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Abstract 
 

This project aims to develop a system that relies on face mask detection. It can be used as a method 

to control access to buildings, offices or any closed facility or public gathering places that promote 

human interactions. The access control is achieved through the monitoring of the people entering 

a certain building through a camera and decide whether to grant access or not to the person wishing 

to enter. The decision is based on whether the person is wearing a mask or not. 

 

The implementation of this system is made possible using two different machine learning 

techniques, namely: Convolutional Neural Networks and Haar cascade classifiers. The Haar 

cascade classifier is used to detect faces off frames captured from a video stream. The faces 

captured by the classifier are then fed to the CNN to classify whether the person is wearing a mask 

or not. 

 

The CNN architectures used in this project are the MobileNetV2, EfficientNet-B0 and a small 

custom CNN. These models are evaluated and compared to each other using various metrics in 

order to pick the one that suits well this specific project. 
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General Introduction 

 
     During the past year and a half, the world has been suffering from an outbreak of a deadly virus, 

namely COVID-19. This virus is propagated mainly through human interactions. Millions of 

people around the world have been affected by this virus. The fact that this virus has a significant 

death rate especially amongst elderly people, it led the World Health Organization to provide 

sanitary instructions and safety measures to prevent infections and hinder the spread of the virus.  

 

Many governments around the world have put laws and policies regarding safety measures during 

this pandemic to contain the spread of the virus. For example, imposing on every citizen to wear 

face masks when going out in public, when taking public transportation and in the workplace. 

However, certain people fail to abide by these new laws and policies hence exposing their relative 

and colleagues to this virus which is a serious problem with dangerous consequences. 

 

The motivation behind this project is to provide a system to control access of people to areas where 

the spread of the COVID-19 virus is highly probable to spread (e.g., a train station). The decision 

on whether to allow or deny access is based on whether the person whishing to access that area is 

wearing a face mask or not. 

 

To develop this system, we had to use two main machine learning approaches: Haar cascade 

classifiers and Convolutional Neural Networks. Since it is intended to be installed at facilities or 

building entries, this system is designed to run on low computational power devices such as single 

board computers. The SBC used in this project is a Raspberry Pi 3 Model B which is used to test 

the performance of the different model used throughout this project. 

 

The first chapter covers the theoretical background of the machine learning techniques used and 

the math behind them. We also cover why a Haar cascade classifier is used for the task of detection 

and why convolutional neural networks are used for the task of classification. We briefly discuss 

the similarities and the differences between the two techniques and the related work done in the 

context of this project. 
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In this second chapter we present the methods and steps followed to carry out the experiments in 

this project. We first cover the dataset that we used, then we discuss the proposed CNN 

architectures and the software tools used. 

 

For the last chapter, three different CNN models are presented and discussed: MobileNetV2, 

Efficientnet-B0 and a custom-built CNN model. These three models are tested and compared to 

each other in terms of accuracy in classifying images into two classes: “person wearing a mask” 

and “person not wearing a mask”. We also consider the execution time metric since it is an 

important aspect given the nature of this project. 

 

Finally, we give a general conclusion about the results obtained and how they provide a useful 

insight in designing CNNs that are intended to run on low computational devices. we also gave 

suggestion on potential improvements for the systems. 
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Chapter 1: Background and Related Work 

 

 

1.1 Introduction 

 

    In this chapter we are going to give an overview on deep learning, convolutional neural 

networks, and Haar Cascade classifiers. We are also going to cover one of the related works done 

for a similar project. 

 

1.2 Machine Learning 

 

     A computer program is said to be learning when its performance on a given task improves with 

experience. Machine learning algorithms are applied to training data in order to derive patterns 

and make accurate predictions on new data through trial and error without being explicitly 

programmed to do so. 

 

There are two ubiquitous types of machine learning algorithms: supervised learning and 

unsupervised learning. 

 

• Supervised learning: The algorithm is exposed to a dataset containing labeled examples, 

i.e., for each input, there is a corresponding desired output. Using these labeled data, the 

algorithm learns to predict the correct output of unseen data with great accuracy. 

 

Supervised learning is mostly used to solve two types of problems: classification problems 

and regression problems. Classification is further discussed later since it’s our main topic 

in this project. 

 

• Unsupervised learning: Unlike supervised learning, in this case the algorithm is presented 

with unlabeled data. This type of learning is used when we want to discover patterns in 

unstructured data. 
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Fig. 1.1: Some machine learning algorithms [1]. 

 

The first machine learning algorithm that we are going to tackle in this project is the Haar Cascade 

algorithm. 

 

1.3 Haar Cascade Classifier 

 

    Cascading classifiers is a method used to concatenate multiple weak classifiers to obtain at the 

end a strong classifier. These classifiers are trained on a few hundred samples of positive images 

(images that we want to detect) and a few hundred of other images that do not contain positive 

images. 

 

Before cascading the weak classifiers, we need to select them first. A great way to select a small 

set of classifiers is by using a Boosting technique. Adaptative Boosting or AdaBoost is a meta-

algorithm usually used in conjuncture with other learning algorithms. This meta-algorithm tries to 

solve the problem of constructing a single strong learner from a set of weak learners. A weak 

learner is defined to be a classifier that is only slightly correlated with the true classification (it can 



5 

 

label examples better than random guessing). In contrast, a strong learner is a classifier that is 

arbitrarily well-correlated with the true classification [2]. 

 

1.3.1 Haar Features 

 

     Haar-like features are digital image features used in object recognition. These features were 

used in the first real-time face detector which this project is inspired from. 

 

 

 

Fig. 1.2: Examples of Haar-like features [3]. 

 

Before the introduction of Haar features, practitioners used to do image processing with only the 

pixel values of that image made the task of feature calculation computationally expensive. Paul 

Viola and Michael Jones [4] adapted the idea of using Haar features. A Haar feature considers 

adjacent rectangular regions at a specific location in a detection window, sums up the pixel 

intensities in each region and calculates the difference between these sums. This calculated 

difference is then used to make a prediction along with multiple other Haar calculations. 

 

For example, with a human face, it is a common observation that among all faces the region of the 

eyes is darker than the region of the cheeks. Therefore, a common Haar feature for face detection 

is a set of two adjacent rectangles that lie above the eye and the cheek region. The position of these 
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rectangles (Haar features) is defined relative to a detection window that acts like a bounding box 

to the target object (the face in this case). 

 

To calculate the features on an image using the Haar kernels considering all the possible sizes of 

the kernels and all the possible locations at where they could be computed on the image would be 

a lot of computations to do. Even a 24×24 window would result in over 160,000 features. 

 

Keeping in mind that we will slide many windows through our image to detect potential objects, 

that is a huge computational cost that we just cannot afford since our main objective is for our 

system to be computationally friendly. One of the contributions of Paul Viola and Michael Jones 

in their 2001 paper cited earlier was to use a concept called integral images. 

 

1.3.2 Integral Image 

 

    The integral image also known as the summed area table is an image representation that allows 

very fast Haar feature evaluation. Once computed, any one of these Haar-like features can be 

computed at any scale or location at constant time. 

 

 

 

Fig. 1.3: calculation of the integral image [5]. 
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It is clear from Figure 1.3 that the value of the pixels at any location in the integral image is the 

sum of the pixels in the original image that are in the area defined by the top left corner and the 

pixel coordinates that we want to calculate its value in the integral image. 

