
Registration Number:…..…../2020

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of

MASTER

In Electronics

Option: Computer Engineering

Title:

Presented by:

- BOUDISSA Mehieddine

- KISSOUM Malik

Supervisor:

 Pr. Abdelhakim KHOUAS

Algeria license plate recognition system

using Faster-RCNN and YOLO models

Abstract

In some institutions, office buildings, or government facilities the flow of incoming and
outgoing traffic of people and cars needs to be monitored and recorded for security
purposes as well as practicality and automation of entry pass for vehicles. Over the last
years, many techniques have been proposed in an attempt to solve the Automatic License
Plate Recognition System (ALPRS) problem. These techniques rely mainly on hand-
crafted approaches and basic computer vision algorithms such as edge detection with
Sobel filter. These approaches are not accurate enough for real-world applications, nor are
they robust enough to changes in size, shape, and rotation of the license plates. Recently,
deep learning techniques have been shown to be a strong tool for solving computer vision
and object detection problems, such as ALPRS.

In this project, we propose a solution based on convolutional neural networks (CNN).
A data set containing 1000 car images has been collected, labeled, and then split into a
training set and testing set. The size of this data set would allow for a transfer learning
approach and fine-tuning of models. In the next step, various models belonging to the
“You Only Look Once” (YOLO) CNN and “Faster Region-based CNN” (Faster RCNN)
families are trained to perform plate detection task only. Once the models are trained and
optimized, they are used to crop images of plates from the original car images. These
cropped images are used to train models to perform the digit recognition task, similar to
those trained for plate detection. The training process was repeated for different structures
and parameters of the models to obtain the best performance possible.

Evaluating these models relies on the use of the mean average precision (mAP) used in
the original papers of YOLO and Faster-RCNN. The evaluation of the final model (plate
detection and digit recognition) relies on the accuracy of performing the identification of
the license plate numbers. The end result is an application that achieved an accuracy of
81.36% with real-time video processing capabilities and robust to changes in size, shape,
color, and rotation of the license plates.

This project provides users of the application with a reliable and practical security tool.
It would also supply Algerian academics and software developers with a benchmark data
set for further research on the topic and evaluation of future models.

i

Dedication

“ This work is wholeheartedly dedicated to my beloved parents Mokhtar and Fouzia, and

my brothers Ahmed and Seddik and my sister Meriem for the support on all levels, who

have been my source of inspiration; whose affection, love, encouragement and prays of

day and night make me able to get such success and honor. I also extend my gratitude and

congratulations to my partner Malik for the good work that he did despite facing hard

personal challenges as well as my friends, relatives, mentor, teachers, classmates who

have been all along. ”

Mehieddine

“ I dedicate my dissertation work to my family and many friends. A special feeling of

gratitude to my loving parents, Mohammed and Ouiza whose words of encouragement

and push for tenacity ring in my ears. My sisters Dihia, and Lydia have never left my side

and are very special. I also dedicate this dissertation to my many friends and classmates

who have supported me throughout the process. I will always appreciate all they have

done, especially Djamel Eddine Zidane and AbdelMalek Bouaoune who reminded me, all

along, with the importance of our religion and kept motivating and pushing me to read

Quran and never neglect it whatever how desperate the situation may seem. I dedicate this

work and give special thanks to my partner Mehieddine for being there for me throughout

my struggle and kept faith with me. ”

Malik

ii

Acknowledgments

In the name of Allah, the Most Beneficent and the Most Merciful, all gratitude goes to
Him before and after. For the strength and the preservation from all sickness. Secondly,
we would like to express our special thanks of gratitude to our teacher and supervisor
Pr. Khouas who gave us the opportunity to fulfill this project and for his guidance and
professionalism all along. We thank Dr. Andrew NG from coursera as well, who provided
insights and expertise that greatly assisted the development of the project through his
excellent courses and occasional tweets.

iii

Contents

Abstract i

Dedication ii

Acknowledgment iii

Contents iv

List of Figures vi

List of Tables viii

List of Abbreviations x

Introduction 1

1 Feed-Forward neural networks 3
1.1 Cost function . 5
1.2 Gradient descent . 6

1.2.1 Gradient calculation . 7
1.3 Neural network architecture . 10
1.4 Back-propagation . 11
1.5 Batch and stochastic gradient descent 13
1.6 Adam optimizer . 14
1.7 Problems related to neural nets . 15

2 Convolution neural networks 17
2.1 Convolution operation . 17
2.2 CNN architectures . 18
2.3 Convolutional layer . 22
2.4 Stride and padding . 24
2.5 Pooling . 25
2.6 Transfer learning . 27

iv

CONTENTS v

2.7 Data augmentation . 27

3 CNN application: Object detection 28
3.1 YOLO: you only look once . 29

3.1.1 Bounding boxes . 29
3.1.2 Network design . 30
3.1.3 Processing the algorithm’s output 32

3.2 Faster R-CNN . 34
3.2.1 Anchors . 34
3.2.2 Region Proposal Network . 34
3.2.3 ROI Pooling . 37
3.2.4 Faster RCNN training . 38

4 Design and implementation of ALPRS 40
4.1 Workflow of the ALPRS implementation 40
4.2 Data collection and labeling . 42
4.3 Training Faster RCNN models . 45

4.3.1 Results of training . 50
4.4 Testing Faster RCNN models . 54
4.5 Speed performance evaluation for RCNN models 57
4.6 Training YOLOv3 models . 58
4.7 Training and testing results . 61

4.7.1 Plate detection network . 61
4.7.2 Digit recognition network . 63

4.8 Speed performance evaluation for YOLO models 64
4.9 ALPRS implementation . 65

4.9.1 Faster RCNN based ALPRS . 65
4.9.2 YOLOv3 based ALPRS . 66
4.9.3 Hybrid model based ALPRS . 66

Conclusion 68

Bibliography 69

Appendices 73

A YOLOv3 network architecture 73
A.1 Feature extractor . 73

CONTENTS vi

B mAP for Object Detection 75
B.1 Precision and recall . 75
B.2 Average Precision . 75

C Backbone models 78
C.1 VGG-16 . 78
C.2 Mobilenet . 80

C.2.1 Mobilenet model structure . 82
C.3 Inception . 82

C.3.1 Inception V1 . 82
C.4 Res-Net . 85

C.4.1 Skip Connection . 86

List of Figures

1.1 Test vs grades [1]. 4
1.2 Boundary line separating accepted students represented with blue points

and rejected students represented with red points [1]. 4
1.3 Perceptron graph representation. 5
1.4 Sigmoid vs step function. 8
1.5 A visual representation of a feed-forward network which approximates

some function f .[24]. 10
1.6 The descent in weight space [13]. 15

2.1 An example of 2-D convolution [25]. 18
2.2 Traditional neural network connections. The last layer has been replaced

by a black box for simplicity . 19
2.3 Sparse connectivity example. 20
2.4 Sparse connectivity after rearrangement. 20
2.5 2D convolution on a practical example. 22
2.6 Multiple filters for multiple pattern detection [1]. 23
2.7 A complete convolutional layer with 4 filters [1]. 23
2.8 Padding example. 25
2.9 Maxpooling example. 26

3.1 Example of what an object detection system should accomplish. 28
3.2 Example of anchor boxes. 30
3.3 The true output of YOLOv3 after introducing the training instability issue. 31
3.4 Bounding box calculation [29]. 32
3.5 Intersection over union metric. 33
3.6 Sample IoU scores. 33
3.7 Faster R-CNN model structure. 35
3.8 Example of anchors at single location. 36
3.9 ROI pooling operation. 38

4.1 Block diagram illustrating the workflow. 41

vii

LIST OF FIGURES viii

4.2 Image collection example . 43
4.3 Example of plate labeling. 44
4.4 Process of extracting plate images from the original images. 44
4.5 Example of digit labeling. 45
4.6 Block diagram summarizing the Faster RCNN training process. 46
4.7 VGG-16 for the first scales and aspect ratios. 50
4.8 Mobilenet for the first scales and aspect ratios. 51
4.9 Inception for the first scales and aspect ratios. 51
4.10 Resnet for the first scales and aspect ratios. 52
4.11 VGG-16 for the second scales and aspect ratios. 52
4.12 Mobilenet for the second scales and aspect ratios. 53
4.13 Inception for the second scales and aspect ratios. 53
4.14 Resnet for the second scales and aspect ratios. 54
4.15 Block diagram summarizing the testing process for the Faster RCNN

models. 55
4.16 YOLOv3 network architecture [2]. 59
4.17 Block diagram illustrating the training process for YOLO models. 60
4.18 Loss plot for the plate network after 1400 iterations. 62
4.19 Loss plot for the plate network after 4000 iterations. The erased blue

portion was due to unstable internet connection. 62
4.20 Plate detection examples. 63
4.21 Digit detection examples. 64
4.22 Diagram illustrating the top level structure of the ALPRS. 65
4.23 Examples of ALPRS detection. 66

B.1 Example of precision and recall values. 76
B.2 Plot of precision vs recall. 76
B.3 Elimination of zigzag pattern. 77

C.1 VGG-16 structure by layers. 79
C.2 VGG-16 network configuration. 79
C.3 Convolution input. 80
C.4 Convolution operation. 81
C.5 Depth-wise Convolution. 81
C.6 Point-wise Convolution. 82
C.7 Examples of dog images. 84
C.8 Inception network layer general structure. 85
C.9 Inception layer with added 1×1 convolution operation. 85
C.10 Inception network structure. 86
C.11 Skip connection. 87

List of Tables

4.1 mAP for plate detection on training set for the first set of scales and anchor
ratios. 56

4.2 mAP for plate detection on training set for the second set of scales and
anchor ratios. 56

4.3 mAP for plate detection on test set for the first set of scales and anchor
ratios. 56

4.4 mAP for plate detection on test set for the second set of scales and anchor
ratios. 56

4.5 mAP for digit recognition on training set for the first set of scales and
anchor ratios. 56

4.6 mAP for digit recognition on training set for the second set of scales and
anchor ratios. 57

4.7 mAP for digit recognition on test set for the first set of scales and anchor
ratios. 57

4.8 mAP results for digit recognition on test set for the second set of scales
and anchor ratios. 57

4.9 One frame processing time of each plate detection model. 58
4.10 One frame processing time of each digit recognition model. 58
4.11 Plate network results using YOLOv3 model. 61
4.12 Digit network results using YOLOv3 model. 63
4.13 Speed test summary. 64

A.1 Comparison of backbones . 73
A.2 Darknet-53 structure[30]. 74

C.1 mobilenet structure table. 83

ix

List of Abbreviations

Adam Adaptive moment estimate

ALPRS Automatic License Plate Recognition System

BCE Binary Cross-Entropy

BFLOP Billion Floating Operations

CNN Convolutional Neural Networks

COCO Common Objects in Context

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DSC Depth-wise Separable Convolution

FC Fully Connected

FPS Frames Per Second

GD Gradient Descent

GPU Graphical Processing Unit

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IoU Intersection over Union

mAP mean Average Precision

MLE Maximum Likelihood Estimate

MLP Multi Layer Perceptron

PASCAL Pattern Analysis, Statistical modeling and Computational Learning

RCNN Region Convolutional Neural Networks

x

LIST OF ABBREVIATIONS xi

RGB Red Blue Green

ROI Region Of Interest

RPN Region Proposal Network

SGD Stochastic Gradient Descent

VOC Visual Object Classes

YOLO You Only Look Once

Introduction

The world nowadays is moving towards automation at an unprecedented rate. Almost
every month, a breakthrough is made in the path towards creating smart computer systems
with the ability to learn and make decisions of their own. This progress does not only
manifest itself in theoretical work and research papers, but also in real-world applications
such as the latest voice recognition software found in Amazon Alexa, or the computer
vision systems used by Tesla autonomous cars. Most experts and speculators predict
that soon enough, all aspects of ordinary life will be dependent upon the use of these
artificially intelligent machines. Some experts are optimistic and consider this as a practical
solution for a wide range of problems in various fields such as medicine, transportation,
telecommunication, and even politics and economics. Other experts express fears that this
technology may produce more problems than it would solve.

This work is an attempt to bring a contribution to the field, and specifically to the topic
of CNN, by developing a real-world ALPRS to identify license plate numbers using image
inputs of the cars. ALPRS help efficiently identify vehicle license plates without the need
for major human resources. Recently, ALPRS have become more and more important. It
can be used by government agencies to find cars that are involved in crime, look up if
annual fees are paid, or identify persons who violate the traffic rules. Many countries (e.g.
U.S., Japan, Germany, Italy, U.K, France, . . .) have successfully applied ALPRS in their
traffic management. Several private operators are also benefiting from ALPRS.

Recognition tasks are mere for humans, whereas, for computers, it is an extremely
tedious work since all that a computer can understand are numbers. Recent advancements
in computer vision have given computers the ability to extract semantically meaningful
information from images.

In this project, we take advantage of this ability to develop an ALPRS. The system is
mainly split into three major stages: data collection and labeling, license plate detection,
and lastly character (digit) detection. The two last stages use various deep learning
techniques and are further elaborated in chapter three and four alongside with the first
stage. Traditional computer vision techniques employ features chosen by humans to
represent the underlying features of the image. These techniques require sophisticated
human-designed models to translate raw input pixels into useful recognition responses.
There are few main issues facing the development of a practical ALPRS. The first one, is

1

INTRODUCTION 2

that most systems out there do not yield an accuracy that is satisfying enough for a real
world useful application. The second one, is that these same systems are susceptible to
changes in the shape, size, color, or rotation of the license plates. In the work done by M.
Sarfraz, M.J. Ahmed and S.A. Ghazi entitled “Saudi Arabian license plate recognition
system” [35], the authors relied on the template matching technique, which basically
performs a sweeping operation all over the image, and comparing each region with a
template of a certain character or number. This technique only works if the plates are
facing forward to the camera, and the frames would have nothing in them that is similar
in shape to a character. But when it comes to the state-of-the-art concerning ALPRS, the
work done by INGA Astawa, I Gusti Ngurah Bagus Caturbawa, Sajayasa and Ari Dwi
Suta Atmaja entitled “Detection of License Plate using Sliding Window, Histogram of
Oriented Gradient, and Support Vector Machines Method” [26], shows the best results
that we know of. The work relied on the sliding window segmentation technique and
has shown an accuracy of 96%. This result has been achieved on a very restricted test
images where all plate images were facing forward with good lighting conditions. Using a
deep learning approach, these underlying human-engineered features are automatically
selected by the algorithm. Both works showed practical state-of-the-art results in the
tasks of object detection. This project also includes the creation of a labeled data set of
license plates, which is the first one ever of this kind. This data set will allow for other
students or researchers to conduct similar works and will be used as a benchmark to track
advancements in ALPRS. This report is divided into four chapters. Chapter 1 describes
basic concepts of deep learning and neural networks. Chapter 2 explains basic CNN
concepts and how they are derived from plain neural networks. Chapter 3 presents Faster
RCNN and YOLO model theory. Chapter 4 discusses the implementation and design of
ALPRS using Faster RCNN and YOLO models.

