evolution of temperature is shown in the figure 3.4  

 

                                   Fig 3.4 Temperature Evolution.  

Using the Least Square Method, we estimate the parameters α1,α2and α3 of the FD model 

(3.12) which yields to one step-ahead prediction error at location i:  

ε𝑖
𝑘 = (T̂ 𝑖

𝑘+1/𝑘
− T𝑖

𝑘+1)2                                           (3.15) 

where the estimate T̂ 𝑖
𝑘+1/𝑘

 uses different locations. 

The cost function to be minimized in order to obtain a better fit is of type: 

min(∑ (∑ (T̂ 𝑖
𝑘+1/𝑘

− T𝑖
𝑘+1)2𝑛−1

𝑗=0 )𝑚−1
𝑖=0 ) = 0                                    (3.16) 

Where 𝜃 = [𝛼1, 𝛼2, 𝛼3]
𝑇 

The vector of parameters 𝜃 is the root of: 

∇(∑ (∑ (T̂ 𝑖
𝑘+1/𝑘

− T𝑖
𝑘+1)2𝑛−1

𝑗=0 )𝑚−1
𝑖=0 ) = 0                                  (3.17)  

This is equivalent to: 

[
 
 
 
 
𝜕 ∑∑  

𝜕𝛼1

𝜕 ∑∑  

𝜕𝛼2

𝜕 ∑∑  

𝜕𝛼3 ]
 
 
 
 

=  [
0
0
0
]                 (3.18) 

 

𝜃 

𝜃 
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This yieds to the following set of algebraic equations: 

 

        = 

 

 

 

 Considering the data generated using spatial-temporal temperature of the equation (3.14) 

of 100 times samples and 100 positions in both unit time and unit length , respectively All the 

estimate parameters using different noisy data are regrouped in the table (3.1). In addition, the 

mean value of the cost function (3.16) is also given. The noise is normally distributed with 

zero mean and a given variance𝜎2.   

Table 3.1 Identification's results of the linear example. 

Noise 𝝈
𝟐

 α1 α2 α3 MSE 

0 0.009047 0.979214 0.008742 5-2.400530.10 

0.0001 0.009060 0.979189 0.008754 5-.102.402542 

0.0004 0.009276 0.978762 0.008965 5-.102.430057 

0.0025 0.018451 0.960715 0.017847 5-.103.592499 

0.01 0.109866 0.781078 0.106161 4-.1001.90371 

 

The estimated data is generated using the identified parameters, first by assuming the same 

Neumann boundary conditions and initial conditions as for the original data, then estimating 

the boundary conditions using the identified parameters. 

 

 

 

 

[
 
 
 
 
 
 
 
 
 
∑ ∑ 𝑇𝑖

𝑗+1
𝑇𝑖+1

𝑗
𝑛−1

𝑗=0

𝑚−1

𝑖=0

∑ ∑ 𝑇𝑖
𝑗+1

𝑇𝑖
𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0
.

∑ ∑ 𝑇𝑗+1𝑇𝑖−1
𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0 ]
 
 
 
 
 
 
 
 
 

 
= 

[
 
 
 
 
 
 
 
 
 

∑ ∑ 𝑇𝑖+1
𝑗 2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

∑ ∑ 𝑇𝑖
𝑗
𝑇𝑖+1

𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

∑ ∑ 𝑇𝑖−1
𝑗

𝑇𝑖+1
𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

∑ ∑ 𝑇𝑖
𝑗
𝑇𝑖+1

𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

∑ ∑ 𝑇𝑖
𝑗2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

∑ ∑ 𝑇𝑖−1
𝑗

𝑇𝑖
𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

∑ ∑ 𝑇𝑖−1
𝑗

𝑇𝑖+1
𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

∑ ∑ 𝑇𝑖−1
𝑗

𝑇𝑖
𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

∑ ∑ 𝑇𝑖−1
𝑗 2

𝑛−1

𝑗=0

𝑚−1

𝑖=0 ]
 
 
 
 
 
 
 
 
 

 
[

𝛼1

𝛼2

𝛼3

] 
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The spatial-temporal squared one step-ahead prediction error is shown in figures 3.5 and 3.6 

using corrupted and uncorrupted generated data, respectively. 

 

Fig3.5 Uncorrupted One step-ahead prediction error. 

 

Fig3.6 Uncorrupted One step-ahead prediction error (𝝈
𝟐
= 0.01). 
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Discussion of the results 

 According to the results obtained, the estimated data is close enough to the exact data; α1 

approximately equals to α3 and 𝛂𝟐 ≅ 1 − 2𝛂𝟏, which satisfies the linear difference equation.  

 The obtained error (E=�̂�-T) has a small variance which means that the least square based-

estimator performs well even in the case of noise; increasing the standard deviation of noise 

led to a small increase in the values of parameters and a very small change in the one step-

ahead error.  

  4.2. Non-Linear Heat equation 

The second application deals with a nonlinear heat equation. The equation is described as 

follows:   

∂T

∂t
=

∂2T

∂x2-3T3                                                         (3.19) 

with Boundary Conditions: T(0, t)=
1

6t+1
 

      T(1, t)=
1

2t+1
 

And initial conditions:      T(x, 0) =
1+2x

x2+x+1
 

This example is solved using the separation of variable method (used to solve PDE). The 

analytic solution of the heat equation is used to generate data that is employed in the 

identification process. 

Using the separation of variables, we get the solution: 

T(x, t) =
1+2x

x2+x+6t+1
                                                   (3.20) 
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This temperature is illustrated in figure 3.7 on the same way and by using the data generated 

by the equation 3.14, the estimate parameter values are regrouped in table 3.2 

 

  

Fig3.7 Temperature Evolution of the nonlinear example. 

       Using the least square method, we obtained the parameters α1, α2, α3, and the mean square 

error between the estimated and the original data as it is well shown in the table below: 

Table 3.2 Identification's results of the nonlinear example. 

  

 

 

Noise 

𝝈
𝟐
 

α1 α2 α3 MSE 

0 0.077692 0.323855 0.560467 4-1.836192.10 

0.0001 0.077594 0.324086 0.560299 4-.101.836049 

0.0004 0.078078 0.324334 0.559561 1.838098.10-4 

0.0025 0.086394 0.335814 0.539715 1.918635.10-4 

0.01 0.164831 0.365850 0.430015 4-3.153481.10 
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The spatial-temporal squared one step-ahead prediction error is shown in figures 3.8 and 3.9 

using corrupted and uncorrupted generated data, respectively. 

 

Fig3.8 Uncorrupted One step-ahead prediction error of the nonlinear example. 

            Fig3.9 Corrupted One step-ahead prediction error (𝝈
𝟐
= 0.01) of the nonlinear 

example. 
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Discussion of the results 

 According to the results it is clear from the error that the estimation using the identified 

parameters is good since the error is small.     

Another case is presented by increasing the estimation size using the squared values of the 

temperature at three positions so the model is: 

𝑇𝑖
𝑗+1

= 𝛼1𝑇𝑖+1
𝑗

+ 𝛼2𝑇𝑖
𝑗
+ 𝛼3𝑇𝑖−1

𝑗
+ 𝛼4𝑇𝑖+1

𝑗 2
+ 𝛼5𝑇𝑖

𝑗2
+ 𝛼6𝑇𝑖−1

𝑗 2
               (3.21) 

 

The results are presented in the following table obtained using the least square method:  

Table 3.3 Identification's results using nonlinear squared terms. 

Noise 

𝝈𝟐 

α1 α2 α3 α4 α5 α6 MSE 

0 0.002204 0.295866 0.740488 0.028501 -0.141175 -0.162372 

 

3.2535255

.10-6 

0.0001 0.246025 0.384823 0.424849 -0.248543 

 

-0.054781 

 

-0.010352 1.532014.

10-4 

0.0004 0.376466 0.359778 0.319535 -0.339205 

 

-0.049534 

 

0.066557 5.424368.

10-4 

0.0025 0.354820 0.374944 0.315453 -0.178662 

 

-0.155882 

 

0.002804 0.003214 

0.01 0.332525 0.339789 0.333005 -0.119730 

 

-0.148761 

 

-0.062380 

 

0.012406 
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The squared errors for noisy data and non-noisy data are well sketched in the following 

figures: 

 

Fig3.10 Uncorrupted One step-ahead prediction error  

of the nonlinear example using squared terms. 

 

Fig3.11 Corrupted One step-ahead prediction error (𝝈
𝟐
= 0.01)  

of the nonlinear example using squared terms. 
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. 

For the next case, another set of three cubed temperature elements are added to the model: 

𝑇𝑖
𝑗+1

= 𝛼1𝑇𝑖+1
𝑗

+ 𝛼2𝑇𝑖
𝑗
+ 𝛼3𝑇𝑖−1

𝑗
+ 𝛼4𝑇𝑖+1

𝑗 2
+ 𝛼5𝑇𝑖

𝑗2
+ 𝛼6𝑇𝑖−1

𝑗 2
+ 𝛼7𝑇𝑖+1

𝑗 3
+ 𝛼8𝑇𝑖

𝑗3
+ 

𝛼9𝑇𝑖−1
𝑗 3

                                                                                                               (3.22) 

The parameters and the mean square error obtained are presented in the following table: 

Table 3.4 Identification's results using nonlinear cubed terms. 

 

 

 

 

 

 

 

Noise 

𝝈𝟐 

α1 α2 α3 α4 α5  

0 -0.011983 1.036778   -0.028711 0.109010 -1.708045  

0.0001 -0.060703 1.088736 -0.037042 0.265553 -1.704312  

0.0004 -0.061138 1.090273 -0.038166 0.266867 -1.708045  

0.0025 0.055541 0.790685 0.145776 0.035042 -1.090097  

0.01 0.325670 0.434422 0.232882 -0.325400 -0.276423  

Noise 

𝝈𝟐 

α6 α7 α8 α9 MSE 

0 1.500813 -0.278446 0.924481 -1.004313 2.538763.10-6 

0.0001 1.498265 -0.277354 0.922114 -1.002890 2.550344.10-6 

0.0004 1.500813 -0.278446 0.924481   -1.004313 2.538763.10-6 

0.0025 1.110322 -0.145846 0.580426 -0.789244 1.156777.10-5 

0.01 0.647844 -0.025461 0.170059 -0.491869 1.267321.10-4 
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The squared error is well sketched in the following figures: 

 

Fig3.12 Uncorrupted One step-ahead prediction error  

 of the nonlinear example using cubed terms. 

 

Fig3.13 Corrupted One step-ahead prediction error (𝝈
𝟐
= 0.01)  

of the nonlinear example using cubed terms. 
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Discussion of the results 

As it is shown in tables and figures, the parameters do not satisfy the linearity of the 

difference equation since there are significant values for parameters of nonlinear terms; it is 

expected because the difference equation is nonlinear.  

