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Rolling bearing fault feature selection
based on standard deviation and
random forest classifier using vibration
signals
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Abstract
The precise identification of faults is vital for ensuring the reliability of the bearing’s performance, and thus, the function-
ality of rotary machinery. The focus of our study is on the role that feature selection plays in improving the accuracy of
predictive models used for diagnosis. The study combined the Standard Deviation (STD) parameter with the Random
Forest (RF) classifier to select relevant features from vibration signals obtained from bearings operating under various
conditions. We utilized three databases with different bearings’ health states operating under distinct conditions. The
results of the study were promising, indicating that the proposed method was not only effective but also consistent, even
under time-varying conditions.
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Introduction

In recent decades, machine learning (ML) has been
extensively involved in fault detection and classification
problems.1 However, the robustness of the trained model
depends essentially on the quality and the quantity of
the input features.2 Therefore the optimization step
becomes of tremendous potential accurately determine
the perilous conditions.3

Feature selection (FS) arises as an essential step for
the effectiveness of ML application,4 the speed of the
diagnosis process,5 as well as for the enhancement of
the predictive accuracy.6

Feature selection techniques fall into three main
classes.7 The first class is the filter method, which uses
statistical methods to rank the features, and then
removes the elements under a determined threshold.8

This class provides a fast and efficient selection.6 The

second class, called the wrapper class, treats the predic-
tors as the unknown and the predictors’ performance as
the objective function,8 the problem is reduced to the
search algorithm.9 Many subsets are randomly selected
and then evaluated by a classifier, and the one with the
maximum accuracy is picked.8 The wrapper class is
better than the filter class in terms of performance and
accuracy. However, for exhaustive searching algorithms,
it becomes computationally expensive.8,10 The third type
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is the hybrid or embedded class. It is a combination of
the advantages of both filter and wrapper classes.11

Many feature selection methods are applied to the
bearing fault diagnosis; provided good performances.
In Peña et al.,4 the analysis of variance (ANOVA) is
used as a filter method to rank the features based on
their relevance, then select the subset that yields the
best accuracy through cluster validation assessment.
This method provides a good classification, but it has
some limitations that can be found in any real data.
For example, it requires the number of samples from
all classes to be equal,12 which, whether by accident or
necessity, is not always met. ANOVA requires a tiny
variance within samples of the same class to be effi-
cient.12 However, in some cases, such as in Imane
et al.,13 the data used was collected under variable
speed conditions, resulting in sparse samples of the
same class. In addition to these constraints, ANOVA
necessitates specific knowledge in order to interpret its
results.

In Rajeswari et al.,14 they used particle swarm opti-
mization (PSO) for the feature selection. In Ma et al.,15

ant colony optimization (ACO) performed the selection
step. Both PSO and ACO added strength to the process
of bearings’ diagnosis by discarding the redundant fea-
tures and preserving the relevant ones for the model
training. However, PSO suffers from dimensionality
issues and the demand for numerous evaluations to
attain accurate results.16 While the ACO suffers from
local optimization problems.17 In Imane et al.,13 the
cultural clan-based algorithm could select the relevant
features efficiently within speed variability conditions
and enhance classification accuracy. Yet its time

complexities can represent a limitation for large data-
sets.18 All listed algorithms belong to the wrapper class
and ensure high accuracy. However, the trade-off
between the high performance and the slow execution
is inescapable.2

In this paper, we propose a simple and efficient
method for selecting the most relevant features to pave
the way for a robust bearing diagnosis process. The
idea came from the importance of the centroids to
determine the classes. In our method, we aim to select
the coordinates (the features) that cause the centroids
spacing, and this can be verified by the standard devia-
tion parameter, unlike ANOVA our method is based
on the geometrical perspective and has no restrictions
on the data in terms of quality or quantity. After rank-
ing the coordinates of the centroids, random forest
classifier (RF) selects the optimal subset that delivers
the highest accuracy, to not rely on a distance-based
classifier and ensures that the selected features are suit-
able for any classifier type.

The rest of the article is organized as follows: The
second section describes our proposed method for using
the SDT-RF selection method, and the third section
represents the datasets used for testing as well as the
results obtained. The final section serves as a general
conclusion.

