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Abstract 

 

Interest in photovoltaics has been increasing hugely over the past years.Among the many 

interests developed, theoretical understanding of PVs has taken much attention in research.To 

help in design and assess the performance of PV panels, a developed model is used. The 

model is none other than an equivalent electrical circuit with basic components (a source, 

resistors, and one diode or more). Single-diode and double-diode models are the most popular 

in the literature. Equivalent circuit parameters must be obtained, from either a set of 

experimental data or a manufacturer’s datasheet, in order to construct a model. The aim is to 

obtain values that yield an accurate model. The problem is tackled as an optimization one, 

where the Root mean square error (RMSE), between the experimental and the calculated 

data, is the function to be optimized. Optimization is achieved using five different meta-

heuristic algorithms: Particle swarm optimization (PSO), Wind driven optimization (WDO), 

Exchange market algorithm (EMA),Differential evolution (DE), and Marine predators 

algorithm(MPA). The aforementioned algorithms are adapted to PV parameters extraction 

using MATLAB. Algorithms are then compared based on the accuracy of the obtained 

results.
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𝑎 Diode ideality factor 

𝑅𝑠 PV model Series resistance 

𝑅𝑝 PV model Shunt resistance 

𝐼𝑝ℎ Photo-generated current 
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𝐼𝑠𝑐 Short-circuit current 

𝑉𝑜𝑐 Open-circuit voltage 
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𝑁𝑠 Number of series connected cells in a PV module
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General introduction 

 

The world is making development in huge leaps; a development that has raised the need for 

more and more power. Satisfying such a need comes at great cost; pollution has been 

increasing proportionally with the increase in power demand. Fortunately, many 

environment-friendly alternatives for electricity generation exist. Potentially, in the future, 

power demand will be mainly covered by eco-friendly sources; since we receive a staggering 

1.74*1017 watts of energy from the sun [1], for example. 

Photovoltaics deal with the generation of electricity from solar energy; the field has become 

of great interest over the past years. PV panels cost has been decreasing, while improvements 

in efficiency are observed; this has led many firms and people investing in them. The theory 

about photovoltaics is very important; whether it is for educational or technical purposes; it is 

a key aspect in improving the quality of energy obtained from PVs. An accurate model gives 

large insights about the behaviour of solar panels; a behaviour usually expressed in 

mathematical relationships relating current and power to voltage (I-V and P-V), under 

different thermal and illumination conditions. Modelling gives large insights in terms of 

design and performance assessment. Along the years, various models have been proposed; 

Single and double-diode models have been widely used. No matter whatever circuit model is 

adopted for the PV system, finding the optimum circuit parameters requires solution of 

transcendental equations relating I-V characteristic of the PV device [2]. For a single-diode 

model the parameters to be estimated are: the diode ideality factor𝑎, the series resistance 𝑅𝑠, 

the shunt resistance 𝑅𝑝,the photocurrent 𝐼𝑝ℎ, and the saturation current of the diode 𝐼𝑜. 

In this project, emphasis is given to the single-diode model; also known as the five-parameter 

model. The main objective is to obtain the five parameters, with optimal values, to build an 

accurate model that depicts the behaviour of solar panels. In the literature of PV parameters 

estimation, many methods have emerged; analytical methods, iterative-based methods and 

meta-heuristic methods. In this work, interest is devoted to the latter method. There are 

actually two types of data inputs to perform calculations; it is either done using experimental 

data obtained from the module, which is the way chosen here, or by the data provided on the 

manufacturer’s datasheet. Data are input into MATLAB programs that are adaptations of 

optimization algorithms to suit the purpose of parameters extraction. 
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1. Modelling of PV modules: In this chapter, the principle of PV, PV technology as 

well as one-diode and two-diode models will be presented. 

3. Identification of PV parameters: this chapter presents methods of estimating PV 

parameters, and shows results of the work done using the aforementioned algorithms.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Optimization algorithms: this chapter gives information on how the optimization 

algorithms used (PSO, WDO, EMA, DE, and MPA) work. 



CHAPTER I: PV MODELLING 

3 
 

 

CHAPTER I: PV MODELLING 

1.1 Introduction 

Photovoltaics can be defined simply as the process of using solar cells to convert sunlight into 

electricity. Modelling of PV panels is very important in order understand that process, and 

study it. The more accurate the model is the more accurate will the results be. This is why 

modelling is a crucial part when it comes to knowing the behaviour of PV panels in different 

conditions, without even needing to experience those condition practically. 

1.2 PV principle: 

PV cells are the unit components of PV panels. They are made by slicing a very thin layer of 

a silicon rod called an ingot. A single silicon wafer does not act like a solar cell yet; it lacks 

additional layers to be able to operate as a solar cell. A silicon based solar cell consists of the 

c-Si absorber layer, a pn-junction to separate the light-excited charge carriers, and a metal 

front and back contact.  

 

 

Fig1.1Monocrystalline silicon solar cell 

The light enters the solar cell from the front side (the top side);and is transmitted into the 

absorber layer where its energy is absorbed. The energy is used to excite charge carriers in 

the semiconductor material, which are negatively charged electrons, and positively charged 

holes. These charge carriers diffuse and need to be separated. This separation occurs at the 

depletion region between the n- and p-type doped silicon and the depletion region at the back 
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of the solar cell. Doped layers are areas where we intentionally have put impurities that make 

either the electron or the holes the dominant charge carriers in these regions. In n-type 

materials, the electrons are the dominant charge carrier and in p-type the holes are.  

Therefore, the electrons are collected at the n-type layer and holes at the p-type layer. Then 

the charge carriers have to be collected at the contacts. The electron will move through the 

load and back to the solar cell. Then, both charge carriers recombine at the metal/p-layer 

interface.  

Hence, we deduce that the photovoltaic process is based on three important principles: First, 

the excitation of free mobile charge carriers- the hole and electron- due to light Absorption. 

Second, the separation of the charge carriers (holes and electrons).Third, the collection of the 

charge carriers at the contacts.  

 

 

 

Fig1.2:Principle of operation of a solar cell 

The I-V plot (current versus voltage plot) helps understand the characteristics of solar panels. 

It is an appreciation of how the current changes with respect to voltage.  

A solar cell behaves much like a diode under non-illumination. It will block the current under 

reverse bias conditions and will produce a current under forward bias conditions. However, 
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when the solar cell is illuminated, it conducts additional current related to the excited charge 

carriers. 

 

Fig 1.3: I-V curve of a PV cell 

 

1.3 PV technology  

PV technology has, and will surely continue to make big advancements in the future. Many 

types of PV have emerged from that progress [3]. 

1.3.1 Monocrystalline silicon 

Monocrystalline silicon solar cells are probably the oldest type of solar cells. They are made 

from pure silicon crystal, which has continuous lattice and almost no defects. Its properties 

provide high efficiency of light conversion (up to 22-24%). Manufacturing of the Si crystals 

is rather complicated, which is responsible for high cost of this type of photovoltaics. Recent 

developments have decreased the total thickness of Si material used in monocrystalline cells 

to reduce cost. The monocrystalline silicon cells have a typical black or iridescent blue color. 

The monocrystalline silicon cells are believed to be very durable and last over 25 years. 

However, their efficiency will gradually decrease (about 0.5% per year), therefore 

replacement of operating modules might be needed sooner. The main disadvantages of the 

monocrystalline silicon panels are high initial cost and mechanical vulnerability (brittle). 
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1.3.2 Polycrystalline silicon 

Polycrystalline cells are made by assembling multiple grains and plates of silicon crystals 

into thin wafers. Smaller pieces of silicon are easier and cheaper to produce, so the 

manufacturing cost of this type of PV is less than that of monocrystalline silicon cells. The 

polycrystalline cells are slightly less efficient (12%). These cells can be recognized by their 

mosaic-like appearance. Polycrystalline cells are also very durable and may have a service 

life of more than 25 years. The drawbacks of this type of PV technology are mechanical 

brittleness and low conversion efficiency.  

1.3.3 Amorphous silicon (Thin-film) 

Thin film photovoltaic cells are produced by depositing silicon film onto substrate glass. In 

this process, less silicon is used for manufacturing compared to mono- or polycrystalline 

cells, but this economy comes at the expense of conversion efficiency. Thin-film PV cells 

have efficiency of 6% versus 15% for single crystal Si-cells. One way to improve the cell 

efficiency is to create a layered structure of several cells. The main advantage of the thin-film 

PV technology is that the amorphous silicon can be deposited on a variety of substrates, 

which can be made flexible and come in different shapes and therefore can be used in many 

applications. The amorphous silicon is also less prone to overheating, which usually 

decreases the solar cell performance. Amorphous silicon is most developed among the thin-

film PV.  

1.3.4 Cadmium Telluride, CdTe (thin-film) 

CdTe PV is another kind thin-film solar technology. It has become quite popular due to the 

lower cost per kW-hour. The best efficiency obtained with CdTe cells is around 16%. One of 

the advantages of the CdTe cells is that they capture shorter wavelengths of light than silicon 

cells can do. There are some environmental concerns related to the limited supply of 

tellurium and potential toxic impact of cadmium at the stage of CdTe panel disposal. 

