
i 

 

People’s Democratic Republic of Algeria 

Ministry of Higher Education and Scientific Research 

University M’Hamed BOUGARA – Boumerdès 

 
Institute of Electrical and Electronic Engineering 

Department of Power and Control 

Final Year Project Report Presented in Partial Fulfilment of  

the Requirements of the Degree of  

‘MASTER’ 

In Control 

Option: Control 

Title: 

 

 

 

Presented By: 

- BELMADANI Hamza 

- MELLAL Sohaib  

Supervisor: 

Prof. KHELDOUN Aissa  

 

Development of New Maximum Power Tracking 

Techniques for Stand-alone PV System under 

Non-uniform Irradiance Conditions 



i 

 

 

ABSTRACT 
The overwhelming need to decarbonize the energy sector to peter out climate changes, and catch 

up with the increasing demand of energy, have paved the way to an immense deployment of 

renewables around the globe. 

Solar systems are used to convert sunlight that hits their panels into electrical energy via the 

photovoltaic effect. However, photovoltaics have a very low efficiency, and the generated power 

depends almost entirely on the amount of collected solar irradiance, temperature, the electrical 

load and the ambient circumstances that surrounds them. Since it is not possible to have a fixed 

stream of solar radiation or temperature, it is crucial to come up with effective means to tackle 

these problems. In this regard, Maximum power trackers are integrated with PV systems to cope 

with the dynamically fluctuating operating conditions, and keep the generated power as high as 

possible. 

This thesis focuses on maximum power point tracking (MPPT) in PV systems using soft 

computing techniques. Equilibrium Optimizer, Seagull Optimization and Slime Mould Algorithm 

are three novel metaheuristic techniques proposed in this project. Matlab and Simulink are used to 

simulate a standalone PV system driven by an MPPT controller and assess the three stated 

optimizers.  

The recommended techniques demonstrated outstanding results, under distinct insolation levels 

and complex shading conditions. To confirm their effectiveness, a comparative study on the basis 

of robustness, convergence time and efficiency, is carried out along with other well-known 

techniques: Particle Swarm Optimization (PSO), Whale Optimization (WOA), Grey wolf 

Optimization (GWO), Wind Driven Optimization (WDO) and the Grasshopper Optimization 

algorithm (GOA). Obtained results revealed that the proposed algorithms are either superlative or 

competitive in terms of both convergence speed and tracking efficiency.  
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GENERAL INTRODUCTION 
With the rising efforts steered towards palliating gas emissions and ensuring a clean energy future, 

along with the significant and continuous decline in photovoltaic module prices, installation and 

equipment costs, solar energy is becoming more and more prevalent around the globe than ever, 

and increasingly competing with fossil fuels and polluting energy sources. 

Another motivation that greased the wheels to a growing uptake of solar energy systems, is the 

emerging promising and milestone technologies that led to potential improvements to the solar cell 

efficiency. Nonetheless, the fluctuating nature of the generated power caused by changing 

atmospheric conditions throughout the day, leads to significant losses and hence a poor power 

conversion efficiency. Consequently, dynamic monitoring is required to detect unpredictable 

changes in weather conditions, and accordingly drive the operating point of the system efficiently 

to fully exploit the highest possible power from PV panels. The technique by which, the system is 

supervised and controlled to benefit from the available solar energy, to the highest extend is called 

Maximum Power Point Tracking (MPPT). This solution is highly cost effective and reduces the 

complexity of the system, instead of adding more panels and equipment which requires more area 

to be occupied, and increases the costs substantially.  

The primary mission assigned to MPP trackers is to impel the operating point of the system towards 

its optimum point at which the power is maximum, for whatever weather conditions. This point is 

the peak of the nonlinear current-voltage characteristic curve of the PV panel, and it is mainly 

affected by the surrounding circumstances, precisely: Solar irradiance and temperature. MPPT 

controllers use different strategies to drive the system efficiently, classical techniques, such as 

Perturb and observe (P&O) and Incremental conductance (IC), are widely popular due to their 

simplicity and ease of implementation. However, these techniques cannot handle cases at which 

the PV array is subjected to non-uniform solar irradiance, this situation is known as Partial Shading 

Conditions (PSC) and it occurs when parts of the PV array are shaded due to certain external 

influences.   

This urged the research community to propose an enormous number of soft computing and 

artificial intelligence techniques to tackle the effects of partial shading conditions. Most of them 

have demonstrated effectiveness in dealing with various situations, and they far outperform 

conventional methods. However, these optimizers have distinct characteristics concerning their 

convergence speed, robustness, efficiency and implementation complexity, and may sometimes 

fail under complex shading patterns. This impelled us to investigate the latest progress in the world 

of soft computing and metaheuristic algorithms. A survey of some prominent and recent 

techniques is provided, along with their feasibility in Maximum Power Point Tracking. 

The main contribution of this project is to introduce the implementation of three powerful and fast 

novel metaheuristic algorithms: Equilibrium Optimizer (EO), Seagull Optimization Algorithm 

(SOA) and Slime Mould Algorithm (SMA), in maximum power tracking, to drive a standalone 

PV system exposed to several solar irradiance levels and shading scenarios. Tracking speed and 
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efficiency collected from various simulation tests, are the assessment parameters used to carry out 

the performance evaluation of the proposed optimizers. 

The remainder of this report is organized as follows: 

Chapter 1 provides an introduction to photovoltaic systems, their types and main components as 

well as the effects of ambient solar irradiance and temperature on the characteristics of solar panels.  

Chapter 2 steps through the essentials of MPPT theory and provides a quick review of the most 

widely used classical techniques. Their characteristics are then deduced from a Matlab simulation. 

In Chapter 3, several metaheuristic algorithms as well as three recent nature inspired optimizers 

are surveyed, along with their operating flowcharts in maximum power point tracking. A 

performance evaluation of these algorithms in a standalone PV system and a comparative study 

are carried out in Chapter 4.  

The report is culminated with a general conclusion including proposals for future work. 
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CHAPTER 1 : Review of Photovoltaic Systems 

1.1 Introduction: 
Photovoltaic systems are made up of one or more solar panels that are composed of smaller units 

called solar cells. The latter play the central role in collecting solar energy and convert it into 

unregulated electrical energy. 

Besides from solar panels, PV systems generally consist of multiple individual components and 

equipment, that are required for electricity conversion, regulation, distribution and storage, 

including, mechanical and electrical connections and mountings. Cumulatively, the collection of 

these elements form what is named the Balance of System usually denoted by (BoS). The design 

of the BoS is crucial for the system to operate efficiently and guarantee safe delivery of power to 

the load. 

A typical PV system consists of the following key elements:  

 PV modules: Or PV panels, are the backbone of the PV system as they are responsible for 

DC electricity generation from sunlight. A collection of connected PV modules form a 

solar array. 

 DC-DC Converters: The output DC voltage from the PV panels can be boosted or 

stepped-down to the required level using DC-DC converters. 

 Battery Banks: Due to the intermittent nature of the generated power from PV panels, 

battery banks are used to store the excess electric energy, and make sure that the system is 

able to supply electricity when solar energy is insufficient (during the night or during 

cloudy climate conditions). The three types of batteries that are most common to RE 

systems are: 

 Flooded Lead-Acid Batteries (FLA). 

 Sealed Absorbed Glass Mat Batteries (AGM). 

 Sealed Gel Cell Batteries. 

In general, the battery energy storage is required to meet the following requirements: low 

self-discharge rate, strong charging–discharging capability, easy maintenance, long 

lifespan, low price, and large range of working temperature [2]. 

 Charge Controllers: Charge controllers are used whenever a battery bank is included in 

the PV system. The main purpose of these devices is to protect and prevent batteries from 

overcharging or excessive discharging, by regulating the amount of current taken from or 

delivered to them. The two main types are PWM (Pulse Width Modulated) 

and MPPT (Tracking). PWM technology is older and more commonly used on smaller 

solar arrays. MPPT charge controllers can track the maximum power point of a solar array 

and deliver 10-25% more power than a PWM controller could do for the same array. They 

do that by converting excess voltage into usable current [1]. 

https://www.altestore.com/store/deep-cycle-batteries/batteries-flooded-lead-acid-c435/
https://www.altestore.com/store/deep-cycle-batteries/batteries-sealed-agm-c436/
https://www.altestore.com/store/deep-cycle-batteries/batteries-sealed-gel-cell-c437/
https://www.altestore.com/howto/components-for-your-solar-panel-photovoltaic-system-a82/
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 Inverters: Inverters are used to convert DC power from the PV modules or the storage 

devices into AC power. 

 Transformer: A transformer is used when as step-up/down action for the output AC 

voltage from the inverter is required to meet the desired level for the given operation. 

1.2 Types of PV systems: 
There exist two main configurations of solar systems: 

1.2.1 Standalone PV systems: 

Standalone Systems are those that rely solely on the solar energy and operate independently from 

the electric utility grid. They generally incorporate a bank of batteries to provide backup power at 

night or during emergency situations at which solar energy is insufficient to catch up with the load 

demands. A general scheme of a typical standalone system is depicted in figure 1. 

 

Figure 1: General Scheme of a Typical Standalone System [3] 

 

1.2.2 Grid-Connected PV systems: 

As the name indicates, in grid connected systems, the PV system AC output circuits are linked to 

the electric utility grid. This allows exchanging power between the two sides depending on the 

circumstances.  In many situations, the PV system provides a much higher power than what the 

load requires, at that time the excess power is fed to the grid. If on the other hand, the power 

generated by the solar system is not sufficient, then the balance amount required will be delivered 

by the utility grid. A general scheme of a typical grid-connected PV system is depicted in figure 

2. 
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Figure 2: General Scheme of a Typical Grid-Connected PV System [2] 

 

1.3 Advantages and Disadvantages of PV systems: 

1.3.1 Advantages: 

 Clean and silent energy without any noise pollution. 

 Environmentally friendly. 

 Solar energy can be made available almost anywhere there is sunlight. 

 Photovoltaic panels, through photoelectric phenomenon, produce electricity in a direct 

electricity generation way. 

 The PV system can be constructed to any size based on the power requirements of the 

consumers. 

 Economically viable, since Solar panels cost is currently on a fast reducing track and is 

expected to continue reducing for the next years. 

 Provide an effective solution to energy demand during peak periods. 

 Low operating and maintenance costs comparing to other energy systems. 

 No mechanically moving parts, thus it requires less maintenance. 

 

1.3.2 Disadvantages: 

 Solar resources dependent, no power output at night and also during daytime on a cloudy 

or rainy weather. 

 Utilization of toxic chemicals during the production of the PV panels. 

 Less reliable solution because of the intermittency and unpredictability of solar energy. 

 Require additional equipment (inverters) to convert direct electricity (DC) to alternating 

electricity (AC) and storage batteries, in order to be used on the power network, thus 

increasing the investment cost for PV panels considerably. 
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 Requires a lot of space. 

 Solar panels efficiency levels are relatively low (between 14%-25%) compared to the 

efficiency levels of other energy systems. 

 PV systems are fragile and can easily be damaged. 

 

1.4 PV Cells, Modules and Arrays: 
PV cells are the building blocks of solar panels and the core elements that absorb incident light 

and convert it into electric energy. A solar cell is basically a specially designed semiconductor 

device (Usually made of Silicon) whose PN junction is exposed to sunlight. When solar radiation 

strikes the junction, electrons are released from the atoms of the semiconductor material, which 

causes an electric current to flow through, in a process called the photovoltaic effect. 

 

Figure 3: Construction of a Silicon based PV Cell [4] 

 

Since an individual PV cell produces a small amount of power (1 or 2W), several PV cells are 

stringed together in series (for higher voltage) and in parallel (for higher current) forming a PV 

module to obtain the desired output level. In the market the maximum power capacity of the 

module is 1 kW, even though higher capacity is possible to manufacture, it will become 

cumbersome to handle more than 1 kW module [5]. At that time in a similar manner, PV modules 

can be wired together in series and in parallel to form a solar array, when the power generated by 

a single panel is not sufficient to meet the load requirements.  

https://energyeducation.ca/encyclopedia/Photovoltaic_effect
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Figure 4: PV cell, Module and Array Arrangement. 

 

1.5 PV Modelling: 
With different degrees of accuracy and complexity, a number of electronic circuits have been 

proposed in literature to model the PV cell. An ideal solar cell can be modeled using a photo-

generated current source in parallel with a diode, however a practical simulation requires adding 

series and shunt resistances to compensate the internal contacts and leakage currents.  The most 

employed circuits to extract solar cell characteristics are the single diode model and the double 

diode model. 

The single diode equivalent circuit is shown in Figure 5, where D is a parallel diode, 𝑅𝑠ℎ is a shunt 

resistance that represents the leakage current, and 𝑅𝑠 is a series resistance that serves as an internal 

resistance. The amount of electrical energy produced by the cell is represented by the current 𝐼𝑝ℎ, 

which is proportional to the impinging radiation.  

 

 
Figure 5:The single diode model of PV cells [6]. 

 

Using KCL, the mathematical equation that expresses the PV cell is given 

 as follows:  
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𝐼𝑃𝑉 = 𝐼𝑝ℎ − 𝐼𝐷 −
𝑉𝐷
𝑅𝑠ℎ

  1.1 

Or  

𝐼𝑃𝑉 = 𝐼𝑝ℎ − 𝐼𝑠 [exp (
𝑞(𝑉𝑃𝑉 + 𝑅𝑠𝐼𝑃𝑉)

𝐴𝐾𝑇
) − 1] −

𝑉𝑃𝑉 + 𝑅𝑠𝐼𝑃𝑉
𝑅𝑠ℎ

       1.2 

 

Where: 

𝐼𝑝ℎis the light-generated current of the elementary solar cell. 

𝐼𝑑 is the current of the parallel diode. 

𝐼𝑠is the reverse saturation current of the diode. 

𝐼𝑃𝑉 , 𝑉𝑃𝑉  are the output current and voltage of the PV cell respectively. 

𝑞is the electron charge (1.60217662 × 10-19 C). 

𝐴 is the diode ideality factor and depends on the PV cell technology. 

𝐾 is the Boltzmann constant (1.38064852 × 10-23 𝐽/𝐾°)  

𝑇 is the temperature of the p-n junction in unit kelvin. 

The double diode equivalent circuit is more accurate, and it is formed by adding another parallel 

diode as depicted in figure 6: 

 

Figure 6:The Two-diode model of PV cell [6]. 

