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Abstract

Abstract

Interest in photovoltaics has been increasing hugely over the past years.Among the many
interests developed, theoretical understanding of PVs has taken much attention in research.To
help in design and assess the performance of PV panels, a developed model is used. The
model is none other than an equivalent electrical circuit with basic components (a source,
resistors, and one diode or more). Single-diode and double-diode models are the most popular
in the literature. Equivalent circuit parameters must be obtained, from either a set of
experimental data or a manufacturer’s datasheet, in order to construct a model. The aim is to
obtain values that yield an accurate model. The problem is tackled as an optimization one,
where the Root mean square error (RMSE), between the experimental and the calculated
data, is the function to be optimized. Optimization is achieved using five different meta-
heuristic algorithms: Particle swarm optimization (PSO), Wind driven optimization (WDO),
Exchange market algorithm (EMA),Differential evolution (DE), and Marine predators
algorithm(MPA). The aforementioned algorithms are adapted to PV parameters extraction
using MATLAB. Algorithms are then compared based on the accuracy of the obtained

results.
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General introduction

General introduction

The world is making development in huge leaps; a development that has raised the need for
more and more power. Satisfying such a need comes at great cost; pollution has been
increasing proportionally with the increase in power demand. Fortunately, many
environment-friendly alternatives for electricity generation exist. Potentially, in the future,
power demand will be mainly covered by eco-friendly sources; since we receive a staggering

1.74*10%" watts of energy from the sun [1], for example.

Photovoltaics deal with the generation of electricity from solar energy; the field has become
of great interest over the past years. PV panels cost has been decreasing, while improvements
in efficiency are observed; this has led many firms and people investing in them. The theory
about photovoltaics is very important; whether it is for educational or technical purposes; it is
a key aspect in improving the quality of energy obtained from PVs. An accurate model gives
large insights about the behaviour of solar panels; a behaviour usually expressed in
mathematical relationships relating current and power to voltage (I-V and P-V), under
different thermal and illumination conditions. Modelling gives large insights in terms of
design and performance assessment. Along the years, various models have been proposed;
Single and double-diode models have been widely used. No matter whatever circuit model is
adopted for the PV system, finding the optimum circuit parameters requires solution of
transcendental equations relating 1-V characteristic of the PV device [2]. For a single-diode
model the parameters to be estimated are: the diode ideality factora, the series resistance Rq,

the shunt resistance R,,,the photocurrent I,,, and the saturation current of the diode /.

In this project, emphasis is given to the single-diode model; also known as the five-parameter
model. The main objective is to obtain the five parameters, with optimal values, to build an
accurate model that depicts the behaviour of solar panels. In the literature of PV parameters
estimation, many methods have emerged; analytical methods, iterative-based methods and
meta-heuristic methods. In this work, interest is devoted to the latter method. There are
actually two types of data inputs to perform calculations; it is either done using experimental
data obtained from the module, which is the way chosen here, or by the data provided on the
manufacturer’s datasheet. Data are input into MATLAB programs that are adaptations of

optimization algorithms to suit the purpose of parameters extraction.



General introduction

Modelling of PV modules: In this chapter, the principle of PV, PV technology as
well as one-diode and two-diode models will be presented.
. Optimization algorithms: this chapter gives information on how the optimization
algorithms used (PSO, WDO, EMA, DE, and MPA) work.
Identification of PV parameters: this chapter presents methods of estimating PV

parameters, and shows results of the work done using the aforementioned algorithms.
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CHAPTER I: PV MODELLING

1.1 Introduction

Photovoltaics can be defined simply as the process of using solar cells to convert sunlight into
electricity. Modelling of PV panels is very important in order understand that process, and
study it. The more accurate the model is the more accurate will the results be. This is why
modelling is a crucial part when it comes to knowing the behaviour of PV panels in different

conditions, without even needing to experience those condition practically.
1.2PV principle:

PV cells are the unit components of PV panels. They are made by slicing a very thin layer of
a silicon rod called an ingot. A single silicon wafer does not act like a solar cell yet; it lacks
additional layers to be able to operate as a solar cell. A silicon based solar cell consists of the
c-Si absorber layer, a pn-junction to separate the light-excited charge carriers, and a metal

front and back contact.

Figl.1Monocrystalline silicon solar cell

The light enters the solar cell from the front side (the top side);and is transmitted into the
absorber layer where its energy is absorbed. The energy is used to excite charge carriers in
the semiconductor material, which are negatively charged electrons, and positively charged
holes. These charge carriers diffuse and need to be separated. This separation occurs at the
depletion region between the n- and p-type doped silicon and the depletion region at the back

3
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of the solar cell. Doped layers are areas where we intentionally have put impurities that make
either the electron or the holes the dominant charge carriers in these regions. In n-type
materials, the electrons are the dominant charge carrier and in p-type the holes are.
Therefore, the electrons are collected at the n-type layer and holes at the p-type layer. Then
the charge carriers have to be collected at the contacts. The electron will move through the
load and back to the solar cell. Then, both charge carriers recombine at the metal/p-layer

interface.

Hence, we deduce that the photovoltaic process is based on three important principles: First,
the excitation of free mobile charge carriers- the hole and electron- due to light Absorption.
Second, the separation of the charge carriers (holes and electrons).Third, the collection of the
charge carriers at the contacts.

Electron Flow Photon Absorbed

— in Depletion Zone

Front Electrical Contact

Electron-hole Photon
] Elc((mn Cl’t‘illi()l\

/.\'-T\'pc

; «— Depletion Zone
e Paype

Hole -
\ Back Electrical
* Electron-Hole Contact

Recombination

Figl.2:Principle of operation of a solar cell
The I-V plot (current versus voltage plot) helps understand the characteristics of solar panels.

It is an appreciation of how the current changes with respect to voltage.

A solar cell behaves much like a diode under non-illumination. It will block the current under

reverse bias conditions and will produce a current under forward bias conditions. However,
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when the solar cell is illuminated, it conducts additional current related to the excited charge

carriers.

SC / PMax

N
T

current (A)

s
T

o - = 1 1 1 | J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

voltage (V) Voc

Fig 1.3: I-V curve of a PV cell

1.3PV technology

PV technology has, and will surely continue to make big advancements in the future. Many

types of PV have emerged from that progress [3].

1.3.1Monocrystalline silicon

Monocrystalline silicon solar cells are probably the oldest type of solar cells. They are made
from pure silicon crystal, which has continuous lattice and almost no defects. Its properties
provide high efficiency of light conversion (up to 22-24%). Manufacturing of the Si crystals
is rather complicated, which is responsible for high cost of this type of photovoltaics. Recent
developments have decreased the total thickness of Si material used in monocrystalline cells
to reduce cost. The monocrystalline silicon cells have a typical black or iridescent blue color.
The monocrystalline silicon cells are believed to be very durable and last over 25 years.
However, their efficiency will gradually decrease (about 0.5% per year), therefore
replacement of operating modules might be needed sooner. The main disadvantages of the

monocrystalline silicon panels are high initial cost and mechanical vulnerability (brittle).

5
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1.3.2Polycrystalline silicon

Polycrystalline cells are made by assembling multiple grains and plates of silicon crystals
into thin wafers. Smaller pieces of silicon are easier and cheaper to produce, so the
manufacturing cost of this type of PV is less than that of monocrystalline silicon cells. The
polycrystalline cells are slightly less efficient (12%). These cells can be recognized by their
mosaic-like appearance. Polycrystalline cells are also very durable and may have a service
life of more than 25 years. The drawbacks of this type of PV technology are mechanical

brittleness and low conversion efficiency.

