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Abstract 
In this work, the control of a quadrotor was studied. After having found its mathematical model 

which makes it possible to simulate its behavior, three nonlinear controls were used: the proportional 

derivative controller (PDC), the backstepping control (BSC), and the sliding mode control (SMC); in 

order to study the performance of each of them in quadrotor trajectory tracking. Thus, by comparing 

the obtained results, it has been demonstrated that with all controllers, the position, orientation, and 

attitude route following errors can fastly converge to minor levels. In the presence of non-external 

disturbances, BSC controls the yaw angle and altitude of the quadrotor better than the other two 

controllers (SMC and PDC).  

Furthermore, in the presence of disturbances, each controller's steady state error maintained the 

same order as in the absence of any disturbance. However, as the disturbance increased, the 

controllers were unable to keep the quadrotor on course. The numerical and simulation findings show 

that BSC is the last one to collapse, confirming the robustness and efficacy of our built-enhanced 

control technique. 

As the next step, the Extended Kalman Filtre (EKF) was used to estimate the states of the system 

and control it without using angular and linear speed sensors. Moreover, the robustness of the controls 

in the face of the disturbance of the wind force was studied and estimated using the EKF and was 

compensated in real-time. It has been proved that the quadrotor returns to the target trajectory after a 

given amount of time (depending on the dynamics of the EKF estimator). This method's resilience is 

obvious, and it fills the gaps missed by controllers. 
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 الملخص
 

بعد العثور على نموذجها الرياضي الذي يجعل من . هذا العمل ، تمت دراسة التحكم في المحرك الرباعي في

، والتحكم ) PDC(المتحكم الاشتقاقي النسبي : الممكن محاكاة سلوكها ، تم استخدام ثلاثة عناصر تحكم غير خطية

. أداء كل منهم في تتبع المسار الرباعي؛ من أجل دراسة ) SMC(، والتحكم في الوضع المنزلق ) BSC(الخلفي 

وبالتالي ، من خلال مقارنة النتائج التي تم الحصول عليها ، فقد ثبت أنه مع جميع وحدات التحكم ، يمكن أن يتقارب 

في حالة وجود اضطرابات غير . الموقف والتوجيه والمسار الذي يتبع الأخطاء بسرعة إلى مستويات ثانوية

و  SMC(بزاوية الانعراج والارتفاع للرباعي بشكل أفضل من المتحكمات الأخريين  BSCخارجية ، تتحكم 

PDC.( 
علاوة على ذلك ، في حالة وجود اضطرابات ، حافظ خطأ الحالة الثابت لكل وحدة تحكم على نفس الترتيب كما 

ات التحكم من ومع ذلك ، مع زيادة الاضطراب ، لم تتمكن وحد. هو الحال في حالة عدم وجود أي اضطراب

هو آخر من ينهار ، مما يؤكد  BSCتظهر النتائج العددية والمحاكاة أن . الحفاظ على المحرك الرباعي في مساره

  .متانة وفعالية تقنية التحكم المدمجة لدينا

لتقدير حالات النظام والتحكم فيه دون استخدام  Extended Kalman Filtre (EKF)كخطوة تالية ، تم استخدام 

علاوة على ذلك ، تمت دراسة متانة أدوات التحكم في مواجهة اضطراب . تشعرات السرعة الزاوية والخطيةمس

لقد ثبت أن الرباعي يعود إلى المسار . وتم تعويضها في الوقت الفعلي EKFقوة الرياح وتقديرها باستخدام 

مرونة هذه الطريقة واضحة ، وهي تملأ ). EKFاعتماداً على ديناميكيات مقدر (المستهدف بعد فترة زمنية معينة 

 .الفجوات التي فاتها المتحكمون
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Resumé 

Dans ce travail, le contrôle d'un quadrirotor a été étudié. Après avoir trouvé son modèle mathématique 

permettant de simuler son comportement, trois commandes non linéaires ont été utilisées : la com-

mande proportionnelle dérivée (PDC), la commande backstepping (BSC) et la commande par mode 

glissant (SMC) ; afin d'étudier les performances de chacun d'eux en suivi de trajectoire quadrirotor. 

Ainsi, en comparant les résultats obtenus, il a été démontré qu'avec tous les contrôleurs, les erreurs 

de suivi de route de position, d'orientation et d'attitude peuvent rapidement converger vers des ni-

veaux mineurs. En présence de perturbations non externes, le BSC contrôle mieux l'angle de lacet et 

l'altitude du quadrirotor que les deux autres contrôleurs (SMC et PDC). 

De plus, en présence de perturbations, l'erreur de régime permanent de chaque contrôleur conservait 

le même ordre qu'en l'absence de toute perturbation. Cependant, à mesure que la perturbation aug-

mentait, les contrôleurs étaient incapables de maintenir le quadrirotor sur la bonne voie. Les résultats 

numériques et de simulation montrent que le BSC est le dernier à s'effondrer, confirmant la robustesse 

et l'efficacité de notre technique de contrôle amélioré. 

Dans l'étape suivante, le filtre de Kalman étendu (EKF) a été utilisé pour estimer les états du système 

et le contrôler sans utiliser de capteurs de vitesse angulaire et linéaire. De plus, la robustesse des 

commandes face à la perturbation de la force du vent a été étudiée et estimée à l'aide de l'EKF et a 

été compensée en temps réel. Il a été prouvé que le quadrirotor revient à la trajectoire cible après un 

laps de temps donné (selon la dynamique de l'estimateur EKF). La résilience de cette méthode est 

évidente et comble les lacunes manquées par les contrôleurs. 
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Introduction 

 

Recently, UAVs (Unmanned Aerial Vehicles), especially quadrotors, are largely used in differ-

ent fields such as: military and civil rescue and surveillance tasks, reconnaissance applications, in-

dustry pipe maintenance, agriculture field monitoring, and several amateur tasks. This growing at-

tractiveness is due to their simple structure and good stability, low cost and maneuverability [1].  

Due to quadrotor’s complicated mathematical modeling and the system non-linearity owing to its six 

degrees of freedom (translational and rotational motion) with only four control inputs, several re-

searches were investigated to develop an efficient quadrotors’ controller. Starting from traditional 

PID controller which is commonly used to preserve the equilibrium or a desired attitude of the drone; 

however, it does not ensure the robustness of the quadrotor, whatever is the controlling target Euler 

angle or angular rate, which leads to the cascade PID algorithm to provide better performance and 

motion stabilization [2-3]. However, the implemented system still needs to tackle the drone system 

non-linearity. In addition to adaptive finite-time control [4], feedback control based on the represen-

tation in quaternions [5] and LQR based controllers [6].  

According to various existing research works, backstepping is the best solution for disturbances 

rejection because it improves the transient performance [7-10]. Moreover, Different techniques were 

established to estimate the required quadrotor’s position and altitude measurements such as: Kalman 

filtering (KF) [11], the complementary filter (CF) [12] and Extended Kalman Filters (EKF) [13] es-

timators. Kalman filter is a well-known recursive algorithm that takes the stochastics states spaces 

model of the system together with measured outputs to achieve the optimal estimation states. The 

optimality of the state’s estimation is achieved with the minimization of the mean estimation error. 

Therefore, EKF and backstepping were investigated in this work to estimate the angular velocity and 

the speed of our quadrotor; hence, track the desired trajectory and control the altitude. 

However, the presence of external disturbances such as wind decreases the efficiency of the 

existing controllers [14-15]; therefore, environmental uncertainties such as turbulence influences and 

wind disturbances present additional forces and moments on the quadrotor dynamics which were 

ignored in the previous works [16-18]. Hence, the design of more reliable controller for quadrotor is 
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a challenging task which require an accurate wind forces estimation proposed in the last part of this 

paper using EKF. Simulation results are shown to verify the efficiency of the presented model which 

can considerably advance the trajectory tracking feature of the quadrotor under wind disturbances. 

The work of this thesis focuses on new drone control strategies and more particularly on non-

linear controls. In the first place, we studied the effect of external disturbances on the trajectory of 

the drone (wind force). In second place, our work will be devoted to the estimation of the states of 

the system using the extended Kalman filter (EKF), the latter will be used to estimate the force of the 

wind and compensate to reach the desired trajectory in the most unfavorable conditions. 

In the first chapter, the kinematics and dynamics of the quadrotors are described in detail to aid in 

understanding the behavior of the drone. we will extract the nonlinear mathematical model of a 

quadrotor. 

In the second chapter, nonlinear control (BSC (Backstepping Control) and SMC (Sliding Mode 

Control)) theories are used to control the quadrotors. In this part, an easy-to-implement enhanced 

BSC is developed; then, tested beside two other controllers: sliding mode (SMC) and proportional 

derivative controller (PDC) to keep the quadrotor tracking the desired trajectory both in a steady state 

and in the existence of outside instabilities. Finally, the three controllers' results are compared to 

determine which is the best. 

Chapter three will be devoted initially to the estimation of the twelve states of the quadrotor using 

the extended Kalman filter, after which the nonlinear control will be carried out without angular and 

linear speed sensors. 

Chapter four presents the estimation of the system states (quadrotors) where we assume that the 

wind force is a state of the system and try to compensate for it and minimize its impact on the system. 

A robustness test of this method will be carried out to shed light on the contribution that this technique 

can make to the control of the quadrotor. 

Finally, a general conclusion on this work is given and some perspectives are proposed.
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Chapter 1: Mathematical Model of Quadrotors  

A drone, also known as an unmanned aerial vehicle (UAV), is an aerial vehicle without a 

human operator inside. It can be remotely or autonomously flown. It is either flown autonomously 

on a computer using pre-programmed flight plans or remotely by a pilot on the ground. 

The first sections of this chapter start with a brief description of the drones, their various cate-

gories, and their main configurations. Then, detailed mathematical modeling of the quadrotors will 

be explained in the remaining sections of this chapter.  

I.1. Drones’ Classification 

UAVs can be categorized in a variety of ways, such as by their range of operation, aerody-

namic configuration, size, payload, or degrees of autonomy, among other factors. 

I.1.1. Classification according to operation’s range  

According to their maximum altitude, resilience, and sizes, which range from large drones to 

micro drones, UAVs can be divided into seven distinct categories as follows: 

 High-Altitude Long-Endurance (HALE) aircraft: these aircraft are perfect for offering sur-

veillance, remote sensing, and communication relay capabilities for both military and civil-

ian uses. HALE UAVs usually fly between 9 and 20 kilometers above the ground while 

circling particular points of interest at a slow speed, with a 24-hour resilience or longer. 

 Medium-Altitude Long-Endurance (MALE): these UAVs have a range of 3 to 9 km and can 

travel for long periods of time, usually 24 to 48 hours. These drones can be used for law 

enforcement, boarder and coastal patrol, disaster survey, information relays, and environ-

mental protection.   

 Medium-Range or Tactical UAV (TUAV): Capable of altitudes between 100 and 300 km 

foe an endurance of approximately 10-12 hours. Compared to HALE and MALE, which are 

currently used mainly to support military applications, they are smaller and work with sim-

pler systems.  
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 Close Range UAV: their operational range is 100 km. They are primarily used in civil ap-

plications like powerline inspection, crop spraying, traffic monitoring, national security, 

etc.…  

 Mini UAV (MUAV): Within a range of up to 10 km, they can complete their tasks with a 

short endurance (30 minutes). They are mainly made for gathering information during close-

quarters battles. Their ability to lift off and land vertically gives them a significant applica-

tion in crowded environments. 

 Micro UAV (MAV): Their wingspan can extend up to 150 millimeters. They are primarily 

utilized indoors, where they must hover and fly gently. 

 Nano Air Vehicles (NAV): They are only about 10 mm in dimension. They are primarily 

used in groups for purposes like radar interference. If they have a tiny camera, they can also 

be used for close-range surveillance. 

I.1.2. Aerodynamic configuration’s classification 

Based on their aerodynamic configuration, UAVs can be divided into two major categories as 

follows: 

 Fixed-wing UAVs: need a runway to launch and land. They are able to cruise at high speeds 

for extended periods of time. They are primarily utilized for scientific purposes such as envi-

ronmental tracking and meteorological reconnaissance. 

 Rotary-wing UAVs: they are able to take off and land vertically. They have excellent maneu-

verability when hover and fly. Four additional groups can be created from the Ro-tary-wing 

UAVs which are: 

- Single-rotor: for stability, they have a primary rotor on top and a second rotor at the tail, 

similar to the helicopter configuration. 

- Coaxial: They have a single shaft with two rotors mounted on it that rotate in opposing 

orientations. 

- Quadrotor: they have four rotors fitted in a cross-like configuration. Whereas, our thesis 

is concerned with this drone’s configuration. 
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- Multi-rotor: eight or six-rotor UAVs. Due to the large numbers of rotors, they have redun-

dancy and are able to fly even when a motor breaks.  

I.1.3. Quadrotor’s description 

Quadrotors consist of four actuators that are individually controlled to produce a relative thrust.  

Two of the rotors rotate clockwise, and the other two rotors rotate in counter-clockwise direction. 

Figure 1.1 shown below depicts that the rotors on the same axis rotate in the same direction. 

 

Fig. 1.1. Rotors rotation on quadrotor. 

Even though the quadrotor has 6 DOF, it is equipped just with four propellers; hence it is not 

possible to reach a desired set-point for all the DOF, but at maximum four. However, thanks to its 

structure, it is quite easy to choose the four best controllable variables and to decouple them to make 

the controller easier. The four quadrotor targets are thus related to the four basic movements which 

allow the helicopter to reach a certain height and attitude. It follows the description of these basic 

movements: Throttle, Roll, Pitch and Yaw. 

 Throttle is provided by increasing (or decreasing) all the propeller speeds by the same 

amount. It leads to a vertical force which raises or lowers the quadrotor. 

 Roll is provided by increasing (or decreasing) the left propeller speed and by decreas-

ing (or increasing) the right one. The motion in the 'x simply describes the quadrotor 

moving forward/backward. 
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 Pitch is very similar to the roll and is provided by increasing (or decreasing) the rear 

propeller speed and by decreasing (or increasing) the front one. The motion in the 'y' 

describes the quadrotor moving sideways. 

 Yaw This command is provided by increasing (or decreasing) the front-rear propel-

lers’ speed and by decreasing (or increasing) that of the left-right couple. The motion 

in the 'z' direction describes the quadrotor turning left/right. 

Two configurations generally exist within Quadrotors which are categorized as the ‘+’ or ‘X’ 

sets, a comparison between the two suggests that the overall control authority from both configura-

tions shows that the performance is identical. 

I.2. State of the art 

UAVs have become increasingly widely used in the civil and military fields and are the subject 

of concurrent scientific research, especially with the development of estimation and observation 

theory and artificial intelligence. 

Among these works which have been published, we find: The paper presented in [1] applied 

LQ and LQG methodologies for quadcopter control systems. The article [2] has focused on opti-

mizing the quadcopter system by implementing a controller that provides motion stabilization. In 

[6] an optimal control is developed for the position and yaw control of the quadcopter, based on 

linear quadratic regulator (LQR). The work in [7] investigates the problem of a robust path follow-

ing control of a quadcopter unmanned aerial vehicle (UAV). In the article [8], the backstepping 

control strategy was devised to control the positions and orientations of the quadrotor subsystem. 

Several scenarios were performed to examine the performance of the backstepping strategy. To 

control UAVs, a simple control strategy based on a PD controller in the inner loop and a PI controller 

in the outer loop is proposed and tested in simulation and experimentation [9]. The authors of [10] 

used a robust back-stepping (RIB) integral control method to control a prototype quadcopter, and 

they concluded that the controller provides attitude and motion stabilization under various assump-

tions. Authors of [11] opted for the Aircraft position, speed, and attitude estimates can be obtained 
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by GPS/INS integration using Kalman filter implementation. [12]presents the proposal of a compo-

sition of a Complementary Filter used in orientation estimation and a Linear Kalman Filter (LKF) 

in position estimation of the UAVs. The data evaluated in the experiments were acquired post flight 

from the flight controller embedded in a UAV. The article [13] ackles the problem of constant po-

sitioning and collision avoidance on UAVs in outdoor (wildness) search scenarios by using received 

signal strength (RSS) from the onboard communication module. Colored noise is found in the RSS, 

which invalidates the unbiased assumptions in the least quares (LS) algorithms that are widely used 

in RSS-based position estimation. A colored noise model is thus proposed and applied in the ex-

tended Kalman filter (EKF) for distance estimation. The paper [14] proposed a novel adaptive for-

mation control architecture for a group of quadrotor systems, under line-of-sight (LOS) distance and 

relative distance constraints as well as attitude constraints, where the constraint requirements can be 

both asymmetric and time-varying in nature. The authors of the article [15] used a steady-state iden-

tification method to estimate the parameters of the mathematical model of the variable-pitch electric 

propeller, and after adopted a control and optimization strategy for the variable-pitch propeller, 

mainly including the steady-state control and optimization scheme with minimum power consump-

tion, [16] and numerical simulations. In [17], different types of wind fields which easily affect the 

UAV are summarized; furthermore, the mechanism of their wind fields affecting the UAV is first 

strictly analyzed. Next, a novel “reject external disturbance” flight mode for UAV is put forward to 

offset the trajectory deviation caused by side wind, which makes use of the wind speed information 

obtained by airspeed and ground speed of UAV. In order to implement the “reject external disturb-

ance” flight mode, the Lyapunov stability theory-based variable model reference adaptive control 

(VMRAC) system is proposed, and it could also deal with the adverse effects of wind shear and 

turbulence on UAV flight. 

The characteristics and mathematical models of wind, which have a great influence on un-

manned aerial vehicles in the low-altitude environment, are summarized in [18]; constant wind, 

turbulent flow, many types of wind shear, and propeller vortex were considered in this work. More-

over, the mathematical model of the unmanned aerial vehicle was combined with the mechanism of 

the unmanned aerial vehicle motion in the wind field and was illustrated from three different types 

of viewpoints, including the velocity viewpoint, the force viewpoint, and the energy viewpoint. 
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Some simulation tests were implemented to show the effects of different types of wind on the tra-

jectory and flight states of the unmanned aerial vehicle. 