 

The integral image can be calculated in a single pass through the image starting from the top left 

corner. Once the integral image is calculated, summing the pixel intensities over any rectangular 

area in the image takes only four addition operations regardless of the size of the rectangle. 

 

1.3.3 Boosting 

 

     As stated before, a window as small as 24×24 could result in over 160,000 Haar features. Even 

though each feature can be computed efficiently since we introduced the concept of integral 

images, computing every possible Haar feature is computationally expensive for low-power CPUs. 

 

There are many combinations of Haar features. However, we need to pick only some of them 

which are relevant to our problem. In our case, we need to detect faces, thus we need features 

which are relevant to detect face features such as eyes, mouths etc. Figure 1.4 below, depicts two 

useful features in detecting faces. One of them detects the eye region, since the area below the eyes 

tends to be brighter than the area of the eyes themselves, thus the sum of the difference between 

these two areas will generally be a net positive which promotes that the candidate sub-window 

contains a face. 

 

 

Fig. 1.4: Examples for Haar features applied to a window [4]. 
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A solution to select the best Haar features out of +160,000 features is by using a variant of a 

boosting algorithm such as AdaBoost (Adaptive Boosting). 

 

AdaBoost is a popular boosting technique which helps you construct a linear combination of 

multiple weighted “weak classifiers” into a single “strong classifier”. Every Haar features is 

considered a weak classifier because, on its own, it cannot determine with great confidence that 

the sub-window contains a face. 

 

AdaBoost can be applied to any classification algorithm, so it’s considered as a meta-algorithm or 

a technique that builds on top of other classifiers as opposed to being a classifier itself [5]. The 

output (the strong classifier) of AdaBoost is represented in the equation below: 

 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛 (∑ α𝑡h𝑡(x)

𝑇

𝑡=1

) (1.1) 

 

Where: 

 h𝑡(x) is the prediction made by the weak classifier t on the input x 

 α𝑡is the weight assigned by the AdaBoost algorithm to the classifier t 

 The final output 𝐻(𝑥) is the sign of the linear combination of T weak classifiers. 

 

1.3.3.1 Training 

 

     The classifiers are trained one at a time. After each classifier is trained, we update the vector Dt 

which represents a probability distribution of each of the training example appearing in the training 

set for the next classifier. 

 

The first classifier (t = 1) is trained with equal probability given to all training examples. After it’s 

trained, we compute the output weight (alpha) for that classifier [5]. 

 

𝛼𝑡 =  
1

2
 𝑙𝑛 (

1 − ∈𝑡

∈𝑡
) (1.2) 
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Where: 

 The error rate ϵ which is just the number of misclassifications over the training set divided 

by the training set size. 

 𝑙𝑛 is the logarithmic function. 

 

 

 

Fig. 1.5: plot of the output weight αt with respect to the error rate ϵt [5]. 

 

From the graph we can deduce three key pieces of intuition: 

 

1. The classifier weight increases exponentially as the error rate approaches 0. We can deduce 

that better classifiers are given a greater weight, therefor it has more influence on the linear 

combination. 

 

2. When the error rate is 0.5 the classifier’s weight is 0. A classifier with 50% accuracy is 

no better than random guessing so we discard it. 

 

3. We give a negative weight to classifiers with worse than 50% accuracy. The classifier 

weight grows exponentially negative as the error approaches 1. This means that we want 

to take the opposite answer of what the classifier suggested. 
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After computing the weight for the first classifier, we update the training example’s probability 

distribution vector Dt using the following formula: 

 

𝐷𝑡+1(𝑖) =  
𝐷𝑡(𝑖)𝑒−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖)

𝑍𝑡
 (1.3) 

Where: 

 𝐷𝑡(𝑖) is the old probability of the training example i 

 𝐷𝑡+1(𝑖) is the new probability of the training example i 

 α𝑡  is the weight of classifier t 

 yi is the ground truth label of the training example i 

 h𝑡(x𝑖) is the prediction made by classifier t on the training example i 

𝑍𝑡 =  ∑ 𝐷𝑡(𝑖)

𝐼

𝑖=1

 (1.4) 

Where: 

 I is the total number of training examples. 

 

𝐷𝑡+1 carries a weight for each example in the training set that represents that example’s probability 

to be selected in the next classifier’s training round. As mentioned previously, the first classifier 

is trained with the training data probability being equally distributed. 

 

 

Fig. 1.6: An illustration presenting the intuition behind the boosting 

algorithm, consisting of the parallel learners and weighted dataset [6]. 



11 

 

The above-mentioned equation needs to be evaluated for each of the training sample xi and its 

corresponding label yi. Each sample’s weight from the previous training round is going to be 

increased or decreased by this exponential term. To understand how this exponential term behaves, 

let’s look first at how the function еx behaves [5]. 

 

 

Fig. 1.7: plot of the function e-x. 

 

The function e-x will return a fraction for positive values of x, and a value greater than one for 

negative input values. Thus, the weight for each training sample will be either increased or  

decreased according to the final sign of the term -αtyiht(xi). 

 

For binary classifiers whose output is constrained to either -1 or +1, the terms yi and ht(xi) only 

contribute to the sign and not the magnitude. 

 

The term yi represents the correct output for the corresponding training example, and ht(xi) is the 

predicted output by classifier t on this training example. If the predicted and actual output agree, 

yiht(xi) will always be +1. If they disagree, yiht(xi) will be -1. 

 

From the equation we can deduce that if classifier with a positive α coefficient misclassifies a 

sample xi, this sample will be given greater weight so that it can be included in the next round of 

evaluations. Likewise. If a weak classifier misclassifies an input, the consequences are less strict. 
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Fig. 1.8: AdaBoost algorithm [7]. 

 

 

1.3.3.2 Using AdaBoost to Select the Features 

 

     As discussed above, in its original form, the AdaBoost learning algorithm is used to only boost 

the classification performance of weak classifiers. However, in the paper cited earlier [4], the 

authors used a variant of the AdaBoost both to select a small set of features and to train the 

classifier. 

 

For this, we apply every feature on all the training images. For each feature, it finds the best 

threshold which will classify the faces to positive and negative. Obviously, there will be errors or 

misclassifications. We select the features with minimum error rate, which means they are the 

features that most accurately classify the face and non-face images. Then we simply add the 

selected feature to our subset of selected features [3]. 

 

Paper [4] says even 200 features provide detection with 95% accuracy. Their final setup had around 

6000 features. That is a reduction from +160,000 features to only 6000 features. 
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However, in an image, most of the image is not a face. One needs to find a way to discard non-

promising areas and only focus most of the computation time on promising sub-windows. The 

authors tackled that problem by coming up with a great contribution which is cascading the 

classifiers. 

  

1.3.4 Cascading the Classifiers 

 

 In order to improve the efficiency of the classifiers, one method is to arrange them in a 

cascade manner. The idea is to place the most efficient classifiers at the beginning of the cascade 

so that we can reject most negative sub-windows while keeping almost all potential positive sub-

windows. As the cascade goes on, the classifiers get more and more complex allowing to extract 

with great accuracy the relevant features that allow to make the final decision on the classification. 

 

A positive result from a classifier at any point of the cascade triggers the evaluation of the classifier 

after it which is usually a more complex one. This process is followed throughout the whole 

cascade architecture. A negative result from any classifier at any point would result in discarding 

that whole sub-window. 

