
Registration Number:……../2021

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdès

Institute of Electrical and Electronic Engineering

Department of Power & Control

Project Report Presented in Partial Fulfilment of

the Requirements of the Degree of

‘MASTER’

In Power Engineering

Title:

Presented By:

- CHAKHCHOUKH Taha Yassine

- TEBBAL Said

Supervisor:

 Prof. KHELDOUN Aissa

Deep Learning Based PV Power

Forecasters in Python for Different Time

Horizons

Abstract

The major points worked on throughout this report are: achieving accurate fore-

caster with less complexity and computational cost, using the minimum available

data set for training and reaching the farthest possible span in the future. For the

aim of developing forecasters in this work, then RNNs and DL were employed with

the use of the python programming language for their modelling. A data set of

GHI recordings collected during January 21, 2011, through March 4, 2012 and from

December 20, 2012, through January 20, 2014 is used to compare the above DNN

based models for three different time spans. Moreover, various evaluation metrics

such as MAPE, RMSE, r and R2 have been used for the assessment of the models

to explore their performance when spanning different time horizons such that each

one has a specific training samples. The obtained results have showed that the AE

LSTM is the most efficient and less sensitive to the number of training samples.

Keywords – PV power forecasting, deep learning, optimization, neural net-

works, python, LSTM, GHI, prediction.

i

Dedication

I have a great pleasure to dedicate this modest work to my

beloved Mother, Grand Mother, Brothers,

Sisters, Grand Father and all my family members

whose affection, love, encouragement and prays

of day and night make me able to get

such success and honor.

Along with all my friends, teachers from primary school

to my last year of university.

And to all with whom I spent wonderful moments.

Taha Yassine Chakhchoukh

ii

Dedication

I have a great pleasure to dedicate this modest work to my

beloved Parents and my family members whose

affection, love, encouragement and prays of day and night

make me able to get such success and honor.

Along with all my friends, teachers from primary school

to my last year of university.

And to all with whom I spent wonderful moments.

Said Tebbal

iii

Acknowledgement

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, all

praises to Allah for the strengths and His blessing in completing this project.

We would like to express our deepest and sincere gratitude to our project

supervisor Pr. KHELDOUN.A It was a great privilege and honor to work and

study under your supervision, Thank you very much.

Last but not least, we are infinitely grateful to our family members, particularly

our parents for their patience, unwavering support, continuous encouragement, and

belief in us throughout our whole life. We would have never made it this far

without them beside us every step of the way.

Finally, a special thanks go to all IGEE members.

Institute of Electrical and Electronic Engineering

Boumerdes, July 2021

Taha Yassine Chakhchoukh Said Tebbal

Contents

1 Introduction 1

1.1 Scope and research questions . 2

1.2 Aims and objectives . 3

1.3 Report structure . 3

2 Generalities 4

2.1 Artificial Neural Networks . 4

2.2 Recurrent Neural Networks (RNNs) 5

2.3 Long Short Term Memory(LSTM) . 6

2.3.1 Vanilla LSTM . 7

2.3.2 Stacked LSTM . 8

2.3.3 The Encoder-Decoder LSTM 8

2.4 Gated Recurrent Unit (GRU) . 8

2.5 Convolutional Neural Networks (ConvNets/CNNs) 8

2.5.1 Convolutional layers . 9

2.5.2 Pooling layers . 10

2.5.3 Fully connected layer . 11

2.6 Hyperparameters . 11

2.6.1 Optimizer hyperparameters 12

2.6.2 Model specific hyperparameters 12

3 Data 14

3.1 Data description . 14

3.1.1 PV technologies . 15

3.1.2 File convention . 15

iv

CONTENTS v

3.1.3 File format . 15

3.2 Data collection . 16

3.2.1 Equipment . 16

4 Methodology 17

4.1 Data preparation . 17

4.2 Models description and building . 20

4.2.1 Models description . 20

4.2.2 Model building . 21

4.3 Research findings . 23

5 Software toolkit 25

5.1 Python . 25

5.2 Pycharm / Colab . 25

5.2.1 Pycharm . 25

5.2.2 Colab . 26

5.3 TensorFlow / Keras . 26

5.3.1 Tensorflow . 26

5.3.2 Keras . 26

5.4 CSV . 27

5.5 Numpy . 27

5.6 Matplotlib . 28

5.7 Pandas . 28

5.8 Scikit Learn . 28

5.9 Scipy . 29

6 Implementation and Evaluation 30

6.1 General workflow of the forecasters 30

6.2 Evaluation metrics . 32

6.3 Results . 33

6.3.1 Five minutes ahead forecasting 34

6.3.2 One hour ahead forecasting 40

6.3.3 One day ahead forecasting . 45

6.4 Discussion and analysis . 50

CONTENTS vi

6.4.1 Five minutes ahead forecasting 50

6.4.2 One hour ahead forecasting 50

6.4.3 One day ahead forecasting . 51

7 Conclusion 53

Appendices 60

A 61

A.1 . 61

A.2 . 61

A.3 . 66

B 68

B.1 . 68

B.2 . 68

B.3 . 69

List of Tables

4.1 Some of the DNNs forecasting researches 24

6.1 Structure of each NN in the project 34

6.2 Results for five minutes ahead forecasting 35

6.3 Results for one hour ahead forecasting 40

6.4 Results for one hour ahead forecasting 45

A.1 File header elements and definitions 61

A.2 File Data Elements and Definitions 66

A.3 List of Sensors and Data Acquisition Equipment 67

vii

List of Figures

2.1 Recurrent Neural Network . 5

2.2 Types of RNNs . 6

2.3 LSTM memory block structure . 7

2.4 Schematic diagram of a basic CNN 11

4.1 Data preparation flowchart . 18

4.2 Check and drop outliers flowchart . 19

4.3 Impute missing values flowchart . 20

4.4 Descriptive flowchart of the model . 23

6.1 General flowchart of the model . 31

6.2 Output test for Vanilla LSTM . 36

6.3 Output test for Simple RNN . 36

6.4 Output test for GRU . 36

6.5 Output test for LSTM RNN . 37

6.6 Output test for LSTM GRU . 37

6.7 Output test for GRU RNN . 37

6.8 Output test for LSTM GRU RNN . 38

6.9 Output test for CNN . 38

6.10 Output test for Stacked LSTM . 38

6.11 Output test for AE LSTM . 39

6.12 Output test for CNN LSTM . 39

6.13 Output test for CNN LSTM GRU RNN 39

6.14 Output test for Vanilla LSTM . 41

6.15 Output test for Simple RNN . 41

6.16 Output test for GRU . 41

viii

LIST OF FIGURES ix

6.17 Output test for LSTM RNN . 42

6.18 Output test for LSTM GRU . 42

6.19 Output test for GRU RNN . 42

6.20 Output test for LSTM GRU RNN . 43

6.21 Output test for CNN . 43

6.22 Output test for Stacked LSTM . 43

6.23 Output test for AE LSTM . 44

6.24 Output test for CNN LSTM . 44

6.25 Output test for CNN LSTM GRU RNN 44

6.26 Output test for Vanilla LSTM . 46

6.27 Output test for Simple RNN . 46

6.28 Output test for GRU . 46

6.29 Output test for LSTM RNN . 47

6.30 Output test for LSTM GRU . 47

6.31 Output test for GRU RNN . 47

6.32 Output test for LSTM GRU RNN . 48

6.33 Output test for CNN . 48

6.34 Output test for Stacked LSTM . 48

6.35 Output test for AE LSTM . 49

6.36 Output test for CNN LSTM . 49

6.37 Output test for CNN LSTM GRU RNN 49

B.1 Python script for replacing outliers by NaN 68

B.2 Python script for imputing NaN values 68

B.3 Python script for creating an AE LSTM model 69

List of abbreviations

AE Auto Encoder

API Application Programming Interface

CNN Convolutional Neural Network

ConvNets Convolutional Neural Networks

CSV Comma Seperated Variables

DL Deep Learning

DNN Deep Neural Network

GHI Global Horizontal Irradiance

GRU Gated Recurrent Unit

GW Gega Watt

IDE Integrated Development Environment

KNN K-Nearest Neighbors

LSTM Long Short Term Memory

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLP Multi Layer Perceptron

MW Mega Watt

NN Neural Network

x

xi

NREL National Renewable Energy Laboratory

OO Object Oriented

PV Photo Voltaic

PVPPs Photo Voltaic Power Plants

QA Quality Assessment

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

RMSprop Root Mean Squared Propagation

RNN Recurrent Neural Network

Seq2Seq Sequence to Sequence

LIST OF ABBREVIATIONS

Chapter 1

Introduction

In the recent years the world has seen a remarkable increase in load demand

compared to the generated power due to several factors: industrialization, modern-

ization and population growth, aside from people’s increasing living standard, this

has lead to the emergence of the first problem which is load satisfaction for better

and stable operation of the grid, however the generated power around the world

is mainly produced by thermal power plants which also has raised the problem of

global warming due to their huge negative impact on the environment caused by

the release of toxic gases. The previous stated problems obliged the scientist to find

some other sources of energy that help to satisfy the load and they must be clean

sources or environmental friendly alternatives. Along with the different alternatives,

the targeted ones were renewable energy sources, among these sources, wind and so-

lar energy are the most acceptable and promising sources due to their potential and

availability. However a research study highlighted that the earth receives at an in-

stant 1.8× 1011 MW from solar radiation, therefore solar gained a higher attention

from governments and international organizations, because of its several benefits

including environmental and economic advantages.