1.3.3Amorphous silicon (Thin-film)

Thin film photovoltaic cells are produced by depositing silicon film onto substrate glass. In
this process, less silicon is used for manufacturing compared to mono- or polycrystalline
cells, but this economy comes at the expense of conversion efficiency. Thin-film PV cells
have efficiency of 6% versus 15% for single crystal Si-cells. One way to improve the cell
efficiency is to create a layered structure of several cells. The main advantage of the thin-film
PV technology is that the amorphous silicon can be deposited on a variety of substrates,
which can be made flexible and come in different shapes and therefore can be used in many
applications. The amorphous silicon is also less prone to overheating, which usually
decreases the solar cell performance. Amorphous silicon is most developed among the thin-
film PV.

1.3.4Cadmium Telluride, CdTe (thin-film)

CdTe PV is another kind thin-film solar technology. It has become quite popular due to the
lower cost per KW-hour. The best efficiency obtained with CdTe cells is around 16%. One of
the advantages of the CdTe cells is that they capture shorter wavelengths of light than silicon
cells can do. There are some environmental concerns related to the limited supply of
tellurium and potential toxic impact of cadmium at the stage of CdTe panel disposal.
Developing effective closed-loop recycling technologies can be a game-changing factor in

favour of this technology.

1.3.5Copper Indium Gallium Selenide (CIGS)
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CIGS PV have become a popular new material for solar cells, as it does not contain toxic Cd,
and has higher efficiency (just under 20%). At this moment, the CIGS are the most efficient
among the thin-film PV technologies. While lab results confirmed high promise of this kind
of photovoltaics, the mass production of CIGS proved to be a problem. The CIGS cells are
manufactured by thin film deposition on a substrate, which can also be flexible (unlike the

silicon cells). Similar to CdTe cells, the CIGS cells demonstrate good resistance to heating.

1.3.6Polymer and organic PV

Organic materials are quite attractive since they can be involved in high-output
manufacturing and also because they can be made in various thicknesses and shapes. These
types of cells are relatively lightweight (compared to silicon cells). Also, they offer flexibility
and relatively low fabrication cost. They, however, are much less efficient (about 1/3 of a

typical Si cell efficiency) and sometimes prone to quicker degradation (shorter service life).

These are the main well-known types of PV technology; but with innovation and research
new types with better characteristics will surely emerge. Breakthrough in PV industry is

dependent on advents in other fields like chemistry.

1.4 PV models
1.4.1 Ideal PV model

An ideal solar cell can be represented simply as a light-generated current source in parallel
with a diode as shown in Fig 1.4

Eq 1.1 gives the output current:

%
I'= Iy — I |exp (E) ~1 (1.1)
Where V7 is the diode thermal voltage given by:
Vy = NSq"T (1.2)
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—O
! +

Ol

Fig 1.4: ideal solar cell model
1.4.2 Single-diode model

In fact, the solar cell is not exactly ideal. This is why more accurate models have been
developed to give more realistic results in analysis. In other words, Eq. (1.1) does not
accurately depict the behaviour of a PV cell. A more practical model is the single-diode
model that is represented in Fig 1.5. Series and parallel resistances have been added to the
previous model . Results that are more accurate are obtained from this model, although it

consumes more computational time. Eq (1.3) gives the output current:

V+IRg V+IRg
I = Iph — IO [exp (W) — 1] - (T) (13)
.
"l'-.-'lllll'f"'"-.-'_'_'::'
1d I R= +

T -
Iph ! -
O sy r= v

Fig 1.5: Single-diode PV model
1.4.3 Double-diode model
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This model is a modified version of the previous one by adding a second diode in parallel
with the first one as shown in Fig 1.6. The additional diode stands for the effect caused by the
recombination of charge carriers. However, the two-diode model makes computations longer

despite its accuracy. Eq (1.4) in this case gives the output current:

I=1L,—1I, [exp (%) — 1] — I, [exp (‘;:Lis) — 1] — (V;—:es) (1.4)
.—IF
NN—C0

Iph | -“J Rp <.
N D! ! p::; v

Fig 1.6: Double-diode PV model

1.5 Model parameters:
The solar cell model is constructed using the following parameters [4].

1.5.1 Ideality Factor (a):

The ideality factor (a) is a unitless parameter. It is a measure of how closely the diode follows
the ideal diode equation. It accounts for the different mechanisms responsible for moving
carriers across the junction. The value of a equal to one means the transport process is purely
diffusion, and a value equal to two if it is primarily recombination in the depletion region.
The parameter a represents one of parameters to be computed in our work. The ideality factor

appears in the diode current component of equation (1.3).
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1.5.2 Photo Current I,

As its appellation suggests, the photocurrent (light-generated current) is the current generated
due to the absorption of photons by a solar cell. It depends on reference first and second

temperatures, T1 and T2, respectively, and it is given by:

Iph = Iph(Tl) + Ko(T — Ty) (1.5)
G
Iph(Tl) = Ischnom(m) (1.6)
Where:
_ IscTz _Isch
Ky = ety 17)

KYOCERA KC200GT -25°C

i

) —
?, Y
9

1000 W/m®
X ! 80O \ 2
| [ N WAL <
a 7 ‘ Y m
6
Loy | 800 Wim?
£ % - . 600 W/m ;
2
400 Wim?
o = _
2 -
1
0! L ’ ' :
0 5 10 15 20 25 30
vV [V]

Fig 1.7: The effect of irradiance on cell IV curve

1.5.3 Diode saturation current Iy:

The saturation current is a combination of the generation current caused by thermal
generation of electron-hole pairs within the depletion region of the diode and the diffusion
current due to minority carriers in the n and p regions diffusing across the depletion region.
Although the saturation current is voltage independent, it does depend on temperature since

both the current contributions depend on thermally stimulated carriers.[5]
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=l (2 o2 (- 2) as)
Where:
I
Iy, = ol (1.9)
o (qZkquwl)_l

1.5.4 Series resistanceR;

Series resistance in a solar cell has three causes: firstly, the movement of current through the
emitter and base of the solar cell; secondly, the contact resistance between the metal contact
and the silicon; and finally the resistance of the top and rear metal contacts. The main impact
of series resistance is to reduce the fill factor, although excessively high values may also

reduce the short-circuit current.

The value of R;can be calculated using the following equation:

av 1
R, =— T, % (1.10)
Where:
— q qVOCTl
X = lor, (i) 20 €55 L1

The equation of current with a series resistance only (no parallel resistance) reduces to the

following:

I=1,—1 [exp (qV+RSI)] (1.12)

akT
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Fig 1.9: 1-V curve with a series resistance Ry = 2Q

We have taken only series resistance (no parallel resistance) in consideration in order to
appreciate its effect clearly. This simplifies simulation of dynamic system where PV source is

involved such as water pumping [6].