Developing effective closed-loop recycling technologies can be a game-changing factor in 

favour of this technology. 

 

1.3.5 Copper Indium Gallium Selenide (CIGS) 
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CIGS PV have become a popular new material for solar cells, as it does not contain toxic Cd, 

and has higher efficiency (just under 20%). At this moment, the CIGS are the most efficient 

among the thin-film PV technologies. While lab results confirmed high promise of this kind 

of photovoltaics, the mass production of CIGS proved to be a problem. The CIGS cells are 

manufactured by thin film deposition on a substrate, which can also be flexible (unlike the 

silicon cells). Similar to CdTe cells, the CIGS cells demonstrate good resistance to heating. 

1.3.6 Polymer and organic PV 

Organic materials are quite attractive since they can be involved in high-output 

manufacturing and also because they can be made in various thicknesses and shapes. These 

types of cells are relatively lightweight (compared to silicon cells). Also, they offer flexibility 

and relatively low fabrication cost. They, however, are much less efficient (about 1/3 of a 

typical Si cell efficiency) and sometimes prone to quicker degradation (shorter service life).  

These are the main well-known types of PV technology; but with innovation and research 

new types with better characteristics will surely emerge. Breakthrough in PV industry is 

dependent on advents in other fields like chemistry. 

1.4 PV models 

1.4.1  Ideal PV model 

An ideal solar cell can be represented simply as a light-generated current source in parallel 

with a diode as shown in Fig 1.4 

Eq 1.1 gives the output current: 

𝐼 = 𝐼𝑝ℎ − 𝐼0 [exp (
V

aVT
) − 1] (1.1) 

Where VT is the diode thermal voltage given by: 

𝑉𝑇 =
𝑁𝑠𝑘𝑇

𝑞
 (1.2) 
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Fig 1.4: ideal solar cell model 

1.4.2 Single-diode model 

In fact, the solar cell is not exactly ideal. This is why more accurate models have been 

developed to give more realistic results in analysis. In other words, Eq. (1.1) does not 

accurately depict the behaviour of a PV cell. A more practical model is the single-diode 

model that is represented in Fig 1.5. Series and parallel resistances have been added to the 

previous model . Results that are more accurate are obtained from this model, although it 

consumes more computational time. Eq (1.3) gives the output current: 

 

𝐼 = 𝐼𝑝ℎ − 𝐼0 [exp (
V+IRs

𝑎VT
) − 1] − (

𝑉+𝐼𝑅𝑠

𝑅𝑝
)  (1.3) 

 

 

 

Fig 1.5: Single-diode PV model 

1.4.3 Double-diode model 
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This model is a modified version of the previous one by adding a second diode in parallel 

with the first one as shown in Fig 1.6. The additional diode stands for the effect caused by the 

recombination of charge carriers. However, the two-diode model makes computations longer 

despite its accuracy. Eq (1.4) in this case gives the output current: 

 

𝐼 = 𝐼𝑝ℎ − 𝐼01
[exp (

V+IRs

𝑎1VT
) − 1] − 𝐼02

[exp (
V+IRs

𝑎2VT
) − 1] − (

𝑉+𝐼𝑅𝑠

𝑅𝑝
)           (1.4) 

 

Fig 1.6: Double-diode PV model 

 

1.5 Model parameters: 

The solar cell model is constructed using the following parameters [4].  

1.5.1 Ideality Factor (𝒂): 

The ideality factor (a) is a unitless parameter. It is a measure of how closely the diode follows 

the ideal diode equation. It accounts for the different mechanisms responsible for moving 

carriers across the junction. The value of 𝑎 equal to one means the transport process is purely 

diffusion, and a value equal to two if it is primarily recombination in the depletion region. 

The parameter 𝑎 represents one of parameters to be computed in our work. The ideality factor 

appears in the diode current component of equation (1.3).  
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1.5.2  Photo Current 𝑰𝒑𝒉 

As its appellation suggests, the photocurrent (light-generated current) is the current generated 

due to the absorption of photons by a solar cell. It depends on reference first and second 

temperatures, T1 and T2, respectively, and it is given by: 

𝐼𝑝ℎ = 𝐼𝑝ℎ(𝑇1) + 𝐾0(𝑇 − 𝑇1)      (1.5) 

𝐼𝑝ℎ(𝑇1) = 𝐼𝑠𝑐𝑇1𝑛𝑜𝑚(
𝐺

𝐺𝑛𝑜𝑚
)                           (1.6) 

Where: 

𝐾0 =
𝐼𝑠𝑐𝑇2−𝐼𝑠𝑐𝑇1

𝑇2−𝑇1
                                           (1.7) 

 

′  

Fig 1.7: The effect of irradiance on cell IV curve 

1.5.3 Diode saturation current 𝑰𝟎: 

The saturation current is a combination of the generation current caused by thermal 

generation of electron-hole pairs within the depletion region of the diode and the diffusion 

current due to minority carriers in the n and p regions diffusing across the depletion region. 

Although the saturation current is voltage independent, it does depend on temperature since 

both the current contributions depend on thermally stimulated carriers.[5] 
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𝐼𝑜 = 𝐼𝑜𝑇1
(
𝑇1

𝑇
)
3
𝑒𝑥𝑝(

𝑞𝐸𝑔

𝑎𝑘
(

1

𝑇
−

1

𝑇1
))              (1.8) 

Where: 

𝐼𝑜𝑇1
=

𝐼𝑠𝑐𝑇1

𝑒𝑥𝑝(
𝑞𝑉𝑜𝑐𝑇1
𝑎𝑘𝑇1

)−1
                                      (1.9) 

1.5.4 Series resistance𝑅𝑆 

Series resistance in a solar cell has three causes: firstly, the movement of current through the 

emitter and base of the solar cell; secondly, the contact resistance between the metal contact 

and the silicon; and finally the resistance of the top and rear metal contacts. The main impact 

of series resistance is to reduce the fill factor, although excessively high values may also 

reduce the short-circuit current. 

 The value of 𝑅𝑠can be calculated using the following equation: 

𝑅𝑠 = −
𝑑𝑉

𝑑𝐼𝑉𝑜𝑐

−
1

𝑋𝑣
                                         (1.10) 

Where: 

𝑋𝑣 = 𝐼𝑜𝑇1
(

𝑞

𝑎𝑘𝑇1
) 𝑒𝑥𝑝⁡(

𝑞𝑉𝑜𝑐𝑇1

𝑎𝑘𝑇1
)                            (1.11) 

The equation of current with a series resistance only (no parallel resistance) reduces to the 

following: 

𝐼 = 𝐼𝑝ℎ − 𝐼0 [𝑒𝑥𝑝⁡(
𝑞𝑉+𝑅𝑠𝐼

𝑎𝑘𝑇
)]                              (1.12) 
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Fig 1.8: I-V curve with no series resistance 𝑹𝒔 = 𝟎 

 

 

Fig 1.9: I-V curve with a series resistance 𝑹𝒔 = 𝟐Ω  

We have taken only series resistance (no parallel resistance) in consideration in order to 

appreciate its effect clearly. This simplifies simulation of dynamic system where PV source is 

involved such as water pumping [6].  

Series resistance does not affect the solar cell at open-circuit voltage since the overall current 

flow through the solar cell, and therefore through the series resistance is zero. However, near 
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the open-circuit voltage, the I-V curve is strongly affected by the series resistance. A 

straightforward method of estimating the series resistance from a solar cell is to find the slope 

of the IV curve at the open-circuit voltage point.[7] 

1.5.5 Parallel resistance𝑹𝒑 

Significant power losses caused by the presence of a shunt resistance, 𝑅𝑝is typically due to 

manufacturing defects, rather than poor solar cell design. Low shunt resistance causes power 

losses in solar cells by providing an alternate current path for the light-generated current. 

Such a diversion reduces the amount of current flowing through the solar cell junction and 

reduces the voltage from the solar cell. The effect of a shunt resistance is particularly severe 

at low light levels, since there will be less light-generated current. The loss of this current to 

the shunt therefore has a larger impact. In addition, at lower voltages where the effective 

resistance of the solar cell is high, the impact of a resistance in parallel is large. The equation 

of a solar cell with a shunt resistance only is as follows:  

𝐼 = 𝐼𝑝ℎ − 𝐼0 ∗ exp (
qV

𝑎kT
) −

V

Rp
                               (1.13) 

 

Fig 1.10: IV curve of a cell with high shunt resistance of 1000Ω 
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Fig 1.11: Effect of low parallel resistance(10Ω) on cell IV curve 

 

1.6 Conclusion 

This chapter has dealt with the different aspects of Photovoltaics; from understanding the 

principle behind PV to exploring some models used in the literature. It goes without 

doubt to say that modelling is crucial in designing and studying photovoltaic systems 

behaviour. 
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Chapter II: Optimization algorithms 

2.1. Introduction: 

In mathematics, optimization is defined as finding the best solution for a problem from all 

feasible solutions [8]. Depending on whether the variables are continuous or discrete, the 

process of finding values of variables that satisfy an objective function is called optimization. 

An optimization algorithm is a procedure that is executed iteratively by comparing various 

solutions until an optimum or a satisfactory solution is found [9]. With the advent of 

computers, optimization has become a part of computer-aided design activities. 