 

 

 

Fig. 1.9: The overall form of the detection process [4]. 
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As an example, if we wanted to make an excellent first stage classifier, we would pick one that has 

the highest true positives. This allows to keep all potential positive sub-windows and not risk 

throwing away true positive in the early stages of the classifier. First stage classifiers have the 

luxury of having a relatively high false positive rate since it will be taken care of in the following 

stages of the cascade. 

 

When training a cascade, we have to make a trade-off between speed and accuracy. Classifiers 

with more features tend to make better predictions, however, they are slower to run. In the training 

step we generally have to optimize the quantities: the number of classifiers in each stage, the 

number of features in each stage and the threshold. The lower the threshold of the stage the lower 

the false negatives are in that stage. 

 

These three quantities are traded off in order to minimize the expected number of evaluated 

features. Finding the best trade-off is a very hard problem; thus, in practice, each stage in the 

cascade reduces the false positive rate and decreases the detection rate. Target values for the 

minimum reduction of the false positive rate maximum decrease in detection are set in the 

beginning of the training and the training stops when these values are met. 

 

The complete face detection cascade presented in paper [4] has 38 stages with over 6000 features. 

Nevertheless, the cascade structure results in fast average detection times. On a difficult dataset, 

containing 507 faces and 75 million sub-windows, faces are detected using an average of 10 feature 

evaluations per sub-window. That is a decrease from having to evaluate 6000+ features for each 

sub-window to only about an average of 10 features. 

 

1.4 Deep Learning 

 

    Deep learning is subset of machine learning which is an approach to achieve artificial 

intelligence and attempt to mimic the human brain. 

 

Neural networks make up the backbone of deep learning models. Basically, any neural network 

with more than three layers is considered a deep neural network. Theoretically, the more layers a 
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neural network has, the better its performance will be; since the additional layers will only optimize 

and refine its accuracy. 

 

 

 

Fig. 1.10: Relationship between AI, ML and Deep Learning [8]. 

 

Deep learning has been taking off since the last decade. This is due to three main components: the 

availability of huge amounts of data, a lot of algorithmic innovations that made neural networks 

run much faster along with the availability of huge computational powers. 

1.5 Artificial Neural Networks 
 

 ANNs are a ML model inspired by the biological nervous systems that are composed of 

interconnected neurons, hence the name neural networks. Each biological neuron is made of 

dendrites, an axon, and synapses. The neuron collects the input signals from its dendrites and 

produces spikes of electrical activity to be transmitted via the axon which is divided into thousands 

of branches. At the end of each branch, a structure called a synapse connects it to the dendrite of 

another neuron. Synapses mainly amplify or inhibit the signal coming out of the axon depending 

on the signals fed from the dendrites [9]. 
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Fig. 1.11: Biological neuron [10]. 

 

Similarly, ANNs are also made up of a set of interconnected neurons. Neurons are the simplest 

processing units that make up an ANN. Each neuron takes a set of inputs (e.g., word frequency), 

each input xn is associated with a synaptic weight wn. The weights are multiplied by the 

corresponding inputs and accumulated together then biased, as depicted in figure 1.11. The result 

is used to calculate the output of the activation function as shown in equation below [9]. 

 

𝑎 =  𝑔 (∑ 𝑥𝑛. 𝑤𝑛 + 𝑏

𝑁

𝑛=1

) (1.5) 

 

 

Where g is the activation function and N is the number of inputs. 

 

 

 

Fig. 1.12: Single artificial neuron (node) with n+1 inputs [9]. 
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Typical ANNs are made up of three groups of successive layers: an input layer, hidden layer, and 

output layer – this type of neural network is referred to as Deep Neural Networks (DNNs). An 

example of a simple DNN is shown in figure 1.12. 

 

 

 

Fig. 1.13: A simple DNN structure [9]. 

 

In most cases, the training of ANN classifiers is done in a supervised manner forward propagation 

and backward propagation. 

The neurons in neural networks are grouped into layers. Each neuron in the network produces an 

output according to the function shown in Figure 1.12. the value calculated by each neuron is 

passed to all the neurons in the next layer of the network. This process is called forward 

propagation. The output of the neuron in the last layer of the network is the output value of the 

whole network. 

 

Another process called back propagation used in conjuncture with forward propagation uses error 

optimization algorithms such as gradient descent to calculate errors in predictions and then adjusts 

the weights and biases of the neurons by moving backwards through the layers. Together, forward 

propagation and backpropagation allow a neural network to minimize the errors it makes in each 

classification, thus resulting in a more accurate result. 
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The above describes in simple terms how simple deep neural networks operate to make intelligent 

decisions. However, DNN’s algorithms can get very complex quickly, and there are many types 

of neural networks to address different problems. 

 

One of the types that derives from simple neural network architecture are Convolutional neural 

networks. This type of network is used primarily in computer vision and image classification 

applications, can detect features and patterns within an image, enabling tasks, like object detection 

or recognition. In 2015, a CNN bested a human in an object recognition challenge for the first time 

[11]. 

 

1.6 Convolutional Neural Networks 

 

 Convolutional neural networks are the best type of neural networks for image classification 

and detection problems because of they provide the highest accuracy amongst all the types of 

neural networks. They were first proposed by computer scientist Yann LeCun in the late 90s; after 

he was inspired from the human visual perception of recognizing things. The basic building block 

of a CNN is the convolutional layers. at the end of the convolutional layers sequence, we find a 

few fully connected layers like the one found in simple feed forward neural networks. 

 

 

Fig. 1.14: A simple convolutional neural network [12]. 
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Why choose CNNs over feedforward NN for image data 

 

One approach to attempt classification on image data is to use feedforward neural networks like 

the one depicted in Figure 1.13. For example, we could flatten the image into a vector (24×24 

image into a 576×1 vector) and feed it as an input to a feedforward neural network. 

 

In case of extremely basic binary images, the above approach has been found to show an average 

score when performing classification. However, the approach had little to no accuracy when 

performing on complex images having different pixel dependencies across the image. 

 

A CNN network can be trained to understand the sophistication of the image better. The reason 

for this is the nature of the architecture allows for a better fitting to the image dataset due to the 

reduction in the number of parameters involved and reusability of weights. 

 

Furthermore, unlike fully connected layers of feedforward networks, convolutional networks have 

sparse connections. In each layer, each output value depends only on a small number of input 

values. This promotes far less computations through the network allowing for faster forward and 

backwards propagation routines. 

 

1.6.1 Types of CNN Layers 

 

 In order to understand the overall architecture of CNNs and how they operate, we must 

first familiarize ourselves with the different types of layers a CNN usually consists of. 

 

1. Convolutional Layers 

 

This type of layer is the core building block of a CNN that does most of the 

computational heavy lifting. It is the first layer to extract features from the input image 

(generally RGB). The kernel superposed over the input image starting from the top left 

corner. It starts shifting according to the stride value of that layer, performing a matrix 

multiplication at each step. After the convolution, another image is obtained with a 
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different height, width, and depth [13]. 

 

As depicted in Figure 1.15 below, each conv layer must have at least one filter associated 

with it. The number of filters in each layer corresponds to the number of channels in the 

result image of that layer (e.g., for the example in Figure 1.15 below, the layer has one 

filter thus the result block has only one channel). 

