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Abstract 

Cracks in any structure are undesirable since they frequently lead to the structure's fracture or 

failure. API X 70 steel is a critical component in pipeline manufacturing; additionally, it is prone 

to cracking due to the harsh working conditions it is subjected during its service operation (s). 

The current fracture detection methods either require disassembly of the tube's substructure for 

visual inspection or external excitation of the relevant area of the tube for subsequent dynamic 

analyses...etc; as a result, these approaches are highly complex and time consuming. For crack 

identification in pipeline steel, a simplified crack identification approach is provided in this work. 

The crack identification method is straightforward and based on simple stress, strain, and 

displacement measurements of load and absorbed energy at recognized places. Finite Element 

Analysis was used in the study, which was done using ABAQUS, a well-known commercial 

finite element tool. 

 

Intelligent systems have recently been praised for solving complicated difficult, multidimensional 

issues. Artificial neural networks (ANN) have had a lot of success in solving these challenges, 

although they do have some limitations. The current work examines the application of the WOA-

ANN hybrid model for crack length prediction using various inputs such as strains, stresses, and 

displacements to assess the technique's accuracy. The proposed method is, nevertheless, 

compared to GA-ANN, AOA-ANN, and WOABAT-ANN. The use of ANN in combination with 

metaheuristic optimization techniques aims to increase its significance. The weight of neuronal 

connection is significant. Some biases are also linked to neurons. Based on the input and goal 

output values supplied, connection weights and biases are changed to give the least possible error 

function. This method is commonly referred to as back propagation (BP). The explored approach 

is relevant to real-world engineering applications and regulates the status of structures. The 

evolution of fracture mechanics parameters is studied using standard ASTM test specimens. After 

modeling the tests with the Finite Element Method (FEM), the numerical model is then evaluated 

with experimental test analysis. With the mesoscopic GTN damage model, FEM is utilized to 

analyze the tensile failure process of one-sided notch samples and extract the data required for 

WOA-ANN. Our model is now ready to forecast various scenarios after collecting the data. 

When compared to other crack detection approaches, the findings produced utilizing WOA-ANN 

is effective. 

 

Keywords: API X 70 Steel, FEM-GTN damage model, GA-ANN, AOA-ANN, WOA-BAT-

ANN, and Crack identification. 
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Résumé 

 
Les fissures dans n'importe quelle structure sont indésirables car elles conduisent fréquemment à 

la fracture ou à la défaillance de la structure. L'acier API X 70 est un composant essentiel dans la 

fabrication de pipelines ; de plus, il est sujet à la fissuration en raison des conditions de travail 

difficiles auxquelles il est soumis lors de sa ou ses opérations de service. Les méthodes actuelles 

de détection de rupture nécessitent soit le démontage de la sous-structure du tube pour une 

inspection visuelle, soit une excitation externe de la zone concernée du tube pour des analyses 

dynamiques ultérieures...etc ; par conséquent, ces approches sont très complexes et prennent du 

temps. Pour l'identification des fissures dans l'acier des pipelines, une approche simplifiée 

d'identification des fissures est fournie dans ce travail. La méthode de détection des fissures est 

simple et basée sur de simples mesures de contrainte, de déformation et de déplacement de la 

charge et de l'énergie absorbée à des endroits reconnus. L'analyse par éléments finis a été utilisée 

dans l'étude, qui a été réalisée à l'aide d'ABAQUS, un outil d'éléments finis commercial bien 

connu. Les systèmes intelligents ont récemment été salués pour la résolution de problèmes 

complexes, difficiles et multidimensionnels. Les réseaux de neurones artificiels (RNA) ont eu 

beaucoup de succès dans la résolution de ces défis, bien qu'ils aient certaines limites. Les travaux 

en cours examinent l'application du modèle hybride WOA-ANN pour la prédiction de la longueur 

des fissures en utilisant diverses entrées telles que les déformations, les contraintes et les 

déplacements pour évaluer la précision de la technique. La méthode proposée est néanmoins 

comparée à GA-ANN, AOA-ANN et WOABAT-ANN. L'utilisation d'ANN en combinaison avec 

des techniques d'optimisation métaheuristique vise à accroître son importance. Le poids de la 

connexion neuronale est important. Certains biais sont également liés aux neurones. Sur la base 

des valeurs d'entrée et de sortie d'objectif fournies, les poids et biais de connexion sont modifiés 

pour donner la fonction d'erreur la plus faible possible. Cette méthode est communément appelée 

rétropropagation (BP). L'approche explorée est pertinente pour les applications d'ingénierie du 

monde réel et régule le statut des structures. L'évolution des paramètres de la mécanique de la 

rupture est étudiée à l'aide d'éprouvettes normalisées ASTM. Après avoir modélisé les tests avec 

la méthode des éléments finis (FEM), le modèle numérique est ensuite évalué avec une analyse 

expérimentale des tests. Avec le modèle de dommage mésoscopique GTN, FEM est utilisé pour 

analyser le processus de rupture en traction d'échantillons d'entaille unilatérale et extraire les 

données requises pour WOA-ANN. Notre modèle est maintenant prêt à prévoir divers scénarios 

après la collecte des données. Par rapport à d'autres approches de détection de fissures, les 

résultats obtenus à l'aide de WOA-ANN sont efficaces. 

Mots-clés : Acier API X 70, modèle d'endommagement FEM-GTN, GA-ANN, AOA-ANN, 

WOA-BAT-ANN et identification des fissures. 
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 الملخص

ذؼرثش ظا٘شج اٌشمٛق ٚاٌرصذع فٟ الأٔات١ة أٚ أٞ ٔٛع ِٓ ا١ٌٙاوً ظا٘شج غ١ش ِشغٛب ف١ٙا، ٚذىْٛ ٘زٖ اٌظا٘شج ٔاخّح     

أحذ أُ٘ اٌّىٛٔاخ  APIX70 ػٓ ظشٚف اٌؼًّ اٌماس١ح اٌرٟ لذ ذرؼشض ٌٙا ِخرٍف خطٛغ الأٔات١ة، ٚاٌرٟ ٠ؼرثش اٌفٛلار

 .اٌشئ١سح فٟ ذص١ٕؼٙا

ِٛاخٙح ٘زٖ اٌظا٘شج ٚاٌحذ ِٕٙا، ذرطٍة الأِش ئ٠داد غشق ٚأسا١ٌة اٌىشف ػٓ  اٌىسٛس أٚ اٌشمٛق، ٚرٌه ئِا ِٓ خلاي  لصذ  

ذفى١ه اٌث١ٕح اٌرحر١ح ٌلأٔثٛب ٌٍفحص اٌثصشٞ، أٚ الإثاسج اٌخاسخ١ح ٌٍّٕطمح راخ اٌصٍح ِٓ الأٔثٛب ٌٍرح١ٍلاخ اٌذ٠ٕا١ِى١ح 

لأسا١ٌة اٌرؼم١ذ ٚأٔٙا ذسرغشق ٚلرا غ٠ٛلا ٌٍىشف ػٓ اٌشمٛق فٟ خطٛغ الأٔات١ة اٌلاحمح...اٌخ، ٚٔظشا لأْ ١ِضج ٘زٖ ا

اٌفٛلار٠ح، فأٗ ٠رُ اٌٍدٛء ئٌٝ آ١ٌح ِثسطح ٌٍىشف ػٕٙا، ذؼرّذ أساسا ػٍٝ ل١اساخ اٌعغػ ٚالاخٙاد ٚالاصاحح اٌثس١طح ٌٍحًّ  

 ج فٟ اٌذساسح، ٚاٌرٟ ذُ ئخشاؤ٘ا تاسرخذاَٚاٌطالح اٌّّرصح فٟ الأِاوٓ اٌّرؼشف ػ١ٍٙا، ثُ اسرخذاَ اٌؼٕاصش اٌّحذد

ABAQUS أداج ذداس٠ح ِؼشٚفح ٌٍؼٕاصش اٌّحذدج ٟ٘ٚ. 

ذدذس الإشاسج أٔٗ فٟ ا٢ٚٔح الأخ١شج لذ ذُ الإشادج تالأٔظّح اٌزو١ح، ِٓ ح١ث لذسذٙا ػٍٝ حً اٌّشىلاخ اٌصؼثح ٌٍغا٠ح   

وث١شا فٟ حً ٘زٖ اٌرحذ٠اخ، ػٍٝ اٌشغُ ِٓ ٚخٛد  ٔداحا ANN ٚاٌّرؼذدج الأتؼاد، أ٠ٓ حممد اٌشثىاخ اٌؼصث١ح الاصطٕاػ١ح

 .تؼط اٌم١ٛد ػ١ٍٙا

ٌٍرٕثإ تطٛي اٌشك تاسرخذاَ ِذخلاخ ِخرٍفح ِثً اٌسلالاخ  WOA-ANN ٠ذسط اٌؼًّ اٌّمذَ ذطث١ك إٌّٛرج اٌٙد١ٓ    

 ٚ GA-ANN ٚ AOA-ANN تاٌّماسٔح ِغ رٌه،ِغ  اٌّمرشحح،ٚاٌعغٛغ ٚاٌرٙد١ش ِٓ أخً ذم١١ُ دلح اٌرم١ٕح. اٌطش٠مح 

WOABAT-ANN. َ٠ٙذف اسرخذا ANN ِٓغ ذم١ٕاخ اٌرحس١ metaheuristic  ٟئٌٝ ص٠ادج أ١ّ٘رٙا. ٚصْ الاذصاي اٌؼصث

٠رُ ذغ١١ش أٚصاْ  اٌّمذِح،ُِٙ. ذشذثػ تؼط اٌرح١ضاخ أ٠عًا تاٌخلا٠ا اٌؼصث١ح. اسرٕاداً ئٌٝ ل١ُ اٌّذخلاخ ٚاٌّخشخاخ اٌٙذف 

ا ذؼشف تاسُ الأرشاس اٌخٍفٟالاذصاي ٚاٌرح١ضاخ لإػطا ًِ اٌطش٠مح  .(BP) ء ألً خطأ ِّىٓ. ٠شاس ئٌٝ أْ ٘زٖ اٌطش٠مح ػّٛ

اٌّسرىشفح راخ صٍح تاٌرطث١ماخ إٌٙذس١ح فٟ اٌؼاٌُ اٌحم١مٟ ٚذٕظُ حاٌح ا١ٌٙاوً، أ٠ٓ ٠رُ دساسح ذطٛس ِؼٍّاخ ١ِىا١ٔىا اٌىسش 

ّٕٛرج اٌرح١ٍٍٟ ِٓ خلاي ذح١ًٍ الاخرثاس اٌردش٠ثٟ تؼذ ّٔزخح اٌم١اس١ح. ثُ ٠رُ ذم١١ُ اٌ ASTM تاسرخذاَ ػ١ٕاخ اخرثاس

ٌرح١ًٍ ػ١ٍّح  FEM ٠رُ اسرخذاَ اٌٛس١ػ، GTN ِغ ّٔٛرج ذٍف .(FEM) الاخرثاساخ تاسرخذاَ غش٠مح اٌؼٕاصش اٌّحذٚدج

ثإ ّٔٛرخٕا خا٘ض ا٢ْ ٌٍرٕ .WOA-ANN فشً اٌشذ ٌؼ١ٕاخ اٌشك ِٓ خأة ٚاحذ ٚاسرخشاج اٌث١أاخ اٌّطٍٛتح ٌـ

تاٌس١ٕاس٠ٛ٘اخ اٌّخرٍفح تؼذ خّغ اٌث١أاخ. ػٕذ ِماسٔرٙا تأسا١ٌة اورشاف اٌشمٛق الأخشٜ، ذىْٛ إٌرائح اٌرٟ ذُ اٌرٛصً ئ١ٌٙا 

  .فؼاٌح WOA-ANN تاسرخذاَ

،  FEM-GTN، GA-ANN، AOA-ANN، WOA-BAT-ANNّٔٛرج ظشس  ،API X 70: فٛلار الكلمات المفتاحية

 ٚذحذ٠ذ اٌىشان.
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Pipeline transportation is currently of tremendous interest and is essential for the transportation of 

hydrocarbons. Among the steels employed in construction, API 5L X70 steel occupies a 

significant position in the mechanical, marine, and particularly the oil industries. Our research 

focused on analyzing this steel at the level of the ALFAPIPE GHARDAIA Company. 

When ensuring the integrity of big industrial structures and components, faults must be taken into 

account. Additionally, the circumstances for the beginning, propagation, and arrest of fractures 

caused by these defects must be identified. Pipelines are the most cost-effective and secure way 

to carry oil and gas in industrial settings. However, as more people use them, the incidence of 

mishaps has grown substantially. Pipes are components of industrial structures whose 

degradation involves risks to human life and the environment, as well as operating losses and 

frequently a large financial loss. The pipes may have defects or micro-cracks due to the 

manufacturing process, handling accidents, thermal shocks, etc. These defects can develop under 

the effect of network operating conditions and lead to the formation, over time, of long cracks 

which will eventually cause the rupture of the pipe and a gas leak. 

As this type of network is used in an urban environment, a gas leak could not only lead to severe 

consequences but also make the replacement of the tube very complicated in terms of time and 

safety. A good understanding of the process by which defects develop into microcracks that 

would give rise to a long crack and the phenomenon of propagation of the latter is of paramount 

importance to prevent losses due to gas leaks and for the control network maintenance. 

With advancements in materials science, the process of applying a crack identification technique 

for engineering infrastructures has emerged as a multidisciplinary study focus for scientific 

communities. This has made it possible to use new, cutting-edge materials to construct intricate, 

heavy structures in a lighter manner. Additionally, numerous scholars have extensively developed 

a number of methodologies in the fields of mechanical, civil, and aerospace engineering due to 

the scale, complexity, and potential catastrophic effects of these structures. These methods, which 

are based on behavioral laws and cutting-edge mathematical techniques, have actually made it 

possible to analyze and evaluate structural states with increasing levels of accuracy and 

dependability, preventing potential harm that could otherwise result in monetary and human 

losses. 