Solar energy systems or specifically PV systems has achieved world wide accep-

tance, hence PVPPs have seen an enormous growth over the last few years also

some statistics stated that by 2030 the global installation of solar PV power capac-

ity could exceed 1700 GW.

Nevertheless solar energy has some drawbacks due to its intermittent nature, fluc-

tuations, spikes (this is because it is highly dependent on weather parameters) and

1

1.1. SCOPE AND RESEARCH QUESTIONS 2

its unpredictable output generated power. So in order to integrate PVPPs into the

grid and keeping its operation stable, then a reliable and robust forecasters must

be built in order to achieve a reliable and economical operation of the overall power

system.

A considerable number of experiments has been conducted to develop appropriate

forecasting models in forecasting PV power generation with the targets of higher ac-

curacy and minimum complexity with computational cost. These forecasting mod-

els are broadly classified into two categories: indirect and direct forecasting mod-

els. Other classification for PV power forecasters come in terms of forecast horizon

(short, medium and long term forecast horizons), and historical data (persistence

method, statistical approaches, ML and DL approaches and hybrid techniques).

1.1 Scope and research questions

The general purpose of this study is to work on forecasters for three different

time horizons based on different deep learning methods in order to predict the solar

irradiance (here the solar irradiance is specified instead of the output of the PV

because the indirect forecasting method was employed for this work). The training

and testing of the multiple models were done using the data provided from NREL

that were acquired from three different locations. Before going further on this work

few particular questions related to the topic will be highlighted in order to be worked

on all over this report and deduce their answers at the end of this proposal. Those

questions are cited below:

• How DL models behave when the provided training data is large and or shrunk

(resampled with different frequencies).

• What is the result of the investigation of DL NNs for PV power forecasting.

• How does the predicted outcome changes when hybridizing different NNs.

• Is the solar irradiance predictable.

• How to achieve tuning the proper hyperparameters to prevent overfitting and

falling into local minima.

1.2. AIMS AND OBJECTIVES 3

1.2 Aims and objectives

This study focuses on developing forecasters to help integrating the solar energy

sources to the grid for minimizing the risks of global warming and having a reliable

operation of the grid that satisfies the load demand.

1.3 Report structure

The overall layout of this report can be decomposed into six key chapters where

the first one covers with details different RNNs and CNNs as well as it explains

thoroughly NNs hyperparameters in general. The subsequent chapter focuses on

clarifying the structure of the data used for the accomplishment of this project in

terms of when and where the data was acquired, and how it was measured and

recorded. The following section deals with the methods used for this project and at

the end it mentions the most notable and recent works related to the topic, thereafter

the software tools exploited for realizing the proposal of this work will be introduced.

Last but not least the implementation of different models for separate time horizons

is well summarized in the last chapter and the conclusion comes afterwards.

Chapter 2

Generalities

Before the invention of AI technology, systems were used to be programmed to

perform certain tasks following some specifications, then in the early 1950’s scientists

conducted experiments trying to find some solutions that imitate human thoughts.

1956 was the first year where the term AI was first appeared, in this year the first

conference on AI has been organized by John McCarthy, Marvin Minsky, Nathaniel

Rochester and Claude Shannon’s at Dartmouth College in New Hampshire. One

ideal representation of the term “AI” is the simulation of human intelligence on ma-

chines. Through the years from the invention of AI, AI has seen several applications

especially for resolving complex problems[1].

2.1 Artificial Neural Networks

A neural network is a general mathematical computing paradigm that models

the operations of biological neural systems. A neural network is a set of individually

interconnected processing units called neurons. Information is passed through these

neurons along interconnections. Each neuron connection is associated with two

values which are: the input value and its synaptic weight. The output of this neuron

will be a function of the net value at the input. artificial neural networks while

implemented on computers are not programmed to perform specific tasks, instead

they are trained to learn patterns from its input data. Once they are trained new

patterns can be represented to them for classification or prediction. Since artificial

neural networks are considered as a simplified mathematical model inspired from

4

2.2. RECURRENT NEURAL NETWORKS (RNNS) 5

the biological system so they must be taught or trained. During the learning phase,

sample of training data are presented to them to extract patterns at its input so

they will be prepared to automatically recognize new input data.

Neural networks can be classified into dynamic and static. In a static neural

network the output is calculated directly from the input through feed forward con-

nections. For example, in a basic feed forward neural network, the information flows

in a single direction from input to output, such neural networks have no feedback

elements. Whereas in a dynamic neural network, in addition to the current input

the output depends also on previous inputs, outputs and/or hidden states of the net-

work. Those neural networks are going to be explained furthermore in this chapter,

where this chapter is organised as follows, in the first section the simple recurrent

neural network is presented, section two talks about LSTM, after that section three

presents GRU, then the fourth section describes CNNs, finally the neural network

hyperparameters will be the last part of this chapter[3].

2.2 Recurrent Neural Networks (RNNs)

Simple RNNs are one type of dynamic NNs, they are designed for sequential data

that are basically just ordered data in which related things follow each other[4]. The

main aspect that distinguishes RNNs from standard feed forward MLP NNs is that

it has at least one feedback loop. The recurrent or feedback connections add state

or memory to the network and allow it to learn broader abstractions from the input

sequences, means that in a given layer, each neuron may pass its signal latterly in

addition to the forward flow of information towards the next layer, also the output

of the network may feedback as an input to the network besides the input vector

and so on[5]. RNN can be illustrated in figure 2.1:

Figure 2.1: Recurrent Neural Network

2.3. LONG SHORT TERM MEMORY(LSTM) 6

Based on the use case different RNNs can be used and they are listed below[5]:

• One-to-Many: sequence output, for image captioning.

• Many-to-One: sequence input, for sentiment classification.

• Many-to-Many: sequence in and out, for machine translation.

Figure 2.2: Types of RNNs

This type of NN in practice is quite limited due to two major issues that are[4]:

• Exploding gradients: They are when the algorithm, without much reason,

assigns an unjustified high importance to the weights.

• Vanishing gradients: They occur when the values of a gradient are too small

and the model stops learning or takes way too long as a result.

The first issue can be easily solved by truncating or squashing the gradients. Whereas

the latter issue was solved by introducing the LSTM NN by Sepp Hochreiter and

Juergen Schmidhuber[4], which will be detailed in the upcoming section of this

chapter.

2.3 Long Short Term Memory(LSTM)

LSTM are an extension of a simple RNN where instead of a neuron it contains

a memory block that are connected into layers. A block has components that make

it smarter than a classical neuron and a memory for recent sequences[5]. Therefore

2.3. LONG SHORT TERM MEMORY(LSTM) 7

it is well suited to learn from important experiences that have very long time lags

in between[4].

A unit operates upon an input sequence and each gate within a unit uses the sigmoid

activation function to control whether they are triggered or not, making the change

of state and addition of information flowing through the unit conditional.[5]. Each

memory unit contains three types of gates:

• Forget Gate: Decides what information should be omitted from the cell in

that particular time step.

• Input Gate: Decides which values from the input to update the memory

state.

• Output Gate: Decides what to output based on input and the memory of

the cell.

The LSTM structure with its three gates is illustrated in figure 2.3.

Figure 2.3: LSTM memory block structure

2.3.1 Vanilla LSTM

Vanilla LSTM is the simplest LSTM structure. It is the LSTM architecture

defined in the original 1997 LSTM paper and the architecture that will give good

results on most small sequence prediction problems. The Vanilla LSTM is composed

from[6]:

1. Input Layer.

2.4. GATED RECURRENT UNIT (GRU) 8

2. Fully connected LSTM hidden layer.

3. Fully connected output layer.

2.3.2 Stacked LSTM

In contrast to Vanilla LSTM, stacked LSTM has multiple hidden LSTM layers

where each layer contains multiple memory cells or blocks[6]. Stacked LSTMs or

Deep LSTMs were introduced by Graves, et al. in their application of LSTMs to

speech recognition, beating a benchmark on a challenging standard problem[6].

2.3.3 The Encoder-Decoder LSTM

The Encoder-Decoder LSTM structure is comprised of two parts: one for reading

the input sequence and encoding it into a fixed-length vector, and a second for decod-

ing the fixed-length vector and outputting the predicted sequence. This architecture

is designed specifically for sequence to sequence Seq2Seq prediction problems[6].

2.4 Gated Recurrent Unit (GRU)

GRU can be considered as a simpler version of LSTM, as it contains two gates[7]:

• Reset gate: The Reset Gate is responsible for the short-term memory of the

network.

• Update gate: Similarly to the previous gate, this gate is responsible for long

term memory.

