
Registration Number:……../2020

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Power and Control

Project Report Presented in Partial Fulfilment of

The Requirements of the Degree of

‘MASTER’

In Electrical and Electronic Engineering

Option: Control Engineering

Title:

Presented By:

 MEHRAB ANIS ABDELDJALIL

Supervisor:

 Dr. GUERNANE

End-to-End Learning-based Navigation of

Autonomous Mobile Robot

1 | P a g e

ABSTRACT

 In this work we present an end-to-end learning approach that is able to perform target-

oriented navigation and collision avoidance using Deep Neural Network. This approach can be

defined as learning a model that maps sensory inputs, such as raw 2D-laser range findings and a

target position, to navigation actions for controlling the mobile robot such as steering commands.

Compared to the traditional autonomous navigation systems, which often require perception,

localization, mapping, and path planning, the end-to-end learning approach offers a more

efficient method. which utilize large set of expert navigation demonstrations to learn the desired

navigation policy.

 The end-to-end learning approach has gained considerable interests in autonomous

navigation in academic and industrial fields. Researches have already used different artificial

neural networks to predict steering commands. However, most of the existing end-to-end

methods are used for lane keeping for self-driving cars. therefore, we propose an end-to-end

navigation model for mobile robots that is based on a Convolutional Neural Network (CNN).

The network was trained using expert demonstration data which was generated in virtual

simulation environments. The learned model was test in real time simulation and gave an

acceptable result, however, it suffered when it encounters situations that requires hard

maneuvers. Therefore, in order to overcome some of these difficulties, we proposed an improved

model which incorporates the temporal information in the prediction process using the Long

Short-Term Memory (LSTM) network. basically, this model aims to include the motion history

of the robot in the steering prediction model. The improved model showed its ability to predict

steering commands with high performance compared to the expert operator. However, this model

imposed some limitations which will be further discussed in this remaining parts of this thesis.

2 | P a g e

 ACKNOWLEDGEMENTS

 I would firstly like to thank my advisor, Dr. Reda Guernane, for his support and guidance

throughout this thesis. Also, I must express my very profound gratitude to my parents, my

siblings, and all my friends for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process of researching and writing

this thesis.

 Contents

3 | P a g e

Contents

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. 2

Contents .. 3

List of Figures ... 5

List of Tables .. 7

 Introduction ... 8

1.1 Autonomous Navigation ... 8

1.1.1 Traditional autonomous navigation system .. 8

1.1.2 End-to-End autonomous navigation system ... 9

1.2 Thesis Structure ... 10

 End-to-End Navigation Model .. 11

2.1 Approach ... 11

2.2 Related Work... 12

2.3 Preliminaries.. 13

2.3.1 Virtual Mobile Robot: TurtleBot .. 13

2.3.2 Simulation Environment ... 16

2.4 Data Collection .. 17

2.5 Model Structure ... 19

2.6 Training details .. 20

2.7 Evaluation.. 23

 Improved Model with Temporal Fusion ... 25

3.1 Related Work... 25

3.2 Approach ... 26

3.3 Model Structure ... 27

 Contents

4 | P a g e

3.3.1 Feature-Extraction Network ... 27

3.3.2 Steering-Prediction Network .. 28

3.4 Training details .. 29

3.5 Evaluation.. 31

 Experiment and Results... 33

4.1 Experiment Setup .. 33

4.1.1 Software Platform ... 33

4.1.2 Software Architecture | Data Collection ... 33

4.1.3 Software Architecture | Deployment .. 34

4.2 Experiment Results ... 35

4.3 Discussion ... 39

 Conclusion... 41

References ... 42

5 | P a g e

 List of Figures

Figure 1.1: Overview of a traditional autonomous navigation system ... 9

Figure 1.2: Overview of end-to-end autonomous navigation system ... 10

Figure 2.1 End-To-End Model .. 12

Figure 2.2 CNN-based end-to-end Model ... 12

Figure 2.3 TURTLEBOT3 mobile robots ... 14

Figure 2.4 TURTLEBOT3 burger sensor suit .. 14

Figure 2.5 two wheeled robot motion ... 15

Figure 2.6 two-wheel robot simple model .. 16

Figure 2.7 Visualization of the 2D point clouds (in yellow) generated by the Turtlebot’s LIDAR

... 17

Figure 2.8 Gazebo simulator| Turtlebot navigating in an indoor environment 17

Figure 2.9 target to robot range... 18

Figure 2.10 Convolutional Neural Network (CNN) Architecture. inputs: lidar data (360) and

target location (3), ... 20

Figure 2.11 Training the neural network .. 21

Figure 2.12 Train and Evaluation losses ... 21

Figure 2.13 Histogram of rotational velocity commands in training data. 22

Figure 2.14 Translational and Rotational command Velocity losses ... 22

Figure 2.15 CNN-based mode: Error statistics of the frame-by-frame between ground truth and

predicted steering commands of three different evaluation datasets .. 23

Figure 2.16 comparison between predicted and actual velocity commands for 700 frames in the

eval2 dataset .. 24

Figure 3.1 CNN-LSTM based Model .. 27

Figure 3.2 CNN_LSTM based model: features-extraction Network. (INPUTS: lidar data (1,360)

and target location (1,3). outputs: features of dimension (1,512))... 27

Figure 3.3 Steering-Prediction Network ... 28

Figure 3.4 Training the CNN-LSTM neural network ... 29

Figure 3.5 improved model Train and Eval Losses .. 30

Figure 3.6 improved model: translation and rotational velocity commands losses 30

file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186206
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186207
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186208
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186209
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186210
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186211
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186212
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186213
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186214
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186214
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186215
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186216
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186217
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186217
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186218
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186219
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186220
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186221
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186222
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186222
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186223
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186223
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186224
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186225
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186225
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186226
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186227
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186228
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186229

6 | P a g e

Figure 3.7 Improved model: error statistics of the frame-by-frame between ground truth and

predicted steering commands of three different evaluation datasets .. 32

Figure 3.8 improved model: comparison between predicted and actual velocity commands for

700 frames in the eval2 dataset ... 32

Figure 4.1 Data Collection| Software Architecture ... 33

Figure 4.2 Software Architecture | Deployment ... 34

Figure 4.3 First Navigation Scenario of Robot (Red) navigating toward the goal (green) 36

Figure 4.4 Second Navigation Scenario of the Robot (Red) navigating toward the goal (green)

... 38

file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186230
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186230
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186231
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186231
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186232
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186233
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186234
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186235
file:///D:/INELEC/5th%20year/final%20year%20project/Final%20report/New%20Report%20v%200.6.1.docx%23_Toc52186235

7 | P a g e

 List of Tables

Table 1 List of Actual and Predicted Steering commands of navigation scenario in Figure 4.3 .. 35

Table 2 List of Actual and Predicted Steering commands of the Second navigation scenario in

Figure 4.4 .. 37

 Introduction

8 | P a g e

 Introduction

1.1 Autonomous Navigation

 The evolution of robotics industry has shown an intensive growth in the previous years.

Mainly due to the necessity to replace human intervention in various situations, Such as: military

missions, dangerous explorations, delivery services, health care, etc. For this reason, researchers

aimed to solve this problem by trying to make robots do those human tasks autonomously.

 Robots come in many different shapes and can perform diverse tasks. The most common

distinction, is between fixed and mobile robots. Fixed robots are mostly industrial robotic

manipulators that work in well-defined environments adapted for robots. Whereas, mobile robots

are expected to navigate around and perform tasks in large, uncertain environments that are not

designed specifically for robots. They need to deal with situations that are not precisely known in

advance and that change over time. Such environments can include unpredictable entities like

humans and animals. To date, most of the navigation systems used to deal with these situations

can be categorized into two main classes: traditional autonomous navigation systems, and end-

to-end autonomous navigation systems.