Generally, damage can be defined as changes that occur in a system and adversely affect its 

current or future performance. The notion of damage in the context of SHM (Structural Health 

Monitoring) will be constrained to alterations in the geometric and/or material characteristics of 

these systems. Changes to the system's boundary conditions are also included. 

The objective set in this thesis is to contribute to the development of numerical approaches for 

the identification of cracks in pipeline steels through the implementation of innovative coupled 



 General introduction 

27 
 

methods based on the use of change analysis in mechanical properties and relevant optimization 

algorithms derived from Soft Computing methods to improve the performance of structural 

health monitoring systems. To this end, we propose to structure and present our work in this 

manuscript as follows: 

Chapter I: We will discuss the elaboration of a state of the art, based on in-depth bibliographic 

research, and present the essential methods of identification of cracks found in mechanical data. 

We will highlight, in particular, the advantage of the analysis by different optimization 

techniques for identifying cracks based on various indicators of damage as an objective function, 

which makes it possible to compare the measured and calculated damage. This chapter will be 

dedicated to presenting optimization techniques that rely on artificial intelligence methods. We 

will explain the algorithmic and computer approaches relating to the research methods of WOA 

(Whale Optimization Algorithm), AOA (Arithmetic Optimizer Algorithm), the standard genetic 

algorithm GA (Genetic Algorithm), the bat BA (Bat Algorithm), and the PSO (Particle Swarm 

Optimization). We will more explicitly propose the artificial learning technique, known as ANN 

(Artificial Neural Networks), which will be applied in the rest of our work. 

Chapter II: Devoted to general information on steels and processes with studies of the behavior of 

our steel used in the manufacture of pipelines. We present a reminder of some elements of 

fracture mechanics and the numerical techniques used. 

Chapter III: Devoted to the experimental study of API 5L X70 steel to highlight the chemical 

composition and the mechanical characteristics of the steel studied. In the second part, we will 

present a study by numerical simulation, consisting of the validation of our model and is devoted 

to the study of the effect of different parameters of our chosen GTN model on the mechanical 

behavior of steel by finite elements ABAQUS and using neural networks. 

Chapter IV: Presents the results of crack identification for static analysis based on mechanical 

properties (stress, strain, and displacement). ANNs are enhanced with WOA, AOA, PSO, 

WOBAT (Whale Optimization Based Bat Algorithm), and GA algorithms to predict crack length. 

WOA is used for fast and optimal prediction based on data collected from FEM (Finite Element 

Method) with numerical validation. Additionally, a modal analysis of an API X 70 steel specimen 

is performed to collect data based on crack length to test the robustness of the proposed 

technique. In the last section, the improved ANN using the WOA algorithm is provided by 

improving ANN parameters to predict crack length correctly. An experimental modal analysis is 

also provided to validate the proposed approach. 

Chapter V: Considered another principal importance in protection opposite of impact problem 

caused by external accident in the API X70 pipeline steel, represented in the ductile and brittle 

mode of fracture propagation, based on two experimental tests in specimens of steel pipeline 

Drop Weight Tear Test (DWTT) and the impact Charpy (CVN). The results obtained are used to 

simulate the impact of API X70 pipeline steel at -196 degrees through a numerical approach 
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based on cohesive segment in extended Finite Element Method (XFEM). The obtained data was 

used in modeling Machine learning using the Balancing Composite Motion Optimization 

(BCMO) and Particle Swarm Optimization (PSO), and Jaya algorithm for predicting the peak 

load and crack initiation energy in a steel X70 with different crack lengths of dynamic brittle 

fracture values. 

A general conclusion will finally synthesize all the obtained results in our various works, and 

proposals for potential future study perspectives, and will close this manuscript. 
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1.1 Introduction  
 

Monitoring the integrity of structures (or Structural Health Monitoring, SHM) involves the 

design, development and implementation of a system detecting, localization and quantifying 

damage. Generally, damage can be defined as system changes that adversely affect its current or 

future performance. Therefore, the concept of damage is significant only by the comparison 

between two different states of the system: the initial state of the system often intact considered 

healthy, and the momentary state in general, two types of structural condition control techniques 

generally and particularly in pipeline control are used: non-destructive testing and destructive 

testing. The first type of techniques is the most used to monitor the integrity of structures or 

materials without degrading them, unlike the 2nd type. Among the best-known processes relating 

to this first type, mention may be made of: X and gamma rays; technical processes based on 

ultrasound, acoustic emissions, etc. Structural Health Monitoring (SHM) techniques are 

themselves subdivided into two categories: local and global method techniques [1].  

We will present in this chapter a synthesis of the research works resulting from the 

bibliographical references relating to various essential techniques for identifying and localizing 

damage in the structures, each subdividing itself into several classes of methods.  

The artificial neural network (ANN) has become a popular computational approach in the field of 

damage identification and detection based on the analysis of mechanical properties, due to its 

ability to establish a nonlinear relationship between the characteristics of structural mechanics 

and damage information.  

Structural Health Monitoring (SHM) is a valuable tool for assessing the condition of a structure. 

As a result, it ensures that structures are safe and efficient throughout the duration of their lives.   

This procedure entails measuring a structure over time, extracting damage-sensitive features from 

the measurements, and analyzing them to identify the system's current state. Damages should be 

diagnosed early, non-destructively, and at a minimal cost using assessment methods based on 

static or dynamic analysis. 

In both static and dynamic assessments, different methods of SHM are described in Figure 1.1 to 

define damage identification approach. 
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Figure 1. 1 Damage detection with SHM architecture. 

 

1.2  Crack identification research background 
 

In this chapter, new crack identification applications are studied using the ANN technique to 

improve machine learning. After collecting data, the different algorithm improves the ANN 

technique by estimating that the exact parameter used identification of the proposed crack with 

the ANN technique and analysis in the different static and dynamic optimization techniques will 

be presented in the studies and will be used in our study. 

Khatir et al [2] provides a method based on an inverse problem to precisely forecast the sites of 

cracks in plate constructions. By employing different NURBS orders to reduce the amount of 

components, XFEM and XIGA are paired with two optimization approaches to predict crack 

locations with confidence. The advantage of XIGA is shown by using Particle Swarm 

Optimization (PSO) and the Jaya algorithm to predict crack locations. This work takes into 

consideration four numerical-optimization methods: XFEM-Jaya, XIGA-Jaya, XFEM-PSO, and 

XIGA-PSO. Optimizing techniques aim to minimize the difference between calculated 

displacements and measured strains by minimizing the objective function. The convergence 

studies of cracks and holes in plates at a variety of positions showed that the Jaya algorithm 
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significantly outperformed the PSO algorithm for accuracy and speed. A numerical-optimization 

technique, namely XFEM coupled with Genetic Algorithm (GA), is also used to validate the 

proposed techniques. XIGA-Jaya is the best performing technique among all examined 

techniques. Rezaiee‑Pajand et al [3] presents a study in order to protect reinforcements from 

corrosion, it is crucial to reduce the spaces between flexural cracks. Crack spacing is influenced 

by many factors, such as concrete thickness, concrete compressive strength, specimen 

dimensions, and the spacing between longitudinal and transverse reinforcements. When the lap-

spliced length is insufficient, the strength is reduced and the crack spacing increases. An 

experiment is conducted to investigate the effects of cross-section height, width, and length of 

lap-sliced panels on flexural crack spacing. To predict the crack spacing, multilayer perceptron 

(MLP) neural networks, adaptive neuro-fuzzy inference systems, support vector regressions and 

least mean squares regressions are used. Compared to other models in this study, the MLP model 

provides better prediction of crack spacing compared to others. For crack spacing prediction, the 

most effective features are prioritized based on their mutual information. Furthermore, such 

beams with lap-spliced bars cannot be determined by the available codes. Ding et al [4] put 

forward that structural damage diagnosis can be seen as an optimization problem by choosing an 

appropriate objective function connected to structural parameters to be calculated utilizing 

optimization techniques. This paper proposes the improved Jaya (I-Jaya) technique as a new 

heuristic algorithm for structural damage diagnostics. It is based on sparse regularization and 

Bayesian inference. A new updated equation is employed for the best-yet solution, and a 

clustering technique is used to replace solutions with poor objective values. This improves the 

original Jaya algorithm's ability to perform global optimization and makes it more robust. With 

the suggested I-Jaya technique, an optimization analysis sensitive and robust objective function 

for efficient and reliable damage diagnostics is developed by sparse regularization and Bayesian 

inference. Benchmark tests are run to make sure the produced algorithm is getting better. 

Numerical studies on a truss structure and experimental validations on a model of an 

experimental reinforced concrete bridge are conducted to validate the proposed approach. The 

amount of modal data required for structural damage identification is negligibly less than the total 

number of unidentified system characteristics. We accommodate for significant measurement
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 noise and modeling errors. The proposed method, which is based on the I-Jaya algorithm and a 

modified objective function based on sparse regularization and Bayesian inference, can identify 

damage accurately and reliably. This suggests that the proposed method is a promising strategy 

for identifying structural damage using data with significant uncertainties and little measurement 

information. 

In the study provided by Gomes et al [5], delamination is a typical failure condition in laminated 

composites that causes the layers to separate along their interfaces. This degradation can have a 

considerable impact on structural performance. Damages like these aren't usually obvious on the 

surface, but they can lead to catastrophic structural collapses. Because delamination modifies the 

vibration properties of laminated structures, it can be utilized as an indication for assessing health 

and the risk of catastrophic failure if it is discovered and recorded in advance. Structural Health 

Monitoring (SHM) is critical for ensuring structural performance and integrity. The utilization of 

reduced mode forms and computational techniques, such as the ANN and Genetic Algorithm 

(GA), were used to develop an optimum methodology for delamination identification on 

laminated composite plates in this study. 

Delamination occurs when the layers of a laminated composite separate along their interfaces, 

which is a common failure mode. This deterioration has the potential to have a significant 

influence on structural performance. These kinds of damages aren't always visible on the surface, 

but they can lead to catastrophic structural failures. Because delamination alters the vibration 

properties of laminated structures, it can be used as an indicator for measuring health and the 

danger of catastrophic failure if detected and recorded early. The importance of structural health 

monitoring (SHM) in assuring structural performance and integrity cannot be overstated. In this 

study, reduced mode forms and computational approaches such as the Genetic Algorithm (GA) 

were employed to produce the best methodology for detecting delamination on laminated 

composite plates.  

Benaissa et al. [6] propose a new metaheuristic algorithm that can reduce search space using 

simple formalism. The search population concentrates on the inside of the local search area, 

while the rest looks for better search areas globally. The new technique is known as the YUKI 

Algorithm (YA), and it is used to solve a crack detection problem. We hope to determine crack 

metrics such as length and direction using a set of measurements gathered on the defective 

structure. To do this, we employ the so-called model reduction technique, which is based on 

Proper Orthogonal Decomposition (POD) and validated by Radial Basic Function (RBF), This, 

by interpolation, aids in forecasting (numerically) the measurement at new sites (out of the 

collection of sensors). This approach is commonly utilized in this context and has been shown to 

be quite efficient in terms of computation. 

In our investigation of YA's performance, we look at two scenarios: first, the Elastostatic 

research. Then there's the case of dynamic analysis. We compare the proposed algorithm's 

performance to that of well-known optimization approaches as Teaching Learning Based
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 Optimization (TLBO). The Gray Wolf Optimizer (GWO) and Cuckoo Search (CS) (GWO). In 

comparison to the algorithms stated, the results suggest in this study that YA give more accurate 

and faster results. Tran et al [7] present an efficient Artificial Neural Network (ANN) for 

detecting faults in laminated composite structures based on the global search capacity of 

evolutionary algorithms (EAs). ANN has exploded in popularity in recent decades, thanks to 

astonishing advancements. However, because it uses backpropagation methods based on gradient 

descent (GD) approaches, ANN has significant limitations in terms of local minima concerns. As 

a result presented, the effectiveness and accuracy of ANN are significantly reduced. Based on the 

global search capability of stochastic algorithms, several researchers have come up with some 

strategies to combat the local minimal difficulties of ANN by seeking for starting favorable 

locations to eliminate initial local minima. However, it is well known that in some circumstances, 

if the network has too many local minima scattered deeply in the search space, those solutions are 

no longer beneficial, if not even detrimental. As a result, we offer a unique method for training 

the network that combines the high convergence speed of GD ANN approaches with the global 

search capacity of EAs. The essential concept is that EAs are used in tandem with ANN during 

the network training process. This ensures that the network finds the best answer as quickly as 

possible and avoids becoming stuck in local minima. To improve the worldwide search capacity's 

efficiency, GA is utilized to build high-quality starting populations based on crossover and 

mutation operators' abilities, whereas CS with global search capability is employed to find the 

optimal solution. Furthermore, to deal with the vast amount of data used to train the network, the 

data of the objective function is vectorized, which reduces the computational cost significantly. 

The results show that the proposed method outperforms regular ANNs, other hybrid-ANNs, and 

HGACS in terms of accuracy, and that it takes much less time to compute than HGACS. 

A new technique for damage measurement in laminated composite plates utilizing Cornwell 

indicator (CI) based on Artificial Neural Network (ANN) mixed with Particle Swarm 

Optimization (PSO) is proposed by Khatir et al [7]. There are two stages to the analysis. For 

square laminated composite plates with three layers, IsoGeometric Analysis (IGA) is formulated 

in the first stage. The IGA model is combined with PSO for damage quantification utilizing an 

inverse problem method using CI as an objective function to minimize the difference between 

calculated and observed values in the second [0°/90°/0°] stage [0°/90°/0°]. 