The authors of the paper [19] discussed wind formation and quadcopter kinematics and pro-

vided cost functions for A* based on distance and wind information. In addition, a collision control 

method is incorporated into a flight scenario in outdoor terrain under various curvy formations. In 

[20] a new UAV trajectory planning technique has been proposed, based on the artificial potential 

field (APF) for following GMTs in windy environments, to provide steady and continuous coverage 

over the GMT. Therefore, a new modified attractive force to enhance the UAV’s sensitivity to wind 

speed and direction was proposed. The modified wind resistance attractive force function accom-

modates any small variation of relative displacement caused by wind leading the UAV to drift in a 

certain direction. This enables the UAV to maintain its position by tilting (i.e., changing its roll and 

pitch angles) against the wind to retain the camera aim point on the GMT. The proposed path-

planning technique is hardware-independent, does not require an anemometer for measuring wind 

speed and direction, and can be adapted for all types of multirotor UAVs equipped with basic sen-

sors and an autopilot flight controller. 

In [21] a new UAV trajectory planning technique has been proposed, based on the artificial 

potential field (APF) for following GMTs in windy environments, to provide steady and continuous 

coverage over the GMT, by proposing a new modified attractive force to enhance the UAV’s sen-

sitivity to wind speed and direction. The modified wind resistance attractive force function accom-

modates for any small variation of relative displacement caused by wind leading the UAV to drift 

in a certain direction. This enables the UAV to maintain its position by tilting (i.e., changing its roll 

and pitch angles) against the wind to retain the camera aim point on the GMT. The proposed path-

planning technique is hardware-independent, does not require an anemometer for measuring wind 

speed and direction, and can be adopted for all types of multirotor UAVs equipped with basic sen-

sors and an autopilot flight controller. This paper [22] presents a novel UAV path-planning tech-

nique, based on the artificial potential field (APF) for following GMTs in windy environments, to 

provide steady and continuous coverage over the GMT, by proposing a new modified attractive 

force to enhance the UAV’s sensitivity to wind speed and direction . 
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In the thesis presented in [23], a new bio-inspired algorithm suitable for finding solutions in 

optimization problems is developed. The Ecological Systems Algorithm (ESA) mimics ecological 

rules to iteratively find the maximum of a function. This algorithm can be used in static and dynamic 

search environments. It is used in our thesis to find the gains of different fault-tolerant controllers 

designed for drones.Sliding mode control is then used to develop two passive fault-tolerant control-

lers (PFTC) for quadcopters.Because passive fault-tolerant controls have reduced robustness and 

because they can only handle a small number of faults, an active sliding mode control using a Kal-

man filter is developed for quadcopters. The fault is estimated in real time and the control is recon-

figured accordingly.  To deal with extreme situations, an emergency controller is developed for 

quadcopters subject to such faults. The emergency control device is based on the conversion of the 

quadcopter into a trirotor, the fault diagnosis and identification unit which estimates faults and se-

rious failures online is based on the estimates of a Kalman filter. 

In [24] a control strategy was presented using Proportional Derivative (PD) Controller for the 

attitude and trajectory control of the Quadrotor (UAV). Whereas the authors in [25] explained the 

control architecture including vision-based control of the quadrotor; thus, the proposed dynamical 

model comprised gyroscopic effects and its control strategies. 

In [29], the authors do a theoretical analysis of the dynamics of the Draganflyer in order to 

extract its model which can be used as a computer control system to ensure its stable hovering and 

indoor flight. The author of article [31] opted to use a control strategy that includes feedback line-

arization coupled with a PD controller for the translational subsystem and a backstepping-based PID 

nonlinear controller for the rotational subsystem of the quadrotor. In [32] the results of two nonlinear 

control techniques applied to a quadrotor, a backstepping, and sliding mode control techniques were 

presented. After that, the design of an optimal model-free backstepping controller for a MIMO 

quadrotor helicopter, perturbed by unknown external disturbances, was described in [33]. The pro-

posed method consists of using a model-free-based backstepping controller optimized by a cuckoo 

search algorithm. The work exposed in [34] was devoted to designing and optimizing an autono-

mous quadrotor UAV controller. First, the aerial vehicle's dynamic model was presented; then, an 

optimal backstepping controller (OBC) was suggested. Traditionally, backstepping controller (BC) 

parameters are often selected arbitrarily. The gravitational search algorithm (GSA) was used in that 
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work to determine the BC parameter optimum values. In [39] a Backstepping approach was used 

for the synthesis of tracking errors and Lyapunov functions, a sliding mode controller was developed 

in order to ensure Lyapunov stability, handle all system nonlinearities, and track the desired trajec-

tories. In [40], a Sliding Mode Control (SMC) approach was designed for the quadrotor in order to 

stabilize its vertical flight dynamics. The tracking of a helical desired trajectory was investigated for 

the SMC-controlled Quad rotorcraft.  

While in [41], two types of nonlinear controllers for an autonomous quadrotor helicopter were 

studied. The first one proposed a feedback linearization controller involving high-order derivative 

terms and turns out to be quite sensitive to sensor noise as well as modeling uncertainty. The second 

involved a new approach to an adaptive sliding mode controller using input augmentation in order 

to account for the underactuated property of the helicopter, sensor noise, and uncertainty without 

using control inputs of large magnitude. 

A direct adaptive sliding mode control was developed in [51] for the quadrotor attitude stabi-

lization and altitude trajectory tracking. First, the developed controller was applied without consid-

ering disturbances and parameter uncertainties. After that, a centered white Gaussian noise with 

some parameter uncertainties was added to the considered output vectors, mass, and inertia matrix, 

respectively. The synthesis of the adaptation laws was based on the positivity and Lyapunov design 

principle. 

Hence, the article [53] proposed employing Wolfram Mathematica to find the optimal PID 

settings for a quadcopter by minimizing the error integral. The quadcopter control system used four 

PID controllers: one to control the altitude and three to control the attitude, i.e., the roll, pitch and 

yaw. The minimization functions available in Wolfram Mathematica are ‘FindMinimum’ and 

‘NMinimize’. The main difference between them lies in the fact that one searches for a local mini-

mum and the other is responsible for finding a global minimum of a constrained function. 

The authors of [54] constructed the relationship between the attitude and linear acceleration 

of a small quadrotor unmanned aircraft and proposed a trajectory tracking control design algorithm, 

based on the relationship, using a new command-filtered backstepping technique to stabilize the 

attitude; and a linear tracking differentiator to eliminate the classical inner/outer-loop structure. In 
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[55], a new approach was proposed, by using extended Kalman filter (EKF)—linear Kalman filter 

(LKF), in a cascaded form, to couple the GPS with INS. GPS raw data were fused with noisy Euler 

angles coming from the inertial measurement unit (IMU) readings, in order to produce more con-

sistent and accurate real-time navigation information. 

In [56], a novel robust backstepping-based approach combined with sliding mode control is 

proposed for trajectory tracking of a quadrotor UAV subject to external disturbances and parameter 

uncertainties associated with the presence of aerodynamic forces and possible wind force. 

[57] the dynamic model of a 4Y octorotor is derived, and a suitable feedback controller is 

designed. Moreover, a simple control reconfiguration scheme is proposed to handle the failure of 

one rotor. Simulation results show the feasibility of the proposed controller. 

In [58], a cascaded SMC is developed for quadrotor control. The inner loop responsible of 

stabilizing altitude and attitude variables is based on feedback linearization control, while the outer 

loop that controls the position of the quadrotor is based on SMC. Simulation results show good 

performance of the proposed controller despite the presence of external disturbances. 

In [59], a nonlinear adaptive estimator is proposed to improve robustness in the velocity estimation, 

when only the linear acceleration, the angles and the an gular velocity are available for measurement. 

I.3. Quadrotor’s Configuration 

The quadrotor consists of four rotors in a cross-configuration, as shown in Figure I.2. These 

four actuators are individually controlled to produce a relative thrust. Two of the rotors rotate clock-

wise, and the other two rotors rotate in counter clockwise direction. This configuration allows the 

quadrotor to be relatively simple in design yet highly reliable and maneuverable. The dynamic equa-

tion of movement of the attitude could be deduced from the Euler equation. The quadrotor mathe-

matical and state-space models are explained in the following subsections. 

Quadrotor has six degrees of freedom (DOF), it only has four rotors, making it impossible to 

achieve a desired set-point for all six DOF. However, because of its structure, it is quite simple to 

select the four best controllable variables and decouple them to make the controller simpler. The 
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four quadrotor targets are thus linked to the four fundamental movements that enable the helicopter 

to achieve a specific height and attitude. To describe the motion of a 6 DOF rigid body it is usual 

to define two reference frames:  

• Earth inertial reference (E-frame)  

• Body-fixed reference (B-frame). 

 

 

 

 

 

 

 

 

 

 

  Fig. 1.2. Quadrotor configuration. 

The distance between the Earth frame and the body frame indicates the exact position of the 

center of mass of the quadrotor 𝑟 = [𝑥 𝑦 𝑧]்.The orientation of the quadrotor is indicated by the 

rotation R from the body frame to the inertial one, and it is described by roll (ϕ), pitch (θ) and yaw 

(ψ) angles representing rotations about the X, Y and Z-axes respectively. Assuming the order of 

rotation is pitch, roll then yaw; thus, the rotation matrix R is given by Eq. (1.1) [39]: 

𝑅 = ቎

cos(𝜃) cos(𝜓) cos() sin(𝜃) sin(𝜙) − cos(𝜙) sin(𝜓) cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓)

cos(𝜃) sin(𝜓) sin(𝜙) sin(𝜃) sin(𝜓) + cos(𝜃) cos(𝜓) cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜃) cos(𝜓)

− sin(𝜃) sin(𝜙) cos(𝜃) cos(𝜙) cos(𝜃)
቏ (1.1) 

To link between the Euler rates 𝜂̇ = [𝜙̇ 𝜃̇ 𝜓̇]் that are measured in the inertial frame and 

angular body rates 𝜔 = [𝑝 𝑞 𝑟]். The following transformation is needed: 𝜔 = 𝑅௥𝜂̇       

Where:       
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𝑅௥ = ቎

cos(𝜃) 0 − cos(𝜙) sin(𝜃)

0 1 sin(𝜙)

sin(𝜃) 0 cos(𝜙) cos(𝜃)
቏                     (1.2) 

Around the hover position, a   small angle assumption is made where cos(𝜙) ≈

cos(𝜃) ≈ 1, and sin(𝜙) ≈ sin(𝜃) ≈ 0. Thus, 𝑅௥ can be simplified to an identity matrix I [27]. 

I.3.1. Quadrotor Dynamics  

The quadrotor’s motion may be split into two subsystems: a rotating subsystem (roll, pitch 

and yaw) and a translating subsystem (x, y and z coordinates). The revolving subsystem is com-

pletely actuated whilst the translating subsystem is under-actuated [27]. Newton Euler Equation can 

be formulated by Eq. 1.3: 

ቂ
 𝐹 
𝜏

ቃ  =൤
 𝑚𝐼ௗଷ 𝑂ଷ 

𝑂ଷ 𝐼ଷ
൨ ቂ 

a 
𝛼

ቃ +൤
0

 𝜔 × 𝐼ଷ𝜔 
൨,   (1.3) 

Knowing that:  

𝐼ଷ = ቎

𝐼௫௫ 0 0
0 𝐼௬௬ 0

0 0 𝐼௭௭

቏                      

With:   

F: the net force acting on the quadrotor,  

𝜏: the net torque  

𝐼ௗଷ: 3 × 3 identity matrix,  

𝐼ଷ: the moment of inertia, 

m: the quadrotor mass 

a: the linear acceleration of the center of mass, 

α: the angular acceleration 

Based on the Newton-Euler method, the rotational equations of motion are derived in the body 

frame with the general formalism Eq. 1.4:  

𝐼𝜔̇ + 𝜔 × 𝐼𝜔 = 𝑀஻                         (1.4) 

Where: 
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I: is the inertia matrix of the quadrotor. 

𝜔: is the angular body rate 

MB: are all the moments acting on the quadrotor in the body frame. 

𝐼𝜔̇ 𝑎𝑛𝑑 𝜔 × 𝐼𝜔 : Represent the rate of change of angular momentum in the body frame. 

I.3.2. Moments acting on the quadrotors  

Before we define the last term of the equation (1.4) - 𝑀஻- , two physical effects have to be 

defined: the aerodynamic forces and moments generated by a rotor. As an effect of rotation, each 

rotor generates a force called the aerodynamic force 𝑭𝒊 and a moment called the aerodynamic mo-

ment 𝑴𝒊. And are given by: 

𝐹௜ =
1

2
𝜌𝐴𝐶்𝑟ଶΩ௜

ଶ                                                            (1.5) 

𝑀௜ =
1

2
𝜌𝐴𝐶஽𝑟ଶΩ௜

ଶ                                                           (1.6) 

Where:  

𝜌:  is the air density. 

𝐴:  blade area. 

𝐶஽ , 𝐶்:  aerodynamic coefficients. 

𝑟:  the radius of blade. 

Ω௜:  angular velocity of rotor 𝑖. 

The geometry of the propeller and the density of the air are the major parameters that the 

aerodynamic force and moment depends on. In case of a quadrotor the maximum altitude is limited, 

thus the air density can be considered as constant. As a result, Eqs. (1.5) and (1.6) can be simplified 

to the following [8]: 

 

𝐹௜ = 𝐾௙Ω௜
ଶ                                                             (1.7) 

𝑀௜ = 𝐾ெΩ௜
ଶ                                                            (1.8) 

Where 𝐾௙ and 𝐾ெ are the aerodynamic force and moment constants respectively and 𝛺𝑖 is 

the angular velocity of rotor 𝑖. 
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Figure I.2 shows the forces and moments acting and produced on each rotor of the quadcopter. 

It is clear that each rotor produces an upwards thrust force 𝐹௜ and generates a moment 𝑀௜ 

that has an opposite direction to the directions of the corresponding rotor.  

Starting with the moments about the body frame’s x-axis. By using the right-hand rule in 

association with the axes of the body frame, 𝐹2 multiplied by the moment arm 𝑙 generates a negative 

moment about the x-axis, in the same manner, 𝐹4 generates a positive moment. Hence, the total 

moment about the x-axis can be expressed as [1]: 

                𝑀௫ = −𝐹ଶ𝑙 + 𝐹ସ𝑙 = −൫𝐾௙Ωଶ
ଶ൯𝑙 + ൫𝐾௙Ωସ

ଶ൯𝑙           

                𝑀௫ = 𝑙𝐾௙(−Ωଶ
ଶ + Ωସ

ଶ)                      (1.9) 

Where 𝑙 is the arm length or the distance between the center of mass of the quadrotor and the 

axis of rotation of each rotor. 

With the same manner the moments about the y-axis are expressed as:  

                𝑀௬ = −𝐹ଵ𝑙 + 𝐹ଷ𝑙 = −൫𝐾௙Ωଵ
ଶ൯𝑙 + ൫𝐾௙Ωଷ

ଶ൯𝑙     

𝑀௬ =  𝐾௙(Ωଵ
ଶ − Ωଷ

ଶ)                       (1.10) 

About the z-axis, using the right-hand rule, the moments are expressed as: 

𝑀௭ = −𝑀ଵ + 𝑀ଶ − 𝑀ଷ + 𝑀ସ        

𝑀௭ = −(𝐾ெΩଵ
ଶ) + (𝐾ெΩଶ

ଶ) − (𝐾ெΩଷ
ଶ) + (𝐾ெΩସ

ଶ)    

𝑀௭ = 𝐾ெ(−Ωଵ
ଶ + Ωଶ

ଶ − Ωଷ
ଶ + Ωସ

ଶ)     (1.11) 

Finally, by combining the equations 𝑀஻ can be easily found and is given by following:  

𝑀஻ = ቎

𝑙𝐾௙(−Ωଶ
ଶ + Ωସ

ଶ)

𝑙𝐾௙(Ωଵ
ଶ − Ωଷ

ଶ)

𝐾ெ(−Ωଵ
ଶ + Ωଶ

ଶ − Ωଷ
ଶ + Ωସ

ଶ)

቏                      (1.12) 

Where: 𝑙:represents the distance from the center of the quadcopter to any of the propellers. 
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The dynamic model of quadrotor can be defined in terms of the position vector and forces 

expressions as given in Eqs. (1.13) and (1.14); knowing that: 

𝑚 ൥
𝑥ᇱᇱ

𝑦ᇱᇱ

𝑧′′

൩ = ൥
0
0

−𝑚𝑔
൩ + ቎

(sin(ϕ) sin(ψ) + cos(ϕ) cos(ψ) sin(θ))𝑈ଵ

(cos(ϕ) sin(ψ) sin(θ) − cos(ψ) sin(ϕ))𝑈ଵ

cos(ϕ) cos(θ) 𝑈ଵ

቏ 

Thus: 

 

⎩
⎪
⎨

⎪
⎧𝑥" = −

௎భ

௠
(sin (𝜑) sin(𝜓) + cos (𝜑)cos (𝜃)cos (𝜓))

𝑦" = −
௎భ

௠
(cos (𝜑) sin(𝜃) sin(𝜓) − sin (𝜓)cos (𝜃))

 𝑧" = 𝑔 −
௎భ

௠
(cos(𝜃) cos (𝜑))                                       

             (1.13) 

Where, represents the second derivative of position vector, Where 𝑈ଵ is the re-

sulting upward thrust of the four propellers and m denotes the mass. 

Input terms are defined as 𝑈ଵ is the normalized total lift force, and 𝑈ఝ , 𝑈ఏ, and 𝑈ట corre-

spond to the control inputs of roll, pitch and yaw moments, respectively (Eq. (1.14)). 