1.1.1 Traditional autonomous navigation system

 The traditional autonomous navigation system can be divided into four main components

[1], as shown in Figure 1.1. Similar to human vision, the Perception component uses sensors to

continuously scan and analyze its surrounding environment. This component usually consists of

functions for obstacle detection and tracking. The Localization and Mapping module is where the

robot creates a map of the environment, and localize itself relative to that environment. The path

planning uses the information provided by the previous two modules to create a safe collision

free path for the robot Controller to execute. Finally, the Robot Control module determines the

steering commands, such as rotational and angular velocity, to drive the robot along the planned

path.

 Although a significant progress has been made in developing the traditional navigation

systems, there still many challenges towards building a fully autonomous navigation system.

However, because the traditional approach decomposes the autonomous navigation problem to a

 Introduction

9 | P a g e

hierarchy of sub-problems, where each one has its own optimization problem, Errors can

accumulate from previous processing stage to next stage, leaving the final result inaccurate. These

drawbacks have inspired research into the end-to-end learning approach for autonomous

navigation that does not require manual decomposition of the autonomous navigation system.

1.1.2 End-to-End autonomous navigation system

 In contrast to the traditional approach, the end-to-end navigation systems can directly

output the linear and angular velocities of the robot from sensor inputs in a single step.

Furthermore, these types of systems are self-contained that can carry out all the processes

automatically from mapping based on sensory inputs, such as a LIDAR scanner, to the actions

necessary for navigation. Usually, the end-to-end systems are designed to learn from expert

demonstrations rather than manually-designed rule based modules.

 In this report, we propose a single-step, end-to-end, learning-based navigation approach

for mobile robots, which directly infer the final steering commands from raw data inputs. The

system is trained on Data that was collected while an expert operator was driving the robot, with

each data frame contains 2D lidar scans, target location and steering commands. The trained

model gives steering commands for navigation as output in real-time making it possible to be

implanted on mobile robots.

E
n

v
ir

o
n

m
en

t

Localization And

Mapping

Perception

Path Planning Robot Control

Figure 1.1: Overview of a traditional autonomous navigation system

Sensor

Inputs

Steering

Commands

 Introduction

10 | P a g e

1.2 Thesis Structure

The organization of this thesis is as follows; Chapter 2 introduces the first approach to solve the

end-to-end navigation problem for mobile robot. chapter 3 demonstrates the improved end-to-

end model. Chapter 4 gives the experiment results and discussion. The final Chapter address the

conclusion about this work and the future work.

E
n

v
ir

o
n

m
en

t

Figure 1.2: Overview of end-to-end autonomous navigation system

Sensor

Inputs
End-to-End Navigation System

Steering

Commands

 End-to-End Navigation Model

11 | P a g e

 End-to-End Navigation

Model

 One of the major challenges in robotics is to make robots perform as desired by human

operators. Regarding ground robot navigation, this problem is defined as getting the robot from

the current position to a target position fulfilling the desired navigation policy. Although

objectives like, e.g. short path or a safe distance to obstacles are perfectly clear to the human

operator, it typically requires time-consuming hand tuning, such that, the robot moves as desired

and as required. Additionally, classical navigation solutions require several steps of data

preprocessing that typically are decoupled. A map of the environment has to be provided, the

sensor data has to be preprocessed and potential objects have to be detected such that the

navigation algorithm can react accordingly in a later stage.

2.1 Approach

 The key idea of the end-to-end learning approach is to combine all the previous sub-

problems to a single one optimization problem. simply by treating it as a data-driven machine

learning problem, in which the used data corresponds to the desired navigation behavior of the

mobile robot. To do this, a neural network model was trained on data that was collected when a

expert operator was driving the robot in virtual simulation environment. Basically, the network

takes the lidar scan and relative target location as an input and tries to predict a suitable steering

command, which takes the robot towered the goal while avoiding obstacles.

 Data was collected in several virtual simulation environments, in which the robot was

being driven by a human operator. Furthermore, while robot was moving, data was being

collected at frame rate of 5Hz, with each frame contains a 2D lidar scan, target location, and

steering commands. This data was used later to train the neural network by giving it the lidar and

target data as an input, and optimize its parameters so that the difference between the predicted

and the actual steering commands is minimal. The main advantage of using neural network for

this specific task, is its ability to generalize the driving behavior to environments which has not

seen before.

 End-to-End Navigation Model

12 | P a g e

Mainly, we are trying to find the mapping function 𝐹 that takes as an input 𝑥 = [𝑥𝑙𝑖𝑑𝑎𝑟 , 𝑥𝑡𝑎𝑟𝑔𝑒𝑡]

and outputs the steering command 𝑢 = [𝑣, 𝜔]. as shown in Figure 2.1.

 𝑢 = 𝐹𝜃(𝑥) (2.1)

This function can be obtained by applying the back-propagation optimization technique to

optimize the neural network parameters(weights) through a set of iterations on the collected

dataset. Throughout this process, the network adjusts its weights 𝜃 so that the difference between

predicted and actual steering commands is minimal.

 The mapping function can be of any appropriate form; in this approach we used a

Convolutional Neural Network (CNN) as depicted in Figure 2.2. this network uses the lidar 2D

360 point clouds to extract the spatial features in the environment, alongside with the target

location to predict steering commands that ensures no collision till the robot reaches the target

location.

2.2 Related Work

 Traditionally, robot navigation had been performed in a multi-step process. The robot

would first detect obstacles, draw a map, localize the robot, and plan the robot’s local path

according to environmental structure. Nonetheless, the end-to-end methods have been introduced

showing comparable accuracy in mobile robotics navigation with the sensor-based multi-step

methods.

Lidar

 Target
Steering command

Figure 2.1 End-To-End Model

End-to-End

Model 𝐹𝜃

 Steering commands

[𝑣, 𝜔]

Figure 2.2 CNN-based end-to-end Model

Convolutional

Neural Network

 Lidar 360

2D point clouds

Target location

 [𝑥, 𝑦, 𝜃]

 End-to-End Navigation Model

13 | P a g e

 In 1989, a three-layered neural network was trained for the task of lane following of an

autonomous vehicle called ALVINN (Autonomous Land Vehicle In a Neural Network) [2]. this

vehicle had been driven under controlled field without any human intervention, and the network

used 30x32 image and a laser range finder as an input to generate a steering direction in order to

keep the vehicle in the lane. Although, it was one of first examples of an autonomous vehicle

using the end-to-end learning approach. nevertheless, its success suggested the potential of

neural networks for autonomous navigation.

 Later on, in 2005, an obstacle avoidance method based on end-to-end approach was

applied on a mobile robot called DAVE which is presented in [3].A Convolutional neural

network was trained on data that was collected in off-road situations. the trained network could

directly predict steering angles from input images of the robot’s point of view to avoid obstacles.

Later on, in 2016, an approach was pioneered by researchers at Nvidia with their paper “End to

End Learning for Self-Driving Cars” [4]. Where they took as an input the raw image data and

attempt to output throttle, break, and steering commands. By learning, once again, from human

driving commands in an imitation learning approach.