The goal of this work is to evaluate the use of ANN-PSO for damage quantification in composite 

structures in order to save computational time. The modeling technique is IGA, the input data is 

CI, and the output data is damage sites and severity. The results show that ANN-PSO-IGA-CI 

achieves a high level of damage quantification accuracy. 

Furthermore, while comparing PSO-IGA-CI to ANNPSO-IGA-CI, it is proved that ANNPSO-

IGA-CI saves a significant amount of computing time. 
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An “ABC-ANN” pavement surface distress detection and classification system is developed by 

Banharnsakun [8], It combines an artificial neural network with the artificial bee colony (ABC) 

technique. The suggested solution uses a thresholding method to separate the pavement image 

into distressed and non-distressed portions once it has been gathered. The ideal threshold value 

for segmentation in this stage was chosen using the ABC approach. The vertical distress measure, 

the horizontal distress measure, and the total number of distress pixels are among the variables 

that are extracted from a disturbed area and used as input to the ANN. Finally, depending on 

these input qualities, the ANN is utilized to categorize a distressed area as a particular type of 

distress, such as a transversal crack, longitudinal crack, or pothole. The experimental results show 

that the suggested approach is effective at detecting pavement distress and can accurately classify 

distress types in pavement photos. When compared to existing algorithms, the proposed ABC-

ANN technique achieves a 20% boost in accuracy. 

The Structural Health Monitoring (SHM) system is now the standard method for managing the 

detection and identification of deterioration in a wide range of design areas. Every day, the 

necessity to monitor structural behavior grows, owing to the development of new materials and 

increasingly complicated structures. As a result, more robust and sensitive SHM procedures and 

techniques are being developed. The importance of damage detection using intelligent signal 

processing and optimization techniques based on vibration measures is highlighted in Gomes et 

al [9] research. Because of the considerable potential (and relative case of implementation) of the 

methods mentioned here, they are primarily based on the evaluation of vibrational and modal 

data. In the form of a brief review, this article examines the application of optimization methods 

and Artificial Neural Networks (ANN) for structural monitoring. This study serves as a 

foundation for the development of SHM systems and data analysis. This paper's goal is to assist 

engineers and researchers in finding a better solution to their specific structural monitoring 

issues. 

In the subject of damage diagnosis of engineering structures based on modal analysis, Artificial 

Neural Networks (ANN) has recently received greater attention. Zenzen et al [10] provide a novel 

modified damage indicator that employs a transmissibility technique to increase the LFCR when 

combined with ANN. The main objective of the proposed damage indicator is to reduce the 

number of collecting data used in ANN technique for fast prediction and higher accuracy rather 

than collecting modal analysis data, such as natural frequencies, damping ratios, and mode 

shapes, or inverse analysis for damage quantification using optimization techniques. Three layers 

cross-ply [0
o
 /90

o
 /0

o
] composite beams and cross-ply [0

o
 /90

o
 /0

o
] laminated composite plates 

with multiple and single damage are used to test the proposed approach (s). After analyzing four 

damage scenarios, the suggested application's dependability and accuracy are proved by 

forecasting the severity of damages in composite structures. 
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ANN has evolved into one of the most powerful computational intelligence methods for tackling 

complicated problems in a variety of domains. However, when back propagation techniques 

based on gradient descent are used, a key disadvantage of ANN is the prevalent problem of local 

minima, which obstructs the search for the optimal solution. To overcome this handicap, they 

propose combining ANN with global search techniques-based evolutionary algorithms. By 

creating the network using settings that minimize the discrepancy between the actual and planned 

outputs, Tran-Ngoc et al [11] use a programmable combination of an ANN and the cuckoo search 

(CS) method, and they make use of CS to improve ANN training parameters (weight and bias). 

Two numerical models steel beams calibrated using experimental measurements and a large-scale 

truss bridge are used to evaluate the robustness of the proposed method. The results demonstrate 

that ANN-CS (ANN-CS) is more accurate and computes faster than ANN and evolutionary 

algorithm (EA) alone for localizing and quantifying structural deterioration. 

1.3  A brief introduction to crack modeling 
 

Most engineering issues are now tackled using FEM, which has the drawback of conformal 

meshing for tackling crack detection difficulties utilizing the inverse problem. XFEM [12-14] 

models and analyzes flaws, eliminating the need to re-mesh the computational domain with each 

new iteration of the optimization technique. When used in conjunction with GAs [15], which 

have been shown to be a reliable and efficient global search method, the exact placement and 

orientation of defects can change 'on the fly' as the global optimization iterations progress. Ref. 

[16] discusses using an optimization strategy within the XFEM framework to find model 

parameters like the order of various singularities or the thickness of boundary layers. 

Nonetheless, the authors have generally employed optimization techniques for unconstrained 

minimization, although there is no obvious dependency of the objective function on the design 

variables in issues like the one presented here, and GAs prove to be more efficient and reliable 

methods. 

In Ref [17], a numerical simulation of a cracked plate using XIGA was reported under various 

loads and boundary conditions. The Heaviside function was used to simulate the crack faces, 

while crack tip enrichment functions were used to model the singularity in the stress field at the 

fracture tip. The XIGA findings for various crack configurations in the plate were compared to 

extended finite element method and/or literature data for various types of loads and boundary 

conditions, demonstrating that XIGA was more accurate. Nguyen et al [18] presented another 

XIGA to investigate the analysis of through-thickness cracks in thin shell constructions. For the 

examination of cracked shell structures in real applications, the provided approach is a very 

promising alternative to the 'standard' XFEM. 

Habib et al [19] employed XIGA to model a crack in an orthotropic plate and used crack tip 

enrichments to replicate singular fields around the crack tip. The geometry was defined using 
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NURBS and T-splines geometric technologies. T-spline models were subjected to a new local 

refinement technique. The results were more accurate than those found elsewhere in the 

literature. The approaches given here can be utilized to apply crack detection based on the inverse 

problem.  

1.4  A review of crack identification based on static analysis 
 

Caddemi and Morassi [20] proposed a technique for identifying a single crack in a beam based on 

knowledge of damage-induced changes in the static deflection. A comparable linear spring 

connecting the two neighboring segments of the beam simulates the crack. Sufficient criteria on 

static measurements were presented and discussed, allowing for the unique identification of the 

crack. For various boundary conditions, the inverse analysis produced closed-form formulas for 

the position and severity of the fracture as functions of deflection data. Furthermore, the effect of 

mistakes caused by noise in the acquisition of experimental data was investigated, and the 

technique used only tolerates extremely minor errors. Chatzi et al [21] provided an approach for 

finding and locating faults in plate structures based on inverse analysis utilizing XFEM and 

Genetic Algorithm (GA). Furthermore, based on updated XFEM, an experimental test was 

conducted to locate the position of a crack in a plate. After six hours, the estimated crack 

parameters could be found, according to the results. For elastostatic difficulties, Waisman et al 

[22] coupled XFEM and GA, where faults were defined as straight cracks, circular holes, and 

non-regular-shaped holes in square and rectangular plates. After 80 generations, the majority of 

the results could be predicted. Sun et al [23] introduced a static analysis-based approach that uses 

XFEM and the Enhanced Artificial Bee Colony (EABC) algorithm to discover and quantify 

various defects in structures. In order to evaluate the suggested technique, several numerical 

cases were analyzed after increasing the level of difficulty. After a considerable computational 

cost, the majority of the results could be found. To obtain data based on displacements, FEM was 

employed. When data was collected using FEM, the computational cost was higher. Based on the 

inverse analysis, XIGA was integrated with PSO to identify cracks in two-dimensional linear 

elastic issues. The advantages of combining XFEM and IGA are present in XIGA. The gap 

between the calculated and measured displacements was minimized using the objective function. 

Convergence studies were calculated at various crack places on the plate, and the findings reveal 

that the proposed technique can identify damage with a minimum accuracy of 95% for the 

position and maximum accuracy of 98 percent. 

A mathematical technique was devised based on the reduction in stiffness to detect changes in 

stiffness utilizing FEM of the structure and inverse analysis of the displacement data. It was 

primarily centered on using the Neumann series to simplify the inverse of the algebraic stiffness 

matrix. The findings revealed that a high number of data minimized the noise effect and ensured 

damage detection. 
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1.5  Damage assessment using modal analysis 
 

Because of the growing requirement to diagnose structural degradation, particularly in civil and 

mechanical engineering structures, structural health monitoring (SHM) has been a major study 

area in the recent two decades [24-26]. Because they examine structures without removing or 

harming any structural components, many damage identification indicators are classified as "non-

destructive evaluation." The four degrees of damage identification, according to Rytter [28], are: 

Level 1: The presence of damage is determined. 

Level 2: Locating the damage. 

Level 3: Evaluation of the damage's degree. 

Level 4: Prediction of the structure's remaining service life. 

Without a structural model, vibration-based damage identification methods can identify level 1 

and level 2 damage. Level 3 damage identification is possible when paired with a structural 

model. The goal of this study is to offer identification at levels 2 and 3. The best way to monitor 

structural health is to compare current dynamic response measurements to those taken previously 

to determine whether the structure is healthy or damaged. Tiachacht et al [27] proposed a new 

method for detecting and quantifying damage in two- and three-dimensional constructions. FEM 

was used to investigate the implementation of the suggested methodology quantitatively. The 

modified Cornwell Indicator (MCI) was more effective than the regular Cornwell Indicator at 

detecting damage (CI). The use of a Genetic Algorithm (GA) in SHM was examined for 

increased accuracy. MCI was measured and calculated to create the objective function. The 

findings revealed that the proposed indicator was capable of appropriately predicting damaged 

parts. 

Shi et al [26] proposed a method for detecting structural damage based on changes in Modal 

Strain Energy (MSE) before and after damage. The sensitivity of the MSE with regard to damage 

was calculated after a brief presentation of damage localization based on MSE for each structural 

element. The findings showed that the suggested method was noise sensitive, but that it could 

locate single and multiple defects. Under a 5% measurement noise, damage quantification of two 

damages was successful with a maximum error of 14 percent. Yan et al [28, 29] produced two 

studies that combined MSE and generalized flexibility approaches with natural frequencies and 

mode shapes. The proposed technique has demonstrated good accuracy in locating and assessing 

damage. Pandey et al [30] investigated damage detection in a structure using dynamic analysis. A 

structure's flexibility matrix was proposed as a viable method for not only identifying the 

presence of damage but also for locating the damage. It was demonstrated that the flexibility 

matrix could be simply and reliably computed by measuring a few lower frequencies of the 
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structure. Using Frequency Response Function (FRF) data, Hwang and Kim [31] provided an 

approach for locating and quantifying damage in structures. By minimizing the difference 

between test and analytic FRFs, the offered technique may detect and quantify structural 

degradation. Sinou [32] gave a review of damage detection and SHM of mechanical systems 

based on changes in observed data of linear and non-linear vibrations. Based on modal analysis, 

the author proposed many damage indicators. The majority of the indicators offered could only 

detect and locate without being quantified. 

Kim and Stubbs [33] presented a Single Damage Indicator (SDI) approach that uses natural 

frequency fluctuations to find and quantify a single crack in a structure. A fracture location model 

and a crack size model were established by connecting fractional changes in the modal energies 

to changes in the natural frequencies brought on by damage like cracks or faults. The efficacy of 

the crack detection method was then evaluated for various damage situations by locating and 

sizing cracks in tested beams for which some of the lower natural frequencies were accessible. 

When the method was applied to test beams, it was discovered that crack location could be 

properly approximated. The crack size might also be precisely calculated. 

Xiang et al [34] employed the wavelet finite element method for numerical simulation to 

determine the association between multi-damage locations/depths and the natural frequencies of a 

beam. The results demonstrated that the proposed damage detection method for beam-like 

structures was a promising solution for multi-damage detection and depth estimation. The mode 

forms of a damaged beam with fixed-fixed boundary conditions were obtained using a FEM and 

then extended using a spatial Fourier series. The impact of damage on the harmonics was also 

explored. Using Fourier coefficients as input, an Artificial Neural Network (ANN) was trained to 

determine the damage location and magnitude. After gathering more data, the provided technique 

could be used for damage identification, localisation, and quantification. Stutz et al [35] 

introduced a structural damage detection method based on a Response Surface Model (RSM). 

The results demonstrated that the proposed method could detect damage quickly and efficiently. 

Virtual Crack Closure Technique (VCCT) was used to detect delamination in composite beam 

structures, and modal flexibility based on dynamic analysis was provided in Ref [36].The results 

demonstrated that this technique could accurately detect and localize damage without the need for 

measurement. Dincal and Stubbs [37] proposed a damage assessment approach based on physical 

property changes. 

Jassim et al [38] published detailed studies for damage identification methods based on modal 

analysis. The suggested damage detection approaches, such as the Frequency Reduction Index 

(FRI) and Modal Reduction Index (MRI), were based on changes in natural frequencies and 

mode shapes.  

Model Assurance Criteria (MAC) was discovered to be viable tools for determining the damage 

index in beam constructions. Furthermore, the Curvature Change Index (CCI) and Coordinate 

Modal Assurance Criteria (COMAC) were used to predict the location of the crack in beams and 
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were found to be feasible. Using experimental data, Dahak et al [39] established an approach 

based on normalized frequencies in cantilever beams. The findings revealed that the proposed 

technique could only pinpoint the exact site of the damage. Another study examined the Modal 

Strain Energy (MSE) method and an improved differential evolution algorithm for damage 

identification in a cross-ply (0°/90°/0°) laminated composite beam and a cross-ply (0°/90°/0°) 

square laminated composite plate with numerous damaged parts. Only inverse analysis and an 

objective function for damage quantification can be used by MSE to locate the damaged piece. 