 

An important aspect to keep in mind is that the number of channels nc in each kernel in a 

particular layer must be equal to the number of channels of the input image of that layer. 

 

A padding value in CNN layers refers to the number of pixels added to the input image 

prior to being processed by a kernel. The two most commonly used types of padding in 

CNN layers are same padding and valid padding. 

 

 

 

Fig. 1.15: Convolutional layer with one filter [12]. 

 

The bias is another quantity associated with each filter in each layer. The bias is added to 

each element of the output image after the filter has gone through all the input image. If a 

layer has 32 filters, that layer would have 32 bias parameters associated with each filter. 

 

Also, after adding a bias, we apply an activation function on the computed matrix. This is 

done to introduce non-linearity to the network. 
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2. Pooling Layers 

 

This layer performs a down-sampling operation, typically applied after a convolution 

layer, which does some spatial invariance. In particular, max and average pooling are 

special kinds of pooling where the maximum and average value is taken, respectively. 

 

 

 

Fig. 1.16: Max-Pooling and Average Pooling operations [12]. 

 

3. Fully Connected Layers (for Classification) 

 

The fully connected layer (FC) operates on a flattened input where each input is 

connected to all neurons. If present, FC layers are usually found towards the end of CNN 

architectures and can be used to optimize objectives such as class scores.  

 

 

Fig. 1.17: Fully connected layers [14]. 
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Fig. 1.18: summary of the properties of each type of layer [14]. 

 

Note: In figure 1.18, O denotes the output size, and it has been shown previously in this report 

how to calculate it. S represents the stride of the filters (kernels). 

 

1.6.2 Training a CNN 

 

 At first our model is initialized with random parameters (filters values and biases in each 

layer). The appropriate parameters result in a minimum error or loss when evaluating the examples 

in the training dataset. Those parameters are found by training the model. 

1.6.2.1 Activation Functions 

 

 An important aspect about any CNN model is the activation function that model uses. 

Activation functions are used to introduce non-linearities to the network. Without them, the 

network would perform linear combinations of the features which would lead to no better result 

than using a simple linear regression algorithm. 

 

The choice of the activation function impacts the performance of the neural network. All hidden 

layers typically use the same activation function; however, the output layer uses a different one 
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that depends on the type of prediction performed by the model. The most ubiquitous activation 

functions in practice are the following: 

 

1. Rectified Linear Unit (ReLU) – typically used in the conv layers 

 

It is an activation function that is used on all elements of the volume. Also, one of its 

variants may be used in practice. 

 

 

 

Fig. 1.19: Summary of the ReLU activation function and its variants [14]. 

 

2. Softmax – used in the output layer 

 

the softmax function takes as input an n-dimensional vector x and output a similar vector 

p of outputs probability. i.e., it assigns a probability to each entry of the input vector. 

 

 

where 𝑝𝑖 =  
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

 (1.7) 

  

𝑝 =  (

𝑝1

⋮
𝑝𝑛

) (1.6) 
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1.6.2.2 Cost Function 

 

 The cost function calculates how much our predicted result deviates from the actual label 

that we want to predict. This is done by averaging the results of a given loss function across the 

entire dataset (in case of using batch gradient descent) or the entire batch (in case of using mini-

batch gradient descent). The most used loss function in practice for outputs that have a probability 

value between 0 and 1 is the cross-entropy loss function. 

 

𝐿(𝑦, 𝑝) =  − ∑ 𝑦𝑖𝑙𝑜𝑔(𝑝𝑖)

𝐶

𝑖=1

 

 

(1.8) 

The above loss function is evaluated for every training example when training our model. Where 

yi is the label vector for the example i and pi is our prediction vector for the same example 

calculated by the softmax function. c defines the number of classes in our dataset. 

 

1.6.2.3 Gradient Descent 

 

 The gradient descent algorithm calculates how much we need to change our model’s 

parameters to minimize the cost function. To start finding the right values, we initialize our 

parameters randomly, then we apply gradient descent iteratively to get closer to the minimum 

value of the cost function at each iteration. 

 

There are three main gradient descent algorithms used in practice. They differ on when they update 

the values of the parameters. We are going to cover two of them: 

 

1. Batch Gradient Descent 

 

calculates the error for each example within the training dataset, but only after all training 

examples have been evaluated does the model get updated. This whole process is like a 

cycle, and it's called a training epoch (more on this later). The formula used to update the 

parameters if the following: 
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𝜃𝑗 =  𝜃𝑗 −  𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃1, … , 𝜃𝑘) 

 

(1.9) 

where: j is the index of the parameter that we want to update. 

𝛼 is the learning rate (more on this later). 

k is the number of parameters we have in our model. 

J is the cost function. 

 

2. Mini-Batch Gradient Descent 

 

Mini-batch gradient descent is the one that we used in this project. This algorithm splits 

the training dataset into small batches of randomly picked training examples and 

performs an update for each of those batches. 

 

Common mini-batch sizes range between 50 and 256, but like any other machine learning 

technique, there is no clear rule because it varies for different applications. 

 

1.6.2.4 Backward Propagation 

 

 The backward propagation algorithm allows the information from the cost to then flow 

backwards through the network, to compute the gradient of the loss function with respect to the 

model’s parameters. The gradient is then used by an optimization algorithm such as the gradient 

descent to update the model’s parameters. 

 

The algorithm involves the recursive application of the chain rule from calculus that is used to 

calculate the derivative of a sub-function given the derivative of the parent function for which the 

derivative is known. 

 

The term backward propagation is often misunderstood as meaning the whole learning algorithm 

for multi-layer neural networks. Backward propagation refers only to the method for computing 

the gradient, while another algorithm, such as mini-batch gradient descent, is used to perform 

learning using this gradient. 
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1.5.2.5 Hyperparameters tuning 

 

 Tuning hyperparameters for deep neural network is difficult as it is slow to train a deep 

neural network and there are numerous parameters to configure. In this part, we briefly cover the 

most common hyperparameters found in a CNN. 

 

1. Learning Rate 

 

Learning rate controls how much to update the weight in the optimization algorithm. We 

can use fixed learning rate, gradually decreasing learning rate, momentum-based 

methods, or adaptive learning rates, depending on our choice of optimizer such as Adam. 

 

2. Number of Epochs 

 

Number of epochs is the number of times the entire training set pass through the neural 

network. We should increase the number of epochs until we see a small gap between the 

test error and the training error. 

 

3. Batch size 

 

A hyperparameter of gradient descent that controls the number of training samples to 

work through before the model's internal parameters are updated. Mini batch is usually 

preferable in the learning process of CNNs. A range of 16 to 128 is a good choice to test 

with. 

 

4. Number of convolutional layers, filters, filter sizes 

 

It is usually good to add more layers until the test error no longer improves. The tradeoff 

is that it is computationally expensive to train the network. Having a small number of 

units may lead to underfitting while having more units are usually not harmful with 
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appropriate regularization. 

 

1.6.2.6 Overfitting and Underfitting 

 

 Overfitting occurs when our model performs well on our training set but poorly on our 

testing set. This can be seen as our model memorizing the training examples and failing to 

generalize to new examples. When a model is overfitting, we say it has high variance. In machine 

learning, the difference in fits between datasets is called variance. 

 

Overfitting can be reduced using regularization techniques such as L2 Regularization and Dropout. 