GRU in some cases, it has certain advantages over LSTM. GRU uses less memory

and is faster than LSTM, however, LSTM is more accurate when using datasets

with longer sequences[8].

The GRU was introduced in 2014 by Kyunghyun Cho et al[7].

2.5 Convolutional Neural Networks (ConvNets/CNNs)

Convolutional Neural Networks are a type of neural network that was designed

to efficiently handle image data. They have proven effective on challenging computer

2.5. CONVOLUTIONAL NEURAL NETWORKS (CONVNETS/CNNS) 9

vision problems both achieving state-of-the-art results on tasks like image classifica-

tion and providing a component in hybrid models for entirely new problems such as

object localization, image captioning and more[9]. CNNs are considered as a Deep

Learning algorithm which can take in an input image, assign importance (learnable

weights and biases) to various aspects/objects in the image and be able to differen-

tiate one from the other. The pre-processing required in a ConvNet is much lower

as compared to other classification algorithms. While in primitive methods filters

are hand-engineered, with enough training, ConvNets have the ability to learn these

filters/characteristics.

The architecture of a ConvNet is analogous to that of the connectivity pattern of

Neurons in the Human Brain and was inspired by the organization of the Visual

Cortex.

A ConvNet is able to successfully capture the spatial and temporal dependencies in

an image through the application of relevant filters. The architecture performs a

better fitting to the image dataset due to the reduction in the number of parameters

involved and reusability of weights. In other words, the network can be trained to

understand the sophistication of the image better.

The ConvNet is built by three types of layers, which are[9]:

1. Convolutional layers.

2. Pooling layers.

3. Fully connected layers.

2.5.1 Convolutional layers

Convolutional layers are comprised of filters and feature maps.

Filters

The filters are essentially the neurons of the layer. They have both weighted

inputs and generate an output value like a neuron. The input size is a fixed square

called a patch or a receptive field. If the convolutional layer is an input layer, then

the input patch will be pixel values. If they deeper in the network architecture,

2.5. CONVOLUTIONAL NEURAL NETWORKS (CONVNETS/CNNS) 10

then the convolutional layer will take input from a feature map from the previous

layer[9].

Feature maps

The feature map is the output of one filter applied to the previous layer. A given

filter is drawn across the entire previous layer, moved one stride at a time. Each

position results in an activation of the neuron and the output is collected in the

feature map[9].

The distance that filter is moved across the input from the previous layer each

activation is referred to as the stride[9].

2.5.2 Pooling layers

The pooling layers down-sample the previous layers feature map. Pooling layers

follow a sequence of one or more convolutional layers and are intended to consoli-

date the features learned and expressed in the previous layers feature map. As such,

pooling may be considered as a technique to compress or generalize feature repre-

sentations and generally reduce the overfitting of the training data by the model[9].

They too have a receptive field, often much smaller than the convolutional layer.

Also, the stride or number of inputs that the receptive field is moved for each ac-

tivation is often equal to the size of the receptive field to avoid any overlap. Its

feature maps are created in a very simple manner where it takes only the average

or the maximum of the input value, so based on that we can distinguish two types

of pooling layers which are[9]:

• Maximum pooling

• Average Pooling

The Convolutional Layer and the Pooling Layer, together form the i-th layer of a

Convolutional Neural Network. Depending on the complexities in the images, the

number of such layers may be increased for capturing low-levels details even further,

but at the cost of more computational power[10].

2.6. HYPERPARAMETERS 11

2.5.3 Fully connected layer

Fully connected layers are the normal flat feedforward neural network layer.

These layers may have a nonlinear activation function or a softmax activation in

order to output probabilities of class predictions. Fully connected layers are used at

the end of the network after feature extraction and consolidation has been performed

by the convolutional and pooling layers. They are used to create final nonlinear com-

binations of features and for making predictions by the network[9].

As can be seen from the previous description the CNN is being used mainly for

the fields of: image processing, object detection, image recognition . . . , however

the ConvNets ability to automatically extract features from raw input data can be

applied to time series forecasting problems, where a sequence of observations can

be treated like a one-dimensional image that a CNN model can read and distill into

the most salient elements[9].

The illustration of a simple ConvNet is shown figure 2.4.

Figure 2.4: Schematic diagram of a basic CNN

2.6 Hyperparameters

Neural Networks (NNs) are the typical algorithms used in Deep Learning analy-

sis. NNs can differ in structures, nevertheless their core elements or building blocks

are common, but the things that differentiate each NN from another are its hy-

perparameters, which determine how the network is built and trained[11]. The

hyperparameters are set prior to training. There is also another concept that must

be taken into account, which is the NN parameters. Those parameters are the inter-

2.6. HYPERPARAMETERS 12

nal coefficients of the model, and they are chosen by the model itself. It means that

the algorithm, while learning, optimizes these coefficients (according to a given opti-

mization strategy) and returns an array of parameters which minimize the error[12].

This section will cover the tunable parameters (hyperparameters), the hyperparam-

eters fall mainly into two categories:

• Optimizer hyperparameters

• Model specific hyperparameters

2.6.1 Optimizer hyperparameters

Batch size

When dealing with large datasets it is more convenient to split the overall dataset

into sub samples that are given to the network when each parameter update happens,

those sub samples are called batches and their size is defined as the batch size[11].

Number of epochs

It is the number of times the whole training data is introduced to the model.

Optimizers

While the training data is being passed to the network for training, there is a

metric that indicates how the model performs on the training data, this metric is

called the loss. Essentially the minimum the loss is, the better it is for the model,

so this process of minimizing any mathematical expression is called optimization.

Optimizers are algorithms or methods used to change the attributes of the neural

network such as weights and learning rate to reduce the losses. They are used to

solve optimization problems by minimizing the function[13].

2.6.2 Model specific hyperparameters

Hidden layers

In general the NNs share two common layers that are: the input and output

layer, in between there may be some additional layers that are called hidden layers.

2.6. HYPERPARAMETERS 13

The hidden layers are added until the model arrives at an acceptable performance

on the test data[11].

Hidden units

Are the processing units of a NN. Information is passed through these units along

interconnections.

Activation functions

It is the transfer function of the hidden units that relates their inputs to their

outputs through a linear or non linear transformation.

The hyperparameters in general are important because they directly control the be-

haviour of the training algorithm and have a significant impact on the performance

of the model is being trained. A good choice of the hyperparameters can really

improve the model performance in generally[14].

The challenge with hyperparameters is that there is no optimal number that works

everywhere. The best numbers depend on each task and each dataset.

On this report, the only tuned hyperparameters are the previously described ones,

and their optimal values have been reached through the use of trial and error method,

which is the most widely adopted by researchers and students, and it is 100 % man-

ual technique.

Chapter 3

Data

The data that has been used for the completion of this project was provided by

the NREL (National Renewable Energy Laboratory), which is a national laboratory

of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

Operated by the Alliance for Sustainable Energy, LLC. The manual for this data is

published by the NREL in their website[15]. The manual describes the performance

of the data measured for flat-plate photovoltaic (PV) modules installed in Cocoa,

Florida; Eugene, Oregon; and Golden, Colorado. The data include PV module

current-voltage curves and associated meteorological data for approximately one-

year periods.

3.1 Data description

The data measurement locations were Cocoa, Florida (subtropical climate); Eu-

gene, Oregon (marine west coast climate); and Golden, Colorado (semi-arid climate).

The data includes the following periods:

• Cocoa: January 21, 2011, through March 4, 2012.

• Golden: August 14, 2012, through September 24, 2013.

• Eugene: December 20, 2012, through January 20, 2014.

14

3.1. DATA DESCRIPTION 15

3.1.1 PV technologies

The PV modules tested were for PV technologies available in 2010, when the

work effort began. They include:

• Single-crystalline silicon (x-Si) PV modules.

• Multi-crystalline silicon (m-Si) PV modules.

• Cadmium telluride (CdTe) PV modules.

• Copper indium gallium selenide (CIGS) PV modules.

• Amorphous silicon (a-Si) tandem and triple junction PV modules.

• Amorphous silicon/crystalline silicon or heterojunction with intrinsic thin-

layer (HIT) PV modules.

• Amorphous silicon/microcrystalline silicon PV modules.

Even though the market share for a-Si tandem and triple PV modules has decreased

dramatically since this work began, their large sensitivity to the solar spectrum

makes their data useful for validating the robustness of models that account for

the effects of variations in the solar spectrum on PV module performance. Because

spectral effects directly impact the PV module short-circuit current, the use of I-V

curve data is particularly well suited for evaluating models of this type.

3.1.2 File convention

The files contain Comma Separated Variables (CSV). The naming convention

uses the deployment location and NREL PV module identifier as the file prefix,

with the characters “csv” as the file extension.

3.1.3 File format

The data files consist of rows or lines of data. The data values within a line

are separated by commas, which constitutes the CSV format. The CSV format is

commonly used, and most software has built-in functions for reading or parsing it.

When parsed, the line of data is broken into fields containing the values of the data

elements.

3.2. DATA COLLECTION 16

File header

The first two lines of data provide information about the PV module and the site

location. The first line consists of nine fields containing text describing the header

data values that are contained in line 2, the field elements and their description are

listed in table A.1 in appendix A.