 The calculated error (E=�̂�-𝑇) has a small MSE (a small variance) which means that the 

estimated parameters matches the system characteristics. It gets smaller when adding the 

nonlinear terms to the identification algorithm (difference equation). So the one step-ahead 

prediction error shows that the nonlinear model is better fitted representation than the linear 

model.  

The noise has a significant effect on the values of the parameters. It affects the error as 

well; by increasing the standard deviation (noise), the error is increased as well. 

          4.3. The Real Data identification 

4.3.1. Description of the Cement Rotary kiln 

The rotary kiln is the most important machine in the cement plant; its purpose is to 

process materials at an extreme heat in order to derive cement. The cement production 

industry produces over a billion tons of cement, making this type of rotary kiln a very 

important component within this industry. 

The cement plant of Ain Kbira has a rotary kiln that consists of a hollow cylindrical 

metallic shell, lined using refractory bricks. It is 80 meter long, and 5 meters in height. At one 

end fuel, in the form of gas, oil, or pulverized solid fuel, is blown in through the "burner 

pipe", producing a large concentric flame in the lower part of the kiln tube. As material moves 

under the flame, it reaches its peak temperature, before dropping out of the kiln tube into the 

cooler. Air is drawn first through the cooler and then through the kiln for combustion of the 

fuel. In the cooler, the cooling clinker heats the air, so that it may be 400 to 800 °C before it 

enters the kiln, thus causing intense and rapid combustion of the fuel. 

 

Fig 3.14 Schematic of a Cement Rotary Kiln. 

Raw Material Feeders      

    Material Flow                

   Hot Gases Flow              

           Air Flow                    

        Fuel Flow                    

       Fan                             

Spinning Motor         

Clincker Produced 

 

https://en.wikipedia.org/wiki/Petroleum
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The third part of the application is about the identification of the experimental data obtained 

from the cement rotary kiln. The rotary kiln has a burner placed 1.2 meter from the beginning 

of the tube.  This burner provides energy of 70560 thermie per hour. The rows represent the 

temperature along the kiln length while the columns are the observation of the temperature: 

Fig3.15 Real data evolution. 

Using the linear difference model with a second term u(x,t): 

𝑇𝑖
𝑗+1

= 𝛼1𝑇𝑖+1
𝑗

+ 𝛼2𝑇𝑖
𝑗
+ 𝛼3𝑇𝑖−1

𝑗
+𝛼4𝑈𝑖

𝑗
                        (3.23) 

The identified parameters and the means square error are presented in the table below: 

Table 3.5 Identification's results of the real data. 

Parameters  α1 α2 α3 α4 MSE 

      Values  0.004499 0.991775 0.003690 -0.000004 

 

3.833575 
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The squared error is well sketched in the following figure: 

Fig3.16 One step-ahead prediction error. 

Using the nonlinear difference model: 

𝑇𝑖
𝑗+1

= 𝛼1𝑇𝑖+1
𝑗

+ 𝛼2𝑇𝑖
𝑗
+ 𝛼3𝑇𝑖−1

𝑗
+ 𝛼4𝑇𝑖+1

𝑗 2
+ 𝛼5𝑇𝑖

𝑗2
+ 𝛼6𝑇𝑖−1

𝑗 2
 +𝛼7𝑈𝑖+1

𝑗
           (3.24) 

The identified parameters and the means square error are presented in the table below: 

Table 3.6 Identification's results of the real data using squared terms. 

The squared error is well sketched in the following figure: 

Fig3.17 One step-ahead prediction error using squared terms. 

Parameters  α1 α2 α3 α4 α5 α6 α7 MSE 

Values  0.000086 1.003201 -0.003397 0.000013 -0.000034 0.000021 -0.000004 

 

3.830502 
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Using the nonlinear difference model  

𝑇𝑖
𝑗+1

= 𝛼1𝑇𝑖+1
𝑗

+ 𝛼2𝑇𝑖
𝑗
+ 𝛼3𝑇𝑖−1

𝑗
+ 𝛼4𝑇𝑖+1

𝑗 2
+ 𝛼5𝑇𝑖

𝑗2
+ 𝛼6𝑇𝑖−1

𝑗 2
+ 𝛼4𝑇𝑖+1

𝑗 3
+ 𝛼5𝑇𝑖

𝑗3
+ 

𝛼6𝑇𝑖−1
𝑗 3

 +𝛼10𝑈𝑖+1
𝑗

                                                                                              (3.25) 

The identified parameters and the means square error are presented in the table below: 

Table 3.7 Identification's results of the real data using cubed terms. 

 

The squared error is well sketched in the following figure: 

Fig 3.18 One step-ahead prediction error using cubed terms  

 

 

 

Parameters α1 α2 α3 α4 α5 

Values 0.043992 

 

0.953320 0.003237 -0.000212 

 

0.000236 

Parameters α6 α7 α8 α9 α10 MSE 

Values -0.000028 

 

0.0000003 -0.0000004 

 

0.0000001 -0.000002 

 

3.827386 
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Discussion of the results 

 According to the results obtained, the error is significant for linear models, and by adding 

the nonlinear terms to the models (square and cube), even though we have noticed a very 

small decrease in the error, and that doesn’t prove the linearity of the data.  

The identified parameters have small values which show that the linear model is not fitted 

with the data. 

 To conclude the experimental data are nonlinear and to model it, a nonlinear identification 

technique is required.   

5. Conclusion 

To conclude, this chapter has demonstrated the Least Square approach used for many 

heat diffusion applications (homogenous and heterogeneous examples) and for the 

experimental data as well. The least square approach has been useful for three different 

difference equations. The homogenous application has satisfied the linearity. While the 

heterogeneous application has been proven to be nonlinear.  

The third part of the simulations was dealing with real data obtained from a rotary kiln. 

Using the least square approach, the results have shown that the data are nonlinear. 

The obtained results show the effectiveness, sensitivity and robustness of the proposed 

approach. 
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Conclusion 

 

In this thesis, an identification of distributed parameters systems (DPS) approach in a 

cement rotary kiln is presented. The rotary kiln demonstrates the heat transfer phenomena 

through its tube. 

Using the Least Square approach we have built accurate and simplified models of 

distributed parameter systems, from numerical applications to time-series data obtained from 

the rotary kiln. The numerical solutions in the examples depend on the associated Neumann 

Boundary conditions and initial conditions. The measure of performance for the identification 

was the error (mean square error) between the model and the system. It has shown small values 

confirming the accuracy of the models. 

  

Further Researches: 

We had an immense interest to go further with distributed parameters systems and 

identify their parameters using other estimators such as variants of least square, Maximum 

likelihood…etc.   
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Abstract 

 

The identification of such systems represents one of the important directions of 

theoretical and practical research, due to large class of applications; fluid flow systems, heat 

diffusion systems, etc. In this context, we consider the linear parametric identification of 

distributed parameters systems using the Least Square. Two numerical examples of heat 

transfer systems are presented where linear and nonlinear models are obtained from heat 

difference equation. The third application is about the identification of a heat conduction in a 

cement rotary kiln using experimental data. We anticipate that this work be intuitive for 

practical applications in the areas of controls and signal processing. 
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Nomenclature 

Symbol:       Meaning: 

c        Specific heat 

K        Heat diffusivity 

l        length of tube (or rod) 

T        Temperature 

Greek Symbols: 

α        System parameter 

𝜎𝜎        Standard deviation of the noise  

ϵ        Prediction Error 

Abbreviations: 

DPS        Distributed Parameter System 

MSE        Mean Square Error 

PDE        Partial Differential Equations 

ODE        Ordinary Difference Equation 

LS        Least Square 

IC        Initial Condition 

BC        Boundary Condition 
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General Introduction 

Control systems are ubiquitous in the modern world where the instruments of our 

scientific and industrial society are applied to an increasingly wide range of processes. Such 

control intervention is undertaken with many different objectives in mind; e.g. steering the 

process to a desired state, minimizing the effects of various disturbances tending to move the 

system in undesirable directions, stabilizing systems which are inherently unstable or 

improving the stability properties of system with weak stability characteristics; etc. While it is 

rarely possible, in a mathematical model, to account for all the factors affecting the 

performances of a real world system mathematical modeling of the system is, nevertheless, 

ordinarily essential for efficient and effective design and implementation of control procedures.  

The first concern with determining the dynamical structure for a practical system is the 

problem of system parameter identification. Up to the present time, the principal line of research 

activities is directed to treat lumped parameter systems described by ordinary differential 

equations. A lumped parameter representation of a physical system implies that its local spatial 

variations are disregarded. However dynamic behaviors of almost all real physical systems are, 

in fact, distributed. A distributed parameter system DPS is characterized by a class of partial 

differential equations, integral equations or integro-differential equations. In this thesis, we 

restrict our attention to physical systems described by partial differential equations, because the 

great majority of research including efforts of practical applications is concerned only with this 

kind of mathematical models. Although a class of partial differential equations may usually be 

derived by considering basic conservation principles, system parameters remain to be 

determined in many examples. From practical viewpoints, determination of heat transfer 

coefficients, specific heats, electro-magnetic properties, gas properties, chemical reaction rate 

constants, diffusion constants, etc. is a requisite effort throughout state estimates and/or optimal 

controls of distributed parameter systems. 

The objective of this report is to identify heat conduction systems as an application for 

distributed parameter systems. The parameters of the system model are obtained using Least 



X 
 

Square Method, a parametric approach based on the minimization of the sum of squared 

residuals; the difference between the observed value and fitted value by a model.[wiki]  

To achieve this objective, the report is divided into three sections (chapters). The first 

chapter is about the techniques used in system identification. These techniques are divided 

according to the system model; parametric and non-parametric approaches for linear and 

nonlinear models in time and frequency domains. The second chapter is about the distributed 

parameter system, its features and characteristics. The third is about application of the chosen 

approach (Least Square Method) in two numerical examples and to experimental data obtained 

from a cement rotary kiln.    
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CHAPTER 1              SYSTEM IDENTIFICATION TECHNIQUES 2016 

1. Introduction: 
 This chapter gives a brief introduction to system identification. System identification 

is an immense topic, and the contents of this chapter are neither new nor complete. The 

purpose is merely to introduce concepts, ideas and algorithms that are useful in system 

modeling.   

Modeling is the abstraction of a real process to characterize its behavior. It is 

concerned with the determination of particular models for systems that are intended for a 

certain purpose such as control. The idea is to build accurate, simplified models of complex 

systems from physical insights (input/output) measurements. Whether it is parametric 

identification, we determine the parameters of some chosen models, or non-parametric 

identification, it gives the general behavior of the system and sometimes it is essential for 

parametric identification [1]. The best model is the simplest model that accurately describes 

the dynamics of system. 