After 100 generations and a higher processing cost, the results were discovered. Zenzen et al [40] 

proposed a strategy based on the inverse problem using the frequency response function as an 

objective function and multiple optimization techniques to solve the problem. For beams, the 

results were more accurate than for complicated structures. 

1.6  A review of numerical simulation methods and IANNs 

 
The field of pipelines for the transportation of oil and gas has experienced remarkable 

development with increasing demand for energy. Many companies are working in the 

manufacture of high-pressure pipes below the specified minimum yield strength, i.e. 60 ksi to 80 

ksi (60 MPa to 80 MPa), due to the urgency of these characteristics where fracture accidents are 

inevitable. We have to rely on the high quality of these pipes to avoid fragile breakage. Pipe 

failure can occur due to ductile fracture, sometimes resulting from certain conditions that cause 

cracks to develop and lead to potential environmental and structural damage, economic losses 

and increased maintenance costs and repair. Control of elongated cracks and mechanical tests are 

used to determine deformation, but high cost and time are required. Therefore, the finite element 

method (FEM) has been developed in the analysis and simulation of many Charpy tests in recent 

years [41-45]. Impact testing techniques were put in place to verify the fracture characteristics of 

the materials. The Gurson-Tvergaard-Needleman (GTN) damage model [46] is well known, 

widely applied and used to simulate the dynamic propagation of ductility fractures. Due to the 

limited set of parameters in this model, it is often adopted in the industrial field. Throughout the 

development of laboratory-scale fracture toughness experiments, sample sizes continued to 

increase. In this work, the application of the GTN damage model is presented in the simulation of 

tensile tests and for the dynamic propagation of fractures in the Charpy test case. The tensile and 

fracture toughness simulations are applied to a high strength pipe material, namely X70 steel. The 

results of the numerical model are used to construct a force-displacement curve in order to 

compare the experimental data with the numerical predictions to identify the parameters of GTN 

model and the law of coupling with the law of Ramberg-Osgood hardening. The identification 

has broadened to include a considerable number of experimental tests drawn from our previous 

works and other works done at ALFAPIPE Ghardaia laboratory. The approach based on 

micromechanical modelling of materials is an efficient method used in damage analysis. Many 

models consider a coupling between plasticity and damage, for example for the behaviour of a 

porous ductile material in the Gurson model [47]. The model was built using many parameters 

[48, 49]. The description of the model goes through a general study on metallography [50]. 
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Generally, the model is characterized by three mechanisms of evolution of voids, which 

represents the processes of ductile fracture in metallic materials. The hardening behaviour of the 

microstructure of the material results in different mechanical properties as a function of different 

process parameters [51, 52]. For example, GTN model used in study the effect of hydrogen of 

high-strength steel on the microdamage evolution. [1] Therefore, due to the interaction of many 

variables in this case, the modelling of mechanical properties according to different process 

parameters remains complex and requires a lot of data although it is considered as a reasonable 

solution. Moreover, we can add to this the dependence on chemical composition and 

manufacturing process [53, 54]. For example, solid solution hardening and microstructure are 

dependent on the forming conditions and the chemical composition, which provides details of 

tensile and impact properties in a steel. Therefore, on the basis of a large amount of data, many 

researchers have studied the underlying relationships between mechanical properties and 

chemical composition. 

Moreover, in the second part ANN model is developed to predict the parameters of the Gurson-

Tvergaard-Needleman model (GTN) coupled with hardening law through the prediction 

properties of traction and impact of API X70 steel pipe as a function of its chemical composition. 

The importance of each component in the structure is summarized based on recent relevant 

works. The method of Precipitating carbon (C) allows for the reinforcement of the structural 

matrices [55]. The higher content of Nickel (Ni), Silicon (Si) and Molybdenum (Mo) and 

Chromium (Cr) gives great resistance to the steel [56]. Minimization of the ductile-brittle 

transition temperature is due to the Manganese (Mn) component effect [57], Niobium (Nb), 

Titanium  (Ti) and Vanadium (V) components play a role in retarding recrystallization and limit 

the growth of austenite grains [58], in the passes of rolling and manufacturing Niobium (Nb) 

allows to reduce the temperature at the time of recrystallization [59], more details on the effect of 

accelerated cooling rate and finish rolling temperature on mechanical properties in this paper [2], 

improvement of tensile strength and toughness by the components vanadium (V) and titanium 

(Ti) [60], and we can add the study of the influence of carbon (C) on stress corrosion cracking of 

API X80 steel by used a carburization treatment [61]. 

 

The importance in the design of the current pipelines is the sufficient resistance of steels against 

fractures and ductile rupture of the pipelines should be avoided and their catastrophic 

consequences with the initiation of the rupture and the propagation of the fracture of the pipeline, 

while this requires a value of the minimum toughness of the steel necessary to arrest a long-

lasting ductile fracture. The mechanical characterizations deduced from tensile testing in the 

pipeline manufacturing laboratory may be insufficient because breaks can be obtained below the 

yield strength under normal and special conditions rendering the material in a brittle state. The 

impact test is a main complement to the tensile test. The impact bending test or the impact test on 

a notched Charpy specimen is intended to measure the resistance of a material to sudden rupture. 

The impact test represented by The Charpy V-Notch (CVN) (ASTM International) in Ref [62] is 

used to determine the fracture value of the toughness of a considerable material in the frame that 

is easy and more economical method to perform experiments. 
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The high cost of large-scale experimental campaigns has driven the development of more 

economical laboratory-scale tests such as the well-known Charpy V-Notch (CVN) impact test, 

Drop Weight Tear Test (DWTT) in Refs [63, 64] and more recently the Dynamic Tear Test 

(DT3). For modern pipelines with a wall thickness reaching over 20 mm, the CVN has a 

relatively small standard specimen size with a cross section of 10 mm × 10 mm [65]. In addition, 

limited by the test conditions, the results of the Charpy impact test will be affected by certain 

factors, which have been investigated by many researchers. It is also of great research value to 

transform non-standard test results into standard results. The influence of the radius of the striker 

on the energy absorbed by the impact of X80 steel for pipelines was analyzed in Ref [66]. 

Madhusudhan [67] presented the variation of energy absorbed by changing the pendulum speeds 

of 5 m/s, 6 m/s, 7 m/s and 9 m/s of maraging steel 300 using Abaqus software. For X70 pipeline  

Charpy impact testing. Therefore, the corresponding damage models can be validated, calibrated 

and/or to be implemented in more complex simulations. The Gurson-Tvergaard-Needleman 

(GTN) [68, 69] damage model is well-known, widely applied and used to simulate dynamic 

ductility fracture propagation. Due to the limited parameter set in this model, it is often adopted 

in the industry field.  In this work, the application of the GTN damage model for the dynamic 

propagation of cracks in the Charpy test is studied and the influence of the damage parameters on 

the initial and maximum fracture load is quantified. At failure, it is applied to a high strength pipe 

material, namely X70 through a numerical study of a CVN impact experiment. A sensitivity 

analysis of the GTN damage constants is carried out to evaluate their influence on the initial and 

maximum load expected at failure. To analyze the simulation data obtained, machine learning 

approaches are applied and represented by an artificial neural network in order to identify the 

relative influence of the values of the GTN parameters and temperature changes on the initial and 

maximum loads of the rupture. The potential predictive capacity of our model is tested by 

analyzing the outputs of our neural network for the proposed GTN parameter sets. 

 

Structural Health Monitoring (SHM) of pipeline structures is of great interest and constitutes a 

fundamental element for the transport of hydrocarbons. Among the steels used for construction is 

API 5L X70 [70], which occupies a very important place in the mechanical, naval and especially 

oil industry. High-strength steel pipelines allow the transportation of oil and gas at high pressure 

to increase the capacity, because the thickness of the pipes can be reduced when the strength of 

the steel of the pipeline is increased, and then the weight can be reduced. In the pipeline industry, 

pipes need high strength and durability as well as formability, which are important components, 

as mentioned in Refs. [71, 72]. The high strength and durability of steel allow natural gas and 

crude oil to be transported over long distances and under high pressure [73]. The resistance of 

cracking due to hydrogen is an important property, which is added to other properties in an acid 

medium as described in Ref. [74, 75]. In the H2S environment problem, resistance to stress 

corrosion cracking was studied in Refs. [76, 77] and the phenomenon of fatigue in Refs.[78, 79]. 

The chemical composition of metal alloys and thermomechanical processing has been shown to 

affect the properties and microstructure of the steel of the transport pipeline[80]. Ensuring the 
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integrity of large structures and industrial components involves considering the presence of faults 

and determining the conditions for initiating, propagating, and stopping cracks due to the 

presence of these faults [81, 82]. In order to identify this propagation phenomenon, we analysed 

the evolution of the crack within the framework of the elastoplastic fracture mechanics [83]. It 

consists essentially of experimental tests and numerical validations to allow the measurement of 

critical fracture properties from samples at the laboratory scale and to reduce the critical value of 

the fracture energy. More information can be found in the text books [84-86]. Other works are 

oriented towards the practical use of fracture mechanics [87, 88]. A good suitable design of tubes 

in terms of weight and strength requires advanced and high strength materials, and more details 

can be found in Ref. [89]. At the beginning of the development of the failure model, the emphasis 

was placed on the triaxiality of the constraints and since the in-depth experimental studies. There 

is a trend within the natural gas transportation industry towards lower operating pressures, 

temperatures, and the use of higher quality pipeline materials [90]. Moreover, the emergence of 

these changes in characteristics has come to a great need to accurately predict the stopping 

behaviour of ductile fracture in metal under these conditions. However, many experts believe that 

forecasting methods found in the industry require significant improvement, as they are suitable 

for lower grades of steel and lower operating pressures by the standards of the operating 

environment as described in Ref.[91]. In the pipeline, there are two types of crack, namely ductile 

crack, and brittle crack. Since ductile crack occurs at a higher temperature where virtually all 

pipelines are in service. In pipeline industry applications, it is important to control the 

propagation and stop the ductile cracks. 

An elastic crack propagates unstable for a long time as the crack velocity is less than the 

decompression rate during initial compression. This is because the decompression rate and crack 

rate decrease as pressure decreases at the bottom crack [92]. The damage model of GTN is 

widely applied to simulate the dynamic propagation of ductility fractures. Due to the limited set 

of parameters in this model, it is often adopted in engineering applications [93]. The GTN 

mesoscopic damage model is used as a tool to support the FE model of the experimental test 

process. The provided results have shown that the fracture speed and the pronounced opening 

angle were in good agreement with the experimental results. Lian [94] simulated the failure 

process of an X70 high steel pipeline under loading conditions and established the damage 

mechanics model with hole expansion being a damage variable. Gholipour et al. [95] presented 

an application based on the GTN damage model, the model simulates with acceptable precision 

of material fracture and damage evolution for SAE 1010 plain carbon steel.  Recently, the ANN 

technique has been widely used for different applications, such as in the study of surface texture, 

mechanical properties, the effects of processing parameters on the alteration of mechanical 

properties, the phenomenon of corrosion and fatigue, damage identification [96-100]. However, 

ANN was improved based on some challenges using optimization techniques for damage 

identification in several structures as mentioned in Refs. [101-103].  

 

In the pipeline used in working environment, there is a critical problem to prevent pipeline 

cracking [104-106], so it is exposed to the onset of the rupture and crack propagation [107]. The 
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onset of failure occurs due to assembly deformation, base metal defect, and mechanical 

damage, for example, notching, cracking, corrosion, and erosion [108-111], etc. It arrives at 

unstable critical fault length or a certain level of stress and starts to propagate. When crack 

initiates, it arrives at an unstable critical fault length or certain stress level and begins to 

propagate, and in principle could propagate persistently unless captured by crack barriers and 

could stop under certain conditions and by technical methods applied to several cases of 

cracks[112]. 

Pipelines can be exposed to extreme disfigurement and deformation close to the critical fault 

zone, resulting from certain handling of transportation and installation with underground 

operations such as torsion or mechanical biaxial tensile loading from longitudinal deformation, 

and internal pressure due to the existence 

In general, the experimental fracture toughness data obtained from a SENT test may be more 

appropriate for initial predictions of pipeline fracture under internal pressure than data obtained 

from standard notched fracture specimens under the bending load and Charpy impact test [113]. 

In this work, the influences of different notch depths on the mechanical characteristics of the 

fracture are investigated using Finite Element Method (FEM) during Single Edge Notch Testing 

(SENT) API X70 pipe steel. The constitutive model of Gurson-Tvergaard-Needleman (GTN) is 

applied to simulate the growth of voids during the deformation of pipeline for a considerable 

number of depth cases. SENT test simulations provide numerical results under experimental 

conditions allowing the creation of big data containing changes in stress and strain for different 

notch depths. 

The application of GTN is used in a number of studies for different cases, and especially in 

fracture mechanics [114-116]. For machine learning and improvement of an artificial neural 

network, a number of new optimization techniques has been taken to solve many problems and in 

different fields [117-122]. YUKI algorithm and POD-RBF were used to identify cracks for 

elastostatic and dynamic cases [6], Jaya and E-Jaya optimization technique, for crack 

identification were used in Refs. [123, 124], and more researches on training different 

optimization codes for crack prediction and identification are presented in Refs [114, 125, 126]. 

Machine learning has recently received recognition for its capacity and flexibility to solve 

extremely challenging, multidimensional problems and in many fields too. Artificial neural 

networks (ANN) had quite a lot of success in overcoming such issues, in this work an ANN-

based on different optimization codes has been employed to solve one of these issues. The 

collected data was used as input in training different optimization techniques to predict notch 

depth, so the study ended by choosing the best optimization codes NN-YUKI, NN-Jaya, NN-E-

Jaya. , cited in this article comparing a number of sufficient scenarios based on the collected 

experimental and numerical data with actual values, and taking the best prediction of notch depth 
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on specimens under uniaxial loading according to the maximum stresses supported by each notch 

depth. 