File data

Line 3 consists of 42 fields and contains text describing the I-V curve and mete-

orological data contained in line 4 and subsequent lines, similarly the field elements

and their corresponding description are tabulated in table A.2 in appendix A.

3.2 Data collection

Measurement equipment was selected to provide low measurement errors, station

operations were followed to ensure equipment operated properly, and QA methods

were implemented to exclude data not meeting quality thresholds.

3.2.1 Equipment

NREL provided the equipment for measurements at the Cocoa and Eugene sites

and the instrument for each weather parameter are specified in table A.3 in appendix

A. The equipment was transported to the sites in a shipping container, and then

the shipping container was used as an integral part of the test facility. Structure

was attached to the shipping container for deploying the PV modules, and the roof

was used for locating the solar radiation and other meteorological sensors. Data

acquisition equipment was located inside the shipping container in a temperature-

controlled environment.

Through this chapter, a comprehensive knowledge of the data used to build the

model for this report. Similarly, the following chapter covers the building blocks of

the model and the works accomplished in this field.

Chapter 4

Methodology

In this chapter, the workflow of the model is explained with details, where the

first section deals with how the data is prepared for modelling, afterwards the models

that has been built throughout this report are highlighted in the second section,

finally the research findings of previous works that has been done in this field will

be pointed out in the last section of this chapter.

4.1 Data preparation

This step of data preparation is a crucial step in real world ML projects and

unfortunately some of the ML developers do not pay enough attention to this part.

This step is critical because it can have a huge impact on the model’s performance,

where sometimes ML models do not give an acceptable results on real worlds sit-

uations, this is not necessary due to their structure, nevertheless it may be as a

consequence of the poorly provided raw data. At the expense of the importance of

this step it is a considerably difficult step. The reason is that each dataset is differ-

ent and highly dependent to the project. Though there are sufficient commonalities

across predictive modelling project.

Data preparation is concerned with transforming the raw data that was collected

into a form that it suitable for modeling. This part in ML projects generally passes

through the following steps[16]:

• Data cleaning: Identifying and correcting mistakes or errors in the data.

• Feature selection: Identifying those input variables that are most relevant

17

4.1. DATA PREPARATION 18

to the task.

• Feature engineering: Deriving new variables from available data.

• Dimensionality reduction: Creating compact projections of the data.

The data that has been used to develop this work has only went through data

cleaning step, because there is no need for feature engineering or dimensionality

reduction since it is already numeric and selected with the least number of input

attributes.

The data cleaning process done on this project is summarized in the flowchart below:

Figure 4.1: Data preparation flowchart

4.1. DATA PREPARATION 19

From the above flowchart, the two techniques that have been used while cleaning

the data are:

1. Drop outliers: The first thing to look at is what is an outlier, an outlier

is an observation that is distinct from other observations and it may be due

to: measurement error, data corruption or true observation[16]. Below the

flowchart graphically explains how the outliers are interpreted:

Figure 4.2: Check and drop outliers flowchart

2. Impute missing values: In practice the data often have missing values

due to several factors such as: maintenance of measurement equipment, data

corruption . . . etc. So missing data must be handled in order to be supported

by ML algorithms. Once the missing values are marked or identified then

4.2. MODELS DESCRIPTION AND BUILDING 20

two options are given in hand to deal with those samples either by removing

or imputing them. The data cleaning algorithm built in this project handles

missing values by replacing them, for this purpose there exist several methods,

however in this project “KNNImputer()” built in function in python has been

used. Below the graphical representation summarizes the predescribed part.

Figure 4.3: Impute missing values flowchart

4.2 Models description and building

4.2.1 Models description

Throughout chapter two, the common DNN has been represented in general in

terms of structure, method of operation and their different configurations. So now

they are going to be explained on how they have been used to build the models.

Firstly, the simplest model that has been implemented is the standalone model such

that one of the cited NN above in this literature has been used alone to construct

the model and make predictions, to dig deeper into more complex models or in other

words constructing hybrid models, then the use of two or more NN has been applied.

4.2. MODELS DESCRIPTION AND BUILDING 21

Below is a list of the models that has taken place throughout this report (standalone

and hybrid):

• RNN

• LSTM (Vanilla, Stacked, Auto-Encoder)

• GRU

• CNN1D

• LSTM-RNN

• LSTM-GRU

• GRU-RNN

• LSTM-GRU-RNN

• CNN1D-LSTM

• CNN1D-LSTM-GRU-RNN

4.2.2 Model building

To explain well how the models were built then, their details will be pointed out

from the innermost to the outermost model parameter in the next few lines.

Data preparation

Though this section has the same name as the chapter mentioned earlier, but

practically their usage is different, in which the first one deals with data cleaning, in

other words transforming the raw data into a cleaner version. However this second

part, talks about transforming the latter version of data (clean data) into a format

that will be suitable for modelling (training and testing). Transforming the raw

data into a relevant format for modelling is the heart of this part.

In general the architecture of DNNs impose to the raw data to have a 3D shape,

where the first dimension summarizes the number of samples provided to the model,

4.2. MODELS DESCRIPTION AND BUILDING 22

whereas the second dimension defines how many time steps in each sample used to

make predictions, finally the last one provides how many features employed in the

model[9]. Often the shape of the 3D data is summarized using the array notation

shown below:

[samples, timesteps, features]

The second part of this section talks on how to convert the time series data into

a supervised data, meaning that converting the raw data into samples with 3D

shape as described previously, where each sample contains an input and an output

component. The aim of this conversion is to feed samples of input and output

component each to the model, in order for it to capture the patterns of the outputs

from the provided inputs, this is done while training the model. On the other hand

for the model to make predictions on new unseen data, the second part (output

component) is omitted and only the input sequence is taken into consideration,

then the forecasted output is compared with the actual output.

Architecture

Up to this point, the data is prepared for all the models stated in the preceding

section, and those models have commonalities and differentiation between them.

The commonalities between one model and another are:

• The 3D shape of the input.

• The output that must be predicted.

The differentiation between one model from another is the NN being used, either

the standalone or the hybrid network.

The time horizon

Till now the input data received by the model and the NN constructing it has

gone through a deep explanation. Afterwards, the output shape for the predictions

made by the network must be identified in terms of what span of time needed to

be forecasted and how many future samples must be predicted. On this report, the

point that is taken into consideration is that the output is predicted for only one

4.3. RESEARCH FINDINGS 23

sample ahead.

The graphical description of the whole process is shown underneath:

Figure 4.4: Descriptive flowchart of the model

4.3 Research findings

Wrapping up what we have covered so far about modelling, now some of the

major works that has been done similar to this one in terms of input features and

neural network used and the output horizon achieved will be cited in table 4.1:

4.3. RESEARCH FINDINGS 24

Author Method Time hori-

zon

Input used Accuracy

Mahmou

et al [17]

LSTM 1 hour ahead historical powers RMSE = 82.15

/ [18] LSTM Up to 24 h

ahead

GHI, weather

forecast

RMSE = 76.24%

/ [18] S2S Up to 24 h

ahead

GHI, weather

forecast

MAE = 30W/m2%

/ [18] LSTM 1 day ahead GHI MAE = 60.3W/m2%

/ [18] LSTM,

CI

1 hour ahead GHI RMSE = 30%− 34%

S.Boubaker

et al [18]

LSTM 1 day ahead GHI MAPE = 6.34%

S.Boubaker

et al [18]

GRU 1 day ahead GHI MAPE = 6.76%

S.Boubaker

et al [18]

CNN-

LSTM

1 day ahead GHI MAPE = 10.45%

S.Boubaker

et al [18]

CNN 1 day ahead GHI MAPE = 8.93%

Table 4.1: Some of the DNNs forecasting researches

At the arrival to this point, what we have seen so far is the process of build-

ing forecasting models from scratch, in the upcoming chapters, the tools used to

build them are explained with details and then their implementation and the results

obtained from different configurations will discussed further.

Chapter 5

Software toolkit

This chapter provides a general overview about the programming language, li-

braries and the tools used to the completion of this project.

5.1 Python

Python is an interpreted, object-oriented, high-level programming language with

dynamic semantics. Its high-level built in data structures, combined with dynamic

typing and dynamic binding, make it very attractive for Rapid Application De-

velopment, as well as for use as a scripting or glue language to connect existing

components together. Python’s simple, easy to learn syntax emphasizes readability

and therefore reduces the cost of program maintenance. Python supports modules

and packages, which encourages program modularity and code reuse. The Python

interpreter and the extensive standard library are available in source or binary form

without charge for all major platforms, and can be freely distributed[19].

5.2 Pycharm / Colab

5.2.1 Pycharm

PyCharm is a dedicated Python Integrated Development Environment (IDE)

providing a wide range of essential tools for Python developers, tightly integrated

to create a convenient environment for productive Python, web and data science

development[20]. In addition the complete package of the IDE includes: Intelli-

25

5.3. TENSORFLOW / KERAS 26

gent Python Assistance, Web Development Frameworks, Scientific Tools, Cross-

technology Development, Remote Development Capabilities and Built-in Developer

Tools[21].