⎩
⎪
⎨

⎪
⎧ 𝑢ଵ = 𝑏(𝐹ଵ + 𝐹ଶ + 𝐹ଷ + 𝐹ସ)

𝑢ఝ = 𝑙𝑏(   𝐹ଶ − 𝐹ସ )              

𝑢ఏ = 𝑙𝑏(   𝐹ଷ − 𝐹ଵ )              

𝑢ట = 𝑑(𝐹ଵ − 𝐹ଶ + 𝐹ଷ − 𝐹ସ)

               (1.14) 

The moment equations can be expressed in terms of the orientation angles (φ, θ, ψ): Roll, 

Pitch and Yaw respectively as given in Eq. (1.15) and Eq. (1.16).

 

⎩
⎪
⎨

⎪
⎧𝑝ᇱ =

ூ೥ିூ೤

ூೣ
𝑞𝑟 −

௃ೝ

ூೣ
𝑞Ω +

ଵ

ூೣ
𝑈ఝ                    

𝑞ᇱ =
ூ೥ିூೣ

ூ೤
𝑝𝑟 −

௃ೝ

ூ೤
𝑝Ω +

ଵ

ூ೤
𝑈ఏ                    

𝑟ᇱ =
ூ೤ିூೣ

ூ೥
𝑝𝑞 +

ଵ

ூ೥
𝑈ట                                   

        (1.15) 

൞

𝜑ᇱ = 𝑝 + 𝑞𝑠𝑖𝑛(𝜑)𝑡𝑔(𝜃) + 𝑟𝑐𝑜𝑠(𝜑)𝑡𝑔(𝜃)                    

𝜃ᇱ = 𝑞𝑐𝑜𝑠(𝜑) − 𝑟𝑠𝑖𝑛(𝜑)                                                  

𝜓ᇱ = 𝑞
ୱ୧୬ (ఝ)

ୡ୭ୱ (ఏ)
+ 𝑟

ୡ୭ୱ (ఝ)

ୡ୭ୱ (ఏ)
                                                

   (1.16) 

𝑈ఝ , 𝑈ఏ, 𝑈ట   represents the total rolling, pitching and yawing torques; whereas, p, q and r 

represent the angular velocities in the body frame. 

),,( """ zyx
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I.4. State-space Model 

A state space representation is a mathematical model of a physical system as a set of inputs, 

outputs and state variables related by first order differential equations. "State space" refers to the 

space whose axes are the state variables. The state of the system can be represented as a vector 

within that space.  

In this work the state space model of the quadrotor in the inertial frame is developed. Thus, 

the dynamic model of the quadrotor in the inertial frame can be expressed in the form: 

𝑋̇ = 𝑓(𝑋, 𝑈)  

By the system referred as Eq. (1.17): 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑥ଵ
ᇱ = 𝑥ଶ                                                      

𝑥ଶ
ᇱ = 𝑎ଵ𝑥଺𝑥ସ + Ω𝑎ଷ𝑥ସ + 𝑏ଵ𝑈ఝ               

𝑥ଷ
ᇱ = 𝑥ସ                                                       

𝑥ସ
ᇱ = 𝑎ସ𝑥ଶ𝑥଺ + Ω𝑎଺𝑥ଶ + 𝑏ଶ𝑈ఏ               

𝑥ହ
ᇱ = 𝑥଺                                                       

𝑥଺
ᇱ = 𝑎଻𝑥ଶ𝑥ସ + 𝑏ଷ𝑈ట                                

𝑥଻
ᇱ = 𝑥଼                                                       

𝑥଼
ᇱ = 𝑎ଽ𝑥଼ +

ୡ୭ୱ(௫భ)ୡ୭ୱ (௫య)

௠
𝑈ଵ − 𝑔       

𝑥ଽ
ᇱ = 𝑥ଵ଴                                                       

𝑥ଵ଴
ᇱ = 𝑎ଵ଴𝑥ଵ଴ +

௎భ

௠
𝑈௬                               

𝑥ଵଵ
ᇱ = 𝑥ଵଶ                                                       

𝑥ଵଶ
ᇱ = 𝑎ଵଵ𝑥ଵଶ +

௎భ

௠
𝑈௫                                 

             (1.17) 

The parameters a1, a3, a4, a6, b1, b2 and b3 can be calculated as follow: 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧𝑎ଵ =

𝐼௬ − 𝐼௭

𝐼௫

𝑎ଷ =
𝐽௥

𝐼௫

 𝑎ସ =
𝐼௭ − 𝐼௫

𝐼௬

𝑎଺ =
𝐽௥

𝐼௬
 

𝑏ଵ =
𝐼௫ − 𝐼௬

𝐼௭

𝑏ଶ =
𝑑

𝐼௬

𝑏ଷ =
𝑑

𝐼௭

     

Ix, Iy and Iz denote the inertias of the x-axis, y-axis and z-axis of the Quadrotor, respectively, 

Jr denotes the z-axis inertia of the propellers’ rotors. 

Whereas, 

൜
𝑈௫ = cos(𝑥ଵ) cos(𝑥ଷ) cos(𝑥ହ) + sin(𝑥ଵ) sin(𝑥ହ)             

𝑈௬ = cos(𝑥ଵ) sin(𝑥ଷ) sin(𝑥ହ) − 𝑠𝑖 n(𝑥ହ)  cos (𝑥ଷ)           
   

I.5. Conclusion 

In order to find the equation of state of the quadrotor, newton’s first and second law are used 

to found six differential equations that manage the operation of quadrotor (system has six degrees 

of freedom 6 DOF); at the end, the equation of quadrotor is obtained which is constituted of twelve 

states. The latter will be used to simulate the operation of the quadrotor. 
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Chapter 2: Nonlinear control of quadrotor 

In this chapter, three nonlinear controllers are implemented in Matlab Simulink starting by pro-

portional derivative controller (PDC) beside two other controllers: backstepping controller (BSC) 

sliding mode controller (SMC); in order to study the performance of each of them in quadrotor tra-

jectory tracking. Thus, the obtained results are compared and conclusions are extracted. 

II.1. PID Control of Quadrotor  

From the model obtained in the previous chapter, we will realize the control of the quadrotor 

using the PID regulators. To overcome the problem of nonlinearity of the system and to control the 

positions x,y through the attitudes 𝜑 and 𝜃, we use the PI-D regulator to control the angles and PD 

regulator to control the positions. The general control strategy is shown in the figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1. Quadrotor control strategy. 

 

The desired angles 𝜃ௗ and 𝜑ௗ are given by the relations (2.1) and (2.3) indicated in [54] as 

follows: 

θU

x

y

z

φ

θ

xU

ψ

dx

φU

ψU

dy
 

yU

correction  
block 

dθ

dφ

pitch 
control  

roll 
control  

dψ yaw 
control  

    z   
control 

dz
1U

ψ,φ,θ,z

y,x

x,y position  
control 
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        𝜃ௗ = 𝑎𝑟𝑐𝑡𝑔 ቀ
௎ೣ ୡ୭ୱ(ట)ା௎೤ ୱ୧୬(ట)

௎೥ା௚
ቁ                                         (2.1) 

        𝜑ௗ = 𝑎𝑟𝑠𝑖𝑛 ቀ𝑚
௎ೣ ୱ୧୬(஦)ି௎೤ ୡ୭ୱ(ట)

௎భ
ቁ                                       (2.2) 

𝑈ଵ = ට𝑈௫
ଶ + 𝑈௬

ଶ + 𝑈௭
ଶ                                                 (2.3) 

 

 

II.1.1. Control design 

 

II.1.1.1. Altitude z-stabilization  

 

A PD controller is used to the z-position control. The vertical input position will be obtained 

from the following relationship:  

 𝑈௭ = 𝐾௣௭(𝑧ௗ − 𝑧) − 𝐾ௗ௭(𝑧ᇱௗ − 𝑧′ )    (2.4) 

II.1.1.2. Yaw (ψ)-controller 

To control the yaw angle we use a PI-D controller, and the torque is given by the relation 

given in Eq. 2.5: 

𝑈ట = 𝐾௣ట(𝜓ௗ − 𝜓) + 𝐾௜ట ∫(𝜓ௗ − 𝜓)𝑑𝑡 − 𝐾ௗట𝜓′     (2.5) 

II.1.1.3. Roll attitude hold 

Using the equation of motion 𝜑" =
ଵ

ூೣ
𝑈ఝ   and the structure of the PI-D controller shown in 

figure 2.2, the transfer function can be extracted: 
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Fig. 2.2. A block diagram of the roll attitude hold loop. 

Therefore, the transfer function of this structure is expressed as: 

 

಼೔ക

಺ೣ

௦యା
಼೏ക

಺ೣ
௦మା

಼೛ക

಺ೣ
௦ା

಼೔ക

಺ೣ

      (2.6) 

Which can have the same response with ordinary second order transfer function  

ఠ೙
మ

൫௦మାଶకఠ೙௦ାఠ೙
మ ൯

 .his characteristic equation can multiplied by (𝑠 − (−𝑝))  

(𝑠 + 𝑝)(𝑠ଶ + 2𝜉𝜔௡𝑠 + 𝜔௡
ଶ) =𝑠ଷ + (2𝜉𝜔௡ + 𝑝)𝑠ଶ + (2𝜉𝜔௡𝑝 + 𝜔௡

ଶ)𝑠 + 𝑝𝜔௡
ଶ 

and identified with the characteristic equation of controller as follows:   

𝑠ଷ + (2𝜉𝜔௡ + 𝑝)𝑠ଶ + (2𝜉𝜔௡𝑝 + 𝜔௡
ଶ)𝑠 + 𝑝𝜔௡

ଶ = 𝑠ଷ +
௄೏ക

ூೣ
𝑠ଶ +

௄೛ക

ூೣ
𝑠 +

௄೔ക

ூೣ
     

With ቐ

𝐾௜ఝ = 𝑝𝜔௡
ଶ𝐼௫;              

𝐾௣ఝ = (2𝜉𝜔௡𝑝 + 𝜔௡
ଶ)𝐼௫

𝐾ௗఝ = (2𝜉𝜔௡ + 𝑝)𝐼௫

;          (2.7) 

For 𝜔௡ =
ଵ଴௥ௗ

௦
, 𝜉 = 0.9, and p=20 

ቐ

𝐾௜ఝ = 2000 𝐼௫;

𝐾௣ఝ = 460 𝐼௫

𝐾ௗఝ = 38𝐼௫
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II.1.1.4. Pitch attitude control  

Using the equation of motion 𝜃" =
ଵ

ூ೤
𝑈ఏ   and the structure of the PI-D controller, the same 

results of controller are obtained:  

ቐ

𝐾௜ఏ = 𝑝𝜔௡
ଶ𝐼௬  ;                 

𝐾௣ఏ = (2𝜉𝜔௡𝑝 + 𝜔௡
ଶ)𝐼௬;

𝐾ௗఏ = (2𝜉𝜔௡ + 𝑝)𝐼௬

         (2.8) 

II.1.1.5. Positions x and y control  

 

 

 

 

Fig. 2.3. Standard PD loop. 

 

Using the transfer function 
௥

௬
=

௄೛

௦మା௄೏௦ା௄೛
, which can identify with a second order system 

ఠ೙
మ

௦మାଶకఠ೙௦ାఠ೙
మ  , we deduce that 𝐾௣ = 𝜔௡

ଶ and 𝐾ௗ=2𝜉𝜔௡. 

For example 𝜔௡ = 10𝑟𝑑/𝑠 𝑎𝑛𝑑 𝜉 = 0.9 , we obtain 𝐾௣ = 100  𝑎𝑛𝑑  𝐾ௗ = 18. The controller 

gains are shown in Table 2.1.  

Table 2.1. Controller gains (PID-C) 

 𝒙 𝒚 𝒛 𝝋 𝜽 𝝍 

𝑲𝒑 100 100 100 𝟒𝟔𝟎𝑰𝒙 𝟒𝟔𝟎𝑰𝒚 𝟒𝟔𝟎𝑰𝒛 

𝑲𝒊 0 0 0 2000𝐼௫ 𝟐𝟎𝟎𝟎𝑰𝒚 𝟐𝟎𝟎𝟎𝑰𝒛 

𝑲𝒅 18 18 18 𝟑𝟖𝑰𝒙 𝟑𝟖𝑰𝒚 𝟑𝟖𝑰𝒛 

 

 

+ +

- -

r y

dK

pK
s

1
s

1
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II.1.2. PID controller results and discussions 

The simulation results are shown in Fig. 2.4 - Fig. 2.7, the control inputs of rotors are presented 

in Fig. 2.4. The obtained control inputs commands could easily be applied to the real model. , it can 

be seen from Fig. 2.5 that the speeds of the rotors are of the order of 250rd/s. Fig. 2.6 show the  

rotational speed of the quadrotor and the responses of attitudes .in Fig.2.7 show that the quadrotor 

must follow a square trajectory at a height of ten meters by setting the yaw angle at 0 radium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.4. Inputs generated by controllers during simulation. 
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Fig. 2.5. Rotor speeds. 

 

 

 

 

 

 

 

Fig. 2.6. Quadrotor speed and angles responses.  
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Fig. 2.7. Path of quadrotor controlled with PID (in left square path, in the right helical path). 

In this section, the control of quadrotor using PID regulators was realized. The simulation re-

sults show the effectiveness of this control technique despite the fact that is difficult to size the regu-

lators because of the nonlinearity of the quadrotor model. In order to overcome this problem and 

enrich our research topic, nonlinear commands will be used in the coming sections. 

II.2. Backstepping Control  

Backstteping is a nonlinear control method, in backstepping design, no constraint is imposed 

on the nonlinear characteristic of the system, which must be in the pure parametric form. The basic 

of backstepping algorithmes are explained below. 

II.2.1. Backstepping algorithm 

Considering the case of nonlinear systems of the form presented by Eq. 2.9: 

ቐ 

𝑥ଵ
ᇱ = 𝜑ଵ

௧(𝑥ଵ)𝜃 + 𝜓ଵ(𝑥ଵ)𝑥ଶ                       

𝑥ଶ
ᇱ = 𝜑ଶ

௧ (𝑥ଵ, 𝑥ଶ)𝜃 + 𝜓ଶ(𝑥ଵ𝑥ଶ, )𝑥ଷ           

𝑥ଷ
ᇱ = 𝜑ଷ

௧ (𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜃 + 𝜓ଷ(𝑥ଵ𝑥ଶ, 𝑥ଷ)𝑢

     (2.9) 

The vector of parameters 𝜃 is assumed to be known, the number of steps of backstepping 

algorithm is equal to the number of states of the system. The corresponding steps are given below: 
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step1 

We first consider equation (2.8)   

𝑥ଵ
ᇱ = 𝜑ଵ

௧(𝑥ଵ)𝜃 + 𝜓ଵ(𝑥ଵ)𝑥ଶ                                                                       (2.10) 

Knowing that, the state variable 𝑥ଶ is treated as a command. Thus, the first desired value is 

defined as: 

𝛼଴ = 𝑦௥ = 𝑥ଵ
ௗ        (2.11) 

The first error variable is defined by 𝜀ଵ defined by Eq. 2.12 

 𝜀ଵ = 𝛼଴ − 𝑥ଵ = 𝑥ଵ
ௗ − 𝑥ଵ                                         (2.12) 

Which implies: 

𝜀ଵ
ᇱ = 𝛼଴ᇱ − 𝑥ଵ

ᇱ = 𝑥ଵ
ௗᇲ

− 𝑥ଵ
ᇱ = −𝜑ଵ

௧(𝑥ଵ)𝜃 − 𝜓ଵ(𝑥ଵ)𝑥ଶ           (2.13) 

The quadratic function  𝑉(𝜀ଵ) =
ଵ

ଶ
𝜀ଵ

ଶ  constitutes a good choice of the Lyapunov candidate 

function. Hence, its derivative, yields the solution of Eq. 2.13, and is given by : 

𝑉ᇱ(𝜀ଵ) = 𝜀ଵ𝜀ଵ
ᇱ = 𝜀ଵ(𝛼଴ᇲ

− 𝜑ଵ
௧(𝑥ଵ)𝜃 − 𝜓ଵ(𝑥ଵ)𝑥ଶ)   (2.14) 

A wise choice of 𝑥ଶ would make 𝑉ᇱ(𝜀ଵ ) negative and ensure the stability of the origin of the 

subsystem: 

 𝛼଴ᇲ
− 𝜑ଵ

௧(𝑥ଵ)𝜃 − 𝜓ଵ(𝑥ଵ)𝑥ଶ = −𝐾ଵ𝜀ଵ (2.15) 

Therefore: 

 𝑥ଶ
ௗ =

1

𝜓ଵ(𝑥ଵ)
(𝛼଴ᇲ

− 𝜑ଵ
௧(𝑥ଵ)𝜃 + 𝐾ଵ𝜀ଵ) = 𝛼ଵ                        (2.16) 

step2   

We first consider  the  subsystem 
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൜
𝑥ଵ

ᇱ = 𝜑ଵ
௧(𝑥ଵ)𝜃 + 𝜓ଵ(𝑥ଵ)𝑥ଶ            

𝑥ଶ
ᇱ = 𝜑ଶ

௧ (𝑥ଵ, 𝑥ଶ)𝜃 + 𝜓ଶ(𝑥ଵ𝑥ଶ, )𝑥ଷ

                                           (2.17) 

Where the state variable 𝑥ଷ is treated as a command. Thus, the second error variable is 

defined by 𝜀ଶ as follows: 

𝜀ଶ = 𝛼ଵ − 𝑥ଶ = 𝑥ଶ
ௗ − 𝑥ଶ                                           (2.18) 

Consequently, its derivative can be written as: 