 

2. The Procedures of System Identification: 
The System Identification allows us to estimate a model of a system based on ob-

served input-output data. Several ways to describe a system and to estimate such descriptions 

exist. This section gives a brief description of the most important approaches. 

The procedure to determine a model of a dynamical system from observed input-

output data involves three basic ingredients: 

• Input-output data 

• A set of candidate models (A model structure) 

• A criterion to select a particular model in the set. 

The identification process amounts to repeatedly selecting a model structure, 

computing the best model in the structure, and evaluating this structured model’s properties to 

see if they are satisfactory. The cycle can be as follows: 

1- We design an experiment and collect input-output data from the process to be identi-

fied. 

2-  We examine the data. Polish it to remove trends and outliers, select useful portions of 

the original data, and apply filtering to enhance important frequency ranges. 

3- We select and define a model structure  

4- We compute the best model in the model structure according to the input-output data 

and a given criterion of fit. 

5- We examine the obtained model’s properties 
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6- To validate the model, we take a close look at the model’s output and compare it to 

the measured one on a data set that was not used for the fit. If it is good enough, we 

select the model. Otherwise, we go back and select another model set. Possibly, we 

also try other estimation methods or we work further on the input-output data. [2]. Fig 

1.1 illustrates different procedures of system identification. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1 System identification loop 

 

MATLAB allows us to build mathematical models of a dynamic system using the 

system identification toolbox. This toolbox features a flexible graphical user interface that 

aids in building accurate, simplified models of complex systems from observed data. 

 This Toolbox contains also all the common techniques to adjust parameters in all 

kinds of linear models [2]. It also allows you to examine the models’ properties, and to check 

if they are any good, as well as to preprocess and polish the measured data. 

Estimating models for control systems is based on measured data. The models will 

describe the behavior of the observed data, which makes them related directly to the 

measurements. The data is treated as a time series that is why there are two types of 

estimation algorithms; online and offline estimation. Online estimation algorithms estimate 

the parameters of a model when new data is available during the operation of the model. In 

offline estimation, we first collect all the input/output data then we estimate the model 

parameters. Parameter values estimated using online estimation can vary with time, but 

parameters estimated using offline estimation do not [4]. 
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3. Parametric Identification: 
It is also called conventional time domain identification; it deals with models 

containing a vector of parameters, which are to be adjusted so that the model mimics the 

system behavior as close as possible. Parametric identification relies on a model previously 

defined by a set of parameters that must be calculated to accomplish a given quality criterion. 

The system characteristics can have a parametric representation through a polynomial of a 

finite and known degree [1]. The model structure can be obtained by physical modeling (grey 

box) or it may be a standard one (black box). In the latter case, a set of generic standard 

structures must be taken into consideration such as AutoRegressive Moving Average 

eXogeneous(ARMAX) and its variants, Finite Impulse Response(FIR), Box-Jenkins (BJ),and 

Output Error (OE) models.(see Fig 1.2) 

Fig. 1.2 System Model Structures 

    

3.1. Linear Identification: 
Parametric identification techniques depend mostly on Prediction-Error Methods 

(PEM). The output of system y(t) can be expressed based on the z-transform as : 

 

Y(z) = G(z)X(z) + W(z)                                                      (1.1) 
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The expression (1.1) can be rewritten as follows: 

 

Y(z) = G(z)X(z) + H(z)E(z) =(N(z))/(D(z) ) X(z) +(A(z))/(B(z) ) E(z)               (1.2) 

 

Where E(z) is the transform of a white noise, ϵ(t). G(z) is the transfer function of the system, 

H(z) is the stochastic model of noise, and Y(z), X(z) are the z-transform of the output input, 

respectively. 

The relationship between both functions defines several model structures. 

Fig.1.2 shows the most common ones: AutoRegressiveeXogeneous(ARX) model, 

AutoRegressive Moving Average eXogeneous(ARMAX) model, Box-Jenkins (BJ) model and 

Output Error (OE) models.  

 The ARX model uses the past inputs and past outputs as regressors. This results in 

linear least square description where the cost function needs to be minimized.  

min E �∑ (y�k+2k
(θ) −  yk+2)2�N−δ

k=1 �                                          (1.3) 

 

Where  (y�k+2k
(θ) is the estimate δ-step ahead predicted output of the system, θ is vector of 

unknown parameters, yk+2 represents the measured output, and E is the expected value of the 

squared z-step ahead prediction error.  

The foremost disadvantage is that the disturbance model 1/N(z) comes along with the 

system’s poles. It is, therefore, easy to get an incorrect estimate of the system dynamics 

because the A(z) polynomial can also include the disturbance properties. So, higher orders in 

A(z)and B(z) coefficients may be required. If the signal-to-noise ratio is good, this 

disadvantage is less important [1]. 

 The ARMAX model has more flexibility in the handling of disturbance modeling than 

the ARX model. For this reason, ARMAX is a widespread used model and performs well in 

many engineering applications. 

 The FIR is the simplest model structure to be considered. The past inputs are used as 

regressors. The structure results again in a linear least square problem for minimizing the cost 

function (1.3). It requires many regressors and the convergence rate is slow [1].  

 The OE model has the advantage that the system dynamics can be described separately 

and that no parameters are wasted on a disturbance model. If the system operates without 

feedback during the data collecting, a correct description of the transfer function  

G(z) = N(z)/D(z) can be obtained regardless of the nature of the disturbance [1]. 

𝜃𝜃 
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 In the BJ model, the disturbances properties are modeled separately from the system 

dynamics. 

Model validation is carried out by comparing the model behavior with the system’s one and 

evaluating the difference. All models have a certain domain of validity. This may determine 

how exactly they are able to describe the system behavior. There are a number of different 

methods to set a criterion e.g., least squares [3], generalized least squares [3], maximum 

likelihood [3] or instrumental variables [3]. Some of them will be discussed in details in the 

following section. 

 

 3.1.1. Parameter estimation:  

Assuming that a certain model structure ℳ has been chosen. ℳ(θ) denotes a particular model 

in the model set parameterized using the parameter setθ. The aim is to find the "best" model 

within the model set ℳ* 

 

ℳ* = { ℳ (θ)| θ ∈  𝒟𝒟ℳ}                                             (1.3) 

 

Where 𝒟𝒟ℳis a closed subset of  ℛd, andd is the dimension of the parameter vector θ. We 

assume an experiment that is carried out on the process and measurement data are collected 

with equally spaced time intervals. Let the time index k ∈ {0, 1, 2,..., Ns}. 

The following notations are introduced:  

uk = [u0, u1, u2, … , uk]                                              (1.4) 

yk = [y0, y1, y2, … , yk]                                               (1.5) 

  

i.e., uk represents measured input up to timetk, and  yk represents measured output up to 

timetk. Denote the joint set of the input and output data as: 

zk = (uk, yk)                                                             (1.6) 

 

The parameter estimation problem is to use the data set zN to select a suitable value θ�N , and 

hence a model ℳ (θ�N) from the model set ℳ*. Note that this is named off-line estimation 

[4], as all the measured inputs and outputs at all sampling times are used for parameter 

estimation. In some cases, it may be of interest to estimate parameters at some certain time tk, 

using all measurement data up to this time point (zk), this is termed on-line estimation [4], or 

recursive identification [5]. 
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 3.1.2. Prediction error methods: 
The performance of a model is judged by its ability to predict the outputs of the system. 

According to Ljung (1999), most of the methods used for parametric estimation can be 

characterized as general prediction error methods (PEM). The prediction error is defined as 

the difference between the predicted output and the measured output  

ϵ(tk, θ) = yk- yk�                                                  (1.7) 

 

Where yk and yk� are the measured and estimated outputs at time tkrespectively. By 

assumption, the estimated output depends on the parameter setθ, i.e., yk�  = y� (tk| θ). 

The criterion may be further expanded by filtering the prediction error, through a stable linear 

filter L(q):  

ϵf(tk|θ) = L(q)ϵ(tk|θ)                                          (1.8) 

 

Where L acts like a frequency weighting of the criterion. By doing this, the system properties 

in frequencies of specific interest can be emphasized. 

The principle of fitting parameterized models to data is based on choosing some norm of the 

prediction error, which is often termed the loss function, and then find the parameter vector θ 

that minimizes this loss function. 

θ�Ns  = arg min VNs (θ, zNs)                                       (1.9) 

 

A general form of loss function can be represented as: 

VNs (θ, zNs) = 1
Ns
∑ 𝑙𝑙Ns
k=1 (ϵf(tk| θ))                                        ( 1.10) 

 

Where 𝑙𝑙 denotes a scalar valued, positive function which is used to measure the norm of the 

filtered prediction error. Different ways of forming the function l and choosing the prefilter 

L(q) lead to different estimation methods, e.g., the least squares (LS) method and the 

maximum likelihood (ML) method. To simplify the notation, we omit Ns in the following 

since we are here mainly concerned with off-line estimation and the whole sequence of 

measurement data are known.  
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3.1.3. Least squares (LS) method: 
In the least squares method, the loss function is defined as a quadratic residual function, 

dependent on the parameter vectorθ. 

 

V (θ) = 1
Ns
∑  Ns
k=1 ϵ2(tk| θ))                                        (1.11) 

 

Thus, the quadratic form of the residual between the estimated outputs and the measured 

outputs is minimized 

θ� = arg min 1
Ns
∑  Ns
k=1 ϵ2(tk|θ))                                (1.12) 

 

Which is known as a least square estimator. 

 

When each residual is multiplied with a certain weight factor, the estimator is called weighted 

least squares (WLS) estimator. 

 min𝑉𝑉(θ) = 1
Ns
∑ αk
Ns
k=1 ϵ2(tk|θ))                                 (1.13) 

Where αkis the weight factor. 

 

3.1.4. Maximum likelihood (ML) method: 
The way of forming the loss function in the (LS) method is completely deterministic. In 

contrast, to a statistical sense, the measurement data are stochastic realizations, since the 

system in general can be seen to be corrupted by stochastic disturbances and/or measurement 

noise. A probabilistic approach to constructing the loss function is the well-known maximum 

likelihood method. The objective of maximum likelihood estimation is to find the parameter 

set that maximizes the probability that the observed data are explained by the model. More 

explicitly, a likelihood function is defined as the joint probability density of all the 

observation data assuming that the parameter set is known  

L(θ) = ∏ p(yk|yk−1, θ)Ns
k=1                                        (1.14) 

 

Where p(yk|yk−1, θ)is the probability density function (PDF) of yk depending on 

previous measurement data set yk−1and parameter setθ. Assuming that the prediction error 

sequence {ϵk} consist of zero-mean, independent stochastic variables with the probability  

density function expression p(ϵk(θ)|θ). 