5.2.2 Colab

Colaboratory, or ”Colab” for short, allows to write and execute Python in your

browser, with: zero configuration needed, free access to GPUs and easy sharing.

Colab notebooks are Jupyter notebooks that are hosted by Colab. Colab notebooks

allow to combine executable code and rich text in a single document, along with

images, HTML, LaTeX and more. When creating Colab notebooks, they are stored

in the Google Drive user’s account. They can be easily shared with co-workers or

friends, allowing them to comment on the notebooks or even edit them[22].

5.3 TensorFlow / Keras

5.3.1 Tensorflow

TensorFlow is an end-to-end open source platform for machine learning. It is

a comprehensive and flexible ecosystem of tools, libraries and other resources that

provide workflows with high-level APIs. The framework offers various levels of

concepts need to build and deploy machine learning models based on the choice of

the user. Some of the salient features are described below[23]:

• Easy Model Building: It offers multiple levels of abstraction to build and

train models.

• Robust ML Production Anywhere: It provides flexibility and ease to

train and deploy models, no matter what language or platform is used.

• Easy to use: Well documented so easy to understand.

5.3.2 Keras

Keras is an open source neural network library written in Python that runs

on top of Theano or Tensorflow. It is designed to be modular, fast and easy to

5.4. CSV 27

use. It was developed by François Chollet, a Google engineer. It is a useful library

to construct any deep learning algorithm[24]. The main advantages of Keras are

described below[23]:

• User-Friendly: It has a simple, consistent interface optimized for common

use cases which provides clear and actionable feedback for user errors.

• Modular and Composable: Its models are made by connecting configurable

building blocks together, with few restrictions.

• Easy To Extend: With the help of Keras, custom building blocks can easily

be written for new ideas and researches.

5.4 CSV

Comma Separated Variables or CSV for short it is a python module that gives

the ability to the user to parse in CSV files. A CSV file is a human readable text file

where each line has a number of fields, separated by commas or some other delimiter.

Each line of the CSV file is considered as a row and each field as a column. The

CSV format has no standard, but they are similar enough that the CSV module will

be able to read the vast majority of CSV files. CSV files can also be written the

CSV module[25].

5.5 Numpy

NumPy is a module for Python. The name is an acronym for “Numeric Python”

or “Numerical Python”. It is an extension module for Python, mostly written in C.

This makes sure that the precompiled mathematical and numerical functions and

functionalities of Numpy guarantee great execution speed. Furthermore, NumPy

enriches the programming language Python with powerful data structures, imple-

menting multi-dimensional arrays and matrices[26]. NumPy was created in 2005 by

Travis Oliphant. It is an open source project that can be used it freely, its source

code is located at the github repository “https://github.com/numpy/numpy”[27].

5.6. MATPLOTLIB 28

5.6 Matplotlib

Matplotlib is a cross-platform, data visualization and graphical plotting library

for Python and its numerical extension is NumPy. As such, it offers a viable open

source alternative to MATLAB. Developers can also use matplotlib’s APIs (Ap-

plication Programming Interfaces) to embed plots in GUI applications. A Python

matplotlib script is structured so that a few lines of code are all that is required

in most instances to generate a visual data plot. The matplotlib scripting layer

overlays two APIs[28]:

• The pyplot API is a hierarchy of Python code objects topped by matplotlib.pyplot

• An OO API collection of objects that can be assembled with greater flexibility

than pyplot. This API provides direct access to Matplotlib’s backend layers.

It was introduced by John Hunter in the year 2002. One of the greatest benefits of

visualization is that it allows visual access to huge amounts of data in easily digestible

visuals. Matplotlib consists of several plots like line, bar, scatter, histogram . . . [29].

5.7 Pandas

Pandas is a fast, powerful, flexible and easy to use open source data analysis and

manipulation tool, built on top of the Python programming language[30]. Its class

DataFrame is an excellent method for representing tabular data, assisting in data

preprocessing, modification or slicing[31].

5.8 Scikit Learn

Scikit-learn (Sklearn) is a useful library for machine learning in Python. It

provides a selection of efficient tools for machine learning and statistical modeling

including classification, regression, clustering and dimensionality reduction via a

consistence interface in Python. This library, which is largely written in Python, is

built upon NumPy, SciPy, Pandas and Matplotlib[32]. Sklearn provides the following

functionalities[33]:

5.9. SCIPY 29

• Regression: Predicting a continuous-valued attribute associated with an ob-

ject.

• Classification: Identifying which category an object belongs to.

• Clustering: Grouping or gathering similar objects into different sets auto-

matically.

• Model selection: Comparing, validating and choosing parameters and mod-

els.

• Pre-processing: Feature extraction and normalization.

• Dimensionality reduction: Reducing the size of the input dataset to a

smaller one such that it contains only the most relevant features.

5.9 Scipy

SciPy is a scientific computation library that uses NumPy underneath. SciPy

stands for Scientific Python, It provides more utility functions for optimization,

statistics and signal processing. Like NumPy, SciPy is an open source library that

can be used freely. SciPy was created by NumPy’s creator Travis Olliphant[34].

After acquiring an intuitive overview about the toolkits used in this project, there-

after the implementation of this study search using those tools will be covered further

in the forthcoming chapter.

Chapter 6

Implementation and Evaluation

6.1 General workflow of the forecasters

Summing up what has been covered up to now, the model’s building elements

has gone through an extensive theoretical explanation, however from now on the

practical aspect of this implementation will be clarified in the following sections.

This section summarizes the whole implementation process and the interaction be-

tween each building block. In general the graphical representations show a better

understanding compared to the written one. So the flowchart on figure 6.1 summa-

rizes well how the whole process has been done.

30

6.1. GENERAL WORKFLOW OF THE FORECASTERS 31

Figure 6.1: General flowchart of the model

6.2. EVALUATION METRICS 32

6.2 Evaluation metrics

For every model built in general it must go through an evaluation process, where

this process is done by the use of some metrics. Below the only four metrics that

has been used to evaluate the forecasters built all over this report are:

1. MAPE (Mean Absolute Percentage Error):

MAPE =
1

N

N∑
i=1

|Gactual −Gforecasted|
|Gactual|

(6.1)

2. RMSE (Root Mean Squared Error):

RMSE =

√√√√ 1

N

N∑
i=1

(Gforecasted −Gactual)2 (6.2)

3. r (Pearson’s correlation coefficient):

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ)√∑N

i=1(Xi − X̄)2
√∑N

i=1(Yi − Ȳ)2
(6.3)

Where:

• X: The actual value.

• X̄: The mean value of the variable X.

• Y: The predicted value.

• Ȳ : The mean value of the predicted variable Y.

• N: Length of time series data.

• i: Series number.

4. R2 (coefficient of determination):

R2 = 1− RSS

TSS
(6.4)

Where:

• RSS: Sums of squares of residuals.

6.3. RESULTS 33

• TSS: Total sum of squares.

6.3 Results

This section of this chapter will summarize the results of all the models that

have been implemented in this project. For a better distribution of the results, this

part will be divided into three main subsections where each subsection will take into

consideration a specific time horizon (five minutes ahead, one hour ahead, one day

ahead).

However the common aspects that each specific time horizon model has are pointed

down:

• Lagging time steps: 1 (minutes and hours), 7 (days)

• Future samples: 1.

• Epochs: 3.

• Batch size: 8.

• Optimizer: RMSprop (Root Mean Squared propagation).

• Activation function: ReLU (Rectified Linear Unit).

The above listed hyperparameters have been identified through the use of trial and

error method. However in some cases, where the model does not converge to its

optimal version, then a slight change in its number of epochs was applied and the

last optimal reached value was eight for some and fifty for others.

On the other, all the models have been trained and tested using the same data sets,

where:

• Training data sets:

1. Eugene aSiMicro03036.

2. Cocoa aSiMicro03036.

• Test data set:

1. Eugene xSi12922.

6.3. RESULTS 34

At this point three things must be highlighted before going further in the discussion,

the first thing is that the test data set has not been used fully instead, only 2500

samples were used for the minute and hour sampling rates, however just 359 samples

has been employed for the day sampling rate due to the lack of data, here the

latter mentioned term “sampling rate” signifies that the mean value is taken for the

specified horizon. The second thing is the meteorological parameter used for both

the training and testing was the GHI, the last thing is that the common structure

used for each model at each time horizon which will be well summarized in the table

6.1.

Neural Network Structure

Vanilla LSTM 50:1

RNN 50:1

GRU 50:1

LSTM-RNN 50:50:1

LSTM-GRU 50:50:1

GRU-RNN 50:50:1

LSTM-GRU-RNN 50:50:50:1

CNN 100:100:1

Stacked LSTM 50:50:1

AE LSTM 50:50:100:1

CNN-LSTM 64:64:1:200:100:1

CNN-LSTM-GRU-RNN 64:64:1:200:100:200:100:200:100:1

Table 6.1: Structure of each NN in the project

6.3.1 Five minutes ahead forecasting

The results summary and the plots of the five minutes ahead forecasters are

presented in table 6.2 and figures from 6.2 to 6.13 respectively.