 𝜀ଶ
ᇱ = 𝛼ଵᇱ − 𝑥ଶ

ᇱ = 𝑥ଶ
ௗᇲ

− 𝑥ଶ
ᇱ = 𝛼ଵᇲ

− 𝜑ଶ
௧ (𝑥ଵ, 𝑥ଶ)𝜃 − 𝜓ଶ(𝑥ଵ𝑥ଶ, )𝑥ଷ     (2.19)  

The Lyapunov candidate function is 

 𝑉(𝜀ଵ, 𝜀ଶ) = 𝑉ଵ +
ଵ

ଶ
𝜀ଶ

ଶ                                              (2.20) 

and its derivate can calculated as follows: 

 𝑉ᇱ(𝜀ଵ, 𝜀ଶ) = 𝜀ଵ𝜀ଵ
ᇱ + 𝜀ଶ𝜀ଶ

ᇱ  from Eq.2.13 and Eq.2.19 we obtain Eq.2.21 

𝑉ᇱ(𝜀ଵ, 𝜀ଶ) = −𝐾ଵ𝜀ଵ
ଶ   + 𝜀ଶ൫𝛼ଵᇲ

− 𝜑ଶ
௧ (𝑥ଵ, 𝑥ଶ)𝜃 − 𝜓ଶ(𝑥ଵ𝑥ଶ, )𝑥ଷ − 𝜀ଵ൯            (2.21) 

The choice of the desired value of 𝑥ଷ becomes obvious. The latter is given by Eq. 2.22 as 

explained below: 

൫𝛼ଵᇲ
− 𝜑ଶ

௧ (𝑥ଵ, 𝑥ଶ)𝜃 − 𝜓ଶ(𝑥ଵ𝑥ଶ, )𝑥ଷ − 𝜀ଵ൯ = −𝐾ଶ𝜀ଶ   

 𝑥ଷ
ௗ =

1

𝜓ଶ(𝑥ଵ𝑥ଶ, )
(𝛼ଵᇲ

− 𝜑ଶ
௧ (𝑥ଵ, 𝑥ଶ)𝜃 + 𝜓ଵ(𝑥ଵ)𝜀ଵ + 𝐾ଶ𝜀ଶ) = 𝛼(ଶ)       (2.22) 

With  k2 > 0, and 𝛼ଵ
ᇱ calculated analytically such that: 

     𝛼ଵ
ᇱ =

డఈ

డ௫భ

ௗ௫భ

ௗ௧
 

step3 

The system is now considered as a whole. The error variable 𝜀ଷ is defined as: 
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𝜀ଷ = 𝛼ଶ − 𝑥ଷ = 𝑥ଷ
ௗ − 𝑥ଷ      (2.23) 

Thus, makes it possible to write the equations of the system, in the error space as explained in 

the following equations: 

𝜀ଵ
ᇱ = 𝛼଴ᇲ

− 𝜑ଵ
௧(𝑥ଵ)𝜃 − 𝜓ଵ(𝑥ଵ)(𝛼ଵ − 𝜀ଶ)                                  (2.24) 

𝜀ଶ
ᇱ = 𝛼ଵᇲ

− 𝜑ଶ
௧ (𝑥ଵ, 𝑥ଶ)𝜃 − 𝜓ଶ(𝑥ଵ𝑥ଶ, )(𝛼ଶ − 𝜀ଷ)                     (2.25) 

 𝜀ଷ
ᇱ = 𝛼ଶᇲ

− 𝜑ଷ
௧ (𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜃 − 𝜓ଷ(𝑥ଵ𝑥ଶ, 𝑥ଷ)𝑢                         (2.26) 

With as lyapunov function defined as: 

        𝑉(𝜀ଵ, 𝜀ଶ, 𝜀ଷ) = 𝑉ଶ +
ଵ

ଶ
𝜀ଷ

ଶ   (2.27) 

Its derivative, along the solutions of (2.25) and (2.26), becomes: 

    𝑉ᇱ(𝜀ଵ, 𝜀ଶ, 𝜀ଷ) = 𝑉ଶ
ᇱ + 𝜀ଷ𝜀ଷ

ᇱ   =−𝐾ଵ𝜀ଵ
ଶ − 𝐾ଶ𝜀ଶ

ଶ + 𝜀ଷ൫𝛼ଶᇲ
− 𝜑ଷ

௧ (𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜃 + 𝜓ଶ(𝑥ଵ𝑥ଶ, )𝜀ଶ −

𝜓ଷ(𝑥ଵ𝑥ଶ, 𝑥ଷ)𝑢൯ = −𝐾ଵ𝜀ଵ
ଶ − 𝐾ଶ𝜀ଶ

ଶ − 𝐾ଷ𝜀ଷ
ଶ 

which leads to   𝛼ଶᇲ
− 𝜑ଷ

௧ (𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜃 + 𝜓ଶ(𝑥ଵ𝑥ଶ, )𝜀ଶ − 𝜓ଷ(𝑥ଵ𝑥ଶ, 𝑥ଷ)𝑢 = −𝐾ଷ𝜀ଷ (2.28) 

Now, we are in the presence of the real order . A good choice of it is given by Eq. 2.29 as shown 

below:  

𝑢 =
1

𝜓ଷ(𝑥ଵ𝑥ଶ, 𝑥ଷ)
(𝛼ଶᇲ

− 𝜑ଷ
௧ (𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜃 + 𝜓ଶ(𝑥ଵ𝑥ଶ, )𝜀ଶ + 𝐾ଷ𝜀ଷ)     ( 2.29) 

With 𝛼ଶ
ᇱ calculated analytically as follow: 

𝛼ଶ
ᇱ =

డఈమ

డ௫భ
.

ௗ௫భ

ௗ௧
+

డఈమ

డ௫మ
.

ௗ௫మ

ௗ௧
      (2.30) 

II.2.2. Backstepping control of quadrotors 

The principle of backstepping is to divide the system into several sub-systems in cascade. The 

control laws are then made for each subsystem, in a decreasing manner, until a global control law for 

the whole system is generated. 
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II.2.2.1. Roll angle Control φ 

 Considering the first subsystem mentioned below: 

൜ 
𝑥ଵ

ᇱ = 𝑥ଶ                                           

𝑥ଶ
ᇱ = 𝑎ଵ𝑥଺𝑥ସ − Ω𝑎ଶ𝑥ସ + 𝑏ଵ𝑈ఝ

                         (2.31) 

 

step1 

The error between the desired and actual roll angle is expressed as follow: 

𝜀ଵ = 𝑥ଵ
ௗ − 𝑥ଵ                                                   (2.32) 

Consider the Lyapunov function 𝑉ଵ =
ଵ

ଶ
𝜀ଵ

ଶ            (2.33) 

The derivate of V1 along x1 trajectory, V’, is computed as follow:With:   

𝑉ଵ
ᇱ = 𝜀ଵ𝜀ଵ

ᇱ                                                    (2.34) 

𝜀ଵ
ᇱ = 𝑥ଵ

ௗᇱ − 𝑥ଵ
ᇱ = 𝜀ଵ

ᇱ = 𝑥ଵ
ௗᇱ − 𝑥ଶ                                                   (2.35) 

Choosing:  

(where: 𝐾ଵ𝜀ଵ
ଶ positive definite function). 

The desired  is extracted:  

𝑥ଶ
ௗ = 𝑥ଵ

ௗᇱ + 𝐾ଵ𝜀ଵ                                                   (2.36) 

step2 

Denoting the error between desired and actual roll angle rate, so that: 

𝜀ଶ = 𝑥ଶ
ௗ − 𝑥ଶ                                                             (2.37) 

 

1ε

11
'
1 ε-K=ε

d

2
x

2
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its derivate is   𝜀ଶ
ᇱ = 𝑥ଶ

ௗᇲ
− 𝑎ଵ𝑥଺𝑥ସ + Ω𝑎ଶ𝑥ସ − 𝑏ଵ𝑈ఝ                                                                         (2.38) 

Using candidate Lyapunov function 

 𝑉ଶ =
ଵ

ଶ
𝜀ଶ

ଶ + 𝑉ଵ  

𝑉ଶ
ᇱ = 𝑉ଵ

ᇱ + 𝜀ଶ𝜀ଶ
ᇱ  

𝑉ଶ
ᇱ =𝜀ଵ𝜀ଵ

ᇱ + 𝜀ଶ𝜀ଶ
ᇱ                                                         (2.39) 

using the Eq.2.35 and Eq.2.38 , the expression of the derivate of the Lyapunov candidate function 

will be: 

𝑉ଶ
ᇱ = 𝜀ଵ(𝑥ଵ

ௗᇱ − 𝑥ଶ) + 𝜀ଶ(𝑥ଶ
ௗᇲ

− 𝑎ଵ𝑥଺𝑥ସ + Ω𝑎ଶ𝑥ସ − 𝑏ଵ𝑈ఝ ) 

= 𝜀ଵ(𝑥ଵ
ௗᇱ + 𝜀ଶ − 𝑥ଶ

ௗ) + 𝜀ଶ(𝑥ଶ
ௗᇲ

− 𝑎ଵ𝑥଺𝑥ସ + Ω𝑎ଶ𝑥ସ − 𝑏ଵ𝑈ఝ ) 

     = −𝑘ଵ𝜀ଵ
ଶ + 𝜀ଶ(𝜀ଵ + 𝑥ଶ

ௗᇲ
− 𝑎ଵ𝑥଺𝑥ସ + Ω𝑎ଶ𝑥ସ − 𝑏ଵ𝑈ఝ ) 

to satisfy Lyaponv’s stability condition we take 

𝜀ଶ(𝜀ଵ + 𝑥ଶ
ௗᇲ

− 𝑎ଵ𝑥଺𝑥ସ + Ω𝑎ଶ𝑥ସ − 𝑏ଵ𝑈ఝ ) = −𝐾ଶ𝜀ଶ
ଶ                                       (2.40) 

Which gives: 

(𝜀ଵ + 𝑥ଶ
ௗᇲ

− 𝑎ଵ𝑥଺𝑥ସ + Ω𝑎ଶ𝑥ସ − 𝑏ଵ𝑈ఝ ) = −𝐾ଶ𝜀ଶ                                         (2.41)  

Where:  k2 is a positive constant 

𝑥ଶ
ௗᇲ

= −𝐾ଵ𝑥ଶ 

Thus, the control law is: 𝑈ఝ =
ଵ

௕భ
(𝜀ଵ − 𝑎ଵ𝑥଺𝑥ସ + 𝐾ଶ𝜀ଶ − 𝐾ଷ𝑥ସ + Ω𝑎ଶ𝑥ସ)                   (2.42) 
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II.2.2.2.Pitch angle control θ  

Considering the second subsystem mentioned below: 

൜ 
𝑥ଷ

ᇱ = 𝑥ସ                                                       

𝑥ସ
ᇱ = 𝑎ସ𝑥ଶ𝑥଺ + Ω𝑎଺𝑥ଶ + 𝑏ଶ𝑈ఏ                         

           (2.43) 

step1 

Considering  is the error between the desired and actual angle θ and which can be found by: 

𝜀ଷ = 𝑥ଷ
ௗ − 𝑥ଷ                                                                   (2.44) 

and   

𝜀ଷ = 𝑥ଷ
ௗ − 𝑥ଷ                                                                   (2.44) 

𝜀ଷ
ᇱ = 𝑥ଷ

ௗᇱ − 𝑥ଷ
ᇱ = 𝑥ଷ

ௗᇱ − 𝑥ସ                                                          (2.45) 

Using Lyapunov stability by choosing 𝑉ଷ =
ଵ

ଶ
𝜀ଷ

ଶ.
 

If V’ is negative; then, the system trajectory is ensured to verify this condition: 

𝑉ଷ
ᇱ = 𝜀ଷ𝜀ଷ

ᇱ = 𝜀(𝑥ଷ
ௗᇲ

− 𝑥ସ) < 0                                          (2.46) 

 𝑥ସ
ௗ = 𝑥ଷ

ௗᇱ + 𝐾ଷ𝜀ଷ                                                                    (2.47) 

step2 

The error 𝜀ସ = 𝑥ସ
ௗ − 𝑥ସ gives 

𝜀ସ
ᇱ = 𝑥ସ

ௗᇱ − 𝑥ସ
ᇱ                                                          (2.48) 

The lyapunov function is defined as: 𝑉ସ =
ଵ

ଶ
𝜀ସ

ଶ + 𝑉ଷ 

Thus:  𝑉ସ
ᇱ = 𝑉ଷ

ᇱ + 𝜀ସ𝜀ସ
ᇱ = 𝜀ଷ𝜀ଷ

ᇱ + 𝜀ସ𝜀ସ
ᇱ   

from where    𝑉ସୀ
ᇱ 𝜀ଷ(𝑥ଷ

ௗᇱ − 𝑥ସ) + 𝜀ସ(𝑥ସ
ௗᇲ

− 𝑎ଷ𝑥ଶ𝑥଺ − Ω𝑎ସ𝑥ଶ − 𝑏ଶ𝑈ఏଵ
) 

3ε
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Therefore: 

𝑈ఏ =
1

𝑏ଶ
(𝜀ଷ − 𝑎ଷ𝑥଺𝑥ଶ + 𝐾ସ𝜀ସ − 𝐾ଷ𝑥ସ − Ω𝑎ସ𝑥ଶ)                 (2.49) 

II.2.2.3 Yaw angle control  

Now, consider the third subsystem mentioned below: 

൜ 
  𝑥ହ

ᇱ = 𝑥଺                               

𝑥଺
ᇱ = 𝑎଻𝑥ଶ𝑥ସ + 𝑏ଷ𝑈ట                      

                                   (2.50) 
  

 

step1 

Let’s the error between the desired and actual angle 
 

𝜀ହ = 𝑥ହ
ௗ − 𝑥ହ and  𝜀ହ

ᇱ = 𝑥ହ
ௗᇱ − 𝑥଺

ᇱ = 𝑥ହ
ௗᇱ − 𝑥ସ 

With, Lyapunov function is 𝑉ହ =
ଵ

ଶ
𝜀ହ

ଶ  

where 𝑉ହ
ᇱ = 𝜀ହ𝜀ହ

ᇱ = 𝜀ହ(𝑥ହ
ௗᇲ

− 𝑥଺) < 0

 

Thus;  𝑥଺
ௗ = 𝑥ହ

ௗᇱ + 𝐾ହ𝜀ହ 

step2 

The error 𝜀଺ = 𝑥଺
ௗ − 𝑥଺ and 𝜀଺

ᇱ = 𝑥଺
ௗᇱ − 𝑥଺

ᇱ  and the candidate lyapunov function 𝑉଺ =
ଵ

ଶ
𝜀଺

ଶ + 𝑉ହ 

Thus: 

𝑉଺
ᇱ = 𝑉ହ

ᇱ + 𝜀଺𝜀଺
ᇱ  

= 𝜀ହ𝜀ହ
ᇱ + 𝜀଺𝜀଺

ᇱ  

= 𝜀ହ(𝑥ହ
ௗᇱ − 𝑥଺

ௗ + 𝜀଺) + 𝜀଺(𝑥଺
ௗᇲ

− 𝑎଻𝑥ଶ𝑥ସ − 𝑏ଷ𝑈ట)  

= −𝐾଺𝜀଺
ଶ 

ψ

5ε ψ
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 𝑈ట =
1

𝑏ଷ
(𝜀ହ − 𝑎଻𝑥ଶ𝑥ସ + 𝐾଺𝜀଺ − 𝐾ହ𝑥଺)                                  (2.51)   

II.2.2.4. Control of the position z 

The fourth subsystem is: 

       ቊ 
 𝑥଻

ᇱ = 𝑥଼                                                   

𝑥଼
ᇱ = 𝑎ଽ𝑥଼ +

௖௢௦(௫భ)௖௢௦ (௫య)

௠
𝑈ଵ − 𝑔                             

    (2.52)  

step1 

𝜀଻ is the error between the desired and actual position z: 𝜀଻ = 𝑥଻
ௗ − 𝑥଻  

and 𝜀଻
ᇱ = 𝑥଻

ௗᇱ − 𝑥଻
ᇱ = 𝑥଻

ௗᇱ − 𝑥଼ 

The Lyapunov function is 𝑉଻ =
ଵ

ଶ
𝜀଻

ଶ and its derivate is:  

𝑉଻
ᇱ = 𝜀଻𝜀଻

ᇱ = 𝜀଻(𝑥଻
ௗᇲ

− 𝑥଼) < 0,  

Then ൫𝑥଻
ௗᇲ

− 𝑥଼൯ = −𝐾଻𝜀଻  

The desired value: 𝑥଼
ௗ = 𝑥଻

ௗᇱ+𝐾଻𝜀଻ 

step2 

The error 𝜀଼ = 𝑥଼
ௗ − 𝑥଼ gives 𝜀଼

ᇱ = 𝑥଼
ௗᇱ − 𝑥଼

ᇱ , and the lyapunov function is: 

  𝑉 =
ଵ

ଶ
𝜀଼

ଶ + 𝑉଻ 

Thus  𝑉ᇱ = 𝑉଻
ᇱ + 𝜀଼𝜀଼

ᇱ  =𝜀଻𝜀଻
ᇱ + 𝜀଼𝜀଼

ᇱ  

  = 𝜀଻൫𝑥଻
ௗᇲ

− 𝑥଼
ௗ൯ + 𝜀଼(𝑥଼

ௗᇲ
+𝜀଻ − (𝑎ଽ𝑥଼ +

ୡ୭ୱ(௫భ) ୡ୭ୱ(௫య)

௠
𝑈ଵ − 𝑔 )  

Then:  
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൭𝑥଼
ௗᇲ

+𝜀଻ − ቆ𝑎ଽ𝑥଼ +
cos(𝑥ଵ) cos(𝑥ଷ)

𝑚
𝑈ଵ − 𝑔 ቇ൱ = −𝐾଼𝜀଼ 

The control law: 

  𝑈ଵ =
𝑚

cos(𝑥ଵ) cos(𝑥ଷ)
(𝜀଻ − 𝑎ଽ𝑥଼ + 𝑔 + 𝐾଼𝜀଼ − 𝐾଻𝑥଼)        (2.53) 