The output current-voltage characteristic of the double diode model is then: 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠1 [𝑒
(
𝑞(𝑉𝑝𝑣+𝑅𝑠𝐼𝑝𝑣)

𝐴1𝐾𝑇
)
− 1] − 𝐼𝑠2 [𝑒

(
𝑞(𝑉𝑝𝑣+𝑅𝑠𝐼𝑝𝑣)

𝐴2𝐾𝑇
)
− 1] −

𝑉𝑝𝑣 + 𝑅𝑠𝐼𝑝𝑣
𝑅𝑠ℎ

       1.3 

 

Usually, it is assumed that the PV modules that build a PV array have identical 

characteristics. If the connecting resistances among the PV modules are ignored, the single-diode-
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model-based PV array’s equivalent circuit is as shown in Figure 7. The relationship between the 

output voltage and current of the PV array in Figure 7 can be represented as [2]: 

𝐼𝑝𝑣 = 𝑁𝑃𝐼𝑝ℎ − 𝑁𝑃𝐼𝑠 [exp (
𝑞 (

𝑉𝑝𝑣

𝑁𝑆
+

𝑅𝑠𝐼𝑝𝑣

𝑁𝑃
)

𝐴𝐾𝑇
)− 1] −

𝑁𝑃
𝑅𝑠ℎ

(
𝑉𝑝𝑣
𝑁𝑆

+
𝑅𝑠𝐼𝑝𝑣
𝑁𝑃

)      1.4 

 

Where 𝑁𝑆 is the number of series cells and 𝑁𝑃 is the number of shunt cells. 

 

Figure 7: Single-diode model-based PV array’s equivalent circuit. 

 

1.6 PV Cell Characteristics: 
Generally, the electric characteristics of PV cells are illustrated using current-versus-voltage 

curves and power-versus-voltage curves under different environmental conditions. Figure 8.a 

below, depicts the I-V and the P-V characteristics of an ideal PV cell exposed to different solar 

irradiation intensities, while figure 8.b depicts the cell characteristics under different temperature 

conditions. Three main points can be spotted from the two curves: 

 Output Short Circuit Current (𝟎, 𝑰𝑺𝑪) 

It is the maximum value of current that can be generated by a solar cell. Produced when the solar 

cell is short circuited, under this condition the short-circuit current and the light-

generated current are almost identical. 

 Open Circuit Voltage (𝑽𝑶𝑪, 𝟎) 

It is the maximum value of voltage a solar cell can provide at the output, and it is produced when 

no current is generated (𝐼𝑃𝑉 =0). It reflects the voltage of the cell at night and can be expressed as 

[8] 

𝑉𝑂𝐶 = 
𝐴𝐾𝑇

𝑞
ln (
𝐼𝑝ℎ
𝐼𝑆
)       1.5 
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 Maximum Power Point (MPP) 

It is the operating point at which the power delivered is maximum: 

PMP = 𝑉𝑀𝑃𝑃𝐼𝑀𝑃𝑃 

Using these parameters, it is possible to create a circuit model to simulate the cell performance. 

 

Figure 8:I-V and P-V characteristics of an ideal PV cell exposed to different: (a) solar 

irradiation intensities; (b)temperature conditions [7]. 

The two figures clearly show that the cell characteristics are highly non-linear and that the intensity 

of the solar radiation that hits the cell, controls the Short Circuit Current, while variations in the 

solar cell temperature significantly affect its Open Circuit Voltage (VOC).  

It can be observed from Figure 8.a that the output current increases quasi-linearly with increasing 

solar irradiation, accordingly, the maximum power point of the module gets higher, while the 

output voltage increases very slightly. 

On the other hand, Figure 8.b demonstrates that the PV voltage decreases with increasing 

temperature resulting in a net reduction in power, while has a small impact on the cell current. 

The conversion efficiency and the Fill Factor are other key parameters that are used to evaluate 

the performance of solar cells, and compare between the different available PV technologies, to 

select the one that best suits the given operating conditions. 

 Power Conversion Efficiency (𝜼) 

The conversion efficiency of a photovoltaic (PV) cell, is the percentage of the solar energy shining 

on a PV device that is converted into usable electricity [9]. It is defined as the ratio between the 

solar module output and incident light power:  
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𝜂 =
𝑃𝑚𝑎𝑥
𝑃𝑖𝑛

=
𝑉𝑀𝑃𝑃𝐼𝑀𝑃𝑃
𝐴𝐶 × 𝐺

       1.6 

where, 𝐺is the ambient radiation and 𝐴𝐶  is the cell area. 

 Fill Factor (FF) 

The fill factor is a measure of the real I-V characteristic. Its value is higher than 0.7 for good cells. 

The fill factor diminishes as the cell temperature is increased [10]. 

𝐹𝐹 =
𝑃𝑚𝑎𝑥
𝑉𝑂𝐶𝐼𝑆𝐶

       1.7 

1.7 Partial Shading: 
Under uniform insolation conditions, the P-V characteristic curve is unimodal and have only one 

peak. This tip represents the MPP of the solar panel, and it is the optimum operating point at which 

the power delivered to the load is maximum.  

However, in most real life situations, the PV array is exposed to non-uniform insolation, in which 

some parts are shaded due to certain external conditions or surrounding objects (clouds, presence 

of trees, buildings), leading to potentially significant losses in the output power. In fact, shading 

in one single cell inside the PV modules can result in 90% of total power losses [11]. At that time, 

the current generated by the illuminated cells is greater than the current produced by the shaded 

cells; this mismatch makes the diode of the affected cells reverse biased; consequently, power will 

be wasted, which causes a hot spot problem and permanent damages to the PV panel [12]. These 

hot spots are sometimes invisible and lead to huge power dissipation in the form of heat, which 

may affect the neighboring cells. Thermal imaging cameras can be used for the inspection of solar 

panels and detection of these serious plights, before they lead to devastating impacts. To minimize 

the effects of partial shading and avoid deteriorations, a bypass diode is introduced in parallel to 

each PV module providing an alternative path for the current. Nonetheless, the insertion of a 

bypass diode will lead to the distortion of the IV and PV characteristics of the module and results 

in the occurrence of multiple peaks, among which there is only a single optimum power point 

denoted by GMPP (Global MPP), and it is the summit of the PV curve. This phenomenon is 

illustrated in figure 9. 
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Figure 9:P-V Characteristic Curve of a Partially Shaded Array 

 

1.8 DC-DC Converters: 

1.8.1 Introduction: 

DC-DC converters or Choppers, are electronic devices that are employed whenever a level 

conversion of DC voltage is required. In many ways, a DC-DC converter is the DC equivalent of 

a transformer [13]. Choppers are in general made up of capacitors, inductors and switches. 

The key element in these devices is the controlled power switch driven by an external circuit. 

Usually, the switch is a semiconductor device that can be a: bipolar junction transistors (BJT), 

metal oxide semiconductor field effect transistor (MOSFET), gate turn off (GTO) thyristor, or an 

insulated gate bipolar transistor (IGBT). 

The main concept in choppers, is that energy is periodically stored into and released from the 

magnetic field of the used inductor in other terms, by adjusting the duty cycle of the switching 

device, the amount of transferred power can be controlled.  

Besides having two stages, DC-DC converters have two operating modes: continuous mode and 

discontinuous mode. In the continuous mode, the ON and OFF stages of the converter are in such 

a way that the current in the inductor never reaches zero. The discontinuous mode is just the 

opposite case.  

There exist three main configurations of choppers: 

 Buck Converter- Reduce the input voltage to a lower voltage level 
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 Boost Converter- Increase the input voltage to a higher level 

 Buck-Boost Converter- Increase or reduce the input voltage 

In this work we will focus on Boost converters, and throughout the subsequent analysis, the 

following assumptions will be taken: 

1- The circuit is in steady state. 

2- The components are ideal. 

3- The capacitance is large enough such that the output voltage is held constant. 

4- The switching period is T; the switch is ON for a time 𝑡𝑂𝑁 = 𝐷𝑇 and off for time 

 𝑡𝑂𝐹𝐹 = (1 − 𝐷)𝑇 

5- The converters are operating in continuous mode. 

 

1.8.2 Step-up Converters: 

Step up converters are used when the output voltage is required to be higher than the source 

voltage. The basic topology of a boost converter is shown in figure 10. For the sake of simplicity, 

the power controlled switch is replaced by a conventional one. 

 

Figure 10: The Boost Converter; (a) Circuit; (b) Equivalent circuit for the switch closed; (c) 

Equivalent circuit for the switch open [14]. 

The basic operation of the step-up converter can be summarized as follows: 
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 When the switch turns on, the circuit of the boost converter reduces to the one of figure10.b, 

the current 𝑖𝐿 flows from the source to the inductor, and energy builds up and stored. 

 When the switch turns off, the circuit of the boost converter will be shown in figure 10.c. Since 

the inductor resists sudden variations in input current, its EMF is then reversed so that its 

voltage adds up to the input voltage, the stored energy will start to decay and the current flows 

through the inductor, the diode and the load, charging up the capacitor. 

The resulting waveforms are shown in figure 11. 

 

Figure 11:Boost Converter Output Waveforms; (a) Inductor voltage; (b) Inductor current [14]. 

Since the operation mode is in steady state, the average inductor voltage is zero: 

1

𝑇
∫ 𝑣𝐿𝑑𝑡
𝑇

0
 = (

1

𝑇
∫ 𝑣𝐿𝑑𝑡
𝐷𝑇

0
+

1

𝑇
∫ 𝑣𝐿𝑑𝑡
𝑇

𝐷𝑇
)= 0  1.8 

Following the waveform of figure 11.a, equation 1.8 is rewritten as follows: 

𝐷𝑉𝑠 + (𝑉𝑠 − 𝑉0)(1 − 𝐷) = 0 1.9 

Which yields: 

𝑉0 =
𝑉𝑠

1 − 𝐷
 1.10 
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1.8.3 DC-DC Converters Design for PV systems: 

As previously stated, DC-DC converters play a vital role in PV systems, a role that will be 

discussed in details in the next chapter. In this section we are going to provide a guideline in 

designing a proper boost converter circuit for PV systems.  

1.8.3.1 Inductor Selection 

 During the 𝑇𝑂𝑁 state, the average inductor voltage is given as follows:  

𝑣𝐿=𝐿
𝑑𝑖𝐿

𝑑𝑡
 1.11 

Since the inductor current is changing linearly, then: 

𝑣𝐿= 𝐿
Δ𝑖𝐿

𝑇𝑂𝑁
 = 𝐿

Δ𝑖𝐿

𝐷𝑇
 1.12 

Considering the fact that the average power supplied by the source, is equal to the average power 

absorbed by the load: 

𝑃𝑠 = 𝑃𝑜 ⇒ 𝑉𝑠𝐼𝐿 =
𝑉0²

𝑅
=

𝑉𝑠²

(1 − 𝐷)²𝑅
 1.13 

Hence, the average inductor current is given by: 

𝐼𝐿 =
𝑉𝑠

(1 − 𝐷)²𝑅
 

 

1.14 

Looking at the inductor current waveform of figure 11.b, and based on the assumption that 𝑖𝐿 is 

continuous (always positive), the following condition must be satisfied to guarantee the 

performance of the chopper in continuous conduction mode: 

𝐼𝑚𝑖𝑛 = 𝐼𝐿 −
Δ𝑖𝐿

2
> 0  which implies that  

𝑉𝑠

(1−𝐷)²𝑅
− 

𝑉𝑠𝐷𝑇

2𝐿
> 0 

1.15 

Therefore, the minimum inductance value can be obtained using equation 1.16: 

𝐿 =
𝐷(1 − 𝐷)²𝑅

2𝑓
 1.16 

 

1.8.3.2 Selection of the output capacitor 
The choice of 𝐶𝑜  depends mainly on the peak-to-peak output ripple voltage which results from the 

fact that in practice, the capacitance has a finite value. During the ON state, the capacitor current 

can be expressed as: 

𝐼𝑐 = 𝐶𝑜
∆𝑉𝑜

𝑇𝑜𝑛
  which implies: 𝐶𝑜 = 

𝐷𝐼𝑜

∆𝑉𝑜
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The optimum output capacitance can then be calculated using  

𝐶𝑜 ≥ 
𝐷

𝑅(∆𝑉𝑜 𝑉𝑜)𝑓⁄
 1.17 

Where f is the switching frequency (f=1/T) 

In most cases, the desired output ripple voltage is set to be 2%, therefore: 

𝐶𝑜 ≥ 
𝐷

0.02𝑅𝑓
 

 

1.18 

1.8.3.3 Selection of the input capacitor 

In many situations, an input capacitor is used to decrease the input voltage ripple and deliver an 

alternative current to the inductor [15]. The input capacitor current waveform is depicted in figure 

12. Where the blue area serves as the charging phase in which 𝐼𝐶𝑖𝑛 ≥ 0. 

 

Figure 12:Current waveforms of the input capacitor in CCM [15]. 

 

The value of the desired input capacitance can then be calculated using equation 1.19: 

𝐶𝑜 ≥ 
𝐷

0.02𝑅𝑓
 

 

1.19 

Where the ripple voltage is set to be 2%. 

1.9 Conclusion: 
In this chapter, we have outlined the essentials of photovoltaic systems, their main types and key 

components. The working principle of solar cells has been set forth, along with their modeling, 

assessment parameters and characteristic curves, form which, the impact of ambient temperatures 

and solar irradiance levels were visualized and extracted. We have also straightened out the partial 

shading phenomenon and its harmful impacts on the solar system, we saw then how can PV panels 
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be protected using bypass diodes and how can this solution deform the IV and PV curves. The 

chapter then ended with a brief survey on DC-DC converters, laying out a guideline to design and 

properly select their components, to ensure an efficient and stable operation. 
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CHAPTER 2 : Maximum Power point tracking 

2.1 Introduction: 
We have seen that exogenous and weather conditions have a huge impact on the non-linear 

characteristics of PV cells. Fluctuations in sunlight levels, temperature, the connected load, as well 

as the surrounding objects, orientation of the panel and even dust are few factors that may lead to 

a substantial change in the power extracted from the PV system, consequently the operating point 

will be jiggling accordingly throughout the day. Moreover, protecting the system using bypass 

diodes from the harmful effects of partial shading phenomenon, will lead to multimodal 

characteristics in the P-V curves of the solar array. For these reasons, maximum power point 

tracking techniques have gained an extensive attention in literature to come up with powerful 

solutions and extenuate these sticky issues. 

MPPT controllers are electronic devices usually integrated with dc-dc converters that allow 

locating the point at which the PV system operates in its optimum state, and hence draw the 

maximum possible power out from PV panels, regardless of the operating conditions. In literature, 

a myriad number of MPPT techniques have been proposed, each of which has its own advantages 

and disadvantages, and differ in many aspects. This chapter steps through a brief introduction into 

MPPT theory and some of the most popular classical algorithms applied in PV systems. 

