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Abstract 
This work studies the modeling and control of the quadcopter. The Newton-Euler method 

is used to develop the quadcopter's nonlinear dynamic model, and design controllers for attitude 

and trajectory tracking. Two subsystems describe the motion of the quadcopter; a rotational 

subsystem for altitude and heading, and a translational subsystem for position. 

 Three controllers were proposed to achieve position tracking, the PID controller, the 

Fractional Order PID controller and the Sliding Mode controller. The controllers were 

implemented on the quadrotor model using Matlab/Simulink. Finally, the performance of the 

proposed controllers was demonstrated in a simulation study and analysis. 
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General Introduction 
Originally developed for military applications, Unmanned Aerial Vehicles (UAVs) 

commonly known as drones sought to replace humans in tasks that were deemed too dull, dirty 

or dangerous [1]. Some of these tasks included reconnaissance, route and zone recognition, 

combat damage assessment and even target elimination 

Some of the early developed UAVs during and after the World War II era were quite big 

in size matching that of normal manned aircrafts, they however continued to reduce in size as 

computers, sensors and actuators advanced in power and reduced in size. 

This vast development of computer control systems coupled with the reduction of cost 

shifted the utility of UAVs to include non-military applications. Some of these applications for 

instance are monitoring large infrastructure such as power plants, damage assessment and 

disaster relief, crop spraying, surveillance, journalism and filmmaking, etc. 

This has cemented the drone’s spot as one of the most useful technological advancements 

of our time. And due to the different shapes/configurations a drone can take, in addition to its 

depth and complexity, it is important to design controllers that allow optimal performance. One 

such configuration is the quadrotor.  

In recent years, the quadrotor has aroused many attentions of researchers since its unique 

structure, capability of hovering, vertical take-off and landing gives it good maneuverability and 

a relatively increased payload [2].  

The objective of this project is to determine a model that describes the dynamics of a 

quadrotor, then design controllers that allow the vehicle to follow a given trajectory accurately. 

The first chapter covers an introduction into unmanned aerial vehicles as well as a brief 

historical background, introduces the quadrotor configuration, its advantages as well as the 

challenges it poses. In chapter two, a quadrotor system model is established from the different 

dynamics that govern its motion. Chapter three concerns itself with controlling the established 

model, by choosing different control strategies and designing the necessary controllers 

accordingly. Chapter four is a showcase of the results of the tests performed on the model in 

SIMULINK, and a discussion into those results. 
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1. Chapter 1: Background 

1.1. Introduction 

UAVs have had a long and running history of development, being used in a multitude of 

applications throughout time. And due to their unmanned nature, the challenge of controlling 

these vehicles is at hand. 

1.2. UAVs 

 Unmanned Aerial Vehicle or UAV is an aircraft that does not carry a human pilot and is 

thus controlled remotely, autonomously or semi-autonomously. Similar to many inventions, 

UAVs are the results of developments carried out during military conflicts and served a 

multitude of military purposes such as surveillance, reconnaissance and target elimination. 

Development leaps and cost reduction however, changed their target goal from a strictly military 

one to include civilian applications. 

 Small unmanned rotorcrafts are a type of UAVs that is characterized by its small size and 

capability to perform many functions. They can maneuver in three dimensions to collect 

information with onboard sensors and even physically interact with their environments using 

onboard grippers [3].  

 The small size of these vehicles enables them to operate indoors and in constrained 

spaces. This is particularly useful in dangerous situations such as searching for survivors in 

damaged buildings, entering and clearing areas with armed adversaries, and collecting 

information in contaminated locations. In these scenarios the ability to create situational 

awareness without ever having to put a human in harm’s way is extremely valuable. They are 

also capable of completing an even wider range of applications such as security, surveillance, 

emergency response, infrastructure inspection, aerial photography, geographic mapping and 

express shipping and delivery. 

 One type of small unmanned rotorcrafts is the Quadrotor helicopters (or quadrotors). 

They have four fixed-pitch propellers attached to motors typically mounted in a cross 

configuration, and are available from several companies as research and commercial vehicles as 

well as toys. The long moment arms on which the propellers lie enables them to produce large 

control moments and perform aggressive maneuvers while retaining a mechanical simplicity to 

the quadrotor’s design [4]. 

1.3. A Brief Historical Background 

When we think of UAVs, hot-air balloons are typically not part of the discussion. From a 

technical standpoint however, these crafts were the first aircraft to not require a human pilot. 

Joseph-Michel and Jacques-Étienne Montgolfier hosted the first public demonstration of an 

unmanned aircraft, a hot-air balloon in Annonay, France back in 1783[5]. 

It wasn’t however until 1935 that the first modern drone was developed. When the Royal 

Air Force’s commenced in 1918, the UK needed effective methods for training pilots. While 

Target practice was typically accomplished by towing gliders behind crewed aircraft, that 

method failed to provide a realistic simulation for engaging enemy fighters in live combat. In 

https://www.britannica.com/biography/Montgolfier-brothers
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response, the De Havilland DH.82B Queen Bee aircraft was used a low-cost radio-controlled 

drone developed for aerial target practice [6]. 

 

Figure 1-1 Winston Churchill and the Secretary of State for War waiting to see the launch of a de Havilland Queen Bee radio-

controlled target drone, 6 June 1941. 

 After many years of strict military use of drones, UAVs were permitted in US Civilian 

Airspace for the first time in 2005. Following the devastation caused by Hurricane Katrina, the 

FAA allowed UAVs to fly in civilian airspace for search, rescue and disaster relief operations 

[7]. Drones equipped with thermal cameras were able to detect the heat signatures of humans 

from up to 10,000 feet away.  

Around this time, the consumer drone industry began to really take shape. While DJI had 

yet to become the marketplace giant it is today, companies like Parrot, 3DR, and many others 

were looking to take military UAV technology and repurpose it. The potential for industrial and 

consumer UAV markets was more than enough for many businesses to invest in the technology. 

Around the year of 2013, Major Companies such as FedEx, UPS, Amazon and Google 

looked to Start drone delivery, and testing of various UAV concepts and work with regulatory 

agencies around the world began [8]. 

Since then, UAVs have continued to expand in capabilities and use cases, and as more 

industries explore how drones can make their work safer and more cost effective, growth is 

expected to rapidly surge in the coming years. 

1.4. The Quadrotor and the Problem of Control 

A quadrotor is a rotorcraft that uses two pairs of counter-rotating, fixed-spaced blades for 

lift. The use of fixed-pitch blades typically allows the vehicle’s propellers to be directly attached 

to four separate engines without the need for complex linkages to control pitch. These motors are 

then connected in an "X" configuration. To drive and control the rotor, a battery and 

microcontroller are placed near the center of the vehicle so as to not cause imbalance. Changes in 

the aircraft’s altitude and orientation are achieved by changing the speed of individual rotors. 

https://www.dehavillandmuseum.co.uk/aircraft/de-havilland-dh82b-queen-bee/
https://www.govinfo.gov/content/pkg/CHRG-109hhrg28275/html/CHRG-109hhrg28275.htm
https://consortiq.com/drone-industry-outlook-us-2020-2030/


4 
 

Even with such a simple design, building a quadrotor poses some difficult challenges. In 

particular, quadrotors are hard to control and can tip over easily. Because its mass is 

concentrated in a small area, the rotors must react very quickly to counteract the tendency to tip 

over. Another challenge it presents is trajectory control, as quadrotors are controlled through 

altitude commands; angles that govern its rotations and thrust. 