II.2.2.5. Control of the position y 

The fifth subsystem is: 

ቐ

 𝑥ଽ
ᇱ = 𝑥ଵ଴                                                                                    

𝑥ଵ଴
ᇱ =

U௬

𝑚
𝑈ଵ                                                                            

     (2.54) 

 
step1 

𝜀ଽ is the error between the desired and actual position y such that: 

 𝜀ଽ = 𝑥ଽ
ௗ − 𝑥ଽ and 

 𝜀ଽ
ᇱ = 𝑥ଽ

ௗᇱ − 𝑥ଽ
ᇱ = 𝑥ଽ

ௗᇱ − 𝑥ଽ 

The Lyapunov function is 𝑉ଽ =
ଵ

ଶ
𝜀ଽ

ଶ ; whereas, its derivate is: 

𝑉ଽ
ᇱ = 𝜀ଽ𝜀ଽ

ᇱ = 𝜀ଽ(𝑥ଽ
ௗᇲ

− 𝑥ଽ) < 0 

Then,  

൫𝑥ଽ
ௗᇲ

− 𝑥ଵ଴൯ = −𝐾ଽ𝜀ଽ  

So the desired value is:  

𝑥ଵ଴
ௗ = 𝑥ଽ

ௗᇱ+𝐾ଽ𝜀ଽ 

step2 

The error will be: 𝜀ଵ଴ = 𝑥ଵ଴
ௗ − 𝑥ଵ଴   give 𝜀ଵ଴

ᇱ = 𝑥ଵ଴
ௗᇱ − 𝑥ଵ଴

ᇱ   
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The lyapunov function 𝑉ଵ଴ =
ଵ

ଶ
𝜀ଵ଴

ଶ + 𝑉ଽ; so, 

𝑉ଵ଴
ᇱ = 𝑉ଽ

ᇱ + 𝜀ଵ଴𝜀ଵ଴
ᇱ  

= 𝜀ଽ𝜀ଽ
ᇱ + 𝜀ଵ଴𝜀ଵ଴

ᇱ  

= 𝜀ଽ(𝑥ଽ
ௗᇲ

− 𝑥ଵ଴
ௗ + 𝜀ଵ଴) + 𝜀ଵ଴(𝑥ଵ଴

ௗᇲ
− (

𝑈௬

𝑚
𝑈ଵ )) 

= 𝜀ଽ൫𝑥ଽ
ௗᇲ

− 𝑥ଵ଴
ௗ ൯ + 𝜀ଵ଴(𝑥ଵ଴

ௗᇲ
+𝜀ଽ − (

௎೤

௠
𝑈ଵ ))  

൭𝑥ଵ଴
ௗᇲ

+𝜀ଽ − ൬
𝑈௬

𝑚
𝑈ଵ൰൱ = −𝐾ଵ଴𝜀ଵ଴ 

The control law:  

  𝑈௬ =
௠

௎భ
(𝜀ଽ + 𝐾ଵ଴𝜀ଵ଴ − 𝐾ଽ𝑥ଵ଴)                              (2.56) 

                

II.2.2.6.Control of the position  

 The last subsystem is represented by the equation below: 

൝
 𝑥ଵଵ

ᇱ = 𝑥ଵଶ                                                                                    

𝑥ଵଶ
ᇱ =

U௫

𝑚
𝑈ଵ                                                                                

  (2.57) 

step1 

Where, 𝜀ଵଵ is the error between the desired and actual position x 

𝜀ଵଵ = 𝑥ଵଵ
ௗ − 𝑥ଵଵ  and 𝜀ଵଵ

ᇱ = 𝑥ଵଵ
ௗᇱ − 𝑥ଵଵ

ᇱ = 𝑥ଵଵ
ௗᇱ − 𝑥ଵଵ 

The Lyapunov function is 𝑉ଵଵ =
ଵ

ଶ
𝜀ଵଵ

ଶ ; its derivate 

 𝑉ଵଵ
ᇱ = 𝜀ଵଵ𝜀ଵଵ

ᇱ = 𝜀ଵଵ(𝑥ଵଵ
ௗᇲ

− 𝑥ଵଵ) < 0

 

x
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Then, ൫𝑥ଵଵ
ௗᇲ

− 𝑥ଵଶ൯ = −𝐾ଵଵ𝜀ଵଵ and the desired value will be: 

 𝑥ଵଶ
ௗ = 𝑥ଵଵ

ௗᇱ+𝐾ଵଵ𝜀ଵଵ 

step2 

The error is given by:𝜀ଵଶ = 𝑥ଵଶ
ௗ − 𝑥ଵଶ ; the derivate is  𝜀ଵଶ

ᇱ = 𝑥ଵଶ
ௗᇱ − 𝑥ଵଶ

ᇱ  

The lyapunov function 𝑉ଵଶ =
ଵ

ଶ
𝜀ଵଶ

ଶ + 𝑉ଵଵ its derivate: 

 𝑉ଵଶ
ᇱ = 𝑉ଵଵ

ᇱ + 𝜀ଵଶ𝜀ଵଶ
ᇱ  

=𝜀ଵଵ𝜀ଵଵ
ᇱ + 𝜀ଵଶ𝜀ଵଶ

ᇱ  

=𝜀ଵଵ(𝑥ଵଵ
ௗᇲ

− 𝑥ଵଶ
ௗ + 𝜀ଵଶ) + 𝜀ଵଶ(𝑥ଵଶ

ௗᇲ
− (

௎ೣ

௠
𝑈ଵ )) 

= 𝜀ଵଵ൫𝑥ଵଵ
ௗᇲ

− 𝑥ଵଶ
ௗ ൯ + 𝜀ଵଶ(𝑥ଵଶ

ௗᇲ
+𝜀ଵଵ − (

௎ೣ

௠
𝑈ଵ ))  

Then:   

ቆ𝑥ଵଶ
ௗᇲ

+𝜀ଵଵ − ൬
𝑈௫

𝑚
𝑈ଵ൰ቇ = −𝐾ଵଶ𝜀ଵଶ 

The control law: 

 𝑈௫ =
௠

௎భ
(𝜀ଵଵ + 𝐾ଵଶ𝜀ଵଶ − 𝐾ଵଵ𝑥ଵଶ)                                             (2.58) 

All the previous steps of backstepping control used to generate a global control law for the whole 

system are summarized in the block diagram shown in Figure 2.8. Whereas, the control gains are 

given in Table 2.2. 
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Table 2.2: controller gains (BSC) 

 

m 1 3 5 7 9 11 

 𝝋 𝜽 𝝍 𝒛 𝒚 𝒙 

𝑲௠ 15 15 45 5 10 10 

𝑲𝒎ା𝟏 15 15 45 5 5 10 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.8. Quadrotor backstepping control structure 

II.2.3. BSC results and discussions 

 In order to validate our proposed control solution, the model is simulated under Matlab Sim-

ulink software. For that purpose, the results are obtained based on the application of the real parame-

ters summarized on Table 2.1 [1]. In this scenario, it is desired to follow a circular trajectory in XY 

T)'ψ,'θ,'φ,'z,'y,'x(='x

dψ
BSC 

T)ψ,θ,φ,z,y,x(=x

xU

dz

BSC 

BSC 

BSC 
BSC 

BSC 
dx

dy

,dφ

dθ
yU

1U

4U

3U

2U

Correction 
block 
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plane, centered in the origin. The height z increases uniformly from zero to 15 meters where the drone 

stabilizes.  

NW : Because the speeds of the real quadrotor motors might not be accessible during the flight, the 
term 𝛺௥  might not be performed. Consequently, this term cannot be used in the calculation of the 
control laws and may cause stability issues. 

Figure 2.10 shows the response of rotor speeds. Figure 2.11 illustrates the inputs generated by 

controllers during flight. Figure 2.12 illustrates that the real and the desired positions exactly meet 

each other in three-dimensional space. Figure 2.11.d illustrates the response of orientation angles 

(roll, pitch, and yaw), where the dotted lines denote the desired values and continues-lines shows 

the estimated values. It is clearly demonstrated that the estimated values track the desired trajecto-

ries with an acceptable dynamic. 

In this part we realize the control by backstepping of the quadrotor, this control technique makes 

possible to control firstly a state of the system and secondly the successive derivatives of the state, we 

noticed that simulation results showed the effectiveness of the proposed control. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9. Rotor speeds using BSC. 
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Fig.2.10. Inputs generated by controllers during BSC simulation. 

 

 

 

 

 

 

 

Fig.2.11. Quadrotor speed and angles responses (BSC). 
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Fig. 2.12. Path of quadrotor controlled with BSC (in left square path, in the right helical path). 

II.3. Sliding Mode Control of Quadrotors 

This part describes the following points: First, the theory of sliding mode control (SMC) is 

presented, and then the control of quadrotor by SMC is treated. Finally, we interpret obtained the 

results. 

II.3.1. Design of sliding mode control 

The design of sliding mode controllers considers stability and good performance issues systemat-

ically in its approach, which is divided into three main stages: 

1- Choice of surfaces, 

2- The establishment of the conditions of existence and convergence, 

3- Determination of control law. 

 

II.3.1.1 Choice of sliding surfaces 

 The choice of sliding surface concerns the number needed as well as the shape, depending on 

the application and the intended purpose. In general, for a system defined by the following state 

equation: 

 𝑥ᇱ(𝑡) = 𝑓(𝑥) + 𝑔(𝑥)𝑈                                       (2.59) 

As for the general form, we propose a form of general equation to determine the sliding surface 

which ensures the convergence of a state variable x towards its set value . 

 𝑠(𝑥) = ቀ
ௗ

ௗ௧
+ 𝜆ቁ

௥ିଵ

e(x)                                       (2.60) 
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e(x): the error of the variable to be regulated, 

𝜆: positive constant, 

r: relative degree is the smallest positive integer such that  

II.3.1.2 Conditions of existence of convergence 

The convergence conditions allow the dynamics of the system, in the phase plane, to converge 

towards the sliding surface, we cite two conditions 

The direct switching condition 

This is the first convergence condition, it is in the form: 𝑠(𝑥)𝑠ᇱ(𝑥) < 0              

The Lyapunov function,This involves formulating a positive scalar function for the state variables 

of the system and choosing a control law that will cause this function to decrease 0)x(V '  . 

By defining the Lyapunov function: 

 𝑉(𝑠, 𝑥, 𝑡) =
1

2
 𝑠ଶ(𝑥, 𝑡)                                                     (2.61)   

 Its derivative will be: )x(S).x(S=)x(V ''  

For the Lyapunov function to decrease, it suffices to ensure that:  𝑉̇(𝑠, 𝑥, 𝑡) = 𝑉̇(𝑠) = 𝑠. 𝑠̇ < 0 

it is used to estimate the performance of the control, the study of robustness and guarantees the 

stability of the nonlinear system 

 

II.3.1.3. - Determination of control law 

The sliding mode control includes two terms which are equivalent control term and switching con-

trol term: 

 𝑈(𝑡) = 𝑈௦(𝑡) + 𝑈௘௤(𝑡)                                         (2.62)    

II.3.1.3.a. Equivalent control 

 

The equivalent control  is a control which, applied to the system, produces the movement of the 

system on the sliding surface whenever the initial state is on the surface. Suppose that the trajectory 
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of the state meets the surface of the commutation at time t1 and that a sliding mode exists. The 

existence of a sliding mode implies that, for all 

The system is represented in the following form 

 𝑥ᇱ(𝑡) = 𝑓(𝑥) + 𝑔(𝑥)𝑈                                                                            (2.63) 

𝑈௘௤(𝑡) is the equivalent part of the sliding mode control, i.e., the necessary known part of the con-

trol system when  𝑠̇ = 0. 

We define the equivalent control 𝑈௘௤ as the vector that satisfies  

𝑠̇ =
𝑑𝑆

𝑑𝑡
=

𝜕𝑆

𝜕𝑥
.
𝑑𝑥

𝑑𝑡
=

𝜕𝑆

𝜕𝑥
 (𝑓(𝑥) + 𝑔(𝑥)𝑈) =  

𝜕𝑆

𝜕𝑥
  𝑓(𝑥) +  

𝜕𝑆

𝜕𝑥
  𝑔(𝑥)𝑈 = 0              (2.64) 

the equivalent control is: 

𝑈௘௤ = − ൭
𝜕𝑆

𝜕𝑥
  𝑔(𝑥)൱

ିଵ

 ൭
𝜕𝑆

𝜕𝑥
  𝑓(𝑥)൱                               (2.65) 

II.3.1.3.b. Sliding control 

 𝑈௦(𝑡) is the sliding control mode defined as: 

𝑉̇(𝑠, 𝑥, 𝑡) = 𝑉̇(𝑠) = 𝑠. 𝑠̇ = 𝑠 ൭
𝜕𝑆

𝜕𝑥
  𝑓(𝑥) +  

𝜕𝑆

𝜕𝑥
  𝑔(𝑥)൫𝑈௘௤ + 𝑈௦൯൱ < 0    

𝑠 ൬
𝜕𝑆

𝜕𝑥
  𝑓(𝑥) +  

𝜕𝑆

𝜕𝑥
  𝑔(𝑥)𝑈௘௤ +

𝜕𝑆

𝜕𝑥
  𝑔(𝑥)𝑈௦൰ < 0                               (2.66) 

With eq(2.64) Then: 𝑠 ቀ
డௌ

డ௫
  𝑔(𝑥)𝑈௦ቁ < 0 

Where 𝑠𝑔𝑛(𝑠) is the mathematical signum function defined as:  

𝑈௦ = −𝐾𝑠𝑔𝑛(𝑠) ∗ 𝑠𝑔𝑛 ൭
𝜕𝑆

𝜕𝑥
  𝑔(𝑥)൱                                   (2.67) 

 

𝑈௦ = ൞
−𝐾𝑠𝑔𝑛(𝑠)   𝑖𝑓 

𝜕𝑆

𝜕𝑥
  𝑔(𝑥) > 0 

𝐾𝑠𝑔𝑛(𝑠) 𝑖𝑓  
𝜕𝑆

𝜕𝑥
  𝑔(𝑥) < 0

                                   (2.68) 
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II.3.2. Sliding mode control of quadrotors 

Considering the following system: 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑥ଵ
ᇱ = 𝑥ଶ                                    

𝑥ଶ
ᇱ = 𝑎ଵ𝑥଺𝑥ସ + 𝛺𝑎ଷ𝑥ସ + 𝑏ଵ𝑈ఝ                  

𝑥ଷ
ᇱ = 𝑥ସ                                    

𝑥ସ
ᇱ = 𝑎ସ𝑥ଶ𝑥଺ + 𝛺𝑎଺𝑥ଶ + 𝑏ଶ𝑈ఏ                  

𝑥ହ
ᇱ = 𝑥଺                                    

 𝑥଺
ᇱ = 𝑎଻𝑥ଶ𝑥ସ + 𝑏ଷ𝑈ట                          

𝑥଻
ᇱ = 𝑥଼                                    

𝑥଼
ᇱ = 𝑎ଽ𝑥଼ +

𝑐𝑜𝑠(𝑥ଵ) 𝑐𝑜𝑠 (𝑥ଷ)

𝑚
𝑈ଵ − 𝑔            

𝑥ଽ
ᇱ = 𝑥ଵ଴                                    

𝑥ଵ଴
ᇱ = 𝑎ଵ଴𝑥ଵ଴ +

𝑈ଵ

𝑚
𝑈௬                         

𝑥ଵଵ
ᇱ = 𝑥ଵଶ                                    

𝑥ଵଶ
ᇱ = 𝑎ଵଵ𝑥ଵଶ +

𝑈ଵ

𝑚
𝑈௫                          

                              (2.68) 

II.3.2.1. Control of the x position 

 The degree r equal 2: 

𝑠(𝑥) =  ൬
𝑑

𝑑𝑡
+ 𝜆   ൰

௥ିଵ

 𝑒(𝑥) = 𝑒ᇱ(𝑥) + 𝜆𝑒(𝑥), 𝑒(𝑥) = 𝑥  −  𝑥ௗ                    (2.69) 

𝑠(𝑥) = = 𝑥ᇱ − 𝑥ௗᇲ
+ 𝜆(𝑥 − 𝑥ௗ) = 𝑥ଶ − 𝑥ௗᇱ + 𝜆(𝑥 − 𝑥ௗ)                          (2.70) 

The control Ueff using eq(2.65) 

 
డ௦

డ௫
𝑔(𝑥) = [𝜆 1] ቈ

0
ଵ

௠

቉ =
ଵ

௠
  

and  
డ௦

డ௫
𝑓(𝑥) = [𝜆 1] ቈ

𝑥ଶ
ି௙ೣ

௠
𝑥ଶ

቉ = 𝜆𝑥ଶ −
௙ೣ

௠
𝑥ଶ 

  𝑈௘௤ =  𝑚 ቀ−𝜆𝑥ଶ +
௙ೣ

௠
𝑥ଶቁ                                                                        (2.71) 

 

The Uatt  𝑈௦ =  −𝐾𝑠𝑔𝑛(𝑠(𝑥)  𝑏𝑒𝑐𝑎𝑢𝑠𝑒 
డ௦

డ௫
𝑔(𝑥) > 0  

The control  𝑈௫ି௖௢௡௧௥௢௟ =  𝑚 ቀ−𝜆𝑥ଶ +
௙ೣ

௠
𝑥ଶቁ − 𝐾௫𝑠𝑔𝑛൫𝑠(𝑥)൯                             (2.72) 
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II.3.2.2. Control of the y position  

The degree r equal 2,  

𝑠(𝑦) =  ቀ
ௗ

ௗ௧
+ 𝜆   ቁ

௥ିଵ

 𝑒(𝑦) = 𝑒ᇱ(𝑦) + 𝜆𝑒(𝑦), 𝑒(𝑦) = 𝑦 − 𝑦ௗ               (2.73) 