In the current researches, API X70 steel is utilized for long-distance transport under great 

pressure and is required to meet the best low temperature toughness and structural integrity [127]. 

The drop weight tear test (DWTT) was established in the mid-1960s as a method to evaluate 

pipeline steels [128, 129]. Unlike the Charpy test with a certain thickness, e.g. 10 mm, DWTT 

simulate the actual pipeline steels with the same thickness and represents fracture resistance and 

transition temperature To adequately investigate the fracture propagation behaviour, DWTT has a 

longer fracture path compared with Charpy Vnotch test models (CVN) [129, 130], Furthermore, 

it is more efficient in evaluating the steel resistance to fracture propagation. 

Optimization methods are successful in resolving real-world obstacles. Obtaining a resolution to 

these systems, nonlinear, and multimodal real-world difficulties normally need careful 

optimization methods, so essentially metaheuristic algorithms [121, 131, 132] proved to be a 

good optimization techniques. The universality of metaheuristic algorithms, adds to their 

efficiency of use and implementation. Metaheuristic algorithms become favorably used to resolve 

the difficulties in medicine, engineering, pipelines, aerospace, and several extra fields [117, 133, 

134]. 

The application of XFEM is utilized in a number of studies for different domains, and particular 

in fracture mechanics [135-139], Samir and al used (BCMO) algorithm for comparison with 

Arithmetic Optimization Algorithm [140], the optimization code Jaya and PSO for crack 

identification in this study [125, 126], the investigation in fracture toughness and the fracture 

energy of epoxy-based nanocomposites in Ref [141] 

The application of XFEM is used in this study to obtain the values of peak load and absorbed 

energy at peak load in brittle fractures in the case of impact testing with various crack lengths. A 

high-strength steel pipeline material is modeled using impact fracture models. Numerical data of 

peak load and absorbed energy values are used to create data inputs and outputs based on 

different crack lengths, which are then collected and trained on an improved artificial neural 

network based on the optimization of the composite balancing motion (BCMO) [142] and 

Particle Swarm Optimization (PSO) [143], as well as the Jaya algorithm [144] for predicting peak 
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load and absorbed energy of dynamic brittle fracture values in a steel X70 with different crack 

lengths. The goal of this project, as well as several optimization strategies, is to use good data and 

settings to achieve better results. 

1.7  Conclusion  
 

Structural Health Monitoring (SHM) plays a crucial role in ensuring the integrity and safety of 

structures throughout their lifespan. It involves the design, development, and implementation of 

systems that detect, localize, and quantify damage in structures. Damage is generally defined as 

changes that adversely affect the current or future performance of the system, and its significance 

lies in comparing two states of the system: the initial intact state (considered healthy) and the 

momentary state. 

In the context of SHM, two main types of structural condition control techniques are utilized: 

non-destructive testing and destructive testing. Non-destructive testing techniques, such as X-

rays, gamma rays, ultrasound, and acoustic emissions, are widely used to monitor the integrity of 

structures without causing degradation. On the other hand, destructive testing involves methods 

that may degrade the structure during the assessment. 

The application of artificial neural networks (ANN) has gained popularity in the field of damage 

identification and detection, particularly when analyzing mechanical properties. ANNs excel at 

establishing nonlinear relationships between structural mechanic‟s characteristics and damage 

information, making them a valuable tool in the SHM process. The ultimate goal of SHM is to 

diagnose damages early, non-destructively, and cost-effectively. This involves continuous 

measurement of the structure over time, extracting damage-sensitive features from the 

measurements, and analyzing them to identify the current state of the system. By utilizing 

assessment methods based on static or dynamic analysis, SHM ensures that structures remain safe 

and efficient throughout their operational lives. 

In the upcoming chapter, we focus on providing comprehensive information about steels and 

various processes, along with a detailed examination of the behavior of the specific steel utilized 

in pipeline manufacturing. Additionally, we offer a recap of essential elements of fracture 

mechanics and the numerical techniques applied in our studies. 



 

47 
 

 

 
 

 

 

 

 

 

Chapter 2: Overview of the mechanics of pipeline 

materials and the numerical techniques used



Chapter 2        Overview of the mechanics of pipeline materials and the numerical techniques used 

  

48 
 

 

2.1      Introduction 

A pipeline is a buried or above-ground conduit used to transport petroleum products and natural 

gas, whether in liquid or gaseous form. Pipelines are most often constructed from welded steel 

tubes that are externally or even internally coated and are generally buried in the ground [145]. 

The transport of hydrocarbons, including petroleum products and natural gas, is carried out 

through steel pipes from their deposits to the refining areas, distribution centers, and consumption 

points. In Algeria, the pipeline network was estimated to be more than 19,599 km in 2013, 

compared to 19,063 km in 2012. Transporting hydrocarbons by pipeline remains the safest 

method for transporting large quantities of oil and gas over long distances. 

In the following section, we will present an overview of the mechanics of pipeline materials and 

the numerical techniques used in our studies. 

 

2.2     Main causes of pipeline failures 

2.2.1 Introduction 

 

Pipeline and tank damage in the oil industry is a well-known issue, often attributed to 

environmental settings and service conditions. Various types of damage, such as erosion, 

corrosion, and embrittlement, can significantly impact structures designed for handling petroleum 

products. These damages may include the presence of cracks, notch holes, and complex geometry 

defects. 

All pipeline steels are susceptible to failure due to internal and external forces, including 

mechanical and thermal stress, as well as conditions such as creep, fatigue, and erosion. Internal 

and external corrosion, as well as cracking and manufacturing defects, are also common factors 

that can lead to harm in pipelines. The primary sources of leaks and ruptures in pipelines, which 

can occasionally result in catastrophic damage, are internal and external corrosion. Such damage 

can lead to human harm, environmental pollution, additional repair costs, prolonged pumping 

stoppage, and more. 

An oil or gas pipeline spill can have severe consequences, posing an environmental catastrophe 

with potential long-term effects on ecosystems. This highlights the critical importance of 

ensuring the integrity and maintenance of pipeline structures in the oil industry to prevent 

accidents and minimize environmental impact. 
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2.2.2 Pipeline failures 

Among the parameters influencing the fatigue behavior of pipelines and structures, there are three 

main categories represented in the following flowchart (Figure 2. 1). 

 
Figure 2. 1 The major categories of damage. 

 

Failures of tubes or pipes under pressure can occur due to various causes, leading to either 

rupture or a "crack" leak. Some of the common factors behind these failures include pitting or 

stress corrosion cracking, as well as welding defects. Additionally, ground movements, such as 

ground slides or earthquakes, can also cause damage to buried pipes (Figure 2.2). 

Tube operators have extensively studied these issues and possess a wealth of knowledge 

regarding methods to effectively manage and mitigate them. By understanding the causes of 

failures and implementing appropriate preventive measures and maintenance strategies, operators 
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can ensure the safe and reliable operation of pipelines and minimize potential risks associated 

with pipe failures. 

 

 
Figure 2. 2 Causes of pipeline failure during operation [146]. 

 

More than 90% of in-service fractures are caused by fatigue crack initiation issues and 

fractures originating from stress concentrations. The breaking strength of the tube will decrease 

in the presence of a geometric discontinuity like a notch. A local amplification effect of the stress 

will make this deficiency more harmful because it will diminish the section of the latter by 

making it more sensitive to the service pressure and to the forces induced by the movements of 

the earth. 

 

2.3  Steel 

Due to its physical, chemical and mechanical properties, steel occupies an important place in the 

ferrous metals industry, hence its use in various fields such as in the transport by pipeline of 

hydrocarbons (oil and natural gas). 
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It is used for the manufacture of pipelines (gas pipelines and oil pipelines) to transport large 

quantities of hydrocarbons over long distances from their deposits to consumption and processing 

areas. Today there are more than one million km of pipeline network in operation in the world. 

In Algeria, the pipeline network is estimated to be more than 19,599 km, with diameters ranging 

from 8 to 48 inches (203.2 to 1219.2 mm). For their efficiency, these pipes must meet 

profitability and safety requirements. More than 95% of the steels used for gas pipelines are high-

strength micro-alloyed steels [147]. Steel is an iron-based alloy with a low percentage of carbon 

added (from 0.008 to about 2.14% by mass). The carbon content has a considerable and complex 

influence on the properties of the steel, the alloy is rather malleable and it is called "iron" with 

very low carbon content. Beyond 2.14%, carbon inclusions in graphite form weaken the 

microstructure and we speak of cast iron. Between these two values, the increase in the carbon 

content tends to modify the mechanical resistance. 

Steel can be classified as "soft, semi-soft, semi-hard, hard, or extra hard" based on traditional 

classification. We also modify the properties of steels by adding other elements, mainly metallic, 

and we speak of alloy steels. In addition, we can still greatly modify their characteristics by heat 

treatments, we then speak of treated steels. In addition to these various potentialities, and 

compared to other metal alloys, the major interest of steels lies on the one hand in the 

accumulation of high values in the fundamental mechanical properties: resistance to forces, 

modulus of elasticity, elastic limit, mechanical resistance, hardness, impact resistance 

(resilience). Finally, steels are practically entirely recyclable thanks to the scrap metal sector. 

As a result, steels remain preferred in almost all areas of technical application, such as: public 

facilities, building, means of transport, mechanical components. 

2.3.1 Classification of steels 

Due to the high number of elements added to iron and the wide range of their content, steels have 

a very large number of different shades. The various types of iron-based alloys can be classified 

according to their chemical composition or according to their field of use. 

The adoption of the latter allows us to identify four families of steels: General purpose carbon 

steels; Heat treatment steels, alloyed or not; Tool steels; Stainless steels. 

 Ordinary steels and carbon steels 

Standard general purpose steels known as carbon steels are occasionally misnomered. They 

are used as such, untreated, and account for around 80% of the manufacturing of steel (Table 2. 

1). The following additions and impurities are present in these steels in addition to carbon: 

manganese (1.2%), silicon (0.6%), sulfur (0.06%), and phosphorus (0.06%). The limiting 

contents of these elements in these steels are shown by these percentages. 
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Even though they can be found with a variety of mechanical characteristics, common steels do 

not satisfy all usage requirements. The primary carbon steel characteristics that can be enhanced 

are: 

 hardenability; 

 Solderability; 

 Heat resistance; 

 Resistance to wear and corrosion. 

 

2.3.2 Welding of carbon steels 

Steels for welded constructions are hypoeutectoids and their carbon content does not 

exceed 0.40%. Alongside carbon, we always find in steel some unavoidable elements, whose 

presence is due to the manufacturing process and which are Manganese, Silicon, Sulfur and 

Phosphorus. 

The welding operation differs from conventional metallurgical operations in that the 

heating rates are very high, that the maximum temperatures of the various points of the parts vary 

with their distances from the joint and that the durations of maintenance of these temperatures are 

very weak. In addition, the metallurgical transformations that appear on cooling, in the heat-

affected zone (HAZ) of the welded joint, are accompanied by heat treatments. Experience shows 

Table 2. 1 Ordinary steels or unalloyed carbon steels. 

Grade 

Carbon 

Pourcentage 

(C) 

Strength  Smax  

(MPa) Annealed 

condition 

Uses 

Extra soft C<0.15 330-420 
Sheet metal for bodywork, strips, hardware 

Forgings 

Soft 0.15<C<0.20 370-460 
Structural steel, profiles, mechanical construction, 

current, bolts, ordinary wires 

Semi-sweet 0.20<C<0.30 480-550 
Machine parts for mechanical applications 

Cast parts or frames, forged parts. 

Semi-hard 0.30<C<0.40 550-650 
Small tools, elements of agricultural machinery, 

transmission component 

Hard 0.40<C<0.60 650-750 
Arming tool parts, slides, rails and bandages, 

springs, cutlery, molded and treated parts 

Extra hard C > 0.60 Smax > 750 Machining and cutting tools, cables, spring 
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in fact that the final metallurgical structure at any point of the HAZ depends practically only on 

the maximum temperature reached at this point, and on the cooling criterion. See Figure 2. 3. 

There are four types of zones: 1. the melted zone, where the maximum temperature is greater 

than or equal to the melting temperature; 2. the entirely austenitic zone, where the maximum 

temperature is between the melting temperature (MT) and the AC3 temperature; 3. The partially 

austenitic zone, where the maximum temperature is between AC3 and AC1; and 4. The 

influenced zone (not austenitized) where the maximum temperature is lower than AC1. 

 
Figure 2. 3 Steel processing in the heated zone [148]. 
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2.3.3 Weldability of carbon and low alloy steels 

The weldability of steels depends on the internal structure of the metal in the HAZ after welding. 

In order to preserve the qualities of the metal to be welded, in particular with regard to ductility, 

the welded metal must regain an internal structure similar to its initial state. 

Figure 2. 4 illustrates the effect of the temperature on the grains of steel, one can notice the zone 

where one finds austenite, it is in this zone that, in the case where the cooling is too fast, the 

metal solidifies into martensite rather than ferrite and pearlite, which creates internal, stresses 

[13]. 

 

 

Figure 2. 4 Influence of temperature on grains [149]. 

 

The main factors that affect the weldability of carbon are: 

• Hardenability: this is the main factor. It determines the behavior of steels during rapid cooling. 

The more steel tends to adopt a martensitic structure, the more its fragility increases and this 

increases the risk of cracks. 
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• Carbon Equivalent (CE): Carbon Equivalent is a measure that fairly well determines the 

hardenability of steel, as the higher the carbon content, the more likely the steel is to undergo 

hardening. The weldability of steel is therefore dependent on its equivalent carbon (Table 2.2). 
 

Table 2. 2 Influence of equivalent carbon on the weldability of steel. 