 

 L2 Regularization 

 

for this type of regularization we need to add the following value to our loss function L: 

 

𝐿(𝑦, 𝑝) =  − ∑ 𝑦𝑖𝑙𝑜𝑔(𝑝𝑖)

𝐶

𝑖=1

+  𝜆 ∑ 𝜃𝑗
2

𝑘

𝑗=1

 

 

(1.10) 

 

As stated before, 𝜃 represents our parameters i.e., our filters’ elements’ values and there 

are k of them. λ is set before initiating the training. 

 

If we have overfitting, we can reduce the weight that some of the terms in our model 

carry by increasing their cost. If the value of lambda is large enough, the parameters will 

be decreased because the added L2 expression will penalize our parameters. Thus, 

reducing the influence that some parameters have on the decision, therefore simplifying 

our model. 

 

 Dropout 

 

The key idea is to randomly drop units (along with their connections) from the neural 
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network during training. This means that their contribution to the activation of 

downstream neurons is temporarily removed on the forward pass and any weight updates 

are not applied to the neuron on the backward pass [12]. 

 

Contrary to overfitting, underfitting occurs when our model fails to classify the examples it was 

trained on. In machine learning, when our model fails to capture the true relationship among our 

input features it is said to have a high bias. This problem usually happens, when we don’t have 

enough data, when we over-simplify our model or when we don’t train our model for enough 

epochs. 

 

 

 

Fig. 1.20: Bias-variance trade-off [12]. 

 

1.7 Transfer Learning 

  

 Transfer learning is a technique where rather than training the weights from scratch, we 

download the weights that someone else has trained on that same network architecture and use that 

as starting point for our specific problem. The starting point weights used in this project are the 

weights that were trained on the ImageNet dataset. 

For transfer learning to work well, we need to pick models that are pre-trained on a type of data 

that is similar to the type of data that we are using. For example, in this project we are working 
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with image data, thus, the pre-trained models we need to pick need to be trained on image data as 

well. 

 

 

 

Fig. 1.21: Transfer learning performance comparison graph [15]. 

 

1.7.1 Models Used 

 

For the purpose of this project, we are going to gather and use low-computation CPU  

friendly pre-trained models trained on image data. Also, we will use simple models created from 

scratch. 

 

1.7.1.1 MobileNetV2 

 

MobileNetV2 is a convolutional neural network architecture that seeks to perform well and 

have low latency on mobile and embedded devices. It is an improvement upon the original 

MobileNetV1 architecture. The key idea was to use depthwise-separable convolutions instead of 

normal convolutions. 

 

Depthwise-separable convolutions 

 

This type of convolutions does the computations in two steps: depthwise convolutions, then  

pointwise convolutions. This technique was proven to reduce the computation time by a factor of 

10 in typical CNN layers. 
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Fig. 1.22: Depthwise separable convolution. 

 

Considering the above figure, in the normal convolution we would have to make 2160 

multiplications to obtain our result. However, when using the depthwise separable convolution 

technique, the computation is reduced to only 672 multiplications. 

 

The authors of the MobileNet paper showed that in general, the ratio of the cost of the depthwise 

separable convolution compared to the normal convolution is determined using this equation: 

 

𝑟 =  
1

𝑛𝑐
+ 

1

𝑓2
 (1.11) 

 

Where nc is the number of channels in the filter and f is the filter size. 

 

Inverted Residuals and Linear Bottleneck Block 

 

 In MobileNet v2, there are two main changes. One is the addition of a residual connection. 

This residual connection or skip connection, takes the input from the previous layer, and passes it 

directly to the next layer, does allow gradients to propagate backward more efficiently. 
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The second change is the addition of an expansion layer before the depthwise convolution, 

followed by the pointwise convolution, which we're going to call projection in a point-wise 

convolution. 

 

 

 

Fig. 1.23: Bottleneck Block. 

 

Residual connections connect the beginning and end of a convolutional block with a skip 

connection. By adding these two states the network has the opportunity of accessing earlier 

activations that weren’t modified in the convolutional block. This approach turned out to be 

essential in order to build networks of great depth. 

 

Advantages of the Bottleneck Block 

 

The bottleneck block accomplishes two things, One, by using the expansion operation, it increases 

the size of the representation within the bottleneck block. This allows the neural network to learn 

a richer function. 

 

The bottleneck block uses the pointwise convolution or the projection operation in order to project 

it back down to a smaller set of values, so that when you pass this the next block, the amount of 

memory needed to store these values is reduced back down. This is very useful when deploying 

the model on memory restrained mobile and embedded devices 

 

That's why the MobileNet v2 can get a better performance than MobileNet v1, while still 

continuing to use only a modest amount of compute and memory resources. 
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1.7.1.2 EfficientNet 

 

 First introduced in 2019 by Tan and Le, EfficientNet is among the most efficient models 

(i.e., requiring least floating-point operations per second for inference) that reaches state-of-the-

art accuracy on both the ImageNet dataset and common image classification transfer learning tasks. 

 

To scale a CNN, we could either: scale the resolution of the input image r, adjust the depth of the 

model d, or adjust the width of the model w. The authors of EfficientNet gave a method to find the 

optimal trade-off between those three values in order to get the best possible performance within 

a given computational budget. 

 

1.8 Related Work 

 

 Motivated by the tedious task of manual observation of the face mask in crowded places, 

researchers have been seeking to automate the task of face mask detection via an AI system. 

 

In this paper [16], the authors presented a MobileNet architecture with a global pooling block for 

face mask detection. The proposed model employs a global pooling layer to perform a flatten of 

the feature vector. A fully connected dense layer associated with the softmax layer has been 

utilized for classification. The proposed model outperforms existing models on two publicly 

available face mask datasets in terms of vital performance metrics. 

 

 

 

Fig. 1.24: Model proposed by paper [21] authors. 
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The authors trained the model for 50 epochs for a batch size of 8 examples. They set the initial 

learning rate to 0.0001 and used the Adam optimizer. Their proposed model records best perform 

of 99.56%. 

 

1.9 Conclusion 

 

 Convolutional neural networks have been the most prominent type of machine learning 

techniques used in image data classification tasks. Haar cascade classifiers have been shown to be 

amongst the most efficient type of classifiers for computationally restrained devices such as mobile 

and embedded devices. In this chapter, all the machine learning methods that are going to be used 

in this project have been thoroughly explained with detailed examples. Thus, in this project it has 

been decided to use both Haar cascade classifiers and CNNs to carry out the main task of this 

project. 
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Chapter 2: Models and the Dataset Used 

 

2.1 Introduction 

 

 In this chapter, the methods used for the implementation of the proposed system will be 

presented. The implementation follows four major steps: exploratory data analysis, preprocessing, 

face detection, face mask detection. Since the choice of the data is important to neural networks, 

it additionally involved the search for proper data sets. The dataset suggested in some of the 

consulted state-of-the-art papers [17], is used as a baseline for the evaluation of CNNs. 

 

2.2 Dataset - RMFD 

 

 The dataset used in this project is known as the Real-world Masked Face Dataset (RMFD). 

It was created by researchers from Wuhan University, and it was sponsored by the National 

Engineering Research Center for Multimedia Software (NERCMS) and the School of Computer 

Science of Wuhan University.  

 

This dataset was primarily developed for masked face recognition purposes. i.e., developing a 

technique to recognize people even when they are wearing face masks. 