Chapter 1

Feed-Forward neural networks

To understand the techniques used in this report, it is necessary to understand basic neural
networks functioning. Let us begin with a classification example. Classification is the
process of organizing data into groups or categories. Practical examples are spam filters
that assign a given email to the “spam” of “non-spam” class, or assigning a diagnosis to a
a given patient based on observed characteristics (sex, blood pressure, presence or absence
of certain symptoms, . . .). The observed characteristics are called features, and the classes
or categories are referred to as labels. The collection of the features and corresponding
labels is called training set. A sample from the training set is called an example. Given a
scenario with a training set of labeled data (x,y), where x denotes the training example
composed of multiple features, say x = {x1,x2, . . . ,xn}, and y the corresponding label, a
‘perceptron’ is a basic computational function that can be used to perform classification.
Perceptrons are the building blocks of neural networks, and the best way to get familiar
with them is with an example. Assume that at at some university’s admission office the
students are evaluated with two pieces of information, the results of an entrance test, and
their grades during their previous school years. Observe a 2D plot of some sample students’
information, see fig. 1.1, where the abscissa represents the grades at the entrance test, and
the ordinate represents their previous average grade. The blue dots represent the students
who got accepted and the red dots represent those who got rejected. Our job is to develop
a model that can separate the two groups and predict which students will be accepted and
which ones will be rejected.

The two groups of points on the figure can be easily separated with a line, where most
students above the line get accepted and most students under the line get rejected, see
fig. 1.2. Therefore, this line can be our model for accepting and rejecting students.
The model makes a couple of mistakes since there are a few blue points that are under the
line and few over the line, but they are considered as noise (they might have been accepted
or rejected by mistake) and add no new information to our model. The problem is how to
find the best line that does the separation.

We start by labeling the axis x = {x1,x2}, where x1 is TEST axis and x2 is GRADES

3

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 4

Figure 1.1: Test vs grades [1].

Figure 1.2: Boundary line separating accepted students represented with blue points and
rejected students represented with red points [1].

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 5

axis. The boundary line separating the students has a linear equation specifically: 2x1 +

x2−18 = 0. Passing the grades in the equation gives rise to a score, if the score is positive
(the student gets plotted above the line), the student gets accepted. On the other hand, if
the score is negative (the student is plotted under the line) the student gets rejected. This is
called a prediction.
In a more general case, our boundary will be an equation of the following form:

w1x1 +w2x2 +b = 0. (1.1)

Abbreviating this equation into vector notation:

w ·x+b = 0 (1.2)

Where w = {w1,w2}. We refer to x as the input, w as the weights and b as the bias.
Here y = {0,1} is the label, where 0 indicates the student being rejected whereas 1
indicates the student being accepted. Finally, our prediction is going to be called ŷ and it
will be what the algorithm predicts; what the label will be, namely:

ŷ =

1 w ·x+b≥ 0

0 w ·x+b < 0
(1.3)

The goal of the algorithm is to have ŷ resembling to y as closely as possible. Reorga-
nizing the equations in a graph and generalizing for n features, gives rise to fig. 1.3. The
bias is considered a dummy input with value 1 to the Perceptron with weight w.

Figure 1.3: Perceptron graph representation.

1.1 Cost function

In order to estimate the accuracy of the algorithm, or otherwise stated, determine how well
a certain prediction, given by the algorithm is, we may establish a cost function, which

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 6

measures the error that the algorithm makes on some prediction (the cost function is often
referred to as the error function or the loss function). There are more than one choice for
such a function. Equation (1.4) can be used, it is called “The Mean Squared Error”.

L(w,b) =
1
2

n

∑
i=1
||yi− ŷi||2. (1.4)

This function, becomes large when our algorithm approximates y badly, and small
when the approximation is accurate. Additionally, notice that if we set Lxi =

1
2(yi− ŷi)

2

we have that:

L(w,b) =
n

∑
i=1

Lxi. (1.5)

This property will be important in the algorithm described in section 1.4.
Another way of defining a cost function is using the the maximum likelihood estimation

(MLE) technique, since the sigmoid function deals with probabilities. We take the joint
probability of an entire training set, assuming the training examples being independent
events:

L(w,b) = p(y(1),y(2), . . . ,y(n)|x(1), . . . ,x(n)) =
n

∏
i=1

p(y(i)|x(i)) (1.6)

where x(i), y(i) represent the ith training example and label respectively. Thus by
maximizing the joint probability, or respectively minimizing the (− log) of the likelihood,
we can get an estimate of the parameters w and b. Now, in our worked example, the neural
network can be treated as a random variable having a Bernoulli distribution, therefore
eq. (1.6) can be rewritten as follows [25]:

L(w,b) =−
n

∑
i=1

yi log(ŷi)+(1− yi) log(1− ŷi). (1.7)

Equation (1.7) is usually the cost function used for Bernoulli distributed labeled
data. It is often referred to as binary cross-entropy (BCE). For multi-class classification
(predicting multiple classes, say k classes), a similar idea can be used considering a
multinoulli distribution on the data set where p(y|x) = ∏

k
i=1 p[y=i]

i , where [y = i] evaluates
to 1 if x = i, 0 otherwise. This leads to following cost function using MLE

L(w,b) =−
k

∑
j=1

n

∑
i=1

yi, j log(ŷi, j). (1.8)

1.2 Gradient descent

In order to minimize the cost function we rely on optimization algorithms from numerical
methods as it is unpractical to minimize manually. The technique used in neural networks

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 7

is the gradient descent. The gradient of a differentiable function f : Rn −→ R at a point
x = (x1, . . . ,xn) ∈ Rn is a vector in Rn of the form [24]:

∇ f (x) = (
∂ f
∂x1

(x), . . . ,
∂ f
∂xn

(x)) (1.9)

It is a well known result that, given a point x ∈ Rn, the gradient at that point indicates
the direction of steepest ascent. Given that f is differentiable at x, the vector −∇ f (x)

indicates the direction of steepest descent of the function f at the point x. In order to
obtain the minimum value of the function, the gradient descent strategy tells us to start at
a given x0 ∈ Rn, calculate the value of ∇ f (x0), and then proceed to calculate a new point
x1 = x0−α∇ f (x0), where α > 0 is called the learning rate. We then repeat this process,
creating a sequence {xi} defined by our initial choice of x0, the learning rate α , and the
rule: xi+1 = xi−α∇ f (x0) . This sequence continues until we approach a region close to
our desired minimum.

The method of gradient descent when taken continuously over infinitesimally small
increments (that is, taking the limit α→ 0) usually converges to a local minimum. However,
depending on the location of the initial x0, the local minimum achieved may not be the
global minimum of the function. Furthermore, since when carrying out calculations on
an unknown function we must take discrete steps (which vary in length depending on
the learning rate), we are not even guaranteed a local minimum but rather may oscillate
close to one, or even ’jump’ past it altogether if the learning rate is too big. Still, even
with these possible complications, gradient descent is a surprisingly successful method for
many real life applications and is the most standard method of training for feed-forward
neural networks. Given that our cost function indicates how poorly our neural network
approximates a given function, by calculating the gradient of the cost function with respect
to the weights and biases of the network and adjusting these parameters in the direction
opposite to the gradient, we will decrease our error and therefore get closer to an adequate
network (in most cases) [24].

1.2.1 Gradient calculation

Before applying the gradient descent technique, we can clearly see that the an output of
0 or 1 is problematic since the derivatives would be 0. Therefore, the gradient descent
technique will not work. To remedy this, following the MLE, a Bernoulli distribution has
been defined on y, therefore the neural net needs to predict ŷ = p(y = 1|x) = σ(x). For
this number to be a valid probability, it must lie in the interval [0,1].
A good approach would ensure the existence of a strong gradient whenever the model has
the wrong answer. For consistency with the perceptron’s decision rule (eq. (1.3)), a very
positive linear combination of the input x has to have a probability close to 1 and vise
versa (see fig. 1.4), otherwise [25]:

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 8

lim
x→+∞

σ(x) = 1, lim
x→−∞

σ(x) = 0. (1.10)

This approach is based on the sigmoid function:

σ(x) =
1

1+ e−x (1.11)

This function is suitable for the problem at hand, namely binary classification. However,
depending on the output ŷ other functions might be used. For example if a neural network
is used to predict continuous non-bounded function that takes values in the interval
]−∞,+∞[, then a more clever choice is the linear activation function, which is defined as:
f (x) = x. Another example is the multi-class classification, where a multinoulli distribution
is defined over the training data. The function used is the softmax defined as

so f tmax(xi) =
exi

∑ j ex j
(1.12)

Where xi represents a training example from class i [25]. Here the output consists of j

outputs rather than a single one. See fig. 1.5 to illustrate the output layer.

Figure 1.4: Sigmoid vs step function.

Now, let us apply the gradient descent technique to our network. Our goal is to calculate
the gradient of L at a point x = (x1, . . . ,xn) given by the partial derivatives, see eq. (1.9).
In addition, the property mentioned in eq. (1.5) now become important: we are only going
to calculate the value of ∇Lx for a given labeled data point and then add the values of the
gradient together, see below.

∇L(w,b) = ∇(
n

∑
i=1

Lx) =
n

∑
i=1

∇Lxi. (1.13)

The error produced by each point is simply: Lx = −y log(ŷ)− (1− y) log(1− ŷ). In
order to calculate the derivative of this error with respect to the weights, we will first
calculate ∂

∂w j
ŷ, where ŷ = σ(w · x+b) [1].

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 9

∂

∂w j
ŷ =

∂

∂w j
σ(w · x+b) (1.14)

= σ(w · x+b)(1−σ(w · x+b)) · ∂

∂w j
(w · x+b)1 (1.15)

= ŷ(1− ŷ) · ∂

∂w j
(w · x+b) (1.16)

= ŷ(1− ŷ) · ∂

∂w j
(w1x1 + . . .+w jx j + . . .wnxn +b) (1.17)

= ŷ(1− ŷ) · x j. (1.18)

Now we can go ahead and calculate the derivative of the error L at a point x, with respect
to the weight w j.

∂

∂w j
Lx =

∂

∂w j
[−y log(ŷ)− (1− y) log(1− ŷ)] (1.19)

=−y
∂

∂w j
log(ŷ)− (1− y)

∂

∂w j
(1− ŷ) (1.20)

=−y
1
ŷ
· ∂

∂w j
ŷ− (1− y)

1
1− ŷ

· ∂

∂w j
(1− ŷ) (1.21)

=−y(1− ŷ) · x j +(1− y)ŷ · x j (1.22)

=−(y− ŷ)x j (1.23)

A similar calculation will show that :

∂

∂b
Lx =−(y− ŷ) (1.24)

Therefore, since the gradient descent step simply consists in subtracting a multiple
of the gradient of the error function at every point, then this updates the weights in the
following way [1]:

w′i = wi +α(y− ŷ)xi (1.25)

b′ = b+α(y− ŷ) (1.26)
1The sigmoid has a nice derivative: σ ′(x) = σ(x)(1−σ(x))

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 10

1.3 Neural network architecture

In our work example, the target function was a simple linear function. However, in real
world situations the input data is much more complex and often cannot be separated with a
line. That is where neural networks shine. Neural networks also referred to as feedforward
neural networks or multilayer perceptron (MLPs) are stacks of perceptrons, where each
unit receives the input x, calculates the inner product with a set of weights and apply a
non-linearity to the result, then these results are fed to a next layer of units that does the
same calculations and so on. The overall length of the chain gives the depth of the model.
The final layer of such a network is called the output layer, whereas the intermediate layer
are referred to as hidden layers. The goal of the feed-forward network is to approximate
some function f ∗. The training example specify directly what the output layer must do at
each point x; it must produce a value that is close to y. Therefore, the function computed
after the linear combination is important. This function and the functions used in the
hidden layers are referred to as activation functions. For example for a classifier, the
function maps an input x to a category y, a natural choice of activation is the sigmoid;
whereas in a regression problem, where the output is continuous non-bounded that takes
values in the interval]−∞,+∞[, a more clever choice is the linear activation function,
which is defined as: f (x) = x [25]. The figure below depicts the architecture described
above.

Figure 1.5: A visual representation of a feed-forward network which approximates some
function f .[24].

For notation, set wn
a,b ∈R as the weight between the ath unit in the (n−1)th layer with

k units to the bth unit in the nth layer with j units.

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 11

wn =


wn

1,1 . . . wn
1,k

...
wn

j,1 . . . wn
j,k

 (1.27)

The bias can be added as a dummy unit with input xn+1 = 1, which is a constant b∈R j.
In order to calculate the output an of the nth layer, we use the formula:

an = σ(wn ·an−1 +bn). (1.28)

In the above equation, the activation function σ is applied element-wise to each
element of the resulting vector. As the computations are carried out along the network’s
layers, the final function f calculated by a network of depth N is [24]

f (x) = σ(wNσ(. . .σ(w2σ(w1 · x+b1)+b2) . . .)+bN) (1.29)

1.4 Back-propagation

In order to train a neural network, the same techniques are used as in section 1.2.1. First
we define a cost function (which is the same as in the perceptron algorithm eq. (1.7),but
with a much more complex ŷ), we calculate the feed-forward pass (we calculate the output
ŷ), and then calculate the the gradient of the cost function L with respect to every single
weight and bias in the network, we get the following gradient vector ∇L = (. . . , ∂

∂wl
i, j

L, . . .).

Then applying the gradient step using eq. (1.25):

w′li, j = wl
i, j−α

∂

∂wl
i, j

L (1.30)

b′lj = b j−α
∂

∂bl
j
L (1.31)

The big challenge of applying gradient descent to neural networks is calculating
these partial derivatives. This is where back-propagation comes in. This algorithm first
tells us how to calculate these values for the last layer of connections, and with these
results then inductively goes "backwards" through the network, calculating the partial
derivatives of each layer until it reaches the first layer of the network. Hence the name
"back-propagation" [24].

For the purpose of this section it is useful to consider the values of each layer before
the activation function step. Consider:

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 12

zl
j = ∑

k
wl

j,kal−1
k +bl

j so that al
j = σ(zl

j). (1.32)

Additionally, we define the following:

δ
l
j =

∂

∂ zl
j
L (1.33)

This value will be useful for propagating the algorithm backwards through the network
and directly related to ∂

∂wl
i, j

L and ∂

∂bl
j
L by the chain rule. since we have:

∂L
∂wl

i, j
=

∂L
∂ zl

j

∂ zl
j

∂wl
i, j

= δ
l
ja

l−1
i (1.34)

∂L
∂bl

j
=

∂L
∂ zl

j

∂ zl
j

∂bl
j
= δ

l
j . (1.35)

The value al−1
j has already been calculated through the forward pass. The only re-

maining term to calculate is δ l
j and we obtain our gradient. Our first step is calculating

this value for the last layer of the network, that is, δ N
j for a network with N layers. Since

aN
j = σ(zN

j), again using the chain rule:

δ
N
j =

∂L
∂aN

j

∂aN
j

∂ zN
j
=

∂L
∂aN

j
σ
′(zN

j) (1.36)

which can be easily calculated by a computer if we know how to calculate σ ′ (which
should be true for any practical activation function). Now we will only need to "propagate"
this backwards in the network in order to obtain δ

N−1
j . In order to do so, we apply the

chain rule once again [24]:

δ
N−1
j =

∂L
∂ zN−1

j
(1.37)

=
k

∑
i

∂L
∂ zN

i

∂ zN
i

∂ zN−1
j

(1.38)

=
k

∑
i

δ
N
i

∂ zN
i

∂ zN−1
j

(1.39)

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 13

If we focus on the term ∂ zN
i

∂ zN−1
j

, we find that:

∂ zN
i

∂ zN−1
j

=
∂ (∑k wN

i,kaN−1
k +bN

i)

∂ zN−1
j

(1.40)

=
∂ (wN

i, jσ(zN−1
j))

∂ zN−1
j

(1.41)

= wN
i, jσ

′(zN−1
j) (1.42)

which, again, can be easily calculated by a computer given the network. Therefore:

δ
N−1
j =

k

∑
i

δ
L
i wN

i, jσ
′(zN−1

j). (1.43)

This formula tells us how to calculate any δ l
j in the network, assuming we know δ l+1.