 Regarding mobile robotic applications of end-to-end learning, the work of [5],

presented an approach that learns a left/right controller for an unmanned aerial vehicle (UAV)

based on image data. The UAV was able to autonomously navigate through a forest while

successfully avoiding collisions with trees in the majority of the cases. However, only the

left/right motion has to be controlled while the forward motion command is still selected by a

human operator. With this approach the robot can drive reasonable paths, however no specific

goal can be reached. Also, in the work presented in [6], they used a lidar data instead of camera,

also they used a CNN based model to predict the steering command seeking a specific target.

2.3 Preliminaries

2.3.1 Virtual Mobile Robot: TurtleBot

 TurtleBot is a two wheeled, programmable, ROS-based mobile robot with open-source

software [7], which is used for education and research purposes. For this experiment we will use

the Turtletbot3 software package, that provides virtual robot which can operate in a virtual

simulator like gazebo. More specifically, the Turtlebot3 burger type shown in Figure 2.3 will be

 End-to-End Navigation Model

14 | P a g e

used as our virtual mobile robot, which is used for both data collection and testing the trained

model.

Turtlebot3 burger: Sensor suit

 The main sensor that is of interest to our navigation algorithm is the 360° LIght Detection

And Ranging sensor (LIDAR). As shown in Figure 2.4. basically, The LIDAR sensor mounted in

the turtlebto3 is a 2D laser scanner capable of sensing 360 degrees that collects a set of 2D data

point clouds around the robot , as shown in Figure 2.7, to use it for Navigation purposes.

Figure 2.3 TURTLEBOT3 mobile robots

Figure 2.4 TURTLEBOT3 burger sensor suit

 End-to-End Navigation Model

15 | P a g e

Turtlebot3 burger: motion model

Generally, Robot motion can be modeled either by considering the geometric constraints

that defines its motion, or by considering all of the forces and moments acting on the robot. The

first case is known as kinematic modeling. While the second is known as Dynamic modeling. At

low speed when the accelerations are not significant, kinematic modeling is more than sufficient

to capture the motion of the robot. For high speed, Dynamic modeling is more suitable, and it

can do a great job in estimating the robot motion throughout the whole robot operating range.

 The Turtlebot3 is a two wheeled differential drive mobile robot. Its motion is constrained

to move forward because its wheels points only in the forward direction. And this type of

constraint is called a nonholonomic constraint. Which means it restrict the rate of change of the

position of our robot. So, our robot can roll forward and turn while rolling, but it cannot move

sideways directly. this constraint can be used to define a kinematic model of the Turtlebot3

robot.

The velocity of the robot 𝒗 is defined by the tangent vector to its path. The orientation angle is

defined as 𝜃. And from Figure 2.5 we get:

𝑑𝑦

𝑑𝑥
= tan 𝜃 =

sin 𝜃

cos 𝜃
 (2.2)

By rearranging the above equation, we get the Nonholonomic constrain equation:

 𝑦̇ cos 𝜃 − 𝑥̇ sin 𝜃 = 0 (2.3)

Figure 2.5 two wheeled robot motion

 End-to-End Navigation Model

16 | P a g e

The motion of the robot is then defined by these equations:

𝑥̇ = 𝑣 cos 𝜃

𝑦̇ = 𝑣 sin 𝜃

𝜃̇ = 𝜔

(2.4)

Therefore, this model takes as an input the forward and rotational velocity [𝒗, 𝝎], and represents

the robot motion model using a vector of three states presented in equation (2.4), that generate

the next state which represent the XY position of the robot and is heading 𝜃. As shown in Figure

2.6.

Remark: the developed navigation algorithm relies on this kinematic model by giving it the

predicted velocities [𝒗, 𝝎] to control the robot.

2.3.2 Simulation Environment

 Robot simulation is an essential tool in every roboticist's toolbox. A well-designed

simulator makes it possible to rapidly test algorithms, design robots, perform regression testing,

and train AI system using realistic scenarios. one of those simulators is Gazebo [8], which is a

3D dynamic simulator with the ability to accurately and efficiently simulate populations of

robots in complex indoor and outdoor environments. Similar to game engines, Gazebo offers

physics simulation at a much higher degree of fidelity, a suite of sensors, and interfaces for both

users and programs.

 Gazebo gives the ability to construct 3D environments that simulate realistic and difficult

scenarios. Across these environments, the navigation algorithm was trained and test. To provide

a realistic obstacles situation, obstacles where added and removed occasionally, meanwhile the

robot was driven across these environments. An shown in Figure 2.8. these obstacles may be a

chair, table, standing person, etc.

[𝒗, 𝝎]

Inputs Simple Model States (outputs)

𝑥̇ = 𝒗 cos 𝜃

𝑦̇ = 𝒗 sin 𝜃

𝜃̇ = 𝝎

Figure 2.6 two-wheel robot simple model

 End-to-End Navigation Model

17 | P a g e

2.4 Data Collection

 A crucially important requirement of data collection process is to collect a large amount

of data with enough diversity of terrain and obstacles. Basically, the robot was driven for more

than 3 days of time across eight different indoor environments, each of which has different

characteristics. Throughout this process, a sperate module was collecting data of 2D lidar

scanner, target location and velocity commands.

 The lidar scan data was collected at a rate of 5Hz, while the velocity command and target

location were collected at rate of 20hz. It is important to know, the lidar and target data was

recorded relative to the robot reference frame. as the network will be trained on data that is

Figure 2.7 Visualization of the 2D point clouds (in yellow) generated by the Turtlebot’s
LIDAR

Figure 2.8 Gazebo simulator| Turtlebot navigating in an indoor environment

 End-to-End Navigation Model

18 | P a g e

collected from robot’s perspective. After data has been recorded it was synchronized based on

the data header time stamp, which resulted in a dataset of 250,000 frames.

 At first, we controlled the robot in the simulator using a Joystick Gamepad controller.

However, we couldn’t control the robot smoothly through the environment, as we kept hitting

obstacles along the way, and this may lead to a bad dataset. Therefore; the Dynamic Window

Approach (DWA) alongside with the A* algorithms were used as an expert operator which

drives the robot instead. Although; It was better if the robot was driven by a human operator, and

it would have been even better for the data to be collected from real world robot, where sensors

readings translate the actual characteristics of the environment.

Data preprocessing

 The lidar scans the whole horizonal surface collecting data at rate of 5hz, with point

density of 360 points per scan. Also, because laser range data has “inf” values, which correspond

to no information region, and by taking into account that ‘inf’ values cannot be propagated

through the network. it was replaced with “-1”. The reason we choose this value, is because it

works with our network the best among those that we previously tried, such as

{“0.0”,”10.0”,”100.0”}.

The target information contains the 𝑋𝑌 position as well as the heading 𝜃: 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 = [𝑥, 𝑦, 𝜃]

In order for the target position to be in the robot range of view, the target position was chosen to

be in the circle surrounding the robot. As shown in Figure 2.9

robot

target

Figure 2.9 target to robot range

 End-to-End Navigation Model

19 | P a g e

Due to the low scanning rate of lidar (5hz) in the simulation environment, the maximum

translation velocity of the robot was adjusted to a lower value. So that no important features are

missed during driving.

2.5 Model Structure

 The mapping between the input data and the output steering commands may result in a

very complicated model among machine learning approaches. Convolutional Neural networks

(CNN) are well known for their ability to model a complex and non-linear dependencies.

 First, we will use the Convolutional Neural Network as a feature extractor for the LIDAR

data. Second, Unlike the model proposed in [6], the target position and heading will be fed to a

series of dense layers that is responsible for up-sampling the target information to higher

dimension features. And finally, the output of those two networks will be fed to a series of fully

connected layers that outputs the steering command. As depicted in Figure 2.10.