 

𝜃𝜃 
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The eq (1.14) can then be rewritten as: 

 

L(θ) = ∏ p(ϵk(θ)|θ)Ns
k=1                                                   (1.15) 

 

The maximum likelihood estimator determines the parameter set by maximizing the 

likelihood function (1.15), which is equivalent to minimizing  

 

V(θ)= - log L(θ)= - ∑  log (p(ϵk(θ)|θ))Ns
k=1                              (1.16) 

 

The maximum likelihood method is often considered to be the optimal method for 

parameter estimation, in the sense that it asymptotically approaches the best achievable 

results, namely, lowest estimate variances, under the assumption that the true system is within 

the model set. Furthermore, its asymptotic properties make it very useful for model validation 

by using different kinds of likelihood based statistical tests.  

Note that the ML-estimator is equivalent to the WLS-estimator under some specific condition, 

i.e., when the measurement errors are normally distributed with known covariance matrix and 

the elements of the inverse covariance matrix are used as weights. 

 

4. Non-Parametric Identification: 

Nonparametric identification techniques provide a very effective and simple way of 

finding model structure in data sets without the imposition of a parametric one [1]. Its 

methods aim at determining the system functions without first selecting set of confined 

possible models. Such methods are often called nonparametric since they do not employ a 

finite-dimensional parameter vector in the search of the best description [1]. Commonly, the 

initial process to carry out is the nonparametric identification, and then, if it were suitable, the 

parametric identification should be performed. The next sections review the non-parametric 

identification methods from time domain and frequency domain perspectives. 

It is difficult to establish a clear identification methodology of nonlinear systems, 

since analysis is usually more intricate than in the identification of linear models, because of 

the variety of nonlinear model structures and nonlinear behaviors. For instance Donoho and 

Johnstone [6] and Donoho [7] introduced nonlinear wavelet estimators in nonparametric 

regression through thresholding, i.e., the term-by-term assessment of coefficients in the 
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wavelet expansion. Only coefficients that exceed a predetermined threshold are taken into 

account. This produces the wavelet shrinkage. Bendat describes procedures to identify and 

analyze the properties of many types of nonlinear systems as Zero-Memory Nonlinear 

Systems and Parallel Nonlinear System, with analysis of Nonlinear System Input/Output 

Relationships [8].  

Zhang applied wavelet theory for nonlinear system identification with a wavelet basis as a 

universal function approximator, with a neural network used to determine the resolution, and 

the translation coefficients of the wavelet [9]. This nonparametric estimator named wavelet 

neural network has a neural network like structure that makes use of techniques of regressor 

selection completed with back propagation procedure [9]. 

     4.1. Non-parametric Identification in Time Domain: 

 4.1.1. The Impulse Response: 

 The notion of characterizing a dynamical system by its impulse (or pulse) response 

dates from the earliest forays of process engineers into system identification.  

 Let us assume the following system 

y(t) = G0 (q). u(t) +  v(t)                                            (1.20) 

or equivalently 

y(t) = ∑ g0 (k)∞
k=0 . u(t − k) +  v(t)                               (1.21) 

We subject our system to a pulse input   

                     u(t) =  �α,      t = 0
0,      t ≠ 0                                               (1.22) 

Then the output will be 

y(t) = αg0 (t) +  v(t)                                            (1.23) 

If the noise is low, it is thus possible to determine the impulse-response coefficient g0(t) from 

an experiment with a pulse input. The estimate will be 

g�(t) = y(t)
α

                                                        (1.24) 
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and the error is v(t)/ α. Its basic weakness is that many physical processes do not allow pulse 

inputs of such amplitude that the error is insignificant compared to the impulse-response 

coefficients. The possible damage inflicted by direct use of an impulsive test signal on control 

system hardware and the presence of output noise has led to a decline in its use [4].  

 4.1.2. Cross-Correlation Approach: 

Cross-covariance is a non-parametric identification technique and is related with the impulse 

response.  Correlation means how two variables are related together. 

The correlation between the input and output with the assumption that the mean is zero for y 

and u is the eq. (1.21):  

𝑦𝑦(𝑡𝑡) =  �𝑔𝑔0(𝑘𝑘).𝑢𝑢(𝑡𝑡 − 𝑘𝑘)
∞

𝑘𝑘=0

+ 𝑣𝑣(𝑡𝑡) 

 

v is the noise in the system.  

If the input and output are uncorrelated, the cross covariance between them is: 

 

𝑅𝑅𝑢𝑢𝑢𝑢(𝜏𝜏) = 𝑔𝑔(𝜏𝜏) ∗ 𝑅𝑅𝑢𝑢𝑢𝑢(𝜏𝜏)                                             (1.25) 

 

That is, the cross correlation is the convolution between the impulse response and the 

autocorrelation of the input. Thus, the impulse response can be estimated from the covariance 

(correlation if both signals have zero mean) if the input is a white noise [4]..  

If the input is chosen as white noise so that:𝑅𝑅𝑢𝑢𝑢𝑢(𝜏𝜏) = 𝛼𝛼𝛼𝛼𝑇𝑇0(𝜏𝜏) 

                                       

then           𝑔𝑔0(𝜏𝜏) = 𝑅𝑅𝑢𝑢𝑢𝑢(𝜏𝜏)
𝛼𝛼

                       (1.26) 

Where 𝑔𝑔0 is an estimate for the impulse response is obtained from an estimate of Ruy. 

 

4.1.3. Step-Response Analysis: 
The response of the system can be determined by applying a step input: 

𝑢𝑢(𝑡𝑡) =  �𝛼𝛼,      𝑡𝑡 ≥ 0
0,      𝑡𝑡 < 0 

as follows  

𝑦𝑦(𝑡𝑡) = 𝛼𝛼 ∑ 𝑔𝑔0(𝑘𝑘)𝑡𝑡
𝑘𝑘=1 + 𝑣𝑣(𝑡𝑡)                                        (1.27) 
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For this the estimate of g0(k) could be obtained as: 

 

    𝑔𝑔0(𝜏𝜏) = 𝑢𝑢(𝑡𝑡)−𝑢𝑢(𝑡𝑡−1)
𝛼𝛼

                                                      (1.28) 

This method is useful for obtaining qualitative information about the system; more 

specifically, it shows the transient behavior of the system through Dead Time, Static Gain and 

time constant [4].. 

 

      4.2. Non-Parametric Identification in Frequency Domain: 
The frequency domain characterization of system dynamics has, like its time domain 

counterpart, a long and varied history [10]. As far as control engineering is concerned, 

however, frequency domain identification gained deep relevance with the development of 

stability and design methods based upon frequency response measurements [10].  

 

 4.2.1. Transfer Function: 
The fundamental physical interpretation of the transfer function G(z) is that the complex 

number G(ejw) bears information about what happens to an input sinusoid. 

𝑢𝑢(𝑡𝑡) = 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑡𝑡 t=0, 1, 2…                                      (1.29) 

then 

                       𝑦𝑦(𝑡𝑡) = 𝛼𝛼 �𝐺𝐺0(𝑒𝑒𝑗𝑗𝑗𝑗)�𝑐𝑐𝑐𝑐𝑐𝑐 (𝑤𝑤𝑡𝑡 + 𝜑𝜑) + 𝑣𝑣(𝑡𝑡)                   (1.30) 

where                                                   𝜑𝜑 = 𝑎𝑎𝑎𝑎𝑔𝑔 𝐺𝐺0(𝑒𝑒𝑗𝑗𝑗𝑗)                (1.31) 

This is known as frequency analysis and it is a simple method for obtaining detailed 

information about the system.  

  4.2.2. Frequency Response using Correlation: 

With the noise component v(t), it may be cumbersome to determine �𝐺𝐺0(𝑒𝑒𝑗𝑗𝑗𝑗)� and φ 

accurately by graphic methods. Since the interesting component of y(t) is a sine function of 

known frequency, it is possible to correlate it out from the noise in the following way. From 

the sums 

𝐼𝐼𝑐𝑐(𝑁𝑁) = 1
𝑁𝑁
∑ 𝑦𝑦(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑡𝑡𝑁𝑁
𝑡𝑡=1                                 (1.32) 

 𝐼𝐼𝑠𝑠(𝑁𝑁) = 1
𝑁𝑁
∑ 𝑦𝑦(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠 𝑤𝑤𝑡𝑡𝑁𝑁
𝑡𝑡=1                                  (1.33) 

We substitute y(t) by its expression (1.32) in (1.33), we obtain 

𝐼𝐼𝑐𝑐(𝑁𝑁) =
1
𝑁𝑁
�𝛼𝛼�𝐺𝐺0�𝑒𝑒𝑗𝑗𝑗𝑗�� 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑡𝑡 + 𝜑𝜑) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑡𝑡
𝑁𝑁

𝑡𝑡=1

+  
1
𝑁𝑁
�𝑣𝑣(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑡𝑡
𝑁𝑁

𝑡𝑡=1
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=
𝛼𝛼

2𝑁𝑁
�𝐺𝐺0�𝑒𝑒𝑗𝑗𝑗𝑗���[𝑐𝑐𝑐𝑐𝑐𝑐(2𝑤𝑤𝑡𝑡 + 𝜑𝜑) + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑]

𝑁𝑁

𝑡𝑡=1

+  
1
𝑁𝑁
�𝑣𝑣(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑡𝑡
𝑁𝑁

𝑡𝑡=1

 

=
𝛼𝛼
2
�𝐺𝐺0�𝑒𝑒𝑗𝑗𝑗𝑗�� 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 +  

𝛼𝛼
2𝑁𝑁

�𝐺𝐺0�𝑒𝑒𝑗𝑗𝑗𝑗���[𝑐𝑐𝑐𝑐𝑐𝑐(2𝑤𝑤𝑡𝑡 + 𝜑𝜑)]
𝑁𝑁

𝑡𝑡=1

+  
1
𝑁𝑁
�𝑣𝑣(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑡𝑡
𝑁𝑁

𝑡𝑡=1

 

(1.33) 

 

The second term tend to zero as N tends to infinity.  

Similarly, for (1.32) 

Is(N) = −  α
2
�G0�ejw�� sinφ +  α�G0�ejw�� 1

2
1
N
∑ [sin(2wt + φ)]N
t=1 +

                                                1
N
∑ v(t) sin wtN
t=1                                         

     (1.34) 

These two expressions (1.33) and (1.34)suggest the following estimates of �G0�ejw�� and φ, 

respectively 

�G�N�ejw�� =
2�Ic2(N)+Is2(N)

α
                                                    (1.35) 

φ� = arg G�N�ejw� = − arctan Is(N)
Ic(N)

 +k𝜋𝜋              k=0.1.2...N          (1.36) 

Repeating this procedure for a number of frequencies, a good picture of G0(ejw) over the 

frequency domain of interest can be obtained.  

This method allows us to obtain easily the Bode plot of the system, but many industrial 

processes do not admit sinusoidal inputs in normal operations.  