We finally have a way to calculate all the δ l
j ’s, given that we know what the values of

δ
l+1
j are. Thus, by propagating this method backwards through the layers of the network,

we are able to find all our desired partial derivatives, and can therefore calculate the value
of ∇L as a function of the weights and biases of the network and execute the method of
gradient descent [24].

1.5 Batch and stochastic gradient descent

Batch gradient descent is just another name for the gradient descent (GD) discussed so
far. It involves calculations over the full training set to take a single step as a result of
which it is very slow on very large training data due to the size of the weight matrices
that take up large memory portions. Thus it become very computationally expensive to
do batch GD. One can take advantage of the property mentioned in section 1.1, eq. (1.5).
Therefore, instead of going through the entire data-set, at each iteration, we select a few
elements from the training set, commonly selected by randomly sampling from all the
available labeled data, calculate the gradient, update the network’s weights and repeat the
process until the network arrives at satisfactory results. The gradients computations are
faster as there is much fewer data to manipulate in a single time. This technique is referred
to as stochastic gradient descent (SGD). One downside though of SGD is, once it reaches
close to the minimum value it does not settle down, instead bounces around which gives
us a good value for model parameters but not optimal. This can be solved by reducing the
learning rate at each step which can reduce the bouncing and SGD might settle down at
global minimum after some time [13].

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 14

1.6 Adam optimizer

Adam is a an optimization algorithm and is an extension to the stochastic gradient descent.
It is the most preferred optimizer within the deep learning community because it almost
always work faster than SGD. The method computes individual adaptive learning rates for
different parameters from estimates of first (mean) and second (variance) moments of the
gradients; the name Adam is derived from adaptive moment estimation [18]. The algorithm
updates exponential moving averages of the gradient (mt) and the squared gradient (vt)
where two parameters β1,β2 ∈ [0,1) control the exponential decay rates of these moving
averages. The moving averages themselves are estimates of the first moment (the mean
mt) and the second raw moment (the variance vt) of the gradient [18]. The update rule
of the adam optimizer is as follow, first calculate the running average of the weights as
follows (eq. (1.44)):

mt = β1 ·mt−1 +(1−β1) ·
∂L

∂wl
i, j

(1.44)

vt = β2 · vt−1 +(1−β2) · (
∂L

∂wl
i, j
)2 (1.45)

Where m0 and v0 are initialized to zero vectors. This leads to moment estimates that
are biased towards zero, especially during the initial timesteps. To counteract this bias,
both mt and vt are divided by (1−β t) (eq. (1.46)) [18]. The square operation in the second
equation is actually an element-wise square not the ordinary square operation.

m̂t = mt/(1−β
t
1), v̂t = vt/(1−β

t
2) (1.46)

Finally, the weights are updated according to eq. (1.47)

wt = wt−1−α · m̂t√
v̂t + ε

(1.47)

The same equations apply to the bias term b. The reason why adam is effective is
because it is invariant to the scale of the gradients; rescaling the gradients with a factor
of c will scale m̂t with a factor c and v̂t with a factor of c2, which cancel out [18]. The
other reason is that if the gradients using SGD with a high learning rate oscillates a lot in
some dimensions, the adam optimizer has the effect of dumping those oscillations since
it is taking the mean of the gradient in that direction, summing up positive and negative
numbers making the gradients move faster towards the minimum. Also in eq. (1.47), we
can notice that if

√
v̂t + ε is large due to large variation of the gradients, then the term

m̂t will be divide by a large number making it small and this has the effect of dumping as
well the oscillations. See figure fig. 1.6. The ε term is added for numerical stability in case

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 15

v̂t = 0 [3].

Figure 1.6: The descent in weight space [13].

The concentric ellipsis represents the counters of the cost function. a represents SGD
steps with a small learning rate, b represents SGD with a large learning rate, and c
represents Adam with a large learning rate.

1.7 Problems related to neural nets

Neural networks are extremely powerful function approximators, but during the design of
the architecture care should be taken since there are many parameter one can tune (depth,
number of units in each layer, . . .). Therefore, a complex design namely high number of
units in each layer and a deep network can lead to overfitting. Over-fitting is the case
where the overall cost is really small (The network is doing very well on the training
set) but the generalization of the model to unseen data is poor and unreliable. There are
many solutions proposed to break this effect such as dropout which consists of randomly
zeroing the output of some units in each layer to force the algorithm to take different routes
through the network. This has the effect of training smaller portions of the network, and
thus smaller functions with reduced complexity are learned. It has the effect of reducing
the high variance of the overall neural net. This is referred to as regularization.
Another famous problem neural nets suffer from is local minimum problem, The error
surface of a complex network is full of hills and valleys. Because of the gradient descent,
the network can get trapped in a local minimum when there is a much deeper minimum
nearby. A suggested solution is to increase the number of hidden units. This technique
works because of the higher dimensionality of the error space, making the chance to get
trapped smaller [13].
Another issue in deep neural nets is the vanishing gradients problem. As we learned from
back-propagation, each of the neural network’s weights receive an update proportional
to the partial derivative of the error function with respect to the current weight in each
training iteration. The problem is that in some cases, the gradient will be vanishingly
small, eventually preventing the weight from changing its value. In the worst case, this

CHAPTER 1. FEED-FORWARD NEURAL NETWORKS 16

may completely stop the neural network from further training. As the network trains, the
weights can be adjusted to very large values. The total input of a hidden unit or output
unit can therefore reach very high (either positive or negative) values, and because of the
sigmoid activation function the unit will have an activation very close to zero or very close
to one [13]. And since back-propagation computes gradients using the chain rule, this has
the effect of multiplying N of these small numbers to compute gradients of the "front"
layers in an N-layer network, meaning that the gradient decreases exponentially with N
while the front layers train very slowly.
To remedy this problem other activation functions might be used in the hidden layers.
The behavior of the hidden layers is not directly specified by the training data. The
learning algorithm must decide how to use those layers to produce the desired output, but
the training data do not say what each individual layer should do. Instead, the learning
algorithm must decide how to use these layers to best implement an approximation of f .
Therefore the choice of the activation function in those layers is irrelevant, which makes
the use of other activation possible. Many functions have been proposed to escape the trap
of vanishing gradients, namely the ReLU function is of popularity in deep learning. The
ReLU stands for rectified linear unit defined as ReLU(x) = max(0,x).

Chapter 2

Convolutional Neural Networks

Convolutional neural networks (CNN) are a specialized kind of neural network for process-
ing data that has a known grid-like topology. Examples include time-series data, which can
be thought of as a 1-D grid taking samples at regular time intervals, and image data, which
can be thought of as a 2-D grid of pixels. CNNs have been tremendously successful in
practical applications. The name “convolutional neural network” indicates that the network
employs a mathematical operation called convolution. Convolution is a specialized kind
of linear operation. CNNs are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers [25].

2.1 Convolution operation

The convolution operation is well known in the engineering terminology, which, in its
most general form, is an operation on two functions of a real-valued argument. defined as:

s[n] = y[n]∗ x[n] =
k=∞

∑
k=−∞

y[k]x[n− k] (2.1)

We are interested in the discrete convolution operation, since data on a computer is
presented as discrete values rather than continuous signals. The eq. (2.1) presented above
is for discrete time signals.

In convolutional neural network terminology, the first argument to the convolution
is often referred to as the input, and the second argument as the kernel. The output is
sometimes referred as the feature map. The input is usually a multidimensional array of
data (Red Green Blue channel (RGB) images), and the kernel is usually a multidimensional
array of parameters that are adapted by the learning algorithm. These multidimensional
arrays are referred to as tensors. Finally, we often use convolution over more than one axis
at a time. For example if we use a two-dimensional image I as our input, we probably also

17

CHAPTER 2. CONVOLUTION NEURAL NETWORKS 18

want to use a two-dimensional kernel K:

S[m,n] = I[m,n]∗K[m,n] = ∑
i

∑
j

I[i, j]K[m− i,n− j]. (2.2)

Convolution is commutative, meaning we can equivalently write:

S[m,n] = K[m,n]∗ I[m,n] = ∑
i

∑
j

I[m− i,n− j]K[i, j]. (2.3)

While the commutative property is useful for writing proofs, it is not usually an
important property of a neural network implementation. Instead, many neural network
libraries implement a related function called the cross-correlation, which is the same as
convolution but without flipping the kernel:

S[m,n] = I[m,n]∗K[m,n] = ∑
i

∑
j

I[m+ i,n+ j]K[i, j]. (2.4)

Many machine learning libraries implement cross-correlation but call it convolution.
See fig. 2.1 for an example of convolution applied to a 2D tensor (gray-scale image).

Figure 2.1: An example of 2-D convolution [25].

2.2 CNN architectures

Convolution leverages three important ideas that can help improve a machine learning
system: sparse connectivity, parameter sharing and equivariant representations.

CHAPTER 2. CONVOLUTION NEURAL NETWORKS 19

Traditional neural network layers use matrix multiplication by a matrix of parameters
with a separate parameter describing the interaction between each input unit and each
output unit. This means that every output unit interacts with every input unit, see fig. 2.2.
CNNs, however, typically have sparse interactions (also referred to as sparse connectivity
or sparse weights). This is accomplished by making the kernel smaller than the input. For
example, when processing an image, the input image might have thousands or millions
of pixels, but we can detect small, meaningful features such as edges with kernels that
occupy only tens or hundreds of pixels. This means that we need to store fewer parameters,
which both reduces the memory requirements of the model and improves its statistical
efficiency. It also means that computing the output requires fewer operations. These
improvements in efficiency are usually quite large. If there are m inputs and n outputs, then
matrix multiplication requires m×n parameters, and the algorithms used in practice have
O(m×n) runtime (per example). If we limit the number of connections each output may
have to k, then the sparsely connected approach requires only k×n parameters and O(k×n)

runtime. For many practical applications, it is possible to obtain good performance on the
machine learning task while keeping k several orders of magnitude smaller than m [25].
For graphical demonstrations of sparse connectivity, see fig. 2.3 and fig. 2.4. Rearranging
each vector as a matrix, the relationship between the nodes in each layer are more obvious,
see fig. 2.4.

Figure 2.2: Traditional neural network connections. The last layer has been replaced by a
black box for simplicity

Parameter sharing refers to using the same parameter for more than one function in
a model. In a traditional neural net, each element of the weight matrix is used exactly once

CHAPTER 2. CONVOLUTION NEURAL NETWORKS 20

Figure 2.3: Sparse connectivity example.

Figure 2.4: Sparse connectivity after rearrangement.

CHAPTER 2. CONVOLUTION NEURAL NETWORKS 21

when computing the output of a layer. It is multiplied by one element of the input and
then never revisited. As a synonym for parameter sharing, one can say that a network has
tied weights, because the value of the weight applied to one input is tied to the value of
a weight applied elsewhere fig. 2.2. That is the reason, traditional nets are referred as to
fully connected (FC) networks or dense networks.

In a CNN, each member of the kernel is used at every position of the input (except
perhaps some of the boundary pixels, depending on the design decisions regarding the
boundary). The parameter sharing used by the convolution operation means that rather
than learning a separate set of parameters for every location, we learn only one set. In
fig. 2.4, each of the color coded image quarters are connected to a single color coded
node in the next layer. All of these connections have exactly the same shared weights, see
fig. 2.1, the weights w11 through w33 do not change as the filter slides through the image.
This does not affect the runtime of forward propagation —it is still O(k× n)— but it
does further reduce the storage requirements of the model to k parameters. The particular
form of parameter sharing causes the layer to have a property called equivariance to
translation.

To say a function is equivariant means that if the input changes, the output changes in
the same way. Specifically, a function f (x) is equivariant to a function g(x) if f (g(x)) =

g(f (x)). In the case of convolution, if we let g be any function that translates the input,
that is, shifts it, then the convolution function is equivariant to g. For example, let I be
a function giving image brightness at integer coordinates. Let g be a function mapping
one image function to another image function, such that I′ = g(I) is the image function
with I′(x,y) = I(x−1,y). This shifts every pixel of I one unit to the right. If we apply this
transformation to I, then apply convolution, the result will be the same as if we applied
convolution to I, then applied the transformation g to the output. With images, convolution
creates a 2-D map of where certain features appear in the input. If we move the object in
the input, its representation will move the same amount in the output. This is useful for
when we know that some function of a small number of neighboring pixels is useful when
applied to multiple input locations. For example, when processing images, it is useful to
detect edges in the first layer of a convolutional network. The same edges appear more or
less everywhere in the image, so it is practical to share parameters across the entire image.

Convolution is not naturally equivariant to some other transformations, such as changes
in the scale or rotation of an image. Other mechanisms are necessary for handling these
kinds of transformations (section 2.7). To illustrate these principles in action, we shall use
a hand picked filter that is used to detect edges in a image, see below.

CHAPTER 2. CONVOLUTION NEURAL NETWORKS 22

K =

 0 −1 0
−1 4 −1
0 −1 0

 (2.5)

These filters are called high pass filters. They enhance high frequency components in
an image. Frequency in images just like in signals is the rate of change of the intensity,
which areas in neighboring pixels that rapidly changes for example from very dark to very
light (in grayscale images). See fig. 2.5 to see the effect of applying the above filter to a
grayscale image.

Figure 2.5: 2D convolution on a practical example.

As we can see in fig. 2.5, where there is no change or little change of intensity in
the original picture, the high pass filter block those areas out and turn the pixels black.
But in the areas where a pixel is way brighter than its immediate neighbors, the high
pass filter enhance the change and create a line. This has the effect of emphasizing edges.
Edges are just areas in an image where the intensity changes very quickly. This images
has been obtain by convolving the filter K with the image in the left, as we can see the
three principles discussed above apply to this filter. The values of K didn’t change while
convolving (shared parameters), sparse connectivity where the filter looks only to a small
portion of the image at a time, and the equivariant translation, where we clearly see that
no matter the position of the edge in the image the filter successful highlight it.

2.3 Convolutional layer

The convolutional layer is produced by applying a series of many different image filters,
also known as convolutional kernels, to an input image.

In the example shown in fig. 2.6, 4 different filters produce 4 differently filtered output
images. When we stack these images, we form a complete convolutional layer with a
depth of 4, see fig. 2.7.

CHAPTER 2. CONVOLUTION NEURAL NETWORKS 23

Figure 2.6: Multiple filters for multiple pattern detection [1].

Figure 2.7: A complete convolutional layer with 4 filters [1].

CHAPTER 2. CONVOLUTION NEURAL NETWORKS 24

In the case of colored images, the computer interprets them as 3-D tensors (Height×
width× channels). Here, channels are the RGB channels. When performing convolution,
the kernel K is itself chosen to be a three dimensional tensor. A typical kernel K would
be 3× 3× 3. The resulting output feature map would be (Height×Width). In order to
depict multiple patterns in the image, instead of having a single kernel, multiple kernels
are defined. Each resulting output feature map can be considered as an image channel
and when stacked together a 3 dimensional array is obtained. This 3D array can be used
as input to another convolutional layer to discover patterns within the patterns that we
discovered in the first convolutional layer. This operation can be repeated multiple times
to discover various patterns within the input image.

In CNNs, inference works the same way as in the old plain neural networks. Both
convolutional and dense layers have weights and biases that are initial randomly generated.
Therefore, in the case of CNNs, where the weights take the form of convolutional kernels
or filters, those kernels are randomly generated as well as the patterns that they are initially
designed to detect. As with FC networks, when we construct a CNN, we will always
specify a loss function. In the case of multiclass classification, this will be categorical
cross-entropy loss (eq. (1.8)). Then, as we train the model through back propagation, the
filters are updated at each iteration to take on values that minimizes the loss function. In
other words, the CNN determines what kind of patterns it needs to detect base on the loss
function.