The proposed method

The flowchart in Figure 1 elucidates the method
suggested for features selection used in the bearing
diagnosis process. The following steps outline the pro-
posed method.

Figure 1. Flowchart of the proposed method.

2 Advances in Mechanical Engineering



1. Determine the number of classes and their corre-
sponding number of samples.

2. Calculate the centroid’s coordinates for each
class. CK is the centroid of an arbitrary class K,
and we calculate it as follows:

CK =

P
Samples

size(DataTest)
ð1Þ

Where:

ClassK =

x1, 1 x1, 2 :::: x1,N

x2, 1 x2, 2 :::: x2,N

:::: :::: :::: ::::
:::: :::: :::: ::::
xl, 1 xj, 2 :::: xl,N

2
66664

3
77775

l is the size of samples in class K and N is the number of
features.

we expand equation (1) into:

CK =
(x1, 1, ::::, x1,N )+ :::::+(xl, 1, ::::, xj,N )

l

CK =
x1, 1 + :::+ xl, 1

l
, :::::,

x1,N + :::+ xl,N

l

� �

CK =

Pl
j= 1 xj, 1

l
, :::::,

Pl
j= 1 xj,N

l

 !

Then, the centroid’s coordinates are equal to the means
of the corresponding class’s columns as shown in
Figure 2.

3. Compute the standard deviation using equation
(2) for each column of the centroids matrix.

Centroids=

m1, 1 m1, 2 :::: m1,N

m2, 1 m2, 2 :::: m2,N

:::: :::: :::: ::::
:::: :::: :::: ::::

mp, 1 mp, 2 :::: mp,N

2
66664

3
77775

Where p is the number of classes,

STDj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i= 1 (mi, j �Mj)

2
q

p
ð2Þ

And,

Mj =

Pp
i= 1 mi, j

p

We obtain a vector S of N STD value.

S = STD1 STD2 :::: STDN½ �

4. Sort the vector S in a descending order and save the
indices of the corresponding features in vector V .

5. Execute a sequential forward selection on the
indices’ vector v and assess the performance of
the corresponding features with the Random
forest classifier. The process starts from ‘start’
and stops once the accuracy reaches the Target.

� ‘start’ is the initial index for the sequential selec-
tion. It helps to preserve time by considering the
indices from 1 to start highly significant features.

start= size(features)3 coef ð3Þ

Figure 2. The calculation of the centroids’ coordinates.
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In our application, we set the coef=5%, assuming
that the first 5% are relevant features.

� Target is initially equal to 100%, it is used as a
termination criterion in the selection process. If
the intended accuracy is not reached with less
than half of the features, the Target is adjusted
using equation (4) to provide the highest possi-
ble accuracy.

Target= Target � 1

size(DataTest)
3 100

� �
ð4Þ

Experimental part

Datasets

In order to demonstrate the effectiveness of our sug-
gested method, we conduct thorough experiments using
three different databases The results of these experi-
ments will provide valuable insights into the effective-
ness of our proposed method and help us determine its
potential.

Database 1. The database is called ‘‘Bearing vibration
data collected under time-varying rotational speed,’’ it
contains three bearing health states:

� Healthy
� Inner race defect
� Outer race defect.

Operating under four rotational speed conditions to
cover all possible cases of variations:

� Increasing speed
� Decreasing speed
� Increasing then decreasing speed
� Decreasing then increasing speed.

Figure 3 illustrates the data for the vibration signals
that were collected while the speed varied continuously.

The bearing used is of type ER16K with pitch dia-
meter equals 38.52mm, and nine balls with diameters
equal 7.9mm. The data is collected at a sampling rate
of 200,000Hz for 10 s for each health state under the
four operating speed conditions. Three trials are
repeated for each case to ensure authenticity.19

Database 2. MaFaulDa (machinery fault data) is from a
spectraQuest’s machinery fault simulator (MFS)
Alignment-balance-vibration (ABVT). ABVT provides
vibration signals along the three axes in addition to the
acoustic signal for three faulty bearings with different
defective parts (outer track, rolling element, inner track).

The table below resumes the sequences for each bear-
ing separately in two distinct positions:

� having the bearing between the rotor and the
motor (underhang).