Series resistance does not affect the solar cell at open-circuit voltage since the overall current

flow through the solar cell, and therefore through the series resistance is zero. However, near

12
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the open-circuit voltage, the 1-V curve is strongly affected by the series resistance. A
straightforward method of estimating the series resistance from a solar cell is to find the slope

of the IV curve at the open-circuit voltage point.[7]

1.5.5 Parallel resistanceR,,
Significant power losses caused by the presence of a shunt resistance, Ryis typically due to

manufacturing defects, rather than poor solar cell design. Low shunt resistance causes power
losses in solar cells by providing an alternate current path for the light-generated current.
Such a diversion reduces the amount of current flowing through the solar cell junction and
reduces the voltage from the solar cell. The effect of a shunt resistance is particularly severe
at low light levels, since there will be less light-generated current. The loss of this current to
the shunt therefore has a larger impact. In addition, at lower voltages where the effective
resistance of the solar cell is high, the impact of a resistance in parallel is large. The equation

of a solar cell with a shunt resistance only is as follows:

_ qVv \%
I = Iph — IO * exp (m) — R_p (113)
35
30-
% 254
3
= 20-
=
e
3 15
£
E 104
5.
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— cell with Rshunt
00.0 0.1 0.2 0.3 0.4 05 0.8 07

voltage (V)

Fig 1.10: 1V curve of a cell with high shunt resistance of 1000Q)
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1.6 Conclusion

This chapter has dealt with the different aspects of Photovoltaics; from understanding the
principle behind PV to exploring some models used in the literature. It goes without

doubt to say that modelling is crucial in designing and studying photovoltaic systems
behaviour.
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Chapter I1: Optimization algorithms

2.1.Introduction:

In mathematics, optimization is defined as finding the best solution for a problem from all
feasible solutions [8]. Depending on whether the variables are continuous or discrete, the

process of finding values of variables that satisfy an objective function is called optimization.

An optimization algorithm is a procedure that is executed iteratively by comparing various
solutions until an optimum or a satisfactory solution is found [9]. With the advent of

computers, optimization has become a part of computer-aided design activities.

2.2. Problem formulation

A simple optimization is done by comparing a small set of potential solutions generated by
using some background knowledge of the problem (initial guesses). Since problems differ, it
is not possible to apply the same formulation to all of them. The purpose of formulation is to
create a mathematical model of the optimal design problem, which then can be solved using

an optimization algorithm [9].

2.2.1. Design variables: identifying design variables is the first step in formulating an
optimization problem. The different combinations of these variables are the potential
solutions. Design variables are updated in search for an optimal solution.

2.2.2. Constraints: Design variables must satisfy certain constraints. These constraints can
be boundary conditions for example.

2.2.3. Objective function: This is the function that indicates how accurate a solution is. It is

expressed in terms of design variables.

2.3. Classification of optimization algorithms:

There are many options for classifying optimization algorithms. Mainly, they can be
classified into two categories, which are: Local optimization algorithms and Global

optimization algorithms.
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the difference between the two types can be clarified using a simple analogy; the peak of
every mountain is a local optimum since it is the highest level on its neighbourhood, but only
the peak of the highest mountain is a global optimum [10]. Following the analogy, local
optimization finds local optimum that is not very far from the initial guess. Whereas, global

optimization searches a bigger space to find a global optimum.

In our work, all the algorithms used are global optimization ones.

2.3.1. Local optimization algorithms

Local optimization finds the optimal value within the neighbouring set of candidate solutions.
The performance of these methods, generally, strongly depends on the initial values supplied.
This means that optimization might need to be run several times, with different initial
guesses.

Newton Raphson (NR) method is an example in this category. NR uses an initial guess to
start with, and the n-iterations are performed until a local optimum is obtained. The drawback

is if the initial guess is far from the actual solution this method will be stuck and diverge.

2.3.2. Global optimization algorithms

For this project, metaheuristics are used. Metaheuristics can be adapted to solve a wide range
of optimization problems. These methods are designed to find a good solution among a large

set of feasible solutions with less computational effort than other optimization techniques.

l. PSO

Particle Swarm Optimization (PSO) is a metaheuristic global optimization algorithm that has
gained prominence in the last two decades due to its ease of application in unsupervised,

complex multidimensional problems, which cannot be solved using traditional deterministic
algorithms [11]. The canonical particle swarm optimizer is based on the flocking behaviour

and social co-operation of birds and fish schools and draws heavily from the evolutionary

behaviour of these organisms.
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This algorithm searches the space of an objective function by adjusting the trajectories of
individual agents, called particles, as these trajectories form piecewise paths in a quasi-
stochastic manner. The movement of a swarming particle consists of two major components:
a stochastic component and a deterministic component. Each particle is attracted toward the
position of the current global best g *and its own best location x in history, while atthe same
time it has a tendency to move randomly. When a particle finds a location that is better than
any previously found locations, then it updates it as the new current best for particle i. There
is a current best for all n particles at any time t during iterations. The aim is to find the global
best among all the current best solutions until the objective no longer improves or after a
certain number of iterations. The movement of particles is schematically represented in
Figure 2.1 where x = is the currentbest for particle i, and g *= min{f (x;)} for (i = 1,2, ...,n)

is the current global best.

The position of individual particles is updated as follows [8]

Xpe1 = X + Vpys (2.1)
The velocity is calculated as follows:
Vi = vp + e (ph — xh) + cara(p — xh) (2.2)

Where :

xL- particle position
vi- particle velocity where
pl- best remembered individual particle position

p?- best remembered swarm position
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Possible N
/ directions O =

particle i l\\

®,

Fig 2.1: Schematic representation of the motion of a particle in PSO
PSO steps:
1-Initialize:

a) Set constants c1,c2,w,number of iterations

b) Randomly initialise particle positions X
i=1,...n

c¢) Randomly initialize particle velocities 0 < v} < vI%*
i=1,...,n

d) Initialize population members
2- optimize:
a) Evaluate the objective function value fi' using design space coordinates X'
b) If i < frest then foest = fit Ph=xk
FE < Flot then [ = filpl =i

c) If the stopping condition is met then go to (3).
d) Update all particle velocities v, for  i=1,...,p
e) Update all particle positions x}, for i=I,....p

f) Incrementn

g) Goto2(a)

3- terminate
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Fig 2.2: Flowchart of PSO algorithm

Il.  Wind Driven Optimization algorithm (WDO)

The inspiration of the proposed WDO derives from the atmosphere [12]. In the atmosphere,
wind blows in an attempt to balance the imbalance of pressure. It flows from high-pressure
areas to low pressure areas at a velocity. Depending on the above analysis, some theoretical
assumptions are formulated in derivation of the

The Wind Driven Optimization (WDO) algorithm is inspired from the modelling of the
climate. In our living environment, wind blows from the high-pressure zone to the low-
pressure zone at various speeds to equalize the air pressure imbalance. Based on Newton's
second law of motion and some simplifications, the velocity vector, v, and the position

vector, x, of the WDO algorithm are updated using

Cvotherdim (k)

vk +1) = (1 — (k) — gx(k) + (RT |1 =] (xope — x(k))> +

Where:

) (23)

I represents the ranking among all air parcels.
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In this scheme, the best solution has the lowest pressure with rank 1 and is located at point
Xopte- EQuation (2.3) represents the final form of the velocity update utilized in WDO. The
first term in Eq (2.3) states that if there are no other forces acting on the air parcel, then it
would continue on its current path with its velocity proportionally reduced by friction. The
friction coefficient term could be fixed to a constant value, or one could implement an
adaptive friction coefficient, which could vary depending on the velocity of the air parcel.
The second term states that gravity constantly pulls the air parcel from its current location
towards the centre of the coordinate system at a magnitude proportional to the constant g.
This term becomes particularly beneficial if the air parcels are stuck at the boundaries. The
third term in Eq (2.3) implies that the higher ranked air parcels will most likely be at a
location closer to the x,,.and, hence, the effect of the pressure gradient would be smaller.
The last term allows the velocity direction to be altered by other dimensions, with a larger
influence on higher ranked air parcels. As can be clearly seen in Eq (2.3), there are multiple
coefficients that must be chosen prior to starting an optimization, namely: «, g, RT, and c.. At
each iteration, the velocity and the position of all air parcels need to be updated. Once the
new velocity is calculated according to Eq (2.3), the position can be updated by utilizing the

following equation,

x(tk+1)=x(k) + At xv(k+ 1) (2.4)
where, « is a friction coefficient, g is the gravitational constant, is the universal gas constant,
T is the temperature, ¢ is a constant, i is the ranking among all air parcels,x,,.is the best

parcel so far searched, At is the step length.