2.4 Stride and padding

The behavior of a CNN can be controlled by specifying the number of filters and the
size of each filter, these are referred to as hyper-parameters. For instance, to increase
the number of nodes in a convolutional layer, you could increase the number of filters.
To increase the size of the detected patterns, you could increase the size of the filters.
But there are more hyper-parameters than we can tune. One of these hyper-parameters is
referred to as the stride of the convolution. The stride is just the amount by which the filter
slides over the image. In the previous example of fig. 2.1, the stride was one. We move the
convolution window horizontally and vertically across the image one pixel at a time [1].
With an input image of n×n, and an f × f filter, the width W and height H of the output
of the convolution is given by eq. (2.6):

(W,H) = (n− f +1)× (n− f +1) (2.6)

If we introduce the stride parameter s, eq. (2.6) can be rewritten as follow:

(W,H) =

(
bn− f

s
c+1

)
×
(
bn− f

s
c+1

)
(2.7)

CHAPTER 2. CONVOLUTION NEURAL NETWORKS 25

Where b.c is the the floor function. It takes as input a real number, and gives as output
the greatest integer less than or equal to that input. One downside of the convolution
operation is the shrinking input dimensions. Indeed, according to eq. (2.6), the input
dimension shrinks each time by few pixels which can be an undesirable effect in very deep
networks, where the image can shrink to very small dimensions. Another downside of the
convolution is, the top left pixel (or corners of an image in general) is only involved in one
pass of the filter, whereas if we take a pixel in the middle, then many 2×2 regions will
overlap that pixel. It is as if the pixels at the corners are used much less in the output, so
information is thrown away near the edge of the image. Therefore to solve both of this
problems, before applying the convolution we can pad the image with additional borders
p. In fig. 2.8, p = 1 pixel has been used. Therefore the width and height of the output
feature map is calculated as:

(W,H) =

(
bn− f +2p

s
c+1

)
×
(
bn− f +2p

s
c+1

)
(2.8)

Now with this additional border of zeros, the output feature maps’ dimensions can be
made equal to the input’s dimension by setting the appropriate padding value. And the
corner pixels contribute more in the output feature map.

Figure 2.8: Padding example.

2.5 Pooling

Pooling function is the next type of layer in CNNs. It replaces the output of the net at
a certain location with a summary statistic of the nearby outputs. For example, the max
pooling operation reports the maximum output within a rectangular neighborhood. Other
popular pooling functions include average pooling of a rectangular neighborhood [25].
See fig. 2.9 on how to perform max pooling.

We clearly see from fig. 2.9, As in the convolution operation, we slide a window

CHAPTER 2. CONVOLUTION NEURAL NETWORKS 26

Figure 2.9: Maxpooling example.

across the image typically a 2×2 window. The value of the corresponding node in the
max pooling layer is calculated by just taking the maximum of the pixels contained in
the window. The pooling function is applied independently on every feature map in the
input stack. The output is a stack with same number of feature maps with width and height
reduced by a factor of two.

In all cases, pooling helps to make the representation approximately invariant to small
translations of the input. Invariance to translation means that if we translate the input by a
small amount, the values of most of the pooled outputs do not change. Invariance to local
translation can be a useful property if we care more about whether some feature is present
than exactly where it is. For example, when determining whether an image contains a face,
we need not know the location of the eyes with pixel-perfect accuracy, we just need to
know that there is an eye on the left side of the face and an eye on the right side of the face.
Another improvement that pooling brings is the computational efficiency of the network.
The reason being is that pooling reports summary statistics for regions spaced with stride
s (typically 2 is used), therefore the next layer has roughly s times fewer inputs to process
and reduces the memory requirements for storing parameters [25].

Therefore, most CNNs are composed of only those two layers: Pooling and convolution.
We begin with convolution layers which detects regional patterns in an image using a series
of filters. Typically, just like fully connected networks, an activation function is applied to
the output feature maps. ReLU activation function is used as it has proven to be extremely
efficient in object classification tasks. Then pooling layers follow the convolutional layers
to reduce the dimensionality of their input tensors. CNNs are designed with the goal of
taking an input image and gradually making it much deeper than it is tall or wide. As
the network gets deeper, it is actually extracting more and more complex patters and
features that help identify the content and objects in an image. CNNs are usually referred
to as feature extractors. Another issue that rises when training CNNs, is the input image

CHAPTER 2. CONVOLUTION NEURAL NETWORKS 27

dimensions. Since training requires large data-sets of thousands of images, it is no surprise
that these images are of different sizes and shapes. Therefore CNNs requires a fixed sized
input due to batch training. Indeed, instead of passing one image at a time through the
network, we usually pass batches of images which are just stacks of images. But in order
to do that, all the images have to have the same width and height. So, we have to pick an
image size and resize all of our images to that same size before doing anything else.

2.6 Transfer learning

Usually, training very deep networks from scratch is a very tedious task; huge data-sets
are required for the task to better generalize to real life situations. Modern CNNs usually
take 2-3 weeks to train across multiple GPUs. However, it has been revealed that deep
networks trained on natural images exhibits a curious phenomenon in common: on the
first layer they learn general features similar to color blobs and edges. Such first layer
features appear not to be specific to a particular data-set or task, but general in that they
are applicable to many data-sets and tasks [27]. This means it may be useful to transfer
this knowledge to other similar tasks. This technique is referred to as transfer learning.
Deep CNNs are good candidates for this task because they are usually trained on general
tasks (like image classification of daily life objects) and have many adjustable layers. As
reference [27] states, the transferability of features decreases as the distance between the
base task and target task increases, but that transferring features even from distant tasks
can be better than using random features. A final surprising result is that initializing a
network with transferred features from almost any number of layers can produce a boost
to generalization that lingers even after “fine-tuning” to the target data-set. One of the
strategies used when using transfer learning is referred to as fine-tuning. This simply
means retraining the whole or parts of the pre-trained CNN. This is done by retraining
with the new data-set without changing the architecture or reinitializing the weights (but
some new layers might be added or changed depending on the task at hand). The existing
weights are said to be fine-tuned to the new task at hand [28].

2.7 Data augmentation

Data augmentation is a strategy that enables practitioners to increase the diversity of data
available for training models, without actually collecting new data. This is achieved by
applying random (but realistic) transformations such as image rotation, cropping, padding,
and horizontal flipping This is a good practice, since augmenting the size of the
training set means more data to learn from, which makes the network even robust.

Chapter 3

CNN application: Object detection

The concept of convolution and convolutional neural networks has been applied to many
real life problems: including object classification, object detection, speech recognition,
disease depiction in medical images, self driving cars, and many more. Object detection is
the task of detecting, meaning classifying and localizing instances of semantic objects of a
certain class (in our case, car license plates along with their digits). An object detection
algorithm should not only be able to classify an object but as well as localizing it in an
image by drawing a bounding box around it, see fig. 3.1.

Figure 3.1: Example of what an object detection system should accomplish.

In this is chapter, we will focus on the theory behind the state-of-the-art detection
systems: you only look once (YOLO) and Region-CNN (RCNN).

28

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 29

3.1 YOLO: you only look once

Over the past few years, the YOLO algorithm have evolved quite a lot going; from YOLOv1
all through version four. The different improvements that this algorithm went through are
just the fruits of many research developments in the deep learning field incorporated into
YOLO algorithm to make it more robust and less prone to errors. In this section, we shall
present the version three of YOLO. Version four has only been developed in April 2020
during the middle of the pandemic. Many techniques have been included in this last paper
[20] which makes a bit difficult since we have to go through all the new details. Therefore
we shall only present version three.

3.1.1 Bounding boxes

The YOLO algorithm divides the input image into an S×S grid. If the center of an object
falls into a grid cell, that grid cell is responsible for detecting that object [31]. Each grid
cell predicts B bounding boxes, using anchor boxes. Anchor boxes are predefined boxes of
certain width and height. They are defined to capture the scale and aspect ratio of specific
object classes you want to detect. Anchor boxes are typically chosen based on object sizes
in the training data [4], see fig. 3.2. Anchor boxes have been introduced to solve two
issues (second issue will be discussed in section 3.1.2). Objects in the YOLO algorithm
are associated with grid cells that their centers fall into. If two objects’ centers fall into the
same grid cell, we will not be able to predict both objects. Therefore, we can associate
each grid cell with multiple anchor boxes, each responsible to detect only one object in
that cell. A typical number of boxes used is three, see fig. 3.2. That is the first issue anchor
boxes solves.

Each bounding box is associated with a confidence score pc, which reflects how
confident the network is that the bounding box contains an object (also called objectness)
[31]. This should be ideally 1 if there is an object otherwise 0 [30]. The Bounding box is
defined by 5 parameters: the box center coordinates bx and by, the height bh, the width
bw, and the class confidence score pc [5]. For instance, if we are building a self driving
car object detection system, we may want to detects cars, pedestrians and motorcycles.
Therefore, each grid cell will be associated with an ((5+number o f classes to detect)×
number o f anchor boxes) dimensional vector. As we can see on fig. 3.2, the anchor boxes
capture the scale and aspect ratio of cars and pedestrians. Indeed, most cars and humans
will have approximately the same scale and aspect ratio. The vector y is composed of the
objectness score as well as the bounding boxes and the class probabilities repeated for
each anchor box. Here two anchor boxes have been used. YOLOv3 uses 3 anchor boxes.
The image has been divided into a 3×3 grid just for illustration. The vector y represents
the manual labeling for the central cell. Anchor box 1 is associated with the pedestrian

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 30

while the second one is associated with the car.

Figure 3.2: Example of anchor boxes.

3.1.2 Network design

The network is a series of convolutional and pooling layers chosen so that the net-
work eventually maps the input image W ×H × 3 to an output volume S× S× ((5+
number o f classes to detect)×number o f anchor boxes). YOLO’s convolutional layers
down-sample the image by a factor of 32, 16, 8. The YOLOv3 network has therefore
3 outputs instead of one, but we will be focusing on only one as the same calculation
happen at each scale. The exact architecture is discussed in chapter 4. Now, to train the
convolutional neural network, we pick an image size of 416×416. This number has been
chosen because we want an odd number of locations in our feature map so there is a single
center cell. Objects, especially large objects, tend to occupy the center of the image so it’s
good to have a single location right at the center to predict these objects instead of four
locations that are all nearby [29]. By using an input image of 416×416 we get an output
feature map of 13×13. The second issue anchor boxes address is the training instability
[29]. In fact, during the early epochs of training if bx and by are randomly initialized,
the network struggles to converge to the right ground truth box’s center. To overcome
this problem, YOLO predicts location coordinates bx and by relative to the grid cell. This
bounds the ground truth to fall between 0 and 1. We use sigmoid activation to constrain
the network’s prediction to fall in this range. The network predicts B bounding boxes at
each cell in the output feature map. The network predicts 5 coordinates for each bounding
box tx, ty, th, tw and t0, see fig. 3.3. If the cell is offset from the top left corner of the
image by (cx,cy) and the anchor box has width and height pw and ph, then the predictions
correspond to [29]:

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 31

bx = σ(tx)+ cx (3.1)

by = σ(ty)+ cy (3.2)

bw = pwetw (3.3)

bh = pheth (3.4)

Since we constrain the location prediction, the parametrization is easier to learn,
making the network more stable [29], see fig. 3.4. The question that naturally rises is:
how, at the beginning, do we get pw and ph? Otherwise, how to assign an anchor box to a
ground truth object ? The answer to this question is given is section 3.1.3 as we need to
define an important function to proceed, see section 3.1.3.

Figure 3.3: The true output of YOLOv3 after introducing the training instability issue.

In fig. 3.3, the network outputs a 13× 13× (8× 3) in this case, or simply put 13×
13×24 output volume. Each grid cell outputs three bounding boxes.

During training, we optimize the multi-part loss function L (eq. (3.5)).

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 32

Figure 3.4: Bounding box calculation [29].

L(w,b) = ∑
scales

λcoord

S2

∑
i=0

B

∑
j=0

1ob j
i, j
[
(tx− t̂x)2 +(ty− t̂y)2 +(tw− t̂w)2 +(th− t̂h)2]

+
S2

∑
i=0

B

∑
j=0

1ob j
i, j
[
− log(σ(to))+

C

∑
k=1

BCE(ŷk,yk
]

+λnoob j

S2

∑
i=0

B

∑
j=0

1noob j
i, j

[
− log(1−σ(to))

]
(3.5)

As we can see in eq. (3.5), the first sum is over scales, meaning different regions of the
network. Indeed, the network used in YOLOv3 does have only one output but three. The
architecture of the network is discussed further in chapter 4.

where 1obi
i, j denotes if object appears in cell i and that the jth anchor box in cell i

is “responsible” for that prediction. If an anchor box is not assigned to a ground truth
object, it incurs no loss for coordinate or class predictions, only objectness. In cells that
contain an object, the bounding box coordinates are calculated using the sum-squared loss
function. Each box predicts the classes the bounding box may contain using multi-label
classification using BCE.

3.1.3 Processing the algorithm’s output

After training, the network will infer multiple detections. In fact, for each cell in the S×S

grid, using B anchor boxes, the algorithm will infer B bounding boxes for each cell, which
makes a total of B× S2. Therefore an object can be detected multiple times. Non-max
suppression is an algorithm that cleans up those detections and makes sure each object
gets detected only once. Before discussing it though, let us introduce an important function
called Intersection over Union (IoU) that calculates how much a box or a rectangle
overlaps another. So, IoU calculates the area defined by the intersection of the two boxes
and divide it by the area defined by their union, see fig. 3.5.

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 33

Figure 3.5: Intersection over union metric.

IoU is an evaluation metric used to measure the accuracy of an object detection system
on a particular data set. Indeed, most object detection algorithms will judge a detection to
be correct if the IoU between the ground truth box and the detected box is more than 0.5,
see fig. 3.6. We often see this evaluation metric used in object detection challenges such
as the popular PASCAL VOC challenge [6].

Figure 3.6: Sample IoU scores.

Back to our original question, how non-max suppression works. First, all the boxes
having an ob jectness× the class probability less than or equal to some threshold are
discarded (typical value of threshold is .6). While there any remaining boxes, we pick the
box with the largest ob jectness× the class probability and output it as a prediction. Then
we discard any remaining box with IoU ≥ 0.5 with the box outputted in the previous step.
This algorithm ensures that each object is detected only once.

In section 3.1.2, we discussed how the bounding boxes are being computed, and we
finished it with a question: How does the anchor boxes being assigned to ground truth
objects at the beginning? YOLOv3 assigns the anchor with the highest IoU overlap with a
ground truth box.

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 34

3.2 Faster R-CNN

Several object detection techniques and models have been developed over the years; each
with its benefits and drawbacks. In this section, we shall explore the faster region-CNNs
technique to tackle this task. The Faster R-CNN model is composed of two networks:
region proposal network (RPN) for generating region proposals and a network using
these proposals to detect objects [40]. The main difference here with its’ predecessor Fast
R-CNN is that the later uses an algorithm called "selective search" to generate region
proposals [23]. The time cost of generating region proposals is much smaller in RPN than
selective search, since the RPN network does a significant part of computation which
overlaps with the computation needed for the object detection network. In short, RPN
ranks region boxes (called anchors) from most likely to less likely to contain an object
and proposes the ones most likely containing objects [40]. The architecture is shown in
fig. 3.7.