      𝑠(𝑦) = = 𝑦ᇱ − 𝑦ௗᇱ + 𝜆(𝑦 − 𝑦ௗ) = 𝑦 − 𝑦ௗᇱ + 𝜆(𝑦 − 𝑦ௗ) 

The control Ueff  

𝑈௘௤ =  − ൬
𝜕𝑠

𝜕𝑥
𝑔(𝑦)൰

ିଵ

൬
𝜕𝑠

𝜕𝑥
𝑓(𝑦)൰ 

డ௦

డ௫
𝑔(𝑦) = [𝜆 1] ቈ

0
ଵ

௠

቉ =
ଵ

௠
   

and  
డ௦

డ௫
𝑓(𝑦) = [𝜆 1] ቈ

𝑦ଶ
ି௙೤

௠
𝑦ଶ

቉ = 𝜆𝑦ଶ −
௙೤

௠
𝑦ଶ 

𝑈௘௤ =  𝑚 ቆ−𝜆𝑦ଶ +
𝑓௬

𝑚
𝑦ଶቇ 

The Uatt : 

𝑈௦ =  −𝐾𝑠𝑔𝑛(𝑠(𝑦) 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 
𝜕𝑠

𝜕𝑥
𝑔(𝑦) > 0  

The control law: 

 𝑈௬ି௖௢௡௧௥௢௟ =  𝑚 ቀ−𝜆𝑦ଶ +
௙೤

௠
𝑦ଶቁ − 𝐾௬𝑠𝑔𝑛൫𝑠(𝑦)൯                               (2.74) 

II.3.2.3. Control of the z position 

The degree r equal 2, 

 𝑠(𝑧) =  ቀ
ௗ

ௗ௧
+ 𝜆   ቁ

௥ିଵ

 𝑒(𝑧) = 𝑒ᇱ(𝑧) + 𝜆𝑒(𝑧), 𝑒(𝑧) = 𝑧 − 𝑧ௗ                    (2.75) 

𝑠(𝑧) = 𝑧ᇱ − 𝑧ௗᇱ + 𝜆(𝑧 − 𝑧ௗ) = 𝑧ଶ − 𝑧ௗᇱ + 𝜆(𝑧 − 𝑧ௗ) 

The control Ueff:  

𝑈௘௤ =  − ൭
𝜕𝑠

𝜕𝑥
𝑔(𝑧)൱

ିଵ

൭
𝜕𝑠

𝜕𝑥
𝑓(𝑧)൱                                        (2.76) 

డ௦

డ௫
𝑔(𝑧) = [𝜆 1] ቈ

0
ଵ

௠

቉ =
ଵ

௠
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and  
డ௦

డ௫
𝑓(𝑧) = [𝜆 1] ቈ

𝑧ଶ
ି௙೥

௠
𝑧ଶ

቉ = 𝜆𝑧ଶ −
௙೥

௠
𝑧ଶ 

𝑈௘௤ =  𝑚 ቆ−𝜆𝑧ଶ +
𝑓௬

𝑚
𝑧ଶ − 𝑔ቇ 

The Uatt 𝑈௦ =  −𝐾𝑠𝑔𝑛(𝑠(𝑧) 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 
డ௦

డ௫
𝑔(𝑧) > 0  

The control law: 𝑈௭ି௖௢௡௧௥௢௟ =  −𝑚 ቀ−𝜆𝑧ଶ +
௙೥

௠
𝑧ଶ − 𝑔ቁ − 𝐾௭𝑠𝑔𝑛(𝑠(𝑧))                      (2.77) 

II.3.2.4. Control of the 𝜑 direction 

Considering these equations:൜
𝜑ଵ

ᇱ = 𝜑ଶ                                      

𝜑ଶ
ᇱ = 𝑎ଵ𝜃ᇱ𝜓ᇱ + 𝑎ଷΩθᇱ − 𝑎ଵଷ𝜑ଶ

ଶ + 𝑏ଵ𝑈ଶ
                                       (2.78) 

The degree r equal 2, 

𝑠(𝜑) =  ൬
𝑑

𝑑𝑡
+ 𝜆ఝ   ൰

௥ିଵ

 𝑒(𝜑) = 𝑒ᇱ(𝜑) + 𝜆ఝ𝑒(𝜑), 𝑒(𝜑) = 𝜙ௗ − 𝜑 

𝑠(𝜑) =  𝜑ௗᇲ
− 𝜑ᇱ + 𝜆ఝ(𝜑ௗ − 𝜑) 

= 𝜑ௗᇱ − 𝜑ଶ + 𝜆ఝ(𝜑ௗ − 𝜑ଵ) 

Thus: 𝑈௘௤ =  − ቀ
డ௦

డ௫
𝑔(𝜑)ቁ

ିଵ

ቀ
డ௦

డ௫
𝑓(𝜑)ቁ 

డ௦

డ௫
𝑔(𝜑) = [−𝜆ఝ −1] ቈ

0
ିଵ

ூೣ

቉ =
ଵ

ூೣ
  

and  
డ௦

డ௫
𝑓(𝜑) = [−𝜆ఝ −1] ൤

𝜑ଶ

𝑎ଵ𝜃ᇱ𝜓ᇱ − 𝑎ଵଷ𝜑ଶ
ଶ + 𝑎ଷΩθᇱ൨ = −𝜆ఝ𝜑ଶ − 𝑎ଵ𝜃ᇱ𝜓ᇱ − 𝑎ଷΩθᇱ + 𝑎ଵଷ𝜑ଶ

ଶ 

  𝑈௘௤ =  −𝐼௫൫−𝜆ఝ𝜑ଶ − 𝑎ଵ𝜃ᇱ𝜓ᇱ − 𝑎ଷΩθᇱ + 𝑎ଵଷ𝜑ଶ
ଶ൯ 

The Uatt  𝑈௦ =  −𝐾𝑠𝑔𝑛(𝑠(𝜑) 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 
డ௦

డ௫
𝑔(𝜑) > 0  

𝑈ఝି௖௢௡௧௥௢௟ =  −𝐼௫൫−𝜆ఝ𝜑ଶ − 𝑎ଵ𝜃ᇱ𝜓ᇱ − 𝑎ଷΩθᇱ൯ − 𝐾ఝ𝑠𝑔𝑛(𝑠(𝜑)             (2.79) 
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II.3.2.5. Control of the 𝜃 direction 

൜
𝜃ଵ

ᇱ = 𝜃ଶ                          

𝜃ଶ
ᇱ = 𝑎ସ𝜑ᇱ𝜓ᇱ + 𝑎଺Ωφᇱ − 𝑎ଵସ𝜃ଶ

ଶ + 𝑏ଶ𝑈ଷ
                                 (2.80)  

 

The degree r equal 2,  

𝑠(𝜃) =  ൬
𝑑

𝑑𝑡
+ 𝜆ఏ   ൰

௥ିଵ

 𝑒(𝜃) = 𝑒ᇱ(𝜃) + 𝜆ఏ𝑒(𝜃), 𝑒(𝜃) = 𝜃ௗ − 𝜃 

             𝑠(𝜃) =  𝜃ௗᇱ − 𝜃ᇱ + 𝜆ఏ(𝜃ௗ − 𝜃) = 𝜃ௗᇱ − 𝜃ଶ + 𝜆ఏ(𝜃ௗ − 𝜃ଵ) 

             𝑈௘௤ =  − ቀ
డ௦

డ௫
𝑔(𝜃)ቁ

ିଵ

ቀ
డ௦

డ௫
𝑓(𝜃)ቁ 

           
డ௦

డ௫
𝑔(𝜃) = [−𝜆ఏ −1] ቈ

0
ିଵ

ூ೤

቉ =
ଵ

ூ೤
  

and  
డ௦

డ௫
𝑓(𝜃) = [−𝜆ఏ −1] ൤

𝜑ଶ

𝑎ସ𝜑ᇱ𝜓ᇱ − 𝑎ଵସ𝜃ଶ
ଶ + 𝑎଺Ωφᇱ൨ = −𝜆ఏ𝜃ଶ − 𝑎ସ𝜑ᇱ𝜓ᇱ − 𝑎଺Ωφᇱ + 𝑎ଵସ𝜃ଶ

ଶ 

The Uatt:  𝑈௦ =  −𝐾𝑠𝑔𝑛(𝑠(𝜃) 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 
డ௦

డ௫
𝑔(𝜃) > 0  

𝑈ఏି௖௢௡௧௥௢ =  −𝐼௬(−𝜆ఏ𝜃ଶ − 𝑎ସ𝜑ᇱ𝜓ᇱ − 𝑎଺Ωφᇱ + 𝑎ଵସ𝜃ଶ
ଶ) − 𝐾ఏ𝑠𝑔𝑛(𝑠(𝜃)        (2.81)  

 

II.3.2.6. Control of the 𝜓 direction 

൜
𝜓ଵ

ᇱ = 𝜓                                       

𝜓ଶ
ᇱ = 𝑎଻𝜑ᇱ𝜃ᇱ − 𝑎ଵହ𝜓ଶ

ଶ + 𝑏ଷ𝑈ସ                   
                                               (2.82) 

The degree r equal 2, 

 𝑠(𝜓) =  ቀ
ௗ

ௗ௧
+ 𝜆ట   ቁ

௥ିଵ

 𝑒(𝜓) = 𝑒ᇱ(𝜓) + 𝜆ట𝑒(𝜓), 𝑒(𝜓) = 𝜓ௗ − 𝜓 

𝑠(𝜓) = = 𝜓ௗᇱ − 𝜓ᇱ + 𝜆ట(𝜓ௗ − 𝜓) = 𝜓ௗᇱ − 𝜓ଶ + 𝜆ట(𝜓ௗ − 𝜓ଵ) 

 𝑈௘௤ =  − ቀ
డ௦

డ௫
𝑔(𝜓)ቁ

ିଵ

ቀ
డ௦

డ௫
𝑓(𝜓)ቁ 

డ௦

డ௫
𝑔(𝜓) = [−𝜆ట −1] ቈ

0
ିଵ

ூ೥

቉ =
ଵ

ூ೥
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and  
డ௦

డ௫
𝑓(𝜓) = [−𝜆ట −1] ൤

𝜓ଶ

−𝑎ଵହ𝜓ଶ
ଶ + 𝑎଻𝜑ᇱ𝜃ᇱ൨ = −𝜆ట𝜓ଶ − 𝑎଻𝜑ᇱ𝜃ᇱ + 𝑎ଵହ𝜓ଶ

ଶ 

The Uatt:  𝑈௦ =  −𝐾𝑠𝑔𝑛(𝑠(𝜓) 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 
డ௦

డ௫
𝑔(𝜓) > 0  

𝑈టି௖௢௡௧௥௢௟ =  −𝐼௭൫−𝜆ట𝜓ଶ − 𝑎଻𝜑ᇱ𝜃ᇱ + 𝑎ଵହ𝜓ଶ
ଶ൯ − 𝐾ట𝑠𝑔𝑛(𝑠(𝜓)            (2.83) 

All the previous steps of SMC used to generate a global control law for the whole system are 

summarized in the block diagram shown in Figure 2.13. Whereas, the control gains are given in Table 

2.3. 

Table 2.3. Used gains of the SMC controllers 

 𝑥 𝑦 𝑧 𝜑 𝜃 𝜓 

𝐾 10 10 15 20 20 20 

𝜆 2 2 2 0.5 0.9 0.9 

𝜀 0.5 0.5 0.5 0.5 0.5 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.13. Quadrotor sliding mode control structure. 
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II.3.3. SMC results and discussions 

To test the control theory applied to the quadrotor we chose a square trajectory at an altitude of 

ten meters and we fixed the yaw angle at zero radium. 

The simulation parameters are given in Table 2.3. 

Figure 2.14 shows the simulation results of the four inputs, where U1 represents the pushing 

force it is of the order of ten Newtons and the other inputs the torques are a round zero Nm. 

Figure 2.15 illustrates the speeds of the four rotors they are almost equal to 215rd/s. In Figure 

2.16 the speed of rotation of the quadrotor is almost zero for a square trajectory and on the left; in 

addition, the attitudes coincide with the requested movement. 

To test the robustness of the control structure, a helical trajectory was applied (see Figure 2.17), 

and the quadrotor follows the desired trajectory successfully. 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 

 

Fig. 2.14. Inputs generated by controllers during simulation (SMC) 
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Fig. 2.15. Rotor speeds (SMC) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.16. Quadrotor speed and angles responses (SMC). 
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Fig. 2.17. Path of quadrotor controlled with SMC (in left square path, in the right helical path). 
 

In this part of the chapter 2, sliding mode control of quadrotor was realized following the same 

scenario as the previous part. The obtained simulation results showed the good performances and 

robustness of this control technique. 

In order to make a comparison between the three control techniques chosen in this chapter, 

disturbance will be applied to the three control structures, in the coming part, and extract the reaction 

of each one to this disturbance. 

II.4. Nonlinear control for disturbances rejection in quadrotors 

Matlab simulink is the most useful software used to test the behaviour of nonlinear systems 

and to validate the results of the recently developed controllers [38], [40], [41]. Therefore, model 

simulation is done using Matlab Simulink program to verify our suggested control approach. To 

achieve that, a quadrotor model is designed and controlled by three different controllers which are: 

PD, sliding mode and the BSC. Hence, each one of them is tested with and without disturbances to 

track a quadrotor’s trajectory of radians R=8 shown in Figure 2.18. The quadrotor has to track the 

trajectory defined by the time functions: 𝑋 = 8 sin (0.1𝑡), 𝑌 = 8 cos (0.1𝑡 ) and 𝑍 = 0.2𝑡. 
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(a) 

 

(b) 

 

  

(c) (d) 

Fig. 2.18. Attitude, heading and position reference, (a) trajectory tracked by the Quadrotor. (b) PDC, (c) 

SMC, and (d) BSC. 
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II.4.1. Without disturbance  

Figure 2.18(a) is an illustration of the trajectory tracked by the quadrotor. The next Figures show the 
position, orientation (see Figure 2.18(b), Figure 2.18(c), and Figure 2.18(d)), trajectory errors (illus-
trated in Figure 2.19(a), Figure 2.19(b) and Figure 2.19(c)) and control inputs in the absence of dis-
turbances generated by the three controllers. 

 

    (a)         (b) 

 

(c) 

Fig. 2.19. U1, U2, U3 and U4 vs. time, (a) PDC, (b) SMC, and (c) BSC 

 

Discussion: without any disturbance, the steady state error from the SMC was the smallest 

followed by PDC then the BSC for the displacement across both the X and Y axes. In the event that 

no disturbances, SMC has proven its efficiency even in the previous work [4], [20], [42]. However, 

for the displacement on the Z axis, the SMC did 1012 times worse than the BSC, with the PDC doing 

the best here. And finally, for the steady state error for yaw angle, the BSC also was 1017 better than 

the PDC, and the SMC and being lasting this category. 
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II.4.2. With disturbance  

The Next figures show the position and orientation (see Figures 2.20(a), 2.20(b) and 2.20(c)), 

and control inputs (shown in Figures 2.21(a), 2.21(b) and 2.21(c)) in the presence of a ramp disturb-

ance of the vector F=9t i+9t j+ 9t k (N), starting from the 10th second of the simulation with a force 

limit of 9 N. 

  
(a) (b) 

 
(c) 

Fig.2.20. Altitude, heading and position reference measurement vs. actual measurement, (a) PDC, (b) SMC, and 

(c) BSC. 
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(a) (b) 

 

 

(c) 

Fig.2.21. U1, U2, U3 and U4 vs. time, (a) PDC, (b) SMC, and (c) BSC 

Discussion: now, in the case of disturbance. For small disturbance, the steady state error for 

every controller kept the same order as in case of no disturbance. But as the disturbance increased the 

controllers could not keep the quadrotor in trajectory anymore. The first controller that collapsed was 

the SMC. Making the PDC the best controller of the three under disturbance, but even this last one 

also collapsed after adding 133.33% of the first disturbance force. Then, BSC proves that it is the best 

to resist for all kind of disturbances; but, after adding about 50% of the previous disturbance force, 

the BSC collapsed too. However, the simulation result obtained from the implementation of the 

proposed BSC is very satisfactory compared to the previous works which show some complexity of 
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the analytical inference and a considerable dynamic error, especially in presence of noise [4], [5], 

[43] 

II.5. Conclusion  

It is established that the position, orientation and attitude path following errors can rapidly 

converge to slight values with all controllers. In case of non-external disturbance, BSC shows good control 

of the yaw angle and the altitude of the quadrotor comparing to the two other controllers (SMC and PDC).  

Moreover, in the case of presence of disturbances, for small disturbance, each controller's steady 

state error maintained the same order as in the absence of any disturbance. However, as the disturbance 

increase the controllers could not keep the quadrotor in trajectory anymore. Numerical and simulation 

results confirm that BSC is the last one that collapsed which confirm the robustness and efficacy of our 

constructed enhanced control strategy . 
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Chapter 3: Extended Kalman Filter (EKF) estimation 

Different techniques were established to estimate the required quadrotor’s position and altitude 

measurements such as: Kalman filtering (KF) [11], the complementary filter (CF) [12] and Extended 

Kalman Filters (EKF) [13] estimators. Kalman filter is a well-known recursive algorithm that takes 

the stochastics states spaces model of the system together with measured outputs to achieve the opti-

mal estimation states. The optimality of the state’s estimation is achieved with the minimization of 

the mean estimation error. Therefore, EKF and backstepping were investigated in this chapter to es-

timate the angular velocity and the speed of our quadrotor; hence, track the desired trajectory and 

control the altitude. 