1.5. Conclusion 

 The mechanical simplicity of the quadrotor coupled with its great maneuverability makes 

it a very desirable choice for a UAV.  And this thesis is an attempt to model and design a flight 

control system that is robust and efficient in order to accurately track a given trajectory for this 

aircraft. 
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2. Chapter 2: Quadrotor System Modeling 

2.1. Introduction 

The quadrotor is a complex system with many variables that control and describe its 

motion. This chapter covers the process with which a quadrotor model was derived from the 

different physical equations and dynamics that govern its motion. In order to achieve that a few 

concepts must be established. 

2.2. Reference of frame 

To understand the position and orientation of the quadrotor we must first define two 

references of frame: 

 Inertial Frame {E}:Is reference fixed-frame to some specific location or place on the 

ground level represented by {x, y, z} where the x-axis of the inertial frame is pointed to 

the North, y-axis is pointed to the East and z-axis is pointed to the center of the Earth 

 Body Frame {B}:Is body fixed-frame that has its origin located at the center of mass of 

the quadcopter represented by {𝑥𝑏, 𝑦𝑏, 𝑧𝑏} where the 𝑥𝑏 axis is lies on propeller 1 while 

the 𝑦𝑏 axis lies on propeller 4 and the 𝑧𝑏 axis points upward, which means if the body 

rotates or moves the frame rotates and moves with it. 

The Euler angles describe the altitude or position of the quadrotor and are defined by the 

orientation of B-frame with respect to E-frame. This orientation can be represented by a rotation 

matrix that is derived from a combination of a sequence of rotations where the quadrotor is first 

rotated along the z-axis (yaw motion) then by a rotation along the y-axis (pitch motion) followed 

by a rotation along the x-axis (roll motion)[9]. 

 

Figure 2-1 Inertial and Body frame of a quadrotor 

Projecting on the y-axis and z-axis when rotating about x-axis, on the x-axis and z-axis 

when rotating about y-axis and on the x-axis and y-axis when rotating about x-axis yields to the 

following 3 matrices respectively [9]:  
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[
𝑥𝑏
𝑦𝑏
𝑧𝑏
]  [

   
    ( )    ( )

     ( )    ( )
] [
𝑥
𝑦
𝑧
]    (2.1) 

[
𝑥𝑏
𝑦𝑏
𝑧𝑏

]  [
   ( )      ( )

   
   ( )     ( )

] [
𝑥
𝑦
𝑧
]    (2.2) 

[
𝑥𝑏
𝑦𝑏
𝑧𝑏
]  [

   ( )    ( )  
    ( )    ( )  

   

] [
𝑥
𝑦
𝑧
]    (2.3) 

The rotation matrix R is then derived based on the multiplication of the sequence of principle 

rotations roll (ϕ), pitch (θ) and yaw (ψ) angles about the x, y and z-axes respectively:  

[
𝑥𝑏
𝑦𝑏
𝑧𝑏

]  [

   
    ( )    ( )

     ( )    ( )
] [
   ( )      ( )

   
   ( )     ( )

] [
   ( )    ( )  
    ( )    ( )  

   

] [
𝑥
𝑦
𝑧
] (2.4) 

After multiplying the three matrices it yields 

𝐑 = [

 ( ) ( )  ( ) ( )   ( )
  ( ) ( )   ( ) ( ) ( )  ( ) ( )   ( ) ( ) ( )  ( ) ( )
 ( ) ( )   ( ) ( ) ( )   ( ) ( )   ( ) ( ) ( )  ( ) ( )

] (2.5) 

where C is a cosine function and S is a sine function. 

2.3. Six Degrees of Freedom (6-DOF) 

Six degrees of freedom refers to the way a rigid body can move in three dimensional 

spaces. This movement the body can make can be a forward/backward along the x-axis, left/right 

along the y-axis and up/down along the z axis translation. It can also be combined with rotations 

along these axes, rotation about the x-axis is known as roll, rotation about the y-axis is known as 

pitch and rotation about the z-axis is yaw [10]. 

2.4. Flight Mechanics 

2.4.1. Quadrotor Dynamics 

The following assumptions were taken when deriving the quadrotor dynamics:  

• The quadrotor’s center of gravity coincides with the origin of the body frame.  

• The quadrotor is a rigid body.  

• The quadrotor is symmetrical with respect to the x and y axes.  

• The quadrotor propellers are rigid.  

• The thrust and drag exerted on the quadrotor are proportional to the square of the 

propellers’ angular speed.  

The quadrotor is modeled with four rotors in a cross (x) configuration. This structure is 

quite thin and light; however, it shows robustness by mechanically linking the motors which tend 

to be heavier than the structure. Each propeller is connected to the motor through the reduction 
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gears. All the propellers’ axes of rotation are fixed and parallel. Furthermore, they have fixed-

pitch blades and their airflows point downwards in order to achieve upwards lift. 

These considerations point out that the structure is quite rigid and the only things that can 

vary are the propeller speeds. In our model however, neither the motors nor the reduction gears 

are fundamental because the movements are directly related just to the propeller’s velocities. The 

others parts will be taken into account. Another neglected component is the electronic box. As in 

the previous case, the electronic box is not essential to understand how the quadrotor flies. It 

follows that the basic model to evaluate the quadrotor movements it is composed just of a thin 

cross structure with four propellers on its ends. The front and the rear propellers rotate counter-

clockwise, while the left and the right ones turn clockwise.  

Figure 2-2 shows the structure’s model in hovering condition, where all the propellers 

have the same speed. 

 

 

Figure 2-2 Simplified Quadrotor in Hovering Mode 

The fixed-body B-frame is represented with green whereas the angular speed of the 

propellers is in blue. In addition to the name of the velocity variable, for each propeller, two 

arrows are drawn: the curved one represents the direction of rotation; the other one represents the 

velocity. In the model of Figure 2-2 all the propellers rotate at the same speed ΩH to 

counterbalance the acceleration due to gravity. Thus, the quadrotor performs stationary flight, 

and no forces or torques move it from its position.  

2.4.2. Forces, Moments and Torques 

The quadrotor is subject to forces and moments, and the configuration mentioned above 

allows four basic movements. The movements, forces and moments are described as follows: 

 Thrust Force (throttle) (U1) 

This command is provided by increasing or decreasing all propeller speeds by the same 

amount. It leads to a vertical force which raises or lowers the quadrotor. If the quadcopter is in 

horizontal position, the vertical direction of the inertial frame and that one of the body-fixed 

frame coincide. Otherwise, the provided thrust generates both vertical and horizontal 

accelerations in the inertial frame. Figure 2-3 shows the throttle command on a quadrotor sketch.  
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Figure 2-3 Throttle Movement 

The speed of the propellers is specified in blue which in this case, is equal to ΩH + 

∆A for each one. ∆A is a positive variable that can’t be too large to avoid saturation. 