6.3. RESULTS 35

NN

Metric
MAPE % RMSE (W/m2) Epoch time (sec) r R2

Vanilla LSTM 16.55 46.91 17.33 0.89 0.78

RNN 16.61 46.63 15.33 0.89 0.78

GRU 16.55 46.73 18.33 0.89 0.78

LSTM-RNN 16.55 46.94 22.67 0.89 0.78

LSTM-GRU 16.57 47.03 26.33 0.89 0.78

GRU-RNN 16.55 46.93 24 0.89 0.78

LSTM-GRU-

RNN

16.55 46.94 33.67 0.89 0.78

CNN 16.62 46.64 13.33 0.89 0.79

Stacked LSTM 16.56 46.9 27.33 0.89 0.78

AE LSTM 16.67 47.02 30.67 0.89 0.78

CNN-LSTM 16.56 46.96 52.33 0.89 0.78

CNN-LSTM-

GRU-RNN

16.61 46.86 98.33 0.89 0.78

Table 6.2: Results for five minutes ahead forecasting

6.3. RESULTS 36

Figure 6.2: Output test for Vanilla LSTM

Figure 6.3: Output test for Simple RNN

Figure 6.4: Output test for GRU

6.3. RESULTS 37

Figure 6.5: Output test for LSTM RNN

*

Figure 6.6: Output test for LSTM GRU

Figure 6.7: Output test for GRU RNN

6.3. RESULTS 38

Figure 6.8: Output test for LSTM GRU RNN

Figure 6.9: Output test for CNN

Figure 6.10: Output test for Stacked LSTM

6.3. RESULTS 39

Figure 6.11: Output test for AE LSTM

Figure 6.12: Output test for CNN LSTM

Figure 6.13: Output test for CNN LSTM GRU RNN

6.3. RESULTS 40

6.3.2 One hour ahead forecasting

The results summary and the plots of the one hour ahead forecasters are pre-

sented in table 6.3 and figures from 6.14 to 6.25 respectively.

NN

Metric
MAPE % RMSE (W/m2) Epoch time (sec) r R2

Vanilla LSTM 45.31 187.8 2.125 0.89 0.58

RNN 45.22 175.93 1.875 0.89 0.63

GRU 50.3 241.92 2.125 0.89 0.3

LSTM-RNN 44.46 173.7 2.625 0.89 0.64

LSTM-GRU 44.23 168.52 3.25 0.89 0.66

GRU-RNN 44.44 170.4 2.375 0.89 0.65

LSTM-GRU-

RNN

43.6 178.28 3.75 0.89 0.62

CNN 45.01 166.75 2.125 0.89 0.67

Stacked LSTM 44.7 179.02 3.25 0.89 0.61

AE LSTM 41.36 162.49 3.25 0.89 0.69

CNN-LSTM 44.59 165.34 5.33 0.89 0.67

CNN-LSTM-

GRU-RNN

43.19 158.41 11.33 0.89 0.7

Table 6.3: Results for one hour ahead forecasting

6.3. RESULTS 41

Figure 6.14: Output test for Vanilla LSTM

Figure 6.15: Output test for Simple RNN

Figure 6.16: Output test for GRU

6.3. RESULTS 42

Figure 6.17: Output test for LSTM RNN

Figure 6.18: Output test for LSTM GRU

Figure 6.19: Output test for GRU RNN

6.3. RESULTS 43

Figure 6.20: Output test for LSTM GRU RNN

Figure 6.21: Output test for CNN

Figure 6.22: Output test for Stacked LSTM

6.3. RESULTS 44

Figure 6.23: Output test for AE LSTM

Figure 6.24: Output test for CNN LSTM

Figure 6.25: Output test for CNN LSTM GRU RNN

6.3. RESULTS 45

6.3.3 One day ahead forecasting

The results summary and the plots of the one day ahead forecasters are presented

table 6.4 and figures from 6.26 to 6.37 respectively.

NN

Metric
MAPE % RMSE (W/m2) Epoch time (sec) r R2

Vanilla LSTM 43.81 138.29 0.56 0.71 0.38

RNN 44.39 132.33 0.31 0.75 0.43

GRU 44.09 129.99 0.43 0.74 0.45

LSTM-RNN 44.92 133.87 1.6 0.73 0.42

LSTM-GRU 43.55 127.99 1.06 0.75 0.47

GRU-RNN 43.83 128.47 1.02 0.76 0.47

LSTM-GRU-

RNN

44.92 132.98 1.06 0.73 0.43

CNN 43.85 131.78 0.25 0.76 0.44

Stacked LSTM 45.09 134.88 1.04 0.72 0.41

AE LSTM 44.71 127.37 0.26 0.74 0.48

CNN-LSTM 44.47 129.29 1.25 0.75 0.46

CNN-LSTM-

GRU-RNN

44.63 132.02 1.5 0.75 0.44

Table 6.4: Results for one hour ahead forecasting

6.3. RESULTS 46

Figure 6.26: Output test for Vanilla LSTM

Figure 6.27: Output test for Simple RNN

Figure 6.28: Output test for GRU

6.3. RESULTS 47

Figure 6.29: Output test for LSTM RNN

Figure 6.30: Output test for LSTM GRU

Figure 6.31: Output test for GRU RNN

6.3. RESULTS 48

Figure 6.32: Output test for LSTM GRU RNN

Figure 6.33: Output test for CNN

Figure 6.34: Output test for Stacked LSTM

6.3. RESULTS 49

Figure 6.35: Output test for AE LSTM

Figure 6.36: Output test for CNN LSTM

Figure 6.37: Output test for CNN LSTM GRU RNN

6.4. DISCUSSION AND ANALYSIS 50

6.4 Discussion and analysis

For a better insight, the detailed discussion at the beginning will take each time

horizon independently, then the global discussion will differentiate the performance

of each model at every time horizon and also it will point out the influence of the

deep learning algorithms on the size of the training data set.

6.4.1 Five minutes ahead forecasting

First thing first, the remarkable points on the results are listed down below:

• The correlation coefficient and the coefficient of determination were constant

and high no matter what the model is.

• The MAPE and RMSE were almost the same for each and every model, and

they were acceptable varying from the range of 16.55 % to 16.67 % and 46.63

(W/m2) to 47.02 (W/m2) for MAPE and RMSE respectively.

• The training time differs significantly according to the nature of the model.

• The output graphs follow the same pattern of the actual data, however at the

sharp changes all the models could not follow well the shape of the actual data.

The interpretation of the above results yielded to the choose of the simple RNN as

the outstanding model for five minutes ahead forecasting, also the notable remark

is that no matter how complex is the model, there is no surprising evolution on

the results and only the computational cost and the complexity is added, the latter

point can be explained but without rushing events it will be detailed in the posterior

discussions.

6.4.2 One hour ahead forecasting

As before the major remarks are mentioned beneath:

• The correlation coefficient is constant for all the models.

• The coefficient of determination fluctuates from a model to another between

0.3 to 0.7.

6.4. DISCUSSION AND ANALYSIS 51

• The MAPE compared to the previous time horizon is higher, but the for entire

set of models they are more or less close to each other and it ranges from 41.36

% to 50.3 %.

• The RMSE has the same remark as the latter pointed metric compared to the

previous time horizon, but the range is wider starting from 158.41 (W/m2) to

241.92 (W/m2).

• Similarly to the preceding discussion the nature of the model significantly

impacts the epoch time or the training time.

• The output graphs chase the graph of the actual data.

First the analysis of the up above observations signifies that:

1. There is a strong relationship between the relative movements for the actual

and the forecasted data, which is represented by the correlation coefficient “r”

and it is constant for all the forecasters.

2. The fitness of the predicted output to the real data is acceptable for almost all

the forecasters and it is measured in terms of the coefficient of determination

“R2”.

Through the understanding of the above observation, the two skilful models that

were selected for being the best ones at the current time horizon are:

1. AE LSTM.

2. CNN-LSTM-GRU-RNN.

The selection between the last two models does not significantly appear in terms

of neither MAPE, RMSE, r nor R2, however it really shines when it comes to the

computational time where 3.25 (sec) and 11.33 (sec) per training epoch for AE

LSTM and CNN-LSTM-GRU-RNN respectively.

6.4.3 One day ahead forecasting

Continuing in the same manner the significant remarks are summarized next:

• Mean value of the determination coefficient.

6.4. DISCUSSION AND ANALYSIS 52

• Satisfying correlation coefficient.

• No significant difference in the training time no matter how complex or simple

the model is.

• The MAPE and RMSE do not have huge variation from one model to another

and their scores range from 43.81 % to 45.09 % and from 127.37 (W/m2) to

138.29 (W/m2) for MAPE and RMSE respectively.

• The output graphs seem to have the same pattern as the real world data with

a slight deviation.

From the obtained results and by going through the process of comparing the dif-

ferent evaluation metrics, then AE LSTM seems to outperform the other realized

models.