WDO steps:

1- Initialization: the parameters given an initial value in this step are : population size,
number of iterations, algorithm coefficients alpha RT g .

2- Randomization: randomize initial population assign random position and velocity for
particles.

3- Fitness test: evaluate the pressure(fitness) of each air parcel (population member)

4- Update: update velocity and check its limits, update position and check its limits.

5- Check termination criteria: If the maximum number of iterations is reached end the

program, else go to(3)

A flowchart of WDO in represented in Fig
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Initialization:
Population size, max. number of iterations,
coefficients, boundaries, and
pressure function definition

¥

Assign random position and velocity

!

Evaluale the pressure for each air parcel -

|

Update velocity and check velocity limits

¥

Update position and check boundaries

Max. number
of iterations?

Fig 2.3: Flowchart for WDO algorithm

I11. Exchange market algorithm(EMA)

This algorithm is based on stock market behaviour [13]. In a stock market, the shares trading
manner is completely sophisticated, different and unique according to mental conditions of
several individuals. In the proposed algorithm, it is assumed that the people who are active in
the exchange market act similar to the elite stock dealers. In this algorithm, in each market
mode the fitness (objective function) of each individual is reviewed, ranked and sorted
according to their properties values. In the EMA, all of the shareholders try to introduce
themselves as the most successful individuals to market and then the individuals have less
fitness tend to do greater risks. Shareholders are arranged into three categories according to
their rank after each fitness test. The first group comprises the individual with the best fitness,
whereas the third one englobes individuals with the least fitness levels. The individuals in the
first group as successful people in the market remain unchanged in all stages of the market.
The second and third groups trade with separate equations. In a non-oscillated market, the
individuals in second and third groups select stocks which are same or close to the shares of
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the first group. In other words, the algorithm has the duty to recruit members toward the elite
members. For an oscillated market, the individuals in second and third groups trade with

separate relationship at high risk, in other words, the algorithm searches for unknown points.

In a stock market, a stable market that is not subject to oscillations can be easily anticipated,
and individuals do not take unusual risks to increase their shares. In contrast to that, in an
oscillating market the behaviour is not so obvious to be predicted, since individuals take high

trading risks to try increasing their shares.

In this algorithm, each individual represents a solution to the problem, and each share stands
for a problem variable. There are two states of stock trading: non-oscillating market and

oscillating market.

1. Non-oscillating market: In this section, each individual is ranked based on the fitness
function and sorted as group 1, group 2, and group 3.

a) The first group is Elite (high rank) shareholders. They represent 10-30% of total
population. The members of this group are the best answers for the problems which
are necessary to stay intact and unchangeable

b) The second group is shareholders with mean rank. They represent 20-50% of total

population. This group updates its population according to the following equation:

pop]™*® =1+ pop{{***™ + (1 = 1) * popg; " (2.4)

c) The third group is shareholders with weak rank. This group of shareholders
composes 20-50% of the population. The members of this group utilize the
differences of share values of the first group as well as their share values’ differences
compared to the first group individuals and change their shares according to the

following equations:

popi(group(3),new — pop,i]roup(B) + 0.8 « Sk (2.5)
k=1,2,3,nk

Sk =2%1) % (popfimup(l) — pop,‘?mup(g)) +2%1y * (popfgoup(l) - pop,fmup(3)) (2.6)

22



CHAPTER I1: Optimization algorithms

r,and r,are random numbers in the interval [0, 1] and n; the n,,member of the third

group(3);

group. pop;, is the k,,member and Sjis the share variations of the k,,member of

the third group.

2.

a)

b)

Oscillating market: In this section, having assessed the shareholders and ranking

them based on their fitness, the shareholders would start trading their shares. With

regard to their fitness, shareholders will be categorized into 3 separate groups again:
First Group: Shareholders with high ranks: This part of the population includes
the elite stockbrokers and they do not change their shares and do not undergo the
trade risk.
Second Group: Shareholders with mean ranks: In this section the sum of the
shares held by people tends to be constant and only the number of some of each
type of shares increase and some decrease in a way that the sum remains
constant. At first, the number of shares held by each person increases based on

the following equation:

Ang =ngy — 6+ 2 *xr*xpu*n) (2.7)
b= G2 (28)

Ny = Yooa|sey|y=1,2,3...n (2.9)

N1 =MN¢1 * g1 (2.10)

K = G1max — (LmesTimin) ) (211)

Ang,is the amount of shares should be added randomly to some shares, n;, is total

shares of t** memberbefore applying the share changes. Styls the shares of the
t™"member, & is the information of exchange market.n,is risk level related to each

member of the second group, t,,, is the number of the t* member in EMA. NpoplS

pop
the number of the last member, p is a constant coefficient for each member and g, is
the common market riskamount which decreases as iteration number increases.
iter,qa.1S the last iteration number and k is the number ofprogram iteration.
91,max@Ndg; minindicate the maximum and minimum values of risk in market,

respectively. In the second part of this section, it is necessary that each person
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randomly sells some of his shares equal to the number he has purchased so that the
sum of each person’s shares remains constant. In this section, it is essential that each
person reduces the number of his shares in An;, amount. In this status, the An,of

each person equals:An;, = ng, — 6

wheredn,, is the amount of shares that should be decreased randomly from some
shares and n,,is the sum shareamount of t® member after applying the share

variations.

C) Third Group: Shareholders with low ranks: In this section, unlike group 2, the
sum of the person’s number of shares would change after each trade. In other
words, in each section, the person purchases or sells a number of shares. The

shareholders of this group change some of their shares based on the following

equation:

Angg = (4 * 15 % L 1)) (2.12)

. = 0.5 — rand (2.13)

N2 =M1 * 92 (2.14)

G5 = Gomax — (mSzmin) (2.15)

Where An.is the share amount should be randomly added to the shares of each
member, 7;is a random number in [-0.5 0.5] and n,is the risk coefficient related to

each member of the third group. g,is the variable risk of the market in the third

group.
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Fig 2.4 : EMA flowchart
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IVV. Differential evolution (DE) algorithm

Differential evolution is a population-based optimisation evolution algorithm [14],
developed to optimise real parameter, real valued functions.DE begins with an initial
random population, indicated by P, which comprises NPD-dimension candidateindividuals.
Thus, the individuals of the Gt" generation in theinitial population can be represented by
(x§, x5, x5p, whereG = 0, 1,... ,Gpq, denotes the generation times and G, is the
maximaltimes of the generation. Each candidate individual is actually a D-
dimensionparameter vector (target vector) within the boundaries denotedoy x¢=
(x§1, x55,...x51,25p),, where i indicates the i*" parametervector. Then, the individuals enter

a loop of the evolutionary process until meeting the termination criterion.
Steps of DE:

1-initialization: upper and lower bounds of each parameter are defined:ij < X < ij

initial population is generated using the following equation:

j=12,...D

whererandreturns a random number uniformly distributed on the interval (0,1), and

LB;,UB;are the lower and upper bound in the jt*dimension, respectively.