3.2.1 Anchors

In the default configuration of Faster R-CNN, it considers 9 anchors at each position of an
image. fig. 3.8 shows 9 anchors at the position (320,320) of an image with size (600,800).
The colors represent three scales or sizes: 128× 128, 256× 256, 512× 512 . For each
color we have three boxes that have height width ratios 1 : 1, 1 : 2 and 2 : 1 respectively.
These two parameters called "scales" and "aspect ratios", have a significant effect on the
performance of our model. The RPN selects a position in a given image at every stride
of 16 where it generates those 9 anchors. In an image of the same size as fig. 3.8 there
will be 1989 (39× 51) positions, leading to 17901 (1989× 9) boxes to consider. This
number of anchors is hardly smaller than the technique of of sliding window and pyramid.
The advantage here is that we can use region proposal network to significantly reduce the
number of boxes that will be considered by the classifier network [40].

These anchors work well for Pascal VOC [21] data set as well as the COCO data set
[42]. We have the freedom to design different kinds of anchors/boxes. If for example, you
are designing a network to detect passengers/pedestrians, you may not need to consider
the very short, very big, or square boxes. A uniform set of anchors may increase the speed
as well as the accuracy.

3.2.2 Region Proposal Network

The input to the RPN module is the feature map of an image. The RPN generates centers
on the original image for each "pixel" in a feature map obtained from a forward pass
through a pre-trained CNN. It then generates 9 anchors around each center according to
the specified scales and aspect ratios [40]. The output of a RPN is a set of probabilities for

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 35

Figure 3.7: Faster R-CNN model structure.

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 36

Figure 3.8: Example of anchors at single location.

each anchor that determine the probability of a certain anchor being an object or not. It
also outputs a set of error estimations for the anchors which overlap with a ground truth
box. These outputs will be examined by a classifier and regressor to eventually check
the occurrence of objects. To be more precise, RPN predicts the possibility of an anchor
being background or foreground, and refines the dimensions of an anchor [40]. Since the
RPN performs a classification task, it will go through a training process for which we
must have a clear definition of the data-set and the labels. In this case, our data-set is the
anchors defined for each image. As for the labels; the basic idea is that we want to label the
anchors having the higher overlaps with ground-truth boxes (the bounding box surrounding
the object we wish to detect as foreground), and the ones with lower overlaps as back-
ground. For this we use the IOU function. If the value of the IOU is higher than a certain
threshold then it would be labeled as foreground otherwise it is labeled as background [40].

The RPN also performs a regression task on the same anchors in order to correct the
dimensions and location of these same anchors. For each anchor, it computes an estimation
of error on the width tw, the height th, and the location of the anchor center tx and ty such
that

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 37

tw = log
(

w
wa

)
(3.6)

th = log
(

h
ha

)
(3.7)

tx =
x− xa

wa
(3.8)

ty =
y− ya

ha
(3.9)

x,y,w,h are the ground truth box center coordinates, width and height, and xa,ya,haandwa

are the anchor boxe center coordinates, width and height, respectively[40].
The final and most important component of the training process is the loss function

L(pi, ti) = (
1

Ncls
)∑

i
Lcls(pi, p∗i)+λ (

1
Nreg

)∑
i

p∗i Lreg(ti, t∗i) (3.10)

where pi is the predicted probability of objectness and p∗i is the actual score. ti and t∗i
are the predicted anchor dimensions and coordinates and actual ones, respectively. The
ground-truth label p∗i is 1 if the the anchor is positive and 0 if the anchor is negative [40].

3.2.3 ROI Pooling

The purpose of the region of interest pooling (ROI) is to perform max pooling on inputs
of non-uniform sizes to obtain fixed-size feature maps (e.g. 7×7). This layer takes two
inputs:

• A fixed-size feature map obtained from a deep convolutional network with several
convolutions and max-pooling layers.

• An N×5 matrix of representing a list of regions of interest, where N is the number
of ROIs. The first column represents the image index and the remaining four are the
co-ordinates of the top left and bottom right corners of the region.

For every ROI from the input list, it takes a section of the input feature map that
corresponds to it and scales it to some predefined size (e.g., 7×7). The scaling is done by:

• Dividing the region proposal into equal-sized sections (the number of which is the
same as the dimension of the output).

• Finding the largest value in each section.

• Copying these max values to the output buffer.

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 38

The result is that from a list of rectangles with different sizes we can quickly get a
list of corresponding feature maps with a fixed size. Note that the dimension of the RoI
pooling output does not actually depend on the size of the input feature map nor on the
size of the region proposals, but is determined solely by the number of sections we divide
the proposal into.

One of the benefits of ROI pooling is a reduction of processing speed. If there are
multiple object proposals on the frame (and usually there’ll be a lot of them), we can
still use the same input feature map for all of them. Since computing the convolutions at
early stages of processing is very expensive, this approach can save us a lot of time [40].
Figure 3.9 shows the working of ROI pooling.

Figure 3.9: ROI pooling operation.

The output of ROI pooling will be the input to a classifier network, which is a copy of
the pre-trained backbone network we used to obtain the feature map, and which will be
referred to as "Fast RCNN classifier network". This network will further branch out to
a classification head and regression head. The loss function for the Fast-RCNN network
is defined in the same way as the RPN loss, except for the significance of the variables.
pi is the predicted class scores for every class of objects we want to detect and p∗i is the
actual score. ti and t∗i are the predicted cooridinates and actual coordinates, respectively.
The ground-truth label p∗i is 1 for a certain class of objects if the region outputted by the
ROI layer contains that object and 0 if it does not.

3.2.4 Faster RCNN training

For training the entire Faster RCNN model, there must be a well defined loss function
which encapsulates all of the losses mentioned before. It can be considered as an estimation

CHAPTER 3. CNN APPLICATION: OBJECT DETECTION 39

for error in the model, regardless of where the error occurs. The total loss is defined as the
sum of the RPN loss and the Fast RCNN classifier network loss.

Total loss = RPN loss + Fast RCNN classifier loss (3.11)

Chapter 4

Design and implementation of ALPRS

4.1 Workflow of the ALPRS implementation

For building the ALPRS application, we used a part-by-part approach rather than an
end-to-end approach. The reason being is the lack of labeled data sets designed for this
specific application, especially when it comes to license plates for which there are no
published data sets. Needless to mention that the task at hand is relatively less tedious
since Algerian plates contain no characters other than digits. Our system consists of a
"detect plate", then "detect digits" pipeline. Each step has a dedicated module that runs
sequentially and independently. The first module, called the “plate network”, takes the
full raw image as input, detects plates in the image, crops the detected plates based upon
their bounding boxes then passes them to the second module as inputs. The detected
plates are cropped with an extra margin around them to avoid the exclusion of important
details (maybe digits) for digit detection. The second module, called “the digits network”,
receives the detected plates from the first module, detects and recognizes the 10 digit
classes from 0 to 9, which are specific to the license plates. The position of the bounding
boxes outputted by the previous module determines the order of each digit and a final
prediction is given. To achieve this purpose, we divided our work into several small steps
highlighted in the diagram shown in fig. 4.1.

The block of data collection is done using a phone camera. The tasks of labeling are
done using software tools. The blocks of training, testing, and ALPR system implementa-
tion are done using a Python package called "Pytorch" [7] which provides functions and
tools used to build deep learning models. The block of image extraction is done using the
Python library OpenCv [8] which is a library specialized in the manipulation and handling
of images. For each block, there is a Python script. Training blocks for Faster RCNN
models use the same script with some changes made to the training process parameters.
The testing blocks for the Faster RCNN models also use the exact same Python code, it
passes examples from the testing and training set through the trained model, and computes

40

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 41

Figure 4.1: Block diagram illustrating the workflow.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 42

the mean average precision (mAP). All of the tasks inside the training and testing processes
have been coded from scratch using built-in Pytorch tools that perform convolution and
similar basic operations, except for the back-propagation and cost computation tasks for
which Pytorch provides built-in functions. The training and testing blocks of the YOLO
models are done using a framework called Darknet [9].

4.2 Data collection and labeling

Data collection includes the manual collection of images of license plates in different
positions, angles, lighting, distance, size, color We used the Huawei P10 phone camera
to collect digital images. The process consisted of taking pictures of random cars in the
streets, parking lots, and in some instances, we made visits to license plate shops and
took pictures of isolated license plates. After a few hundred images, we noticed that the
great majority of license plates numbers ended with 35 or 19 because the cities where
these pictures were taken were Boumerdes and Setif. This raised a concern that there
might be an over-representation of the digits composing these numbers, which would
make the CNN disproportionately better at them than the remaining digits. If this happens,
it might give us good results during evaluation but they would only mean that the CNN
is very good at detecting the digits 3, 5, 9, and 1 and not the entire set of digits. The
solution we came up with is, instead of taking a trip to every wilaya to take the pictures,
we visited the international airport in Algiers. There, we found that the cars parked there
had plate numbers that are diverse and somewhat balanced. We managed to take close to
450 pictures. Another advantage of visiting the airport parking-lot is that we had access to
a large number of license plates all in the same place. The only caveat to this solution is
the fact that all the cars were under the same lighting conditions as all the pictures were
taken during the day. The overall data set contains close to 1000 images that are set to be
used for labeling. Figure 4.2 shows some examples.

The second CNN which performs digit recognition will be trained on cropped images
of plates only, which will be obtained by passing the original set of images through the
plate detector and using the obtained plate bounding boxes to crop the plates.

The next step is to label these images by assigning a bounding box to each license
plate in the images.“Labeled” data is a group of samples that have been tagged with one
or more labels. Labeling typically takes a set of unlabeled data and augments each piece
of it with informative tags. For example, a label might indicate whether a photo contains a
horse or a cow, which words were uttered in an audio recording, what type of action is
being performed in a video, what the topic of a news article is, what the overall sentiment
of a tweet is, or whether a dot in an X-ray is a cancer.

Labels can be obtained by asking humans to make judgments about a given piece of
unlabeled data (e.g., "Does this photo contain a horse or a cow?"), and are significantly

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 43

Figure 4.2: Image collection example

more expensive to obtain than the raw unlabeled data. After obtaining a labeled data set,
machine learning models can be applied to the data so that new unlabeled data can be
presented to the model and a likely label can be guessed or predicted for that piece of
unlabeled data.

For the plate detection CNN, the data will be labeled manually by defining a rectangular
bounding box around every license plate in each image. This process consists of manually
drawing bounding boxes around the license plates in all of the 1000 images in our data set
using a software tool called “LabelImg” [10], shown in fig. 4.3. It provides an interface
to pass through the images saved in a directory, as well as some tools for drawing boxes
and assigning labels to them. LabelImg saves the label for each image in an XML file
holding the name of the image file in the form of coordinates of the top-left and bottom
right-corner of every box along with the label assigned to it. The total number of boxes
drawn is about 1000 since most images contained a single car, which was a tedious task
that took few weeks.

The labeling process for the CNNs of digit detection is done after the CNNs of plate
detection are trained and tested. The plate detection CNNs were used to crop out images
of plates. To perform this task we coded a Python script using the OpenCv library which
provides functions for the manipulation and editing of image files. The script runs the
entire data set through a selected plate detection CNN. For each image, the script takes
the output of the CNN, which is the coordinates of the predicted bounding box around
plates, and uses them to crop the part of the image which contains the license plate and
saves them in a separate directory, see fig. 4.4.

For the labeling process a similar tool is used to define a rectangular box around each
digit in each plate image and assign a corresponding label to each bounding box. Note
that the number of digits in our data set is over 10000 digits. This means that the process

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 44

Figure 4.3: Example of plate labeling.

Figure 4.4: Process of extracting plate images from the original images.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 45

consists of manually drawing and labeling 10000 rectangular boxes which took a few
months. This process must be done carefully and the progress must be kept in secure
storage. Labeling data for a machine learning project presents the advantage of eliminating
the need for data cleaning and complicated pre-processing since the data set can be built
in which ever form is suitable for training. Figure 4.3 illustrates the labeling tools used for
both CNNs and fig. 4.5 illustrates an example of labeling.

Figure 4.5: Example of digit labeling.

4.3 Training Faster RCNN models

Plate and digit detection requires training a set of models to detect and localize a license
plate numbers in any given image. The training process of a Faster-RCNN model is
summarized in fig. 4.6. The training process is the same for both plate detection and digit
recognition. The only difference is in the data set used and the number of object classes to
detect.

First, an image from the training set is passed through a CNN model which is referred
to as the backbone network. The output of the backbone network is a 3D tensor which
is the concatenation of the results of the CNN last convolutional layer. As discussed
previously, for every "pixel" in the feature map, 9 anchors with different scales and aspect
ratios, are generated in the corresponding location on the original image. These anchors
are labeled into two classes based on their area of overlap with any ground truth box: if
they have an IoU larger than 0.7 they are labeled as positive anchors, otherwise they are

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 46

Figure 4.6: Block diagram summarizing the Faster RCNN training process.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 47

labeled as negative.
The feature map is also passed through the RPN which is supposed to predict the label

of each anchor. The RPN also performs a regression task on the same anchors in order to
correct the dimensions and location of these same anchors. For each anchor, it computes
an estimation of the error on the width tw, the height th, as well as on the anchor center
location tx and ty according to the following equations

tw = log
(

w
wa

)
(4.1)

th = log
(

h
ha

)
(4.2)

tx =
x− xa

wa
(4.3)

ty =
y− ya

ha
(4.4)

x,y,w,h are the ground truth box center coordinates, width and height, whereas,
xa,ya,ha and wa are the anchor boxes center coordinates, width and height [40].

These values are used to compute a cost function for the RPN as follows:

L(pi, ti) =
(

1
Ncls

)
∑

i
Lcls(pi, p∗i)+λ

(
1

Nreg

)
∑

i
p∗i Lreg(ti, t∗i) (4.5)

where pi is the predicted probability of objectness and p∗i is the actual score, ti and t∗i
are the predicted coordinates and actual coordinates respectively. The ground-truth label
p∗i is 1 if the the anchor is positive and 0 if the anchor is negative [40]. The next step is to
perform back propagation through the RPN network and optimize its weights and biases.

As discussed previously, RoI pooling selects relevant areas of the feature map covered
by the positive anchors. It passes these areas to a classifier and a regressor networks. The
classification and the regression networks use the same input, which is the coordinates
of the proposed regions of the image. These tasks are independent from each other, and
do not need to be performed in series. Both tasks of classification and regression happen
in parallel. The classification network is concerned with outputting probabilities of the
existence of specific objects in the proposed region. The regression network is concerned
with outputting adjustments to the proposed regions based on the features shown in that
region. The output of the classification network is compared to the true object classes
of the training example, whereas, he output of the regression network is compared to
the coordinates of the ground truth bounding box in the training example. The output of
these networks is used to compute the total loss of the model. Finally, back-propagation is
performed on the regressor and classifier networks.

There are three main parameters which can be adjusted in order to obtain optimal

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 48

results. The following parameters were chosen for both the digit and plate networks:
• Anchor scales;
• Backbone network;
• Number of training epochs.
This choice is justified by the fact that the other parameters as specified by the original

paper [40], have been proven to be optimal in a number of previous works regardless of the
application or the data set. The optimization algorithm used is the same for all instances
of training. The used anchor scales and corresponding aspect ratios parameters are:

• scales : (32, 64, 128), aspect ratios : (0.5,1.0,2.0)
• scales : (64, 128, 256), aspect ratios : (1.0,2.0,4.0)

The used backbone networks are:
• VGG16
• Mobilenet
• Inception
• ResNet

The used numbers for training epochs are:
• 10 epochs
• 30 epochs
• 50 epochs
The list of parameters to be modified implies that the number of training processes

launched is 24 for both plate detection and digit recognition, since we have 2 different
aspect ratio, 4 backbone networks, and 3 numbers of epochs (2×3×4).