Chapter 7

Conclusion

Finally, the last chapter has been reached by going through several experiments

and tests and various outcomes had been yielded, those outcomes are summed up

in the next few lines.

The common thing for the three different time horizons is that, the more complex

the forecaster is the more is the computational time and training time with no

considerable improvement in the performance (though sometimes it worsen the per-

formance), this point practically is undesired, because the aim for real world projects

is to achieve better results with less computational and execution time and cost, this

point has been highlighted earlier in the discussion and analysis section, talking as

a deep learning developer when it is desired to develop a powerful forecaster this

is not done directly by randomly increasing the size of the model, however several

considerations must be taken into account which are:

• The size of the training data set.

• The quality and predictability of the data.

• Optimizing the model to its optimal hyperparameters such that the loss during

the training phase falls to its global minima and taking into consideration the

test error, where it must be bounded (this is called preventing overfitting in

ML).

This could be a satisfying answer for why complex model does not necessary mean

a better performance. Also, recurrent neural networks (simple RNN, GRU, LSTM)

showed almost similar performance. Though some used NNs in this project showed

53

CHAPTER 7. CONCLUSION 54

an excellent performance when being applied for different tasks like CNN for image

processing, object detection, image classification . . . etc or LSTM for dealing with

problems that have long term dependencies, instead they have showed a humble

performance when applied to this task, this may be a result of:

1. Lack of the training data.

2. Some NNs have some criteria that do not capture well the details for time

series data sets with insufficient training samples.

3. Tuning the inappropriate model hyperparameters with no prior knowledge of

the data set.

As a suggestion for the latter issue the selection of the model’s hyperparameters

must be done in an advanced manner unlike the method used here (trial and error),

this will be kept as a further work along with others which will be stated in the

succeeding part.

CHAPTER 7. CONCLUSION 55

Further work

The list of works left as a further development for the proposed architectures are

pointed below:

• Applying the models with larger data sets for training and testing.

• Trying to see the improvement of the model with additional attributes.

• Extending the models’ prediction horizon to the furthermost possible point in

the future.

• Simulating the power from the forecasted irradiance.

• Predicting the power directly using the proposed models and comparing with

the simulated one obtained from the forecasted irradiance.

• Employing different preprocessing techniques for the data.

• Tuning the proposed models’ hyperparameters using more advanced research

techniques such as grid search.

• Try modifying the configuration of keras deep neural networks in terms of

the training algorithm from backpropagation through time into Levenberg

Marquardt algorithm in a similar or a different framework.

Bibliography

[1] Mellit A, Kalogirou SA. Artificial intelligence techniques for photovoltaic appli-

cations: a review. Progress Energy Combust Sci 2008;34:574–632.

[2] Dalton G, Lockington D, Baldock T. Feasibility analysis of renewable energy

supply options for a grid-connected large hotel. Renew Energy 2009;34:955–64.

[3] Deep Time Series Forecasting with Python An Intuitive Introduction to Deep

Learning for Applied Time Series Modeling by N D Lewis.

[4] Builtin.com, A GUIDE TO RNN: UNDERSTANDING RECURRENT NEU-

RAL NETWORKS AND LSTM.

[Online]. Available:

https://builtin.com/data-science/recurrent-neural-networks-and-lstm

Accessed: [05-06-2021]

[5] Jason Brownlee, Deep learning with python, Machine Learning Mastery, 2016.

[6] Jason Brownlee, Long Short-Term Memory Networks With Python, Machine

Learning Mastery, 2017.

[7] Kyunghyun Cho et al. Learning Phrase Representations using RNN En-

coder–Decoder for Statistical Machine Translation.

[8] Blog.marketmuse.com, Gated Recurrent Unit (GRU).

[Online]. Available:

https://blog.marketmuse.com/gated-recurrent-unit-gru-definition/

Accessed: [07-06-2021]

[9] Jason Brownlee, Deep learning for Time series. Machine Learning Mastery, 2019.

56

BIBLIOGRAPHY 57

[10] Towardsdatascience.com, A Comprehensive Guide to Convolutional Neural

Networks.

[Online]. Available:

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-

networks-the-eli5-way-3bd2b1164a53

Accessed: [08-06-2021]

[11] Towardsdatascience.com, What are Hyperparameters ? and How to tune the

Hyperparameters in a Deep Neural Network?

[Online]. Available:

https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-

the-hyperparameters-in-a-deep-neural-network-d0604917584a

Accessed: [08-06-2021]

[12] Towardsdatascience.com, Neural Networks: parameters, hyperparameters and

optimization strategies.

[Online]. Available:

https://towardsdatascience.com/neural-networks-parameters-hyperparameters-

and-optimization-strategies-3f0842fac0a5

Accessed: [08-06-2021]

[13] Kdnuggets.com, Optimization Algorithms in Neural Networks.

[Online]. Available:

https://www.kdnuggets.com/2020/12/optimization-algorithms-neural-

networks.html

Accessed: [09-06-2021]

[14] Towardsdatascience.com, Understanding Hyperparameters and its Optimisa-

tion techniques.

[Online]. Available:

https://towardsdatascience.com/understanding-hyperparameters-and-its-

optimisation-techniques-f0debba07568

Accessed: [09-06-2021]

BIBLIOGRAPHY 58

[15] User’s Manual for Data for Validating Models for PV Module Performance.

https://www.nrel.gov/publications

[16] Jason Brownlee, Data Preparation for Machine Learning. Machine Learning

Mastery, 2020.

[17] Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting mod-

els using deep LSTM-RNN. Neural Comput. Appl. 2017, 31, 2727–2740.

[18] S. Boubaker et al, Deep Neural Networks for Predicting Solar Radiation at Hail

Region, Saudi Arabia. IEEE Access. 2021.

[19] Python.org, What is Python? Executive Summary.

[Online]. Available:

https://www.python.org/doc/essays/blurb/

Accessed: [03-06-2021]

[20] Jetbrains.org, Get started.

[Online]. Available:

https://www.jetbrains.com/help/pycharm/quick-start-guide.html

Accessed: [03-06-2021]

[21] Jetbrains.org, ALL THE PYTHON TOOLS IN ONE PLACE.

[Online]. Available:

https://www.jetbrains.com/pycharm/

Accessed: [03-06-2021]

[22] Colab.research.google.com, What is Colaboratory?

[Online]. Available:

https://colab.research.google.com/notebooks/intro.ipynb

Accessed: [03-06-2021]

[23] Analyticsindiamag.com, TensorFlow vs Keras: Which One Should You Choose.

[Online]. Available:

https://analyticsindiamag.com/tensorflow-vs-keras-which-one-should-you-

choose/

Accessed: [04-06-2021]

BIBLIOGRAPHY 59

[24] Guru99.com, Keras vs Tensorflow: Must Know Differences!

[Online]. Available:

https://www.guru99.com/tensorflow-vs-keras.html#5

Accessed: [04-06-2021]

[25] Dzone.com, Python CSV Files: Reading and Writing.

[Online]. Available:

https://dzone.com/articles/python-101-reading-and-writing

Accessed: [03-06-2021]

[26] Python-course.eu, Numpy Tutorial.

[Online]. Available:

https://www.python-course.eu/numpy.php

Accessed: [03-06-2021]

[27] W3schools.com, NumPy Introduction.

[Online]. Available:

https://www.w3schools.com/python/numpy/numpy intro.asp

Accessed: [03-06-2021]

[28] Activestate.com, What Is Matplotlib In Python?

[Online]. Available:

https://www.activestate.com/resources/quick-reads/what-is-matplotlib-in-

python-how-to-use-it-for-plotting/

Accessed: [03-06-2021]

[29] Geeksforgeeks.org, Python — Introduction to Matplotlib.

[Online]. Available:

https://www.geeksforgeeks.org/python-introduction-matplotlib/

Accessed: [03-06-2021]

[30] Pandas.pydata.org, pandas.

[Online]. Available:

https://pandas.pydata.org/

Accessed: [03-06-2021]

BIBLIOGRAPHY 60

[31] Otik.zcu.cz, Time Series Forecasting using Deep Neural Networks.

[Online]. Available:

https://otik.zcu.cz/bitstream/11025/39190/1/Diploma Thesis Lada Zadranska.pdf

Accessed: [03-06-2021]

[32] Tutorialspoint.com, Scikit Learn Tutorial.

[Online]. Available:

https://www.tutorialspoint.com/scikit learn

Accessed: [04-06-2021]

[33] Codecademy.com, What is Scikit-Learn?

[Online]. Available:

https://www.codecademy.com/articles/scikit-learn

Accessed: [04-06-2021]

[34] W3schools.com, Scipy Introduction.