 

2.2. Problem formulation 

A simple optimization is done by comparing a small set of potential solutions generated by 

using some background knowledge of the problem (initial guesses). Since problems differ, it 

is not possible to apply the same formulation to all of them. The purpose of formulation is to 

create a mathematical model of the optimal design problem, which then can be solved using 

an optimization algorithm [9]. 

2.2.1. Design variables: identifying design variables is the first step in formulating an 

optimization problem. The different combinations of these variables are the potential 

solutions. Design variables are updated in search for an optimal solution. 

2.2.2. Constraints: Design variables must satisfy certain constraints. These constraints can 

be boundary conditions for example. 

2.2.3. Objective function: This is the function that indicates how accurate a solution is. It is 

expressed in terms of design variables. 

 

2.3. Classification of optimization algorithms:  

There are many options for classifying optimization algorithms. Mainly, they can be 

classified into two categories, which are: Local optimization algorithms and Global 

optimization algorithms. 
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the difference between the two types can be clarified using a simple analogy; the peak of 

every mountain is a local optimum since it is the highest level on its neighbourhood, but only 

the peak of the highest mountain is a global optimum [10]. Following the analogy, local 

optimization finds local optimum that is not very far from the initial guess. Whereas, global 

optimization searches a bigger space to find a global optimum. 

In our work, all the algorithms used are global optimization ones. 

 

2.3.1. Local optimization algorithms 

Local optimization finds the optimal value within the neighbouring set of candidate solutions. 

The performance of these methods, generally, strongly depends on the initial values supplied. 

This means that optimization might need to be run several times, with different initial 

guesses. 

Newton Raphson (NR) method is an example in this category. NR uses an initial guess to 

start with, and the n-iterations are performed until a local optimum is obtained. The drawback 

is if the initial guess is far from the actual solution this method will be stuck and diverge. 

 

2.3.2. Global optimization algorithms 

For this project, metaheuristics are used. Metaheuristics can be adapted to solve a wide range 

of optimization problems. These methods are designed to find a good solution among a large 

set of feasible solutions with less computational effort than other optimization techniques. 

 

I. PSO 

 Particle Swarm Optimization (PSO) is a metaheuristic global optimization algorithm that has 

gained prominence in the last two decades due to its ease of application in unsupervised, 

complex multidimensional problems, which cannot be solved using traditional deterministic 

algorithms [11]. The canonical particle swarm optimizer is based on the flocking behaviour 

and social co-operation of birds and fish schools and draws heavily from the evolutionary 

behaviour of these organisms. 
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This algorithm searches the space of an objective function by adjusting the trajectories of 

individual agents, called particles, as these trajectories form piecewise paths in a quasi-

stochastic manner. The movement of a swarming particle consists of two major components: 

a stochastic component and a deterministic component. Each particle is attracted toward the 

position of the current global best 𝑔 ∗and its own best location 𝑥 in history, while atthe same 

time it has a tendency to move randomly. When a particle finds a location that is better than 

any previously found locations, then it updates it as the new current best for particle i. There 

is a current best for all n particles at any time t during iterations. The aim is to find the global 

best among all the current best solutions until the objective no longer improves or after a 

certain number of iterations. The movement of particles is schematically represented in 

Figure 2.1 where 𝑥 ∗ is the currentbest for particle 𝑖, and 𝑔 ∗= 𝑚𝑖𝑛{𝑓(𝑥𝑖)} for (i = 1,2, ...,n) 

is the current global best. 

The position of individual particles is updated as follows [8] 

: 

𝑥𝑛+1
𝑖 = 𝑥𝑛

𝑖 + 𝑣𝑛+1
𝑖                                              (2.1) 

The velocity is calculated as follows: 

𝑣𝑛+1
𝑖 = 𝑣𝑛

𝑖 + 𝑐1𝑟1(𝑝𝑛
𝑖 − 𝑥𝑛

𝑖 ) + 𝑐2𝑟2(𝑝𝑛
𝑔

− 𝑥𝑛
𝑖 )⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.2) 

Where : 

𝑥𝑛
𝑖 - particle position 

𝑣𝑛
𝑖 - particle velocity where  

𝑝𝑛
𝑖 - best remembered individual particle position 

𝑝𝑛
𝑔

- best remembered swarm position 
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Fig 2.1: Schematic representation of the motion of a particle in PSO 

PSO steps: 

1-Initialize: 

a) Set constants c1,c2,w,number of iterations 

b) Randomly initialise particle positions x0
i  

 i=1,…,n 

c) Randomly initialize particle velocities 0 ≤ 𝑣0
𝑖 ≤ 𝑣0

𝑚𝑎𝑥 

 i=1,…,n 

d) Initialize population members 

2- optimize: 

a) Evaluate the objective function value fk
i using design space coordinates xk

i 

b) If 𝑓𝑛
𝑖 ≤ 𝑓𝑏𝑒𝑠𝑡

𝑖  then 𝑓𝑏𝑒𝑠𝑡
𝑖 = 𝑓𝑛

𝑖 , 𝑝𝑛
𝑖 =𝑥𝑛

𝑖  

         𝑓𝑛
𝑖 ≤ 𝑓𝑏𝑒𝑠𝑡

𝑖  then 𝑓𝑏𝑒𝑠𝑡
𝑔

= 𝑓𝑛
𝑖, 𝑝𝑛

𝑔
= 𝑥𝑛

𝑖  

c) If the stopping condition is met then go to (3). 

d) Update all particle velocities 𝑣𝑛
𝑖  for  i=1,…,p 

e) Update all particle positions 𝑥𝑛
𝑖  for  i=1,…,p 

f) Increment n 

g) Go to 2 (a) 

3- terminate 
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Fig 2.2: Flowchart of PSO algorithm 

 

II. Wind Driven Optimization algorithm (WDO)  

The inspiration of the proposed WDO derives from the atmosphere [12]. In the atmosphere, 

wind blows in an attempt to balance the imbalance of pressure. It flows from high-pressure 

areas to low pressure areas at a velocity. Depending on the above analysis, some theoretical 

assumptions are formulated in derivation of the 

The Wind Driven Optimization (WDO) algorithm is inspired from the modelling of the 

climate. In our living environment, wind blows from the high-pressure zone to the low-

pressure zone at various speeds to equalize the air pressure imbalance. Based on Newton's 

second law of motion and some simplifications, the velocity vector, v, and the position 

vector, x, of the WDO algorithm are updated using 

𝑣(𝑘 + 1) = (1 − 𝛼)𝑣(𝑘) − 𝑔𝑥(𝑘) + (𝑅𝑇 |1 −
1

𝑖
| (𝑥𝑜𝑝𝑡 − 𝑥(𝑘))) + (

𝑐𝑣𝑜𝑡ℎ𝑒𝑟𝑑𝑖𝑚(𝑘)

𝑖
)        (2.3) 

Where: 

 i represents the ranking among all air parcels.  
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In this scheme, the best solution has the lowest pressure with rank 1 and is located at point 

𝑥𝑜𝑝𝑡. Equation (2.3) represents the final form of the velocity update utilized in WDO. The 

first term in Eq (2.3) states that if there are no other forces acting on the air parcel, then it 

would continue on its current path with its velocity proportionally reduced by friction. The 

friction coefficient term could be fixed to a constant value, or one could implement an 

adaptive friction coefficient, which could vary depending on the velocity of the air parcel. 

The second term states that gravity constantly pulls the air parcel from its current location 

towards the centre of the coordinate system at a magnitude proportional to the constant g. 

This term becomes particularly beneficial if the air parcels are stuck at the boundaries. The 

third term in Eq (2.3) implies that the higher ranked air parcels will most likely be at a 

location closer to the 𝑥𝑜𝑝𝑡and, hence, the effect of the pressure gradient would be smaller. 

The last term allows the velocity direction to be altered by other dimensions, with a larger 

influence on higher ranked air parcels. As can be clearly seen in Eq (2.3), there are multiple 

coefficients that must be chosen prior to starting an optimization, namely: α, g, RT, and c.. At 

each iteration, the velocity and the position of all air parcels need to be updated. Once the 

new velocity is calculated according to Eq (2.3), the position can be updated by utilizing the 

following equation, 

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝛥𝑡 ∗ 𝑣(𝑘 + 1)                                       (2.4) 

where, 𝛼 is a friction coefficient,⁡𝑔 is the gravitational constant, is the universal gas constant, 

T is the temperature, c is a constant, 𝑖 is the ranking among all air parcels,𝑥𝑜𝑝𝑡is the best 

parcel so far searched, 𝛥𝑡 is the step length. 

WDO steps: 

1- Initialization: the parameters given an initial value in this step are : population size,

number of iterations, algorithm coefficients alpha RT g .

2- Randomization: randomize initial population assign random position and velocity for

particles.

3- Fitness test: evaluate the pressure(fitness) of each air parcel (population member)

4- Update: update velocity and check its limits, update position and check its limits.