The main coding tool is Pytorch library which is a Python package developed by
Facebook [10]. The platform used is Google COLAB [11] which is a free cloud service
offered by Google. It provides Python programming environments equipped with all the
tools and packages needed for building deep learning models, including Pytorch and GPU
accelerators. Note that Pytorch is distinguished by its object oriented approach to machine
learning models. Whereas every model, design, or process is represented by a class.

The process of training a Faster RCNN model using these tools includes the following
steps:

• Implementing a data set class called "LicencePlateDataset";
• Implementing a backbone network class;
• Implementing a Faster RCNN model class;
• Implementing a trainer function.

LicencePlateDataset class implementation: The class “LicencePlateDataset” inherits
from the Pytorch class called "Dataset". The main function of this class is to instantiate
objects which represent the training examples. The Dataset class is characterized by the
function “__getitem(index)__” which takes an index as an argument and returns a training

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 49

example as an image along with its corresponding label. The function __getitem(index)__

is overridden to match the specific format of data that the model requires. The Dataset

class is also characterized by the function “process()” which access the data set and
modifies it in a way that makes it accessible by the __getitem(index)__ function.

The attribute “transforms” is an object from the “torchvision.transforms” class which
contains specification for dimentionality and data type modifications applied on each
training example. The size of the training images needs to be 500× 500× 3 as in the
original paper [23]. The data type of the image tensor (images are stacks of three 2D
matrices representing the RGB channels) needs to be a “torch.Tensor”, which is the data
type required by Pytorch models.

Backbone class implementation: The Backbone class instantiates backbone networks
as objects. Objects from this class are characterized by the method “feed_forward(X)”
which passes a given image X through the backbone network model and returns the output
from the final convolutional layer. Objects from the same class are also characterized by
the method “nn_base()” which defines the layers of the convolutional neural network.
For each backbone network, a separate class is implemented because they each have
different architectures and different helper methods and special operations. The full code
is available in a Google drive [10]. These backbone networks are designed initially with
random weights and biases, but the Faster RCNN model loads up pre-trained weights and
biases in order to use them for transfer learning.

Faster RCNN model class implementation: The "FasterRCNN" class defines the dif-
ferent parts of the Faster RCNN model which are shown in fig. 3.7. The FasterRCNN
class inherits from the class "GeneralizedRCNN" which is a built in class of Pytorch.
GeneralizedRCNN provides some useful methods to models from the RCNN family. In
addition to the FasterRCNN class, there are two additional classes implemented which are
“TwoMLPHead” and “FastRCNNPredictor”. TwoMLPHead is used to create the classifier
and regressor networks that come after the RoI pooling layer.

Trainer function implementation: The training function contains the training loop in
which the training process will take place. The first network to train is the RPN. Afterwards,
the regressor and the classifier networks are trained on the output of the RoI layer output.
The training function starts by feeding a training example through the network. A Pytorch
built-in function calculate the gradients and optimizes the weights. Another Pytorch
built-in function calculates the losses and the training process saves them in a list for
plotting.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 50

4.3.1 Results of training

The value of the total loss for each training process for plate detection was plotted with
respect to the training steps. The total loss graphs for digit recognition are not presented
because they have the same characteristics relevant for analysis as those for plate detection.

Figure 4.7: VGG-16 for the first scales and aspect ratios.

A first glance at the graphs from fig. 4.7 to fig. 4.14, indicates that the first set of scales
and aspect ratios for the RPN anchors produce a cost function that converges towards
a certain minimum; whereas the second set of scales and aspect ratios produce a cost
function that seemingly diverges, and keeps oscillating around the initial cost value. This is
due to the fact that the first set of scales and aspect ratios produce anchors of similar shape
and scale to those in both training data sets. Using the second set was an attempt to find a
better suited one for the tasks at hand, but it seems like there needs to be a grid-search [39]
operation in order to possibly find one, which requires more advanced hardware resources
and more time. The first set of scales and aspect ratios was used by the authors of the
original paper and obtained the best results on very large and diverse data sets of common
objects such as COCO [42], PASCAL [21], and Image-NET [16].

The second characteristic to notice is the fact that less complex models start at a
higher loss value but converge towards a minimum faster than more complex ones. This
confirms that models with less layers and less parameters per layer train faster than ones
with more layers and more parameters. This is explained by the fact that the data sets
at hand are too small to influence very deep models like Res-Net. This phenomenon is

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 51

Figure 4.8: Mobilenet for the first scales and aspect ratios.

Figure 4.9: Inception for the first scales and aspect ratios.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 52

Figure 4.10: Resnet for the first scales and aspect ratios.

Figure 4.11: VGG-16 for the second scales and aspect ratios.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 53

Figure 4.12: Mobilenet for the second scales and aspect ratios.

Figure 4.13: Inception for the second scales and aspect ratios.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 54

Figure 4.14: Resnet for the second scales and aspect ratios.

called "Over-parameterization" [33], where a machine learning model contains too many
parameters to train on the data set at hand. This also explains why the Res-Net model
converges towards a minimum cost which is higher than that of the less complex models.

4.4 Testing Faster RCNN models

After these models are trained, they need to be tested on both the training and testing sets
for analysis. The criterion chosen is the mean average precision (mAP, see appendix B).
It is a performance evaluation formula which takes into account the accuracy of the
classification as well as the precision of the localization of objects. The testing process is
shown in fig. 4.15. The same code for the training process is used for the testing process
except for the new added block calculating the mAP. The mAP is calculated using Pytorch
built-in functions.

The test results for plate detection are recorded in the following manner: for each set
of scales and aspect ratios, the mAP on the training and test sets is tabulated in table 4.1,
table 4.2, table 4.3, and table 4.4. Similarly, the same set of results are recorded for the
digit recognition models.

The mAP tables shows that the models trained using the first set of anchors and aspect
ratios perform far better than the ones using the second set of scales and aspect ratios,
which is an obvious result based on the total loss curves. The best result was obtained by

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 55

Figure 4.15: Block diagram summarizing the testing process for the Faster RCNN models.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 56

Table 4.1: mAP for plate detection on training set for the first set of scales and anchor
ratios.

Number of Epochs VGG-16 Mobilenet Inception Res-Net

10 epochs 58% 65.1% 77.3% 78.4%
30 epochs 58.2% 65.1% 77% 78%
50 epochs 58% 65% 77% 78%

Table 4.2: mAP for plate detection on training set for the second set of scales and anchor
ratios.

Number of Epochs VGG-16 Mobilenet Inception Res-Net

10 epochs 27.5% 25.1% 27% 28.4%
30 epochs 27.5% 25.1% 27% 28%
50 epochs 27% 25% 27% 28%

Table 4.3: mAP for plate detection on test set for the first set of scales and anchor ratios.

Number of Epochs VGG-16 Mobilenet Inception Res-Net

10 epochs 57.5% 64.1% 75% 70.3%
30 epochs 57.2% 65% 75.1% 70%
50 epochs 57% 65% 75% 71%

Table 4.4: mAP for plate detection on test set for the second set of scales and anchor
ratios.

Number of Epochs VGG-16 Mobilenet Inception Res-Net

10 epochs 28% 25.1% 27% 28.4%
30 epochs 28.2% 25.1% 27% 28%
50 epochs 28% 25% 27% 28%

Table 4.5: mAP for digit recognition on training set for the first set of scales and anchor
ratios.

Number of Epochs VGG-16 Mobilenet Inception Res-Net

10 epochs 57.8% 64.9% 77.1% 77.4%
30 epochs 57.5% 64.9% 77.1% 77%
50 epochs 57.6% 64.8% 77% 77%

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 57

Table 4.6: mAP for digit recognition on training set for the second set of scales and anchor
ratios.

Number of Epochs VGG-16 Mobilenet Inception Res-Net

10 epochs 25.5% 23.1% 25% 26.4%
30 epochs 25.5% 23.1% 25% 26%
50 epochs 25% 23% 25% 26%

Table 4.7: mAP for digit recognition on test set for the first set of scales and anchor ratios.

Number of Epochs VGG-16 Mobilenet Inception Res-Net

10 epochs 57% 64% 74.4% 70%
30 epochs 57% 65% 75% 69.9%
50 epochs 57% 65% 75% 69.9%

Table 4.8: mAP results for digit recognition on test set for the second set of scales and
anchor ratios.

Number of Epochs VGG-16 Mobilenet Inception Res-Net

10 epochs 26% 23.1% 25% 26.4%
30 epochs 26.2% 23.1% 25% 26%
50 epochs 26% 23% 25% 26%

the model using Inception network as a backbone which is 75% and 74.4% for test sets of
plate detection and digit recognition, respectively. For Res-Net, the performance seems to
have dropped, which is explained by the fact that Res-Net needs more data to learn the
specific features of the objects. The difference between the performance on the training set
and testing set is expected since the test set is data which the model has never seen before.
What is noticeable is that this difference is bigger for Res-Net backbone models than it is
for the other models. This indicates that the Res-Net backbone model has "Over-fitted"
[39] to the training set. Since the other models did not over-fit, it is only reasonable to
deduce that the over-fitting was due to the higher complexity of the Res-Net based models,
which tends to happen with highly complex machine learning models.

4.5 Speed performance evaluation for RCNN models

A Python script has been implemented to infer the processing time of each model. This
has been achieved using built-in Python functions. The time complexity of these models is
recorded in number of seconds per frame. Keep in mind that the speed of the model does
not depend on any hyper-parameter except for the size of the model itself and the input
image size. The tests were run on a Windows 10 computer equipped with an i5-6200u

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 58

processor and an NVIDIA GPU 930MX. Table 4.9 shows the results for the plate detection
models and table 4.10 shows the results for the digit recognition models.

Table 4.9: One frame processing time of each plate detection model.

VGG-16 Mobilenet Inception Res-Net

0.3 s 1.1 s 1.6 s 3 s

Table 4.10: One frame processing time of each digit recognition model.

VGG-16 Mobilenet Inception Res-Net

0.3 s 1.1 s 1.6 s 3 s

4.6 Training YOLOv3 models

Both the plate and digit networks are based on the YOLOv3 architecture (see fig. 4.16)
with some modification and parameter choices to fit in with the new data sets. The first
change to the base architecture is done to fit the new number of output classes. The original
implementation was built to predict the 80 classes from the COCO data set [30]. The
plate and digit networks predict one and ten possible classes respectively. As discussed
in section 3.1.1, the network divides the input image into an S×S grid. We must choose
the value of S carefully. Indeed, a small value would be good, but then in a data set with
overlapping objects, we must choose a higher number of anchors B which are difficult
to calculate. A large value of S is preferable since we want each object to fall into its
grid cell to be detected alone. This way, we can use a small number of anchor boxes B
because many objects are unlikely to fall into the same cell. But doing so will result in
a large output volume that makes the training more difficult and very slow. To remedy
these problems, the YOLOv3 writers were pretty genius. Instead of having one output,
they put three. Each one divides the input image into a different S×S grid. The outputted
S value depends on the input image shape. For an input image shape of 416×416, the
three outputs would result in a 13×13 grid at the first output, a 26×26 at the second, and
a 52×52 at the third. Objects that have not been detected in one of the outputs are likely
to be in the others.

The CNN Darknet-53 (see appendix A) pre-trained on the ImageNet data-set is used
as a backbone for both networks. The backbone represents the 52 first layers in the
architecture (see table A.2). Since the network is huge, it is impractical to retrain; that
would take ages to train due to low computational power available. The last FC layer of
Darknet-53 is removed and replaced with seven additional convolutional layers, where

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 59

the last one represents the first output. Next, the feature map from the 2 previous layers is
taken and upsampled (resized) by 2. A feature map is also taken from earlier in the network
and merged by concatenation with the upsampled features. This method enables us to get
more meaningful semantic information from the upsampled features and finer-grained
information from the earlier feature map. Then, few more convolutional layers are added
to process this combined feature map, and eventually predict a similar tensor, although
now twice the size. The same design is performed one more time to predict boxes for the
final scale. Thus our predictions for the 3rd scale benefit from all the prior computation as
well as fine-grained features from early on in the network [30], see fig. 4.16.
Both the plate and digit networks have been trained with a 0.001 learning rate using Adam
optimizer with a momentum of 0.9. The plate network has been trained for 4500 iterations
whereas the digits network for 8200 iterations. The number of iterations depends on the
number of classes the network is trained on. The more classes there are the more the
number of iterations are required. Data augmentation has been used a lot through the
training process. Specifically, for every 10 iterations, both networks randomly choose
a new image dimension size, changes the saturation, the exposure, and the hue of the
images. This regime forces the networks to learn to predict well across a variety of input
dimensions and gain in robustness. Both networks have been trained in the cloud using the
free google service called COLAB. It offers 12 hours access to a virtual machine equipped
with an NVIDIA Tesla K80 GPU [11].

Figure 4.16: YOLOv3 network architecture [2].

The training process of both the plate and digit network has been realized using a
deep learning framework called Darknet [9]. Darknet has been developed by the YOLO
designers in order to train their own YOLO model. The framework is an open-source

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 60

Figure 4.17: Block diagram illustrating the training process for YOLO models.

implementation hosted at github.com. Along with the framework, they provide detailed
instructions for developers to train their own customized YOLO models.

Before showing how to use the framework, we shall first discuss the process of training.
As illustrated by the diagram in fig. 4.17, an input image is fed to YOLOv3 network.
It passes through the different convolutional layers and eventually outputs a prediction.
Along with the ground truth labels, these predictions are used to compute a cost function
at each scale using eq. (3.5). The costs are summed up and used to compute the gradients
and update the weights and biases of the network as described in chapter one.

In order to use the framework, some specific files must be changed to fit the new
developers model configuration. By configuration, we mean the number of classes that
the model at hand is supposed to predict. Since the original implementation was built
to predict 80 classes, the output volume predict by the network is S×S× (3∗ (5+80)),
whereas for the digit network for example, the number of classes to predict is 10, therefore
the network must predict an S×S× (3∗ (5+10)) output volume. The Darknet developers
provide a “.cfg” file that contain the model configuration; all the layers of the network
are listed in this file. Namely, to indicate a convolutional layer with its input parameters:
size, filters, stride, pad, and activation; where “size” represent the size of the filters applied
(e.g. 3× 3, 1× 1, ...), “filters” represents the number of output filters constituting the
output feature map, “stride” is the stride to use, “pad” is a boolean that indicates to either
use padding or not. Finally, activation represents the activation function to use. In this
case, only the leaky ReLU (defined by f (x) = max(0.1x,x)) and the linear activation
functions are used. The majority of the layers are not to be changed since they represent
the implementation of YOLOv3. The only layers to change are the layers designated
by “yolo” and the convolutional layer just before it to fit our own custom network. The
convolutional layer just before the yolo layer represents one of the three outputs of the
network. Therefore, the filters parameter has to be changed in order to fit the new number
of output classes. In our case, for the digit network for example, the output volume as

github.com

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 61

discussed previously is S×S× (3∗ (5+10)), meaning S×S×45; the number of output
filters outputted by this convolutional layer is therefore 45. This implies that the filter
parameter should be set to 45 and this in all three output layers of the network.
The yolo layer in the other hand contains the following parameters:

• anchors, represent the initial hand-picked anchor boxes to be adjusted during
training. Each pair represents the width and the height of the anchor box respectively.