Since all the motors are identical, the derivation is explained for a single one 

which is given by the momentum theory: 

          
   

      (2.6) 

where:  

 D is thrust coefficient of the motor.  

ρ is the density of air.  

A is the cross-sectional area of the propeller’s rotation.  

  is the radius of rotor.  

 i is the angular speed of the rotor.  

For simple flight motion:  

 

        
       (2.7) 

 

Combining the thrust from all the 4 motor-propeller system, the net thrust in the body 

frame z direction is given by:  

     (  
      

      
      

  )     (2.8) 

K is the propeller thrust coefficient. Ω1 is the front propeller speed, Ω2 is the right propeller 

speed, Ω3 is the rear propeller speed and Ω4 is the left propeller speed 

 Roll moment (U2) 

This command is provided by increasing (or decreasing) the left propeller speed and by 

decreasing (or increasing) the right one. It leads to a torque with respect to the xB axis which 
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makes the quadrotor turn. The overall vertical thrust is the same as in hovering; hence this 

command leads only to roll angle acceleration. Figure 2-4 shows the roll command on a 

quadrotor sketch. 

 

 

Figure 2-4 Roll Movement 

The positive variables ∆A and ∆B should keep the vertical thrust unchanged and can’t be 

too large to avoid saturation. 

In our frame of reference, the roll movement is acquired by decreasing the 2
nd

 rotor 

velocity and increasing the 4
th

 rotor velocity and can then be expressed as: 

 ϕ      (   
      

  )    (2.9) 

Where   is the distance between the rotor and the center of mass. 

 Pitch moment (U3) 

This command is very similar to the roll and is provided by increasing (or decreasing) the 

rear propeller speed and by decreasing (or increasing) the front one. It leads to a torque with 

respect to the yB axis which makes the quadrotor turn. The overall vertical thrust is the same as 

in hovering; hence this command leads only to pitch angle acceleration.  

As in the previous moment, the positive variables ∆A and ∆B are to maintain the vertical 

thrust unchanged and can’t be too large.  
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Figure 2-5 Pitch Movement 

Similarly, the pitch movement is acquired by decreasing the 1
st
rotor velocity and 

increasing the 3
rd

rotor velocity. The pitch moment for the quadrotor can then be expressed as: 

 θ      (   
      

  )    (2.10) 

Where   is the distance between the rotor and the center of mass. 

 Yaw moment (U4) 

This command is provided by increasing (or decreasing) the front-rear propellers’ speed 

and by decreasing (or increasing) that of the left-right couple. It leads to a torque with respect to 

the zB axis which makes the quadrotor turn. The yaw movement is generated due to the fact that 

the left-right propellers rotate clockwise while the front-rear ones rotate counterclockwise. 

Hence, when the overall torque is unbalanced, the quadcopter turns on itself around zB. The total 

vertical thrust is the same as in hovering; hence this command leads only to yaw angle 

acceleration. Figure 2-6 shows the yaw command on a quadrotor sketch.  

 

Figure 2-6 Yaw Movement 

Once again, the positive variables ∆A and ∆B are to maintain the vertical thrust unchanged 

and they can’t be too large. Furthermore, it maintains the equivalence ∆B ≈ ∆A for small values of 

∆A. Thus, in our frame of reference, the yaw movement is acquired by increasing the angular 

velocities of two opposite rotors and decreasing the velocities of the other two and it can be 

expressed as follows: 
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      (   
      

    
      

  )    (2.11) 

Where   is the drag coefficient. 

All 3 moments can then be represented as: 

[

 ϕ
 θ
  

]  [

  (   
      

  )

  (   
      

  )

 (   
      

    
      

  )

]   (2.12) 

 

 Gravitational Force: The gravitational force acting the quadcopter in the inertial 

frame can be expressed as: 

    [
 
 
  

]      (2.13) 

Where m is the mass of the quadrotor and g is the gravitational acceleration 

 Inertia Matrix  

Moment of inertia gives the amount of moment needed to rotate a still object and moment 

needed to stop a rotating object. We need moments around all three axes of the quadcopter, so 

we will present it in matrix form; Moment of inertia is the square of distance from the center of 

mass of the body. For a symmetrical body such as the quadcopter the moment of inertia on 

opposite sides of the vehicle cancels each other. 

    [

    
    

    

]      (2.14) 

It is crucial that we establish a mathematical model to describe our system dynamics 

before we attempt to design any controllers for it. And while there are many approaches to derive 

the equations governing 6-DOF rigid body movement such as (Newton-Euler, Euler Lagrange...), 

for the sake of simplicity we have chosen the Newton-Euler approach.  

2.5. Quadrotor Equations of Motion 

2.5.1. Translational Dynamics 

From the Euler’s first axioms of the Newton’s second law[11]:  

             (2.15) 

Using the above equation, the linear dynamic system for a quadrotor in the E-frame can 

be expressed as: 

 [
𝑥 
𝑦 
𝑧 
]               (2.16) 
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After substituting and some manipulation we get:  

[
 
 
 
 
 
𝑥 

𝑦 

𝑧 ]
 
 
 
 
 

  

[
 
 
 
 
 

 
(   ( )   ( )      ( )   ( )   ( ) 

 

 
(   ( )   ( )   ( )      ( )   ( )

     
 

 
(   ( )    ( ) ]

 
 
 
 

   (2.17) 

Where 𝑥 , 𝑦  𝑎   𝑧  are the linear accelerations in the x, y and z axis respectively. 

2.5.2. Rotational Dynamics 

From the Euler’s second axioms of the Newton’s second law  

        (   )          (2.18) 

Substituting with equation (2.12) and equation (2.14) in equation (2.18) yields the 

angular dynamic system for a quadrotor in the B-frame that can be expressed as:  

{
 
 

 
  

   
 

  
     

  

  
       

  

  
    

   
 

  
     

  

  
       

  

  
    

    
 

  
     

  

  
       

  

  
    

    (2.19) 

2.6. State Space Model 

The acquired mathematical models will be formulated to a state space model to make the 

control problem easier. We can write the dynamic model equations as:  

      (   )      (2.20) 

Where U is the input vector and    is the state vector.  