5- Check termination criteria: If the maximum number of iterations is reached end the

program, else go to(3)

A flowchart of WDO in represented in Fig 
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Fig 2.3: Flowchart for WDO algorithm 

III. Exchange market algorithm(EMA)

This algorithm is based on stock market behaviour [13]. In a stock market, the shares trading 

manner is completely sophisticated, different and unique according to mental conditions of 

several individuals. In the proposed algorithm, it is assumed that the people who are active in 

the exchange market act similar to the elite stock dealers. In this algorithm, in each market 

mode the fitness (objective function) of each individual is reviewed, ranked and sorted 

according to their properties values. In the EMA, all of the shareholders try to introduce 

themselves as the most successful individuals to market and then the individuals have less 

fitness tend to do greater risks. Shareholders are arranged into three categories according to 

their rank after each fitness test. The first group comprises the individual with the best fitness, 

whereas the third one englobes individuals with the least fitness levels. The individuals in the 

first group as successful people in the market remain unchanged in all stages of the market. 

The second and third groups trade with separate equations. In a non-oscillated market, the 

individuals in second and third groups select stocks which are same or close to the shares of 
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the first group. In other words, the algorithm has the duty to recruit members toward the elite 

members. For an oscillated market, the individuals in second and third groups trade with 

separate relationship at high risk, in other words, the algorithm searches for unknown points. 

In a stock market, a stable market that is not subject to oscillations can be easily anticipated, 

and individuals do not take unusual risks to increase their shares. In contrast to that, in an 

oscillating market the behaviour is not so obvious to be predicted, since individuals take high 

trading risks to try increasing their shares. 

In this algorithm, each individual represents a solution to the problem, and each share stands 

for a problem variable. There are two states of stock trading: non-oscillating market and 

oscillating market. 

1. Non-oscillating market: In this section, each individual is ranked based on the fitness

function and sorted as group 1, group 2, and group 3.

a) The first group is Elite (high rank) shareholders. They represent 10-30% of total

population. The members of this group are the best answers for the problems which

are necessary to stay intact and unchangeable

b) The second group is shareholders with mean rank. They represent 20-50% of total

population. This group updates its population according to the following equation:

𝑝𝑜𝑝𝑗
𝑔𝑟𝑜𝑢𝑝(2)

= 𝑟 ∗ 𝑝𝑜𝑝1,𝑖
𝑔𝑟𝑜𝑢𝑝(1)

+ (1 − 𝑟) ∗ 𝑝𝑜𝑝2,𝑖
𝑔𝑟𝑜𝑢𝑝(1)

(2.4) 

c) The third group is shareholders with weak rank. This group of shareholders

composes 20–50% of the population. The members of this group utilize the

differences of share values of the first group as well as their share values’ differences

compared to the first group individuals and change their shares according to the

following equations:

𝑝𝑜𝑝𝑘
𝑔𝑟𝑜𝑢𝑝(3),𝑛𝑒𝑤

= 𝑝𝑜𝑝𝑘
𝑔𝑟𝑜𝑢𝑝(3)

+ 0.8 ∗ 𝑆𝑘 (2.5) 

k=1,2,3,𝑛𝑘 

𝑆𝑘 = 2 ∗ 𝑟1 ∗ (𝑝𝑜𝑝1,𝑖
𝑔𝑟𝑜𝑢𝑝(1)

− 𝑝𝑜𝑝𝑘
𝑔𝑟𝑜𝑢𝑝(3)

) + 2 ∗ 𝑟2 ∗ (𝑝𝑜𝑝1,2
𝑔𝑟𝑜𝑢𝑝(1)

− 𝑝𝑜𝑝𝑘
𝑔𝑟𝑜𝑢𝑝(3)

)    (2.6)
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𝑟1and 𝑟2are random numbers in the interval [0, 1] and 𝑛𝑘 the 𝑛𝑡ℎmember of the third

group. 𝑝𝑜𝑝𝑘
𝑔𝑟𝑜𝑢𝑝(3)

is the 𝑘𝑡ℎmember and 𝑆𝑘is the share variations of the 𝑘𝑡ℎmember of

the third group.  

2. Oscillating market: In this section, having assessed the shareholders and ranking

them based on their fitness, the shareholders would start trading their shares. With

regard to their fitness, shareholders will be categorized into 3 separate groups again:

a) First Group: Shareholders with high ranks: This part of the population includes

the elite stockbrokers and they do not change their shares and do not undergo the

trade risk.

b) Second Group: Shareholders with mean ranks: In this section the sum of the

shares held by people tends to be constant and only the number of some of each

type of shares increase and some decrease in a way that the sum remains

constant. At first, the number of shares held by each person increases based on

the following equation:

𝛥𝑛𝑡1 = 𝑛𝑡1 − 𝛿 + (2 ∗ 𝑟 ∗ µ ∗ 𝜂1) (2.7) 

µ = (
𝑡𝑝𝑜𝑝

𝑛𝑝𝑜𝑝
) (2.8) 

𝑛𝑡1 = ∑ |𝑠𝑡𝑦|𝑛
𝑦=1 y=1, 2, 3… n (2.9) 

𝜂1 = 𝑛𝑡1 ∗ 𝑔1 (2.10) 

𝑔1
𝑘 = 𝑔1,𝑚𝑎𝑥 − (

𝑔1,𝑚𝑎𝑥−𝑔1,min

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) ∗ 𝑘 (2.11) 

𝛥𝑛𝑡1is the amount of shares should be added randomly to some shares, 𝑛𝑡1 is total 

shares of 𝑡𝑡ℎ memberbefore applying the share changes. 𝑆𝑡𝑦is the shares of the

𝑡𝑡ℎmember, 𝛿 is the information of exchange market.𝜂1is risk level related to each

member of the second group, 𝑡𝑝𝑜𝑝 is the number of the 𝑡𝑡ℎ member in EMA. 𝑛𝑝𝑜𝑝is

the number of the last member, µ is a constant coefficient for each member and 𝑔1 is 

the common market riskamount which decreases as iteration number increases. 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥is the last iteration number and k is the number ofprogram iteration. 

𝑔1,𝑚𝑎𝑥and𝑔1,𝑚𝑖𝑛indicate the maximum and minimum values of risk in market, 

respectively. In the second part of this section, it is necessary that each person 
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randomly sells some of his shares equal to the number he has purchased so that the 

sum of each person’s shares remains constant. In this section, it is essential that each 

person reduces the number of his shares in 𝛥𝑛𝑡2 amount. In this status, the 𝛥𝑛𝑡2of 

each person equals:𝛥𝑛𝑡2 = 𝑛𝑡2 − ⁡𝛿 

where𝛥𝑛𝑡2 is the amount of shares that should be decreased randomly from some 

shares and 𝑛𝑡2is the sum shareamount of 𝑡𝑡ℎ member after applying the share 

variations. 

c) Third Group: Shareholders with low ranks: In this section, unlike group 2, the 

sum of the person’s number of shares would change after each trade. In other 

words, in each section, the person purchases or sells a number of shares. The 

shareholders of this group change some of their shares based on the following 

equation: 

𝛥𝑛𝑡3 = (4 ∗ 𝑟𝑠 ∗ µ ∗ 𝜂2)                                      (2.12) 

𝑟𝑠 = 0.5 − 𝑟𝑎𝑛𝑑                                             (2.13) 

𝜂2 = 𝑛𝑡1 ∗ 𝑔2                                               (2.14) 

𝑔2
𝑘 = 𝑔2,𝑚𝑎𝑥 − (

𝑔2,𝑚𝑎𝑥−𝑔2,𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) ∗ 𝑘                             (2.15) 

Where 𝛥𝑛𝑡3is the share amount should be randomly added to the shares of each 

member, 𝑟𝑠is a random number in [-0.5 0.5] and 𝜂2is the risk coefficient related to 

each member of the third group. 𝑔2is the variable risk of the market in the third 

group. 
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Fig 2.4 : EMA flowchart 
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IV. Differential evolution (DE) algorithm

Differential evolution is a population-based optimisation evolution algorithm [14], 

developed to optimise real parameter, real valued functions.DE begins with an initial 

random population, indicated by 𝑃, which comprises 𝑁𝑃𝐷-dimension candidateindividuals. 

Thus, the individuals of the 𝐺𝑡ℎ generation in theinitial population can be represented by

(𝒙𝟏
𝐺, 𝒙𝟐

𝐺, 𝒙𝑵𝑷
𝐺 , whereG = 0, 1,… ,𝐺𝑚𝑎𝑥 denotes the generation times and 𝐺𝑚𝑎𝑥 is the

maximaltimes of the generation. Each candidate individual is actually a 𝐷-

dimensionparameter vector (target vector) within the boundaries denotedby 𝒙𝒊
𝐺=

(𝒙𝒊,𝟏
𝐺 , 𝒙𝒊,𝟐

𝐺 ,…𝒙𝒊,𝟏
𝐺 ,𝒙𝒊,𝑫

𝐺 ),, where 𝑖⁡indicates the 𝑖𝑡ℎ parametervector. Then, the individuals enter

a loop of the evolutionary process until meeting the termination criterion. 