Carbon equivalent (CE) Weldability Preheat 

Up to 0.35 Excellent Not Necessary 

0.36-0.40 Very good Recommended 

0.41-0.45 Good Necessary 

0.46-0.50 Fair Necessary 

Over 0.50 Poor Necessary 

 

The following metals enter into the calculation of the equivalent carbon: carbon of course (C), 

manganese (Mn), silicon (Si), chromium (Cr), molybdenum (Mo), vanadium (V), nickel (Ni) and 

copper (Cu). 

The formula to use is: 

                    
        

 
 

    

 
 

     

  
 

In this formula, the symbol of the element indicates its mass percentage in the alloy 

(For example, if we have 0.5% carbon and 0.03% manganese, then C = 0.5 and Mn = 0.03). 

Another Japanese essence formula would apply to a wide range of lower carbon high yield 

strength steel grades (case of steels for tubes) [61]: 

 

 

                    
        

  
 

  

  
 

  

  
 

 

  
    

The higher the carbon content, the more difficult the steels are to weld. 

2.3.4 High elastic limit steels 

       Low carbon steels classified as high strength low alloy (HSLA) use a small number of 

alloying elements to achieve yield strengths greater than 275 MPa when rolled or normalized. 

Compared to lamellar graphite carbon steels, these steels have greater mechanical qualities and 

occasionally better corrosion resistance. Additionally, the weldability of HSLA steels is on par 
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with or better than mild steels, and the high elastic limit of these steels may be reached at low 

carbon content. 

 

2.3.5 Submerged welding in powder form 

Main characters 

 Electrode: fusible metal wire unwound continuously. 

 Protection: simultaneous supply of composite powder called flux. 

 Current: direct and alternating. 

 

2.3.6 Process description 

Submerged arc welding (SAW) is the automation of covered electrode welding. It 

combines a fusible electrode wire, unwound from a reel, with protection obtained by vapors from 

a composite powder comparable to the coating and brought directly into the arc zone, but 

independently of the electrode. 

This arrangement makes it possible to carry out multi-hour uninterrupted welds. This 

process is also called submerged arc welding (submerged arc welding process or SAW). 

Submerged welding is carried out almost exclusively automatically with installations 

whose principle is shown in Figure 2. 5 and which essentially comprise: 

 A welding head comprising the torch itself, the wire drive, the reel receiving the 

wire reel, the powder hopper and its conduit to the torch; 

 A source of direct or, in some cases, alternating current; 

 An automation box and accessories. 

As in any automation, the submerged welding head is fixed on a mechanism according to the two 

essential variants: fixed head, moving part or vice versa. As shown in Figure 2. 5, the current is 

brought to the fusible electrode by the contact tip, or wire guide, on the walls of which it rubs 

permanently.
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Figure 2. 5 Principle of submerged powder welding. 

 

2.3.7 Application domain 

Submerged welding is placed, compared to coated electrode welding, with practically the 

same advantages in terms of its metallurgical adaptability, but it solves the problem of 

productivity by: 

 Its continuous operation thanks to the wire electrode; 

 Its higher deposit rate; 

 

This confines it to the field of medium and heavy boilermaking and, in general, to 

applications in which: 

 The thicknesses are high (> 30 to 50 mm) and, consequently, the chamfers are 

significant; 

 The welds are long (several meters) and uniform (no angle). 

This process is practically not used manually because of the flux and wire leads which form, at 

the level of the torch, heavy and difficult to maneuver equipment. It lends itself, on the other 

hand and naturally, because that is why it was developed, to the mechanization of welding for 

which the flat position, necessary for the retention of the flux, is easy to observe.
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2.3.8 Welding defects 

A possible definition of what is meant by default could be "Geometrical accident other than those 

inherent in the weld beads themselves". 

We therefore encounter all the unusual notches presented by the weld bead and its immediate 

vicinity. We can cite, by referring for example to the following classification (see Figure 2. 6): 

 

 • The cracks ; 

 • Cavities; 

 • Solid inclusions; 

 • Lack of fusion and penetration; 

 • Shape defects. 

 

Cracks: Cracks are ruptures which are generally caused during cooling, by stresses exerted on 

the structures during solidification or cooling, possibly weakened, in particular by the presence of 

hydrogen.

 
 

     Figure 2. 6 Welding defects [150]. 
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The orientation of the location of the cracks depends on their origin. However, they enter 

systematically into the family of plane defects, that is to say defects in which one of the 

dimensions is very small compared to the other two and the circumference of which therefore 

constitutes a particularly marked notch.  

 

Cavities: belong to the family of volume defects and can result from different mechanisms. We 

will distinguish: 

 

 Shrink marks: following shrinkage of the metal during its cooling, the 

empty space formed appears visually on the surface of the bead, as well as 

inside the bead. 

 

 Blowholes: formed by gas trapped during solidification, this takes the form 

of bubbles. 

Solid inclusions: made up of slag particles or oxides. 

The lack of fusion or sticking results from a lack of bond between the molten metal and the base 

metal while the lack of penetration represents the lack of fusion of the edges to be welded during 

the first pass. These defects are also plane defects. 

 Defects in shape: are particularly numerous and we will mention, without insisting on them: 

 Excessive thicknesses and collapses; 

 Misalignments; 

 Channels. 

 

2.4  Fracture mechanics 

2.4.1 General 

The separation into two disjoint parts of a body occurs following the propagation of a crack, 

which has seen the development of microcavities, microcracks and then initiation, under the 

action of mechanical, thermal, chemical stresses. When a material is stressed until failure, the 

tests show that the breaking stress σ_R is a quantity presenting strong fluctuations which can even
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exceed the limit for certain materials and that the mode of failure depends on the nature of the 

material. 

Rupture can occur suddenly with almost no prior deformation for materials qualified as brittle, 

while it only occurs after a stage of large permanent deformation for materials qualified as 

ductile. We now know that brittle materials break abruptly above a certain tension, while ductile 

materials flow plastically under shear before breaking [151-153]. 

The failure mode also depends on the state of stresses, a material that has a lot of plasticity will 

generally develop ductile failures, but may be subject to brittle failure. A material without 

plasticity (ceramics, metals at very low temperatures, certain resins) will always present brittle 

fractures. So if plasticity is absent or remains very confined, the theories which make it possible 

to deal with the problem consider the material as elastic everywhere: this is linear fracture 

mechanics.

 

2.4.2 Introduction to linear fracture mechanics 

Fracture mechanics is essentially concerned with the study of macroscopic cracks: 

It applies when there are discontinuities in the material which modify the state of stress, 

deformation and displacement, so that the homogenization of the medium no longer makes sense 

to describe the physical phenomenon associated with the presence of a macroscopic crack. 

The concepts of linear fracture mechanics and the stress intensity factor are given by Griffith and 

Irwin. The two main events that contributed to the development of fracture mechanics are 

Griffith's demonstration in 1920 that the fracture of an elastic-brittle medium can be described by 

a global variable later referred to as the rate of energy release and Irwin's introduction of the 

concept of stress intensity factor in 1956 from his study of the singularities of the stress field. The 

years 1960-1980 are those of the rise and then the maturity of fracture mechanics, with in 

particular numerical developments and the treatment of nonlinear problems. 

 

2.4.3 Notions of fracture mechanics 

2.4.3.1 Flat elasticity reminders 

a. Hooke's Law 

       The behavior equations (or Hooke's law) can be expressed either by using the couple of 

elastic constants ( ,   ) (  = Young's modulus,   = Poisson's ratio) or ( ,  ), (  = shear modulus 

and   = Lame coefficient). These constants are linked together by the formulas [154]: 
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The two expressions of HOOK's law using these two pairs of constants are: 
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Note: We pass from relations (2.1) to (2.2) by replacing λ by       
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We can therefore write HOOK's law for the two states in the form:
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The transition from (2.1) to (2.2) can also be done, with the variables E and v, by replacing: 
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4.3.5.1 Notions of fracture mechanics in linear elasticity 

    We will mainly deal with brittle fracture in the macroscopic sense of a material, ie a fracture 

occurring without significant macroscopic plastification, which does not exclude microscopic 

plastification at the crack tip. The brittle fracture model assumes that the material is 

homogeneous and isotropic. 

2.4.3.2 Available energy rate G 

The quantitative link between fracture and defect size was proposed by Griffith in 1920. 

Griffith's model, based on an energy criterion, correctly predicted the relationship between the 

resistance of the elastic-brittle body and the size of the defect. Irwin then developed this energy 

approach by introducing the concept of energy release rate G [155]. It is shown that the 

thermodynamic equilibrium of an elastic structure, containing a surface crack A, and loaded by 
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forces, with respect to the extension of this crack, is achieved if what is called the rate of 

available energy G is equal to a critical value GC. G is defined by the formula: 

  

                                                                  
  

  
                                                                                   

 

With P total potential energy of the cracked structure, i.e. sum of the potential energy of the 

forces and the stored elastic energy, GC being the energy which is necessary to expend so that 

the crack increases its area of one unit [156]. G, which can be expressed in J, it is also called the 

crack extension force. If G becomes greater than GC, crack propagation occurs, with the extra 

energy turning into kinetic energy. It is demonstrated that: 

 

                                                          
 

 
  

  

  
                                                                                 

With F: Applied force, 

          C: complacency of the cracked structure, i.e. proportionality ratio between the 

displacement caused by the force F and this force F itself. 

The toughness of the material is one of the core tenets of fracture mechanics. GC is independent 

of the geometry and dimension of the cracked body. The fracture toughness measured on a 

laboratory specimen can be applied to another structure. 

2.4.3.3 Stress intensity factor K 

To study the state of the stresses in a zone close to the end of the crack, it is considered that it has 

a zero radius of curvature at its end and thanks to the theory of elasticity, it is shown that the 

stresses tend towards infinity when approaching this end as r^(-1⁄2), r being the distance to the 

end of the crack. This behavior is asymptotic, in the sense that if r becomes large compared to the 

dimension of cracks, higher power terms of r begin to intervene to describe the stress field. 

The zone where the term in r^(-1⁄2) dominates is called the zone of elastic singularity. The 

constraints there are of the form. 

                                             
 

√   
                                                                                      

 With fij(θ): function of the polar angle with respect to the end of the crack, always the same 

whatever the crack, the part and the loading,   (r) is written to recall that there are other terms 

tending to 0. 

With K: Stress intensity factor. 
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The K factor brings together on its own the effects of the crack's size, the forces used, and the 

geometry of the damaged area. Because this one and only characteristic determines the 

circumstances at the crack's terminus, fracture mechanics is successful. This therefore allows 

easy comparisons between specimen and structure: it suffices that K is the same for the stress 

state at the end to be identical. 

At the moment of rupture, in particular, K reaches a critical value Kc which is therefore always 

the same and, therefore, characteristic of the material. 

The displacement of the crack lips, itself a function of K, can be broken down into three 

components: parallel to the plane of the crack and to the bottom, perpendicular to the bottom of 

the crack and parallel to the front of the crack. To each of these components corresponds an 

elementary failure mode, mode I for component U1, mode II for component U2 and mode III for   

Component U3, see Figure 2.7. The most dangerous fractures generally occur in mode I, so most 

fracture mechanics studies have focused on this mode. We then assign the factor K to the index I. 

The factors K I, K II, K III are a function of the length of the crack, the geometry of the part and 

the loading. For example, in a very large plate containing a crack of length 2a and subjected to a 

homogeneous stress σ: 

 

                                                    √                                                                                           

 

It is always possible to calculate these K factors by the finite element method. 

The standards give the K factors for the main recommended specimens. 

There is a relationship between the available energy rate G and the stress intensity factor KI, 

provided that the crack does not deviate:  

                                                     
                                                                                              

With E'= E (Young's modulus) in plane stress,    ̀  
 

      
 (  being the Poisson's ratio), in a 

state of plane strain. 
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Mode I : Opening Mode II : Tearing 

 

 

Mode III : sliding 

Figure 2. 7 The three failure modes. 

                                                             

 

In a cracked elastic zone, the region close to the crack tip can be broken down into three zones 

 

a. The development zone: in the direct vicinity of the crack tip, the study of this zone 

(considered as punctual, from a mechanical point of view) is very complex insofar as the 

stresses tend towards infinity (d from a theoretical point of view) with respect to the crack 

tip; 

b.  The singular zone: in this zone, the stress field presents a singularity in r-½ 

       c.    The singular zone: in this zone, the stress field presents a singularity in r-½ 

 
 

Figure 2. 8 Mechanical field zones. 

 



Chapter 2         Overview of the mechanics of pipeline materials and the numerical techniques used 

66 
 

4.3.5.2 Stress concentration near a defect 

If we consider an elliptical form defect of length 2a and radius at the bottom of the notch ρ, see 

Figure 2.9, the local stress at the end a is: 

                              (   
 

 
)   (   √

 

 
)                                                                    

In the case of a very sharp notch, ρ≪a and we then have: 

                                                  √
 

 
                                                                                                  

The factor  √
 

 
  named stress concentration factor. 

Where:   , σ are respectively the stress in the y direction, the uniform tensile stress applied in the 

plane of the plate. 

              are the semi-axes of the elliptical hole and   s the radius of curvature at the top of 

the hole.  

 

In the case of a plate of infinite width and comprising a circular hole, the relation (2.11) is 

written:  

 

                                                                                                                                     

When the ratio b/a tends towards zero, the hole takes the form of a crack, σ_y tends towards 

infinity. (See Figure 2. 9) 

 
 

Figure 2. 9 Elliptical defect in an infinite plate. 
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2.4.4 Application of the finite element method to fracture mechanics 

The determination of the stresses and displacements necessary for the calculation of the 

coefficient of intensity of stress K, for the linear elastic case, and the integral J for the elasto-

plastic case, constitutes one of the most important parts of the mechanics of the fracture. . 