2.2 Load Matching: 
When the solar panel is directly coupled to the load, the operating point will be at the intersection 

of its I-V curve and the load line that has a slope of  1/𝑅𝑙𝑜𝑎𝑑 . Usually, this intersection point is not 

located at the panel MPP, and a significant amount of power will be wasted. An intermediate driver 

has to be connected between the PV generator and the load side of the system, which allows 

adjusting the impedance seen by the PV array to match its MPP level. To fulfill this role, a power 

interface that consists of an MPPT controller linked to a DC-DC converter, is placed between the 

PVG and the other side of the system. The duty cycle of the power converter will then be properly 

adjusted whenever a change in atmospheric conditions is detected, and prospect the optimum state 

of the system under the given circumstances. 

A typical MPPT based PV system is shown in figure 13. The solar panels generate electric energy 

according to the amount of sunlight falling on their surface. The generated power is transferred 

into a DC-DC converter, driven by an MPPT controller that receives the real time operating 

parameters, specifically: the panel voltage and current. The MPP tracker then based on the acquired 

information and the built-in algorithm, works out the required adjustments in the duty cycle of the 

power converter, in order to locate the MPP associated with the operating conditions, and maintain 

the system in its optimum state. 
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Figure 13:Typical MPPT based PV system. 

The duty cycle controls the load resistance seen by the panel, and hence the mismatch between the 

two sides will be nulled. Consider a boost converter used as an adapter between the source and the 

load [15]: 

 

Figure 14: Boost Converter in an MPPT based PV System 

From section 1.8, the average out sides voltage and current are given by: 

𝑉𝑜 =
𝑉𝑖𝑛
1 − 𝐷

 2.1 

 

𝐼𝑜 = (1 − 𝐷)𝐼𝑖𝑛 

 

2.2 

Using equations 2.1 and 2.2, the relationship between the input resistance seen by the PV module 

(𝑅𝑒𝑞𝑢𝑖𝑣) and the output load impedance can be extracted as follows: 



20 

 

𝑅𝑒𝑞𝑢𝑖𝑣 =
𝑉𝑖𝑛
𝐼𝑖𝑛

=
(1 − 𝐷)𝑉𝑜

𝐼𝑜

1−𝐷

= (1 − 𝐷)
𝑉𝑜
𝐼𝑜
= (1 − 𝐷)𝑅𝑙𝑜𝑎𝑑        2.3 

The duty cycle required for the MPPT controller to locate and extract the maximum power can 

then be found using equation 2.4:  

     𝐷 = 1 − √
𝑅𝑒𝑞𝑢𝑖𝑣
𝑅𝑙𝑜𝑎𝑑

 2.4 

 

Where 𝑅𝑙𝑜𝑎𝑑 is the resistance at which power is at its optimal point: 

   𝑅𝑙𝑜𝑎𝑑 = 
𝑉𝑀𝑃𝑃

𝐼𝑀𝑃𝑃
 

 
2.5 

 

2.3 Classical MPPT techniques: 
The most popular classical strategies employed to track the MPP are inspired from the hill-

climbing principle, which are well known for their ease of implementation and good performance 

when the irradiation is nearly constant. The idea consists of moving the operating point of the PV 

array in the direction in which the power increases [5]. In this section, we are going to provide a 

general overview of the two most widely employed conventional MPPT techniques and their 

merits and limitations. 

2.3.1 Perturb and observe (P&O) technique: 

P&O is one of the most commonly known technique in tracking the MPP. The simplicity and ease 

of implementation makes it an attractive approach to use since it only requires a single voltage 

sensor to measure the PV panel voltage, and a single current sensor to measure PV current.  

 Principle of operation: 

The algorithm keeps periodically injecting a perturbation on the duty cycle of the converter and 

hence a perturbation in the operating voltage of the DC-link between the PV array and the power 

converter [18]. The output PV power is then recorded and compared to its antecedent value. If the 

power has been increased, the sign of the perturbation is kept the same until the MPP is reached, 

if at a certain step, the power is decreased, the direction of the perturbation should be reversed. 

The operating point then remains oscillating around the peak power point. The procedure of the 

P&O technique is summarized below and illustrated in the flowchart of figure 15: 

Step 1 Measure the PV current and voltage. 

Step 2 Calculate the corresponding Power. 
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Step 3 Repeat steps 1 and 2 with new voltage and current measurements. 

Step 4 Calculate the variation in power and voltage. 

Step 5 The direction of climbing to the MPP will be decided according to the results of step 4, and 

the voltage will be increased or decreased through proper adjustments of the duty cycle based on 

the fact that the duty cycle is inversely proportional to voltage: 

 When both power and voltage are increased (variation is positive), the OP is on the left 

side of the P-V curve and the voltage should be incremented (decrease duty cycle). 

 When the power variation is positive and the voltage variation is negative, the OP is on the 

right-hand side and the PV voltage is to be decremented (increase duty cycle). 

 When the power variation is negative and the voltage variation is positive, the OP is on the 

right side of the P-V curve and the voltage should be decremented. 

 When both power and voltage variations are smaller than zero, the OP is on the left side 

and the PV voltage should be incremented. 

 

 

Figure 15: P&O based MPPT. 
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2.3.2 Incremental conductance (IC) technique: 

The IC approach is derived from the fact that the slope of the PV panel characteristics at the MPP 

in the P-V curve is zero, that is: 

𝜕𝑃𝑃𝑉

𝜕𝑉𝑃𝑉
 = 𝑉𝑃𝑉 ×

𝜕𝐼𝑃𝑉

𝜕𝑉𝑃𝑉
+ 𝐼𝑃𝑉 = 0 2.6 

Equation 2.6 can be reformed as follows 

𝜕𝐼𝑃𝑉

𝜕𝑉𝑃𝑉
 = − 

𝐼𝑃𝑉

𝑉𝑃𝑉
≈  

Δ𝐼

Δ𝑉
 2.7 

 

Where Δ𝐼 , Δ𝑉 are the increments in the PV panel current and voltage respectively. 

The governing equations of the IC algorithm are then derived from the P-V characteristics and can 

be modeled as follows: 

𝑑𝑃

𝑑𝑉
< 0  if   

𝐼𝑃𝑉

𝑉𝑃𝑉
< −

𝜕𝐼𝑃𝑉

𝜕𝑉𝑃𝑉
   on the right of MPP 

𝑑𝑃

𝑑𝑉
= 0  if   

𝐼𝑃𝑉

𝑉𝑃𝑉
= −

𝜕𝐼𝑃𝑉

𝜕𝑉𝑃𝑉
   at the MPP           

𝑑𝑃

𝑑𝑉
> 0  if   

𝐼𝑃𝑉

𝑉𝑃𝑉
> −

𝜕𝐼𝑃𝑉

𝜕𝑉𝑃𝑉
   on left of MPP 

 

    2.8 

Which are used to find out the location of the operation point and select the direction of the 

perturbation. It can be seen that the left-hand side of the above inequations constraints represents 

the incremental conductance of the P-V panel whereas the right-hand side denotes the 

instantaneous conductance. 

 Principle of operation: 

The IC algorithm starts the cycle by sensing the current and voltage values, and then comparing 

the instantaneous conductance (I/V) to the incremental conductance (ΔI/ΔV) based on the previous 

stated rules. The flowchart illustrating the technique is shown in figure 16. 
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Figure 16: IC based MPPT. 

2.4 Simulation and results: 

2.4.1 Overall system: 

To evaluate the two techniques, a standalone PV system that consists of two serially connected PV 

arrays, each of which is composed of two parallel strings, along with a boost converter, is designed 

using Simulink and Matlab. The overall system is illustrated in figure 17. 
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Figure 17: Simulink Model of the Designed System -1- 

2.4.2 PV array Configuration: 

The photovoltaic panel model used throughout this work is 1Soltech 1STH-215-P and has the 

following characteristics: 

 

Figure 18: Characteristics of the 1Soltech 1STH-215-P PV Panel. 

The P-V characteristics of the used panel under three levels of uniform solar irradiation are 

depicted in figure 19. 
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Figure 19: The P-V characteristics of the panel under three levels of uniform solar irradiation. 

2.4.3 DC-DC boost converter design: 

Setting the switching frequency to be 5 k𝐻𝑧 and using the results of section 1.8, the components 

of the power converter are provided in table 1. 

Table 1: DC-DC Converter Components Selection for System 1 

Switching 

Frequency  

Inductor 

    (L) 

Input Capacitor  

 

Output Capacitor  

5 𝒌𝑯𝒛 2 𝑚𝐻 100𝜇𝐹 100𝜇𝐹 

 

2.4.4 Simulation: 

2.4.4.1 Uniform irradiation: 

The PV panel is first exposed to a fast-varying uniform solar irradiation of three intensity levels 

(500, 750 and 1000/m²), each of which lasts for 0.25 seconds. The resulting power, current and 

voltage curves of each method are shown in figures 20 and 21. 
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a- P&O 

 

Figure 20: Resulting curves under fast varying uniform irradiation using the P&O technique. 

 

 

 

b- IC 

 

Figure 21: Resulting curves under fast varying uniform irradiation using the IC technique. 
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2.4.4.2 Non-uniform Conditions : 

The system will now undergo partial shading as depicted in figure 22.  

 

Figure 22: PV Panel Subjected to Non-Uniform Irradiation 

 

The resulting P-V curve consists of three peaks as shown in figure 23. 

 

Figure 23: Module P-V characteristic curve under partial shading. 
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a- P&O  

 

Figure 24:Resulting Curves Under Non-Uniform Irradiation Using the P&O Technique. 

 

b- IC 

 

Figure 25:Resulting Curves Under Non-Uniform Irradiation Using the IC Technique. 
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2.5 Results and discussion: 
The simulation results demonstrated two major drawbacks: 

- The first drawback is the appearance of fluctuations around the MPP, this is due to the 

fixed step size taken at each sampling instant, which forces the operating point to keep 

going back and forth around the MPP without staying still. Controlling the amplitude of 

these oscillations leads to a fundamental tradeoff between tracking accuracy and tracking 

time. Enhancing the steady state requires a small size of increments the reference voltage 

will be taking, on the other hand, decreasing the step size will increase convergence 

duration. 

 

- The second drawback is their big failure to distinguish between the global optimum point 

and the remaining peaks in partial shading conditions. The two techniques got trapped 

around the LMPP, which makes them unsuitable in most real life situations. 
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CHAPTER 3 : Soft computing algorithms and Novel 

Techniques 
 

3.1 Introduction: 
Because the afore discussed classical techniques have demonstrated several shortcomings in 

tracking the MPP, particularly, their inability to handle partial shading conditions, numerous soft 

computing and artificial intelligence algorithms have been proposed to cope with such situations 

and improve the dynamic and steady-state tracking performance. Most of these alternatives employ 

metaheuristics which had shown great performance regardless of the operating conditions.  

Nature-inspired algorithms, are a family of metaheuristic optimizers that are based on imitating 

certain biological, social processes and physical laws commonly found in nature. These methods 

have attracted intensive research interest due to their efficiency in solving highly non-linear 

optimization problems with real-world engineering applications. 

Almost all metaheuristics consist of two essential strategies: intensification and 

diversification. The Diversification phase is devoted to generate disperse solutions and 

efficiently scout the search space via randomization. In this way, the algorithm will have 

high prospects to find promising regions where the global optimal solution might be 

located, and hence avoids getting trapped in local peaks. In the other hand, intensification 

intends to inspect the local neighborhood around the best solutions and improve their 

quality. Intensification and diversification are commonly termed exploitation and 

exploration respectively.  

The most prominent nature-inspired algorithms are the genetic algorithms, particle swarm 

optimization, Ant Colony Optimization, Grey wolf optimization, Whale Optimization Algorithm 

and so many others. The reader is referred to [17,18] to gain some fundamental insights in the 

field, and a comprehensive overview about different nature-inspired techniques and their most 

popular applications.  

In this chapter, we will step through several metaheuristic algorithms, among which, three recent 

techniques along with their MPPT implementations are laid out. 

3.2 Particle Swarm Optimization: 

3.2.1 Inspiration: 

Particle swarm optimization (PSO) is a population based stochastic optimization technique initially 

developed by Dr. Eberhart and Dr. Kennedy  in 1995, and it is one the most widely used algorithms 

in many optimization engineering problems. It is inspired by the social behavior and swarm 

intelligence of animals in nature, namely bird flocking and fish schooling. 

 

http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/


31 

 

3.2.2 Mathematical Modelling and Process Steps: 

The particle swarm optimization uses a number of particles that form a swarm, wandering around 

the search space looking for the best solution. Initially, the size of the swarm is defined, and each 

particle is assigned a random position within the search space to be a candidate solution. The 

“goodness” of each individual is evaluated by the fitness function related to the optimization 

problem. In each iteration, the position of each particle is updated based on its personal best 

location visited so far denoted 𝑃𝑏𝑒𝑠𝑡 and the position of the most successful particle in the whole 

population denoted by 𝐺𝑏𝑒𝑠𝑡 (Global best solution).  

At iteration t+1, the population is updated using the following two equations:  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 3.2.1 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝐶1𝑟1(𝑃𝑏𝑒𝑠𝑡, 𝑖 − 𝑥𝑖
𝑡) + 𝐶2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡) 3.2.2 

𝑖 = 1, 2,……… ,𝑁 

Where 𝑣𝑖
𝑡  and 𝑥𝑖

𝑡are respectively the velocity and position of the 𝑖𝑡ℎ particlewithin 𝑡 iterations,  

𝜔is the inertia weight, 𝐶1 and 𝐶2 are the acceleration coefficients, 𝑟1 and 𝑟2 are two generated 

random numbers that are uniformly distributed in the interval [0, 1].𝑃𝑏𝑒𝑠𝑡 , 𝑖 is the personal best 

position of particle 𝑖 achieved so far ,and 𝐺𝑏𝑒𝑠𝑡is the global best position. Figure 26 depicts the 

movement of particles in the optimization process. 

 

Figure 26: Illustration of a Particle’s movement during the optimization process [19]. 

The process of the PSO algorithm can be summarized as follows: 

Step1: Initialize the number of particles 𝑁𝑃, maximum number of iterations T, 𝜔, 𝐶1 and 𝐶2 

Step 2: Initialize a population of particles, and randomly set the position and velocity vectors of 

each particle. 
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Step 3: Set iteration t=1. 

Step 4: Evaluate the fitness of each particle. 

Step 5: Set 𝑃𝑏𝑒𝑠𝑡 , 𝑖 = 𝑥𝑖
𝑡 , and 𝐺𝑏𝑒𝑠𝑡 to be the particle having the best position. 