2-mutation:After initialization, the mutation strategy is utilized in every individualx{to

obtain the mutant vector v¢ at the G generation. Below are the mutation strategies:

e DE/rand/1

vi = xf + F o (x5 — x73) (2.17)
e DE/rand/2
vf =xf + F* (xfy —xf3) + F * (xfy, — x%) (2.18)
e DE/best/1
U = Xpese + F * (0 — %) (2.19)
e DE/current-to-rand/1
vi =xf + F*(xf —xf) + F » (x5 — x%) (2.20)
e DE/current-to-best/1
v =xf + F (Xt — x5) + F % (x5 — x5) (2.21)
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The subscriptsry,r,,15, 14, 1z are mutually distinct integers randomlyproduced from
{1, 2... NP} and they are unequal to the index i.The real number F is the scaling factor of
difference vector. XS, .denotes the best individual, that is the parameter vector which

obtains the best fitness value in the current population.

3-crossover: For the sake of increasing the diversity of the population, the crossover
operation is performed by mixing the target vector x” withthe mutated vector v{to generate

the crossover vector (trial vector) u{ as follows:

u (2.22)

iLj = G

G ..
c { vy, if rand x w; j < CR 0T j = jrana
Xij»

otherwise

where i € [1,NP],j € [1,D]

CR represents the crossover rate determined by the user, which controls the number of

dimensions inherited from a mutant vector.
4- Selection

In the end, DE implements the greedy selection to decide whether the target vector or the
trial vector is reserved to the next generation. For a minimization problem, the selection

operator is as follows:

' xl-G, otherwise

where f (x) is the objective function (fitness function) to be minimized.
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V. Marine Predators Algorithm (MPA):

Marine Predators algorithm is a new metaheuristic algorithm developed in 2019 and
published in 2020, even used for forecasting confirmed cases of COVID-19 in Italy, USA,
Iran and Korea [15]

As its name indicates, it is based on the behaviour of marine predators looking for prey.
Based on “surviving of the fittest” predators try to select the best strategy that maximizes

their chances of encountering a prey.
MPA steps:

1-initialization: the initial solution is uniformly distributed over the search space as the first

trial according to Eq (2.24)
Xo = Xmin + rand(Xmax — Xmin) (2.24)

Where X,,in and X,,q, are the lower and upper limits for variables and rand is a random

number in the range of 0 to 1.

Based on the survival of the fittest theory, it is said that top predators in nature are more
talented in foraging. Thus, the fittest solution is nominated as a top predator to construct a
matrix which is called Elite. Arrays of this matrix oversee searching and finding the prey

based on the information on prey’s positions

Xi1X{, . X4
1 1 I
Elite = %21 X22 X24 (2.25)

Ly Xhy o Xhal

Where X7 represents the top predator vector, which is replicated n times to construct the Elite
matrix. n is the number of search agents while d is the number of dimensions. It is noted that
both predator and prey are considered as search agents. Because by the time that a predator is
looking for its prey, the prey is looking for its own food. At the end of each iteration, the Elite
will be updated if the top predator is substituted by the better predator.

Another matrix with the same dimension as Elite is called Prey which the predators update
their positions based on it. In a simple word, the initialization creates the initial Prey of which
the fittest one (predator) constructs the Elite. The Prey is shown as follows:
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Xl,l X1,2 ™ Xl,d
Prey — X2,1 XZ,Z ijd (226)
Xn1Xn2 o Xna

nxd

It should be noted that the whole process of the optimization is mainly and directly related to

these two matrices.

2- Optimization phases: MPA optimization process is divided into three main phases of
optimization considering different velocity ratio and at the same time mimicking the entire

life of a predator and prey:

a) Phase 1: In high-velocity ratio or when predator is moving faster than prey. This
scenario happens in the initial iterations of optimization, where the exploration matters.

The following mathematical model is applied:

While Iter < < Max;ce,

stepsize, = R_B) & (Elite; — R_B) Q Prey) i=1,..n (2.27)
Prey, = Prey, + P.R® stepsize, (2.28)

Where Ry is a vector containing random numbers based on Normal distribution
representing the Brownian motion. The notation & shows entry-wise multiplications. The
multiplication of by prey simulates the movement of prey. P=0.5 is a constant number, and
R is a vector of uniform random numbers in [0,1]. This scenario happens in the first third of
iterations when the step size or the velocity of movement is high for high exploration

ability. Iter is the current iteration while Max_iter is the maximum one.

b) Phase 2: In this stage, the prey and predator are moving in the same area, and this
movement simulates the process of searching for the prey/food. Furthermore, this refers
to the process of changing the status of the MPA from exploration to exploitation.

The following mathematical model is applied:
1 2
Whlle§ Maxier < Iter < §Maxl-ter
For the first half of population
stepsize, = R, ® (Elite; — R, ® Prey,) i=1, g (2.29)

Then Eq 2.28 is re-applied.
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whereR, is a vector of random numbers based on Lévy distribution representing Lévy

movement. The multiplication of R_L’ and Prey simulates the movement of prey in Lévy
manner while adding the step size to prey position simulates the movement of prey.

For the second half of population:

stepsize, = R_B) ® (R_B) & Elite; — Prey,) i = g, . n (2.30)
Prey, = Prey, + P.CF @ stepsize, (2.31)

where CF is the parameter that controls the step size of movement for the predator.

c) phase 3: In low-velocity ratio or when predator is moving faster than prey. This
scenario happens in the last phase of the optimization process which is mostly
associated with high exploitation capability.

The following mathematical model is applied:

2
While Iter > =Max;;er

3
stepsize, = R_L) X (R_L) & Elite; — Prey,) i=1,..,n (2.32)

Eq (2.31) is re-applied
3- Eddy formation and FADs’ effect:

Another point which causes a behavioural change in marine predators is environmental issues
such as the eddy formation or Fish Aggregating Devices (FADs) effects. the FADs effect is
mathematically presented as:

(2.33)

— { Prey, + CF[Xmin + R(Xmax — Xmin)| ® U if ¥ < FADs
rey, =4_____
* Prey, + [FADs(1 — r) + r](Prey,, — Prey,;) if r > FADs

Where FADs = 0.2 is the probability of FADs effect on the optimization process. U is the
binary vector with arrays including zero and one. This is constructed by generating a
random vector in [0,1] and changing its array to zero if the array is less than 0.2 and one if it
Is greater than 0.2. r is the uniform random number in [0,1]. )?ml-n and )?max are the vectors
containing the lower and upper bounds of the dimensions. Subscripts r; and r, denote

random indexes of prey matrix.

4- Marine memory: Based on the highlighted points, marine predators have a good
memory in reminding the place where they have been successful in foraging. This capability

is simulated by memory saving in MPA. After updating the Prey and implementing FADs
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effect, this matrix is evaluated for fitness to update the Elite. The fitness of each solution of
the current iteration is compared to its equivalent in prior iteration, and the current one

replaces the solution if it is more fitted.