2.6.1. State Vector X 

    [𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥  𝑥  𝑥  ]  (2.21) 

This state vector is mapped to the degrees of freedom of the quadrotor in the following 

manner: 

 

    [         𝑧 𝑧 𝑥 𝑥 𝑦 𝑦 ]    (2.22) 

 The state vector defines the position of the quadrotor in space and its angular and linear 

velocities. 
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2.6.2. Control Input U 

A control input vector consisting of four inputs U1 through U4 is defined to be:  

   [        ]
      (2.23) 

[
 
 
 
 
 
  

  

  

  ]
 
 
 
 
 

 

[
 
 
 
 
    

       

       

      ]
 
 
 
 

[
 
 
 
 
 
  
 

  
 

  
 

  
 ]
 
 
 
 
 

     (2.24) 

 As mentioned in an earlier section, U1 is the resulting upwards force of the four rotors 

which is responsible for the altitude of the quadrotor and its rate of change (𝑧, 𝑧  ). U2 is the 

difference in thrust between the 2
nd

 and the 4
th

 rotor which is responsible for the roll rotation and 

its rate of change ( ,  ). On the other hand, U3 represents the difference in thrust between the 1
st
 

and the 3
rd

 rotor, thus generating the pitch rotation and its rate of change ( ,  ). Finally, U4 is the 

difference in torque between the two clockwise turning rotors, and the two counterclockwise 

turning rotors generating the yaw rotation and ultimately its rate of change ( ,  ).  

U1 will generate the desired altitude of the quadrotor, U2 will generate the desired roll 

angle, and the desired pitch angle will be generated by U3 whereas U4 will generate the desired 

yaw angle. 

As denoted before our subsystem is divided into two parts: The rotational and a 

transitional one which are represented in the state space.  

2.6.3. The Translational Subsystem 

Substituting T with U1 and the corresponding states in equation (2.18) we get: 

[
 
 
 
 
 
 
𝑥 

𝑦 

𝑧 ]
 
 
 
 
 
 

 

[
 
 
 
 
 
 
  

 
(   (𝑥 )    (𝑥 )       (𝑥 )   (𝑥 )   (𝑥 ))

  

 
(   (𝑥 )   (𝑥 )   (𝑥 )       (𝑥 )   (𝑥 )) 

      
  

 
(   (𝑥 )   (𝑥 )) ]

 
 
 
 
 
 

   (2.25) 

2.6.4. The Rotational Subsystem 

Given that:  

[

  
  
  

]   [

  

  

  

]      (2.26) 
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The rotational subsystem becomes: 

[
 
 
 
 
 
 
  

  

  ]
 
 
 
 
 
 

 

[
 
 
 
 
 
 
𝑏    𝑎 𝑥 𝑥 

𝑏    𝑎 𝑥 𝑥 

𝑏    𝑎 𝑥 𝑥 ]
 
 
 
 
 
 

     (2.27) 

Where: 𝑎  
     

  
 𝑎  

     

  
 𝑎  

     

  
 𝑏  

 

  
 𝑏  

 

  
 𝑏  

 

  
 

2.6.5. State Space Representation 

Using equation (2.25) and equation (2.26), the complete mathematical model of the 

quadrotor can be written in a state space representation as follows:  

𝑥      𝑥  

𝑥      𝑏    𝑎 𝑥 𝑥  

𝑥      𝑥  

𝑥      𝑏    𝑎 𝑥 𝑥  

𝑥      𝑥  

𝑥      𝑏    𝑎 𝑥 𝑥          (2.28) 

𝑥   𝑧  𝑥  

𝑥   𝑧        
  
 
 (   (𝑥 )   (𝑥 )) 

𝑥   𝑥  

𝑥    𝑥  
  
 
(   (𝑥 )    (𝑥 )       (𝑥 )   (𝑥 )   (𝑥 )) 

𝑥    𝑦  

𝑥    𝑦  
  
 

(   (𝑥 )   (𝑥 )   (𝑥 )      (𝑥 )   (𝑥 )) 

Then equation (2.20) can be written as: 
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    (   )  

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥 
𝑏    𝑎 𝑥 𝑥 

𝑥 
𝑏    𝑎 𝑥 𝑥 

𝑥 
𝑏    𝑎 𝑥 𝑥 

𝑥 

      
  

 
 (   (𝑥 )   (𝑥 ))

𝑥 
  

 
(   (𝑥 )    (𝑥 )       (𝑥 )   (𝑥 )   (𝑥 ))

𝑦 
  

 
(   (𝑥 )   (𝑥 )   (𝑥 )      (𝑥 )   (𝑥 )) ]

 
 
 
 
 
 
 
 
 
 
 
 
 

   (2.29) 

2.7. Linearized Model 

In order to linearize the system ( . 9), we need to find an equilibrium point    which for 

fixed input U  is the solution of the algebraic system ( . 9), or the value of state’s vector, which 

on fixed constant input is the solution of algebraic system: 

 ( ̅  ̅)         (2.30) 

Since the function 𝑓 is nonlinear, problems related to the existence of a unique solution of 

system (2.30) arise. In particular, for the system in hand, the solution is difficult to find because 

of trigonometric functions related each other in no-elementary way. For this reason, the 

linearization is performed on a simplified model which considers only small oscillations. This 

simplification is made by approximating the sine function with its argument and the cosine 

function with unity. The approximation is valid if the argument is small. The resulting system is 

described by the following equations [12]: 

 ̂(   )  

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥 
𝑏    𝑎 𝑥 𝑥 

𝑥 
𝑏    𝑎 𝑥 𝑥 

𝑥 
𝑏    𝑎 𝑥 𝑥 

𝑥 

      
  

 

𝑥 
  

 
(𝑥 𝑥    𝑥 )

𝑦 
  

 
(𝑥 𝑥  𝑥 ) ]

 
 
 
 
 
 
 
 
 
 
 
 
 

     (2.31) 

As illustrated above, an equilibrium point is needed in order to perform the linearization, 

and it was established from the previous equation as: 
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    [      𝑧  𝑥  𝑦  ] ∈ℝ12
  (2.32) 

From equation (2.32), the equilibrium point is obtained by the constant input vector: 

 ̅  [     ] ∈ℝ4
    (2.33) 

It can be noted that input vector U𝑒 represents the force necessary to offset the effect of 

gravity and hover the quadrotor. After finding the equilibrium point Xe and the corresponding 

nominal vector Ue, the linear model can be found in the form:  

                 (2.34) 

  
  (   )

  
|
   ̅

   ̅

 

[
 
 
 
 
 
 
 
 
 
 
 
            
            
            
            
            
            
            
            
            
            
            
            ]

 
 
 
 
 
 
 
 
 
 
 

  (2.35) 

  
  (   )

  
|
   ̅

   ̅

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

 𝑏   

    

  𝑏  

    

   𝑏 

    
  

 
   

    

    

    

    ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     (2.36) 

2.8. Controllability 

Controllability is a major concept in modern control system theory. Introduced by R. 

Kalman in 1960, it can be defined somehow as:  
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Controllability: In order to be able to do whatever we want with the given dynamic 

system under control input, the system must be controllable. Given the system (2.34) the pair (A, 

B) is said to be controllable if for any initial state X (0) = X0 and any final state X1, there exists 

an input that transfers X0to X1 in a finite time. Otherwise (A, B) is said to be uncontrollable [13]. 

A controllability matrix (WC) must be established in order to check if our system is controllable 

or not. This can be done by checking if the controllability matrix is full rank: 

   [                                   ] 

Using MATLAB, we were able to check the controllability of the system found it to be 

controllable. 

2.9. Open Loop Simulation 

 An open loop simulation was executed in order to verify the derived mathematical model. 

The chosen input for this test is the step input. 