 The CNN is able to successfully capture and extract features from the environment by

processing the lidar data that will help in understanding the scene. The network configuration

was designed through a series of experiments taking into account both the training and validation

losses. The network architecture consists of nine convolutional layers, that were designed to

perform feature extraction. We used “same” convolution across all layers. And we let the

dimension reduction to the Max Pooling layers. The first three convolution layers was used with

kernel size of 7 × 1, the next two convolutional layers used with kernel size of 5 × 1, while a

kernel size of 3 × 1 is used for the remaining convolution layers.

 The target information is given as an input to a series of dense layers, which outputs a

feature with dimension of (1, 512). This feature is then concatenated with the flattened lidar

features provided by the CNN that has an output of dimension of (22 ∗ 256). Later on, the

concatenated features are propagated through a series of fully connected layer.

 It is important to note, the fully connected layers are designed to function as a controller

for steering commands, although, by training the end-to-end system, it is not possible to make a

clean break between which parts of the network function primarily as feature extractor and which

serves as controller.

 End-to-End Navigation Model

20 | P a g e

2.6 Training details

 The collected data was divided to a train and validation datasets. The validation dataset

corresponds to a 25,000 data sample that has been collected from an environment which is used

only to test the trained network. in the other hand, the training data corresponds to 225,000 data

samples, that were collected from eight other environments. All of the data was normalized on

the fly using the formula (2.5).

 𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑(𝑥)
 (2.5)

 Learning to predicted the steering commands can be considered as a regression problem.

For this reason, we adopted a simple form of mean squared error as an objective function which

will be minimized through back-propagation of the network.

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

[𝑖]
− 𝑦𝑎𝑐𝑡𝑢𝑎𝑙

[𝑖]
)

2
𝑁

𝑖=1

 (2.6)

 The Training scheme is shown in Figure 2.11, where the CNN was trained for six hours,

with a stochastic gradient-based optimization method called Adam [9], which automatically sets

the relative step sizes of the parameters based on the local curvature of the MSE loss(error). The

optimizer learning rate started at 0.001 and then reduced based on loss values at each iteration.

Figure 2.10 Convolutional Neural Network (CNN) Architecture. inputs: lidar data (360) and target location (3),
output: velocity commands (2)

 End-to-End Navigation Model

21 | P a g e

Also, since the GPU memory cannot hold training data all at once, the training data was divided

into batches, each of which is equal to 128. Where the network loads the data batch by batch

until it completes one loop over the whole dataset. The training and validation losses are shown

in Figure 2.12

 During training, the network tends to overfit starting from 10th iteration. Therefore,

Dropout layers have been added mostly across the whole network. Also, L2 regularization term

has been added to the loss function. These two regularization methods slower the learning curve,

but helped the model to generalize a little bit better. So, the validation loss was much better in

terms of convergence. Although the network was iterated through the train dataset for 60 times,

we used the model saved at epoch(iteration) number 16, just before the model started to overfit.

Nevertheless, if the network was trained for enough time, the train loss will converge to zero, in

contrast to the validation loss which will not converge.

0.57

16

Figure 2.12 Train and Evaluation losses

y* Steering (2)

MSE
LIDAR (360)

Target (3)
CNN y

Optimization (Adam)

Figure 2.11 Training the neural network

error

N
o

rm
al

iz
at

io
n

 End-to-End Navigation Model

22 | P a g e

 During the training stage, one important issue needs to be addressed, which corresponds

to the data used for training that is highly unbalanced as shown in Figure 2.13. where the most

of the steering commands data corresponds to low rotational commands. Therefore, the trained

model based on these unbalanced data may tend to navigate straight while still have low losses.

As depicted in Figure 2.14; the network tends to learn the translation velocity much better than

the rotational one. This is due that fact that, the dataset was collected while the robot navigating

to the target in a straight line more often than the robot avoiding obstacles. Therefore, this issue

will make the avoiding obstacles task much harder.

 In general, through the process of collecting data, training, and testing. The more data we

collect the better the model is able to generalize (the lower the validation loss will be). Although,

Figure 2.14 Translational and Rotational command Velocity losses

Figure 2.13 Histogram of rotational velocity commands in training data.

 End-to-End Navigation Model

23 | P a g e

during this period, we collected about a quarter of a million of data samples, it was not enough.

And based on the rate of improvement of the model when increasing the dataset size. We can say

that, the model needs more than one million of data samples to be able to generalize better.

2.7 Evaluation

 The model was evaluated using three different small datasets, each of which was

collected from different environment. an input/output tuple has been generated from each

dataset. One from sub dataset used for training(train), and one from the validation dataset which

used for validating the model(eval1). Whereas the evel2 dataset was not used for either training

or validation. The error between the translational and rotational steering commands between the

ones generated by the network and the ones generated by the DWA algorithm was computed for

each tuple.as depicted in Figure 2.15.

 For the train losses distribution, it’s clear that all of the train losses of both translation and

rotational lie around the value that the model converged too, however the eval1 losses suffers

from outliers specially for rotational losses. And this mainly due to the robot big rotational

angles that that are larger than
𝜋

2
𝑟𝑎𝑑/𝑠 or less than -

𝜋

2
𝑟𝑎𝑑/𝑠. The same goes for the eval2

dataset, which has a higher variance in the rotational loss distribution, because it was collected to

test difficult obstacle avoidance scenarios. Even though the median loss of the eval1 and eval2

datasets are less than the median of train losses, their mean is higher. And this happen because of

the outliers caused by high steering angles. Which what the model failed to learn properly.

Figure 2.15 CNN-based mode: Error statistics of the frame-by-frame between ground truth and predicted steering commands
of three different evaluation datasets

 End-to-End Navigation Model

24 | P a g e

 Figure 2.16 shows a comparison between the predicted and actual steering commands of

700 frames contained in eval2 dataset. The predicted translation velocities shown yellow (Figure

2.16 down) track the ground truth velocities commands very well, as expected from the

evaluation losses. However, the predicted rotational velocities (Figure 2.16 up) are failing to

track the actual one at values greater than 1.2 rad/s and lower than -1.2 rad/s. and this is a

consequence for the unbalanced collected dataset, which has a relatively low fraction of data

collected of high rotational commands.

Figure 2.16 comparison between predicted and actual velocity commands for 700 frames in the eval2 dataset

 Improved Model with Temporal Fusion

25 | P a g e

 Improved Model with

Temporal Fusion

 The previously presented Convolutional neural network model computes the steering

commands frame-by-frame. No memory is used in order to take into account previous inputs our

outputs. Using previously extracted features to predict the next steering commands seems like a

good idea. If the robot knows its previous states, it can generate a better prediction. Using the

traditional neural network will likely to fail, since it has no explicit way to process a sequence of

data. Instead, we will incorporate a new type of neural networks called Recurrent Neural

Networks or RNN.

3.1 Related Work

 Usually, Recurrent Neural Networks are used for Natural Language Processing (NLP),

such as translation and speech recognition. Basically, it takes a sequence of data such as a

sentence, and precited its translation. This approach has proven its effectiveness in NLP,

however, in recent years it has been incorporated in several domain that may deals with end-to-

end learning and data time series.

 Another line of work has treated autonomous navigation as a visual prediction task in

which future video frames are predicted on the basis of previous frames. Such as the work [10],

which propose an approach to learn a driving simulator by combining generative adversarial

neural network (GAN) and recurrent neural network (RNN). also, in recent advances, recurrent

neural network modeling for sequential image data are also related to our work. such as The

Long-term Recurrent Convolutional Network (LRCN) [11] model that investigates the use of

deep visual features for sequence modeling tasks by applying a long short-term memory (LSTM)

recurrent neural network on top of a convolutional neural network.