 

5. Conclusion: 
In this first chapter of the thesis, we have discussed different techniques of system 

identification, such as Parametric and non-parametric methods, for linear and nonlinear 

systems, and in Time Domain and Frequency Domain.  

We have also discussed the different procedures of system identification, and how to 

identify using MATLAB toolbox starting from measuring the input and output signals of a 

given system in time or frequency domain.  

When,   model structure is selected, an estimator is applied online and offline in order 

to find estimate values for a parametric system or to determine system functions defining a 

non-parametric system. 

 

http://www.mathworks.com/help/ident/gs/about-system-identification.html#bq98vl6


Distributed Parameter 
System 
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1. Introduction: 

Distributed parameter system (DPS) is an established area of research in control that can trace 

its roots back to the sixties [11]. While the general aims are the same as for lumped parameter 

systems, to adequately describe the distributed nature of the system one needs to use partial 

differential equation (PDE) models, or the Ordinary Difference Equation (ODE).  

In this chapter, we are going to present the Distributed Parameter System; starting with 

its history and first research about it, then we speak about its characteristics and what makes 

the Distributed Parameter Systems different than Lumped Parameter Systems. Finally we 

state some examples of such systems in the industry and control domain.   

 

2. Brief Definitions of Distributed Parameter System: 

Distributed effects are present in almost all physical systems. In some cases, these can 

be safely ignored but there are many interesting problems where these effects must be taken 

into account. 

Distributed Parameter Systems are systems whose state space is infinite-dimensional; 

that is why they are called infinite-dimensional systems. They can be represented or described 

using Partial Differential Equations or Delay Differential Equations, this gives rise to 

distinctive features.  

3. Mathematical Description of DPS: 

It appears from the literature that Paraskevopoulos and Bounas, 1978 were the first 

investigators to study the identification of distributed parameter systems via orthogonal 

functions [12]. They used Walsh functions. The main drawback of the Walsh function 

approach is the selection of Walsh functions based on 2k where k is any positive integer. For a 

moderately large value of k this approach becomes computationally laborious. 

In the same year Tzafestas [13], 1978 has also investigated the general distributed 

parameter system identification by first transforming the model of a distributed parameter 

system into its equivalent lumped form by using Galerkin expansion .In 1983, 

Paraskevopoulos and Kekkeris, revisited the same problem of Paraskevopoulos and Bounas. 

This time they employed Tchebycheff polynomials of the first kind and restricted their 

investigations to only first-order systems. 
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        3.1. Unified Approach for Identification: 
Consider the model of a linear time-invariant distributed parameter system described by: 

𝑎𝑎𝑡𝑡𝑡𝑡
𝜕𝜕2𝑦𝑦(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝑎𝑎𝑥𝑥𝑥𝑥
𝜕𝜕2𝑦𝑦(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝑎𝑎𝑥𝑥𝑡𝑡
𝜕𝜕2𝑦𝑦(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡

+ 

𝑎𝑎𝑡𝑡
𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

+ 𝑎𝑎𝑥𝑥
𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

+𝑎𝑎𝑦𝑦(𝑥𝑥, 𝑡𝑡)= 𝑢𝑢(𝑥𝑥, 𝑡𝑡)                                             (2.1) 

 

With initial conditions 𝑦𝑦(𝑥𝑥, 𝑡𝑡0)  and 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

|𝑡𝑡=𝑡𝑡0   and boundary conditions 𝑦𝑦(𝑥𝑥0, 𝑡𝑡) and 

 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

|𝑥𝑥=𝑥𝑥0    

 

To identify the system given by (2.1), the input𝑢𝑢(𝑥𝑥, 𝑡𝑡) and the output 𝑦𝑦(𝑥𝑥, 𝑡𝑡)of the 

system are assumed to be available over the region x𝜖𝜖 [𝑥𝑥0,𝑥𝑥𝑓𝑓] x [𝑡𝑡0,𝑡𝑡𝑓𝑓]. 

The aim is to estimate the system parameters𝑎𝑎𝑡𝑡𝑡𝑡, 𝑎𝑎𝑥𝑥𝑥𝑥, 𝑎𝑎𝑥𝑥𝑡𝑡, 𝑎𝑎𝑥𝑥, 𝑎𝑎𝑡𝑡 ,𝑎𝑎 

It may be noted that depending upon the value of ∆ = 𝑎𝑎𝑥𝑥𝑡𝑡2 — 4𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑥𝑥𝑥𝑥, the system described 

by (2.1) turns out to be 

i) An elliptic system for ∆< 0. 

         ii) A parabolic system for ∆ = 0 and 

       iii) A hyperbolic system for ∆> 0. 

        3.2. DPS Subjected to Additive Noise: 

Let y(x,t) be the scalar system state.  

 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

 = 𝐿𝐿𝑥𝑥𝑦𝑦(𝑥𝑥, 𝑡𝑡)+ 𝑓𝑓(𝑥𝑥, 𝑡𝑡)+ 𝐺𝐺(𝑥𝑥, 𝑡𝑡)𝛾𝛾(x,t),   t𝜖𝜖𝜖𝜖 =]0, 𝑡𝑡𝑓𝑓[,     x𝜖𝜖𝜖𝜖,                            (2.2)                                        

With initial and boundary conditions  

I.C.     y(x, 0) =  𝑦𝑦0(𝑥𝑥)      xϵD                                                            (2.3) 

B.C    Bxy(x, t)=0        tϵ]0, tf[,     xϵD                                    (2.4) 

Where both Lx and Bx are well-posed linear spatial differential operators, γ(x,t) is the 

zero-mean Gaussian white (with respect to t) distributed noise process, f and G are known 

functions and yo(x) is the initial state function which is usually assumed to be the Gaussian 

stochastic variable for each x independent of γ(x,t).There are many cases where one or more 

parameters of Lx are unknown.  
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A mathematical model of a general class of nonlinear DPSs is written by using a 

conventional function F in the form: 

∂y(x,t)
∂t

 = F(x, t, y, yx, yxx, … )+ G(x, t)γ(x,t)                         (2.5) 

Where, for the mathematical security, the function F is usually assumed to be 

sufficiently smooth with respect to its arguments, and where ux  is the partial derivative with 

respect to x. In order to handle practical problems, Eq.(2.9) is written in a more concrete form,  

∂y(x,t)
∂t

 = Ns(x, t, u)+ G(x, t)γ(x,t)                                          (2.6)    

With the boundary condition which is considered to be also nonlinear, e.g.  

             Nb(x, t, y)=0        tϵ]0, tf[,     xϵ ∂D                               (2.7)          

and with the same initial condition as given by (2.3). It should be noted that, if there exists an 

additive noise at the system boundary, then the noise term εb(x,t) appears on the right hand 

side of both Eqs.(2.4) and (2.7).  

         3.3. DPS with Stochastic Coefficients:   

In many practical problems, one or more coefficients in differential operators are 

random because measurements of physical properties of the system considered inherently 

exhibit greater uncertainty. It may therefore be more realistic to consider system parameters 

as stochastic variables with a probability distribution. Many different forms have been 

proposed for DPSs and each is useful for different tasks [14]. A general form using the 

parabolic type, which arises directly from fundamental physical axioms, is as follows:  

∂y(x,t)
∂t

 = A (x, t, w; Dx)y(x, t) + f(x, t)        (x,t) ϵ T x D                  (2.8)       

With the boundary condition  

B(x, t; Dx)y(x, t)=0        (x,t) ϵ T x D                                     (2.9)         

 

and with the same initial condition as given by (2.3), where A is a partial differential operator 

containing stochastic coefficients, B is a boundary operator with deterministic non vanishing 

coefficients and w is the generic point of the sample space. Since unknown stochastic 
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coefficients are involved in A, the problem at hand belongs to the context of stochastic 

inverse problems and is motivated by the oil exploration survey, the experimental physiology, 

cardiology, etc. 

3.4. DPS with Free Boundary: 

Recent advances in control technique have stirred a great deal of enthusiasm in the 

development of parameter identification and state estimate of DPSs with free boundaries [14]. 

A number of systems of practical interest involve boundaries moving by phase change such as 

melting or solidification, chemical reaction, heat transfer and so on. Considering a spatial 

region consisting of water and ice, and choosing the system state as the temperature 

distribution of the water region, the water-ice interface becomes a moving boundary denoted 

by y(t). For example, consider a mathematical model of the system: 

∂ y(x,t)
∂t = a 

∂2y(x,t)
∂x2

       (𝑥𝑥, 𝑡𝑡) ∈ 𝜖𝜖𝑥𝑥𝜖𝜖R                                                          R(2.10) 

with I.C                           y(x, 0)= yo(x) ≥ 0          for 𝑥𝑥 ∈ 𝜖𝜖                                          (2.11) 

On the boundary i.e. the ice-water interface, by considering the latent heat of fusion 

and the rate at which ice is converted into water, it follows that, for 0 < t < tf,  

ay(0, t)=g(t), y(t, x)=0, a∂y(t,x)
∂x

=−dx
dt

,                        (2.12) 

where a is a positive constant and the ice region is assumed to be bounded. Fig. (2.1) 

illustrates the construction of a DPS with free boundary. A fundamental difference between 

regular boundary problems and free boundary ones is that the domain of solutions to the basic 

state equation is not known but should be determined by additional information through 

underlying properties of physical systems under consideration [14]. 

    

 



 

 17  
 

CHAPTER 2                    DISTRIBUTED PARAMETER SYSTEM                 2016 
 

Fig.2.1 DPS with free boundaries.  

        3.5. DPS with Inequality Boundary Conditions: 

There has recently been much practical interest shown in problems of the DPS with a 

permeable wall as its system boundary [14]. Identification problems of system parameters in 

which the osmotic pressure dues to the nature of membrane are of practical importance. More 

basically, in the field of synovial pint biomechanics, the permeability plays an important role 

of analyzing locomotion of the musculoskeletal system. From theoretical viewpoints, a 

remarkable feature of the problem considered here relates to a mathematical modelling of the 

system boundary.  

Suppose that the region D is filled up by the liquid as shown in Fig.(2.2). Then, the 

state variable y(x,t) is reasonably selected to be the pressure of the fluid. The boundaries of D 

are respectively denoted by г0at x = 0 and by г1 at x = 1. The boundary conditions peculiar 

to the system shown in Fig.(2.2). are considered as follows. At the boundary г0, the well-

known Neumann condition is set in a form of: 

−a ∂y(x,t)
∂x

|𝑥𝑥=0 = 𝑓𝑓(𝑡𝑡)    on г0                              (2.13) 
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Where a is a positive constant expressing the diffusion coefficient and f(t) is the 

known input function applied to the boundary г0.  