 

Figure 2-7 Open Loop Simulation Test Results 
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 The open loop tests show that the system does not reach the desirable state it is given, but 

instead diverges towards infinity.  This also shows that the system is unstable, and in order to 

stabilize its response controllers must be designed and applied to it. 

2.10. Conclusion 

 In this chapter, we’ve established our mathematical model using the Newton-Euler 

approach after understanding the motion of the quadrotor. The open loop simulation results 

however show that the system is unstable and requires controllers to be applied to stabilize its 

response. 
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3. Chapter 3: Control Strategies and Implementation 

3.1. Introduction 

 After establishing a quadrotor model, the different control strategies must now be chosen. 

This chapter covers these different strategies and the manner with which they are developed and 

applied to our system. 

Due to the instability of our system, it is required to develop controllers to ensure it 

follows the commands it is given in a stable and accurate manner. There are numerous control 

methods that can be applied, and the ones selected in this project are: SMC, PID and Fractional 

PID. 

3.2. Control Strategies 

 It is first important to establish the fact that the goal is to achieve trajectory control, this 

necessitates the need to develop two controllers for each chosen strategy; one for altitude control 

that follows desired altitude commands (theta, omega, psi and z), and another that follows the 

desired trajectory commands(x,y). 

3.2.1. Trajectory Controller 

 The trajectory controller calculates the deviation from the desired path (in the body 

frame) and uses it to produce the desired values of pitch and roll. Calculating these values can be 

done from the translation equations (2.25) under the hovering condition where     [  ] . 

 This allows equation (2.25) to be written as follows: 

{
𝑥   (     ( )       ( ))

𝑦   (     ( )        ( ))
    (3.1) 

 Desired roll and pitch values can then be calculated as follows: 

[
  

  
]  

 

 
[
    ( )      ( )
    ( )     ( )

] [
𝑥 
𝑦 
]    (3.2) 

 Expressions of 𝑥  𝑎   𝑦  change depending on the control method being applied. 

 It is important to note that giving x,y,z coordinates for trajectory is not enough as the yaw 

angle cannot be calculated and must therefore be supplied. 

3.2.2. Altitude Controller 

 The altitude controller calculates the deviation in the roll, pitch and yaw angles as well as 

the deviation in the altitude z and aims to generate the control inputs U1 to U4. This too is done 

differently according to the applied control method. 

 The overall quadrotor control structure can be summarized in the following block 

diagram: 
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Figure 3-1 Block Diagram Describing the Quadrotor Model and Control 

 The altitude controller produces control signals U1 to U4, not to be confused with control 

inputs these signals are used to calculate the angular speed of the rotors Ω1 to Ω4 as follows: 

{
 
 

 
   

  
 

  
   

 

   
   

 

  
  

  
  

 

  
   

 

   
   

 

  
  

  
  

 

  
   

 

   
   

 

  
  

  
  

 

  
   

 

   
   

 

  
  

    (3.3) 

3.3. PID controller 

In the industrial field the most used linear form of control is the PID controller. Even 

though lots of different algorithms provide better performance than the PID, its simple structure, 

good performance and ability to tune its operations without requiring a specific model of the 

controlled system makes it a solid desirable option [15].  
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3.3.1. PID Controller Design 

The traditional PID structure is composed of the addition of three contributes, as shown 

in Figure 3-2 and equation (3.4) [15]. 

 

Figure 3-2 Traditional PID Structure 

The blocks”
 

 
”and “s” represent respectively the integration and derivation operations. 

 ( )    𝑒( )    ∫ 𝑒( )     
  ( )

  

 

 
    (3.4) 

Where u is a generic control variable, e is the error between the task and the process 

output y, KP is the proportional coefficient, KI is the integral coefficient and KD is the derivative 

coefficient. 

The first contributor (P) is proportional to the error. The second contributor (I) varies 

according to the integral of the error. Even though this component increases the overshoot and 

the settling time, it has a unique propriety: it eliminates the steady state error. The third 

contribute (D) varies according to the derivate of the error. This component decreases the 

overshoot and the settling time. 

The traditional PID structure presents two main drawbacks:  

• The derivative action is calculated from the error. If the task adds a step in the 

reference, the output of the derivator would present an impulse. This sharp movement can 

saturate the actuators and push away the system from the linear zone. It is due to this that most 

PID architectures perform the derivative action on the process output only.  

• The integral action combined with actuator saturation can provide a nonlinear effect 

which can decrease the performance of the control system. When the integral value is large and 

the error changes sign, it is necessary to wait a certain amount of time before the system restores 

its linear behavior. This phenomenon is called integral wind-up. To avoid it, a saturator is added 

after the integral to limit its maximum and minimum values. Figure 3-3 shows the enhanced PID 

structure. 

 Despite the fact that subsequent control equations showing the form of a tradition 

unenhanced PID, the enhanced structures were developed in SIMULINK. 
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Figure 3-3 Enhanced PID Structure 

3.3.1.1. Altitude Control 

 Roll Controller 

Another PID controller is developed to control the roll angle   of the quadrotor. The 

derived control law generates the input U2 that controls the roll angle as follows: 

     ϕ(ϕ  ϕ)    ϕ(ϕ 
  ϕ )    ϕ ∫(ϕ  ϕ)     (3.5) 

 

Figure 3-4 Roll PID Controller 

Pitch and yaw control are both done in the same manner as roll control. 

 Pitch Controller 

      (    )     (      )     ∫(    )     (3.6) 

 

Figure 3-5 Pitch PID Controller 
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 Yaw Controller 

      (    )     (      )     ∫(    )     (3.7) 

 

Figure 3-6 Yaw PID Controller 

 Altitude/Height Controller 

A PID controller is developed to control the altitude of the quadrotor. It generates the 

control input U1 which is responsible for the altitude of the quadrotor as per equation 

(2.24). The derived control law is as follows: 

   (   (𝑧  𝑧)     (𝑧   𝑧 )     ∫(𝑧  𝑧)    )  
 

   ( )    (ϕ)
  (3.8) 

 

Figure 3-7 Height PID Controller 

3.3.1.2. Trajectory Control 

 After establishing stable altitude controllers, we develop a PID controller for our 

trajectory. For x and y, we use two PID controllers to calculate the desired acceleration: 

{
𝑥      (𝑥  𝑥)     (𝑥   𝑥 )     ∫(𝑥  𝑥)  

𝑦      (𝑦  𝑦)     (𝑦   𝑦 )     ∫(𝑦  𝑦)  
   (3.9) 

Substituting equation (3.9) in (3.2) we get: 

  

[
 
 
 
  

  ]
 
 
 
 

 

 

[
 
 
 
    ( )      ( )

    ( )     ( ) ]
 
 
 
[

   (𝑥  𝑥)     (𝑥   𝑥 )     ∫(𝑥  𝑥)  

   (𝑦  𝑦)     (𝑦   𝑦 )     ∫(𝑦  𝑦)  

] (3.10) 
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3.4. Fractional PID Controller 

 Despite being developed over 300 years ago, Factional Order Calculus has only seen a 

rise in attention to its research recently, giving it a significant increase in practical applications. 