 Applying a CNN on top of RNN is an approach that has been incorporated for self-

driving cars steering control. Such as the work of [12],where they presented and end-to-end

steering model for self-driving cars that is able to encode the spatiotemporal information from

different scales for steering angle prediction. Also, the work proposed by the first-place team

 Improved Model with Temporal Fusion

26 | P a g e

winner of the Udacity self-driving-car navigation [13],where they used what’s called Conv-

LSTM layers that makes use of Temporal Visual Cues in the dataset. By considering the

previous outputs generated by the system, the network is able to predict an optimal steering

command. This approach has proven its superior performance over the end-to-end CNN models.

While this previous mention researches are used for self-driving cars and relies on image data,

we used lidar data as our visual input. Also, we incorporated a much simpler model in our

second approach, which reserves the temporal information as well.

3.2 Approach

 Starting from previously mentioned research, we enhanced our previous CNN model by

incorporating a type of RNNs called Long Short-Term Memory Units or LSTM. Which is a

more powerful version of RNN, that is heavily used by the NLP society. By doing So, the end-

to-end model will have the ability to consider the previous successive features to generate a

better steering command prediction.

 Our goal is to predict the current steering command conditioned on the past and current

extracted features. To accomplish this, we propose a novel architecture for time-series features

prediction, which combine an LSTM temporal encoder with a convolutional visual encoder. At

first, a lidar data encoder is used to learn the relevant visual representation of the environment,

alongside with another encoder used for the target information. Afterward, a sequence of those

encoded features is passed to a temporal network that is used to take advantage of the motion

history information of the mobile robot.

 The proposed model constitutes of two main sub-networks and a small memory, as

depicted in Figure 3.1. The first sub-network is a is a CNN based feature extraction neural

network that is responsible of extracting the lidar and target information features. in the other

hand, the second sub-network is Recurrent Neural Networks that uses the LSTM units. Mainly, it

is designed to learn through a data time sequence, which allows us to benefit from previous state

of the robot to build a better model. So instead of using only the current extracted features, the

RNN will used a sequence of successive features to predict a better steering command.

 Improved Model with Temporal Fusion

27 | P a g e

3.3 Model Structure

 Unlike the previous network, this network is divided into two sub-networks as depicted in

Figure 3.1. The first network is responsible for extracting features from lidar scan and target

data. After that, those features are added to a set of features from previous time steps to be fed to

the steering perdition sub-network.

3.3.1 Feature-Extraction Network

 The features extraction network architecture is very similar to the previous main CNN

architecture shown Figure 2.10. The convolutional layers remain the same except for the

activation function where we used the Tanh instead of Leaky_ReLU. Also, no dropout

probability associated for the convolutional layers. The last Max-Pool layer produces a

(1 × 22 × 256) Tensor, this tensor is to be flatten and propagated through a series of fully

connected layers (dense layers) that has an output of dimension (1 × 256). Where the first

column is reserved for batch size, the next is for features length.

Figure 3.2 CNN_LSTM based model: features-extraction Network. (INPUTS: lidar data (1,360) and target location (1,3). outputs:
features of dimension (1,512))

Steering-Prediction

 Sub-network

Features(t-n)

Features(t)

Memory
Feature-extraction

Sub-network

Features(t) Input(t) steering command

Figure 3.1 CNN-LSTM based Model

 Improved Model with Temporal Fusion

28 | P a g e

As shown in Figure 3.2. The (1 × 256) Tensor corresponds features extracted form lidar

scan data. These features are then concatenated with the (1 × 256) target location up-sampled

features to form a (1 × 512) data frame features. Later on, these features will be added to

another set of features that had been propagated previously through the network.

3.3.2 Steering-Prediction Network

 LSTM networks are an extension of recurrent neural networks (RNNs). mainly, it is a

network that works on the present input by taking into consideration the previous output and

storing in its memory. Unlike the CNN, where there is no memory associated with it. Which is a

problem for sequential data, like text or time series. RNN addresses that issue by including a

feedback loop which serves as a kind of memory. So, the past inputs to the model leave a

footprint.

 While the main advantage of RNNs is the consideration of past information, it turns out,

if RNNs units considers future information, it can give a better result. Therefore, in our steering-

prediction network, we used a bidirectional RNN which is constructed using LSTM units. In

total, there are 16 LSTM units, half of them corresponds to forward pass while the other half

corresponds to the backward pass. in Figure 3.3 each forward and backward LSTM unit are

presented as one LSTM block, which makes a total of 8 LSTM bocks. This network takes as an

input a time data sequence. These data sequence corresponds to a set of consecutive features

extracted by the Feature-Extraction network. At each time step, the extract features will be stored

in memory (RAM or GPU), and the last eight set features will be extracted memory and feed to

the LSTM network.

 Since this is a bidirectional RNN, each LSTM block has two LSTM units, one deals with

the forward pass, and the other one deals with the backward pass. Which means, one provides

Figure 3.3 Steering-Prediction Network

 Improved Model with Temporal Fusion

29 | P a g e

past information while the other one provides future information. As an example, The LSTM3

block, takes information from the past (LSTM2 forward unit), as well as information from

present (Features (t- 5)), as well as information from future (LSTM4 backward unit). And by

doing so, the LSTM3 unit can generate a better prediction.

 In particular, we are interested in the prediction of the LSTM8 block, which deals with

features from the current time step. So, by having the knowledge of previous time steps provided

by the other LSTM blocks, and assuming that those LSTM block made a good prediction, the

last LSTM8 block will have a good prediction as well.

 The network generates eight Tensors of size (1,256) each. During deployment, only the

last LSTM unit’s tensor is used to predict the steering commands by propagating it through a

series of dense layers. However, during training, all of the LSTM units will be propagated

through the dense layers as will be explained in the next section.

3.4 Training details

 Although, there is two networks in this model, both of them where trained in the same

time. With same procedure as the previous model, the goal is to minimize the MSE loss function

(2.6). as depicted in Figure 3.4. By setting the batch size to 128, and with Adam algorithm is

used for back-propagation optimization with learning rate of 0.0001. The improved model is

trained with 225,000 training data samples. And validated with 25,000 data samples. The

training process took 34 epochs through the training set, and no significant improvements in the

error rate occurred thereafter. After training, the average loss (mean-squared error) was 0.202 on

the training dataset and it was 0.370 on the valid dataset.

Optimization (Adam)

𝑦𝑡−𝑛
∗ 𝑦𝑡

∗

Loss (t-n)

Steering (2)

MSE
LIDAR (360)

Target (3)
CNN-LSTM

yt-n

Figure 3.4 Training the CNN-LSTM neural network

Loss (t)

yt

N
o

rm
al

iz
at

io
n

 Improved Model with Temporal Fusion

30 | P a g e

 Clearly, this approach is more complicated than the previous one. However, by

incorporating the features of the previous time steps, the CNN_LSTM based model is able to

learn an generalize better than the CNN based model. As shown in in Figure 3.5, the validation

loss curve converges starting from the value “0.56” until it reaches the value 0.37. Note that, the

valid loss at the first iteration of CNN-LSTM model is better than the best value “0.57” that the

valid loss of CNN model converged to. And this shows the power of temporal fusion in

navigation.

 Although, the CNN-based model found a difficulty in learning the rotational velocity

commands, the validation loss of the CNN-LSTM based model ,shown in Figure 3.6 right, does

converge to a much lower value than the previous model. And this proves that the improved

model has managed to overcome that problem. And this mainly due to the incorporation of the

previous state of LSTM units.