On the other hand, the boundary г1 consists of a semi-permeable membrane whose 

thickness is supposed to be negligible. This implies that, as shown in Fig.(2.2)., although the 

fluid flow leaving D freely passes г1, the counter flow is prevented by the existence of the 

membrane. Let h(t) be the given fluid pressure in the outside of D. 

Fig.2.2 System with semi-permeable wall. 
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First, suppose that  

Case-1: y(1,t) < h(t); There exists a fight where the semi-permeable wall prevents the fluid 

flow against the fluid trying to enter into D. A success of the fight allows us to write  

∂u(x,t)
∂x

|𝑥𝑥=0 = 0    on г0                                           (2.14) 

Case-2: y(1,t)> h(t); This case implies that the fluid tries to leave D.  

Hence                                     ∂y(x,t)
∂x

|𝑥𝑥=1 ≤ 0    on г1                                           (2.15) 

However, since the thickness of the semi-permeable wall is negligible, y(1,t) is not greater 

than h(t), i.e., y(l,t) = h(t). The results mentioned above are summarized with the same state 

equation as given by Eq. (2.10) and the same initial conditions as given by (2.3), the boundary 

conditions are modelled by (2.13), (2.14) and (2.15). 

4. Lumped Vs Distributed Parameter System: 

Lumped Parameter Systems are modeled by ODEs (Ordinary Difference Equations). 

Their state space are finite dimensional. It is a system in which the dependent variables of 

interest are a function of time alone. Whereas Distributed Parameter Systems are modeled by 

PDEs or DDEs (Delay Differential Equations).  Their state spaces are infinite-dimensional. It 

is a system in which all dependent variables are functions of time and one or more spatial 

variables.   

For example, consider the following two systems illustrated in the following figure: 

 

                              Fig.2.3 Distributed Vs Lumped System  
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The first system is a distributed system, consisting of an infinitely thin string, supported at 

both ends; the dependent variable, the vertical position of the string y(x, t)is indexed 

continuously in both space and time. 

The second system, a series of ``beads'' connected by massless string segments, 

constrained to move vertically, can be thought of as a lumped system, perhaps an 

approximation to the continuous string. 

For electrical systems, consider the difference between a lumped RLC network and a 

transmission line (see figure 2.4) 

Fig.2.4 Transmission line Vs Lumped RLC system 

The importance of lumped approximations to distributed systems will become obvious later, 

especially for waveguide-based physical modeling, because it enables one to cut 

computational costs by solving ODEs at a few points, rather than a full PDE (generally much 

more costly) [15]. 

5. Examples: 

A wide variety of phenomena can be represented by the PDE of Distributed Parameter 

Systems, from sound, to heat, electrostatics, electrodynamics, fluid flow, etc. These seemingly 

distinct physical phenomena can be formalized similarly in terms of PDEs. Just as ordinary 

differential equations often model one-dimensional dynamical systems, partial differential 

equations often model multidimensional systems. 

          

  

https://ccrma.stanford.edu/%7Ejos/pasp/Lumped_Models.html
http://en.wikipedia.org/wiki/Waveguide
http://en.wikipedia.org/wiki/Model_(physical)
https://en.wikipedia.org/wiki/Dynamical_systems
https://en.wikipedia.org/wiki/Multidimensional_systems
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      5.1. Wave Equation: 

The wave equation is an equation for an unknown function y(k, x) of the  form: 

ykk = m2yxx                                                       (2.16) 

Here y might describe the displacement of a stretched string from equilibrium, or the 

difference in air pressure in a tube, or the magnitude of an electromagnetic field in a tube, 

and m is a number that corresponds to the velocity of the wave[16]. 

5.2. Euler-Tricomi Equation: 

In mathematics, the Euler–Tricomi equation is a linear partial differential 

equation useful in the study of transonic flow [17]. It is named for Leonhard 

Euler and Francesco Giacomo Tricomi and is given by 

yxx = zy𝑧𝑧𝑧𝑧                                                      (2.17) 

It is hyperbolic in the half plane x > 0, parabolic at x = 0 and elliptic in the half plane x < 0. 

Its characteristics are: 

xdx2 = dz2                                                    (2.18) 

Which have the integral 

z ± 2
3

x
3
2 = C                                                    (2.19) 

Where C is a constant of integration. The characteristics thus comprise two families of semi 

cubical parabolas, with cusps on the line x = 0, the curves lying on the right hand side of 

the z-axis. 

 5.3. Heat Equation: 

The equation for conduction of heat in one dimension for a homogeneous body has 

yt = αyxx                                                       (2.20)  

Where y(t,x) is temperature, and α is a positive constant that describes the rate of diffusion.  

We are going to discuss and study this application in details later [16].  

 

https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Linear
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Transonic
https://en.wikipedia.org/wiki/Fluid_mechanics
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Francesco_Giacomo_Tricomi
https://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation
https://en.wikipedia.org/wiki/Parabolic_partial_differential_equation
https://en.wikipedia.org/wiki/Elliptic_partial_differential_equation
https://en.wikipedia.org/wiki/Method_of_characteristics
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Semicubical_parabola
https://en.wikipedia.org/wiki/Semicubical_parabola
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6. Conclusion: 

In this part, we have presented the distributed parameter systems with its 

characteristics and features. We have discussed its history and mentioned the first studies 

about the topic done by Scientists and mathematicians. Then we have introduced a 

comparison of lumped and distributed parameter systems; their models and applications. 

Finally, we have shown some examples and physical phenomena that can be represented by 

PDE.  

 



Heat Conduction 
Application 
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1. Introduction: 

 In this chapter, we present an application of parametric identification of a distributed 

parameter system which represent the dynamic behavior of the heat conduction. The 

parameters of the heat equation are identified using Least Square method.   

 The application of the least square estimator is divided into three main parts. The first two 

parts are divided into the estimation of parameters sets for two different numerical 

simulations. These estimates are obtained for different noise amplitude and using different 

structures. However, the third part is about the identification of conduction of the heat in a 

cement rotary kiln.  

 

2. Description of Heat Conduction:  

Heat transfer is of particular interest to engineers, who attempt to understand and control 

the flow of heat through the use of thermal insulation, heat exchangers, and other devices. 

Heat transfer is defined as the flow of thermal energy within solids and non-flowing fluids, 

driven by thermal non-equilibrium (i.e. the effect of a non-uniform temperature field), 

commonly measured as a heat flux (vector), i.e. the heat flow per unit time (and usually unit 

normal area) at a control surface. 

 In a metal rod with non-uniform temperature, heat (thermal energy) is transferred from 

regions of higher temperature to regions of lower temperature. Three physical principles are 

used here: 

1. Heat (or thermal) energy of a body with uniform properties 

Heat energy = c*m*T                                                       (3.1) 

Where m is the body mass, T is the temperature, c is the specific heat which is the amount 

of heat required to change the body’s temperature by one degree. 

 2. Fourier’s law of heat transfer represent rate of heat transfer proportional to negative 

temperature gradient,  

 
Rateofheattransfer

area
=  −K0

dT
∂x

                                               (3.2) 

 

http://scienceworld.wolfram.com/physics/Heat.html
http://scienceworld.wolfram.com/physics/Temperature.html
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Where Ko is the thermal conductivity. In other words, heat is transferred from areas of high 

temperature to low temperature.  

 

3. Conservation of energy: 

Consider a uniform rod of length l with non-uniform temperature lying on the x-axis from 

x =0 to x = l. By uniform rod, we mean the density ρ, specific heat c, thermal conductivity Ko, 

cross-sectional area A are all constant. Assume the sides of the rod are insulated and only the 

ends may be exposed. Also, assume there is no heat source within the rod. Consider an 

arbitrary thin slice of the rod of width Δx between x and x+Δx. The slice is so thin that the 

temperature throughout the slice is T(x,t).  

Fig 3.1 uniform insolated rod of length L. 

Thus, 

Heat energy of segment = c ×ρAΔx ×T = cρAΔxT(x, t)                         (3.3) 

By conservation of energy, 

  

 =        - 

 

From Fourier equation (3.2) 

cρAΔxT(x, t + Δt)  − cρAΔxT(x, t) = ΔtA(∂T
∂x

)| x–ΔtA �∂T
∂x
� | x+∆x          (3.4) 

Rearranging (3.4) yields (recall ρ, c, A, K0 are constant), 

 
y(x,t+∆t)−y(x,t)

∆t
=  −K0

cρ
(
�∂y
∂x� x−�

∂y
∂x�| x+∆x
∆x

)                               (3.5) 

Heat in form 

Left boundary 

 

Heat out form 

Right boundary 

 

Change of heat 
energy of 

segment in time 
Δt 
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Taking the limit Δt,Δx0 gives the heat equation: 

∂y
∂t

=  k ∂2y
∂x2

                                                               (3.6) 

where k = K0
cρ

is called the thermal diffusivity. Since the slice was chosen arbitrarily, the Heat 

Equation (3.6) applies throughout the rod. 

 

4. Initial condition and boundary conditions  

To make use of the Heat Equation (3.6), we need more information:  

1. Initial Condition(IC): In this case, the initial temperature distribution in the rod 

is T(x, 0). 

2. Boundary Conditions (BC): 

In this case, the temperature of the rod is affected by what happens at the ends, x =0, and x=l. 

What happens to the temperature at the end of the rod must be specified. In reality, the BCs 

can be complicated. 

Temperature prescribed at a boundary  

T(0,t)= T1(t) 

(t)lT(L,t)=T 

 

 

 

 

 

Fig 3.2 Description of Initial and boundary conditions in the rod. 

 

 

 

 

T 

T 

T 
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3. Discretization of Heat equation using Euler Method:  

For the following problem involving the heat equation with a source term u(x,t), 

Tt= βTxx+f (x, t) + u(x, t),      a < x < b, t > 0,                                   (3.7) 

𝐵𝐵𝐵𝐵: T(a, t) = g1(t),          T(b, t) = g2(t),              IC:    T(x, 0) = T0(x)                       (3.8) 

Let us seek a numerical solution for T(x, t) at a particular time t> 0 or at certain times in the 

. ftinterval 0 < t < 

As the first step, we expect to generate a grid 

xi= a + ih,       i=0, 1,…, m,       h = b−a
m

 

tk = k∆t,k=0, 1,…, n,       ∆t = T
n

 

 

 

 

 

 

 

 

 

 

Fig 3.3 generation of the grid. 