 

The researchers provided two three types of masked faces datasets, including Masked Face 

Detection Dataset (MFDD), Real-world Masked Face Recognition Dataset (RMFD) and 

Simulated Masked Face Recognition Dataset (SMFD). 

 

Given that we are not concerned with doing recognition in this project, the most suitable type of 

dataset for our project would be the MFDD variant. However, after extensive research online for 

this dataset, it was nowhere to be found. Thus, we settled with the RMFD dataset and manipulated 

it to fit the needs of our project. 
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RMFD is a dataset that contains two classes: masked faces and normal faces. Given that this dataset 

was intended for recognition purposes. Each classes contains a folder for every person used in the 

dataset. In total, this dataset contains 5,000 masked faces of 525 people and 90,000 normal faces. 

 

 

  

Fig. 2.1: Masked and normal faces examples from RMFD. 

 

After downloading the dataset, it was found that it contains only 2,203 masked faces. Thus, the 

dataset was balanced to also have 2,203 normal faces. i.e., 88,265 images of normal faces were 

removed. 

 

 

Fig. 2.2: Classes distribution after balancing the dataset. 
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2.3 Preprocessing 

 

 In order to train our convolutional neural networks, we need to preprocess the images that 

we gathered from our dataset in a way that is convenient for our models to consume. There are 

certain criteria our images must meet in order for them to be accepted. 

 

The image size that is most commonly accepted by the pre-trained models used in this project is 

224×224 pixels. Thus, the images were resized to fit the aforementioned size. 

 

To make our model converge faster, we have to normalize the pixel values in each picture. That 

is, pixel values in our pictures must range from -1 to +1. 

 

Also, our images are labeled with their respective class names. Since our models will be using the 

softmax output function, and given that we have two classes, then our data to be accepted in our 

models we need to encode those alphabetic names into vectors using one-hot encoding. This 

resulted in encoding the with_mask class into the vector [
1
0

] and the without_mask class into the 

vector [
0
1

]. 

 

The data is then shuffled and split into a training set and a testing set. The training set make up 

72% of the dataset, the testing set represents 20% and the validation set is 08%. It is also worth 

mentioning that the split was stratified. i.e., the percentage of each class in our sets is preserved. 

 

Table 2.1: Number of samples in each set. 

 

Class With mask Without mask Percentage 

Training set 1586 1585 72% 

Validation set 176 177 08% 

Testing set 441 441 20% 

Total 2203 2203 100% 

 



37 

 

After all the preprocessing is done, we resulted in six arrays containing our data. These arrays are 

stored on disk to avoid doing the preprocessing every time we need to train a model. 

 

2.4 Haar Cascade Classifier 

 

 Since we are going to classify images coming from the camera in real-time, we need to 

detect the faces before doing the classification. The detection of the faces is done by a publicly 

available Haar cascade classifier. It is a popular classifier used in many projects. This classifier 

contains 25 stages.  It is provided in an .xml file and can be found in the OpenCV data folder. 

 

2.5 Models 

  

 Given the low computational budget nature of our project, the most computationally 

efficient pre-trained models have been picked, namely: MobileNetV2 and EfficientNetB0. 

Furthermore, to experiment more with custom CNN models built from scratch, a simple CNN 

model was created to compare it against the pre-trained models that we picked. 

 

2.5.1 MobileNetV2 

 

 The model accepts the input size of 224×244. The input size perfectly fits our preprocessed 

dataset. Thus, we don’t need to resize our images. 

As a whole, the architecture of MobileNetV2 contains the initial fully convolution layer with 32 

filters, followed by 19 residual bottleneck layers. 

 

To benefit from transfer learning, the architecture of this model was imported from Keras (a python 

library that runs on top of TensorFlow) and was initialized with weights that were already trained 

on the ImageNet dataset. This dataset contains 1000 classes. Thus, the classification layers were 

removed from the architecture and were replaced by our own classification layers as depicted in 

the figure below. 
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Fig. 2.3: MobileNetV2 architecture. 

 

In total, 6 layers were added. The dropout layers were used to avoid overfitting. 

 

2.5.2 EfficientNet-B0 

 

 This architecture is from the EfficientNet family of models. The B0 variant was found to 

accept an input size of 224×224. Thus, this variant was chosen for the sake of this project. 

 

Taking B0 as a baseline model, the authors developed a full family of EfficientNet from B1 to B7 

which achieved state of the art accuracy on ImageNet while being very efficient to its competitors. 

 

The EfficientNet-B0 architecture wasn’t developed by engineers but by the neural network itself. 

They developed this model using a multi-objective neural architecture search that optimizes both 

accuracy and floating-point operations. 

 

Taking B0 as a baseline model, the authors developed a full family of EfficientNet from B1 to B7 

which achieved state of the art accuracy on ImageNet while being very efficient to its competitors. 
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Similar to the previous pre-trained model discussed, this model was imported from the Keras 

library along with the ImageNet weights. The classification layers were left off and we added the 

same classification layers as the previous model for a fair comparison. Figure 2.5 below shows the 

parameters and the layers of the final model. 

 

 

 

Fig. 2.4: EfficientNet-B0 architecture. 

 

2.5.3 Custom Model 

 

 For experimental reasons, we wanted to compare the performance and execution speed of 

a custom simple CNN model built from scratch to the pre-trained models used. 

 

The architecture of the model is depicted in Figure 2.6 below. This model has significantly less 

parameters than the previous models. But this does not guarantee that it has less floating-point 

operations per second (which is an indirect metric for a model’s execution speed). 

 

The model starts by 4 convolutional layers. Each convolutional layer is followed by a max pooling 

layer with a stride of 2. These pooling layers reduce the dimension of the input by a factor of 2 (as 
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shown in Figure 2.6). then, the same classification layers as the previous models were added in 

order to account for a fair comparison between the models. 

 

 

 

Fig. 2.5: Custom model architecture. 
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2.6 Tools Used 

 

2.6.1 Python  

 

Python is an interpreted high-level general-purpose programming language. This language 

is a great choice for machine learning project because it is intuitive. contains many open-source 

libraries for machine learning and data science. The version of python used in this project is python 

3.7.2 

 

2.6.2 Keras 

 

 Keras is an open-source software library that runs on top of TensorFlow. Is provides all the 

tools needed to create and develop neural networks. The version of keras used in this project is 

2.4.0 

 

2.6.4 Training Environment 

 

The preprocessing and the training of the models was done on the Google Colab Pro 

platform. This platform requires no allows anyone to write and run the Python code through the 

browser. It is an environment particularly suited to machine learning and data analysis. 

 

The environment provided us with 25GB of RAM and a Tesla T4 GPU with 13.5GB of VRAM. 

This makes the training process of our models very fast. 

 

2.6.5 Testing Environment and Device 

 

 To test and evaluate our models we had to set up a Raspberry Pi 3 Model B with Raspberry 

Pi OS which comes with python installed. We then installed TensorFlow 2.4.0 along with Keras 

2.4.0 and a few other libraries. 
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2.7 Conclusion 

 

 In this chapter, a detailed explanation of the methods used in order to detect and classify 

whether people are wearing face masks was given. First, a description of the dataset was provided 

where we explored the structure of the data its distribution and how we preprocessed it to make it 

ready for training and testing. Next, we discussed the method used to detect the faces in each 

image. We presented three different models that are going to be compared to each other in this 

project. Finally, we presented the tools used to carry out this project. 
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Chapter 3: Results and Discussion 

 

3.1 Introduction 

 

 In this chapter we will present the metrics used to evaluate the performance of each model. 