Fractional Calculus is a generalization of the traditional integral and differential operators from 

integer order to real number order; this attracted the attention of engineers that deal with 

dynamic systems since they can be better described by a non-integer order dynamic model. The 

depth and complexity of this branch gives it a larger feasible scope and greater flexibility in the 

system modeling and controller design methodology compared to the classical integer order one. 

And one of its many practical applications is the Fractional Order PID Controller [16]. 

 This section will cover a brief overview of the FOPID and how to construct and 

implement it in our quadrotor system model. 

3.4.1. Mathematical Background 

The differintegral operator, abbreviated    
 
, is a fractional calculus operator that 

combines differentiation and integration, by definitions it is introduced as follows [17]: 

   
 
 {

  

   
                     𝑓    

                          𝑓    

∫ (  )            𝑓    
 

 

     (3.11) 

Where q is a real number representing the fractional order, a and t are the limits of the 

operation.  

Over the years, many mathematicians have proposed various definitions for a non-integer 

order integral or derivative, each utilizing their own notation and technique. The Riemann 

Liouville definition is one form that has gained popularity in the realm of fractional calculus. 

Because most other fractional calculus definitions are basically modifications of the Riemann-

Liuoville form, therefore, it will be the only definition discussed in our work. This definition is 

given by [18]: 

   
 
𝑓( )  

   ( )

 (   ) 
 

 

 (   )

  

   
∫  
 

 

 ( )

(   )     
     (3.12) 

Where: n is the first integer which is not less than q, n − 1 < q < n.  () is the gamma 

function.  

The Laplace transform of a q
th

 derivative with q∈ℜ of a signal x(t) (assuming zero initial 

conditions) is given by: 

 {  𝑥( )}     ( )     (3.13) 

Thus, a fractional-order differential equation takes the following form: 

(𝑎  
   𝑎    

       𝑎  
  )𝑦( )  (𝑏  

   𝑏    
       𝑏  

  ) ( ) (3.14) 

where an, bm ∈  R can be expressed as a fractional-order transfer function in form: 
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 ( )  
           

          
  

           
          

  
    (3.15) 

The continuous-time transfer function can be expressed as a rational function H(λ) where 

λ = s
p
: 

 ( )  
∑   
      

 

∑   
      

      (3.16) 

Based on Equation (3.15), a fractional-order linear time-invariant system can also be 

represented by a state-space model: 

{
  𝑥( )   𝑥( )    ( )

𝑦( )   𝑥( )    ( )
    (3.17) 

3.4.2. FOMCON Toolbox 

“Fractional-order Modeling and Control (FOPID)” is a MATLAB toolbox dedicated to 

research and development of applications of fractional calculus to modeling and control of 

complex dynamic systems [19]. 

3.4.2.1. Toolbox Features 

In FOMCON, the main object of analysis is the fractional-order transfer function given 

by the Equation (3.16). The toolbox focuses on the Single Input Single Output (SISO), Linear 

Time Invariant (LTI) systems [20].  

The toolbox is comprised of the following modules:  

• Main module (fractional system analysis).  

• Identification module (system identification in time and frequency domains).  

• Control module (FOPID controller design, tuning and optimization tools as well as 

some additional features). 

 All the modules are interconnected and can be accessed from the main module GUI; 

furthermore, a Simulink blockset is provided in the toolbox allowing more complex modeling 

tasks to be carried out. General approach to block construction was used where applicable.  

The following blocks are currently realized:  

• General fractional-order operator.  

• Fractional integrator and differentiator.  

• PI
λ
D

µ
 controller. 

• Fractional transfer function. 
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3.4.2.2. Toolbox Dependencies 

The FOMCON toolbox relies on the following MATLAB set of tools:  

• Control System toolbox, required for most features.  

• Optimization toolbox, required for time-domain identification and integer-order PID 

tuning for common process model approximation. 

3.4.3. PI
λ
D

µ 
Controller Design 

 A PI
λ
D

µ 
generated control signal takes the following form [21]: 

 ( )    𝑒( )     
 𝑒( )     

 𝑒( )   (3.18) 

Where U is a generic control variable, e is the error between the task and the process 

output y, KP is the proportional coefficient, KI is the integral coefficient, KD is the derivative 

coefficient, D
λ
 fractional order integral and D

µ
 Fractional order derivative. 

µ = 1, λ = −1 for Conventional-order PID, the selections of λ = -1, μ = 0, and λ = 0, μ = 

1 respectively corresponds conventional PI & PD controllers. 

 

Figure 3-8 Fraction PID Controller Structure 

 Similar to the PID control, PI
λ
D

µ 
controllers must be constructed for both altitude and 

position control. 

3.4.3.1. Altitude Control 

 Roll Controller 

  ( )    ϕ(ϕ  ϕ)    ϕ 
 (ϕ

 
 ϕ)    ϕ 

 (ϕ
 
 ϕ)   (3.19) 

Where: KPΦ is the proportional coefficient, KIΦ is the integral coefficient and KDΦ is the 

derivative coefficient. D
λ
 Fractional order Integral D

µ
 Fractional order derivative. 

 Pitch Controller 

  ( )     (    )      
 (    )      

 (    )   (3.20) 

Where: KPΘ is the proportional coefficient, KIΘ is the integral coefficient and KDΘ is the 

derivative coefficient. D
λ
 Fractional order Integral D

µ
 Fractional order derivative. 
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 Yaw Controller 

  ( )     (    )      
 (    )      

 (    )   (3.21) 

Where: KPΨ is the proportional coefficient, KIΨ is the integral coefficient and KDΨ is the derivative 

coefficient. D
λ
 Fractional order Integral D

µ
 Fractional order derivative. 

 Altitude/Height Controller 

   (   (𝑧  𝑧)      
 (𝑧  𝑧)      

 (𝑧  𝑧)   )  
 

   ( )    ( )
 (3.22) 

Where: KPz is the proportional coefficient, KIz is the integral coefficient and KDz is the derivative 

coefficient. D
λ
 Fractional order Integral D

µ
 Fractional order derivative. 

3.4.3.2. Trajectory Control 

 Similar to the PID section, fractional order PID control is developed for our trajectory. 

For x and y, we use two FOPID controllers to calculate the desired acceleration: 

{
𝑥      (𝑥  𝑥)      

 (𝑥  𝑥)      
 (𝑥  𝑥)

𝑦      (𝑦  𝑦)      
 (𝑦  𝑦)      

 (𝑦  𝑦)
   (3.23) 

 

 Substituting equations (3.22) in equation (3.2): 

[

  

  

]  
 

 
[

    ( )      ( )

    ( )     ( )

]

[
 
 
 
  𝑥(𝑥  𝑥)    𝑥 

 (𝑥  𝑥)    𝑥 
 (𝑥  𝑥)

  𝑦(𝑦  𝑦)    𝑦 
 (𝑦

 
 𝑦)    𝑦 

 (𝑦
 
 𝑦)]

 
 
 
    (3.24) 
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3.5. Sliding Mode Control 

 Sliding Mode Control (SMC) is a form of nonlinear control known for its robustness, 

accuracy, ease of tuning and implementation, and because of these reasons it sees high use in 

nonlinear systems control [22]. 