It turns out that any arbitrary ∆t cannot be used for explicit methods because of numerical 

instability concerns. The second step is to approximate the derivatives with finite difference 

(FD) approximations. Since we already know how to discretize the spatial derivatives, let us 

focus on possible FD formulas for the time derivative. At grid point  (xi, tk),   k ≥ 0 using the 

forward FD approximation for Ticentral and FD approximation for Txx we have: 
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T�xi,tk+∆t�−T(xi,tk)

∆t
= β T�xi−1,tk�−2T�xi,tk�+T�xi+1,tk�

h2
+f�xi, tk� + u(xi, tk)               (3.9) 

The discretization is first order in time and second order in space, when the FD equation is: 

�Ti
k+1�−�Ti

k�

∆t
= β

�Ti−1
k �−2�Ti

k�+�Ti+1
k �

h2
+fik+uik                                (3.10) 

where fik= f�xi, tk�with Tikagain denoting the approximate values for the true 

solutionT�xi, tk�. When k =0, Ti0is the initial condition at the grid point (xi, 0)and from the 

valuesTik at the time level k the solution of the FD equation at the next time level k+ 1 is 

�Tik+1� =  �Tik� + ∆t (β
�Ti−1

k �−2�Ti
k�+�Ti+1

k �

h2
+fik+uik),     i=1,2….,m-1             (3.11) 

Let α1 =  ∆tβ
h2

 and α2 =  1 − 2 ∆tβ
h2

 

Tesi
j+1 = α1Ti+1

j + α2Ti
j + α1Ti−1

j                                      (3.12) 

4. Numerical Simulation: 

     4.1. Homogenous heat equation: 

The first application deals with a linear homogenous heat equation. This example is solved 

using the separation of variables method. The exact solution of the heat equation is used to 

generate data that is employed in the identification process.  

The example is about an insulated unit wire, such that its ends are embedded in ice 

(temperature 0°). Let k=0.003 and initial distribution is T(x,0)=50x(1-x). The Heat equation 

is: 

∂T
∂t

= 0.003 ∂2T
∂x2

                                                       (3.13) 

with Boundary Conditions: T(0, t) = T(1,t)=0 

The exact solution of th equation (3.13) is: 

T(x, t) = �
∑ 400

π3n3
sin (nπx)ee−n2π20.003t∞

n=1   ,𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜
 

0                                                           ,𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛
                         (3.14) 
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The spatial-temporal evolution of temperature is shown in the figure 3.4  

 

                                   Fig 3.4 Temperature Evolution.  

Using the Least Square Method, we estimate the parameters α1,α2and α3 of the FD model 

(3.12) which yields to one step-ahead prediction error at location i:  

ε𝑖𝑖𝑘𝑘 = (T� 𝑖𝑖
𝑘𝑘+1/𝑘𝑘 − T𝑖𝑖𝑘𝑘)2                                           (3.15) 

where the estimate T� 𝑖𝑖
𝑘𝑘+1/𝑘𝑘 uses different locations. 

The cost function to be minimized in order to obtain a better fit is of type: 

min(∑ (∑ (T� 𝑖𝑖
𝑘𝑘+1/𝑘𝑘 − T𝑖𝑖𝑘𝑘)2𝑛𝑛−1

𝑗𝑗=0 )𝑚𝑚−1
𝑖𝑖=0 ) = 0                                    (3.16) 

Where 𝜃𝜃 = [𝛼𝛼1,𝛼𝛼2,𝛼𝛼3]𝑇𝑇 

The vector of parameters 𝜃𝜃 is the root of: 

∇(∑ (∑ (T� 𝑖𝑖
𝑘𝑘+1/𝑘𝑘 − T𝑖𝑖𝑘𝑘)2𝑛𝑛−1

𝑗𝑗=0 )𝑚𝑚−1
𝑖𝑖=0 ) = 0                                  (3.17)  

This is equivalent to: 

⎣
⎢
⎢
⎢
⎡
𝑑𝑑 ∑∑  
𝑑𝑑𝛼𝛼1
𝑑𝑑 ∑∑  
𝑑𝑑𝛼𝛼2
𝑑𝑑 ∑∑  
𝑑𝑑𝛼𝛼3 ⎦

⎥
⎥
⎥
⎤

=  �
0
0
0
�                 (3.18) 

 

𝜃𝜃 

𝜃𝜃 
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This yiekds to the following set of algebraic equations: 

 

 

 

 

 

Table 3.1 Identification's results of the linear example. 

Noise 𝝈𝝈
𝟐𝟐

 α1 α2 α3 MSE 

0 0.009047 0.979214 0.008742 5-2.400530.10 

0.0001 0.009060 0.979189 0.008754 5-.102.402542 

0.0004 0.009276 0.978762 0.008965 5-.102.430057 

0.0025 0.018451 0.960715 0.017847 5-.103.592499 

0.01 0.109866 0.781078 0.106161 4-.1001.90371 

 

The estimated data is generated using the identified parameters, first by assuming the same 

Neumann boundary conditions and initial conditions as for the original data, then estimating 

the boundary conditions using the identified parameters. 

 

 

 

 

 

 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡� �𝑇𝑇𝑖𝑖

𝑗𝑗+1𝑇𝑇𝑖𝑖+1
𝑗𝑗

𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

� �𝑇𝑇𝑖𝑖
𝑗𝑗+1𝑇𝑇𝑖𝑖

𝑗𝑗
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0 .

� �𝑇𝑇𝑗𝑗+1𝑇𝑇𝑖𝑖−1
𝑗𝑗

𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ � �𝑇𝑇𝑖𝑖+1

𝑗𝑗 2
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

� �𝑇𝑇𝑖𝑖
𝑗𝑗𝑇𝑇𝑖𝑖+1

𝑗𝑗
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

� �𝑇𝑇𝑖𝑖−1
𝑗𝑗 𝑇𝑇𝑖𝑖+1

𝑗𝑗
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

� �𝑇𝑇𝑖𝑖
𝑗𝑗𝑇𝑇𝑖𝑖+1

𝑗𝑗
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

� �𝑇𝑇𝑖𝑖
𝑗𝑗2

𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

� �𝑇𝑇𝑖𝑖−1
𝑗𝑗 𝑇𝑇𝑖𝑖

𝑗𝑗
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

� �𝑇𝑇𝑖𝑖−1
𝑗𝑗 𝑇𝑇𝑖𝑖+1

𝑗𝑗
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

� �𝑇𝑇𝑖𝑖−1
𝑗𝑗 𝑇𝑇𝑖𝑖

𝑗𝑗
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

� �𝑇𝑇𝑖𝑖−1
𝑗𝑗 2

𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑜𝑜𝑑𝑑𝑑𝑑
𝑜𝑜𝛼𝛼1

= 0 

𝑜𝑜𝑑𝑑𝑑𝑑
𝑜𝑜𝛼𝛼2

= 0 

𝑜𝑜𝑑𝑑𝑑𝑑
𝑜𝑜𝛼𝛼3

= 0 

�
𝛼𝛼1
𝛼𝛼2
𝛼𝛼3
� 
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The spatial-temporal squared one step-ahead prediction error is shown in figures 3.5 and 3.6 

using corrupted and uncorrupted generated data, respectively. 

 

Fig3.5 Uncorrupted One step-ahead prediction error. 

 

Fig3.6 Uncorrupted One step-ahead prediction error (𝝈𝝈
𝟐𝟐
= 0.01). 
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Discussion of the results: 

 According to the results obtained, the estimated data is close enough to the exact data; α1 

approximately equals to α3 and 𝛂𝛂𝟐𝟐 ≅ 1 − 2𝛂𝛂𝟏𝟏, which satisfies the linear difference equation.  

 The obtained error (E=𝑇𝑇�-T) has a small variance which means that the least square based-

estimator performs well even in the case of noise; increasing the standard deviation of noise 

led to a small increase in the values of parameters and a very small change in the one step-

ahead error.  

  4.2. Non-Linear Heat equation: 

The second application deals with a nonlinear heat equation. The equation is described as 

follows:   

∂T
∂t

= ∂2T
∂x2

-3T3                                                         (3.19) 

with Boundary Conditions: T(0, t)= 1
6t+1

 

      T(1, t)= 1
2t+1

 

And initial conditions:      T(x, 0) = 1+2x
x2+x+1

 

This example is solved using the separation of variable method (used to solve PDE). The 

analytic solution of the heat equation is used to generate data that is employed in the 

identification process. 

Using the separation of variables, we get the solution: 

T(x, t) = 1+2x
x2+x+6t+1

                                                   (3.20) 
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This temperature is illustrated in figure 3.7 on the same way and by using the data generated 

by the equation 3.14, the estimate parameter values are regrouped in table 3.2 

 
Fig3.7 Temperature Evolution of the nonlinear example. 

Table 3.2 Identification's results of the nonlinear example. 

  

 

 

 

 

 

 

Noise 

𝝈𝝈
𝟐𝟐
 

α1 α2 α3 MSE 

0 0.077655 0.323855 0.560467 4-.1.836192.10 

0.0001 0.077594 0.324086 0.560299 4-.101.836049 

0.0004 0.078078 0.324334 0.559561 1.838098.10-4 

0.0025 0.086394 0.335814 0.539715 1.918635.10-4 

0.01 0.164831 0.365850 0.430015 4-3.153481.10 
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The spatial-temporal squared one step-ahead prediction error is shown in figures 3.8 and 3.9 

using corrupted and uncorrupted generated data, respectively. 

 

Fig3.8 Uncorrupted One step-ahead prediction error of the nonlinear example. 

 

            Fig3.9 Corrupted One step-ahead prediction error (𝝈𝝈
𝟐𝟐
= 0.01) of the nonlinear 

example. 
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Discussion of the results: 

 According to the results, the error has slightly increased when the estimation of boundary 

conditions is included; It is clear from the error at position x=0 and x=1 that the estimation 

using the identified parameters is good since the error is small.     

Another case is presented by increasing the estimation size using the squared values of the 

temperature at three positions so the model is: 

𝑇𝑇𝑖𝑖
𝑗𝑗+1 = 𝛼𝛼1𝑇𝑇𝑖𝑖+1

𝑗𝑗 + 𝛼𝛼2𝑇𝑇𝑖𝑖
𝑗𝑗 + 𝛼𝛼3𝑇𝑇𝑖𝑖−1

𝑗𝑗 + 𝛼𝛼4𝑇𝑇𝑖𝑖+1
𝑗𝑗 2

+ 𝛼𝛼5𝑇𝑇𝑖𝑖
𝑗𝑗2 + 𝛼𝛼6𝑇𝑇𝑖𝑖−1

𝑗𝑗 2
               (3.21) 

 

The results are presented in the following table obtained using the least square method:  

Table 3.3 Identification's results using nonlinear squared terms. 

Noise 

𝝈𝝈𝟐𝟐 

α1 α2 α3 α4 α5 α6 MSE 

0 0.002204 0.295866 0.740488 0.028501 -0.141175 -0.162372 

 

3.2535255

.10-6 

0.001 0.246025 0.384823 0.424849 -0.248543 

 

-0.054781 

 

-0.010352 1.532014.

10-4 

0.002 0.376466 0.359778 0.319535 -0.339205 

 

-0.049534 

 

0.066557 5.424368.