We will also present the results achieved and discuss them. 

 

3.2 Evaluation Metrics 

 

For this project, we will evaluate our models using four metrics: accuracy, precision, recall 

and F-1 score. 

 

3.2.1 Confusion Matrix 

 

 A confusion matrix is a way to visualize how well our model performed on the test set. For 

each class, it depicts the number of correctly predicted samples versus the number of incorrectly 

predicted samples. The number of rows in a confusion matrix is defined by the number of classes. 

Fig. 3.1 shows a general structure of a confusion matrix. 

 

 

 

Fig. 3.1: Two classes confusion matrix [20]. 
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From the confusion matrix, we can derive four important values for each class. Those four values 

are used to compute the metrics mentioned before. If we have N classes and we consider class i to 

be positive and the other N − 1 classes to be negative, then: 

 

 True positive (tpi): the number of predictions where the classifier correctly predicts the 

input sample as belonging to class i. 

 

 True negative (tni): the number of predictions where the classifier correctly predicts the 

negative samples as negative. 

 

 False positive (fpi): the number of predictions where the classifier incorrectly predicts the 

other N − 1 class as class i. 

 

 False negative (fni): the number of predictions where the classifier incorrectly predicts 

class i classes as one of the N − 1. 

 

 

3.2.2 Average Accuracy 

 

 It gives the overall accuracy of the model, meaning the fraction of the total samples 

that were correctly classified by the classifier: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑁
 ∑

𝑡𝑝𝑖 + 𝑡𝑛𝑖

𝑡𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑁

𝑖=1

 (3.1) 

 

3.2.3 Precision 

 

 It tells us what fraction of predictions as a positive class were actually positive. To calculate 

precision, we use: 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖
 (3.2) 

 

3.2.4 Recall 

 

 It is the ability of the model to find correct predictions per class. 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖
 (3.3) 

 

3.2.5 F1-score  

 

 The harmonic average of the precision and recall, it measures the effectiveness of 

identification when just as much importance is given to recall as to precision for each 

class. 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3.4) 

 

3.2.6 average execution time 

 

 In order to test the average execution time of our models, we did the test on a Raspberry Pi 

3 Model B. the specifications of this device are as follows: 

 

 Quad Core 1.2GHz Broadcom BCM2837 64bit CPU 

 

 1GB RAM 

 

To calculate the average execution time, we took the mean of 100 different classification prediction 

operations when running on the aforementioned device. 

 

𝑎𝑟𝑡 =  
∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑖)𝑁=100

𝑖=1

𝑁
 

(3.5) 
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3.3 Experimental Results 

 

 The experiments we did in this project consists of training three different CNN models: 

two models loaded with pre-trained parameters (MobileNetV2 and EfficientNet-B0) trained using 

transfer learning technique, and one model built from scratch and trained all the parameters. 

 

We are going to start by presenting the results of the pre-trained models first, then we are going to 

present the results of our custom model that was built from scratch. Then, we are going to compare 

the models. 

 

3.3.1 MobileNetV2 

 

 This model was trained using the hyperparameters shown in Table 3.1. These parameters 

were chosen because they are the most commonly used when first training a CNN: 

 

Table 3.1: MobileNetV2 hyperparameters. 

 

Initial learning rate Batch size Epochs Classification layers 

0.001 32 10 

Dense = 128 

Dropout = 0.5 

Dense = 32 

Dropout = 0.5 

Dense = 2 

 

After training the proposed model for 10 epochs on the dataset presented earlier, which contains 

3171 training examples and 351 cross-validation examples, it resulted in the following accuracy 

and loss curves: 
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Fig. 3.2: MobileNetV2 loss and accuracy curves. 

 

As shown in figure 3.2, the model converged rapidly. Thus, we did not need to train the model for 

further epochs. 

 

When testing the model on the testing set, which contains 882 examples, the following loss and 

accuracy were obtained: 

 

Table 3.2: MobileNetV2 testing results. 

 

Loss Accuracy 

0.0249 0.9909 

 

We obtained great results on the testing set, which means that our model did not overtrain, thus 

the model did not overfit the training data and it generalized on the hold-out set pretty well. 

 

We also derived the metrics mentioned earlier in this chapter using a function from the scikit-learn 

library. The following results were obtained: 
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Table 3.3: MobileNetV2 classification report. 

 

Class Precision Recall F1-score Accuracy 

With mask 0.99 1.00 0.99 
0.99 

Without mask 1.00 0.99 0.99 

 

 

 

Fig. 3.3: MobileNetV2 confusion matrix. 

 

When the model was tested for execution speed on our testing device (Raspberry Pi 3 Model B), 

we got the following results: 

 

Execution time 

1.19 seconds/prediction 

 

3.3.2 EfficientNet-B0 

 

 The hyperparameters used in the training of this model are the same used for the previous 

model. The same training examples and cross-validation examples were also used. The experiment 

resulted in the following accuracy and loss curves: 
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Fig. 3.4: Efficientnet-B0 loss and accuracy curves. 

 

As shown in the figure above, the model started to converge starting from the 2nd epoch. The model 

performed great on the validation set, which indicates the absence of overfitting.  The loss value 

is low which means the error value in each example is small. 

 

 

When testing the model on the testing set, which contains 882 examples, the following loss and 

accuracy were obtained: 

 

Table 3.4: Efficientnet-B0 testing results. 

 

Loss Accuracy 

0.0451 0.9875 

 

The table above shows that this model did a great job in classifying the examples in the testing set. 
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Table 3.5: Efficientnet-B0 classification report. 

 

Class Precision Recall F1-score Accuracy 

With mask 0.98 1.00 0.99 
0.99 

Without mask 1.00 0.98 0.99 

 

 

 

Fig. 3.5: Efficientnet-B0 confusion matrix. 

 

When the model was tested for execution speed on our testing device (Raspberry Pi 3 Model B), 

we got the following results: 

 

Execution time 

1.62 seconds/prediction 

 

3.3.3 Custom Model 

 

 Unlike the other models, this one got trained for 15 epochs. The learning rate and the batch 

size have the same values as the previous models. 
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Fig. 3.6: Custom model loss and accuracy curves. 

 

As shown in the figure above, the loss values for this model started at a higher value than the 

previous pre-trained models. The accuracy values started at around 0.8 which is a good value but 

not as good as the previous two models. The loss values quickly decreased as the training went on 

and they converged by the last epoch. As for the accuracy values, they also converged quickly. 

 

Table 3.6: custom model testing results. 

 

Loss Accuracy 

0.0148 0.9921 

 

The table above shows that this model did a great job in classifying the examples in the testing set. 

 

Table 3.7: Custom model classification report. 

Class Precision Recall F1-score Accuracy 

With mask 1.00 0.99 0.99 
0.99 

Without mask 0.99 1.00 0.99 
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Fig. 3.7: Custom model confusion matrix. 

 

When the model was tested for execution speed on our testing device (Raspberry Pi 3 Model B), 

we got the following results: 

 

Execution time 

1.72 seconds/prediction 

 

Although this model has less parameters than the previous pre-trained models, its execution speed 

is the slowest amongst the three. This is due to the use of depth-wise separable convolution in the 

pre-trained models which reduces the calculations time drastically. 