 The method applies a discontinuous control signal to drive the system to slide along a 

particular surface named the sliding surface. This make it very appealing as the objective in our 

case is to control the quadrotor such as it follows a given trajectory. 

The SMC approach is considered a two-part control. The first part involves the design of 

a sliding surface so that the sliding motion satisfies design specifications. The second is 

concerned with the selection of a control law that will make the switching surface attractive to 

the system state. 

3.5.1. Sliding Mode Controller Design 

For the first part of choosing the sliding surface shape, the general form of equation 

(3.24) was proposed [23]:  

    (    
 

  
)   𝑒     (3.25) 

 

Where  is a tuning parameter is greater than zero, n is the order of the controlled system 

and e is the tracking error defined as: 

𝑒            (3.26) 

Where r is the process and rd is the desired value. 

The quadrotor model of our case is of order n=2, equation (3.25) then gives the following 

sliding surface: 

     𝑒  𝑒       (3.27) 

For the second part concerning the control law, we define u(t) as follows: 

 ( )     ( )    ( )     (3.28) 

Here we can see that  ( ) is divided into two parts: 

A continuous part    ( ) that determines the behavior of the system when an ideal sliding 

regiment is established, and is calculated given the following surface conditions: 

{
   
    

       (3.29) 

A discontinuous   ( ) that compensates the uncertainties of the model, and is designed 

according to a Lyapunov candidate function V that must be positive definite and its derivative 

must be negative definite: 
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          (3.30) 

              (3.31) 

The above conditions can be satisfied if: 

  ( )        ( ( ))    ( )     (3.32) 

Where: 

    ( )  {

        𝑓    

       𝑓    

       𝑓    

      (3.33) 

And     and K > 0 are the sliding surface exponential approach coefficients. 

3.5.1.1. Altitude Control 

 As mentioned earlier, the tracking error represented the difference between the current 

value and the desired value and is written as: 

𝑒             (3.34) 

 The sliding surface then becomes: 

     𝑒  𝑒         (3.35) 

 And the exponential reaching law becomes: 

          (  )         (      )  (      )    (3.36) 

 Solving for     

         (  )         (      )          (3.37) 

 According to equations (2.17) and (2.19), altitude controller commands can be written 

below. 

 Roll Controller 

   [   (     
 )      (

     

  
)    

       (  )      ]
  

 
  (3.38) 

 Pitch Controller 

   [   (      )      (
     

  
)           (  )      ]

  

 
  (3.39) 

 Yaw Controller 

   [   (     
 )      (

     

  
)    

       (  )      ]
  

 
  (3.40) 

 

 Altitude/Height Controller 

   [   (𝑧  𝑧  )    𝑧        (  )      ]
 

   ( )    ( )
  (3.41) 



30 
 

3.5.1.2. Position Control 

 Similar to previous positions controls, values of           must first be calculated, in 

this case this is done by applying sliding mode controllers to x and y to find desired values of 

acceleration, then converting them to desired roll and pitch values. 

{
𝑥     (𝑥  𝑥  )  𝑥        (  )      
𝑦     (𝑦  𝑦  )  𝑦        (  )      

    (3.42) 

Substituting in equation (3.2): 

[

  

  

]  
 

 
[

    ( )      ( )

    ( )     ( )

] [

   (𝑥  𝑥  )  𝑧        (  )      

   (𝑦  𝑦  )  𝑦        (  )      )

]   (3.43) 

3.5.2. SMC Chattering Effect 

 The discontinuous nature of the sign function in the SMC creates an effect that is known 

as chattering. The chattering the effect is the phenomenon of finite- frequency, finite-amplitude 

oscillations appearing in many sliding mode implementations. This effect can be observed in 

Figure 3-9 and is caused by the high-frequency switching of the sliding mode controller.  

 

Figure 3-9 X step input response showing chattering 
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Figure 3-10 Chattering Phenomenon 

 This effect must be reduced as it causes wear of mechanical parts and possible actuator 

damage as well as power loss. 

 There are many approaches to reducing the effect; one such approach is replacing the 

discontinuous sign function with a continuous function. The chosen continuous function is the 

saturation function defined as: 

 𝑎 (𝑥)  {
   𝑓 | |   

   ( )  𝑓 | |   
 (3.44) 

 This was implemented in the designed SMC controller and we can observe change in the 

same signal of Figure 3-9 in Figure 3-11: 

 

Figure 3-11 X step input response showing reduction of chattering 

3.6. Conclusion 

 In this chapter we’ve tackled the controlling problem of our quadrotor model, where three 

controllers were designed and implemented and their results are shown and discussed in the next 

section. 
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4. Chapter 4: Results and Discussion 

4.1. Introduction 

This chapter is a summary of results for the different tests performed on the quadrotor model 

with the different controllers previously developed in SIMULINK and a brief discussion into 

them. 

All the designed controllers were tested for their step input response and their trajectory 

response. The chosen trajectory for the test is: 

{

𝑥         ( )
𝑦        (    )

𝑧      
       

 

The following code is run before simulations to establish the quadrotor parameters in the 

workspace: 

clc; 

clear all; 

Ix = 7.5*10^(-3);  % Quadrotor moment of inertia around X axis 

Iy = 7.5*10^(-3);  % Quadrotor moment of inertia around Y axis 

Iz = 1.3*10^(-2);  % Quadrotor moment of inertia around Z axis 

b = 3.13*10^(-5);  % Thrust factor 

d = 7.5*10^(-7);  % Drag factor 

l = 0.23;  % Distance to the center of the Quadrotor 

m = 0.96;  % Mass of the Quadrotor in Kg 

g = 9.81;   % Gravitational acceleration 

 

4.2. PID Simulation and Results 

 The PID controllers are constructed and tuned using MATLAB’s tuning tool. The Gains 

are summarized in table (4-1): 

 
Kp Ki Kd 

X 50 0.5 15 

Y 25 0.2 10 

Z 4 0.2 4 

Phi 9 4.5 0.5 

Theta 9 7.5 1.5 

Psi 4.5 3 1.5 
Table 4-1 Chosen Gains for PID Control 

The controller is then tested with the trajectory previously selected and the results are as 

follows: 

Step input test results: 
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Figure 4-1 X step input response (PID) 

 

Figure 4-2 Y step input response (PID) 

 

Figure 4-3 Z step input response (PID) 
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Figure 4-4 Psi step input response (PID) 

 

 

 
x(t) y(t) z(t) Psi(t) 

Rise Time (s) 0.785 0.9455 0.3603 0.0167 

Overshoot 0.1397 0.0792 14.05 2.3339 

Settling time (s) 2.438 2.8871 3.7876 1.1358 

Table 4-2 Characteristic performances to a step input for PID Control 

 Trajectory test results: 

 

Figure 4-5 X Trajectory Response (PID) 
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Figure 4-6 Y Trajectory Response (PID) 