10-4 

0.004 0.354820 0.374944 0.315453 -0.178662 

 

-0.155882 

 

0.002804 0.003214 

0.01 0.332525 0.339789 0.333005 -0.119730 

 

-0.148761 

 

-0.062380 

 

0.012406 
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The squared error is well sketched in the following figures: 

 
Fig3.10 Uncorrupted One step-ahead prediction error  

of the nonlinear example using squared terms. 

 

 

Fig3.11 Corrupted One step-ahead prediction error (𝝈𝝈
𝟐𝟐
= 0.01)  

of the nonlinear example using squared terms. 

. 
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For the next case, another set of three cubed temperature elements are added to the model: 

𝑇𝑇𝑖𝑖
𝑗𝑗+1 = 𝛼𝛼1𝑇𝑇𝑖𝑖+1

𝑗𝑗 + 𝛼𝛼2𝑇𝑇𝑖𝑖
𝑗𝑗 + 𝛼𝛼3𝑇𝑇𝑖𝑖−1

𝑗𝑗 + 𝛼𝛼4𝑇𝑇𝑖𝑖+1
𝑗𝑗 2

+ 𝛼𝛼5𝑇𝑇𝑖𝑖
𝑗𝑗2 + 𝛼𝛼6𝑇𝑇𝑖𝑖−1

𝑗𝑗 2
+ 𝛼𝛼4𝑇𝑇𝑖𝑖+1

𝑗𝑗 3
+ 𝛼𝛼5𝑇𝑇𝑖𝑖

𝑗𝑗3 + 

𝛼𝛼6𝑇𝑇𝑖𝑖−1
𝑗𝑗 3

                                                                                                               (3.22) 

The results are presented in the following table: 

Table 3.4 Identification's results using nonlinear cubed terms. 

 

 

 

 

 

 

 

 

Noise 

𝝈𝝈𝟐𝟐 

α1 α2 α3 α4 α5 

0 -0.011983 1.036778   -0.028711 0.109010 -1.708045 

0.0001 -0.060703 1.088736 -0.037042 0.265553 -1.704312 

0.0004 -0.061138 1.090273 -0.038166 0.266867 -1.708045 

0.0025 0.055541 0.790685 0.145776 0.035042 -1.090097 

0.01 0.325670 0.434422 0.232882 -0.325400 -0.276423 

Noise 

𝝈𝝈𝟐𝟐 

α6 α7 α8 α9 MSE 

0 1.500813 -0.278446 0.924481 -1.004313 2.538763.10-6 

0.0001 1.498265 -0.277354 0.922114 -1.002890 2.550344.10-6 

0.0004 1.500813 -0.278446 0.924481   -1.004313 2.538763.10-6 

0.0025 1.110322 -0.145846 0.580426 -0.789244 1.156777.10-5 

0.01 0.647844 -0.025461 0.170059 -0.491869 1.267321.10-4 
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The squared error is well sketched in the following figures: 

Fig3.12 Uncorrupted One step-ahead prediction error  

 of the nonlinear example using cubed terms. 

 

 

Fig3.13 Corrupted One step-ahead prediction error (𝝈𝝈
𝟐𝟐
= 0.01)  

of the nonlinear example using cubed terms. 
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Discussion of the results: 

As it is shown in tables and figures, the parameters do not satisfy the linearity of the 
difference equation since there are significant values for parameters of nonlinear terms; it is 
expected because the difference equation is nonlinear.  

 The calculated error (E=𝑇𝑇�-𝑇𝑇) has a small MSE (a small variance) which means that the 
estimated parameters matches the system characteristics. It gets smaller when adding the 
nonlinear terms to the identification algorithm (difference equation). So the one step-ahead 
prediction error shows that the nonlinear model is better fitted representation than the linear 
model.  

The noise has a significant effect on the values of the parameters. It affects the error as 
well; by increasing the standard deviation (noise), the error is increased as well. 

          4.3. The Real Data identification: 

4.3.1. Description of the Cement Rotary kiln: 

The rotary kiln is the most important machine in the cement plant; its purpose is to 

process materials at an extreme heat in order to derive cement. The cement production 

industry produces over a billion tons of cement, making this type of rotary kiln a very 

important component within this industry. 

The cement plant of Ain Kbira has a rotary kiln that consists of a hollow cylindrical 

metallic shell, lined using refractory bricks. It is 80 meter long, and 5 meters in height. At one 

end fuel, in the form of gas, oil, or pulverized solid fuel, is blown in through the "burner 

pipe", producing a large concentric flame in the lower part of the kiln tube. As material moves 

under the flame, it reaches its peak temperature, before dropping out of the kiln tube into the 

cooler. Air is drawn first through the cooler and then through the kiln for combustion of the 

fuel. In the cooler, the cooling clinker heats the air, so that it may be 400 to 800 °C before it 

enters the kiln, thus causing intense and rapid combustion of the fuel. 

 
Fig 3.14 Schematic of a Cement Rotary Kiln. 

Raw Material Feeders      

    Material Flow                

   Hot Gases Flow              

           Air Flow                    

                             

                                    

          

  

 

https://en.wikipedia.org/wiki/Petroleum
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The third part of the application is about the identification of the experimental data obtained 

from the cement rotary kiln. The rotary kiln has a burner placed 1.2 meter from the beginning 

of the tube.  This burner provides energy of 70560 thermie per hour. The rows represent the 

temperature along the kiln length while the columns are the observation of the temperature: 

Fig3.15 Real data evolution. 

Using the linear difference model with a second term u(x,t): 

𝑇𝑇𝑖𝑖
𝑗𝑗+1 = 𝛼𝛼1𝑇𝑇𝑖𝑖+1

𝑗𝑗 + 𝛼𝛼2𝑇𝑇𝑖𝑖
𝑗𝑗 + 𝛼𝛼3𝑇𝑇𝑖𝑖−1

𝑗𝑗 +𝛼𝛼4𝑈𝑈𝑖𝑖
𝑗𝑗                        (3.23) 

The identified parameters and the means square error are presented in the table below: 

Table 3.5 Identification's results of the real data. 

Parameters  α1 α2 α3 α4 MSE 

      Values  0.004499 0.991775 0.003690 -0.000004 

 

3.833575 
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The squared error is well sketched in the following figure: 

Fig3.16 One step-ahead prediction error. 

Using the nonlinear difference model: 

𝑇𝑇𝑖𝑖
𝑗𝑗+1 = 𝛼𝛼1𝑇𝑇𝑖𝑖+1

𝑗𝑗 + 𝛼𝛼2𝑇𝑇𝑖𝑖
𝑗𝑗 + 𝛼𝛼3𝑇𝑇𝑖𝑖−1

𝑗𝑗 + 𝛼𝛼4𝑇𝑇𝑖𝑖+1
𝑗𝑗 2

+ 𝛼𝛼5𝑇𝑇𝑖𝑖
𝑗𝑗2 + 𝛼𝛼6𝑇𝑇𝑖𝑖−1

𝑗𝑗 2
 +𝛼𝛼7𝑈𝑈𝑖𝑖+1

𝑗𝑗            (3.24) 

The identified parameters and the means square error are presented in the table below: 

Table 3.6 Identification's results of the real data using squared terms. 

The squared error is well sketched in the following figure: 

Fig3.17 One step-ahead prediction error using squared terms. 

Parameters  α1 α2 α3 α4 α5 α6 α7 MSE 

Values  0.000086 1.003201 -0.003397 0.000013 -0.000034 0.000021 -0.000004 

 

3.830502 
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Using the nonlinear difference model  

𝑇𝑇𝑖𝑖
𝑗𝑗+1 = 𝛼𝛼1𝑇𝑇𝑖𝑖+1

𝑗𝑗 + 𝛼𝛼2𝑇𝑇𝑖𝑖
𝑗𝑗 + 𝛼𝛼3𝑇𝑇𝑖𝑖−1

𝑗𝑗 + 𝛼𝛼4𝑇𝑇𝑖𝑖+1
𝑗𝑗 2

+ 𝛼𝛼5𝑇𝑇𝑖𝑖
𝑗𝑗2 + 𝛼𝛼6𝑇𝑇𝑖𝑖−1

𝑗𝑗 2
+ 𝛼𝛼4𝑇𝑇𝑖𝑖+1

𝑗𝑗 3
+ 𝛼𝛼5𝑇𝑇𝑖𝑖

𝑗𝑗3 + 

𝛼𝛼6𝑇𝑇𝑖𝑖−1
𝑗𝑗 3

 +𝛼𝛼10𝑈𝑈𝑖𝑖+1
𝑗𝑗                                                                                               (3.25) 

The identified parameters and the means square error are presented in the table below: 

Table 3.7 Identification's results of the real data using cubed terms. 

 

The squared error is well sketched in the following figure: 

Fig 3.18 One step-ahead prediction error using cubed terms  

 

 

 

Parameters α1 α2 α3 α4 α5 

Values 0.043992 

 

0.953320 0.003237 -0.000212 

 

0.000236 

Parameters α6 α7 α8 α9 α10 MSE 

Values -0.000028 

 

0.0000003 -0.0000004 

 

0.0000001 -0.000002 

 

3.827386 
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Discussion of the results: 

 According to the results obtained, the error is significant for linear models, and by adding 
the nonlinear terms to the models (square and cube), even though we have noticed a very 
small decrease in the error, and that doesn’t prove the linearity of the data.  

The identified parameters have small values which show that the linear model is not fitted 
with the data. 

 To conclude the experimental data are nonlinear and to model it, a nonlinear identification 
technique is required.   

5. Conclusion: 

To conclude, this chapter has demonstrated the Least Square approach used for many 

heat diffusion applications (homogenous and heterogeneous examples) and for the 

experimental data as well. The least square approach has been useful for three different 

difference equations. The homogenous application has satisfied the linearity. While the 

heterogeneous application has been proven to be nonlinear.  

The third part of the simulations was dealing with real data obtained from a rotary kiln. 

Using the least square approach, the results have shown that the data are nonlinear. 

The obtained results show the effectiveness, sensitivity and robustness of the proposed 

approach. 



XI 
 

Conclusion 

 

In this thesis, an identification of distributed parameters systems (DPS) approach in a 

cement rotary kiln is presented. The rotary kiln demonstrates the heat transfer phenomena 

through its tube. 

Using the Least Square approach we have built accurate and simplified models of 

distributed parameter systems, from numerical applications to time-series data obtained from 

the rotary kiln. The numerical solutions in the examples depend on the associated Neumann 

Boundary conditions and initial conditions. The measure of performance for the identification 

was the error (mean square error) between the model and the system. It has shown small values 

confirming the accuracy of the models. 

  

Further Researches: 

We had an immense interest to go further with distributed parameters systems and 

identify their parameters using other estimators such as variants of least square, Maximum 

likelihood…etc.   
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