For cracks of usual geometry where the analytical or approximate solution is known, one can 

propose to the designer lists of formulas, curves, and charts necessary for calculation. 

For cracks with more complex geometry, one must use numerical calculation techniques 

such as the finite element method, it is a standard method for the numerical analysis of 

fracture mechanics problems. 

Several techniques have been proposed for the evaluation of K and J from finite element 

analysis. However, the adequate representation of the singularity at the crack tip is still a 

common problem of these methods. 

The use of the finite element method in the study of cracking takes into account two distinct 

considerations [157]: 

 

 Modeling the singularity at the crack tip 

The first studies using the finite element method in fracture mechanics, used elements that 

require extremely fine meshes in the vicinity of the singular point, to represent the 

singularities of the stress and deformation fields in a suitable way. However, it is 

advantageous to create unique crack elements to directly simulate the singularities in the 

area of the fracture tip for an effective investigation of cracking problems. 

 Interpreting the results of finite element analysis 

 

After the finite element analysis, a means must be found for the evaluation of the stress intensity 

factors from the results of the stress and displacement fields. 

Several methods have been implemented for this type of calculation. The most obvious approach 

is to relate the analytical solution of the stress fields and displacements in the vicinity of the 

singular point to the results obtained, where extrapolation procedures are used to find the stress 

intensity factors. There are also other methods, which link the stress intensity factor to the rate of 

energy release associated with an infinitely small advancement of the crack. Another approach is 

to calculate the stress intensity factors from the value of an integral independent of the integration 

contour, such as Rice's J-integral. 
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2.4.5 Finite element method 

2.4.5.1 Basic principle 

The finite element method makes it possible to find an approximate solution of a problem 

governed by a system of partial differential equations with boundary conditions in a volume 

domain Ω. The steps of the finite element method are as follows: 

 The choice of a functional of the displacement field ∏     which is the total deformation 

energy of the structure under the external stresses. 

 

 Division of the volume Ω into N subdomains of volume Ωe which connect to each other 

at the nodes. These subdomains are called finite elements. 

 In each element, one chooses a field of displacement u(x) which checks a priori the 

conditions of compatibility in the volume and the border. This field is said to be 

kinematically admissible. 

 By the continuity of u(x) through the interfaces, we realize the assembly of all the 

adjacent elements to obtain a global structure. We then obtain an approximation of u(x). 

This approximation tends towards the exact solutions u(x) when N tends towards infinity and this 

convergence is ensured under certain conditions of regularity of the shape of the elements of the 

field of displacement. 

 By introducing the boundary conditions, the solution of the problem is the one which 

minimizes the functional ∏    . This leads to the equation: 

 

                                    [K][q] = [g]                                                                       (2.13) 

 

Which represents the equilibrium equation discretized at the nodes. 

Where: 

[K]: is the global stiffness matrix. 

[g]: is the global force vector. 

[q]: is the vector of nodal displacements of the system. 

This system is deduced from the principle of the minimum of the total deformation energy. 

2.4.5.2 Crack definition 

The surface that divides a solid into two halves locally is referred to as a crack. Consequently, the 

field of displacements through this surface is discontinuous. Fracture mechanics is the study of 

how this surface (the crack's propagation) changes over time in response to applied loads and the 

properties of the underlying material. The presence of a crack in a structure presents a local 

flexibility which affects the dynamic response, moreover, a fatigue crack is a crack which opens 

and closes in time according to the load conditions and the amplitude of the vibration. 
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2.4.6 Cracks in cylindrical pipes under pressure 

Cracking is a sign of an illness, not a sickness itself. In fact, the materials are extremely 

susceptible to cracking because to their poor deformation capacity and little resistance to traction, 

compression, or pressure (see Figure 2.10). 

However, there are some drawbacks to using new ductile materials (steel and other metal alloys) 

for tensile loads; ruptures have occasionally occurred for load levels well below the elastic limit. 

Initially, practitioners attempted to mitigate these rupture risks by oversizing the structures, but 

the need to lighten the structures and cut costs has sparked research on fracture mechanics.  

 

 
 

 

Figure 2. 10 Ductile failure of a pipe of average diameter under the effect of internal pressure. 

 

2.5  Neural networks 

2.5.1 Definition 

Computer science is the science of automatic information processing, often confused with the 

evolution of processing machines (computers) and the configuration of software to solve different 

issues in all domains. 

Software evolution can be done in several methods. The considerable utilized is the algorithmic 

(procedural) technique which needs writing down the procedure to be pursued to solve a problem. 

Additional current is the declarative (knowledge-based) technique which entrusts problem-

solving to a set of regulations passed by a human professional in a special domain. Another 

technique is inspired by the processing of information carried out by the brain (known as 

connectionist).  

2.5.2 The principal idea 

At the base of the peak of artificial neural network (ANN), is that intelligent behavior is 

supported by a set of mental mechanisms based on neurophysiological processes. These ANNs 

are designed  as very simplified mathematical samples motivated by the functioning of the central 

nervous approach, based on the idea of the biological neuron. They use simple elements (formal 
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neurons) strongly connected together by the connection weights procedure, input data to produce 

the expected outputs (Figure 2.11). 

 

 

 

a. Junction between two biological neurons b. formal neuron 

Figure 2. 11 Biological neuron modeling. 

 

A neural network is a computational design formed of highly interconnected single processing 

components, which processes knowledge through their dynamic state modification in reaction to 

outer input (Hecht-Nielsen 1990). Generally, a formal neuron can be shown by the following 

expression: 

( )i iO f W I                                                              (2.14) 

With, iI
, O  : neuron input and output respectively,  iW

: weight corresponding to each input, 
o

pk
 

  : represents the threshold, and ( )f x  threshold function checking , ( ) 1x f x   if x   and 

( ) 0f x   otherwise. The activation (transfer) function limits the output of the neuron with the 

minimum and maximum limits allowed, i.e. it offers an infinity of possible values between [0, 

+1] or [-1, +1].  

It can take different forms: binary, linear with threshold, sigmoid. The choice of one of these 

functions turns out to be an important building block of ANNs. Often non-linear and more 

advanced functions will be required. 

 For information, here are some commonly used functions (Figure 2. 12): 
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Figure 2. 12  Types of activation (transfer) functions. 

 

2.5.3 Benefits of ANNs 

 

ANNs does need a program, do not manage instructions and do not manipulate numbers. The 

defeat of part of these circuits does not stop the network from functioning. These principal 

properties are: 

 Parallelism: it is the performance of several studies (numerical data and not symbolic) at 

the same time, which demonstrates the best speed of calculation of the ANN. 

 Learning capability: it permits networks to accept into account constraints and data 

reaching from external. It is represented in certain networks by their capacity for self-

organization which ensures their stability. 

 Generalization: it permits the network to discover a generalized solution suitable to all 

samples of the situation, even if they include errors or are insufficient or not offered 

during training. 

 Distributed memory: memory is distributed across considerable entities and the network. 
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2.5.4 Design and types of ANN 

The design of the network is defined by the set of interconnected neurons. This design can range 

from complete connectivity or fully connected networks (full connection network) to regional 

connectivity or layered networks (one-way network), see Figure 2.13. 

 

 
a. Multilayer network b. Full connection network 

Figure 2. 13 Architecture of ANNs. 

 

ANNs can be organized into two classes according to their development over time: static neural 

networks and dynamic neural networks. In the case of static neural networks, the recent output of 

one neuron does not influence the coming outputs of other neurons. At this point, time is not an 

important parameter. On the other pointer, dynamic neural networks also named recurrent 

networks have a time-dependent evolution and they are organized so that each neuron receives. 

Element or all of the network state indicates its inputs. 

2.5.5 ANN mechanism 

The associations between the components are adapted according to the procedure of adjustment 

of the weights, parallel to the regression equations (Geoffrey 1992). Several techniques have been 

extended to adapt the connection weights by learning regulations or algorithms from actual data. 

The most-known learning regulations are the Hebb rule, the Windrow-Holff (Delta) rule and the 

generalized Delta rule also named Backpropagation. There are specifically two classes of 

learning: supervised and unsupervised. This distinction is established in the form of the learning 

models, input/output pairs associated with multilayer static networks in the point of supervised 

learning, whereas just input values are available for unsupervised learning. in the point of 

dynamic (or recurrent) networks. 



Chapter 2         Overview of the mechanics of pipeline materials and the numerical techniques used 

73 
 

At the end of the training, the weight is specified, and then starts the phase of using the network. 

Generally, learning brings place over a relatively long time (learning stage), during which the 

vectors of the input neurons can be offered to the network a considerable number of times (cycles 

or iterations). Selecting the learning parameters is the most necessary phase for ANN processing. 

These parameters are the learning speed, the learning error, and the number of iterations. 

There are two other phases named test and validation which drive it possible to test the 

performance of the trained network. 

2.5.6 Modeling by artificial neural networks (ANN) 

2.5.6.1 Introduction 

The artificial neural network (ANN) strategy is well suitable to deal with difficult systems. This 

approach reaches from work maintained out in the domain of artificial intelligence and is inspired 

by the functioning of the human brain, based mainly on the concept of biological neuron 

(McCulloch and Pitts 1943, Fortin et al. 1997, Najjar et al. 1997 , Mas et al. 2004, Senthil Kumar 

et al. 2004). Each author has defined neural networks in his own way. The most classic (Haykin 

1994) considers ANN as a massively distributed parallel process, which has a natural propensity 

to store empirical knowledge and make it available for use. It resembles the brain in two respects: 

- Knowledge is acquired by the network through a learning process. 

- Connections between neurons (synaptic weights) are used to store knowledge. 

There is a wide variety of probable arrangements of artificial neurons (Lippmann 1987), but the 

considerable widely used type for prediction is the error backpropagation multilayer perceptron 

(Rumelhart et al. 1986, Najjar and Zhang 2000, Basheer et al. Hajmeer 2000, Senthil Kumar et al. 

2004). This network includes an input layer, one or more hidden layers (multi layers perceptron), 

and an output layer. Each layer includes computational units (neurons) associated with other 

neurons by weights. 

2.5.6.2 Backpropagation Multilayer Neural Networks 

This model is an elongation of the perceptron model; it is probably the simplest and reasonably 

known of neural networks. It is a multilayer network (Multi-Layer Perceptron MLP) also named 

Multilayer Perceptron. It is capable to solve any difficult rational operation. This network 

employs the supervised learning model where the network is provided with a set of models (see 

Figure 2.14), each model consists of an input vector (numerical or actual values) and its chosen 

output vector. The weights are initially random, and it is through a “trial error correction”  

mechanism that this class of networks develops towards a stable form. This is reached by the 

Gradient Backpropagation rule (minimization of an error-dependent function). This technique is 
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the most manipulated for training static multilayer networks. It was improved by the Parallel 

Distributed Processing (PDP) research group. 

 

 
Figure 2. 14 Structure of an artificial neuron. 

 

 
Figure 2. 15 Topology of a backpropagation multilayer neural network 

 

In Figure 2.15:   

h

jiw
 Synaptic weight connecting the node j in h

th
 hidden layer at node i of the previous hidden 

layer or the input layer. 
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o

kjw
 Synaptic weight connecting the node k in o

th
 hidden layer at node j of the previous hidden 

layer or the input layer. 

h

pj
 Value of the threshold of p

th
 vector of the learning base, j

th
 node of the h

th
 hidden layer. 

o

pk
 Value of the threshold of p

th
 vector of the learning base, k

th
 node of the output hidden layer. 

The process of backpropagation of neural networks can be divided into two phases: input 

introduction and error backpropagation. During this technique, the synaptic weights are invariant. 

At the end of the first iteration, the output vector is compared to the expected vector, and an error 

value is estimated for each output node. This error signal is propagated in the opposite orientation 

from the output layer to the nodes of the adjacent hidden layer; individually the neuron obtains a 

share of this error according to its contribution to the output vector, i.e. according to its weight 

synaptic. This process is repeated each iteration, layer by layer, where the synaptic weights are 

going to be updated until the network converges towards a stable form. 

2.5.6.3 Learning phase 

Learning is supervised, i.e. an input configuration is associated with an output structure.  The 

backpropagation algorithm is employed for network training. This algorithm is an iterative 

gradient designed to minimize the mean square error (MSE) between the obtained output and the 

desired output. This minimization is achieved by an adequate configuration of the weights. The 

error (e) is the difference between the desired value (t) for the output neuron and its value 

estimated by propagation (o). 

2.5.6.4 Entering data 

When the p
th

 example of the learning base is provided to the input layer, the value of the node j of 

the hidden layer is: 

 

1

N
h h h

pj ji i pj

i

net w x 


 
 

(2.15) 

 

The output of this node is: 

ˆ ( )h h h

pj j pjo f net
 

(2.16) 

 

Similarly, the output of node k of the output layer is:  
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1

ˆ
M

o o h o

pk kj pj pk

j

net w o 


 
 

(2.17) 

 

1

ˆ( ) ( )
M

o o o o h o

pk k pk k kj pj pk

j

o f net f w o 


  
 

(2.18) 

 

Where 
h

jf
 and 

o

kf  represent the transfer functions of the 
thj  node of the hidden layer and the 

node k  of the output layer. These functions must be continuous and differentiable. 

2.5.6.5 Error calculation 

The error made between the output vector of the neural network and the desired vector is 

calculated as follows: 

pk pk pkt o  
 

(2.19) 

                 

2 2

1 1

1 1
( )

2 2

M M

p pk pk pk

k k

E t o
 

   
 

(2.20) 

 

 The backpropagation algorithm applies a correction ( )W p  to the synaptic weights, which is 

proportional to the gradient
/ ( )pE W P 

, according to the following equation:  

( 1) ( ) ( ) ( )
( )

pE
W p W p W p W P

W P



    

  
(2.21) 

 

Where 0 1   is a learning parameter. Since the gradient 
/ ( )pE W P 

 is different between the 

nodes of the output layer and the hidden layer, the synaptic weights correction formula will be 

different. 