Figure 3.5 improved model Train and Eval Losses

0.37

Figure 3.6 improved model: translation and rotational velocity commands losses

 Improved Model with Temporal Fusion

31 | P a g e

 For the translation velocity commands loss, Figure 3.6 left, shows that, the valid loss had

converged to a loss value equals to 0.4 which is approximately equals to the value that the CNN

based model converged to. Therefore, both models are already doing a similar performance level

in terms of translation velocity.

 It is important to point to the process of features manipulation between the two sub-

networks. The features extracted from the first network has dimension of (128×512), where the

first index represent the batch size and the second index represents the features length. This batch

of features are to be reshaped to obtain the successive data sequence that we need to feed it to the

second network. and since we need a sequence of length equals to 8, that means in a batch size

equals to 128 we can obtain 16 sequences. As a result, features extracted from the first sub-

network will be reshaped to a tensor of shape (16×8×259) where each index comes as follow

(min_batch, sequence, input).

 By propagating the resultant tensor through the LSTM network, each element in the

sequence is propagated through its corresponding LSTM block. And by doing so, each LSTM

block generates a tensor of dimension (16×1×256) where 256 corresponds to the number of

hidden states in the LSTM block. Therefore, the whole LSTM network generates a tensor for

(16×8×256). In order to make each LSTM block generates its own steering prediction, the

generated tensor is reshaped to (128×256). Which will be propagated through two dense layers,

the final dense layer will have output size of (128×2). This way, each LSTM block is trained to

generate its own steering command. However, during deployment we will propagate only the

output of the LSTM8 block through the dense layers

3.5 Evaluation

 Clearly, the translation and rotational frame-by-frame losses, shown in Figure 3.7, have a

lower variance than that of the losses of the previous model. Also, the eval1 and eval2 rotational

losses have been compressed to a lower range, and this shows the improved model is able to

make less error in predicting the rotational velocity.

 In general, the second model helped in reducing the outlier with high values, which cause

the mean of validation losses of the first model to be relatively higher. However, the

improvement of the second approach to our end-to-end model does not hide the fact that, in order

for the validation losses to be closes to zero, more data is needed.

 Improved Model with Temporal Fusion

32 | P a g e

 Figure 3.8 shows the plot of the predicted and actual rotational and translation velocities.

Clearly, the predicted rotational velocity (Figure 3.8 up in yellow) is tracking the actual one,

which is drawn in red, very well. In contrast to the previous model, incorporating temporal

features helped a lot with the rotational velocity commands. However, the translation velocity

plot Figure 3.8 down) shows some misprediction at some frames. For example, at frame 420 till

frame 450, the network prediction indicates that the robot needs to move, while in reality it

should stop. Also, at the start, the network shows some inconsistency between predicted and

actual velocity commands, and this happened because the network needs eight consecutive

features, which should be extracted while the robot is moving. However, at the start the robot is

stationary, which means the extracted features corresponds to the same location. Therefore, the

prediction will be not good until the eight features are collected while the robot starts to move.

Figure 3.7 Improved model: error statistics of the frame-by-frame between ground truth and predicted steering commands of three
different evaluation datasets

Figure 3.8 improved model: comparison between predicted and actual velocity commands for 700
frames in the eval2 dataset

 Experiment and Results

33 | P a g e

 Experiment and Results

 In this chapter, we present the details of our experiments in section 4.1, which includes

software used for building the end-end systems as well as deploying them. The experimental results

are given in section 4.2, and they are discussed in section 4.3

4.1 Experiment Setup

4.1.1 Software Platform

 First of all, the whole system was developed and tested on ubuntu 18.04 operating

system, which runs onboard a computer that is equipped with i5 6300HQ processor, 8GB of

RAM and a Graphics processing unit GTX 960M.

 The parts that concern data collection and model deployment were developed using both

C++ and Python programing languages across the Robot Operating System (ROS) framework

[14]. Likewise, the training process was done using Pytorch framework [15].

4.1.2 Software Architecture | Data Collection

 Data collection was done through several steps. First of all, while the Turtlebot was being

driven in the simulation environment, a built-in rosbag package used to collect data from several

ros topics, each of which has its own frequency. After the data has been collected, a C++ based

package was used to synchronize the data based on their time steps. Later on, this data was

parsed to CSV format using a CSV_Parser python-based package. This whole process is shown

in diagram of Figure 4.1.

Robot Driving in Virtual

Environment

rosbag

5hz lidar

20hz cmd_vel

20hz target_pose

Data1 Synchronizer Data2 CSV_Parser

Training Data

Figure 4.1 Data Collection| Software Architecture

 Experiment and Results

34 | P a g e

 Basically, the Synchronizer package has two main tasks to do; the first one is

transforming the reference frame of all the incoming data to the robot body reference frame. The

second task is synchronizing that data based on their time step in each frame’s header, therefore

after synchronization, data will have the same number of samples for each topic, however, the

data size will much less than the original one.

 The csv parser package was construct to convert data from bag format to csv format. so,

the package takes as input a bag file and parse that bag file to a set of csv files. Consequently, we

will have a three csv files, the first on corresponds to the target locations where each row

contains the 𝑥, 𝑦 position and the heading 𝜃. The second file corresponds to steering commands

[𝑣, 𝜔]. The last csv file is the lidar data file where each raw has a size of 360 that corresponds to

the point clouds range.

4.1.3 Software Architecture | Deployment

 The trained model was deployed using ROS and Pytorch. The input data was coming at

different frequency, therefore, a Synchronizer package similar to the one used before in data

collection is used to provide the model with a synchronized data at frame rate of 5hz. as shown

in Figure 4.2. The synchronization process was running on CPU while the navigation model was

running on GPU. Using GPU computation ability, both models where running in real time. the

CNN model was able provide prediction at an average rate of 100hz, while the CNN-LSTM

based model was running at an average rate of 50hz. even though both models where running at

higher frequency, the input data was limited to 5hz, and this due to limited LIDAR scanning

frequency. Therefore, the whole end-to-end model was giving steering commands at frequency

of 5hz.

Figure 4.2 Software Architecture | Deployment

20hz

LIDAR

Target

Synchronizer
End-to-End

Model

Steering

Commands

5hz

5hz 5hz

 Experiment and Results

35 | P a g e

4.2 Experiment Results

 Figure 4.3 and Figure 4.4 show two navigation scenarios, in each one of them the robot is

shown in a red square and is trying to navigate to the goal shown in green square. both of these

scenarios are part of the eval2 dataset, which has not seen before by any of the trained networks.

In order to evaluate the performance of both networks, we compare the actual steering

commands with the ones predicted by the first and second networks. the comparison was done

throughout two navigation scenarios, and the results of each scenario are given in Table 1 and

Table 2 respectively. These results were recorded approximately at each one second, given that

navigation model is publishing velocity commands at a rate of 5Hz.

 As shown in Table 1, the predicted translation velocity values for both networks are very

close to the actual predicted values. however, the second network predicts rotational velocities

that is closer to the actual one than the prediction of the first network which shows some margin

between the actual and the predicted values. For example, at the situation shown in Figure 4.3

C1, the robot is steering away from the obstacle, in which the actual rotational velocity is 𝜔 =

−0.624 𝑟𝑎𝑑/𝑠, however, the CNN network predicted 𝜔 = −0.432 𝑟𝑎𝑑/𝑠, and the LSTM based

network predicted 𝜔 = −0.557 𝑟𝑎𝑑/𝑠 which is a closer to the actual value.