Steps of DE: 

1-initialization: upper and lower bounds of each parameter are defined:𝑥𝑗
𝐿 ≤ 𝑥𝑗,𝑖,1 ≤ 𝑥𝑗

𝑈

initial population is generated using the following equation: 

𝑥𝑖,𝑗 = 𝐿𝐵𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝑈𝐵𝑗 − 𝐿𝐵𝑗)⁡ (2.16) 

𝑗=1,2,…,D 

where𝑟𝑎𝑛𝑑returns a random number uniformly distributed on the interval (0,1), and 

𝐿𝐵𝑗,𝑈𝐵𝑗are the lower and upper bound in the 𝑗𝑡ℎdimension, respectively.

2-mutation:After initialization, the mutation strategy is utilized in every individual𝒙𝒊
𝐺to

obtain the mutant vector 𝒗𝒊
𝐺at the G generation. Below are the mutation strategies:

• DE/rand/1

𝑣𝑖
𝐺 = 𝑥𝑟1

𝐺 + 𝐹 ∗ (𝑥𝑟2
𝐺 − 𝑥𝑟3

𝐺 )     (2.17) 

• DE/rand/2

𝑣𝑖
𝐺 = 𝑥𝑟1

𝐺 + 𝐹 ∗ (𝑥𝑟2
𝐺 − 𝑥𝑟3

𝐺 ) + 𝐹 ∗ (𝑥𝑟4
𝐺 − 𝑥𝑟5

𝐺 ) (2.18) 

• DE/best/1

𝑣𝑖
𝐺 = 𝑥𝑏𝑒𝑠𝑡

𝐺 + 𝐹 ∗ (𝑥𝑟1
𝐺 − 𝑥𝑟2

𝐺 ) (2.19) 

• DE/current-to-rand/1

𝑣𝑖
𝐺 = 𝑥𝑖

𝐺 + 𝐹 ∗ (𝑥𝑟1
𝐺 − 𝑥𝑖

𝐺) + 𝐹 ∗ (𝑥𝑟2
𝐺 − 𝑥𝑟3

𝐺 ) (2.20) 

• DE/current-to-best/1

𝑣𝑖
𝐺 = 𝑥𝑖

𝐺 + 𝐹 ∗ (𝑥𝑏𝑒𝑠𝑡
𝐺 − 𝑥𝑟𝑖

𝐺 ) + 𝐹 ∗ (𝑥𝑟1
𝐺 − 𝑥𝑟2

𝐺 ) (2.21) 
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The subscripts𝑟1,𝑟2,𝑟3, 𝑟4, 𝑟5 are mutually distinct integers randomlyproduced from  

{1, 2… NP} and they are unequal to the index 𝑖.The real number F is the scaling factor of 

difference vector. 𝑋𝑏𝑒𝑠𝑡
𝐺 denotes the best individual, that is the parameter vector which 

obtains the best fitness value in the current population. 

 

3-crossover: For the sake of increasing the diversity of the population, the crossover 

operation is performed by mixing the target vector 𝑥𝑖
𝐺withthe mutated vector 𝑣𝑖

𝐺to generate 

the crossover vector (trial vector) 𝑢𝑖
𝐺as follows: 

𝑢𝑖,𝑗
𝐺 = {

𝑣𝑖,𝑗
𝐺 , 𝑖𝑓⁡𝑟𝑎𝑛𝑑 ∗ 𝑢𝑖,𝑗 ≤ 𝐶𝑅⁡𝑜𝑟⁡𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑖,𝑗
𝐺 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.22) 

 

where 𝑖 ∈ [1, 𝑁𝑃], 𝑗⁡ ∈ [1, 𝐷] 

CR represents the crossover rate determined by the user, which controls the number of 

dimensions inherited from a mutant vector. 

4- Selection 

In the end, DE implements the greedy selection to decide whether the target vector or the 

trial vector is reserved to the next generation. For a minimization problem, the selection 

operator is as follows: 

𝑥𝑖
𝐺+1 = {

𝑢𝑖
𝐺 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝑢𝑖

𝐺) ≤ 𝑓(𝑥𝑖
𝐺)

𝑥𝑖
𝐺 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.23) 

where f (x) is the objective function (fitness function) to be minimized. 
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Fig 2.5: DE algorithm flowchart 
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V. Marine Predators Algorithm (MPA):

Marine Predators algorithm is a new metaheuristic algorithm developed in 2019 and 

published in 2020, even used for forecasting confirmed cases of COVID-19 in Italy, USA, 

Iran and Korea [15]  

As its name indicates, it is based on the behaviour of marine predators looking for prey. 

Based on “surviving of the fittest” predators try to select the best strategy that maximizes 

their chances of encountering a prey. 

MPA steps: 

1-initialization: the initial solution is uniformly distributed over the search space as the first

trial according to Eq (2.24) 

𝑋0 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (2.24) 

Where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the lower and upper limits for variables and rand is a random 

number in the range of 0 to 1. 

Based on the survival of the fittest theory, it is said that top predators in nature are more 

talented in foraging. Thus, the fittest solution is nominated as a top predator to construct a 

matrix which is called Elite. Arrays of this matrix oversee searching and finding the prey 

based on the information on prey’s positions   

𝐸𝑙𝑖𝑡𝑒 =

[

𝑋1,1
𝐼 ⁡𝑋1,2

𝐼 …⁡𝑋1,𝑑
𝐼

𝑋2,1⁡
𝐼 ⁡𝑋2,2

𝐼 …⁡𝑋2,𝑑
𝐼

………
𝑋𝑛,1

𝐼 ⁡𝑋𝑛,2
𝐼 …⁡𝑋𝑛,𝑑

𝐼 ]
𝑛𝑥𝑑

(2.25) 

Where 𝑋𝐼⃗⃗⃗⃗  represents the top predator vector, which is replicated n times to construct the Elite

matrix. n is the number of search agents while d is the number of dimensions. It is noted that 

both predator and prey are considered as search agents. Because by the time that a predator is 

looking for its prey, the prey is looking for its own food. At the end of each iteration, the Elite 

will be updated if the top predator is substituted by the better predator. 

Another matrix with the same dimension as Elite is called Prey which the predators update 

their positions based on it. In a simple word, the initialization creates the initial Prey of which 

the fittest one (predator) constructs the Elite. The Prey is shown as follows: 
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Prey = [

𝑋1,1⁡𝑋1,2 …⁡𝑋1,𝑑

𝑋2,1⁡⁡𝑋2,2 …⁡𝑋2,𝑑

………
𝑋𝑛,1⁡𝑋𝑛,2 …⁡𝑋𝑛,𝑑

]

𝑛𝑥𝑑

(2.26) 

It should be noted that the whole process of the optimization is mainly and directly related to 

these two matrices. 

2- Optimization phases: MPA optimization process is divided into three main phases of

optimization considering different velocity ratio and at the same time mimicking the entire 

life of a predator and prey: 

a) Phase 1: In high-velocity ratio or when predator is moving faster than prey. This

scenario happens in the initial iterations of optimization, where the exploration matters.

The following mathematical model is applied:

While 𝐼𝑡𝑒𝑟 <
1

3
⁡𝑀𝑎𝑥𝑖𝑡𝑒𝑟 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑅𝐵
⃗⃗⃗⃗  ⃗ ⊗ (𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐵

⃗⃗⃗⃗  ⃗ ⊗ 𝑃𝑟𝑒𝑦𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗⁡⁡⁡𝑖 = 1,…𝑛 (2.27) 

𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑃𝑟𝑒𝑦𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑃. 𝑅⃗ ⊗ 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (2.28) 

Where 𝑅𝐵 is a vector containing random numbers based on Normal distribution 

representing the Brownian motion. The notation ⊗ shows entry-wise multiplications. The 

multiplication of by prey simulates the movement of prey. P=0.5 is a constant number, and 

R is a vector of uniform random numbers in [0,1]. This scenario happens in the first third of 

iterations when the step size or the velocity of movement is high for high exploration 

ability. Iter is the current iteration while Max_iter is the maximum one. 

b) Phase 2: In this stage, the prey and predator are moving in the same area, and this

movement simulates the process of searching for the prey/food. Furthermore, this refers

to the process of changing the status of the MPA from exploration to exploitation.

The following mathematical model is applied:

𝑊ℎ𝑖𝑙𝑒
1

3
⁡𝑀𝑎𝑥𝑖𝑡𝑒𝑟 < 𝐼𝑡𝑒𝑟 <

2

3
𝑀𝑎𝑥𝑖𝑡𝑒𝑟 

For the first half of population 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑅𝐿
⃗⃗ ⃗⃗ ⊗ (𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐿

⃗⃗ ⃗⃗ ⊗ 𝑃𝑟𝑒𝑦𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗⁡⁡⁡⁡𝑖 = 1,…
𝑛

2
(2.29) 

Then Eq 2.28 is re-applied. 
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where𝑅𝐿
⃗⃗ ⃗⃗  is a vector of random numbers based on Lévy distribution representing Lévy 

movement. The multiplication of 𝑅𝐿
⃗⃗ ⃗⃗  and Prey simulates the movement of prey in Lévy 

manner while adding the step size to prey position simulates the movement of prey. 