Step 6: Update the individuals’ velocities and positions using equations 3.2.1- 3.2.2 

Step 7: Evaluate the fitness of the updated population from step 6, and find the particle having the 

best position (𝑥𝑏𝑒𝑠𝑡
𝑡+1 ). 

Step 8: If the fitness value of the updated 𝑖th particle is better than its antecedent fitness, update 

𝑃𝑏𝑒𝑠𝑡 , 𝑖 = 𝑥𝑖
𝑡+1 

Step 9: If the fitness value of the best particle at the current iteration obtained from step 7 is better 

than the fitness of 𝐺𝑏𝑒𝑠𝑡, update 𝐺𝑏𝑒𝑠𝑡 = 𝑥𝑏𝑒𝑠𝑡
𝑡+1  

Step 10: If t < T or the convergence criterion is not fulfilled, then update t=t+1 and repeat steps 

from 6 to 10, else go to step 11 

Step 11: Return the Global best solution 𝐺𝑏𝑒𝑠𝑡. 

 

3.2.3 PSO based MPPT: 

In MPPT applications, the objective function is to maximize the output PV power as follows:  

𝑃(𝑑𝑖
𝑡+1) > 𝑃(𝑑𝑖

𝑡) 

Where 𝑃(𝑑𝑖
𝑘) is the power associated with the 𝑖𝑡ℎ transmitted duty cycle at the 𝑡th iteration. 

The PSO technique can be appointed to perform the task of maximum power tracking by initially 

defining a set of 𝑁𝑃 several duty cycle solutions to act as the positions of particles. The search 

process will then be carried out as given in the process steps stated above, where 𝐺𝑏𝑒𝑠𝑡 represents 

the duty cycle that produces the largest PV output power. The procedure of tracking the peak 

power point can be summarized as follows: 

Step 1: Initialize the number of duty cycle solutions𝑁𝑃, maximum number of iterationsT, 𝜔, 𝐶1and 

𝐶2 

Step 2: A solution vector of 𝑁𝑃 particles representing a set of duty cycle solutions and a velocity 

vector of the same length are initialized.  

Step 3: The generated duty cycles are transmitted to the boost converter and the corresponding PV 

power is evaluated. 
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Step 4: Set 𝑃𝑏𝑒𝑠𝑡, 𝑖 = 𝑑𝑖 in the first iteration and obtain 𝐺𝑏𝑒𝑠𝑡. 

Step 5: Update the duty cycles using equations 3.2.1 and 3.2.2. 

Step 6: The updated duty cycles are transmitted to the power converter and the output PV power 

of each is evaluated. 

Step 7: Update 𝑃𝑏𝑒𝑠𝑡 , 𝑖 and 𝐺𝑏𝑒𝑠𝑡 if better solutions have been obtained. 

Step 8: If t < T or the convergence criterion is not fulfilled, iteration is incremented and steps 5 

through 7 are repeated. Else, go to step 9 

Step 9: Transmit the global best duty cycle 𝐺𝑏𝑒𝑠𝑡 to the power converter. 

The algorithm has to be reinitialized whenever a change in weather conditions is detected, 

according to the following inequality constraint: 

|𝑃𝑝𝑣−𝑛𝑒𝑤 − 𝑃𝑝𝑣−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠|

𝑃𝑝𝑣−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
 ≥  𝐶 

 

   3.2.3 

Where C can be set to 0.1. 

The flowchart illustrating PSO based MPPT is depicted in figure 27. 
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3.3 Whale Optimization Algorithm: 

3.3.1 Inspiration: 

The Whale optimization Algorithm is a nature-inspired metaheuristic population based technique 

proposed by Seyedali Mirjalili and Andrew Lewis in 2016 [20]. It is inspired from the fascinating 

hunting strategy used by a family of whales, known as bubble-net feeding. This behavior is 

employed by Humpback whales to trap small fishes, by floating around in a circular pattern, and 

blowing bubbles to surround the scooped fishes as depicted in figure 28. 

Figure 27: PSO based MPPT. 

https://www.sciencedirect.com/science/article/abs/pii/S0965997816300163#!
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Figure 28 : Bubble-Net Feeding Behavior of Humpback Whales. 

3.3.2 Mathematical Modeling: 

The WOA is composed of three main strategies:  

A- Search for prey: 

In this phase, the whales will explore the search space looking for preys. Their positions are 

updated randomly and moved away from each other to perform a global search, using the following 

equations: 

�⃗�(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) − 𝐴 ∙ �⃗⃗⃗�     3.3.1 

�⃗⃗⃗� = |𝐶 ⊗ 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) − �⃗�(𝑡)|     3.3.2 

𝐴 = 2𝑎𝑟 − 𝑎     3.3.3 

𝐶 = 2𝑟     3.3.4 

 

𝑎 = 2(𝑡 −
𝑡

𝑇
) 

    3.3.5 

 

Where 𝑡 represents the current iteration,  𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) is a random position vector chosen from the 

current population. 𝐴 𝑎𝑛𝑑 𝐶 are coefficient vectors and 𝑎 is linearly decreased within the interval 

[2,0] over the course of iterations. 

This mode of operation which represents the exploration phase is performed when |𝐴|> 1. 
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Figure 29Exploration mechanism implemented in WOA (X* is a randomly chosen search agent) 

[20]. 

B- Bubble net hunting: 

The modeling of this behavior is carried out using two strategies: 

 Shrinking Encircling mechanism:  

Looking at equations 3.3.4 and 3.3.5, it can be observed that the value of A is always within the 

range [−𝑎, 𝑎] , which represents a shrinking interval since 𝑎 is being reduced linearly. The 

Shrinking Encircling mechanism can then be achieved using equation 3.3.6: 

�⃗�(𝑡 + 1) = 𝑋∗⃗⃗ ⃗⃗⃗ − 𝐴 ∙ �⃗⃗⃗�                                                                                                3.3.6  

Where 𝑋∗⃗⃗ ⃗⃗⃗ is the prey position which denotes the best solution found so far. 

 Spiral updating Position mechanism:  

In this mechanism, each individual updates its position following a spiral-shaped path around the 

prey position 𝑿∗ ⃗⃗ ⃗⃗ ⃗⃗ according to the following equation: 

�⃗�(𝑡 + 1) = 𝐷′ ∙⃗⃗⃗⃗⃗⃗ ⃗ 𝑒𝑏𝑙 ∙ cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗⃗ 3.3.7 

Where 𝐷′ is the distance between the whale and the prey location: 

𝐷′⃗⃗ ⃗⃗ = |𝑋∗⃗⃗ ⃗⃗⃗ − �⃗�(𝑡)| 3.3.8 
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𝑏 is a constant for defining the shape of the logarithmic spiral, and 𝒍 is a random number in the 

interval[−1,1]. 

The bubble net hunting phase is then accomplished by choosing one of the two modes stated above, 

depending on a probability of selection (50%) as follows: 

�⃗�(𝑡 + 1) = {
𝑋∗⃗⃗ ⃗⃗⃗ − 𝐴 ∙ �⃗⃗⃗�         𝑖𝑓    𝑝 < 0.5

𝐷′ ∙⃗⃗⃗⃗⃗⃗ ⃗ 𝑒𝑏𝑙 ∙ cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗⃗   𝑖𝑓  𝑝 ≥ 0.5
  3.3.9 

 

Where 𝑝 is a random number in the range [0,1].This behavior is depicted in figure 30.b. 

 

Figure 30:Bubble-net search mechanism implemented in WOA (X* is the best solution obtained 

so far): (a) shrinking encircling mechanism and (b) spiral updating position [20]. 

 

C- Encircling the prey: 

In this stage, the search agents will update their positions towards the prey location 𝑿∗⃗⃗ ⃗⃗⃗. This phase 

is performed when |𝐴|< 1, and it is modeled using the following equation: 

𝑋(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋∗⃗⃗ ⃗⃗⃗ − 𝐴 ∙ �⃗⃗⃗� 3.3.10 

It is worth noting that in this mode of operation which can be interpreted as the exploitation phase, 

is different from the exploration phase in that the whales’ positions are updated in reference to the 

optimum solution rather than a randomly chosen whale position.  

The process steps of the WOA are presented in the following pseudo-code : 

Initialize the whales population  𝑋𝑖(𝑖 = 1,2,…… . , 𝑛) 

Calculate the fitness of each search agent  

𝑋∗ = 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡   
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While (𝑡 < 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑇) 

       For each search agent  

       Update 𝑎 , 𝐴, 𝐶, 𝐼 𝑎𝑛𝑑 𝑝 

if1 (P < 0.5) 

       if2  (|A| < 1) 

                   Update the position of the current search agent by Eq. (3.3.6) 

else if2 (|A| ≥ 1) 

                   Select a random search agent (𝑋𝑟𝑎𝑛𝑑) 

                   Update the position of the current search agent by Eq. (3.3.1) 

end if2 

else if1 (p ≥ 0.5) 

  update the position of the current search agent by the Eq. (3.3.7) 

end if1 

end for 

check if any search agent goes beyond the search space and amend it 

calculate the fitness of each search agent 

update  𝑋∗  if there is a better solution 

t= t+1 

end while 

return 𝑋∗ 

 

3.3.3 WOA based MPPT: 

The WOA starts with the initialization of a vector containing a set of N duty cycle solutions. Each 

individual power is evaluated and the prey position which represents the best solution is obtained. 

The algorithm then in each iteration, selects one of the two modes of equation 3.3.9 based on the 

value of the randomly generated number. If the Spiral Updating Position mechanism is chosen, 

then the duty cycles are updated by either using a randomly selected search agent from the 

population (equation 3.3.1) or using the prey position 𝑑𝑏𝑒𝑠𝑡 (equation 3.3.6) based on the value 

of A. If in the other hand the shrinking Encircling mechanism is selected, then equation 3.3.7 will 

be employed. When the maximum number of iterations is achieved, the optimum solution 𝑑𝑏𝑒𝑠𝑡 

is sent to the power converter. 

The algorithm has to be reinitialized whenever a change in weather conditions is detected, 

according to the following inequality constraint: 

|𝑃𝑝𝑣−𝑛𝑒𝑤 − 𝑃𝑝𝑣−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠|

𝑃𝑝𝑣−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
 ≥  𝐶    3.3.11 
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As we have mentioned before, the original paper suggests that the value of a is reduced linearly 

within the range[2,0], moreover the exploration and exploitation phases are selected according to 

the value of A (Exploration takes place when |𝐴|> 1 whereas the exploitation is performed when 

|𝐴|< 1). However, we have found that this parameter setting is not very suitable in MPPT 

applications, since it often drives the updated duty cycles to be in the vicinity of the search space 

bounds (𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥). In this work, it is suggested to decrease 𝑎 over the interval[1,0]. This 

modification will solve this issue. The critical value that will allow making a transition from 

Exploration to Exploitation will then selected to be: |𝐴| =0.5. The flowchart illustrating the 

implementation of WOA in maximum power harvesting is shown in figure 31. 

 

3.4 Grey Wolf Optimization Algorithm: 

3.4.1 Inspiration: 

Grey Wolf Optimization (GWO) is a swarm intelligence technique inspired from the hunting 

behavior and the leadership hierarchy of grey wolves in nature [22]. In GWO, pack’s members are 

divided into four groups based on the type of the wolf’s role that help in advancing the hunting 

process: the alphas (α), the betas(β), the deltas(δ), and the omegas(ω) as shown in Fig. 32. The 

Figure 31:WOA based MPPT. 
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alphas are the most powerful and the dominant agents in leading the group, the betas represent the 

secondary wolves that assist the alphas in making decisions whereas the Omegas have the lowest 

rank. If a wolf is neither an alpha nor a beta, or an omega, it is considered as a delta (sub-ordinate). 

Another behavior of grey wolfs is their appealing group hunting strategy, which consists of a set 

of phases:  

 Tracking, chasing, and approaching the prey. 

 Pursuing, encircling, and harassing the prey until it stops moving 

 Attacking the prey. 
 

 

 

Figure 32:Social Hierarchy of Grey Wolves. 

 

 

Figure 33:Hunting behavior of grey wolves: (a-c) chasing, approaching and tracking prey; (d) 

encircling; (e) stationary situation and attack. 
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3.4.2 Mathematical Modeling: 

A - Social hierarchy:  

In order to mathematically model the social hierarchy of grey wolves, the three best-so-far 

solutions are considered to be the alpha (α), beta(β), the delta(δ) agents, where alpha represents 

the fittest solution, beta(β) and delta(δ) are the second and third fittest agents respectively. 

 

B -  Encircling the Prey: 

In order to model the encircling strategy, the following equations are used: 

𝐷 ⃗⃗ ⃗⃗ =  |𝐶 ⃗⃗⃗⃗ . 𝑋 ⃗⃗⃗⃗ 𝑝(𝑡) − 𝑋 ⃗⃗⃗⃗ (𝑡)| 3.4.1 

𝑋 ⃗⃗⃗⃗ (𝑡 + 1) = 𝑋 ⃗⃗⃗⃗ 𝑃(𝑡) − 𝐴 ⃗⃗⃗⃗ . 𝐷 ⃗⃗ ⃗⃗  3.4.2 

where 𝑡 indicates the current iteration, 𝐴 ⃗⃗⃗⃗  and 𝐶 ⃗⃗⃗⃗  are coefficient vectors, 𝑋 ⃗⃗⃗⃗ 𝑃 is the position vector 

of the prey, and 𝑋 ⃗⃗⃗⃗  indicates the individual position vector . 

The vectors 𝐴 ⃗⃗⃗⃗  and 𝐶 ⃗⃗⃗⃗ .  are calculated as follows: 

𝐴 ⃗⃗⃗⃗ = 2�⃗�. 𝑟1⃗⃗⃗ ⃗ − �⃗� 3.4.3 

𝐶 ⃗⃗⃗⃗ = 2. 𝑟2⃗⃗⃗⃗  3.4.4 

In Equations 3.4.3 and 3.4.4, 𝑟1⃗⃗⃗ ⃗and 𝑟2⃗⃗⃗⃗ are random vectors in the interval [0,1]. Whereas �⃗�  is a 

linearly decreased parameter from 2 to 0.  