 

Figure 4-7 Z Trajectory Response (PID) 

 

Figure 4-8 X-Y-Z Trajectory Response (PID) 
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Figure 4-9 X-Y Trajectory Response (PID) 

 

Figure 4-10 X-Z Trajectory Response (PID) 
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Figure 4-11 Y-Z Trajectory Response (PID) 

 

4.3. FOPID Simulation and Results 

 The gains chosen for our control in this case are shown in table (4-2): 

 
Kp Ki Kd Lambda mu 

X 100 1 30 -0.5 0.9 

Y 70 1 30 -0.5 0.95 

Z 4 0.2 4 -0.5 1 

Phi 9 4 1 -1.2 0.8 

Theta 9 7.5 0.7 -0.8 1.2 

Psi 4.5 3 1.5 -1.5 1.2 
Table 4-3 Chosen Gains for FOPID Control 
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The results for step input tests are as follows: 

 

Figure 4-12 X step input response (FOPID) 

 

Figure 4-13 Y step input response (FOPID) 

 

Figure 4-14 Z step input response (FOPID) 
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Figure 4-15 Psi step input response (FOPID) 

 
x(t) y(t) z(t) Psi(t) 

Rise Time (s) 0.7561 0.8871 0.3593 0.004 

Overshoot 0.0199 0.2031 14.12 0.7943 

Settling time (s) 2.39 2.5816 3.666 1.0399 

Table 4-4 Characteristic performances to a step input for FOPID Control 
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  Trajectory test results: 

 

Figure 4-16 X Trajectory Response (FOPID) 

 

Figure 4-17 Y Trajectory Response (FOPID) 

 

Figure 4-18 Z Trajectory Response (FOPID) 
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Figure 4-19 X-Y-Z Trajectory Response (FOPID) 

 

Figure 4-20 X-Y Trajectory Response (FOPID) 
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Figure 4-21 X-Z Trajectory Response (FOPID) 

 

Figure 4-22 Y-Z Trajectory Response (FOPID) 

  



43 
 

4.4. SMC Simulation and Results 

 The gains selected for this controller are in table (4-3): 

 
Lambda e K 

X 20 0.1 4 

Y 20 0.1 5 

Z 4 0.1 10 

Phi 5 0.1 7.5 

Theta 5 0.1 5 

Psi 6 0.1 8 

Table 4-5 Chosen gains for Sliding Mode Control 

 The results of the step input test are as follows: 

 

Figure 4-23 X step input response (SMC) 

 

Figure 4-24 Y step input response (SMC) 
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Figure 4-25 Z step input response (SMC) 

 

Figure 4-26 Psi step input response (SMC) 

  

 
x(t) y(t) z(t) Psi(t) 

Rise Time (s) 1.3121 1.3055 0.5778 0.5908 

Overshoot 0.2204 0.3126 0.001 0.0009 

Settling time (s) 3.59 3.4565 2.0181 2.0265 

Table 4-6Characteristic performances to a step input for Sliding Mode Control 
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Trajectory test results are as follows: 

 

Figure 4-27 X Trajectory Response (SMC) 

 

Figure 4-28 Y Trajectory Response (SMC) 

 

Figure 4-29 Z Trajectory Response (SMC) 
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Figure 4-30 X-Y-Z Trajectory Response (SMC) 

 

Figure 4-31 X-Y Trajectory Response (SMC) 
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Figure 4-32 X-Z Trajectory Response (SMC) 

 

Figure 4-33 Y-Z Trajectory Response (SMC) 
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4.5. Modified SMC Simulation and Results 
The gains chosen for the modified sliding mode controllers are the same as the unmodified one in 

table (4-3). 

The results for the modified sliding mode controller are as follows: 

 For step inputs: 

 

Figure 4-34 X step input response (Modified SMC) 

 

Figure 4-35 Y step input response (Modified SMC) 
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Figure 4-36 Z step input response (Modified SMC) 

 

Figure 4-37 Psi step input response (Modified SMC) 

 
x(t) y(t) z(t) Psi(t) 

Rise Time (s) 1.3219 1.312 0.5825 0.5938 

Overshoot 0.0415 0.1324 0 0 

Settling time (s) 3.6318 3.4885 2.0287 2.049 
Table 4-7Characteristic performances to a step input for Modified Sliding Mode Control 
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For trajectory: 

 

Figure 4-38 X-Y-Z Trajectory Response (Modified SMC) 

 

Figure 4-39 X-Y Trajectory Response (Modified SMC) 
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Figure 4-40 X-Z Trajectory Response (Modified SMC) 

 

Figure 4-41 Y-Z Trajectory Response (Modified SMC) 
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4.6. Discussion 

Throughout the thesis a total of 4 controllers were developed; PID, FOPID, SMC and a 

modified form of SMC. 

 As per simulations, the following conclusions can be drawn upon the controllers: 

 For step input tracking: 

 The PID control proved to be fast in its response, albeit having some over shoot and 

steady state error. 

 The FOPID control improved upon the response of the PID by retaining the response 

speed and adding more accuracy in both the transient and the steady state. 

 The SMC was an alternative that doesn’t suffer too much from the overshoot problem 

of the, but has a slower response time overall. It also encountered undesirable 

chattering phenomenon that could be potentially harmful of real dynamic systems. 

 The chattering problem was reduced by modifying the SMC to have a continuous 

function rather than a discontinuous one. This proved to be successful and made the 

SMC much more desirable as control choice. 

For trajectory tracking: 

 The PID Control shows good performance despite having overshoot, and some 

tracking issues when direction change occurs. 

 The FOPID Control has improved tracking in comparison to the PID; being able to 

perform direction changes in a more accurate manner without suffering from too 

much overshoot. 

 The SMC provides better trajectory tracking compared to the previous two 

controllers. It however presents the problem of the chattering phenomenon.  

 The modified SMC both reduces the undesirable chattering effect of the SMC and 

improved upon its performance by reducing the occurring overshoot. 

4.7. Conclusion 

This chapter covers the results of the different tests performed in MATLAB/SIMULINK 

on the different controllers designed and implemented as well as a discussion and analysis into 

these results. 
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Conclusion and Future Development 
 This project is an attempt to model and control the motion of the quadrotor, and to 

achieve that goal, a set of rules, methods and strategies were established and implemented. 

 The dynamic model of the quadrotor was derived using the Newton-Euler method and 

three control strategies were implemented. The controllers chosen, the PID, FOPID and SMC 

along with the quadrotor model were built and simulated in MATLAB/SIMULINK and had their 

performance analyzed. All controllers gave varying performances, establishing that the choice of 

controller depends on the performance parameters required.  

 These controllers have limitations that can be overcome; the PID and FOPID can have 

their performance improved upon by implementation of heuristic methods to tune their gains. 

The SMC has different algorithms to its application, and the use of other algorithms such as the 

“super twisting” algorithm may improve its performance. 

The presented mathematical model does not consider external disturbances as they 

overlooked. In future work, the disturbances should be included along with the possible 

development of a controller capable of dealing with the failure of one or more rotors. 
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