2.4.Conclusion: the algorithms mentioned may differ in their working process. They
may differ in the number of steps, and the number of parameters required to be tuned.
However, they can all be adapted for our optimization purposes, which will be shown

in the next chapter.
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CHAPTER Il1I: PV parameters extraction

3.1.Introduction:

As we have seen in chapter two, to model a PV module several parameters must be obtained.
Modelling is important whether it is for educational purposes or for actually assessing the
performance of a PV panel. Parameter extraction of photovoltaic (PV) models, which
remains a multi-variable, nonlinear, and multi-modal problem, has recently gained
considerable attention in the simulation and calculation of solar PV systems. Extracting
these parameters can be done by using either the manufacturer’s data sheet or actual
experimental data. In this project, the algorithms mentioned in chapter three (PSO, WDO,
EMA, DE) have been adapted to suite the purpose of PV parameters extraction of single-
diode model using experimental data. Methods used in extraction can be classified into three

categories: analytical methods, iterative-based methods, and meta-heuristic methods.

3.2.Parameters extraction methods:
3.2.1 Analytical method:

V+RsI V+IRg
L=l = Iy wexp (5 = 1) - R 3.1)
Analytical expressions for the extraction of the model parameters:
a= Vin+ImRso—Voc (32)
te-(i55)
Voc Voc
o= (I“ - R_p> *exp (= o) (3.3)
14 VOC
Ry = Ry — nI—OTexp (— E) (3.4)
av
Ro= (= (3),.,.) @5
av
Ry = Roo == (1) _,. (35)
Rs
Iph = ISC(l + E (36)
[16]
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3.2.2 Iterative method: this method involves minimizing the objective square error where
the error function is defined as the difference between estimated and experimental currents.
It is expressed as follows:

5(0) = X1 Uimeasurea = liestimatea) (3.7)
where:

S(0): is the objective function to minimize

N: is the number of points measured (V;,1;)

I; measurea - 1S the measured current

I; estimatea: 1S the estimated current

0=[a,lo,lph,Rp,Rs] : parameters to estimate.

Eq (3.1) is implicit in I, so for computation purposes I; meaqsurea aNd Vi measurea are
substituted in Eq (3.1 1)

1(9) — ok _ IS * exp (Vi,measured+Rsli,measured _ 1) _ Vi,measured+Rsli,measured
aVe Rp

(3.8)
Eq. (3.8)is nonlinear in its parameters and hence the resulting set of normal equations F(8),
derived from multivariate calculus fora minimum to occur, will also be nonlinear and no
exact solution can be generally found. Newton's method can be used to obtain an
approximation to the exact solution for the nonlinear set of equations F(6) =O. The Newton

functional iteration procedure evolves from:

-1
[0k] = [Ok-1] — [](Qk—n] [F(Bk—l)] (3.9)
where [J(6)] is the Jacobian matrix. The NR method converges rapidly, but it is only a local

optimization technique that also requires a sufficiently accurate starting vector 6. [17]

3.3.3Meta-heuristics:this is the method chosen in this work. It is rather a new method
compared to the previous ones. In this method, no initial guess in needed, only the allowed
range of the parameters up for optimization is provided. This allows more flexibility to look
on many potential candidate solutions and improve their fitness accordingly.

The objective function to be minimized, in this project, is the Root mean square error

(RMSE) between experimental and estimated currents. RMSE is given by equation

1
F(Q) = \/ﬁ Z?I=1(Ii,measured - Ii,estimated) 2 (3-10)

V+RgI ) V+IRg
NsaVr Ry

I =1, —Is*exp ( (3.11)
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1(9) — oh — Is * exp (Vi,measured;’5Sli,mea5ured _ 1) _ Vi,measured;Rsli,measured
t p

(3.12)
0=[a,lo,lpn,Rp,Rs] : parameters to be computed.

Below, is the way this method has been used in PV parameters extraction

e All the algorithms used in this section are population-based ones.

e Experimental data (current and voltage) of PV modules are read from excel files.
The four PV modules used are: CondorCEM150M, KyoceraKC125GHT,SanyoHIP-
190B2-B0O-01, and SilikenSLK60P6L

e The number of iterations and number of population are chosen.

As a rule of thumb, since the number of parameters is five, the number of population
IS chosen to be ten times that number (number of population=50).
The maximum number of iterations is chosen to be 1000.

e Algorithm coefficients are initialized; these coefficients can be tuned along the
program depending on the algorithm.

e A random initial population is initialized within the parameters boundaries.

Each population member pop; is a vector of the five parameters of interest:
pop; = [a Rs Ryl 1]

e The fitness (RMSE) of each population member (candidate solution) is evaluated.

e Population members are updated; with the boundary conditions checked and
respected, in order to get a better RMSE.

e The algorithms run for a defined number of iterations and give the smallest obtained
value of RMSE

e Inthe end of the MATLAB programs running, the following results are obtained:
The single diode model 5 parameters, |-V curves with both experimental and
calculated currents on them, and a graph of RMSE vs the number of iterations.
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3.3. Results
In this section, the results of PSO,WDO, EMA, DE, and MPA based PV single-diode
model parameters extraction are shown. The results consist of 1-V curves depicting
both estimated and measured current data, and graphs showing RMSE vs iteration

number.
The results are organised as follows:

e Each algorithm has four sections of results (for the four PV modules)

e Each section comprises two graphs: RMSE vs iteration and 1-V curve.

3.3.1. PSO results:
a) Condor CEM150M

RMSE

1 1 1 1 1 1
1] 100 200 300 400 500 600 700 BOO 800 1000
Iteration

Fig 3.1: RMSE vs lIteration graph using PSO on Condor CEM150M PV module data.
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9 T T T T

O lallalala alalalelara) Imeasured

gL ’@OO-D% O lealeulated | |

VI(V)

Fig 3.2: I-V curve showing both calculated (through PSO) and measured currentsof
Condor CEM150M PV module

b) KyoceraKC125GHT:

0.35
0.3}

0.25 f

0.15 | -

01r 7
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] 100 200 300 400 500 GO0 T00 200 900 1000
lteration

Fig 3.3: RMSE vs Iteration graph using PSO onKyocerakKC125GHT module data.
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Fig 3.4: 1-V curve showing both calculated (through PSO) and measured currents of
Kyocera KC125GHT PV module

c) SilikenSLKG60P6L:

RMSE

107 5

o 100 200 300 400 500 600 700  BOO 900 1000
Iteration

Fig 3.5: RMSE vs Iteration graph using PSO on Siliken SLK60P6L PV module data.
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9 T T T T T T
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35

Fig 3.6: I-V curve showing both calculated (through PSO) and measured currents of
SilikenSLK60P6L PV module

d) Sanyo HIP-190B2-BO-01:

RMSE

-2 L _
10 i i i i i i i i i
o 100 200 300 400 500 G000 700 800 900 1000
lteration

Fig 3.7: RMSE vs lteration graph using PSO on Sanyo HIP-190B2-BO-01 PV module
data.
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Fig 3.8: 1-V curve showing both calculated (through PSO) and measured currents of
Sanyo HIP-190B2-BO-01 PV module

PV module a R;(Q) R, () Lyn(A) I,(4) RMSE
CondorCEM150M 1.4483 | 0.2216 | 4.223*10° | 8.3594 8.2937*10° 0.0472
Kyocera KC125GHT | 1.3578 | 0.2335 | 4.471*10° | 8.0433 6.8308*10° 0.0390
Siliken-SLK60P6L 1.2818 | 0.3912 | 9.356*107 | 8.2890 2.4152*10° 0.0429
210Wp