 

C - Hunting: 

During the hunting process, the GWO assumes that the alpha, beta and delta agents have better 

knowledge about the promising regions of the prey locations. The search process is then guided 

by these agents using the following equations: 

𝐷𝛼⃗⃗⃗⃗⃗⃗ =  |𝐶1⃗⃗⃗⃗⃗ . 𝑋𝛼⃗⃗ ⃗⃗ ⃗ − 𝑋 ⃗⃗⃗⃗ | 3.4.5 

𝐷𝛽⃗⃗ ⃗⃗ ⃗ =  |𝐶2⃗⃗⃗⃗⃗ . 𝑋𝛽⃗⃗ ⃗⃗ ⃗ − 𝑋 ⃗⃗⃗⃗ | 3.4.6 

𝐷𝛿⃗⃗ ⃗⃗ ⃗ =  |𝐶3⃗⃗⃗⃗⃗ . 𝑋𝛿⃗⃗ ⃗⃗⃗ − 𝑋 ⃗⃗⃗⃗ | 3.4.7 

𝑋1⃗⃗⃗⃗⃗ =  𝑋𝛼⃗⃗ ⃗⃗ ⃗ − 𝐴1⃗⃗ ⃗⃗⃗. (𝐷𝛼⃗⃗⃗⃗⃗⃗ ) 3.4.8 

𝑋2⃗⃗⃗⃗⃗ =  𝑋𝛽⃗⃗ ⃗⃗ ⃗ − 𝐴2⃗⃗ ⃗⃗ ⃗. (𝐷𝛽⃗⃗ ⃗⃗ ⃗) 3.4.9 

𝑋3⃗⃗⃗⃗⃗ =  𝑋𝛿⃗⃗ ⃗⃗⃗ − 𝐴3⃗⃗ ⃗⃗ ⃗. (𝐷𝛿⃗⃗ ⃗⃗ ⃗) 3.4.10 
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𝑋 ⃗⃗⃗⃗ (𝑡 + 1) =
(𝑋1⃗⃗⃗⃗⃗ + 𝑋2⃗⃗⃗⃗⃗ + 𝑋3⃗⃗⃗⃗⃗)

3
 3.4.11 

 

Where 𝑋𝛼⃗⃗ ⃗⃗ ⃗ , 𝑋𝛽⃗⃗ ⃗⃗ ⃗ , 𝑋𝛿⃗⃗ ⃗⃗⃗ indicates the position vector of the alpha, beta and delta agents respectively,  

 

Figure 34 demonstrates how a search agent updates its position according to alpha, beta, and delta 

in a 2D search space. It can be observed that the final position would be in a random place within 

a circle which is defined by𝑋𝛼⃗⃗ ⃗⃗ ⃗ , 𝑋𝛽⃗⃗ ⃗⃗ ⃗ , 𝑋𝛿⃗⃗ ⃗⃗⃗ in the search space. In other words, alpha, beta, and delta 

estimate the position of the prey, and other wolves updates their positions randomly around the 

prey [22]. 

 

 

 
Figure 34:Position Updating in GWO. 

 

D - Exploration and Exploitation: 

The two main parameters that control the balance between exploration and exploitation are the 

parameters C and A. 

With A being decreased throughout the optimization process (since a is linearly reduced over 

[0,2]), half of the iterations are devoted to exploration (|A| ≥ 1) whereas the others are dedicated 

to exploitation (|A| < 1). The C vector contains random values in [0, 2]. This component provides 

random weights for the prey in order to stochastically emphasize C >1 or deemphasize C <1its 
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effect in defining the distance in Eq. 3.4.1. This assists GWO to show a more random behavior 

throughout optimization, favoring exploration and local optima avoidance [23]. The pseudo code 

of the GWO algorithm is given below: 

 

Initialize the grey wolf population 𝑋𝑖(𝑖 = 1,2,…… . , 𝑛) 

Initialize 𝐴, 𝑎 and 𝐶 

Calculate the fitness of each search agent  

𝑋𝛼= the best search engine  

𝑋𝛽= the second best search engine 

𝑋𝛿= the third best search engine 

While (t< Max number of iterations T)  

 For each search agent  

  Update the position of the current search agent by equation (3.4.11) 

 End for 

Update 𝑎, 𝐴 and 𝐶 

Calculate the fitness of all search agent 

Update 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿  

t = t+1 

end while 

return 𝑋𝛼 
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3.4.3 GWO based MPPT: 

The flowchart illustrating the Grey Wolf Optimization based MPP tracker is shown in figure 35: 

 

3.5 Wind Driven Optimization (WDO): 

3.5.1 Inspiration and Modeling: 
 

The inspiration for Wind Driven Optimization comes from the earth's atmosphere, where 

horizontal differences in atmospheric pressure cause air to move and hence wind to blow [24]. 

Since temperature differences lead to variations in air density and air pressure at different 

locations, horizontal unbalances in air pressure will drive the air to move from high pressure 

regions to low pressure regions at a certain velocity until air pressure is balanced [25]. The 

derivation of the WDO technique starts with Newton’s second law of motion applied to the 

movement of air parcels: 

 
Figure 35:GWO based MPPT 
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𝜌�⃗� =  ∑�⃗�𝑖 3.5.1 

 

where �⃗� is the acceleration, 𝜌 is the air density for an infinitesimal air parcel, and �⃗�𝑖 are the forces 

acting on the air parcel.  

The main forces acting on air parcels producing wind are essentially: 

a- Pressure gradient force �⃗⃗⃗�𝑷𝑮: 

The pressure gradient force is the central force that causes wind to blow and it is the direct result 

of variations in horizontal air pressure. The pressure gradient force is directed from high pressure 

zones to low pressure zones and it expressed as: 

�⃗�𝑃𝐺 = −∇�⃗⃗�𝛿 3.5.2 

Where ∇�⃗⃗�is the pressure gradient and it is defined as the difference in pressure between two places 

over the distance between them. 

 

b- The gravitational force �⃗⃗⃗�𝑮: 

The gravitational force can be treated as a vertical force directed towards the earth surface, or 

simply the origin of the rectangular coordinate system and it is given by: 

�⃗�𝐺 = 𝑚�⃗�  3.5.3 

Considering the air has finite mass and finite volume 𝜹𝑽, equation 3.5.3 can be rewritten as  

�⃗�𝐺 = 𝜌𝛿𝑉�⃗� 3.5.4 

c- The friction force �⃗⃗⃗�𝑭  

The friction force acts to oppose the motion started by the pressure gradient force [26] and it is 

expressed as: 

�⃗�𝐹 = −ρα�⃗⃗� 3.5.5 

Where �⃗⃗� denotes the air parcel velocity vector. 

 

d- The Coriolis force �⃗⃗⃗�𝑪: 

The Coriolis force causes the deflection of the wind from its existing path in the atmosphere [26] 

where the amount of deflection Ω is due the earth’s rotation. This force is given in equation 3.5.6: 

�⃗�𝐶 = −2Ω�⃗⃗�  3.5.6 

 

The four forces are summed up accordingly with equation 3.5.1:  
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𝜌�⃗� = 𝜌𝛿𝑉�⃗� + (−∇�⃗⃗�𝛿𝑉) + (−ρα�⃗⃗�) + (−2Ω𝑢)⃗⃗⃗⃗⃗ 3.5.7 

Since 𝛼 ⃗⃗⃗⃗  can be written as 
Δ�⃗⃗⃗�

Δ𝑡
, and setting Δ𝑡 = 1 for the sake of simplicity and letting 𝛿𝑉 = 1 for 

an infinitesimal air parcel, equation 3.5.7 reduces to: 

𝜌Δ�⃗⃗� = 𝜌�⃗� + (−∇�⃗⃗�) + (−ρα�⃗⃗�) + (−2Ω𝑢)⃗⃗⃗⃗⃗ 3.5.8 

The ideal gas law relates air pressure with the air density and temperature by: 

𝑃 = 𝜌𝑅𝑇 3.5.9 

Where P is the air parcel pressure, R is the universal gas constant and T is the temperature. 

Equation 4.5.8 can then be rewritten as:  

Δ�⃗⃗� = �⃗� + (−∇�⃗⃗�
𝑅𝑇

𝑃𝑐𝑢𝑟
) + (−α�⃗⃗�) + (

−2ΩRT�⃗⃗⃗�

𝑃𝑐𝑢𝑟
) 3.5.10 

Where 𝑃𝑐𝑢𝑟 is the current location pressure. 

The WDO technique updates the air parcels velocity and position at each iteration during the whole 

optimization process. The change in velocity can be expressed as:  

Δ�⃗⃗� = �⃗⃗�(𝑡 + 1) − �⃗⃗�(𝑡) 3.5.11 

Since the gravitational force acts to pull air parcels from their current position into the center of 

the coordinate system, the acceleration vector �⃗�is decomposed into: 

�⃗� = |𝑔|(𝑜 − 𝑥𝑐𝑢𝑟) 3.5.12 

The pressure gradient vector ∇�⃗⃗� represents the force that drives air parcels, caused by variations 

of pressure in two different locations. This vector can be broken down into: 

∇�⃗⃗�= |𝑃𝑜𝑝𝑡 − 𝑃𝑐𝑢𝑟|(𝑥𝑜𝑝𝑡 − 𝑥𝑐𝑢𝑟) 3.5.13 

Where 𝑃𝑜𝑝𝑡 is the optimum pressure that corresponds to location 𝑥𝑜𝑝𝑡 found so far by the 

population. 

The Coriolis force is replaced by the velocity influence of another randomly chosen dimension of 

the same parcel, and all other coefficients are combined into a single term: 

𝑐 = −2|Ω|RT 3.5.14 

Updating equation 3.5.8 using equations 3.5.9, 3.5.10, 3.5.11, 3.5.12, 3.5.13: 
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�⃗⃗�(𝑡 + 1) = (1 − 𝛼)�⃗⃗�(𝑡) − 𝑔�⃗�(𝑡) +
𝑅𝑇

𝑃𝑐𝑢𝑟
|𝑃𝑜𝑝𝑡 − 𝑃𝑐𝑢𝑟|(𝑥𝑜𝑝𝑡 − �⃗�(𝑡)) + (

c𝑢𝑑𝑖𝑚
𝑜𝑡ℎ𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑃𝑐𝑢𝑟
) 3.5.15 

 

Sometimes where the pressure is very high, the updated velocities will have large values and the 

algorithm efficiency will be affected negatively [30]. To avoid such situations, the actual pressure 

values are replaced by a ranking integer 𝑖, such that the best solution has a rank of 𝑖 = 1. Equation 

3.5.15 will then be reformed as: 

�⃗⃗�(𝑡 + 1) = (1 − 𝛼)�⃗⃗�(𝑡) − 𝑔�⃗�(𝑡) + 𝑅𝑇 |1 −
1

𝑖
| (𝑥𝑜𝑝𝑡 − �⃗�(𝑡)) + (

c𝑢𝑑𝑖𝑚
𝑜𝑡ℎ𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑖
) 3.5.16 

 

Where �⃗⃗�(𝑡)is limited to a specified range [−𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥] such that : 

𝑢(𝑡) = {
𝑉𝑚𝑎𝑥 , 𝑢(𝑡) > 𝑉𝑚𝑎𝑥

−𝑉𝑚𝑎𝑥 , 𝑢(𝑡) < −𝑉𝑚𝑎𝑥
 3.5.17 

Air parcels positions are updated using: 

�⃗�(𝑡 + 1) =  �⃗�(𝑡) + �⃗⃗�(𝑡 + 1) 3.5.18 

It should be pointed out that the WDO technique allows the air parcels movement to be within the 

range [-1, 1], such that: 

�⃗�(𝑡) = {
1,      𝑥(𝑡) > 1

−1,      𝑥(𝑡) < −1
 3.5.19 

 

The resulting particles positions are then mapped back into the search space of the given 

optimization problem. 

Equations 3.5.16 and 3.5.18 represent the general framework of the Wind Driven Optimization 

algorithm. 

 

3.5.2 WDO based MPPT: 

Similar to the other metaheuristic algorithms, in the WDO, proper tuning of the control 

parameters is necessary for effective performance, this include: 

- Population size : N 

- RT coefficient 

- Friction coefficient 𝛼 

- Gravitational constant: 𝑔 
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- The c constant  

- Velocity limits 𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑛  

 

In order to guarantee convergence of the algorithm, we introduced some modifications to the 

original version of the WDO such that: 

-  The interval of allowable velocities [− 𝑉𝑚𝑎𝑥 ,   𝑉𝑚𝑎𝑥] is as follows:  

  𝑉𝑚𝑎𝑥 = 𝑉𝑚𝑎𝑥0 (1 −
𝑡

𝑇
)  

- 𝑎 and c are also updated within a specified range along the whole optimization process.  

𝑎 = 𝑎0(1 −
𝑡

𝑇
) 

𝑐 = 𝑐0(1 −
𝑡

𝑇
) 

The chosen settings (𝑉𝑚𝑎𝑥0 ,𝑎0 𝑎𝑛𝑑𝑐0) are provided in chapter 4. 

 

Since our application is of one dimension, the velocity term 𝑢𝑑𝑖𝑚
𝑜𝑡ℎ𝑒𝑟  in equation 3.5.16 will be 

simply 𝑢(𝑡). The WDO process steps in tracking the MPP are summarized below and illustrated 

in the flowchart of figure 36. 

Step1: Parameters Initialization: N, RT, 𝑎0, 𝑔, 𝑐0, 𝑉𝑚𝑎𝑥0 and Maximum number of iterations 𝑇. 

Step 2: A solution vector of N air parcels representing a set of duty cycles and a velocity vector 

of the same length are initialized. 

Step 3: The generated duty cycles are transmitted to the boost converter and the corresponding 

power is evaluated. 

Step 4: Obtain the global best duty cycle Gbest. 

Step 5: Set t=1. 

Step 6: Update the population using equations 3.5.16 and 3.5.18 along with equations 3.5.17 and 

3.5.19.  

Step 7: The updated positions are transformed back to the selected search space [dmin , dmax] 

andtransmitted to the power converter for power evaluation. 

Step 8: Duty cycles and velocities are sorted in descending order according to the obtained power 

values (The duty cycle with the highest obtained power will be at rank 1) 

Step 9: Update Gbest if a better solution is obtained and increment t. 

Step 10: If t < T or the convergence criterion is not fulfilled, update the control parameters (𝛼 , c, 

𝑉𝑚𝑎𝑥), and repeat steps 5 through 8. Otherwise go to step 10. 
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Step 11: Transmit Gbest to the power converter. 

Step 12: Irradiation change detection: if  
|𝑃𝑜𝑙𝑑−𝑃𝑛𝑒𝑤|

𝑃𝑜𝑙𝑑
 ≥ 𝐶 the algorithm is reinitialized, otherwise 

return to step 10. 