� having the rotor between the bearing and the
motor (overhang).

The bearing used is of eight balls with diameters
equal to 7.145mm. Sampling rate is 50 kHz, and each
sequence takes 5 s while the operating frequency ranges
from 737 to 3686 rpm with steps of approximately
60 rpm. Table 1 lists all masses used for the measure-
ments besides the number of trials for each situation.

Figure 3. Vibration signals of inner race defected bearings collected under four speed conditions.
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Database 3. The data is from the Case Western Reserve
University Bearing Data Center website.21 It consists of
vibration signals collected from the drive end bearing
of type 6205-2RS JEM SKF, deep groove ball bearing
with an inside diameter of 0.9843 in and an outside dia-
meter of 2.0472 in. The data contains four health state:

� Healthy
� Outer race defect
� Rolling element defect
� Inner race defect.

The defects are of three fault degrees 7, 14, 21mils.The
sampling rate equals 48 kHz for motor speed varies
from 1797 to 1730 rpm with steps of approximately
20 rpm.

Data preprocessing. The bearing diagnosis procedure
consists of three major stages: signal decomposition and
feature extraction, feature selection, and classification.

we start by processing the Data. For each dataset,
we followed these steps:

1. Splitting the waveform of each case into seg-
ments based on the calculated period

2. Decomposing each segment using signal decom-
position technique

3. Computing the features in Table 2 for each
mode of the decomposed segment

4. Repeating the steps for all segments of the
signal

5. Performing the same process for all cases
6. Preserving the order and number of samples of

each state.

The proposed STD-RF selection method is evaluated
for its validity through a series of tests. These tests are
conducted by using different signal decomposition tech-
niques and classification methods. Moreover, the pro-
posed STD-RF selection method is also compared to
five strong optimization algorithms.

Results and discussions

On three datasets of rolling bearings collected under
different conditions, we apply three signal processing tech-
niques: Empirical Wavelet Transform (EWT), Empirical
Mode Decomposition (EMD), and Maximal Overlap
Discrete Wavelet Packet Transform (MODWPT). For

Table 1. Characteristics of the second database 77.

State Defect element Masses (g) Sequence

Normal — — 49
Underhang Outer track 0 49

6 48
20 49
35 42

Rolling element 0 49
6 49
20 49
35 37

Inner track 0 50
6 49
20 49
35 38

Overhang Outer track 0 49
6 49
20 49
35 41

Rolling element 0 49
6 49
20 49
35 41

Inner track 0 49
6 43
20 25
35 20

Table 2. Table of extracted features.

Feature Equations

Mean square value 1

N

XN

i= 1

x2
i

Minimum Minjxij
Maximum Maxjxij
RMS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i= 1

x2
i

vuut
Kurtosis

N
PN
i= 1

(xi�x)4

PN
i= 1

(xi�x)2

� �2

Entropy E(S)= �
P

S2
i log(S2

i )

Standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i= 1

xi�xð Þ2

N

s

Mean PN
i= 1

xi

N

Variance PN
i= 1

xi�xð Þ2

N

Skewness PN
i= 1

xi�xð Þ3

n�1ð Þs3

Crest factor Maxjx(n)j
rms

peak2peak Max(x)�Min(x)

RSSQ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i= 1

jxij2
s
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the resulting signals, we compute the features listed in
Table 2.

Then, we apply the STD-RF selection method to the
obtained feature set. We consider the execution time,
the number of features opted for, and the obtained
accuracy.

We decompose the signal into 10 Amplitude
Modulation-Frequency Modulation (AM-FM) modes
for the EWT technique.

The number of intrinsic modes functions (IMF) for
the EMD technique varies between 12 and 16 for the
three databases. We choose 16 as the maximum value to
adjust the features matrix without losing any information.

For the three datasets, the MODWPT technique
extracts 16 terminal nodes.

Tables 3 to 5 present the features selected by the
STD-RF method for three databases processed by
EWT, EMD and MODWPT, respectively.

The tables contain the results of 10 simulations using
the STD-RF selection method and the execution time
for each case. As we can see, our proposed method
could reduce the sets of features to less than 15% using
the EWT, less than 16% using EMD and less than 10%
while using MODWPT and hence help to boost the
diagnosis process speed.