III.1. Quadrotors state model 

The estimated orientation of the quadrotor is defined by the Euler angles: ൛𝜑ො, 𝜃෠, 𝜓෠ൟ, pitch, roll, 

and yaw, respectively. The total estimated angular velocity of the quadrotor represented by 

൛𝜑ᇱ෢, 𝜃ᇱ෡ , 𝜓ᇱ෢ ൟ, is seen in the axes (X, Y, Z) of the reference frame. Therefore, the total estimated speed 

of the quadrotor is presented by ൛𝑥ᇱ෡ , 𝑦ᇱ෡ , 𝑧ᇱ෡ ൟ. Hence, in this work EKF, is used for the estimation of: 

𝑋෠ = ൣ𝑥ො, 𝑦ො, 𝑧̂, 𝜑ො, 𝜃෠, 𝜓෠, 𝑥ᇱ෡ , 𝑦ᇱ෡ , 𝑧ᇱ෡ , 𝜑ᇱ෢, 𝜃ᇱ෡ , 𝜓ᇱ෢ ൧
்
. 

The state space representation of the quadrotor is defined as: 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑥ଵ
ᇱ = 𝑥ଶ                               

𝑥ଶ
ᇱ = 𝑎ଵ𝑥଺𝑥ସ + Ω𝑎ଷ𝑥ସ − 𝑎ଵଷ𝑥ଶ

ଶ𝑈ఝ          

𝑥ଷ
ᇱ = 𝑥ସ                               

𝑥ସ
ᇱ = 𝑎ସ𝑥ଶ𝑥଺ + Ω𝑎଺ − 𝑎ଵସ𝑥ସ

ଶ+𝑏ଶ𝑈ఏ         

𝑥ହ
ᇱ = 𝑥଺                                

𝑥଺
ᇱ = 𝑎଻𝑥ଶ𝑥ସ − 𝑎ଵହ𝑥଺

ଶ + 𝑏ଷ𝑈ట              

𝑥଻
ᇱ = 𝑥଼                                

𝑥଼
ᇱ = 𝑎ଽ𝑥଼ +

ୡ୭ୱ(௫భ) ୡ୭ୱ(௫య)

௠
𝑈ଵ − 𝑔           

𝑥ଽ
ᇱ = 𝑥ଵ଴                               

𝑥ଵ଴
ᇱ = 𝑎ଵ଴𝑥ଵ଴ +

௎భ

௠
𝑈௬                      

𝑥ଵଵ
ᇱ = 𝑥ଵଶ                               

𝑥ଵଶ
ᇱ = 𝑎ଵଵ𝑥ଵଶ +

௎భ

௠
𝑈௫                       

                           (3.1) 
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Where: 𝑥ଵ = 𝜑, 𝑥ଶ = 𝑝, 𝑥ଷ = 𝜃, 𝑥ସ = 𝑞, 𝑥ହ = 𝜓, 𝑥଺ = 𝑟, 𝑥଻ = 𝑧, 𝑥଼ = 𝑧ᇱ, 𝑥ଽ = 𝑦, 𝑥ଵ଴ = 𝑦ᇱ, 𝑥ଵଵ =

𝑥, 𝑥ଵଶ = 𝑥ᇱ, 𝑎1 =
ூ௬ିூ௭

ூ௫
, 𝑎2 =

௃௥

ூ௫
, 𝑎4 =

௃௥

ூ௬
, 𝑎3 =

ூ௭ିூ௫

ூ௬
, 𝑎5 =

ூ௬ିூ௫

ூ௭
,  𝑏1 =

ଵ

ூ௫
, 𝑏2 =

ଵ

ூ௬
, 

𝑏3 =
ଵ

ூ௭
, 𝑎9 = −

௞௙௧௭

௠
, 𝑎10 = −

௞௙௧௬

௠
,  𝑎13 =

௄௙௔௫

ூ௫
, 𝑎14 =

௄௙௔௬

ூ௬
, 𝑎15 =

௄௙௔

ூ௭
. 

In the vector form as 𝑥ᇱ(𝑡) = 𝑓(𝑥) + 𝑔(𝑥)𝑈 + 𝑔௥(𝑥), the system is represented in the follow-

ing form: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥ଵ
ᇱ

𝑥ଶ
ᇱ

𝑥ଷ
ᇱ

𝑥ସ
ᇱ

𝑥ହ
ᇱ

𝑥଺
ᇱ

𝑥଻
ᇱ

𝑥଼
ᇱ

𝑥ଽ
ᇱ

𝑥ଵ଴
ᇱ

𝑥ଵଵ
ᇱ

𝑥ଵଶ
ᇱ ⎦

⎥
⎥
⎥
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⎥
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⎤
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥ଶ

𝑎ଵ𝑥଺𝑥ସ + Ω𝑎ଷ𝑥ସ − 𝑎ଵଷ𝑥ଶ
ଶ

𝑥ସ

𝑎ସ𝑥ଶ𝑥଺ + Ω𝑎଺𝑥ଶ − 𝑎ଵସ𝑥ସ
ଶ

𝑥଺

𝑎଻𝑥ଶ𝑥ସ − 𝑎ଵହ𝑥଺
ଶ

𝑥଼

𝑎ଽ𝑥଼
𝑥ଵ଴

𝑎ଵ଴𝑥ଵ଴
𝑥ଵଶ
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0
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0
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⎥
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              (3.2) 
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ᇱ
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           (3.3) 

Thus 
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𝑓(x) =
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     (3.4) 

Taking the derivate of f(x) with respect to x:  

డ௙

డ௫
=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0 0 0 0 0 0 0
0 −2𝑎ଵଷ 0 Ω𝑎ଶ + 𝑎ଵ𝑥଺ 0 𝑎ଵ𝑥ସ 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 −Ω𝑎ସ + 𝑎ଷ𝑥଺ 0 −2𝑎ଵସ 0 𝑎ଷ𝑥ଶ 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 𝑎ଷ𝑥ସ 0 𝑎ହ𝑥ଶ 0 −2𝑎ଵହ 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 𝑎ଽ 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 𝑎ଵ଴ 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 𝑎ଵଵ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.5) 

The discrete formulation of the state model is obtained by discrediting the continuous solution 

between two sampling times Ts, by considering Tsktkt  )()1( and kTskt )( )( Nk  . 

Thus:  

F = eௗி∗்ೄ ≈ 𝐼 + 𝑑𝐹 ∗ 𝑇ௌ,𝐺 = 𝑔(𝑥) ∗ 𝑇ௌ,  𝐺௥ = 𝑔௥(𝑥) ∗ 𝑇ௌ 

Where I is the identity matrix and 
x

f
dF




 . Therefore, F can be calculated from Eq. (3.5) as 

follow: 
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𝐼 + ൬
𝜕𝑓

𝜕𝑥
൰ 𝑇ௌ

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 𝑇ௌ 0 0 0 0 0 0 0 0 0 0
0 1 − 2𝑎ଵଷ𝑇ௌ 0 Ω𝑎ଶ𝑇ௌ + 𝑎ଵ𝑥଺𝑇ௌ 0 𝑎ଵ𝑥ସ𝑇ௌ 0 0 0 0 0 0
0 0 1 𝑇ௌ 0 0 0 0 0 0 0 0
0 −Ω𝑎ସ𝑇ௌ + 𝑎ଷ𝑥଺𝑇ௌ 0 1 − 2𝑎ଵସ𝑇ௌ 0 𝑎ଷ𝑥ଶ𝑇ௌ 0 0 0 0 0 0
0 0 0 0 1 𝑇ௌ 0 0 0 0 0 0
0 𝑎ଷ𝑥ସ𝑇ௌ 0 𝑎ହ𝑥ଶ𝑇ௌ 0 1 − 2𝑎ଵହ𝑇ௌ 0 0 0 0 0 0
0 0 0 0 0 0 1 𝑇ௌ 0 0 0 0
0 0 0 0 0 0 0 1 + 𝑎ଽ𝑇ௌ 0 0 0 0
0 0 0 0 0 0 0 0 1 𝑇ௌ 0 0
0 0 0 0 0 0 0 0 0 1 + 𝑎ଵ଴𝑇ௌ 0 0
0 0 0 0 0 0 0 0 0 0 1 𝑇ௌ

0 0 0 0 0 0 0 0 0 0 0 1 + 𝑎ଵଵ𝑇ௌ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

(3.6) 

In the same way, we get: 

 

𝐺 = 𝑔(𝑥)𝑇ௌ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0
0 0 0 𝑏ଵ𝑇ௌ 0 0
0 0 0 0 0 0
0 0 0 0 𝑏ଶ𝑇ௌ 0
0 0 0 0 0 0
0 0 0 0 0 𝑏ଷ𝑇ௌ

0 0 0 0 0 0
−𝑇ௌ 0 0 0 0 0

0 0 0 0 0 0
0 −𝑇ௌ 0 0 0 0
0 0 0 0 0 0
0 0 −𝑇ௌ 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   , 𝐺௥ = 𝑔௥(𝑥)𝑇ௌ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0
0
0

𝑔𝑇ௌ

0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.7) 

III.2. Extended Kalman Filter (EKF) estimation 

The algorithm of the Extended Kalman filter (EKF) can be summarized in nine steps: first, the 

state vector must be initialized followed by the acquisition of the data; then, the state must be pre-

dicted. After that, matrix of the covariance error must be estimated and the gain of the Kalman filter 

must be calculated. Therefore, the state-vector can be estimated at time (k+1) and the estimation 

covariance error must be updated. At the end, the final results must be stored and repeated from step 

3. These steps are explained in detail in the following subsections. Start by defining:  

States 𝑋 = [𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓, 𝑥ᇱ, 𝑦ᇱ, 𝑧ᇱ, 𝜑ᇱ, 𝜃ᇱ, 𝜓ᇱ]்,  
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Input 𝑈 = ൣ𝑈௭ , 𝑈௬, 𝑈௫,𝑈ఝ , 𝑈ఏ, 𝑈ట൧
்
, and  

Output 𝑦 = [𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓]் 

III.2.1. Initialize the state vector:  

𝑥෤(0 0⁄ ), 𝑃(0 0⁄ ), 𝑅 and 𝑄 must be initialized. With P is the covariance matrix of states estima-

tion, R is the covariance matrix of the output noise, and Q is the covariance matrix of the system 

noise. 

III.2.2. Data acquisition   

At this step, the process starts the acquisition of the data: 𝑢(𝑘 𝑘⁄ ), 𝑦(𝑘 + 1) 

III.2.3. Prediction of the state  

Prediction of the state vector at sampling time (k+1) from the input u (k), state vector at previous 

sampling time 𝑥෤(𝑘
𝑘ൗ ), by using F given by Eq.(3.6) and G given by Eq.(3.7), is obtained from:  

𝑥෤ ቀ𝑘 + 1
𝑘ൗ ቁ = 𝐹 ∗ 𝑥෤(𝑘 𝑘⁄ ) + 𝐺 ∗ 𝑢(𝑘))      (3.8) 

 𝑦෤(𝑘 + 1
𝑘ൗ ) = 𝑔(𝑥෤(𝑘 𝑘⁄ ), 𝑢(𝑘))       (3.9)  

The notation 𝑥෤(𝑘 + 1
𝑘ൗ ) means that it is a predicted value at the (k+1)th instant, and it is based 

on the measurements up to kth instant. In the following step of the recursive EKF computation starts. 

III.2.4. Estimation of the covariance error matrix  

The covariance error matrix can be recursively estimated using the following equation: 

𝑃(𝑘 + 1
𝑘ൗ ) = 𝐹(𝑘)𝑃(𝑘 𝑘)⁄ 𝐹்(𝑘) + 𝑄(𝑘)    (3.10) 

III.2.5. Calculation of the gain of the Kalman filter 

The Kalman filter gain 𝐾(𝑘 + 1) is computed as; 

𝐾(𝑘 + 1) = 𝑃(𝑘 + 1
𝑘ൗ )𝐺்(𝑘)(𝐺𝑃(𝑘 + 1

𝑘ൗ )𝐺் + 𝑅(𝑘))ିଵ (3.11) 
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Where 𝐺 =
డ௛

డ௫
  ,  

With h represents the output of the system.  

III.2.6. State estimation  

The state-vector estimation at time (k+1) then is determined as: 

𝑥෤(𝑘 + 1 𝑘 + 1⁄ ) = 𝑥෤(𝑘 + 1 𝑘)⁄ +𝐾(𝑘 + 1)൫𝑦(𝑘 + 1) − 𝑦෤(𝑘 + 1)൯    (3.12) 

When calculating the new state value 𝑥෤(𝑘 + 1 𝑘 + 1⁄ ), the Kalman filter gain 𝐾(𝑘 + 1) is 

multipliedwith the error of the output (named the innovation). The innovation process (𝑦(𝑘 + 1) −

𝑦෤(𝑘 + 1)) has an important impact in improving the results of our work; where, 𝑦(𝑘 + 1) is the 

real output of the process and 𝑦෤(𝑘 + 1) is the estimated output of the process. 

III.2.7. Updating the matrix of the estimation covariance error 

The last step of the EKF algorithm is to estimate the covariance computation as: 

𝑃(𝑘 + 1 𝑘 + 1⁄ ) = 𝐹(𝑘)(𝐼 − 𝐾(𝑘 + 1)𝐺)𝑃(𝑘 + 1 𝑘)⁄    (3.13) 

III.2.8. The storage of the final value 

The obtained results must be stored using the following formula: 

  𝑥෥ (𝑘 𝑘⁄ ) = 𝑥෤ (𝑘 + 1 𝑘 + 1⁄ )    

𝑃(𝑘 𝑘⁄ ) = 𝑃(𝑘 + 1 𝑘 + 1⁄ )       (3.14) 

III.2.9. For the next step (k+1),  

Repeat the steps from step 2. 

III.3. Results and discussions 

In order to validate our proposed control solution, the model is simulated under Matlab/Sim-

ulink software as shown in Fig. 3.1.  
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Fig. 3.1. Block diagram Nonlinear Control of Quadrotor using EKF. 

For that purpose, the results are obtained based on the application of the real parameters sum-

marized on Table 3.1 [23].   

Table 3.1. Quadrotor parameter used in our simulation  

Ix Body inertia respect to x axis 8. e-3  Kg. m2        Friction aerodynamics coefficients 

Iy Body inertia respect to y axis 8. e-3  Kg. m2       Kfax 5.5670.e-6       N/rd/s 

Iz Body inertia respect to z axis 14.2.e-6  Kg. m2       Kfay 5.5670.e-6       N/rd/s 

Jr Rotor inertia 104 e-6  Kg. m2       Kfaz 6.3540.e-4       N/rd/s 

m Mass of the quadrotor  1       Kg 

g Gravitational constant  9.81    m. s-2  Translation drag coefficients 

b Thrust factor   54.2 e-6 Kftx 5.5670.e-6       N/m/s 

d Grag factor 1.1e-6  m Kfty 5.5670.e-6       N /m/s 

l  Horizontal distance: propeller 

center to CoG 

0.24   m Kftz 6.3540.e-4       N/m/s 

dψ
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z (m) 

In this part of or work we simulated the nonlinear control without linear and angular sensors 

using the extended kalman filter according to the following scenario, who it is desired to follow a 

rectangular trajectory in XY plane. The height z increases uniformly from zero to 15 meters where the 

drone stabilizes as shown in Figure 3.2.  

 

 

 

 

Fig. 3.2. The desired rectangular trajectory to be followed by the quadrotor. 

In Fig 3.3, we find the simulation results of the roll angle ϕ, pitch angle θ and yaw angle ψ using 

nonlinear control, where we notice that the difference between the desired and estimated quantities is 

small in the case of the backstepping control. 
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(a) (b) 

Fig. 3.3. Simulation results of the roll angle ϕ, pitch angle θ and yaw angle ψ using nonlinear control. (a) BSC, 

(b) SMC 

In Fig.3.4, we find the estimated linear velocities where we notice that the results given by BSC 

are relatively good compared to those given by SMC. 

 

 

 

 

 

  

    

  

 

 

 

      

 

 

 

 

 

(a)                                        (b) 

Fig. 3.4. Simulation results of the x velocity, y velocity and z velocity using EKF, (a) BSC, (b) SMC  
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Fig. 3.5 illustrates the simulation results of the angular velocities estimated using EKF where 

notice that the velocities given by the sliding mode control are more than the double of the velocities 

given by the backstepping control during the transitional regime. 

Fig 3.6 shows the simulation results of the positions estimated using the extended kalman filter 

where we notice that the estimated states follow the desired instructions in the two control cases with 

an acceptable overshoot in the case of sliding mode control. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                     (b) 

Fig. 3.5 the estimated results using EKF of: the pitch rate q, the roll rate p and the yaw rate r, (a) BSC, (b) SMC  
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 (a) (b) 

Fig. 3.6. Simulation results of the x position and y position and z position using backstepping control, (a) BSC, 

(b) SMC  

In Fig.3.7 we find the path followed by the quadrotor estimated using extended Kalman filter, 

where we notice that the quadrotor successfully follows the desired path for the two commands (BSC) 

and (SMC). 
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(a)        (b) 

Fig. 3.7. Response of quadrotors model. (a) BSC, (b) SMC.  

Fig. 3.8 shows the altitude and attitude control inputs of the quadrotor. As shown in the simu-

lation result, the altitude control input u1 is a positive value and close to about 10 N, we see also that 

the inputs u2, u3 and u4 are reasonable. 
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Control input ϴ for the attitude                Control input ψ for the attitude 

Fig. 3.8. Simulation of the control inputs. 

The previously discussed results were obtained from Matlab Simulink. The models created in 

the second chapter were modified by adding EKF block to the already implemented controllers’ 

blocks. The EKF are the blue boxes shown in the following Simulink blocks. Figures 3.9, 3.10, and 

3.11 correspond to the modified PDC, SMC and BSC controllers respectively by considering the 

EKF. 
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Fig. 3.9. PID with EKF Simulink block. 
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Fig. 3.10. SMC with EKF Simulink model. 
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Fig. 3.11. BSC with EKF Simulink model. 
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III.4. Conclusion 

In this chapter we controlled a drone using a nonlinear control method with the aim of keeping 

all the information on the system and without linearization (backstepping control method, sliding 

mode control), which is generally used to control high order nonlinear systems. In the control struc-

ture the angles (𝜑, 𝜃 and 𝜓) and the positions (x, y and z) have been picked up directly from the 

system; while, the angular and linear velocities (p, q, r and 𝑥ᇱ, 𝑦ᇱ, 𝑧ᇱ) were estimated using the ex-

tended kalman filter. 