 

 

3.6 Grasshopper Optimization Algorithm: 

3.6.1 Inspiration: 
Grasshopper optimization algorithm (GOA) is a recent meta-heuristic population-based 

optimization technique developed in 2017 [28], and it mimics the swarming behaviors of 

grasshopper insects in nature and their social interaction. These insects have two distinct stages in 

their lifecycle, namely nymph and adulthood. During the first phase, grasshoppers have no wings, 

which makes them move in slow and small steps. In the other hand, their adulthood stage is 

characterized by long-range, fast and abrupt movements.  

Figure 36:WDO based MPPT. 
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The nymph grasshopper moves like rolling cylinders in millions of numbers. They almost eat all 

the vegetation which comes in their path during their movement. When they become adult from 

nymph, they form a swarm in air and then they migrate over very large distances. 

 

The social interaction between grasshoppers is categorized into three zones, repulsion zone, 

comfort zone, and attraction zone. Figure 37 shows the life cycle and the social interactions 

between grasshoppers. 

 
Figure 37:(A) The life cycle of a grasshopper; (B) Social interaction between various 

grasshoppers [27]. 

 

3.6.2 Mathematical Modeling: 

The movement of grasshoppers can be simulated using the following equation: 

𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝑊𝑖 3.6.1 

where 𝑋𝑖 is the ith grasshopper position, 𝑆𝑖 denotes the social factor, 𝐺𝑖 denotes the impact of 

gravity, and 𝑊𝑖denotes the wind’s horizontal impact. 

A randomized version of Eq. 3.6.1, is given below, where, r1, r2, and r3 are random factors within 

the range of [0, 1]. 

𝑋𝑖 = 𝑟1 𝑆𝑖 + 𝑟2𝐺𝑖 + 𝑟3𝑊𝑖  3.6.2 

 

The social interaction plays a key role in the movement of grasshoppers, and it is calculated using 

Eq. 3.6.3, where the s function measures the intensity of social interaction:  

𝑆𝑖 = ∑𝑠(𝑑𝑖𝑗)

𝑁

𝑗=1
𝑗≠𝑖

× 𝑑𝑖�̂� 3.6.3 
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𝑑𝑖𝑗 is the distance between two distinct grasshoppers, while 𝑑𝑖�̂� is a unit vector between the ith 

search agent to the jth search agent, given as follows: 

𝑑𝑖𝑗 = |𝑋𝑗 − 𝑋𝑖| 3.6.4 

𝑑𝑖�̂� = 
𝑋𝑗 − 𝑋𝑖
𝑑𝑖𝑗

 
3.6.5 

 

The 𝑠(𝑑𝑖𝑗)function defines the social forces and it is calculated as follows: 

𝑠(𝑟) = 𝑓 × 𝑒
−𝑟

𝑙 − 𝑒−𝑟  3.6.6 

 

Where 𝑓 indicates the intensity of attraction, while  𝑙 denotesthe attractive length scale. 

It should be underlined that the function s returns values close to zero with distances greater than 

10, so that strong force among the grasshoppers with large distances between them cannot be 

applied. To resolve this problem, distances must be mapped into the interval [1,4]. 

 

The G and W components in Eq. 3.6.2 are calculated as follows: 

𝐺𝑖 = −𝑔𝑒�̂�   3.6.7 

𝑊𝑖 = 𝑘𝑒�̂�  3.6.8 

Where 𝑔 denotes the gravitational constant, 𝑒�̂� represents a unity vector towards the center of the 

earth, k represents a constant drift, and 𝑒�̂�is a unity vector towards the wind direction. 

Substituting S, G, and W in equation.3.6.2, results in: 

𝑋𝑖 = ∑𝑠(|𝑋𝑗 − 𝑋𝑖|) ×
𝑋𝑗 − 𝑋𝑖
𝑑𝑖𝑗

−

𝑁

𝑗=1
𝑗≠𝑖

 𝑔𝑒�̂� +  𝑘𝑒�̂� 3.6.9 

Since nymph grasshoppers land on the ground, their position should not go below a threshold. 

However, we will not utilize this equation in the swarm simulation and optimization algorithm 

because it prevents the algorithm from exploring and exploiting the search space around a solution 

[28]. Equation 4.6.9 is then reformed as follows: 

𝑋𝑖
𝑚 = 𝑐 

(

 
 
∑𝑐

𝑢𝑏𝑚 − 𝑙𝑏𝑚
2

𝑁

𝑗=1
𝑗≠𝑖

(|𝑋𝑗
𝑚 − 𝑋𝑖

𝑚|) ×
𝑋𝑗 − 𝑋𝑖
𝑑𝑖𝑗

)

 
 
+ 𝑇�̂� 3.6.10 

 

Where 𝑢𝑏𝑚 and 𝑙𝑏𝑚 represent the upper and lower bounds in the mth dimension respectively, 𝑇𝑚 

is the m-dimensional position of the fittest solution, and C is given by Eq. 3.6.11 and it acts as a 
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decreasing factor within the range [𝐶𝑚𝑖𝑛 , 𝐶𝑚𝑎𝑥] to shrink the comfort area, repulsion area, and 

attraction area: 

𝐶 =  𝐶𝑚𝑎𝑥 − 𝑡
𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛

𝑇
 3.6.11 

 

The pseudo code of the GOA algorithm is given below: 

Initialize the swarm 𝑋𝑖(𝑖 = 1,2,…… . , 𝑛) 

Initialize 𝐶𝑚𝑖𝑛 , 𝐶𝑚𝑎𝑥  , and Maximum number of iterations T 

Calculate the fitness of each search agent  

𝑇𝑚 = the best search agent 

While (𝑡 < 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 T) 

            Update C using equation (3.6.11) 

for each search agent  

  Normalize the distances between grasshoppers in [1,4]. 

 Update the position of the current search agent by the equation (3.6.10) 

  Bring the current search agent back if it goes outside the boundaries 

end for  

Update 𝑇𝑚 if there is a better solution  

 𝑡 = 𝑡 + 1 

End while  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

3.6.3 GOA based MPPT: 
The operating flowchart of the GOA based MPP tracker is shown in figure 38: 

 
 

 

3.7 Equilibrium Optimizer: 

3.7.1 Inspiration: 
The Equilibrium Optimizer is a novel algorithm proposed by Afshin Faramarzi, Mohammad 

Heidarinejad, Brent Stephens and Seyedali Mirjaliliin 2019 [30] The inspiration for the EO 

technique is a simple well-mixed dynamic mass balance on a control volume, in which a mass 

balance equation is used to describe the concentration of a nonreactive constituent in a control 

volume, as a function of its various source and sink mechanisms. The mass balance equation 

provides the underlying physics for the conservation of mass entering, leaving, and generated in a 

Figure 38: GOA based MPPT 
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control volume. A first-order ordinary differential equation expressing the generic mass-balance 

equation [29], in which the change in mass in time is equal to the amount of mass that enters the 

system plus the amount being generated inside minus the amount that leaves the system, as 

described in [30].  

𝑉
𝑑𝐶

𝑑𝑡
= 𝑄𝐶𝑒𝑞 − 𝑄𝐶 + 𝐺 3.7.1 

Where C denotes the concentration inside the control volume, 
𝑑𝐶

𝑑𝑡
 is the rate of change of mass in 

the control volume, 𝑄 is the volumetric flow rate into and out of the control volume, 𝐶𝑒𝑞represents 

the concentration at an equilibrium state in which there is no generation inside the control volume, 

and 𝐺 is the mass generation rate inside the control volume. 

A steady equilibrium state is reached when 
𝑑𝐶

𝑑𝑡
 becomes zero. Rearranging equation 3.8.1, the 

concentration in the control volume (C) as a function of time (t) is obtained: 

𝐶 =  𝐶𝑒𝑞 + (𝐶𝑜 − 𝐶𝑒𝑞)𝐹 +
𝐺

𝜆𝑉
(1 − 𝐹) 3.7.2 

Where 𝜆 =
𝑄

𝑉
 is the turnover rate. 

𝑡0 𝑎𝑛𝑑 𝐶𝑜and are the initial start time and initial concentration respectively, and F will be 

discussed later.  

3.7.2 EO Modeling and Process steps: 

A- Initialization:  

Similar to the other evolutionary algorithms, in the EO technique a population of n individuals is 

randomly generated where each individual (solution) with its concentration (position) acts as a 

search agent. 

B- Equilibrium Pool and Candidates: 

The equilibrium state is the final convergence state of the algorithm, which is desired to be 

theglobal optimum solution. The algorithm uses a set of the best solutions found so far during the 

optimization process to update the search agent’s concentration, these best-so-far solutions are 

named equilibrium candidates. The choice of the set size is arbitrary and depends on the type of 

the optimization problem, however, the developers of this algorithm pointed out that using less 

than four candidates degrades the performance of the method in multimodal and composition 

functions but will improve the results in unimodal functions. More than four candidates will have 

the opposite effect. These four candidates help EO to have a better exploration capability, while 

the exploitation is enhanced by adding another particle whose concentration is the arithmetic mean 

to the set [30]. 
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The whole set embraces five individuals, and it is used to construct a vector nominated as the 

Equilibrium pool: 

𝐶𝑒𝑞,𝑃𝑜𝑜𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  {𝐶𝑒𝑞(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐶𝑒𝑞(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐶𝑒𝑞(3)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐶𝑒𝑞(4)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐶𝑒𝑞(𝑎𝑣𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗} 3.7.3 

The equilibrium pool is used to update the population by randomly selecting one of the equilibrium 

candidates in each iteration for each individual. 

 

C-  Exponential Term F: 

The exponential term given in equation 3.7.4 will assist EO in having a reasonable balance between 

diversification and intensification. Since the turnover rate 𝝀 can vary with time in a real control 

volume, it is assumed to be a random vector in the interval of [0,1] 

𝐹 = 𝑒−𝜆(𝑡−𝑡0)   3.7.4 

Where 𝑡 is reduced following equation 3.7.5: 

𝑡 = (1 −
𝑖𝑡𝑒

𝑇
)(𝑎2

𝑖𝑡𝑒
𝑇⁄ )   3.7.5 

T is the maximum number of iterations and 𝑎2 is a constant value used to manage the exploitation 

ability.  

In order to guarantee convergence, 𝑡0 is also reduced over the whole optimization process using 

equation 3.7.6 

𝑡0 =
1

𝜆
ln(−𝑎1𝑠𝑖𝑔𝑛(𝑟 − 0.5)[1 − 𝑒

−𝜆𝑡]) + 𝑡   3.7.6 

 

Where 𝑟 is a random vector in the range [0,1], 𝑎1 is a constant value used to manage exploration 

ability.  

Substituting equation 3.7.6 into equation 3.7.4, a simpler version for F is obtained: 

𝐹 = 𝑎1𝑠𝑖𝑔𝑛(𝑟 − 0.5)[𝑒
−𝜆𝑡 − 1]   3.7.7 

D- Generation Rate G: 

The generation rate is given in equation 3.7.8 and it is one of the most important terms in the 

proposed algorithm to provide the exact solution by improving the exploitation phase. 
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�⃗� = 𝐺𝑜⃗⃗⃗⃗⃗�⃗�   3.7.8 

Where 𝐺𝑜⃗⃗⃗⃗⃗is computed using: 

𝐺𝑜⃗⃗⃗⃗⃗ = 𝐺𝐶𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝐶𝑒𝑞⃗⃗ ⃗⃗ ⃗⃗⃗ − 𝜆𝐶)   3.7.9 

𝐺𝐶𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ is the Generation Rate Control Parameter and it is used to decide whether the G factor will 

contribute to the concentration updating process of a certain particle or not, this mechanism is 

modeled in equation 3.7.10: 

𝐺𝐶𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ = {
 0.5𝑟1𝑟2 ≥ 𝐺𝑃 
 0   𝑜𝑡ℎ𝑒𝑟𝑠𝑤𝑖𝑠𝑒 

 3.7.10 

 

Where 𝒓𝟏and 𝒓𝟐are random numbers in [0,1] and GP is recommended to be 0.5 to provide a good 

balance between exploration and exploitation. 

The general framework of the EO is then: 

𝐶𝑖
𝑖𝑡+1 = 𝐶𝑒𝑞

𝑖𝑡 + (𝐶𝑖
𝑖𝑡 − 𝐶𝑒𝑞

𝑖𝑡 )�⃗�𝑖
𝑖𝑡 +

�⃗�𝑖
𝑖𝑡

�⃗⃗⃗�𝑖
𝑖𝑡𝑉
(1 − �⃗�𝑖

𝑖𝑡) 3.7.11 

The detailed pseudo-code of the EO technique is shown be below 

Initialize the particle’s populations 𝑖 =  1,… . . , 𝑛 

Assign equilibrium candidates’ fitness a large number 

Assign free parameters 𝑎1 , 𝑎2,  GP = 0.5 

While ( ite < Maximum number of iterations ) 

 For𝑖 = 1: 𝑛 

 Calculate fitness of𝑖𝑡ℎ particle 

 If fit (𝐶𝑖⃗⃗⃗⃗ ) < fit(𝐶𝑒𝑞 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )    

  Replace 𝐶𝑒𝑞 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  with 𝐶𝑖⃗⃗⃗⃗  and fit(𝐶𝑒𝑞 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) with fit(𝐶𝑖⃗⃗⃗⃗  ) 

 Else if fit (𝐶𝑖⃗⃗⃗⃗  ) > fit(𝐶𝑒𝑞 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) & fit(𝐶𝑖⃗⃗⃗⃗  ) <  fit(𝐶𝑒𝑞 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) 

  Replace 𝐶𝑒𝑞 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  with 𝐶𝑖⃗⃗⃗⃗  and fit(𝐶𝑒𝑞 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) with fit(𝐶𝑖⃗⃗⃗⃗  ) 

Else if fit(𝐶𝑖⃗⃗⃗⃗  ) >  fit(𝐶𝑒𝑞 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) & fit(𝐶𝑖⃗⃗⃗⃗  ) >  fit(𝐶𝑒𝑞 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) & fit(𝐶𝑖⃗⃗⃗⃗  ) <  fit(𝐶𝑒𝑞 3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) 

 Replace 𝐶𝑒𝑞 3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  with 𝐶𝑖⃗⃗⃗⃗  and fit(𝐶𝑒𝑞 3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) with fit(𝐶𝑖⃗⃗⃗⃗  ) 

Else if fit(𝐶𝑖⃗⃗⃗⃗  ) >  fit(𝐶𝑒𝑞 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) & fit(𝐶𝑖⃗⃗⃗⃗  ) >  fit(𝐶𝑒𝑞 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) & fit(𝐶𝑖⃗⃗⃗⃗  ) >  fit(𝐶𝑒𝑞 3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )& fit(𝐶𝑖⃗⃗⃗⃗  ) <  

fit(𝐶𝑒𝑞 4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) 