For the second half of population: 

⁡𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑅𝐵
⃗⃗⃗⃗  ⃗ ⊗ (𝑅𝐵

⃗⃗⃗⃗  ⃗ ⊗ 𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑃𝑟𝑒𝑦𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗⁡⁡⁡𝑖 =
𝑛

2
, … 𝑛 (2.30) 

𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑃𝑟𝑒𝑦𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑃. 𝐶𝐹 ⊗ 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (2.31) 

where CF is the parameter that controls the step size of movement for the predator. 

c) phase 3: In low-velocity ratio or when predator is moving faster than prey. This 

scenario happens in the last phase of the optimization process which is mostly 

associated with high exploitation capability.  

The following mathematical model is applied: 

𝑊ℎ𝑖𝑙𝑒⁡𝐼𝑡𝑒𝑟 >
2

3
𝑀𝑎𝑥𝐼𝑡𝑒𝑟 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑅𝐿
⃗⃗ ⃗⃗ ⊗ (𝑅𝐿

⃗⃗ ⃗⃗ ⊗ 𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑃𝑟𝑒𝑦𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗⁡⁡⁡𝑖 = 1,… , 𝑛 (2.32) 

Eq (2.31) is re-applied 

3- Eddy formation and FADs’ effect: 

Another point which causes a behavioural change in marine predators is environmental issues 

such as the eddy formation or Fish Aggregating Devices (FADs) effects. the FADs effect is 

mathematically presented as: 

𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {

𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐶𝐹[𝑋 𝑚𝑖𝑛 + 𝑅⃗ (𝑋 𝑚𝑎𝑥 − 𝑋 𝑚𝑖𝑛)] ⊗ 𝑈⃗⃗ ⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑟 ≤ 𝐹𝐴𝐷𝑠

𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + [𝐹𝐴𝐷𝑠(1 − 𝑟) + 𝑟](𝑃𝑟𝑒𝑦𝑟1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑃𝑟𝑒𝑦𝑟2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )⁡⁡⁡⁡⁡𝑖𝑓⁡𝑟 > 𝐹𝐴𝐷𝑠

 (2.33) 

Where 𝐹𝐴𝐷𝑠 = 0.2 is the probability of FADs effect on the optimization process. 𝑈⃗⃗ ⁡⁡is the 

binary vector with arrays including zero and one. This is constructed by generating a 

random vector in [0,1] and changing its array to zero if the array is less than 0.2 and one if it 

is greater than 0.2. r is the uniform random number in [0,1].⁡𝑋 𝑚𝑖𝑛 and 𝑋 𝑚𝑎𝑥 are the vectors 

containing the lower and upper bounds of the dimensions. Subscripts 𝑟1 and 𝑟2 denote 

random indexes of prey matrix. 

4- Marine memory: Based on the highlighted points, marine predators have a good 

memory in reminding the place where they have been successful in foraging. This capability 

is simulated by memory saving in MPA. After updating the Prey and implementing FADs 
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effect, this matrix is evaluated for fitness to update the Elite. The fitness of each solution of 

the current iteration is compared to its equivalent in prior iteration, and the current one 

replaces the solution if it is more fitted. 

2.4. Conclusion: the algorithms mentioned may differ in their working process. They 

may differ in the number of steps, and the number of parameters required to be tuned. 

However, they can all be adapted for our optimization purposes, which will be shown 

in the next chapter.   
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CHAPTER III: PV parameters extraction 

3.1. Introduction: 

As we have seen in chapter two, to model a PV module several parameters must be obtained. 

Modelling is important whether it is for educational purposes or for actually assessing the 

performance of a PV panel. Parameter extraction of photovoltaic (PV) models, which 

remains a multi-variable, nonlinear, and multi-modal problem, has recently gained 

considerable attention in the simulation and calculation of solar PV systems. Extracting 

these parameters can be done by using either the manufacturer’s data sheet or actual 

experimental data. In this project, the algorithms mentioned in chapter three (PSO, WDO, 

EMA, DE) have been adapted to suite the purpose of PV parameters extraction of single-

diode model using experimental data. Methods used in extraction can be classified into three 

categories: analytical methods, iterative-based methods, and meta-heuristic methods. 

 

3.2. Parameters extraction methods: 

3.2.1 Analytical method:  

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 ∗ exp (
𝑉+𝑅𝑠𝐼

𝑎𝑉𝑡
− 1) −

𝑉+𝐼𝑅𝑠

𝑅𝑝
 (3.1) 

Analytical expressions for the extraction of the model parameters: 

𝑎 =
𝑉𝑚+𝐼𝑚𝑅𝑠0−𝑉𝑜𝑐

𝑉𝑇[ln(𝐼𝑠𝑐−
𝑉𝑚
𝑅𝑝0

−𝐼𝑚)−ln(𝐼𝑠𝑐−
𝑉𝑜𝑐
𝑅𝑝

)+
𝐼𝑚

𝐼𝑠𝑐−(
𝑉𝑜𝑐
𝑅𝑝0

)

]

 (3.2) 

𝐼0 = (𝐼𝑠𝑐 −
𝑉𝑜𝑐

𝑅𝑝
) ∗ exp⁡(−

𝑉𝑜𝑐

𝑛𝑉𝑇
) (3.3) 

𝑅𝑠 = 𝑅𝑠0 −
𝑛𝑉𝑇

𝐼0
exp⁡(−

𝑉𝑜𝑐

𝑛𝑉𝑇
) (3.4) 

𝑅𝑠0 = (−(
𝑑𝑉

𝑑𝐼
)
𝑉=𝑉𝑜𝑐

) (3.5) 

𝑅𝑝 = 𝑅𝑝0 = −(
𝑑𝑉

𝑑𝐼
)
𝐼=𝐼𝑠𝑐

 (3.5) 

𝐼𝑝ℎ = 𝐼𝑠𝑐(1 +
𝑅𝑠

𝑅𝑝
) (3.6) 

[16] 
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3.2.2 Iterative method: this method involves minimizing the objective square error where 

the error function is defined as the difference between estimated and experimental currents. 

It is expressed as follows: 

𝑆(𝜃) = ∑ (𝐼𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐼𝑖,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)𝑁
𝑖=1 ² (3.7) 

where: 

𝑆(𝜃): is the objective function to minimize 

N: is the number of points measured (𝑉𝑖,𝐼𝑖) 

𝐼𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 : is the measured current 

𝐼𝑖,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑: is the estimated current  

𝜃=[a,I0,Iph,Rp,Rs] : parameters to estimate. 

Eq (3.1) is implicit in I, so for computation purposes 𝐼𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and 𝑉𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 are 

substituted in Eq (3.1 1) 

𝐼(𝜃) = 𝐼𝑝ℎ − 𝐼𝑠 ∗ exp (
𝑉𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑+𝑅𝑠𝐼𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑎𝑉𝑡
− 1) −

𝑉𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑+𝑅𝑠𝐼𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑅𝑝

 (3.8) 

Eq. (3.8)is nonlinear in its parameters and hence the resulting set of normal equations F(𝜃), 

derived from multivariate calculus fora minimum to occur, will also be nonlinear and no 

exact solution can be generally found. Newton's method can be used to obtain an 

approximation to the exact solution for the nonlinear set of equations F(𝜃) =O. The Newton 

functional iteration procedure evolves from: 

[𝜃𝑘] = [𝜃𝑘−1] − [𝐽(𝜃𝑘−1)]
−1

[𝐹(𝜃𝑘−1)] (3.9) 

where [𝐽(𝜃)] is the Jacobian matrix. The NR method converges rapidly, but it is only a local 

optimization technique that also requires a sufficiently accurate starting vector 𝜃. [17] 

 

3.3.3Meta-heuristics:this is the method chosen in this work. It is rather a new method 

compared to the previous ones. In this method, no initial guess in needed, only the allowed 

range of the parameters up for optimization is provided. This allows more flexibility to look 

on many potential candidate solutions and improve their fitness accordingly. 

The objective function to be minimized, in this project, is the Root mean square error 

(RMSE) between experimental and estimated currents. RMSE is given by equation  

𝐹(𝜃) = √
1

𝑁
∑ (𝐼𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐼𝑖,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)𝑁

𝑖=1 ² (3.10) 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 ∗ exp (
𝑉+𝑅𝑠𝐼

𝑁𝑠𝑎𝑉𝑇
− 1) −

𝑉+𝐼𝑅𝑠

𝑅𝑝
 (3.11) 
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𝐼(𝜃) = 𝐼𝑝ℎ − 𝐼𝑠 ∗ exp (
𝑉𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑+𝑅𝑠𝐼𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑎𝑉𝑡
− 1) −

𝑉𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑+𝑅𝑠𝐼𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑅𝑝

 (3.12) 

𝜃=[a,I0,Iph,Rp,Rs] : parameters to be computed. 

Below, is the way this method has been used in PV parameters extraction 

 

• All the algorithms used in this section are population-based ones.  

• Experimental data (current and voltage) of PV modules are read from excel files. 

The four PV modules used are: CondorCEM150M, KyoceraKC125GHT,SanyoHIP-

190B2-BO-01, and SilikenSLK60P6L 

• The number of iterations and number of population are chosen. 

As a rule of thumb, since the number of parameters is five, the number of population 

is chosen to be ten times that number (number of population=50). 

The maximum number of iterations is chosen to be 1000. 