Table 1 List of Actual and Predicted Steering commands of navigation scenario in Figure 4.3

Navigation

Scenario 1

 Actual Steering

 (DWA)

 Predicted Steering

 First Model (CNN)

 Predicted Steering

 Second Model (LSTM)

A1
𝑣 = 0.127 𝑚/𝑠

 𝜔 = −1.303 𝑟𝑎𝑑/𝑠

𝑣 = 0.191 𝑚/𝑠

 𝜔 = −0.317 𝑟𝑎𝑑/𝑠

𝑣 = 0.186 𝑚/𝑠

 𝜔 = −0.685 𝑟𝑎𝑑/𝑠

B1
𝑣 = 0.220 𝑚/𝑠

 𝜔 = −0.923 𝑟𝑎𝑑/𝑠

𝑣 = 0.19 𝑚/𝑠

 𝜔 = −0.409 𝑟𝑎𝑑/𝑠

𝑣 = 0.205 𝑚/𝑠

 𝜔 = −0.557 𝑟𝑎𝑑/𝑠

C1
𝑣 = 0.208 𝑚/𝑠

 𝜔 = −0.624 𝑟𝑎𝑑/𝑠

𝑣 = 0.200 𝑚/𝑠

 𝜔 = −0.432 𝑟𝑎𝑑/𝑠

𝑣 = 0.201 𝑚/𝑠

 𝜔 = −0.504 𝑟𝑎𝑑/𝑠

D1
𝑣 = 0.22 𝑚/𝑠

 𝜔 = 0.201 𝑟𝑎𝑑/𝑠

𝑣 = 0.210 𝑚/𝑠

 𝜔 = 0.139 𝑟𝑎𝑑/𝑠

𝑣 = 0.207 𝑚/𝑠

 𝜔 = 0.143 𝑟𝑎𝑑/𝑠

E1
𝑣 = 0.22 𝑚/𝑠

𝜔 = 0.279 𝑟𝑎𝑑/𝑠

𝑣 = 0.210 𝑚/𝑠

 𝜔 = 0.215 𝑟𝑎𝑑/𝑠

𝑣 = 0.213 𝑚/𝑠

 𝜔 = 0.258 𝑟𝑎𝑑/𝑠

F1
𝑣 = 0.22 𝑚/𝑠

 𝜔 = 0.073 𝑟𝑎𝑑/𝑠

𝑣 = 0.20 𝑚/𝑠

 𝜔 = 0.008 𝑟𝑎𝑑/𝑠

𝑣 = 0.205 𝑚/𝑠

 𝜔 = 0.047 𝑟𝑎𝑑/𝑠

 Experiment and Results

36 | P a g e

Figure 4.3 First Navigation Scenario of Robot (Red) navigating toward the goal (green)

C1

A1
B1

D1

E1 F1

x

y

 Experiment and Results

37 | P a g e

 The results of the second navigation scenarios of Figure 4.4 are shown in Table 2. the

values predicted by the second network are closer to the actual one than the those predicted by

the first network. However, for the situation in Figure 4.4 A2, the first network is predicting the

wrong rotational angle. the robot is steering away from the obstacle as indicated by the actual

value 𝜔 = 0.296 𝑟𝑎𝑑/𝑠, however the LSTM-based network is generating a negative steering

angle 𝜔 = −0.172 𝑟𝑎𝑑/𝑠 , as if it is trying to avoid the obstacle from the other direction.

Although, once the robot advances a little bit (see B2), the LSTM-based model predicts the same

values as the actual steering values.

 Before the robot starts to navigate, the robot was stationary. And this means the LSTM-

CNN based network has no past information, therefore at situation A2, the temporal information

that the CNN-LSTM model was using in order to predict the first steering command corresponds

to a sequence of features that are extracted from the same position, since the robot was not

moving before. And this may explain why the CNN-LSTM based network predicted completely

different value than the actual one. In the other hand, the CNN-based network is steel predicting

a steering value with some margins between it and the actual once.

Table 2 List of Actual and Predicted Steering commands of the Second navigation scenario in Figure 4.4

Navigation

Scenario 2
 Actual Steering

 Predicted Steering

 First Model (CNN)

 Predicted Steering

 Second Model (LSTM)

A2 𝑣 = 0.208 𝑚/𝑠

 𝜔 = 0.296 𝑟𝑎𝑑/𝑠

𝑣 = 0.205 𝑚/𝑠

 𝜔 = 0.168 𝑟𝑎𝑑/𝑠

𝑣 = 0.208 𝑚/𝑠

 𝜔 = −0.172 𝑟𝑎𝑑/𝑠

B2 𝑣 = 0.220 𝑚/𝑠

 𝜔 = −0.052 𝑟𝑎𝑑/𝑠

𝑣 = 0.215 𝑚/𝑠

 𝜔 = −0.113 𝑟𝑎𝑑/𝑠

𝑣 = 0.215 𝑚/𝑠

 𝜔 = −0.054 𝑟𝑎𝑑/𝑠

C2 𝑣 = 0.220 𝑚/𝑠

 𝜔 = −0.173 𝑟𝑎𝑑/𝑠

𝑣 = 0.216 𝑚/𝑠

 𝜔 = −0.218 𝑟𝑎𝑑/𝑠

𝑣 = 0.210 𝑚/𝑠

 𝜔 = −0.173 𝑟𝑎𝑑/𝑠

D2 𝑣 = 0.22 𝑚/𝑠

 𝜔 = −0.327 𝑟𝑎𝑑/𝑠

𝑣 = 0.216 𝑚/𝑠

 𝜔 = −0.241 𝑟𝑎𝑑/𝑠

𝑣 = 0.213 𝑚/𝑠

 𝜔 = −0.236 𝑟𝑎𝑑/𝑠

E2 𝑣 = 0.220 𝑚/𝑠

𝜔 = −0.180 𝑟𝑎𝑑/𝑠

𝑣 = 0.214 𝑚/𝑠

 𝜔 = −0.191 𝑟𝑎𝑑/𝑠

𝑣 = 0.219 𝑚/𝑠

 𝜔 = −0.187 𝑟𝑎𝑑/𝑠

F2 𝑣 = 0.196 𝑚/𝑠

 𝜔 = −0.067 𝑟𝑎𝑑/𝑠

𝑣 = 0.206 𝑚/𝑠

 𝜔 = −0.043 𝑟𝑎𝑑/𝑠

𝑣 = 0.197 𝑚/𝑠

 𝜔 = −0.025 𝑟𝑎𝑑/𝑠

 Experiment and Results

38 | P a g e

A2 B2

C2 D2

E2 F2

Figure 4.4 Second Navigation Scenario of the Robot (Red) navigating toward the goal (green)

x

y

 Experiment and Results

39 | P a g e

4.3 Discussion

 This work showed successfully that a mobile robot navigation policy can be learned from

an expert operator making use of neural network learning ability of learning a complex end-to-

end mapping functions from raw sensor data to steering commands. two different neural network

architectures have been trained and showed their abilities to transfer the gained knowledge from

training environments to unseen environments.

 Out of the two trained networks, the CNN based model relies only on the current time

input frame, whereas the CNN-LSTM based model uses a sequence of the last eight input frames

to predict the next steering commands. In terms of advantages and disadvantages of each model,

the first model has a 2X better query time than the second model. Also, the two networks

performance is very close in terms of the translational velocity prediction. However, the second

network predictions of rotational velocities are relatively better, and this because the second

network makes use of the previous hidden states of the LSTM network.