[Online]. Available:

https://www.w3schools.com/python/scipy/scipy intro.php

Accessed: [04-06-2021]

Appendix A

A.1

Field Element Description
1 PV Module Identifier Unique alphanumeric module identifier

assigned by NREL
2 City City where measurement site located
3 State State where measurement site located
4 Time zone Eastern = -5, Western = -7, Pacific =

-8
5 Latitude Latitude in decimal degrees, N+
6 Longitude Longitude in decimal degrees, W-
7 Elevation Elevation in meters above sea level
8 PV module tilt PV module tilt angle from horizontal in

degrees
9 PV module azimuth PV module azimuth angle from north

in degrees (N=0, E=90, S=180,
W=270)

Table A.1: File header elements and definitions

A.2

Field Element Description

1 Date and time Local standard time for the site, for-

matted as yyyy-mm-ddThh:mm:ss

2 Plane of array (POA) irra-

diance

Amount of solar irradiance in watts per

square meter received on the PV mod-

ule surface at the time indicated, mea-

sured with CMP 22 pyranometer.

61

A.2. 62

3 POA irradiance uncertainty Uncertainty in percent based on ran-

dom and bias error estimates.

4 PV Module Back-Surface

Temperature

PV module back-surface temperature

in degrees Celsius at the time indi-

cated, measured behind center of cell

near center of PV module.

5 PV Module Back-Surface

Temperature Uncertainty

Uncertainty in degrees Celsius based on

random and bias error estimates.

6 PV Module Isc Short-circuit current of PV module in

amperes at the time indicated.

7 PV Module Isc Uncertainty Uncertainty in percent based on ran-

dom and bias error estimates.

8 PV Module Pm Maximum power of PV module in

watts at the time indicated.

9 PV Module Pm Uncertainty Uncertainty in percent based on ran-

dom and bias error estimates.

10 PV Module Imp Current of PV module in amperes when

operating at maximum power at the

time indicated.

11 PV Module Imp Uncertainty Uncertainty in percent based on ran-

dom and bias error estimates.

12 PV Module Vmp Voltage of PV module in volts when op-

erating at maximum power at the time

indicated.

13 PV Module Vmp Uncer-

tainty

Uncertainty in percent based on ran-

dom and bias error estimates.

14 PV Module Voc Open-circuit voltage of PV module in

volts at the time indicated.

15 PV Module Voc Uncertainty Uncertainty in percent based on ran-

dom and bias error estimates.

A.2. 63

16 PV Module FF Fill-factor of PV module in percent at

the time indicated.

17 PV Module FF Uncertainty Uncertainty in percent (relative) based

on random and bias error estimates.

18 Delta CMP 22 POA Change in POA irradiance measured

with CMP 22 pyranometer from the

time indicated to the end of the I-V

curve measurement (1 second elapsed

time).

19 Delta LI-COR POA Change in POA irradiance measured

with LI-COR pyranometer from the

time indicated to the end of the I-V

curve measurement (1 second elapsed

time).

20 MT5 Cabinet Temperature Air temperature within cabinet con-

taining the MT5 multi-tracer in degrees

Celsius at the time indicated.

21 Dry Bulb Temperature Dry bulb temperature at the site in de-

grees Celsius at the time indicated for

Golden, nearest 5-second average to the

time indicated for Cocoa and Eugene.

22 Dry Bulb Temperature Un-

certainty

Uncertainty in degrees Celsius based on

random and bias error estimates.

23 Relative humidity Relative humidity at the site in percent,

nearest 5-second average to the time in-

dicated.

24 Relative humidity Uncer-

tainty

Uncertainty in percent (relative) based

on random and bias error estimates.

25 Atmospheric pressure Atmospheric pressure at the site in mil-

libars, nearest 5-second average to the

time indicated.

A.2. 64

26 Atmospheric pressure Un-

certainty

Uncertainty in percent based on ran-

dom and bias error estimates.

27 Precipitation Accumulated daily total precipitation

in millimeters at the time indicated.

28 Direct Normal Irradiance Amount of solar irradiance in watts

per square meter received within a 5.7°

field-of-view centered on the sun, near-

est 5-second average to the time indi-

cated.

29 Direct Normal Irradiance

Uncertainty

Uncertainty in percent based on ran-

dom and bias error estimates.

30 Direct Normal Irradiance

Uncertainty

Standard deviation in watts per square

meter of the 1-second samples in the

5-second average for the direct normal

irradiance.

31 Global Horizontal Irradi-

ance

Total amount of direct and diffuse solar

irradiance in watts per square meter re-

ceived on a horizontal surface, nearest

5-second average to the time indicated.

32 Global Horizontal Irradi-

ance Uncertainty

Uncertainty in percent based on ran-

dom and bias error estimates.

33 Global Horizontal Irradi-

ance Standard Deviation

Standard deviation in watts per square

meter of the 1-second samples in the 5-

second average for the global horizontal

irradiance.

34 Diffuse Horizontal Irradi-

ance

Amount of solar irradiance in watts per

square meter received from the sky (ex-

cluding the solar disk) on a horizontal

surface, nearest 5-second average to the

time indicated.

A.2. 65

35 Diffuse Horizontal Irradi-

ance Uncertainty

Uncertainty in percent based on ran-

dom and bias error estimates.

36 Diffuse Horizontal Irradi-

ance Standard Deviation

Standard deviation in watts per square

meter of the 1-second samples in the 5-

second average for the diffuse horizon-

tal irradiance.

37 Solar QA Residual Residual of solar irradiance elements

in watts per square meter determined

by adding the diffuse horizontal irradi-

ance to the product of the direct nor-

mal irradiance and the cosine of the

zenith angle, and then subtracting the

global horizontal irradiance. If in per-

fect agreement, the result is zero.

38 PV Module Soiling Derate Normalized metric comparing daily

performance of a PV module to an

identical PV module that is cleaned

during daily maintenance. Examples:

1.000 = no soiling loss, 0.980 = 2% soil-

ing loss.

39 Daily Maintenance Start

Time

Local standard time in HH:MM format

when daily maintenance activities be-

gan. 99:99 = no daily maintenance.

40 Daily Maintenance End

Time

Local standard time in HH:MM format

when daily maintenance activities com-

pleted. 99:99 = no daily maintenance.

41 Precipitation Prior to Daily

Maintenance

Accumulated daily total precipitation

in millimeters prior to completion of

the daily maintenance. If no daily

maintenance, equals -9999.

A.3. 66

42 I-V Curve Data Pairs Integer N with value equal to the num-

ber of current-voltage pairs in the I-V

curve. Varies by I-V curve.

43 to

43 +

N - 1

I-V Curve I Values N number of current values of the I-V

curve, one per field.

43 +

N to

43 +

2N -

1

I-V Curve I Values N number of voltage values of the I-V

curve, one per field, in same order as

the I-V curve current values.

Table A.2: File Data Elements and Definitions

A.3

Item Parameter Instrument

1 Wind Speed/ Wind Direc-

tion/ Precipitation/ Tem-

perature/ Relative Humid-

ity/ Barometric Pressure

Vaisala WXT520 Weather Sensor

2 Direct Normal Irradiance Kipp and Zonen CHP1 pyrheliometer

3 Global Horizontal Irradi-

ance

Kipp and Zonen CHP1 pyrheliometer

4 Diffuse Horizontal Irradi-

ance

Kipp and Zonen CHP1 pyrheliometer

5 Plane-of-Array Irradiance Kipp and Zonen CHP1 pyrheliometer

6 Plane-of-Array Irradiance LI-COR pyranometer

7 Solar Tracker Kipp and Zonen Model SOLYS 2

8 Data Logger Campbell Scientific, Inc. Model

CR1000

A.3. 67

9 Data Logger Communica-

tions

RAVEN XE-EVDO (Verizon network)

10 PV Module I-V Curve Daystar MT5 Multi-Tracer

11 PV Module Back-Surface

Temperature

Omega Model CO1-T Style I Thermo-

couple

Table A.3: List of Sensors and Data Acquisition Equipment

Appendix B

B.1

Figure B.1: Python script for replacing outliers by NaN

B.2

Figure B.2: Python script for imputing NaN values

68

B.3. 69

B.3

Figure B.3: Python script for creating an AE LSTM model

	Introduction
	Scope and research questions
	Aims and objectives
	Report structure

	Generalities
	Artificial Neural Networks
	Recurrent Neural Networks (RNNs)
	Long Short Term Memory(LSTM)
	Vanilla LSTM
	Stacked LSTM
	The Encoder-Decoder LSTM

	Gated Recurrent Unit (GRU)
	Convolutional Neural Networks (ConvNets/CNNs)
	Convolutional layers
	Pooling layers
	Fully connected layer

	Hyperparameters
	Optimizer hyperparameters
	Model specific hyperparameters

	Data
	Data description
	PV technologies
	File convention
	File format

	Data collection
	Equipment

	Methodology
	Data preparation
	Models description and building
	Models description
	Model building

	Research findings

	Software toolkit
	Python
	Pycharm / Colab
	Pycharm
	Colab

	TensorFlow / Keras
	Tensorflow
	Keras

	CSV
	Numpy
	Matplotlib
	Pandas
	Scikit Learn
	Scipy

	Implementation and Evaluation
	General workflow of the forecasters
	Evaluation metrics
	Results
	Five minutes ahead forecasting
	One hour ahead forecasting
	One day ahead forecasting

	Discussion and analysis
	Five minutes ahead forecasting
	One hour ahead forecasting
	One day ahead forecasting

	Conclusion
	Appendices
	
	
	
	

	
	
	
	