Replace 𝐶𝑒𝑞 4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  with 𝐶𝑖⃗⃗⃗⃗  and fit(𝐶𝑒𝑞 4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) with fit(𝐶𝑖⃗⃗⃗⃗  ) 

 End if 

 End For 
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 𝐶𝑎𝑣𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝐶𝑒𝑞 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +  𝐶𝑒𝑞 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝐶𝑒𝑞 3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +𝐶𝑒𝑞 4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )/4; 

 Construct the equilibrium pool 𝐶𝑒𝑞 𝑝𝑜𝑜𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { 𝐶𝑒𝑞 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,  𝐶𝑒𝑞 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐶𝑒𝑞 3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,𝐶𝑒𝑞 4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   , 𝐶𝑎𝑣𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ } 

Accomplish memory saving (if ite > 1) 

Assign t   =  (1 – 
𝑖𝑡𝑒

𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟
)   

(𝑎2  
𝑖𝑡𝑒

𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟
)  
    Eq.(3.7.5) 

For 𝑖 = 1: 𝑛 

 Randomly choose one candidate from the equilibrium pool (vector) 

 Generate random vectors of 𝜆, 𝑟 

 Construct �⃗� = 𝑎1 𝑠𝑖𝑔𝑛(𝑟 − 0.5) [𝑒
−�⃗⃗⃗� 𝑡 − 1]  Eq.(3.7.7) 

 Construct 𝐺𝐶𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ = {
0.5𝑟1          𝑟2 ≥ 𝐺𝑃
  0                  𝑟2 < 𝐺𝑃

     Eq.(3.7.10) 

  Construct 𝐺0⃗⃗⃗⃗⃗ = 𝐺𝐶𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ ( 𝐶𝑒𝑞 ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ – 𝜆𝐶)  Eq.(3.7.9) 

  Construct �⃗� =  𝐺0⃗⃗⃗⃗⃗ .�⃗�                    Eq.(3.7.8) 

  Update Concentrations  𝐶 =  𝐶𝑒𝑞⃗⃗ ⃗⃗ ⃗⃗⃗ +  (𝐶⃗⃗⃗⃗⃗ −  𝐶𝑒𝑞⃗⃗ ⃗⃗ ⃗⃗⃗ ). �⃗� + 
�⃗�

�⃗⃗⃗� 𝑉
(1 − �⃗�) 

 End For 

ite = ite +1 

End while   
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3.7.3 EO based MPPT: 
The operating flowchart of the EO for Maximum Power Point Tracking is depicted in figure 39. 

 

Figure 39: EO based MPPT 

 

3.8 Seagull Optimization Algorithm: 

3.8.1 Inspiration: 

The Seagull Optimization algorithm is a novel bio-inspired technique for solving computationally 

expensive problems. The main inspiration of this algorithm is the migration and attacking 

strategies of a family of clever birds known as seagulls. They learn, remember and even pass on 

behaviors, such as stamping their feet in a group to imitate rainfall and trick earthworms to come 

to the surface. They even have a complex and highly developed repertoire for communication 

which includes a range of vocalizations and body movements [31]. 

Generally, seagulls live in colonies. They use their intelligence to find and attack the prey. The 

most important thing about seagulls is their migrating and attacking mechanisms. The following 

represents the key behaviors used by the Seagull Optimization technique [32]. 

https://onekindplanet.org/animal/seagull/
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 During migration, they travel in a group. The initial positions of seagulls are different to 

avoid the collisions between each other. 

 In a group, seagulls can travel towards the direction of best survival fittest seagull.  

 Based on the fittest seagull, other seagulls can update their initial positions. 

 Seagulls frequently attack migrating birds over the sea [33] when they migrate from one 

place to another. They can make their spiral natural shape movement during attacking. A 

conceptual model of these behaviors is illustrated in Figure 40. 

 

 

Figure 40 : Migration and Attacking Behaviors of Seagulls. 

3.8.2 SOA Modeling and process steps: 

A- Migration: 

This stage is served as the exploration phase. The algorithm here simulates how a group of seagulls 

moves from one location to another. The bird should satisfy the following three conditions: 

 

 Avoiding Collisions: A variable is employed to calculate the new search agent position as 

follows: 

𝐶𝑠⃗⃗ ⃗⃗ = 𝐴 × 𝑃𝑠(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  3.8.1 

 

Where 𝐶𝑠⃗⃗ ⃗⃗  represents the position of the search agent that does not collide with other individuals. 

𝑃𝑠(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the search agent current position at iteration 𝑡, and 𝐴 represents the movement behavior of 

the individual, and it is decreased linearly over the optimization process as follows: 

 

𝐴 = 𝑓𝑐 − 𝑓𝑐 ×
𝑡

𝑇
   3.8.2 
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Where 𝑓𝑐 is a control parameter that depends on the optimization problem. 

 

 Movement towards best neighbor’s direction: 

After avoiding collisions between neighbors, the search agents are moved towards the direction of 

the best location as follows: 

𝑀𝑠
⃗⃗⃗⃗⃗⃗ = 𝐵 × (𝑃𝑏𝑠⃗⃗ ⃗⃗ ⃗⃗ (𝑡) − 𝑃𝑠⃗⃗⃗⃗ (𝑡)) 3.8.3 

Where 𝑀𝑠
⃗⃗⃗⃗⃗⃗  is the individual’s position towards the best search agent location, B is given in equation 

3.8.4, and it is responsible for proper balancing between exploration and exploitation: 

𝐵 = 2 × 𝐴2 × 𝑟𝑛𝑑 3.8.4 

Where 𝑟𝑛𝑑 is random number within the range [0,1] 

 

 Remain close to the best search agent: 

Lastly, the search agents will update their positions with respect to the best location using equation 

3.8.5: 

𝐷𝑠⃗⃗⃗⃗⃗ = |𝐶𝑠⃗⃗ ⃗⃗ + 𝑀𝑠
⃗⃗⃗⃗⃗⃗ |    3.8.5 

B- Migration: 

The attacking process is served as the exploitation phase. Here a spiral equation is employed to 

mimic the helix-shaped movement of seagulls while hunting and entrapping the prey. This 

behavior is depicted in figure 41 and it is modeled in x, y and z planes as follows: 

 

Figure 41: Natural Attacking behavior of Seagulls. 

𝑥′ = 𝑟 × cos(𝑘)                     3.8.6 

𝑦′ = 𝑟 × sin(𝑘)                     3.8.7 

𝑧′ = 𝑟 × 𝑘                     3.8.8 
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𝑟 = 𝑢 × 𝑒𝑘𝑣                     3.8.9 

 

Where 𝑟 represents the radius of each turn of the spiral, 𝑘 is a random number in the range [0,2𝜋], 

𝑢 and 𝑣 are constants to define the spiral shape. 

The search agents’ positions are then updated using equation 3.8.10, which represents the general 

framework of the Seagull Optimization algorithm: 

𝑃𝑠⃗⃗⃗⃗ = (𝐷𝑆⃗⃗⃗⃗⃗ × 𝑥
′ × 𝑦′ × 𝑧′) + 𝑃𝑏𝑠⃗⃗ ⃗⃗ ⃗⃗                    3.8.10 

Where 𝑃𝑠⃗⃗⃗⃗  saves the best individuals’ positions. 

3.8.3 SOA based MPPT: 

The flowchart illustrating the SOA based MPP tracker is depicted in figure 42: 

 

Figure 42: SOA based MPPT 
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3.9 Slime Mould Algorithm: 

3.9.1 Inspiration: 
The Slime Mould Algorithm is a novel stochastic optimizer recently proposed in 2020 [36]. The 

main inspiration of SMA is the peculiar foraging strategy of a type of eukaryote that lives in cool 

and humid places known as Slime Mould. Its main nutritional stage is Plasmodium which is the 

dynamic and active phase.  During this focal stage, the organic matter in slime mould scouts food, 

surrounds it, and secretes enzymes to digest it. During the migration process, the front end extends 

into a fan-shaped, followed by an interconnected venous network that allows cytoplasm to drift 

inside. Because of their unique pattern and characteristic, they can use multiple food sources at the 

same time to form a venous network connecting them as shown in figure 43. 

In [34], a detailed study of the cytoplasmic flow of Slime mould helped the developers of the SMA 

to lay down its foundations. When a vein approaches a food source, the bio-oscillator produces a 

propagating wave [35] that increases the cytoplasmic flow through the vein, and the faster the 

cytoplasm flows, the thicker the vein. Through this combination of positive-negative feedback, the 

slime can establish the optimal path to connect food in a relatively superior way.  

 

 
Figure 43: Foraging Morphology of Slime Mould 

3.9.2  Mathematical Modeling and Process Steps: 

A- Approach food: 

Slime mould can approach food according to the odor in the air. To express its approaching 

behavior in mathematical formulas, the following formulas are proposed to imitate the contraction 

mode: 
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𝑋(𝑡 + 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) = {
𝑋𝑏(𝑡)⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑣𝑏⃗⃗⃗⃗⃗ . (�⃗⃗⃗⃗� . 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ −  𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) , 𝑟 < 𝑝

𝑣𝑐⃗⃗⃗⃗⃗ . 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ , 𝑟 ≥ 𝑝 
 3.9.1 

 

Where 𝑣𝑏⃗⃗⃗⃗⃗ is a parameter with a range of [-a, a], 𝑣𝑐⃗⃗⃗⃗⃗ decreases linearly from one to zero. 𝑡 represents 

the current iteration, 𝑋𝐵⃗⃗ ⃗⃗ ⃗ represents the individual location with the highest odor concentration 

currently found, 𝑋 ⃗⃗⃗⃗  denotes the location of slime mould, 𝑋𝐴⃗⃗ ⃗⃗ ⃗⃗  and 𝑋𝐵⃗⃗ ⃗⃗ ⃗ are two individuals randomly 

selected from the population, and �⃗⃗⃗⃗� represents the weight of slime mould. 𝑝 is given as follows: 

𝑝 = 𝑡𝑎𝑛ℎ|𝑆(𝑖) − 𝐷𝐹|  3.9.2 

where 𝑖∈1, 2, . . . , 𝑛, 𝑆(𝑖)represents the fitness of 𝑋 ⃗⃗⃗⃗ ,and 𝐷𝐹 represents the best fitness obtained 

so far. 

𝑣𝑏⃗⃗⃗⃗⃗, 𝑎 and �⃗⃗⃗⃗� are given as follows: 

𝑣𝑏⃗⃗⃗⃗⃗ = [−𝑎, 𝑎]  3.9.3 

𝑎 = arctanh (− (
𝑡

T
) + 1)  3.9.4 

 

𝑊(𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖))⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

{
 
 

 
 1 + 𝑟 . 𝑙𝑜𝑔 (

𝑏𝐹 − 𝑆(𝑖)

𝑏𝐹 − 𝑤𝐹
+ 1) , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

1 − 𝑟 . 𝑙𝑜𝑔 (
𝑏𝐹 − 𝑆(𝑖)

𝑏𝐹 − 𝑤𝐹
+ 1) , 𝑜𝑡ℎ𝑒𝑟𝑠    

 3.9.5 

  

Where,  condition indicates that 𝑆(𝑖) ranks first half of the population, 𝑟 is a random value in the 

interval of [0, 1], 𝑏𝐹 denotes the optimal fitness obtained in the current iterative process, 𝑤𝐹 

denotes the worst fitness value obtained in the iterative process currently, 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 denotes the 

sequence of fitness values sorted. 

𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝑆) 3.9.6 

 

B- Wrap food: 

When the food concentration is content, the bigger the weight near the region is; when the food 

concentration is low, the weight of the region will be reduced, thus turning to explore other regions. 

Based on the above principle, the mathematical formula for updating the location of slime mould 

is as follows [36]: 
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 𝑋 (𝑡)⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗ =  {

𝑟𝑎𝑛𝑑 . (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,                    𝑟𝑎𝑛𝑑 < 𝑧

𝑋𝑏(𝑡)⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ +  𝑣𝑏⃗⃗⃗⃗⃗ . (𝑊.𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) ,          𝑟 < 𝑝

𝑣𝑐⃗⃗⃗⃗⃗ . 𝑋 (𝑡)⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗ ,                                                      𝑟 ≥ 𝑝

  3.9.7 

 

where 𝐿𝐵 and 𝑈𝐵 denote the lower and upper boundaries of the search range, rand is a random 

value within [0,1]. The value of z is discussed in the parameter setting section of chapter 4. 

 

C- Grabble food: 

On the purpose of simulating the variations of venous width of slime mould, 𝑊, 𝑣𝑏 and 𝑣𝑐 are 

used to realize the variations.𝑊 mathematically simulates the oscillation frequency of slime mould 

near one at different food concentration, so that slime mould can approach food more quickly when 

they find high-quality food, while approach food more slowly when the food concentration is lower 

in individual position, thus improving the efficiency of slime mould in choosing the optimal food 

source.𝑣𝑏 fluctuates randomly within the interval [-a, a], while 𝑣𝑐 oscillates between [-1,1] and 

both will approach zero eventually. 

 

The process steps of the SMA can be summarized as follows: 

Initialize the parameters: population size 𝑛, Maximum number of iterations 𝑇 

Initialize the positions of slime mould 𝑋𝑖(𝑖 = 1,2,… , 𝑛) 

While (𝑖𝑡𝑒 ≤ 𝑇) 

      Calculate the fitness of all slime mould; 

      Update bestFitness 𝑋𝑏; 

      Calculate the weight 𝑊 using equation 3.9.5; 

For each slime mould position: 

 Update 𝑝, 𝑣𝑏, 𝑣𝑐; 

                    Update positions using equation 3.9.7; 

End For 

𝑖𝑡𝑒 = 𝑖𝑡𝑒 + 1; 

End While 

Return 𝑋𝑏 
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3.9.3 SMA based MPPT 
The implementation of the SMA in MPPT is illustrated in the flowchart of figure 44. 

 

3.10 Conclusion: 
This chapter set forth five well-known nature inspired algorithms, as well as the latest 

developments in the field of metaheuristics. A survey that consists of the inspiration and 

mathematical modelling of these optimizers, and their operating flowcharts in maximum power 

tracking, was provided. Moreover, we have also laid out three novel algorithms that are recently 

proposed, namely: Equilibrium Optimizer, Seagull Optimization and the Slime Mould Algorithm. 

In the next chapter, we are going to evaluate the propound techniques in an MPPT based standalone 

PV system. 

 

 

 

 

 

Figure 44: SMA based MPPT 
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CHAPTER 4 : Simulation and Results 

4.1 Introduction: 
To assess the effectiveness of the proposed techniques, Matlab and Simulink are used to simulate 

a simple stand-alone system subjected to several atmospheric conditions. A comparative study in 

terms of robustness, tracking speed and efficiency is provided at the end of this chapter. 