From Tables 3 to 5, we observe that the STD-RF’s
results remain in the same scope despite the signal
decomposition technique tool involved in the data pro-
cessing. Also, the number of selected features for the 10
simulations affirms the stability of our method in both

Table 3. Depicting the performance of the STD-RF algorithm with EWT.

TF Dataset1 Dataset2 Dataset3

130 520 130

Selected
features

Execution
time (s)

Selected
features

Execution
time (s)

Selected
features

Execution
time (s)

1 14 10.20 49 13.44 17 17.71
2 23 42.19 50 12.57 17 12.77
3 14 10.28 49 16.02 17 24.26
4 14 9.95 49 10.70 20 22.49
5 16 17.53 50 13.86 21 26.40
6 14 7.01 49 15.29 20 34.09
7 16 17.53 49 11.30 17 12.83
8 16 12.61 49 12.10 20 29.96
9 19 24.65 49 11.11 23 42.90
10 20 27.06 49 15.80 22 27.39
mean 17 17.90 49 13.21 19 25.08
STD 3.09 — 0.42 — 2.27 —
% of selected features 13.07 — 9.42 — 14.61 —

Table 4. Table depicting the performance of the STD-RF algorithm with EMD.

TF Dataset1 Dataset2 Dataset3

208 832 208

Selected
features

Execution
time (s)

Selected
features

Execution
time (s)

Selected
features

Execution
time (s)

1 7 16.40 132 301.20 13 22.43
2 7 31.82 132 311.70 17 50.80
3 11 25.79 130 283.97 13 19.71
4 10 25.89 129 294.46 14 47.77
5 6 13.93 132 303.46 13 15.84
6 14 46.12 130 281.63 13 18.66
7 12 34.74 132 291.80 13 16.62
8 18 62.31 132 348.93 13 14.74
9 7 15.46 132 338.05 15 32.55
10 12 31.31 135 330.55 13 33.77
mean 11 27.78 132 308.57 14 27.28
STD 3.8 — 1.64 — 1.33 —
% of selected features 5.28 — 15.86 — 6.73 —
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quantity and quality terms because of the features’
ordering at the beginning of the process.

Selection techniques comparison. We put our method in a
comparison with five robust optimization algorithms in
bearing diagnosis field. Our method was compared to
squirrel search algorithm,21 gray wolf optimization
algorithm,22 binary coded differential evolution (BDE),
Grasshopper optimization algorithm (GOA),23 and
simulated annealing (SA).24

Table 6 demonstrates that the STD-RF selection
method exhibits superior performance compared to the
other algorithms with respect to both accuracy and the
number of selected features. Additionally, the table
reveals that for the same dataset, if n simulations yield
the same number of selected features, this implies that
the n sets are identical, as the vector of indices v is con-
sistently ordered irrespective of the initial arrangement
of the data. This independence of the output from the
initial data’s position enhances the system’s stability,
unlike algorithms where the search procedure is initi-
ated randomly and is influenced by the order of the fea-
tures, leading to varying feature sets in different
simulations.

Figure 4 provides a clear representation of the power
of our proposed method in feature selection using the
first dataset processed by the EWT technique. It
reduces number of parameters involved in the classifi-
cation process to just 12% without affecting the classi-
fication’s accuracy.

The accuracies listed in Table 6 were assessed using
the RF classifier,we have tested our proposed method
using the holdout cross validation and we repeated it
10 times as an explicit 10-fold cross validation to detect
any hidden variance between the 10-folds, and this

because the k-fold cross validation provides the average
of the k simulations without giving an idea about the
stability of the system. We spilt the data randomly into
80:20 to have larger amount of data for testing, and we
repeated the process for 10 times then we calculated
both the average and the STD.

Figures 5 to 7 illustrate clearly the strength of our
proposed method in reducing the size of the features
set compared to the total features(TF) and the outputs
of strong optimization algorithms as the squirrel, gray
wolf, BDE, and others, without affecting the accuracy
of classification as seen in Table 6.