• Algorithm coefficients are initialized; these coefficients can be tuned along the 

program depending on the algorithm. 

• A random initial population is initialized within the parameters boundaries. 

Each population member 𝑝𝑜𝑝𝑖 is a vector of the five parameters of interest: 

 𝑝𝑜𝑝𝑖 = [𝑎⁡𝑅𝑠⁡𝑅𝑝𝐼𝑝𝑣⁡𝐼𝑜] 

• The fitness (RMSE) of each population member (candidate solution) is evaluated. 

• Population members are updated; with the boundary conditions checked and 

respected, in order to get a better RMSE. 

• The algorithms run for a defined number of iterations and give the smallest obtained 

value of RMSE 

• In the end of the MATLAB programs running, the following results are obtained:  

The single diode model 5 parameters, I-V curves with both experimental and 

calculated currents on them, and a graph of RMSE vs the number of iterations. 
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3.3. Results 

In this section, the results of PSO,WDO, EMA, DE, and MPA based PV single-diode 

model parameters extraction are shown. The results consist of I-V curves depicting 

both estimated and measured current data, and graphs showing RMSE vs iteration 

number. 

The results are organised as follows: 

• Each algorithm has four sections of results (for the four PV modules) 

• Each section comprises two graphs: RMSE vs iteration and I-V curve. 

 

3.3.1. PSO results: 

a) Condor CEM150M 

 

Fig 3.1: RMSE vs Iteration graph using PSO on Condor CEM150M PV module data. 

 



CHAPTER III: PV Parameters extraction 

37 
 

 

Fig 3.2: I-V curve showing both calculated (through PSO) and measured currentsof 

Condor CEM150M PV module 

b) KyoceraKC125GHT: 

 

Fig 3.3: RMSE vs Iteration graph using PSO onKyoceraKC125GHT module data. 
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Fig 3.4: I-V curve showing both calculated (through PSO) and measured currents of 

Kyocera KC125GHT PV module 

c) SilikenSLK60P6L: 

 

Fig 3.5: RMSE vs Iteration graph using PSO on Siliken SLK60P6L PV module data. 
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Fig 3.6: I-V curve showing both calculated (through PSO) and measured currents of 

SilikenSLK60P6L PV module 

d) Sanyo HIP-190B2-BO-01: 

 

Fig 3.7: RMSE vs Iteration graph using PSO on Sanyo HIP-190B2-BO-01 PV module 

data. 
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Fig 3.8: I-V curve showing both calculated (through PSO) and measured currents of 

Sanyo HIP-190B2-BO-01 PV module 

 

 

 

PV module 𝑎 𝑅𝑠(Ω) 𝑅𝑝(Ω) 𝐼𝑝ℎ(𝐴) 𝐼0(𝐴) RMSE 

CondorCEM150M 1.4483 0.2216 4.223*103 8.3594 8.2937*10-6 0.0472 

Kyocera KC125GHT 1.3578 0.2335 4.471*102 8.0433 6.8308*10-6 0.0390 

Siliken-SLK60P6L 

210Wp 

1.2818 0.3912 9.356*102 8.2890 2.4152*10-6 0.0429 

Sanyo-HIP-190B2-

BO-01 

1.6765 0.9788 2.397*103 3.1822 4.1867*10-6 0.0095 

Table 1:extracted model parameters and RMSE using PSO 
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3.3.2 WDO results: 

a) Condor CEM150M: 

 

Fig 3.9: RMSE vs Iteration graph using WDO on Condor CEM150M PV module data. 

 

Fig 3.10: I-V curve showing both calculated (through WDO) and measured currents of 

Condor CEM150M PV module 
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b) Kyocera KC125GHT: 

 

 

Fig 3.11: RMSE vs Iteration graph using WDO onKyocera KC125GHT module data. 

 

Fig 3.12: I-V curve showing both calculated (through WDO) and measured currents of 

Kyocera KC125GHT PV module 
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c) Siliken SLK60P6L: 

 

Fig 3.13: RMSE vs Iteration graph using WDO on Siliken SLK60P6LPV module data. 

 

 

Fig 3.14: I-V curve showing both calculated (through WDO) and measured currents of 

Siliken SLK60P6L PV module 
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d) Sanyo HIP-190B2-BO-01: 

 

Fig 3.15: RMSE vs Iteration graph using WDO on Sanyo HIP-190B2-BO-01 PV module 

data. 

 

Fig 3.16: I-V curve showing both calculated (through WDO) and measured currents of 

Sanyo HIP-190B2-BO-01 PV module 
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PV module 𝑎 𝑅𝑠(Ω) 𝑅𝑝(Ω) 𝐼𝑝ℎ(𝐴) 𝐼0(𝐴) RMSE 

Condor CEM150M 1.3033 0.2460 2.070*103 8.3183 1.7658*10-6 0.0369 

Kyocera KC125GHT 1.3479 0.2376 1.065*103 8.0657 6.1658*10-6 0.0406 

Siliken SLK60P6L 

210Wp 

1.3301 0.3759 3.397*103 8.3035 4.1984*10-6 0.0446 

Sanyo HIP-190B2-BO-

01 

1.7343 0.8780 2.252*103 3.1901 6.5997*10-6 0.0122 

Table 2:extracted model parameters and RMSE using WDO 

3.3.3 EMA results: 
a) Condor CEM150M: 

 

 

Fig 3.17: RMSE vs Iteration graph using EMA on Condor CEM150M PV module data. 
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Fig 3.18: I-V curve showing both calculated (through EMA) and measured currents of 

Condor CEM150M PV module 

 

b) Kyocera KC125GHT: 

 

Fig 3.19: RMSE vs Iteration graph using EMA on Kyocera KC125GHT PV module data. 
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Fig 3.20: I-V curve showing both calculated (through EMA) and measured currents of 

Kyocera KC125GHTPV module 

c) Siliken SLK60P6L: 

 

Fig 3.21: RMSE vs Iteration graph using EMA on Siliken SLK60P6LPV module data. 



CHAPTER III: PV Parameters extraction 

48 
 

 

Fig 3.22: I-V curve showing both calculated (through EMA) and measured currents of 

Siliken SLK60P6L PV module 

d) Sanyo HIP-190B2-BO-01:  

 

Fig 3.23: RMSE vs Iteration graph using EMA on Sanyo HIP-190B2-BO-01 

PV module data. 
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Fig 3.24: I-V curve showing both calculated (through EMA) and measured currents of 

Sanyo HIP-190B2-BO-01 PV module 
 

 

PV module 𝑎 𝑅𝑠(Ω) 𝑅𝑝(Ω) 𝐼𝑝ℎ(𝐴) 𝐼0(𝐴) RMSE 

Condor CEM150M 1.3058 0.2462 3.089*103 8.3370 1.8240*10-6 0.0381 

Kyocera KC125GHT 1.3741 0.2289 2.290*103 8.0143 8.0754*10-6 0.0395 

Siliken SLK60P6L 

210Wp 

1.3688 0.3655 1.723*103 8.2957 6.3057*10-6 0.0474 

Sanyo HIP-190B2-BO-

01 

1.7512 0.8738 3.095*103 3.1729 7.4343*10-6 0.0122 

Table 3:extracted model parameters and RMSE using EMA 
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3.3.4. DE results: 

a) Condor CEM150M 

 

Fig 3.25: RMSE vs Iteration graph using DE on Condor CEM150M PV module data. 

 

Fig 3.26: I-V curve showing both calculated (through DE) and measured currents of 

Condor CEM150M PV module 
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b) Kyocera KC125GHT 
 

 

Fig 3.27: RMSE vs Iteration graph using DE on Kyocera KC125GHT PV module data. 

 

Fig 3.28: I-V curve showing both calculated (through DE) and measured currents of 

Kyocera KC125GHT PV module 
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c) Siliken SLK60P6L: 

 

Fig 3.29: RMSE vs Iteration graph using DE on Siliken SLK60P6LPV module data. 

 

Fig 3.30: I-V curve showing both calculated (through DE) and measured currents of 

Siliken SLK60P6L PV module 
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d) Sanyo HIP-190B2-BO-01: 

 

Fig 3.31: RMSE vs Iteration graph using DE on Sanyo HIP-190B2-BO-01 PV module 

data. 

 

Fig 3.32: I-V curve showing both calculated (through DE) and measured currents of 

Sanyo HIP-190B2-BO-01 PV module 
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PV module 𝑎 𝑅𝑠(Ω) 𝑅𝑝(Ω) 𝐼𝑝ℎ(𝐴) 𝐼0(𝐴) RMSE 

Condor CEM150M 1.2942 0.2477 4.902*103 8.3140 1.5837*10-6 0.0205 

Kyocera KC125GHT 1.3956 0.2269 5.00*102 8.0534 1.0000*10-5 0.0070 

Siliken SLK60P6L 

210Wp 

1.2672 0.3950 5.924*102 8.2955 2.0269*10-6 0.0274 

Sanyo HIP-190B2-BO-

01 

2.0000 1.4566 5.00*102 3.2069 4.0000*10-8 0.0151 

Table 4:extracted model parameters and RMSE using DE 

 

3.3.5. MPA Results: 

 

a)Condor CEM150M: 

 

Fig 3.33: RMSE vs Iteration graph using MPA on Condor CEM150M PV module data. 