Sanyo-HIP-190B2- 1.6765 | 0.9788 | 2.397*10° | 3.1822 4.1867*10° 0.0095
BO-01

Table 1:extracted model parameters and RMSE using PSO
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3.3.2 WDO results:
a) Condor CEM150M:

10° | 3

RMSE

S

] 100 200 300 400 500 &0 FO0 BO0 S00 1000
Iteration

Fig 3.9: RMSE vs Iteration graph using WDO on Condor CEM150M PV module data.
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Fig 3.10: I-V curve showing both calculated (through WDO) and measured currents of
Condor CEM150M PV module
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b) Kyocera KC125GHT:

RMSE

o 100 200 300 400 500 600 700 800 go00 1000
Iteration

Fig 3.11: RMSE vs Iteration graph using WDO onKyocera KC125GHT module data.
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Fig 3.12: 1-V curve showing both calculated (through WDO) and measured currents of
Kyocera KC125GHT PV module
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c) Siliken SLK60P6L:

10° .
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Fig 3.13: RMSE vs lteration graph using WDO on Siliken SLK60P6LPV module data.
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Fig 3.14: 1-V curve showing both calculated (through WDO) and measured currents of
Siliken SLK60P6L PV module
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d) Sanyo HIP-190B2-BO-01:

RMSE

0 100 200 300 400 500 600 700 800 900 1000
Iteration

1072

Fig 3.15: RMSE vs lteration graph using WDO on Sanyo HIP-190B2-BO-01 PV module

data.
35 T T T T T T
Imeasured
g -‘"’3';"999%6@99{\ O lealculated
3 - —
257 7

%

< 15} &%@
@
©

0.5 .

0 10 20 30 40 50 60 70
V(V)

Fig 3.16: 1-V curve showing both calculated (through WDO) and measured currents of
Sanyo HIP-190B2-BO-01 PV module
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PV module a R,(Q) R,(Q) Iyn(4) 1,(A) RMSE

Condor CEM150M 1.3033 | 0.2460 | 2.070*10° | 8.3183 1.7658*10° | 0.0369

Kyocera KC125GHT 1.3479 | 0.2376 | 1.065*10° | 8.0657 6.1658*10° | 0.0406

Siliken SLK60P6L 1.3301 | 0.3759 | 3.397*10° | 8.3035 4.1984*10° | 0.0446
210Wp

Sanyo HIP-190B2-BO- | 1.7343 | 0.8780 | 2.252*10° | 3.1901 6.5997*10° | 0.0122
01

Table 2:extracted model parameters and RMSE using WDO

3.3.3 EMA results:
a) Condor CEM150M:

RMSE

1wk 1

0 100 200 300 400 500 600 700 800 900 1000
lteration

Fig 3.17: RMSE vs Iteration graph using EMA on Condor CEM150M PV module data.
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Fig 3.18: 1-V curve showing both calculated (through EMA) and measured currents of
Condor CEM150M PV module

b) Kyocera KC125GHT:
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Fig 3.19: RMSE vs lteration graph using EMA on Kyocera KC125GHT PV module data.
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Fig 3.20: 1-V curve showing both calculated (through EMA) and measured currents of
Kyocera KC125GHTPV module

c) Siliken SLK60P6L:
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Fig 3.21: RMSE vs Iteration graph using EMA on Siliken SLK60P6LPV module data.
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Fig 3.22: 1-V curve showing both calculated (through EMA) and measured currents of
Siliken SLK60P6L PV module

d) Sanyo HIP-190B2-BO-01:
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Fig 3.23: RMSE vs Iteration graph using EMA on Sanyo HIP-190B2-BO-01
PV module data.

48



CHAPTER I11: PV Parameters extraction
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Fig 3.24: 1-V curve showing both calculated (through EMA) and measured currents of
Sanyo HIP-190B2-BO-01 PV module

PV module a | R(Q) | Ry | ILn(A) I, (A) RMSE

Condor CEM150M 1.3058 | 0.2462 | 3.089*10° | 8.3370 1.8240*10° | 0.0381

Kyocera KC125GHT 1.3741 | 0.2289 | 2.290*10° | 8.0143 8.0754*10° | 0.0395

Siliken SLK60P6L 1.3688 | 0.3655 | 1.723*10° | 8.2957 | 6.3057*10° | 0.0474
210Wp

Sanyo HIP-190B2-BO- | 1.7512 | 0.8738 | 3.095*10° | 3.1729 7.4343*10° | 0.0122
01

Table 3:extracted model parameters and RMSE using EMA
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3.3.4. DE results:
a) Condor CEM150M
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Fig 3.25: RMSE vs Iteration graph using DE on Condor CEM150M PV module data.
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Fig 3.26: 1-V curve showing both calculated (through DE) and measured currents of
Condor CEM150M PV module
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b) Kyocera KC125GHT
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Fig 3.27: RMSE vs lteration graph using DE on Kyocera KC125GHT PV module data.

g T T T T T T T T T

Imeasured
lealculated

o

0 2 4 6 8 10 12 14 16 18 20

V()

Fig 3.28: 1-V curve showing both calculated (through DE) and measured currents of
Kyocera KC125GHT PV module
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c) Siliken SLK60P6L :
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Fig 3.29: RMSE vs Iteration graph using DE on Siliken SLK60P6LPV module data.
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Fig 3.30: I-V curve showing both calculated (through DE) and measured currents of
Siliken SLK60P6L PV module
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d) Sanyo HIP-190B2-BO-01:
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Fig 3.31: RMSE vs Iteration graph using DE on Sanyo HIP-190B2-BO-01 PV module
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Fig 3.32: 1-V curve showing both calculated (through DE) and measured currents of
Sanyo HIP-190B2-BO-01 PV module
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PV module a | R(Q) | Ry(Q) [ ILn(4) Iy(A) RMSE

Condor CEM150M 1.2942 | 0.2477 | 4.902*10° | 8.3140 1.5837*10° | 0.0205

Kyocera KC125GHT 1.3956 | 0.2269 | 5.00%10% | 8.0534 1.0000*10" | 0.0070

Siliken SLK60P6L 1.2672 | 0.3950 | 5.924*10% | 8.2955 | 2.0269*10° | 0.0274
210Wp

Sanyo HIP-190B2-BO- | 2.0000 | 1.4566 | 5.00*10% | 3.2069 4.0000*10% | 0.0151
01

Table 4:extracted model parameters and RMSE using DE

3.3.5. MPA Results:

a)Condor CEM150M:
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Fig 3.33: RMSE vs Iteration graph using MPA on Condor CEM150M PV module data.
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Fig 3.34: 1-V curve showing both calculated (through MPA) and measured currents of
Condor CEM150M PV module

b) Kyocera KC125GHT:
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Fig 3.35: RMSE vs Iteration graph using MPA on Kyocera KC125GHT PV module
data.
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Fig 3.36: 1-V curve showing both calculated (through MPA) and measured currents of
Kyocera KC125GHT PV module

c) Siliken SLK60P6L:
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Fig 3.37: RMSE vs Iteration graph using MPA on Siliken SLK60P6LPV module data.
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Fig 3.38: 1-V curve showing both calculated (through MPA) and measured
currents of Siliken SLK60P6LPV module.

d) Sanyo HIP-190B2-BO-01:
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Fig 3.39: RMSE vs Iteration graph using MPA on Sanyo HIP-190B2-BO-01 PV module
data.
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Fig 3.40: 1-V curve showing both calculated (through MPA) and measured currents of
Sanyo HIP-190B2-BO-01 PV module

PV module a | R(Q) | Ry | Ln(A) Io(A) RMSE

Condor CEM150M 1.2644 | 0.2523 | 1.189*10° | 8.3120 1.1010*10° | 0.0208

Kyocera KC125GHT 1.3535 | 0.2440 | 4.108*10° | 8.0439 6.5088*10° |0.0144

Siliken SLK60P6L 1.3751 | 0.3637 | 4.290*10% | 8.2873 6.6865*10° | 0.0322
210Wp

Sanyo HIP-190B2-BO- | 1.6237 | 1.0496 | 1.290*10° | 3.1868 2.6520*10° | 0.0052
01

Table 5:extracted model parameters and RMSE using MPA
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3.4. Results discussion:

The algorithms used have yielded very good RMSE values, which shows that the difference
between the experimental and calculated data is very small; this means that the parameters
obtained are accurate. Hence, the models are reliable and can be used to represent the
modules accurately; by inspecting the obtained I-V curves, it can be seen that the data points
calculated using the extracted parameters align almost perfectly with the experimental I-V

curves, which confirms the accuracy of the models obtained.