The accuracy of fault diagnosis can be notably
enhanced by utilizing feature ranking.25 The Figure 8
represents a histogram, which illustrates the selected
features in the three datasets processed by EWT. These
features are arranged in a particular order that corre-
sponds to their importance, which is determined based
on their standard deviation (STD). The histogram pro-
vides a visual depiction of the distribution of the
selected features and their relative significance.

Classifiers. To determine the effectiveness of our feature
selection method, we perform a thorough evaluation by
testing its output with five well-established classifiers.
These classifiers include K-Nearest Neighbors, Random
Forest, Least-Squares Support Vector Machines,
Decision Tree, and Extra-Trees. This evaluation is crucial
in verifying the accuracy of the selected features and
ensuring that they are capable of providing reliable
results when used in the diagnosis of bearings.

Table 7 summarizes the evaluation results of the
selected features by the STD-RF method from the
three databases processed with the Empirical Wavelet
Transform and decomposed into 10 modes.

Table 5. Table depicting the performance of the STD-RF algorithm with MODWPT.

TF Dataset1 Dataset2 Dataset3

208 832 208

Selected
features

Execution
time (s)

Selected
features

Execution
time (s)

Selected
features

Execution
time (s)

1 21 14.92 83 125.02 20 41.85
2 21 18.03 84 67.85 20 13.10
3 20 8.46 83 49.53 20 10.82
4 20 8.99 83 45.63 20 11.27
5 20 8.25 83 48.69 20 9.30
6 20 7.29 83 50.43 20 12.42
7 20 9.99 83 52.07 21 14.37
8 20 8.07 83 54.84 20 11.31
9 20 8.91 84 64.93 20 27.78
10 20 10.10 83 55.30 21 18.64
mean 20 10.30 83 61.42 20 17.08
STD 0.42 — 0.42 — 0.42 —
% of selected features 9.61 — 9.97 — 9.61 —
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The obtained accuracies are very promising even
with a relatively weak classifier as the Decision tree,

where the mean accuracies for the three cases are
98.25%, 98.63%, and 95.64% respectively. For KNN,
the accuracy approaches 100% while the rest of the
classifiers could reach 100%.

Also, we notice the role of our method to retain the
system’s stability, where the maximum value of the
STD is lower than 0.98, which is a low value and deter-
mines the robustness of the fault classification.

Conclusion

The diagnosis of bearings has gained a lot of attention
due to the potential harm caused by faulty bearings.
However, the accuracy of the diagnosis relies heavily
on the quality of the input features used by the classi-
fier. This is where the feature selection method comes
into play. In this article, we propose an STD-RF-based
feature selection method with a high ability to extract
the blurred discriminative parameters for the diagnosis.
We tested the selection method on three distinct
databases, processed by empirical wavelet transform,

Figure 5. Comparison graph illustrating the number of selected
features by different optimization methods for the first dataset.

Figure 4. pie chart depicting the percentages of the selected features by different optimization algorithms.

Figure 6. Comparison graph illustrating the number of selected features by different optimization methods for the second dataset.
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empirical mode decomposition, and maximal overlap
discrete wavelet packet transform. We assessed the
opted set of parameters by many classifiers, such as
KNN, RF, LSSVM, and others. The obtained results
demonstrate the high performance of our proposed
method regardless of both the signal processing tech-
nique and classifier adopted. Compared to a bunch of
robust optimization techniques, the STD-RF method
outperforms them in terms of accuracy, execution time,
and the number of features selected. The results reveal
the ability of the STD-RF-based selection method to
control the time variability issue and to ensure the sta-
bility of the predictive system.
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Appendix

List of acronyms

ML machine learning
FS feature selection
STD standard deviation
RF random forest
ANOVA analysis of variance
PSO particle swarm optimization
ACO ant colony optimization
ABVT alignment-balance-vibration
RPM revolutions per minute
IMF intrinsic mode function
EWT empirical wavelet transform
EMD empirical mode decomposition
MODWPT maximal overlap discrete wavelet packet

transform
TF total features
KNN K-nearest neighbors
LSSVM least-squares support vector machines
RSSQ root sum of squares
BDE binary differential evolution
SA simulated annealing
GOA grasshopper optimization algorithm
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