The results obtained in this chapter are very successful which has urged us to use the extended 

kalman filter to estimate the wind disturbance in the next part of our thesis. 
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Chapter 4: Wind’s Force Estimation 

 

The presence of external disturbances such as wind decreases the efficiency of the existing 

controllers [14-15]; therefore, environmental uncertainties such as turbulence influences and wind 

disturbances present additional forces and moments on the quadrotor dynamics which were ignored 

in the previous works [16-18]. Hence, the design of more reliable controller for quadrotor is a chal-

lenging task which requires an accurate wind forces estimation using EKF that is proposed in this 

chapter. Simulation results are shown to verify the efficiency of the presented model which can con-

siderably advance the trajectory tracking feature of the quadrotor under wind disturbances. 

IV.1. Wind’s force estimation using EKF 

The success and efficient quadrotor’s trajectory tracking in presence of wind disterbances, 

model depends on the density of measurements and the wind prediction map accuracy [19]. The wind 

forecast maps provided present high uncertainty and the wind distribution is really stochastic [19]; 

this can cause Fixed-wing UAVs with rigid wings and airfoils, for example, drift in the wind direction 

due to wind thrust [20]. Therefore, in this section of our work, wind’s force estimation using EKF 

and compensated it in real time is provided. The wind’s force is break down in three directions x, y 

and z as shown in Fig. 4.1. 

 

    

 

 

 

 

 

 

 

Fig. 4.1. Quadrotor state model including wind’s force. 
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Starting from the newton's second rule 𝑚𝛾⃗ = ∑ 𝐹ప
ሬሬ⃑ , we can get the following equations’ 

system: 

ቐ

m𝑥" = 𝑈௫ − 𝑓௫𝑥ᇱ − 𝐹௪ି௫

m𝑦" = 𝑈௬ − 𝑓௬𝑦ᇱ − 𝐹௪ି௬

m𝑧" = 𝑈௭ − 𝑓௭𝑧ᇱ − 𝐹௪ି௭

          (4.1) 

Therfore, the linear accelerations is expressed by eq. (4.2) as follow: 

⎩
⎪
⎨

⎪
⎧𝑥" =

ଵ

௠
(𝑈௫ − 𝑓௫𝑥ᇱ − 𝐹௪ି௫)

𝑦" =
ଵ

௠
൫𝑈௬ − 𝑓௬𝑦ᇱ − 𝐹௪ି௬൯

𝑧" =
ଵ

௠
(𝑈௭ − 𝑓௭𝑧ᇱ − 𝐹௪ି௭)

         (4.2) 

Where:   

F୵ି୶ is the wind force in x direction  

  F୵ି୷ is the wind force in y direction 

  F୵ି୸ is the wind force in z direction  

In the vector form as: 𝑥ᇱ(𝑡) = 𝑓(𝑥) + 𝑔(𝑥)𝑈 + 𝑔௥(𝑥), and in the aim to introduce the wind 

force in the system, Eq. (4.2) is modified such that: 𝑥ଵ = 𝜑,  𝑥ଶ = 𝑝, 𝑥ଷ = 𝜃, 𝑥ସ = 𝑞,   

 𝑥ହ = 𝜓,   𝑥଺ = 𝑟,     𝑥଻ = 𝑧,    𝑥଼ = 𝑧ᇱ,     𝑥ଽ = 𝑦,     𝑥ଵ଴ = 𝑦ᇱ,      𝑥ଵଵ = 𝑥,       𝑥ଵଶ = 𝑥ᇱ,  and 

 𝑥ଵଷ = 𝐹௭ ,   𝑥ଵସ = 𝐹௬,   𝑥ଵହ = 𝐹௫. 
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Therefore, the system is expressed by Eq. (4.3) as follow: 

⎣
⎢
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥ଶ

𝑎ଵ𝑥ସ𝑥଺ + 𝑎ଷΩ𝑥ସ − 𝑎ଵଷ𝑥ଶ
ଶ

𝑥ସ

𝑎ସ𝑥ଶ𝑥଺ + 𝑎଺Ω𝑥ଶ − 𝑎ଵସ𝑥ସ
ଶ

𝑥଺

𝑎଻𝑥ଶ𝑥ସ − 𝑎ଵହ𝑥଺
ଶ

𝑥଼

𝑎ଽ𝑥଼ +
௫భయ

௠
𝑥ଵ଴
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௫భర

௠
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௫భఱ

௠
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⎡
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Such that: 
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The derivate of f(x) with respect to x is expressed as:   

ቂ
డ௙
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(4.4) 

Therefore,   sx
f TIF 
  can be calculated from Eq. (4.5) as follow: 
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Whereas,     𝐺 = 𝑔(𝑥)𝑇ௌ =
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IV.2. Results and discussions 

In order to validate our proposed control solution, the previously created block diagram given 

in Fig. 3.1 is modified such that the wind’s force was injected to the system and simulated under 

Matlab/Simulink software. The modified block is shown in Fig .4.1. Therefore, to test the efficiency 

of our estimator, a wind force expressed by 𝐹⃗௪ = 𝑑ଵ௫𝚤 + 𝑑ଵ௬𝚥 + 𝑑ଵ௭𝑘ሬ⃗  is applied at t=50s then 

another force expressed by 𝐹⃗௪ = 𝑑ଶ௫𝚤 + 𝑑ଶ௬𝚥 + 𝑑ଶ௭𝑘  ሬሬሬሬ⃗ is applied at t=60s and from t=70s until the 

end of the simulation (150s) we applied the force 𝐹⃗௪ = 𝑑ଷ௫𝚤 + 𝑑ଷ௬𝚥 + 𝑑ଷ௭𝑘ሬ⃗ . The injected and esti-

mated x, y and z wind’s force components are shown in Fig. 4.2. 

 

 

 

 

 

 

 



Chapter 4: Wind force’s estimation 
 

78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Block diagram of Nonlinear Control of Quadrotor Using the extended Kalman filter for the estimation 

and compensation of wind’s force. 

 

 

𝑑ଵ = ൣ𝑑ଵ௫, 𝑑ଵ௬, 𝑑ଵ௭൧ =[5+0.2sin (4t), 5+0.2sin (4t), 5+0.2sin (4t)] 

𝑑ଶ = ൣ𝑑ଶ௫, 𝑑ଶ௬, 𝑑ଶ௭൧= [7+0.2sin (4t), 3+0.2sin (4t), 5+0.2sin (4t)] 

𝑑ଷ = ൣ𝑑ଷ௫, 𝑑ଷ௬, 𝑑ଷ௭൧ =[7+0.2sin (4t), 3+0.2sin (4t), 7+0.2sin (4t)] 
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Fig. 4.3. The injected and estimated wind’s forces. (a) BSC, (b) SMC. 

It can be noticed that 𝐹෠ௐ௭  successfully follows the component of Fwz, and 𝐹෠ௐ௫  and 𝐹෠ௐ௬ 

follow Fwx and Fwy respectively but with oscillations. 

Therefore, the work carried out allows us to estimate the amplitude and the direction of the 

wind’s force at any time. Hence, this makes it possible the compensation the wind’s force in real time.  

The presence of the wind’s force disturbs the quadrotor response and causes it to shift from the desired 

trajectory as it is illustrated in Fig. 4.4. The disturbance error depends on the applied wind’s force 

amplitude. 
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Fig. 4.4. Response of quadrotors model to the wind force without compensation. 

Thus, our work objective in this part consists in estimating and compensating this force in order 

to reach the desired position even in the hazardous conditions. Fig. 4.5 illustrates the wind force 

compensation. It is clearly shown that the drone position is disturbed for short time (from 50s to 54s); 

then, the quadrotor will be able to track its desired trajectory perfectly once the wind force is com-

pensated as shown in Fig. 4.5 (b).  
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Fig. 4.5. Response of quadrotor model to the wind force with compensation (a) BSC, (b) SMC. 
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(a)                                        (b) 

Fig. 4.6. Altitude, heading and position reference measurement vs. actual measurement. (a)BSC, (b) SMC. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                      (b) 

Fig. 4.7.Attitude tracking (φ,θ,ψ). Graph legend: blue Reference Trajectory; Red - Trajectory estimated Using 

Extended Kalman Filter, (a) BSC, (b) SMC 
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IV.3. Robustness test of the compensation method: 
 

In order to test the robustness of the compensation method we applied a wind force of ten new-

ton, the test is done in two stages: 

First stage : we apply this force at t=50s and see the behavior of the two control methods , in 

the Fig.4.8 we find the response of the quadrotor model to the disturbance of the wind force without 

compensation . 

Fig.4.8.(a) shows that for the control by backstepping the quadrotor moves away from the 

desired trajectory but remains contollable.in the other hand for the sliding mode control (fig4.8.(b)), 

the quadrotor becomes uncontrollable and risks being destroyed. 
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 (b) 

Fig. 4.8 Response of quadrotors model to the wind force without compensation ,(a)BSC, (b) SMC 

In the fig.4.9 we find the thrust force U1 and the speed of the first rotor where we notice that 

they are proportional and that during the application of the wind force the speed increases and gener-

ates the increases in the thrust force to overcome the force of the wind.  

Second stage: in this step we have compensated the wind force by the force estimated by EKF. 

In fig. 4.10, we noticed that quadrotor resumes the desired trajectory after a certain time (which de-

pends on the dynamics of the estimator EKF). The robustness of this method is clear and fills the gap 

left by the sliding mode control. 
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 (a) (b)                 

Fig. 4.9 Control U1 and Rotor speed, (a) BSC, (b) SMC. 
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(b) 

Fig. 4.10 Response of quadrotors model to the wind force with compensation, (a) BSC, (b) SMC 
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Fig.4.11 shows the attitudes responses, where we notice that the simulation results of the roll 

angle is the image of the component of the wind force according to the y direction (𝐹௪௬), and the 

simulation results of the pitch angle is the image of the component of the wind force according to the 

x direction(−𝐹௪௫).  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

(a)                          (b) 

Fig. 4.11 Attitude tracking (φ,θ,ψ). (a)BSC, (b) SMC 
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IV.4. Conclusion  

Kalman filter was used to estimate the wind force; satisfactory results were obtained which 

allowed us to compensate instantly this force and to reach the desired position with great precision 

even in unfavorable conditions due to presence of wind disturbances. We concluded that this method 

is beneficial in the case where the quadrotor undergoes a disturbance of wind force and can bring a 

complement to the control methods .but like all control methods this technique is limited by the power 

of the quadrotor and the strength of wind.
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Conclusion and Perspectives 
 

The work presented in this thesis aimed to show that it is possible to achieve the desired trajec-

tory by several control and estimation methods even under unfavorable conditions, such is the wind. 

In the first chapter we developed the mathematical model of the quadrotors in space(x,y,z) and 

by using the first and second law of Newton we have obtained the six main equations which the 

movement of translation and the movement of rotation of quadrone. we ended up with a system of 

equations of twelve states ,six of which represent the positions (x,y,z) and directions (𝜑, 𝜃, 𝜓).,the 

other six equations represent the linear velocities (𝑥′, 𝑦′, 𝑧′).and angular velocities (𝜑′, 𝜃′, 𝜓′).. This 

system of equations has been exploited in the remaining chapters. 

In the second chapter we realized the back stepping control of the quadrotors, for this we first 

developed the basic algorithm of the control by back stepping, in the second place we applied this 

control theory to the model of the quadrone obtained in the first chapter.  

To test the reliability of the control structure, we chose a helical trajectory; we have noticed 

from the results of simulations that the quadrotors quickly reaches the desired trajectory.  

Third, we announced the theory of sliding mode control and its application to the quadrotors 

model. The results of simulations have shown the effectiveness of this control method in achieving 

the desired trajectory. In order to test the robustness of the two control methods, we injected a dis-

turbance (wind force) and we noticed that the quadrotors moved away from the trajectory under the 

effect of this force and successfully returned to the desired position after a while hence the robustness 

of these methods to disturbance rejection. 

In the last chapter, we used the extended Kalman filter to estimate the linear and angular veloc-

ities to control the quadrotors. 

The control structure consists of three position sensors and three direction sensors, the angular 

and linear velocities were estimated by the extended Kaman filter. 
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The results showed that the Kalman filter converges rapidly with faster dynamics then that of 

the system (quadrotors). 

In a new approach we assumed that the wind force is a state of the system and we have extended 

the system states equation to fifteen states, whose three additional states represent the components of 

the wind force( 𝐹௪ି௫ , 𝐹௪ି௬, 𝐹௪ି௭). 

The results showed that the Kalman filter allowed to instantaneously estimating the components 

of the wind force with an acceptable error, and then we proposed in a new initiative to compensate 

this force and allow the quadrotors to reach its desired trajectory successfully. 

In the future work we hope to practically realize the compensation of the force of the wind; as 

well as, a tolerant control of the loss of one of four motors and to realize the control of the quadrotor 

through a vision camera to avoid unexpected obstacles. 
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Appendices 

Appendix A:  

Correction block  

The desired angles  𝜃ௗ and 𝜑ௗ are given by the relations () and () indicated in  [38] 

𝜃ௗ = 𝑎𝑟𝑐𝑡𝑔 ቆ
𝑈௫ cos(𝜓) + 𝑈௬ sin(𝜓)

𝑈௭ + 𝑔
ቇ 

𝜑ௗ = 𝑎𝑟𝑐𝑡𝑔 ቆ𝑚
𝑈௫ sin(φ) − 𝑈௬ cos(𝜓)

𝑈ଵ
ቇ 

With ቀ
௎భ

௠
ቁ

ଶ

= 𝑈௫
ଶ + 𝑈௬

ଶ + (𝑈௭ + 𝑔)ଶ 

𝑈௭ + 𝑔 =
𝑈ଵ

𝑚
cos(𝜑) cos(𝜃)  

𝑈௫ =
𝑈ଵ

𝑚
(cos(𝜑) sin(𝜃) cos(𝜓) + sin(𝜑) sin(𝜓))   

𝑈௬ =
𝑈ଵ

𝑚
(cos(𝜑) sin(𝜃) sin(𝜓) − cos (𝜓) sin (𝜑) ) 

We multiply the expression of 𝑈௫ by cos(𝜓) and we obtain  

𝑈௫ cos(𝜓) =
𝑈ଵ

𝑚
(cos(𝜑) sin(𝜃) cosଶ(𝜓) + sin(𝜑) sin(𝜓) cos(𝜓)  ) 

We multiply the expression of 𝑈௬ by sin(𝜓) and we obtain  

𝑈௬ sin(𝜓) =
𝑈ଵ

𝑚
(cos(𝜑) sin(𝜃) sinଶ(𝜓) − 𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛 (𝜑) sin(𝜓)) 

the sum of the two expressions gives 

𝑈௫ cos(𝜓) + 𝑈௬ sin(𝜓) =
𝑈ଵ

𝑚
cos(𝜑) sin(𝜃) 

Dividing by 𝑈௭ + 𝑔 we obtain  
𝑈௫ cos(𝜓) + 𝑈௬ sin(𝜓)

𝑈௭ + 𝑔
=

cos(𝜑) sin(𝜃)

cos(𝜑) cos(𝜃)
= 𝑡𝑔(𝜃) 

and the desired pitch angle will be expressed by 

𝜃ௗ = 𝑎𝑟𝑐𝑡𝑔 ቆ
𝑈௫ cos(𝜓) + 𝑈௬ sin(𝜓)

𝑈௭ + 𝑔
ቇ 

We multiply the expression of 𝑈௫ by sin (𝜓) and we obtain  

𝑈௫sin (𝜓) =
𝑈ଵ

𝑚
(cos(𝜑) sin(𝜃) cos(𝜓) sin (𝜓) + sin(𝜑) sinଶ(𝜓))   

We multiply the expression of 𝑈௬ by cos ( 𝜓) and we obtain  

𝑈௬ cos ( 𝜓) =
𝑈ଵ

𝑚
൫cos(𝜑) sin(𝜃) sin(𝜓) cos ( 𝜓) − cosଶ (𝜓) sin (𝜑)൯ 
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subtracting the two expressions gives 

൫𝑈௫ sin(𝜓) − 𝑈௬ cos ( 𝜓)൯ =
𝑈ଵ

𝑚
sin(𝜑)   

and the desired roll  angle will be expressed by 

𝜑ௗ = 𝑎𝑟𝑠𝑖𝑛 ቀ𝑚
௎ೣ ୱ୧୬(஦)ି௎೤ ୡ୭ୱ(ట)

௎భ
ቁ    with 𝑈ଵ = ඥ𝑈௫

ଶ + 𝑈௬
ଶ + 𝑈௭

ଶ 

Appendix B:  

The EKF has been started with the following initial conditions: 

𝑋଴ = [0 0 0 0 0 0 1 0 1 0 1 0 0 0 0]௧ 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1
0
0
0

0
0
0
0

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 

The system noise covariance matrix Q is 15x15, and the measurement noise covariance matrix R is 

6x6, 

Q and R are diagonal, and only 15 elements must be known in Q and 6 in R. 
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System noise covariance matrix Q: 
 

𝑄 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

Measurement noise covariance matrix R 

 

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡
0.2 0 0 0 0 0
0 0.2 0 0 0 0
0
0
0
0

0
0
0
0

0.2 0 0 0
0 0.2 0 0
0 0 0.2 0
0 0 0 0.2⎦

⎥
⎥
⎥
⎥
⎤
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Control of quadrotor 

 

 

 
 
 
 
 
 
 
 