4.2 System Overview: 
The Simulink model of our system is illustrated in figure 45. It consists essentially of two serially 

connected PV modules of the same type, a boost converter driven by an MPPT controller, and a 

load of 40Ω. Usually, a standard 60 cell PV module is built from 3 substrings, each is protected by 

a bypass diode [16]. The 3 substrings are serially connected to each other to form a single module. 

4.3 DC-DC boost converter design: 
Using the results of section 3.4, and setting the switching frequency to 50 𝐾𝐻𝑧 , the components 

of the power converter are selected as shown in table 2: 

Table 2: DC-DC Converter Components Selection for System 2 

Switching 

Frequency  

Inductor 

    (L) 

Input Capacitor  

 

Output Capacitor  

50 𝑲𝑯𝒛 4 𝜇𝐻 100𝜇𝐹 1𝜇𝐹 

 

It is worth mentioning that in order to get accurate measurements of the output PV power that 

corresponds to each duty cycle, the time interval between two successive transmissions of D should 

be greater than the boost converter settling time. To do so, several values of the duty cycle have to 

be tested to analyze the transient response of the power converter and the time it takes to settle 

down. After performing this evaluation, we have found that a sampling time of 0.008s is 

appropriate for our system. 
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Figure 46: Simulink Model of the designed System -2- 

Figure 45: Simulink Model of the designed System -2- 
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4.4 Algorithms Parameterization: 
Table 3 provides the selected parameters of every optimizer, the reader should notice that the 

settings may differ to that provided in the original papers of these algorithms that might be 

unsuitable for MPPT applications. 

 The selection of the population size N has a significant impact on the performance of the 

optimizer. A large N will improve the search ability and tracking accuracy; however, it will 

increase the convergence time of the algorithm. On the other hand, a small N speeds up the search 

process, but it may lead to poor power efficiency. 

 In this work, and in order to make a fair comparison, we have selected N to be 4, which seems to 

be a reasonable choice. The maximum number of iterations is set to 10 for all algorithms. 

 

Table 3: Algorithms Parametrization 

Algorithms Parametrization 

PSO 𝜔 = 0.4𝑐1 = 1.4    𝑐2 = 2 

WOA 𝑎 = 1 − 𝑡/𝑇  b=1 

GWO 𝑎 = 0.7 − 0.7𝑡/𝑇 

WDO 

𝑔 = 0.5 − 0.5𝑡/𝑇 

𝑉𝑀𝑎𝑥 = 0.3 − 0.3𝑡/𝑇 

𝑐 = 0.5 − 0.5𝑡/𝑇 

𝑅𝑇 = 3      𝑎 = 0.8 

GOA 𝑐 = 0.1 − 0.004𝑡/𝑇 

EO 𝑉 = 1 , 𝑎1 = 1.6 , 𝑎2 = 1,𝐺𝑃 = 0.5; 

SOA 
𝐴 = 0.7 − 0.7𝑡/𝑇 

𝑢 = 0.8 , 𝑣 = 0.05 

SMA 

𝑎 = tan−1(0.85 −
0.85𝑡

𝑇
) 

𝑏 = 1.2 − 0.64𝑡/𝑇 

𝑧 = 0.03 

 

4.5 Results and Discussion: 
Six distinct scenarios have been subjected to the PV system. In the first case, the PV array receives 

a fast-varying uniform irradiance that changes every 0.5 seconds in three different levels: 500-

1000-750 W/m². In the five remaining cases, different partial shading patterns with various 

numbers of peaks have been exposed to the substrings that constitute the two PV modules. Table 

4 and figure 46 illustrate the different scenarios and their PV characteristics. 
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Table 4 : Studied Irradiance conditions 

Cases Irradiance levels distribution on the modules 

Substrings (W/m²) 

GMPP (W) 

 

 

1: Uniform Fast 

Varying 

Irradiance 

[0s,0.5s]:500 

[0.5s,1s]:1000 

[1s,1.5s]:750 

216.2 

426.3 

322.9 

 

2: PSC 300/300/800/800/600/600 183.196  

3: PSC 1000/1000/600/300/300/800 192.774  

4: PSC 1000/400/800/800/300/600 191.184  

5: PSC 1000/500/800/700/300/600 201.93  

6: PSC 1000/500/800/700/900/600 245.1681  
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Figure 47: P-V Characteristic Curves of the Studied Cases 
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4.5.1 Uniform Fast Varying irradiance: 
The resulting PV power curves for each algorithm with uniform fast varying irradiation are shown 

in figure 47. All algorithms were able to detect changes in irradiation levels, and locate the 

maximum power point. Table 5 provides the results details of the simulation in terms of efficiency 

and time convergence in each time interval  

 

Table 5: Steady State Tracking Results Under Fast Varying Uniform Irradiance 

Optimizer GMPP(W) Tracked Power (W) Convergence Time (s) 

PSO 

216.2 

426.3 

322.9 

216.15-426.19-322.89 0.29-0.25-0.24 

WOA 216.15-426.16-322.87 0.27-0.27-0.27 

GWO 216.15-425.94-322.89 0.265-0.295-0.28 

WDO 216.14-426.03-322.9 0.24-0.24-0.24 

GOA 216.15-426.185-322.888 0.24-0.28-0.278 

EO 216.15-426.18-322.9 0.22-0.28-0.27 

    SOA 216.14-426.19-322.9 0.26-0.26-0.26 

SMA 216.15-426.19-322.9 0.265-0.29-0.29 

 

In order to have a better assessment measure, we consider the average efficiencies and average 

convergence time as provided in table  

 

Table 6: Average Efficiencies and Convergence Time Under Fast Varying Uniform Irradiation 

Optimizer Average Efficiency (%) 
Average Convergence Time 

(s) 

PSO 99.98 0.26 

WOA 99.97 0.27 

GWO 99.96 0.28 

WDO 99.97 0.248 

GOA 99.98 0.24 

EO 99.98 0.256 

SOA 99.98 0.26 

SMA 99.98 0.28 
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It can be observed, that all algorithms have nearly equal efficiencies, but with a considerable 

difference in convergence time. With GOA, WDO and EO being fastest respectively. 

 

4.5.2 Non-uniform Irradiance levels: 
Figures 48, 49, 50, 51, 52 depict the obtained power curves under partial shading conditions in 

cases 2 through 6, and table 7 provides the resulting steady state static efficiencies and tracking 

times. 

 



73 

 

 
Figure 48: PV Power Curves of Case 1 
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Figure 49: PV Power Curves of Case 2 
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Figure 50: PV Power Curves of Case 3 
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Figure 51:PV Power Curves of Case 4 
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Figure 52:PV Power Curves of Case 5 
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Figure 53:PV Power Curves of Case 6 
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Table 7: Steady State Tracking Results Under Non-Uniform Irradiance 

Cases Optimizer GMPP(W) 
Tracked 

Power (W) 

GMPP 

Located 

Efficiency 

(%) 

Convergence 

Time (s) 

2 

PSO 

183.196 

182.98 Yes 99.88 0.285 

WOA 182.49 Yes 99.61 0.27 

GWO 182.86 Yes 99.81 0.29 

WDO 182.54 Yes 99.64 0.27 

GOA 182.98 Yes 99.88 0.26 

EO 182.98 Yes 99.88 0.235 

SOA 182.98 Yes 99.88 0.26 

SMA 182.98 Yes 99.88 0.268 

     

3 

PSO 

192.774 

177.5 No 92.07 0.26 

WOA 192.6 Yes 99.91 0.275 

GWO 192.15 Yes 99.67 0.29 

WDO 192.66 Yes 99.94 0.27 

GOA 192.66 Yes 99.94 0.26 

EO 192.66 Yes 99.94 0.24 

SOA 192.673 Yes 99.947 0.26 

SMA 192.68 Yes 99.95 0.285 

     

4 

PSO 

191.184 

191.1 Yes 99.95 0.285 

WOA 190.54 Yes 99.66 0.28 

GWO 190.95 Yes 99.88 0.285 

WDO 191.1 Yes 99.95 0.275 

GOA 191.11 Yes 99.96 0.26 

EO 191.11 Yes 99.96 0.23 

SOA 191.1 Yes 99.95 0.26 

SMA 191.1 Yes 99.95 0.267 

     

5 

PSO 

201.93 

201.84 Yes 99.955 0.29 

WOA 201.83 Yes 99.95 0.27 

GWO 201.83 Yes 99.95 0.27 

WDO 201.81 Yes 99.94 0.275 

GOA 201.85 Yes 99.96 0.26 

EO 201.84 Yes 99.955 0.22 

SOA 201.845 Yes 99.957 0.26 
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SMA 201.85 Yes 99.96 0.285 

     

6 

PSO 

245.1681 

239.82 No  0.29 

WOA 244.63 Yes 99.78 0.27 

GWO 244.73 Yes 99.82 0.28 

WDO 244.75 Yes 99.83 0.28 

GOA 244.75 Yes 99.83 0.25 

EO 244.76 Yes 99.83 0.23 

SOA 244.76 Yes 99.83 0.26 

SMA 244.75 Yes 99.83 0.265 

     

 

- It can be observed that the EO, SOA, SMA and the GOA scored almost equal efficiencies, 

and successfully located the GMPP associated with each case. The WDO have also 

achieved Power levels as high as the other techniques, however in the second case, it 

obtained the second worst efficiency (99.64%), compared to the best one (99.94%).  

- The WOA got the lowest power level in the second case at which it achieved 182.49W out 

of 183.196W resulting in an efficiency of 99.61% compared to the highest rank (99.88%). 

And also in the 4th case at which it hit 190.95W out of 191.184W resulting in an efficiency 

of 99.877%. In the remaining shading conditions, the WOA attained efficiency levels equal 

or near to the highest ones. 

- The worst result obtained by the GWO algorithm was in 3rd case at which it obtained an 

efficiency 99.67% which can be ranked at the 6th position in descending order. 

- The PSO algorithm in the other hand have stagnated at the first local maximum associated 

with the 6th and 3rd shading patterns (239.82W out of 245.168 in case 6 and 177.5 W out 

of 192.774W in case 3). 

- In terms of convergence speed, it can be clearly seen that the Equilibrium optimizer is the 

fastest among the remaining algorithms with settling time as low as 0.22s in the 5th case up 

to 0.24s in the 3rd case. This is due its framework equation, which is based on updating the 

population using the best-so-far-solutions. Using this strategy, the algorithm has high 

prospects of exploring promising regions rapidly, and hence undesirable areas are replaced 

along the optimization process, resulting in an efficacious transition from diversification 

into intensification. 

- The SOA can be classified in the second rank with a convergence time of 0.26 seconds in 

all cases, which is identical to the Grasshopper Optimization algorithm.  

- The Slime Mould Algorithm in the other hand, can be put in the third rank with 

convergence time of 0.265s in the sixth case which is its best score, and 0.285s in cases 3 

and 5. The latter outcome is the direct result of the first part in equation 3.10.7, which 

occasionally drives a certain agent into a random position when the stated condition 

(𝑟𝑎𝑛𝑑() < 𝑧) is satisfied, at any iteration throughout the optimization process. 
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Table 8 provides the average efficiencies and average settling times obtained by the assessed 

techniques: 

 

Table 8: Average Efficiencies and Convergence Time Under Non-Uniform Irradiation 

Optimizer Average Efficiency (%) 
Average Convergence 

Time(s) 

PSO 98.32 0.28 

WOA 99.78 0.273 

GWO 99.826 0.283 

WDO 99.86 0.274 

GOA 99.912 0.26 

EO 99.913 0.23 

SOA 99.913 0.26 

SMA 99.914 0.274 

4.6 Conclusion: 
This chapter was devoted to the evaluation of 8 metaheuristic algorithms in Maximum Power Point 

Tracking. Simulink and Matlab were used to design and simulate a standalone PV system driven 

by an MPPT controller and subjected to various atmospheric conditions. The assessment was 

carried out based on the collected data obtained from 6 distinct scenarios of fast varying uniform 

and non-uniform irradiation, accompanied with the resulting power curves and necessary tables. 

The analyses of the simulation results of the studied cases, have demonstrated the effectiveness of 

the propound novel algorithms in handling various challenging shading patterns, and achieved the 

highest efficiency levels in all cases over the remaining popular stochastic algorithms. Moreover, 

the three proposed optimizers are characterized by fast tracking speed, this was conspicuous in the 

convergence time of the Equilibrium optimizer which was 0.23s on average outperforming the 

remaining algorithms, and the Seagull Optimization Algorithm which was a powerful competitor 

to the well-known Grasshopper Optimization Algorithm with nearly identical settling times of 0.26 

seconds in most of the studied cases. 
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General Conclusion and Future Work 
 

This master thesis work was devoted to the study and evaluation of the latest advancements of soft 

computing techniques for Maximum Power Point Tracking operation. Equilibrium Optimizer, 

Seagull Optimization and the Slime Mould Algorithm are the three recent optimizers investigated 

in this project and assessed along with other well-known metaheuristic techniques, namely: 

Particle Swarm Optimization, Whale Optimization, Grey Wolf Optimization, Wind Driven 

Optimization and the Grasshopper Optimization. The proposed algorithms have proved to be 

powerful in terms of tracking efficiency, robustness and convergence time. The comparative study 

revealed the fast-tracking outperformance of the Equilibrium Optimizer over the remaining 

techniques, and the nearly identical outcomes obtained by the SOA and the GOA. It is worth 

highlighting that although the SMA was on a par with the other optimizers in terms of efficiency, 

some improvements need to be made, to make it faster and a better rival. 

Although the propound metaheuristic techniques are powerful for Maximum Power Point 

Tracking, the work can be further extended, and enhancements can always be made in this field. 

In this context, we suggest that the following points are worth investigating for future work: 

- A hybridization of the assessed algorithms with classical techniques can be made to reduce 

the convergence time of the MPPT controller. This allows exchanging between local 

tracking and global tracking strategies according to the solar irradiance conditions. As 

global maximum power point tracking takes longer time, and if the solar irradiance is 

uniform, it is needless to employ a global tracker, since a traditional technique like the 

P&O is sufficient and faster. In the other hand, if partial shading occurs, then the MPPT 

controller will be switched to global search using one of the proposed metaheuristic 

algorithms. A partial shading detection technique has to be developed for that purpose. 

- Evaluate the proposed algorithms under varying load and temperature conditions. 

- Build a laboratory setup based on DSP or FPGA boards to implement and experimentally 

validate the feasibility of the assessed techniques in Maximum Power Point Tracking. 
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