• mask, is a boolean array representing the set of anchor boxes to use at each output.
• classes, represent the number of output classes. In our example it is ten.
After downloading the Darknet framework into the COLAB environment, compiling

it, and configuring all the necessary files (the one presented above is the most important
one, other files are just system configuration), the training can start.

4.7 Training and testing results

4.7.1 Plate detection network

The plate network has been trained on 630 manually labeled images. It has been trained
for 1400 iterations. The loss went down to 0.123 with a mAP of 97.0% (see fig. 4.18) on
the test set, where 270 images have been used. But after inspection, we find out that the
model struggled with the case of multiple plates in the same image and some fuzzy images.
We restarted training for another 2500 iterations from the same point in the hope to get
the loss under 0.03, but unfortunately, the training took too long without any noticeable
improvements, therefore we stopped it at 0.052 loss with mAP of 97.4% (see fig. 4.19).
In fact, these are pretty good results, and further improvements can be made with more
training data and hopefully our initial problems where solved. Table 4.11 summarizes the
different results mentioned above.

Table 4.11: Plate network results using YOLOv3 model.

Number of Epochs Loss mAP

1400 epochs 0.123 97.0%
4000 epochs 0.052 97.4%

Figure 4.20 shows some examples of plate detection using our network: the ground
truth boxes are colored with violet, whereas the network predictions are yellow. As we can
see in fig. 4.20, the plate in the example label b has not been detected at all. The problem
encountered here is probably due to the shape and the color of the plates which are rather
unusual; they don’t appears often in the training data set.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 62

Figure 4.18: Loss plot for the plate network after 1400 iterations.

Figure 4.19: Loss plot for the plate network after 4000 iterations. The erased blue portion
was due to unstable internet connection.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 63

Figure 4.20: Plate detection examples.

4.7.2 Digit recognition network

The digit network has been trained on 845 images containing 10,402 hand annotated digits.
As the plate network, it has been trained for 4000 iterations at the beginning which brought
the loss to 0.8205 with an mAP of 64.2% on a test set containing 145 images with 1453
annotations. The network took so long to get there, but unfortunately doing horribly on
the test set. We restarted training for another 4000 iterations and finally got the network to
0.567 loss with a 65.1% mAP on the test set (the plots of the plate and digit network are
very similar, therefore there is no need to show them). Table 4.12 summarizes the results
mentioned above. Figure 4.21 shows some examples of digit detection using our network.
Our model struggles a lot with diagonal images due to the lack of examples.

Table 4.12: Digit network results using YOLOv3 model.

Number of Epochs Loss mAP

4000 epochs 0.8205 64.2%
8000 epochs 0.567 65.1%

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 64

Figure 4.21: Digit detection examples.

4.8 Speed performance evaluation for YOLO models

The networks have been tested in the cloud on an NVIDIA Tesla K80 GPU. The speed
of networks mainly depends on the input image size; the bigger the image the slower the
processing time. Our networks both resize the input images to 416 by 416 pixels keeping
their aspect ratios. All speed tests performed in this project disregard the time it takes to
save images to the disk and load the networks into the memory. Only the processing time
used by the networks is measured, see table 4.13.

Table 4.13: Speed test summary.

Network Average Time

Plate network 26.7 ms
Digit network 26.9 ms
Entire system 52.6 ms

The plate network is very good at detecting plates, even better than the RCNN model
and way faster. It achieves around 27 ms per image processed, equivalent to about 37 FPS
(frames per second) when running on video streams. This is within the requirements to
run on real-time video streams without dropping frames. To achieve such high processing
speeds, a relatively modern GPU is required. This is not problematic for real-world
applications running on desktop; however for applications running on embedded devices,
another lighter architecture should be consider which would reduce mAP significantly.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 65

Figure 4.22: Diagram illustrating the top level structure of the ALPRS.

The digit network on the other hand, achieved real-time video processing speeds as well,
but with a relatively low mAP which is way far from human performance. This is due
to the unbalance in the data set. Although the number of training examples is relatively
high, some digits are under represented; which is problematic. Therefore, a more balanced
dataset would fix the problem. This can be achieved providing more data.

4.9 ALPRS implementation

Implementing the ALPRS consists of concatenating a plate detection model and a digit
recognition model to perform the task of license plate recognition from a raw image.
Figure 4.22 illustrates this process.

4.9.1 Faster RCNN based ALPRS

The ALPRS application is implemented using a Python script that takes an image as input
and passes it through the plate detection model, then uses the output to crop the regions
containing the license plates and passes them through the digit recognition model. Both
models use the Inception network as backbone as it has the best mAP. The Inception based
model is slightly more robust to errors that can be made by the plate detection network,
because it checks if the digit recognition model output contains a number of digits that is
not consistent with reality. Note that license plates contain from 9 to 11 digits.

For the evaluation of this model, the only relevant characteristics is whether or not it
reads the license plate number correctly. After testing on 100 test images containing 114
license plates, 96 license plates were read correctly, therefore, the accuracy is 84.21%.

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 66

4.9.2 YOLOv3 based ALPRS

A similar ALPRS application using the YOLO model is built. It uses a Python script that
can be found at https://github.com/netvor-73/Lpd. An image is loaded into the
YOLO plate detection model, crops the license plates and passes them to the YOLO digit
recognition model. It detects the individual digits of each license plate and sorts them
according to their location on the images. The final system using YOLOv3 has been tested
on 100 images containing 114 license plates, 81 were correctly identified, yielding an
accuracy of 71.05%. Figure 4.23 are some examples of plate and digit detection using the
final system.

Figure 4.23: Examples of ALPRS detection.

4.9.3 Hybrid model based ALPRS

Both proposed methods in this work achieved decent accuracies as well as acceptable
processing speeds. But as it has been shown, the RCNN method despite its better accuracy
(84.21%) suffers from relatively low processing speeds. On the other side, disregarding its
relatively low accuracy (71.05%), YOLO achieves real times video processing capabilities.
Therefore, with the aim to compensate for each other’s weaknesses, a hybrid model
between both methods seems the way to go. Indeed, the YOLO plate detector has been
proven to be really efficient in terms of accuracy and speed, whereas the RCNN digit

https://github.com/netvor-73/Lpd

CHAPTER 4. DESIGN AND IMPLEMENTATION OF ALPRS 67

network has proven its robustness to extremely challenging conditions. Given these two
pieces of information, these last networks have been combined together in a final Python
pipeline implementing the flow diagram illustrated in fig. 4.22. The hybrid method runs
on real-time video streams, with an accuracy of 81.36% which almost meets human
performance.

The proposed method is fairly general. It could be easily adapted to many real-life
scenarios without changing the data set. It has been proven to work in very harsh conditions.
Indeed, with a relatively controlled environment; good camera placement, and decent
lighting conditions, the method would achieve super human-performance quite easily. In
addition, the method could, also, be adapted to different data sets without major changes.
The system is generic given that it does not use any hand-crafted features but rather learn
them, which is quite powerful.

The accuracy of 81.36% obtained in the application testing is considered a good result
for a first attempt. Although there are many ways to improve this result by working on:

• Building a bigger data set;
• Using more modern techniques and deep learning models;
• Encoding the models as C++ data structures to improve inference speed;
• Using CUDA programming language to optimize computations on GPU [17];
• Using unsupervised learning techniques to ensure that the model keeps learning

from its mistakes even after the application deployment;
There are other ways to correct the short-comings of the application without any

further elaboration on the model. For instance, the application can provide the model with
many frames of the same car, thereby making sure that if the model makes a mistake in
one frame, it can correct it in another. The accuracy can also be boosted, in a human-
assisted environment with the addition of a warning system. It can be easily achieved by
thresholding the number of detected digits; whenever this number is less than a certain
threshold, the system warns the human-assistance of a wrongly detected plate.

Conclusion

This work was an attempt to create a practical application to be used for license plate
detection and recognition. First, the data set was built from the ground up, including both
data collection and data labeling processes. Second, the Faster-RCNN and YOLO models
were selected as main tools for this task. Afterwards, a number of different backbone
models with different structures and parameters were trained and analyzed in order to
explore the effects of these parameters on the outcomes of the model, and to figure out
the best methods in the building of the application. These models were tested on new real
world data and have shown accuracies of 84.21% and 70.3% for Faster-RCNN and YOLO
respectively. Finally, in the strive to achieve real world applications requirements, both
methods have been combined.

In the future, this project can be improved by working on many aspects of the develop-
ment such as the ones mentioned in the last chapter. It can also be refined to be a useful
tool in the hands of different institutions, businesses, and even law enforcement or security
organizations.

In fact, this work is being optimized and integrated into a real-world application
used for monitoring garbage trucks under the supervision of a tech start-up in Algiers
called Brainiac. A direct quote from a Co-Founder of this company states the following:
"Introducing similar technologies into the Algerian market is not only a savvy business
idea but also a great opportunity for researchers and young software developers to turn
their innovations into real-world applications". And finally, it would also be insightful
to mention the following quote from Ray Kurzweil - American inventor and futurist -:
“Artificial intelligence will reach human levels by around 2029. Follow that out further to,
say, 2045, and we will have multiplied the intelligence a billion-fold.”

68

Bibliography

[1] https://classroom.udacity.com/courses/ud188/lessons.

[2] https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b.

[3] https://www.coursera.org/learn/deep-neural-network?

skipBrowseRedirect=true.

[4] https://www.mathworks.com/help/vision/ug/

anchor-boxes-for-object-detection.html.

[5] https://www.coursera.org/learn/convolutional-neural-networks?

[6] http://host.robots.ox.ac.uk/pascal/VOC/.

[7] https://pytorch.org/.

[8] https://opencv.org/.

[9] https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects.

[10] https://drive.google.com/drive/folders/16K68eRaGJHb3WB7Tfx-0s0h1gVQmmMSW?

usp=sharing.

[11] https://colab.research.google.com.

[12] Josh Patterson Adam Gibson. Deep Learning: A Practitioner’s Approach. O’Reilly,
2017.

[13] Patrick van der Smagt Ben Krose. An introduction to neural networks. The University
of Amsterdam, November 1996.

[14] Sergey Ioffe Jonathon Shlens Zbigniew Wojna Christian Szegedy, Vin-
cent Vanhoucke. Rethinking the inception architecture for computer vision.
arXiv:1512.00567, 11 Dec 2015.

[15] Yangqing Jia Pierre Sermanet Scott Reed Dragomir Anguelov Dumitru Erhan Vincent
Vanhoucke Andrew Rabinovich Christian Szegedy, Wei Liu. Going deeper with
convolutions. arXiv:1409.4842, Sep 2014.

69

https://classroom.udacity.com/courses/ud188/lessons
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://www.coursera.org/learn/deep-neural-network?skipBrowseRedirect=true
https://www.coursera.org/learn/deep-neural-network?skipBrowseRedirect=true
https://www.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html
https://www.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html
https://www.coursera.org/learn/convolutional-neural-networks?
http://host.robots.ox.ac.uk/pascal/VOC/
https://pytorch.org/
https://opencv.org/
https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects
https://drive.google.com/drive/folders/16K68eRaGJHb3WB7Tfx-0s0h1gVQmmMSW?usp=sharing
https://drive.google.com/drive/folders/16K68eRaGJHb3WB7Tfx-0s0h1gVQmmMSW?usp=sharing
https://colab.research.google.com

BIBLIOGRAPHY 70

[16] Shane Cook. CUDA Programming: A Developer’s Guide to Parallel Computing with

GPUs. Newnes, 2012.

[17] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255, 2009.

[18] Jimmy Lei Ba Diederik P. Kingma. Adam: A method for stochastic optimization.
arXiv:1412.6980v9, January 2017.

[19] Jarek Duda. Sgd momentum optimizer with step estimation by online parabola
model. arXiv:1907.07063, Dec 2019.

[20] Alexey Bochkovskiy et al. Yolov4: Optimal speed and accuracy of object detection.
arXiv:2004.10934v1, April 2020.

[21] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John M. Winn, and
Andrew Zisserman. The pascal visual object classes (VOC) challenge. Int. J. Comput.

Vis., 88(2):303–338, 2010.

[22] et al. G. Howard. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv:1704.04861, 17 Apr 2017.

[23] Ross Girshick. Fast r-cnn. arXiv:1504.08083, Sep 2015.

[24] Leonardo Ferreira Guilhoto. An overview of artificial neural networks for mathe-
maticians. http://math.uchicago.edu/ may/REU2018/REUPapers/Guilhoto.pdf.

[25] Aaron Courville Ian Goodfellow, Yoshua Bengio. Deep learning. MIT Press, 2017.

[26] Sajayasa Ari Dwi Suta Atmaja INGA Astawa, I Gusti Ngurah Bagus Caturbawa.
Detection of license plate using sliding window, histogram of oriented gradient, and
support vector machines method. J. Phys.: Conf. Ser. 953 012062, 2018.

[27] Yoshua Bengio Jason Yosinski, Jeff Clune and Hod Lipson. How transferable are
features in deep neural networks? arXiv:1411.1792v1, November 2014.

[28] Hogne Jorgensen. Automatic License Plate Recognition using Deep Learning Tech-

niques. PhD thesis, Norwegian University of Science and Technology, Department
of Computer Science, July 2017.

[29] Ali Farhadi Joseph Redmon. Yolo9000: Better, faster, stronger. arXiv

arXiv:1612.08242v1, December 2016.

[30] Ali Farhadi Joseph Redmon. Yolov3: An incremental improvement. arXiv

arXiv:1804.02767v1, April 2018.

BIBLIOGRAPHY 71

[31] Ross Girshick Ali Farhadi Joseph Redmon, Santosh Divvala. You only look once:
Unified, real-time object detection. arXiv arXiv:1506.02640v5, May 2016.

[32] Shaoqing Ren Jian Sun Kaiming He, Xiangyu Zhang. Deep residual learning for
image recognition. arXiv:1512.03385, Dec 2015.

[33] Zheng Xu W. Ronny Huang Tom Goldstein Karthik A. Sankararaman, Soham De.
The impact of neural network overparameterization on gradient confusion and
stochastic gradient descent. arXiv:1904.06963, 15 Apr 2019.

[34] Jude Shavlik Lisa Torrey. Transfer learning. University of Wisconsin, Madison WI,

USA, 2009.

[35] S.A. Ghazi M. Sarfraz, M.J. Ahmed. Saudi arabian license plate recognition system.
IEEE, 2012.

[36] Michael Nielsen. Neural Networks and Deep Learning. Online book:
http://neuralnetworksanddeeplearning.com/, December 2019.

[37] D. Renuka devi and D. Kanagapushpavalli. Automatic license plate recognition.
In 3rd International Conference on Trendz in Information Sciences Computing

(TISC2011), pages 75–78, 2011.

[38] Trevor Darrell Jitendra Malik Ross Girshick, Jeff Donahue. Rich feature hierar-
chies for accurate object detection and semantic segmentation. arXiv:1311.2524v5,
October 2014.

[39] Xiuwen Liu Shaeke Salman. Overfitting mechanism and avoidance in deep neural
networks. arXiv:1901.06566, 19 Jan 2019.

[40] Ross Girshick Shaoqing Ren, Kaiming He and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. arXiv:1506.01497v3, June
2016.

[41] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556, Sep 2014.

[42] Serge Belongie Lubomir Bourdev Ross Girshick James Hays Pietro Perona Deva
Ramanan C. Lawrence Zitnick Piotr Dollár Tsung-Yi Lin, Michael Maire. Microsoft
coco: Common objects in context. arXiv:1405.0312, 1 May 2014.