The curves representing the RMSE value versus the number of iterations give an overview
about the behaviour of the five algorithms in the process of finding optimal parameter values
to achieve the best RMSE value possible. It can be said that the algorithms keep the same
pattern while optimizing; for example PSO has a stair looking graph behaviour, it is like the
RMSE value is driven downstairs (to lower values) but in relatively large treads. This causes
PSO, generally, to take a greater number of iterations to find its best possible RMSE,
compared to the other algorithms. Another observation is that almost all graphs show that the
best possible value of RMSE is reached way before the determined number of maximum
iterations; so there is no need to increment that number looking for better results.

3.4.1 Comparative tables:
a) Condor CEM150M:

Algorithm a R;(Q) R, () L, (A) I, (4) RMSE
PSO 1.4483 |0.2216 | 4.223*10° | 8.3594 8.2937*10° | 0.0472
WDO 1.3033 |0.2460 |2.070*10° | 8.3183 1.7658*10° | 0.0369
EMA 1.3058 |0.2462 |3.089*10° |8.3370 1.8240*10° | 0.0381
DE 1.2942 | 0.2477 | 4.902*10° | 8.3140 1.5837*10° | 0.0205*
MPA 1.2644 | 0.2523 1.189*10° | 8.3120 1.1010*10° | 0.0208

Table 6: Comparative table of the parameters extracted and RMSE values of the five
algorithm for Condor CEM150M

a) Kyocera KC125GHT:

Algorithm a R, (Q) R,(Q) Lyn(A) 1h(A) RMSE
PSO 1.3578 |0.2335 | 4.471*10% | 8.0433 6.8308*10° | 0.0390
WDO 1.3479 |0.2376 | 1.065*10° | 8.0657 6.1658*10° | 0.0406
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EMA 1.3741 | 0.2289 | 2.290*10° | 8.0143 8.0754*10° | 0.0395
DE 1.3956 | 0.2269 |5.00*10% | 8.0534 1.0000*10° | 0.0070*
MPA 1.3535 | 0.2440 | 4.108*10° | 8.0439 6.5088*10° | 0.0144

Table 7: Comparative table of the parameters extracted and RMSE values of the five
algorithm for Kyocera KC125GHT

b) Siliken SLK60P6L:

Algorithm a R,(Q) R,(Q) Iyn(A) 1,(4) RMSE
PSO 1.2818 |0.3912 | 9.356*10% | 8.2890 2.4152*10° | 0.0429
WDO 1.3301 |0.3759 |3.397*10° | 8.3035 4.1984*10° | 0.0446
EMA 1.3688 | 0.3655 | 1.723*10° | 8.2957 6.3057*10° | 0.0474
DE 1.2672 | 0.3950 | 5.924*10% | 8.2955 2.0269*10° | 0.0274*
MPA 1.3751 |0.3637 | 4.290*10% | 8.2873 6.6865*10° | 0.0322

Table 8: Comparative table of the parameters extracted and RMSE values of the five
algorithm for Siliken SLK60P6L

c) Sanyo HIP-190B2-BO-01:

Algorithm a R,(Q) R,(Q) Lyn(A) 1,(A) RMSE
PSO 1.6765 | 0.9788 2.397*10°% | 3.1822 4.1867*10° | 0.0095
wWDO 1.7343 | 0.8780 2.252*10°% | 3.1901 6.5997*10° | 0.0122
EMA 1.7512 | 0.8738 3.095*10° | 3.1729 7.4343*10° | 0.0122
DE 2.0000 | 1.4566 5.00%10% | 3.2069 4.0000%10® | 0.0151
MPA 1.6237 | 1.0496 1.290*10° | 3.1868 2.6520%10° | 0.0052*

Table 9: Comparative table of the parameters extracted and RMSE values of five the
algorithm for Sanyo HIP-190B2-BO-01

*: best obtained RMSE value for the module.

From the comparative tables above, DE is clearly on top in terms of RMSE values; it has
three best RMSE values out of four. It has not even reached a value above 0.274; this shows
the effectiveness of this optimization method for the purpose of single-diode model PV
parameters extraction. MPA has also given three second-best results and one best, which
shows that this newly developed algorithm is very effective. However, the statement does not
discredit the other optimization techniques used.
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CHAPTER Il1: PV Parameters extraction

Another observation is the narrow gap in RMSE values overall, but especially between WDO

and EMA; the gap is very narrow between the two values on all tables.

The widely varying parameter, between all algorithms results, is the parallel resistance R,;

this is mainly due to its wider range.

The less varying parameter between the five algorithms results is the photo-generated current

L,p; this is logical because I,,, must be very close to the short-circuit current of the module.

3.5. Conclusion:

This chapter has covered our approach on single-diode parameters extraction; the approach is
based on using metaheuristic techniques on the problem formulated as an optimization one.
Different algorithms have been used, their behaviours were observed some yielding more

accurate results, but overall all the results obtained have good fitness and are satisfactory.
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General Conclusion

General conclusion:

Solar energy is labelled as the main energy for the future; this labelling has led the
photovoltaic literature to grow fast, over the years. In this project, interest was oriented
towards one particular aspect; that is the modelling of photovoltaics. That has lead us to
gather a great understanding of PVs, in our way to realise this project. Going from broad
areas of research to narrow ones kept the work very interesting; for seeing the bigger picture

always helps in understanding more details put together.

Our work started by explaining the very basic principle of PVs, which is essential before
going into more in-depth aspects. After that, different equivalent model were presented; the
ideal PV cell representation, single-diode model, and double-diode model. Following that, the
parameters that represent these models (ideality factor, series resistance, parallel resistance,
photo-generated current, and diode saturation current were introduced. Then, light was shed
on optimization techniques, but mainly the techniques of interest for us; that are known as
metaheuristics. Those optimization algorithms used were defined in depth; since they are the
main tool for solving our problems later on. Coming to the main section, which was adapting
those algorithms to suite the main purpose of the project, which is single-diode PV model
parameters extraction, the problem was formulated as an optimization one with the RMSE as
an objective function. Five algorithms were used (PSO, WDO, EMA, DE, MPA), and the
results obtained were accurate as it was graphically shown. In the end, some comparisons
were carried out, finding out that DE method has given best overall objective function values;

without discrediting the accuracy of the other techniques.

The topic of this project is very important and interesting, because obtaining models with
high accuracy results in better design and assessment of photovoltaics, which will lead to big

advents in the field.
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