 

3.3.3.1 Speed Improvement 

 

In an attempt to reduce the execution speed of this model, the last convolutional layer 

conv2d_3 (512 filters, filter size = 3×3, parameters = 1,180,160) was removed from the 

architecture along with its pooling layer. 

 

The resulting model had 407,906 parameters. This model was trained for 30 epochs and the 

following results were obtained: 
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Fig. 3.8: Improved custom model loss and accuracy curves. 

 

The number of epochs this model took to converge was higher than before removing the last 

convolutional layer. This is because it is harder to extract meaningful features with a smaller 

number of layers. 

 

Table 3.8: Improved custom model testing results. 

 

Loss Accuracy 

0.0195 0.9955 

 

Although this model has the smallest number of parameters, it got the best performance results on 

the testing set. 
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Table 3.9: Improved custom model classification report. 

 

Class Precision Recall F1-score Accuracy 

With mask 1.00 1.00 1.00 
1.00 

Without mask 1.00 1.00 1.00 

 

 

 

Fig. 3.9: Improved custom model confusion matrix. 

 

The evaluation metrics results of this model shown in Table 3.6 are perfect. Also, the confusion 

matrix showed the smallest number of errors amongst all the models. 

 

When testing the execution speed again, with a lot less parameters than before the improvement, 

we got the following result: 

 

Execution time 

0.82 seconds/prediction 

 

The experiment yielded a 53% improvement on the execution speed while maintaining the level 

of accuracy. 
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3.3.4 Summary and Comparison 

 

 The following table represents a summary of the results obtained by each of the models 

proposed in this project: 

 

Table 3.10: Summary and comparison of the models. 

 

Model Accuracy Exec. time (s/prediction) 

MobilenetV2 0.99 1.19 

Efficientnet-B0 0.99 1.62 

Improved custom model 1.00 0.82 

 

From the table above we can clearly derive that the improved custom model is the best model since 

it has the highest accuracy score and the lowest execution time. This was not anticipated in the 

beginning of the experiment since. 

 

3.3.5 Real-Time Detection and Classification 

 

 After training the models, we put them into practice to see how they perform in real-time 

using live video feed from a camera. We run a python script on a Raspberry Pi 3 Model B equipped 

with the Raspberry Pi Camera Module v2. The v2 Camera Module has a Sony IMX219 8-

megapixel sensor and it can be used to take high-definition video, as well as stills photographs. It 

attaches via a 15cm ribbon cable to the CSI port on the Raspberry Pi. 
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Fig. 3.9: Real-time classification flowchart. 

 

Figure 3.9 illustrates a flowchart of how our real-time detection script runs. After setting up the 

camera, a few tries were done using the three different proposed models. We recorded the real-

time execution time of this algorithm in order to compare which model runs the fastest. 

 

This real-time execution time metric was calculated by taking the mean execution time of 20 

consecutive frame during the execution of the routine shown in Figure 3.9. 
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Table 3.11: real-time execution time of the models. 

 

Model 
Average face 

detection time (s) 

Average real-time 

execution time (s) 

Real-time 

difference (s) 

Algorithm 

execution time 

MobileNetV2 0.82 1.4 -0.22 2.22 

EfficientNet-B0 0.85 2.14 +0.42 2.99 

Custom model 0.89 1.3 +0.48 2.19 

 

When testing the models, all three of them showed great accuracy in detecting whether the mask 

was worn or not. However, when testing the models for their real-time performance. They showed 

different results regarding their execution time. 

 

As shown in Table 3.8 the average execution time for the models differs from the values obtained 

when we ran the average execution time metric presented at the beginning of the chapter. 

 

The table above demonstrates how the execution time of the models changed when ran in a real-

time environment. This is probably due to the system running different operating system utilities 

in parallel which impedes the execution of our models’ prediction functions. 

 

Also, the time it takes for the Haar cascade classifier to detect a face in a frame varies a lot from 

frame to frame. This is because the harder it is for the classifier to decide whether the sub-window 

contains a face or not the longer it will take the classifier to discard that candidate sub-window 

which means longer processing time. However, the detection time doesn’t deviate much. 

3.4 Conclusion 

 

 In this chapter, we presented the different evaluation metrics used to evaluate the proposed 

models. We then proceeded to show the results obtained in the different experiments that we 

carried. 
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We started first by training two CNN architectures loaded with pre-trained weights on the 

ImageNet dataset. Afterwards, we excluded the classification layers that come included in those 

architectures and added our own dense layers and trained those dense layers while freezing all the 

other layers. This technique training technique is called transfer learning. 

 

We then proposed a CNN architecture and trained it on the same dataset. Although this proposed  

CNN model had less parameters than the other two, it ran slower than its pre-trained counterparts. 

In an attempt to improve its execution time, we removed the convolutional layer with the most 

parameters (the last convolutional layer of the architecture) and trained the model again. The 

execution time improved drastically after doing this modification. 

 

Finally, we presented our real-time detection system that was intended for use on low-power 

CPUs. We demonstrated how it works using a flowchart and showed the results we got when 

running the system on our testing device. 
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General Conclusion and Future Work 

 

The results obtained in the last chapter were very intriguing and not anticipated. We have seen that 

a simple 3 convolutional layer had better accuracy than the pre-trained models with transfer 

learning. 

 

The main takeaway from the experiments is that even though mobile oriented CNN architecture 

such as MobileNetV2 and EfficientNet-B0 are advertised as the go-to architecture when running 

image classification on low computational power devices. they are often not the best options in 

term of efficiency; especially when the features to be learned are not very complex since in our 

case face mask detection doesn’t require a lot of features to be extracted. We have seen that even 

a 3 convolutional layers network had a near perfect performance on the test dataset while running 

much faster than the other models. Our best model which was the custom model achieved an 

accuracy of 99.55% which a great accuracy score. 

 

the most important takeaway from these experiments is that it would be much wiser when 

developing a CNN model for classification purposes to start with a simple custom built CNN 

architecture with a small number of convolutional and pooling layer and increment the number of 

layers until we meet the desired accuracy or until we exceed the execution time budget. 

 

Future Work 

 

Although all of the proposed models showed near perfect results, there is still room for improving 

the overall system. 

 

A great way to improve the running time of these models is by converting them into the  

TensorFlow-Lite format. This format allows for faster execution speed on mobile and IoT  

devices. 
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Another great contribution would be to find a way to run Haar cascade classifiers faster on low 

computation power devices, since this task takes considerable amount of time during real-time 

detection and classification. This would make a great research endeavor. 

 

Since, we improved our custom model by removing a convolutional layer and did not hurt the 

performance of the model, a good problem to work on would be to find a good trade-off between 

the number of parameters of the model and the accuracy. This will improve the execution time 

even further. 

 

Lastly, since the act of wearing a face mask in public in not going away anytime soon, it would be 

a great contribution to work on developing a Haar cascade classifier that is trained on faces of 

people wearing face masks. This would improve the false negative rate of the classifier used in 

this project. It is also worth noting that an attempt to develop such a classifier was made during 

the completion of this project, but due to low computational resources and time constraints, the 

developed classifier had poor performance compared to the used/existing one. 
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