Appendices

72

Appendix A

YOLOv3 network architecture

A.1 Feature extractor

YOLO developers didn’t use any of the already pre-trained backbone networks on image
classification. Instead they trained their own classifier on the ImageNet data-set. The
network uses successive 3×3 and 1×1 convolutional layers with some shortcut (skip)
connections. It has 53 convolutional layers, therefore it has been named Darknet-53.
Darknet is the deep learning framework used to train it. See table A.2

Darknet-53 network is a pretty good one compared to other backbones that are even
deeper which makes it way faster at inference time. See table A.1. Each network is
trained with identical settings and tested at 256×256, single crop accuracy. Run times are
measured on a Titan X at 256×256. Thus Darknet-53 performs on par with state-of-the-art
classifiers but with fewer floating point operations and more speed. Darknet-53 is better
than ResNet-101 and 1.5× faster. Darknet-53 has similar performance to ResNet-152 and
is 2× faster. Darknet-53 also achieves the highest measured floating point operations per
second. This means the network structure better utilizes the GPU, making it more efficient
to evaluate and thus faster. That’s mostly because ResNets have just way too many layers
and aren’t very efficient [30].

Table A.1: Comparison of backbones. Accuracy, billions of operations, billion floating
point operations per second, and FPS for various networks [30].

Backbone Top-1 Top-5 Bn Ops BFLOP/s FPS

ResNet-101 77.1 93.7 19.7 1039 53
ResNet-152 77.6 93.8 29.4 1090 37
Darknet-53 77.2 93.8 18.7 1457 78

73

APPENDIX A. YOLOV3 NETWORK ARCHITECTURE 74

Table A.2: Darknet-53 structure[30].

Type Filters Size Output

Convolutional 32 3×3 256×256
Convolutional 64 3×3 /2 128×128

Convolutional 32 1×1
1 × Convolutional 64 3×3

Residual 128×128

Convolutional 128 3×3 /2 64×64

Convolutional 64 1×1
2 × Convolutional 128 3×3

Residual 64×64

Convolutional 256 3×3 /2 32×32

Convolutional 128 1×1
8 × Convolutional 256 3×3

Residual 32×32

Convolutional 512 3×3 /2 16×16

Convolutional 256 1×1
8 × Convolutional 512 3×3

Residual 16×16

Convolutional 1024 3×3 /2 8×8

Convolutional 512 1×1
4 × Convolutional 1024 3×3

Residual 8×8

Avgpool Global
Connected 1000
Softmax

Appendix B

mAP (mean Average Precision) for
Object Detection

Average precision (AP) is a popular metric in measuring the accuracy of object detectors
like Faster R-CNN, SSD, etc. To understand it, its better to recap some related concepts.

B.1 Precision and recall

Precision measures how accurate are your predictions. i.e. the percentage of your correct
predictions. Recall measures how good you find all the positives. For example, we can find
80% of the possible positive cases in our top K predictions. Here are their mathematical
definitions:

Precision =
T P

T P+FP
(B.1)

Recall =
T P

T P+FN
(B.2)

where TP stands for true positive, FP for false positive, TN for true negative, and FN
for false negative.

B.2 Average Precision

Let’s create an over-simplified example that demonstrates the calculation of the average
precision. In this example, the whole dataset contains 5 apples only. We collect all the
predictions made for apples in all the images and rank it in descending order according
to the predicted confidence level, see fig. B.1. The second column indicates whether the
prediction is correct or not. In this example, the prediction is correct if the IoU ≥ 0.5.

75

APPENDIX B. MAP FOR OBJECT DETECTION 76

Figure B.1: Example of precision and recall values.

Let’s take the row with rank 3 and demonstrate how precision and recall are calculated
first. Precision is the proportion of TP = 2/3 = 0.67. Recall = 2/5 = 0.4. Recall values
increase as we go down the prediction ranking. However, precision has a zigzag pattern —
it goes down with false positives and goes up again with true positives, see fig. B.2.

Figure B.2: Plot of precision vs recall.

The general definition for the Average Precision (AP) is finding the area under the
precision-recall curve.

AP =
∫ 1

0
p(r)dr

Precision and recall are always between 0 and 1. Therefore, AP falls within 0 and 1 also.
Before calculating AP for the object detection, we often smooth out the zigzag pattern
first. Graphically, at each recall level, we replace each precision value with the maximum
precision value to the right of that recall level, see fig. B.3.

APPENDIX B. MAP FOR OBJECT DETECTION 77

Figure B.3: Elimination of zigzag pattern.

Appendix C

Backbone models

In the few last chapters, we introduced the basic building blocks of CNNs such as convo-
lutional layers, pooling layers and fully connected layers. It turns out a lot of the past few
years of computer vision research has been on how to put together these basic building
blocks to form effective convolutional neural networks, focusing on the object classifica-

tion task. One of the best ways to get intuition on how to build CNNs is to read or to see
other examples of effective CNNs. It turns out that an architecture that works well on one
computer vision task often works well on other tasks also. Indeed the same networks called
backbones, discussed in this section are used as feature extractors for object detection
networks since an object detection requires the classification of objects and their locations.

C.1 VGG-16

VGG16 is a CNN that achieves 92.7% top-5 test accuracy in ImageNet [41], which is
a data-set of over 14 million images belonging to 1000 classes [17]. It was one of the
famous model submitted to one of the most prestigious computer vision competition. It
makes the improvement over state of the art at that time by replacing large kernel-sized
filters (11 and 5 in the first and second convolutional layer, respectively) with multiple
3×3 kernel-sized filters one after another. VGG16 was trained for weeks using graphical
processing technology. see fig. C.1.

The ConvNet configurations are outlined in fig. C.2. The nets are referred to their
names (A-E). All configurations follow the generic design present in architecture and
differ only in the depth: from 11 weight layers in the network A (8 convolutional layers
and 3 fully connected layers) to 19 weight layers in the network E (16 convolutional layers
and 3 fully connected layers). The width of convolutional layers (the number of channels)
is rather small, starting from 64 in the first layer and then increasing by a factor of 2 after
each max-pooling layer, until it reaches 512. See fig. C.2.

78

APPENDIX C. BACKBONE MODELS 79

Figure C.1: VGG-16 structure by layers.

Figure C.2: VGG-16 network configuration.

APPENDIX C. BACKBONE MODELS 80

C.2 Mobilenet

MobileNet is a CNN architecture model used for object detection and image classification,
generally used in small applications.There exists a variety of models designed for the same
purpose but the reason why MobileNet stand out is that it requires much less computation
power to run or apply transfer learning to.This characteristic is what makes it optimal to
run on embedded systems in general, computer systems without GPU or low computational
efficiency, as well as Mobile devices which don’t have the necessary hardware to run more
costly models. Needless to say, the use of Mobilenet comes with a significant compromise
in the accuracy of the results. It is also best suited for web browsers as browsers have
limitation over computation, graphic processing , and storage. Mobilenet architecture is
distinguished by an essential features know as "Depth-wise Separable Convolution" [22].
Before we get into the definition of "Depth-wise Separable Convolution" we need to go
over some aspects of the convolution operation. Let’s consider an input matrix of shape
D f ×D f ×M as shown in fig. C.3. If our input was an RGB image then M would be equal
to 3. If we apply a convolution using a filter of shape Dk×Dk×M we would obtain an
output of size DG×DG×1 if we apply the same convolution using N filters of the same
shape and concatenate the results we would obtain an output shape of DG×DG×N, see
fig. C.4.

Figure C.3: Convolution input.

Since the multiplication operation is more expensive relative to the addition, let’s
consider the cost of the convolution operation with regards to the number of multiplications.
For one convolution step for one kernel the number of multiplications is Dk×Dk×M,
for and entire convolution step for one filter the number of multiplications is DG×DG×
Dk×Dk×M therefore when we account for N filters the number of multiplication for a

APPENDIX C. BACKBONE MODELS 81

Figure C.4: Convolution operation.

convolutional layer is D2
G×D2

k×M.
With this in mind, we can introduce the concepts of "Depth-wise Convolution" and

"Point-wise convolution", which when put together yield a " Depth-wise Separable Convo-
lution ". Unlike simple convolution, Depth-wise Convolution applies convolution to single
input channel at a time, using M filters of shape Dk×Dk×1 see fig. C.5. Point-wise con-
volution applies N filters of shape 1×1×M to the output of the Depth-wise convolution
and by concatenating the results we obtain the same output shape as simple convolution,
see fig. C.6 [22].

Figure C.5: Depth-wise Convolution.

Computing the number of multiplications for the entire process gives M×D2
G× (D2

k +

N); which is less than the cost of simple convolution. But to get a an understanding of
how much computational power is reduced, we should compute the ratio

number o f multiplications f or DSC
number o f multiplications f or simple conv

which is found to be

APPENDIX C. BACKBONE MODELS 82

Figure C.6: Point-wise Convolution.

1
N
+

1
D2

k
(C.1)

By taking an example of Dk = 3 and N = 1024, we get a ratio of approximately 1
9

which signifies a substantial decrease in computational requirements.

C.2.1 Mobilenet model structure

The Mobilenet model is composed of convolutional and Max Pool layers where the full
structure is demonstrated in table C.1 [22].

C.3 Inception

The Inception network was an important milestone in the development of CNN classifiers.
Prior to its inception (pun intended), most popular CNNs just stacked convolution layers
deeper and deeper, hoping to get better performance.The Inception network, on the other
hand, was complex (heavily engineered). It used a lot of tricks to push performance;
both in terms of speed and accuracy. Its constant evolution lead to the creation of several
versions of the network. The popular versions are : Inception v1, Inception v2, Inception
v3, and Inception Res-Net. Each version is an iterative improvement over the previous
one. Understanding the upgrades can help us to build custom classifiers that are optimized
both in speed and accuracy.

C.3.1 Inception V1

The problem addressed by the developers of this model is the extreme large variation in
the size of the salient parts in the image. For instance, an image of a dog can have any of
the forms shown in fig. C.7. The area occupied by the dog is different in each image. This

APPENDIX C. BACKBONE MODELS 83

Table C.1: mobilenet structure table.

APPENDIX C. BACKBONE MODELS 84

significant variation in the location of the relevant features of the object we wish to detect
and classify requires choosing the right kernel size for the convolution operation, which
becomes a complicated task. A larger kernel is preferred for information that is distributed
more globally, and a smaller kernel is preferred for information that is distributed more
locally. Considering the fact that very deep networks are prone to over-fitting in addition
to the difficulty they pose in performing back-propagation across the layers it goes without
saying that naively stacking large convolution operations is computationally expensive
and will not improve network performance on new data.

The authors of the original paper suggested the use of multiple filters of different sizes
in one layer rendering the network "wider" rather than “deeper” [15].

Figure C.8 explains the core idea of this model. It performs convolution on an input,
with 3 different sizes of filters (1× 1, 3× 3, 5× 5). Additionally, max pooling is also
performed. The outputs are concatenated and sent to the next inception layer.

As stated before, deep neural networks are computationally expensive. To make
it cheaper, the authors limit the number of input channels by adding an extra 1× 1
convolution before the 3×3 and 5×5 convolutions. Though adding an extra operation may
seem counter intuitive, 1×1 convolutions are far less expensive than 5×5 convolutions,
and the reduced number of input channels also help (similar to the method used in
Mobilenet). Note that, however, the 1x1 convolution is introduced after the max pooling
layer, rather than before [14], see fig. C.9

Figure C.7: Examples of dog images.

Using the dimension reduced inception module, a neural network architecture was
built. This was popularly known as GoogLeNet (Inception v1). The architecture is shown
in fig. C.10.

GoogLeNet has 9 such inception modules stacked linearly. It is 22 layers deep (27,
including the pooling layers). It uses global average pooling at the end of the last inception
module.

Needless to say, it is a pretty deep classifier. As with any very deep network, it is
subject to the vanishing gradient problem.

To prevent the middle part of the network from “dying out”, the authors introduced

APPENDIX C. BACKBONE MODELS 85

Figure C.8: Inception network layer general structure.

Figure C.9: Inception layer with added 1×1 convolution operation.

two auxiliary classifiers (The purple boxes in fig. C.10). They essentially applied softmax
to the outputs of two of the inception modules, and computed an auxiliary loss over the
same labels. The total loss function is a weighted sum of the auxiliary loss and the real
loss. The weight value used in the paper was 0.3 for each auxiliary loss [14]. Needless to
say, auxiliary loss is purely used for training purposes, and is ignored during testing.

totalloss = real loss+0.3 aux loss 1+0.3 aux loss 2 (C.2)

C.4 Res-Net

ResNet, short for Residual Networks is a classic neural network used as a backbone for
many computer vision tasks. This model was the winner of ImageNet challenge in 2015.

APPENDIX C. BACKBONE MODELS 86

Figure C.10: Inception network structure.

The fundamental breakthrough with ResNet was that it allowed us to train extremely deep
neural networks with 150+layers successfully [32]. Prior to ResNet, training very deep
neural networks was difficult due to the problem of vanishing gradients.

AlexNet, the winner of ImageNet 2012 and the model that apparently kick started the
focus on deep learning had only 8 convolutional layers, the VGG network had 19 and
Inception or GoogleNet had 22 layers and ResNet 152 had 152 layers.

However, increasing the network depth does not work by simply stacking layers
together. Deep networks are hard to train because of the notorious vanishing gradient
problem as the gradient is back-propagated to earlier layers, repeated multiplication may
make the gradient extremely small. As a result, as the network goes deeper, its performance
gets saturated or even starts degrading rapidly. For this reason the creators of Res-Net
introduced the idea of "Skip Connections"

C.4.1 Skip Connection

ResNet first introduced the concept of skip connection fig. C.11. illustrates skip connection.
The figure on the left is stacking convolution layers together one after the other. We still
stack convolution layers as before but we now also add the original input to the output
of the convolution block. This is called skip connection. We must note that the addition
operation occurs before the output goes through the ReLU (Rectification linear unit)
function [32]. The main two reasons why skip connections work are:

• Skip connections mitigate the problem of vanishing gradient by allowing this alter-
nate shortcut path for gradient to flow through.

• They allow the model to learn an identity function which ensures that the higher
layer will perform at least as good as the lower layer, and not worse.

APPENDIX C. BACKBONE MODELS 87

Figure C.11: Skip connection.

	Front_page
	report
	Abstract
	Dedication
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Feed-Forward neural networks
	Cost function
	Gradient descent
	Gradient calculation

	Neural network architecture
	Back-propagation
	Batch and stochastic gradient descent
	Adam optimizer
	Problems related to neural nets

	Convolution neural networks
	Convolution operation
	CNN architectures
	Convolutional layer
	Stride and padding
	Pooling
	Transfer learning
	Data augmentation

	CNN application: Object detection
	YOLO: you only look once
	Bounding boxes
	Network design
	Processing the algorithm's output

	Faster R-CNN
	Anchors
	Region Proposal Network
	ROI Pooling
	Faster RCNN training

	Design and implementation of ALPRS
	Workflow of the ALPRS implementation
	Data collection and labeling
	Training Faster RCNN models
	Results of training

	Testing Faster RCNN models
	Speed performance evaluation for RCNN models
	Training YOLOv3 models
	Training and testing results
	Plate detection network
	Digit recognition network

	Speed performance evaluation for YOLO models
	ALPRS implementation
	Faster RCNN based ALPRS
	YOLOv3 based ALPRS
	Hybrid model based ALPRS

	Conclusion
	Bibliography
	Appendices
	YOLOv3 network architecture
	Feature extractor

	mAP for Object Detection
	Precision and recall
	Average Precision

	Backbone models
	VGG-16
	Mobilenet
	Mobilenet model structure

	Inception
	Inception V1

	Res-Net
	Skip Connection