 The results of the first navigation scenario shown in Table 1 lists the steering command

predictions from different time steps. Obviously, the results of the CNN-LSTM based are closer

to the base line results than the those of the CNN model. However, this does not mean that the

first model will hit an obstacle, since those results are taken from frames which are one second

apart. Means, in a certain time step, the CNN model may predict a low rotational angle

commands, and in the next time step it may keep up with the situation and predict a higher one.

 As shown in Table 2, The CNN-LSTM based model clearly does a better job in

predicting the rotational velocity. However, there is certain situations where it may fail to predict

reasonable commands. The first one occurs when the robot starts to navigate, it generates

steering commands that may be not good enough to avoid an obstacle if it was very close to it.

The reason for this comes from the property of the previous LSTM hidden states, which have big

influence on the prediction of the next steering commands. Giving all of these states correspond

to features extracted from inputs of a stationary robot. This means the model will get a sequence

of eight features that are the same, in which the trained model does not have knowledge of how

to deal with such situation. Therefore, this problem may be solved by including such scenarios in

the training data and retraining the model.

 Experiment and Results

40 | P a g e

 Another issue happens to both models, it usually occurs whenever the robot approaches

the goal, both models reduce forward velocity to be close to zero and aim to align the robot with

goal heading. However, the robot will never get perfect alignment with goal’s heading, and this

may cause the robot to start spinning about the target. therefore, a tolerance value has been set to

avoid such scenario.

 An important issue needs to be addressed for this navigation system, given the network

was trained with target location in the vision range of the robot, the system was not trained to

explore the environment like a maze and search for a possible way to the target location.

Although we compare our approach to the DWA which is a map-based motion planner, we are

fully aware that it cannot completely replace a map-based path planner. If the environment

becomes more complex, the navigation system is still limited to be a local motion planner that

relies on a global path planner to provide targets.

 There is a certain favorite property of using the end-ot-end learning approach, which is

the fact that it can be used for both dynamic and static environment. Specially the second model,

which has more sense in tracking the motion of other dynamic objects in the environments. Even

though, the data used to train our model corresponds to navigation in static environment, which

means our model cannot navigate in dynamic environment. If another data was collected from

environments which contains dynamic objects, this approach is steel a solution to this problem as

well. However, in traditional approach, dynamic objects have to be detected and tracked by

separate module, and it has to provide locations of each dynamic object of the environment,

giving the complexity increases with increasing in the number of dynamic objects in the

environment. The end-to-end model does not have to deal with all this problems as it combines

them to one problem which is considered as the main advantage of this approach.

 Conclusion

41 | P a g e

 Conclusion

 In this work, we presented a data-driven end-to-end navigation approach for autonomous

mobile robots. This approach relies on the lidar scan to control a mobile robot through an indoor

environment seeking a relative target location. the system uses the ability of neural networks to

learn a complex function that maps the input data to a steering commands of a differential drive

mobile robot.

 This report presented two distinct end-to-end models that are able to learn navigation

strategies from an expert operator and generalize this knowledge to previously unseen

environments. At first, a CNN based model was presented in chapter 2, where it was trained to

get a current input frame and output steering commands. This model has shown it ability to

navigate in previously unseen environments and avoid obstacles while reaching the target.

however, it showed some difficulty in producing high angular velocity commands when it

encounters very close obstacles. which lead us to propose a novel model that fuses the temporal

information to produce a better steering command prediction.

 The CNN-LSTM based approach was presented in chapter 3, and it showed the ability to

predict a higher angular velocity in difficult obstacle avoidance situations. this model uses an

LSTM network to fuse all past and current states into a single state which allows the model to

predict a better and smoother steering commands. As a result, the obstacle avoidance ability has

been improved. Also, compared to the first model, the second model produces smoother steering

commands, that allows for smooth navigation experience.

 In the future, our main focus will be on making the robot navigates in more complex

environment, meaning teaching the robot how to explore the same why humans explore to reach

a goal location. There is much existing research being done in this area that tackles this specific

problem, such as the work proposed by Piotr Mirowski [16]. Which provides an approach to the

problem of navigation in complex environments using a deep Reinforcement Learning solution.

The approach is tested in visually rich simulated 3-D game-like maze environments and provides

an analysis of results that compare favorably to human behavior for the same mazes.

 References

42 | P a g e

References

[1] S. Roland, N. Illah Reza and S. Davide, Introduction to Autonomous Mobile Robots, The

MIT Press, 2011.

[2] D. A. Pomerleau, "ALVINN: An Autonomous Land Vehicle In a Neural Network," 1989.

[3] L. Yann, M. Urs, B. Jan, C. Eric and F. Beat, "Offroad obstacle avoidance through end-to-

end learning," in Advances in Neural Information Processing Systems,, pp. 739-746, 2005.

[4] B. Mariusz, D. T. Davide, D. Daniel, F. Bernhard, F. Beat, G. Prasoon, D. J. Lawrence, M.

Mathew, M. Urs, Z. Jiakai, Z. Xin and Z. K. Z. Jake, "End to End Learning for Self-

Driving Cars," 2016.

[5] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell and M.

Hebert, "Learning Monocular Reactive UAV Control in Cluttered Natural Environments,"

IEEE International Conference on Robotics and Automation (ICRA), p. 1765—1772, 2013.

[6] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart and C. Cadena, "From Perception to

Decision: A Data-driven Approach to End-to-end Motion Planning for Autonomous

Ground Robots," IEEE International Conference on Robotics Automation (ICRA)., p. 527–

1533, 2017.

[7] E. Ackerman, "TurtleBot 3: Smaller, Cheaper, and Modular," IEEE Spectrum, 2016.

[8] N. Koenig and A. Howard, "Design and use paradigms for Gazebo, an open-source multi-

robot simulator," IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), vol. 3, pp. 2149-2154, 2004.

[9] J. B. Diederik P. Kingma, "Adam: A Method for Stochastic Optimization," 3rd

International Conference for Learning Representations, 2015.

[10] E. Santana and G. Hotz, "Learning a Driving Simulator," 201.

 References

43 | P a g e

[11] D. Jeff, A. H. Lisa, G. Sergio, R. Marcus, V. Subhashini, S. Kate and D. Trevor, "Long-

term Recurrent Convolutional Networks for Visual Recognition and Description," 2015.

[12] T. Wu, A. Luo, R. Huang, H. Cheng and Y. Zhao, "End-to-End Driving Model for Steering

Control of Autonomous Vehicles with Future Spatiotemporal Features," IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), p. 950—955, 2019.

[13] Y. M. Lu Chi, "Deep Steering: Learning End-to-End Driving Model from Spatial and

Temporal Visual Cues," arXiv, 2017.

[14] W. G. S. A. I. Laboratory, "Robotic Operating System(ROS) melodic," 2018.

[15] P. Adam, G. Sam, C. Soumith, C. Gregory, Y. Edward, D. Zachary, L. Zeming, D. Alban,

A. Luca and L. Adam, "Automatic differentiation in PyTorch," NIPS 2017 Workshop

Autodiff Submission, 2017.

[16] M. Piotr, P. Razvan, V. Fabio, S. Hubert, J. B. Andrew, B. Andrea, D. Misha, G. Ross, S.

Laurent, K. Koray, K. Dharshan and H. Raia, "Learning to Navigate in Complex

Environments," The International Conference on Learning Representations (ICLR), 2017.

[17] A. H. N Koenig, "Design and use paradigms for gazebo, an open-source multi-robot

simulator," Intelligent Robots and Systems, 2004.

[18] E. Ackerman, "TurtleBot 3: Smaller, Cheaper, and Modular," IEEE Spectrum, 2016.