CHAPTER III: PV Parameters extraction 

55 
 

 

 

Fig 3.34: I-V curve showing both calculated (through MPA) and measured currents of 

Condor CEM150M PV module 

b) Kyocera KC125GHT: 

 

Fig 3.35: RMSE vs Iteration graph using MPA on Kyocera KC125GHT PV module 

data. 
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Fig 3.36: I-V curve showing both calculated (through MPA) and measured currents of 

Kyocera KC125GHT PV module 

c) Siliken SLK60P6L:  

 

Fig 3.37: RMSE vs Iteration graph using MPA on Siliken SLK60P6LPV module data. 
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Fig 3.38: I-V curve showing both calculated (through MPA) and measured 

currents of Siliken SLK60P6LPV module. 

d) Sanyo HIP-190B2-BO-01:  

 

Fig 3.39: RMSE vs Iteration graph using MPA on Sanyo HIP-190B2-BO-01 PV module 

data. 
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Fig 3.40: I-V curve showing both calculated (through MPA) and measured currents of 

Sanyo HIP-190B2-BO-01 PV module 

 

PV module 𝑎 𝑅𝑠(Ω) 𝑅𝑝(Ω) 𝐼𝑝ℎ(𝐴) 𝐼0(𝐴) RMSE 

Condor CEM150M 1.2644 0.2523 1.189*103 8.3120 1.1010*10-6 0.0208 

Kyocera KC125GHT 1.3535 0.2440 4.108*103 8.0439 6.5088*10-6 0.0144 

Siliken SLK60P6L 

210Wp 

1.3751 0.3637 4.290*102 8.2873 6.6865*10-6 0.0322 

Sanyo HIP-190B2-BO-

01 

1.6237 1.0496 1.290*103 3.1868 2.6520*10-6 0.0052 

Table 5:extracted model parameters and RMSE using MPA 

 

 

  



CHAPTER III: PV Parameters extraction 

59 
 

 

3.4. Results discussion: 

The algorithms used have yielded very good RMSE values, which shows that the difference 

between the experimental and calculated data is very small; this means that the parameters 

obtained are accurate. Hence, the models are reliable and can be used to represent the 

modules accurately; by inspecting the obtained I-V curves, it can be seen that the data points 

calculated using the extracted parameters align almost perfectly with the experimental I-V 

curves, which confirms the accuracy of the models obtained. 

The curves representing the RMSE value versus the number of iterations give an overview 

about the behaviour of the five algorithms in the process of finding optimal parameter values 

to achieve the best RMSE value possible. It can be said that the algorithms keep the same 

pattern while optimizing; for example PSO has a stair looking graph behaviour, it is like the 

RMSE value is driven downstairs (to lower values) but in relatively large treads. This causes 

PSO, generally, to take a greater number of iterations to find its best possible RMSE, 

compared to the other algorithms. Another observation is that almost all graphs show that the 

best possible value of RMSE is reached way before the determined number of maximum 

iterations; so there is no need to increment that number looking for better results. 

3.4.1 Comparative tables: 

a) Condor CEM150M: 

Algorithm 𝑎 𝑅𝑠(Ω) 𝑅𝑝(Ω) 𝐼𝑝ℎ(𝐴) 𝐼0(𝐴) RMSE 

PSO 1.4483 0.2216 4.223*103 8.3594 8.2937*10-6 0.0472 

WDO 1.3033 0.2460 2.070*103 8.3183 1.7658*10-6 0.0369 

EMA 1.3058 0.2462 3.089*103 8.3370 1.8240*10-6 0.0381 

DE 1.2942 0.2477 4.902*103 8.3140 1.5837*10-6 0.0205* 

MPA 1.2644 0.2523 1.189*103 8.3120 1.1010*10-6 0.0208 

Table 6: Comparative table of the parameters extracted and RMSE values of the five 

algorithm for Condor CEM150M 

a) Kyocera KC125GHT: 

Algorithm 𝑎 𝑅𝑠(Ω) 𝑅𝑝(Ω) 𝐼𝑝ℎ(𝐴) 𝐼0(𝐴) RMSE 

PSO 1.3578 0.2335 4.471*102 8.0433 6.8308*10-6 0.0390 

WDO 1.3479 0.2376 1.065*103 8.0657 6.1658*10-6 0.0406 
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EMA 1.3741 0.2289 2.290*103 8.0143 8.0754*10-6 0.0395 

DE 1.3956 0.2269 5.00*102 8.0534 1.0000*10-5 0.0070* 

MPA 1.3535 0.2440 4.108*103 8.0439 6.5088*10-6 0.0144 

Table 7: Comparative table of the parameters extracted and RMSE values of the five 

algorithm for Kyocera KC125GHT 

 

 

b) Siliken SLK60P6L: 

Algorithm 𝑎 𝑅𝑠(Ω) 𝑅𝑝(Ω) 𝐼𝑝ℎ(𝐴) 𝐼0(𝐴) RMSE 

PSO 1.2818 0.3912 9.356*102 8.2890 2.4152*10-6 0.0429 

WDO 1.3301 0.3759 3.397*103 8.3035 4.1984*10-6 0.0446 

EMA 1.3688 0.3655 1.723*103 8.2957 6.3057*10-6 0.0474 

DE 1.2672 0.3950 5.924*102 8.2955 2.0269*10-6 0.0274* 

MPA 1.3751 0.3637 4.290*102 8.2873 6.6865*10-6 0.0322 

Table 8: Comparative table of the parameters extracted and RMSE values of the five 

algorithm for Siliken SLK60P6L 

c) Sanyo HIP-190B2-BO-01: 

Algorithm 𝑎 𝑅𝑠(Ω) 𝑅𝑝(Ω) 𝐼𝑝ℎ(𝐴) 𝐼0(𝐴) RMSE 

PSO 1.6765 0.9788 2.397*103 3.1822 4.1867*10-6 0.0095 

WDO 1.7343 0.8780 2.252*103 3.1901 6.5997*10-6 0.0122 

EMA 1.7512 0.8738 3.095*103 3.1729 7.4343*10-6 0.0122 

DE 2.0000 1.4566 5.00*102 3.2069 4.0000*10-8 0.0151 

MPA 1.6237 1.0496 1.290*103 3.1868 2.6520*10-6 0.0052* 

Table 9: Comparative table of the parameters extracted and RMSE values of five the 

algorithm for Sanyo HIP-190B2-BO-01 

*: best obtained RMSE value for the module. 

From the comparative tables above, DE is clearly on top in terms of RMSE values; it has 

three best RMSE values out of four. It has not even reached a value above 0.274; this shows 

the effectiveness of this optimization method for the purpose of single-diode model PV 

parameters extraction. MPA has also given three second-best results and one best, which 

shows that this newly developed algorithm is very effective. However, the statement does not 

discredit the other optimization techniques used.  
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Another observation is the narrow gap in RMSE values overall, but especially between WDO 

and EMA; the gap is very narrow between the two values on all tables. 

The widely varying parameter, between all algorithms results, is the parallel resistance 𝑅𝑝; 

this is mainly due to its wider range.  

The less varying parameter between the five algorithms results is the photo-generated current 

𝐼𝑝ℎ; this is logical because 𝐼𝑝ℎ must be very close to the short-circuit current of the module. 

 

3.5. Conclusion: 

This chapter has covered our approach on single-diode parameters extraction; the approach is 

based on using metaheuristic techniques on the problem formulated as an optimization one. 

Different algorithms have been used, their behaviours were observed some yielding more 

accurate results, but overall all the results obtained have good fitness and are satisfactory.
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General conclusion: 

Solar energy is labelled as the main energy for the future; this labelling has led the 

photovoltaic literature to grow fast, over the years. In this project, interest was oriented 

towards one particular aspect; that is the modelling of photovoltaics. That has lead us to 

gather a great understanding of PVs, in our way to realise this project. Going from broad 

areas of research to narrow ones kept the work very interesting; for seeing the bigger picture 

always helps in understanding more details put together. 

Our work started by explaining the very basic principle of PVs, which is essential before 

going into more in-depth aspects. After that, different equivalent model were presented; the 

ideal PV cell representation, single-diode model, and double-diode model. Following that, the 

parameters that represent these models (ideality factor, series resistance, parallel resistance, 

photo-generated current, and diode saturation current were introduced. Then, light was shed 

on optimization techniques, but mainly the techniques of interest for us; that are known as 

metaheuristics. Those optimization algorithms used were defined in depth; since they are the 

main tool for solving our problems later on. Coming to the main section, which was adapting 

those algorithms to suite the main purpose of the project, which is single-diode PV model 

parameters extraction, the problem was formulated as an optimization one with the RMSE as 

an objective function. Five algorithms were used (PSO, WDO, EMA, DE, MPA), and the 

results obtained were accurate as it was graphically shown. In the end, some comparisons 

were carried out, finding out that DE method has given best overall objective function values; 

without discrediting the accuracy of the other techniques. 

The topic of this project is very important and interesting, because obtaining models with 

high accuracy results in better design and assessment of photovoltaics, which will lead to big 

advents in the field. 
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