2.5.7 Modification of synaptic weights linking the output layer 

The total error  pE
 is related to the synaptic weights, related to the hidden layer by the formula: 
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(2.22) 
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The gradient of pE
with respect to synaptic weights related to the hidden layer is: 
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                                                                                                                                                  (2.24) 

We pose the local gradient of the node j of the hidden layer. 
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(2.25) 

 

So 

 

When the transfer function is a sigmoid function of derivative ' (1 )f f f    the local gradient of 

a node of the hidden layer and that of the output layer are written respectively as follows: 

(1 )
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(2.26) 
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(2.27) 

 

It should be noted that the error terms for the hidden units must be calculated before updating the 

synaptic weights of the output units. 

( 1) ( ) ( )h h h h k

ji ji ji ji pj iw p w p w w p x     
 

 
(2.23) 
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This learning or training phase requires a complete understanding of the problem. It is essential 

here to identify the input and output parameters. Once the decision about the network structure is 

made, the learning involves acquiring knowledge, determining the number of hidden layers and 

the number of neurons in each layer. The optimal number of these is determined by trial in order 

to achieve the best performance for the network, see Figure 2.16. 

 

 
Figure 2. 16 Flowchart of Backpropagation (Hecht-Nielsen 1989) [158]. 
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2.5.8 Recognition (test) and validation phase 

Before deploying a neural network with confidence, it is essential to establish the validity of the 

results it produces. This validation process is often conducted in conjunction with the test phase. 

Both testing and validation phases involve evaluating the network's performance on data that was 

not used during the learning phase. 

In the validation phase, the desired solutions and those generated by the neural network are 

compared, either qualitatively or quantitatively using statistical tests. This comparison helps 

assess the network's accuracy and reliability in handling new and unseen data, ensuring that it can 

generalize well beyond the training data. 

By rigorously testing and validating the neural network, researchers and practitioners can ensure 

that it performs effectively and consistently in real-world scenarios, making it a reliable tool for 

various applications 

2.5.8.1 Backpropagation multilayer neural network performance 

The performance of a neural network model can be evaluated using different expressions, 

including: 

 The coefficient of determination R 
2
 (Eq. 1.16) Sum of Squared Error (SSE): 

2

1

( )
N

i i

i

SSE t o
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(2.28) 

 

 Mean Square Error (SSE): 
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1
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(2.29) 

 

it  : Desired output of model i . 

io
: Actual output of model i . 

N  : The total number of data. 

The coefficient of determination R 
2
 represents the proportion of variation of the output value 

which is "explained" by the model, its ideal value is 1. 
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The number of nodes in the hidden layer is not determined a priori. The performance of the 

network is determined using the factor (MSE) for an increasing number of neurons of the hidden 

layer. The number retained corresponds to that which minimizes the quadratic error. 

2.5.8.2 Methodology and implementation 

In this study, a backpropagation multilayer neural network was used because of its widespread 

use and proven track record of performance in model optimization, prediction, and classification. 

Any element of the input data set must have a desired outcome in order to use supervised 

learning. The input layer, one or more hidden layers, and the output layer are the three different 

types of layers that make up the backpropagation multilayer model. In predicting the crack length 

and crack depth for steel pipelines or Gurson model parameters…etc, all the input data is 

represented by the constituents of the API X70 steel (cement, aggregates, water, etc.), the 

numerical parameters and mechanical properties etc. The input layer parameters that are sent to 

the hidden layer are represented by this model. Finally, the hidden layer provides input to the 

output layer. The output of this layer in our first example provides the mechanical characteristics 

of API X70 steel, such as the ultimate stress, yield stress, and absorbed energy, among others. 

Finding the parameters to be employed in the forecasting models is the first stage. There are three 

sections to the data. 15% are utilized for testing, 15% are used for validation, and 70% are used 

for learning. Training, testing, and validation are the three stages of an ANN model 

implementation (Figure 2.17). The goal of the learning or training phase is to select the optimal 

approach to calculate the network connection parameters. In the test phase, the network created 

during the training phase is validated on data not utilized during the latter phase. Additionally, 

the network's capacity to generalize the training examples is assessed (by comparing the actual 

output of the network with desired output). The final portion of the data is subjected to the 

validation process.  

2.5.8.3 Programming language used 

Different neural network simulation programs are available and marketed (Neuron Solutions, 

Brain Maker, Matlab ToolBoxes, Statistica Neural Network, etc.). 
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Figure 2. 17 Main panel of the NETWORK DATA MANAGER application. 

 

The choice of simulator is made on the basis of the advantages and disadvantages of each of 

them. The cost, the flexibility of use, the type of platform and the ergonomics of the interface are 

the main criteria for evaluating each simulator. We have chosen MATLAB 7.5.0 (R2007b) 

software among different programming languages such as Visual Basic, Visual Fortran, Visual 

C++, etc. This software (MATLAB 2007) was developed to be used in an efficient and flexible 

simulation environment for the research and application of ANN, either generally through the 

development of a program or the use of the NETWORK DATA MANAGER application. The 

latter is developed to run on Windows with an easy to use graphical user interface. It is also used 

to create, manipulate, and visualize neural networks on the one hand and import, export data and 

results via these networks on the other hand. For illustration, the main panel of NETWORK 

DATA MANAGER is shown in Figure 2.17. 

We have developed our own models under Matlab for the prediction of different case in our 

study.



Chapter 3.              Qualification of an API 5L X70 steel: Experimental study and numerical 

validation 

 

82 
 

The first step is to declare the matrix of inputs and outputs in the form of an Excel file. The 

normalization of the data (input and output) after processing is necessary so that they take values 

between -1 and 1 to be in agreement with the Tan-Sigmoid transfer function used. 

The learning phase is the second step, and it entails initializing the correlation coefficients of the 

three phases (learning, testing, and validation), as well as the number of neurons per hidden layer 

after testing one hidden layer, two hidden layers, and knowing that we have tested all three 

layers. To do this, we create a loop that increases the number of neurons for the first hidden layer 

by 1 to 20 and for the second layer by the same number. The creation of a new neural network 

(net) which contains normalized inputs and outputs, a certain number of hidden layers and 

neurons per layer, passes through the use of a transfer function corresponding to each layer 

(Tansig : hidden layer; Purelin: output layer), of a Trainlm or Trainbr learning algorithm which 

respectively uses the Levenberg-Marquardt backpropagation and Bayesian Regulation 

backpropagation techniques. 

To train the network, various parameters must be declared, such as the number of cycles during 

learning (iterations; epochs), the frequency of verification of the learning error against the desired 

error (goal), the learning rate (  : mu). You must also declare the division of the data into three 

parts according to the three phases (70% for learning, 15% for testing and 15% for validation). 

The learning cycle means a complete passage through all the neurons. 

After the learning phase, we move on to the simulation of the network using the decomposition 

of the data between test and validation. After running this program, we get two files. The first 

includes training history information and gives statistical measures of network performance, such 

as correlation coefficients and root mean square error for the three phases and for each neural 

network created. The second includes the values of the (synaptic) connection weights and the 

biases between the neurons for each neural network created (it should be noted that we start with 

a network that contains a single hidden layer and a single neuron, and we gradually move to a 

network that contains two hidden layers of 20 neurons each). 

2.5.8.4 Development of ANN models 

This work includes the presentation of the two groups of models which have been developed 

during this work for the modeling of our cases. The first model brings together the data set to 

predict the mechanical properties of API X70 steel using ANN, the second model relates 

respectively to the different optimization codes improved ANN to identification predict the crack 

length and crack depth. 
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2.6     Conclusion 

 

Pipeline and tank damage in the oil industry is a well-known and concerning issue that can have 

significant implications for safety and operational efficiency. This damage is often linked to 

environmental settings and service conditions, where the harsh operating environments can take a 

toll on the integrity of these structures. 

Various types of damage can occur, posing risks to the overall structural integrity. Erosion, 

caused by the abrasive action of fluids, can wear away the surface of pipelines and tanks over 

time. Corrosion, a chemical reaction between the material and its surroundings, can weaken the 

structure and potentially lead to leaks or ruptures. Embrittlement is a phenomenon in which the 

material loses its ductility and becomes more susceptible to fracture, is another critical factor in 

damage. The presence of cracks, notch holes, and complex geometry defects further exacerbates 

the potential risks and compromises the structural strength. These damages can escalate over 

time, posing hazards to the environment, human safety, and operational continuity. 

To address these challenges, constant monitoring, regular maintenance, and the use of advanced 

materials and coatings are essential. Mitigation strategies, along through stringent inspection 

protocols, help to ensure the continued integrity and reliability of pipelines and tanks in the oil 

industry. Proactively addressing these issues, the industry can enhance safety, reduce 

environmental impact, and optimize its operational performance. 

The design of a neural network is determined by the arrangement of interconnected neurons 

within the network. This design can vary from fully connected networks, also known as full 

connection networks, to layered networks, also referred to as one-way networks. In a fully 

connected network, every neuron in one layer is connected to every neuron in the subsequent 

layer. This type of connectivity allows for a high degree of information flow and interaction 

between neurons, but it can also lead to a large number of connections and increased 

computational complexity. 

On the other hand, in a layered network, neurons are organized into distinct layers, and 

connections are primarily unidirectional, flowing from one layer to the next. The input layer 

receives the initial data, and subsequent hidden layers process and transform the information 

before passing it to the output layer. This layered architecture is more structured and efficient, 

particularly for complex tasks, as it allows for the gradual extraction of features and patterns from 

the input data. 

The choice of network design depends on the specific problem being addressed and the 

complexity of the data. Fully connected networks are suitable for tasks where extensive 

interactions between data points are necessary, while layered networks are often preferred for 

tasks involving pattern recognition, classification, and hierarchical data processing. Designing 
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effective neural network architecture is a crucial step in achieving optimal performance for the 

desired task. 

In the forthcoming chapter, our focus shifts to the experimental investigation of API 5L X70 

steel, wherein we emphasize the examination of its chemical composition and mechanical 

properties. The second part of the chapter will introduce a study employing numerical simulation. 

This section is dedicated to validating our model and delving into the impact of various 

parameters of the selected GTN model on the mechanical behavior of the steel. The finite 

element software ABAQUS, along with neural networks, will be employed in this study to 

achieve comprehensive insights into the steel's behavior. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



 

85 
 

 

 

 

 

 

Chapter 3: Prediction of GTN parameters using 

chemical properties 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3.                                        Prediction of GTN parameters using chemical properties 

 

86 
 

3.1   Introduction 

The Gurson–Tvergaard–Needleman damage model (GTN) describes the three stages of ductile 

tearing of steel: nucleation, growth, and coalescence of micro-voids. This chapter is divided into 

two main parts. In the first part, the parameters of the GTN damage model, in conjunction with 

the hardening law, are determined based on inverse analysis and a comparison between 

experimental and numerical data. The identification is broadened to include a considerable 

number of experimental tests drawn from our previous works and other studies conducted at 

ALFAPIPE Ghardaia laboratory. In the second part, an Artificial Neural Network (ANN) model 

is developed to predict the parameters of the GTN model coupled with the hardening law, which 

enables the prediction of traction and impact properties of API X70 steel pipe depending on its 

chemical composition. The weight of the chemical elements in percentages is considered as the 

inputs, and the GTN parameters are considered as the outputs. To validate the obtained 

ANNGTN parameters, traction and impact tests are simulated. 

The numerical results are compared with the experimental ones, revealing that the developed 

model is highly precise and has the potential to capture the interaction of GTN parameters 

coupled with the hardening law and chemical composition of steel pipelines 

 

3.2  GTN Model Constitutive description 

Plastic damage is the process of plastic deformation until fracture. The damage mechanism 

denotes the damage evolution process of the micro-hole formed by the internal inclusions or two-

phase particles of the metal being nucleated, growing up, and converging under the external 

force. In order to describe the mechanism of meso-damage of plastic materials and its evolution 

process, a suitable model should be established as presented in Ref [159]. Gurson [160], based on 

McClintock, Rice, and Tracey [160] , assumed that plastic deformation of the material is mainly

 caused by micro-hole damage. Gurson  [161] did not use the assumption of the infinite matrix 

but proposed a finite matrix with a microporous cell model. Next, Tvergaard and Needleman 

have modified some parameters of the Gurson model, which significantly improved its prediction 

with more accuracy in Ref [162]. The Gurson yield surface function corrected by Tvergaard and 

Needleman as presented in the following formulation: 
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where σeq
 denotes the macroscopic Von Mises equivalent stress; σe  is the yield stress of the base 

metal in the element; σm  is the macroscopic mean stress; ƒ is the pore volume fraction. 1q , 2q , 

3q  are the correction parameters taking into account the micro-hole around the non-uniform 

stress field and the adjacent holes in the middle of the interaction, usually taken equal to 3q = 1q 2
, 

1q =1.5, 2q =1.0, 3q =2.25. 
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In the above formula, 0ƒ is the equivalent pore volume fraction, which explains the gradual 

decrease of the bearing capacity of the material due to the pore polymerization;  ƒc  is the pore 

volume fraction at the time when the hole starts to polymerize;  ƒF  is the broken pore volume 

fraction when the material is destroyed; 
*

1

1
ƒu

q
  is the limit pore volume fraction when the stress-

bearing capacity is zero.  The evolution of void volume fraction, 
*ƒ  , can be considered as a 

combination of existing void growth, 
*ƒgrowth  , and nucleation of new voids, *ƒnucleation

: 

 
*ƒ =

* *ƒ ƒgrowth nucleation
                                                     (3.3)

 

 

Void growth can be written as a function of the rate of plastic volume change, pl

kk : 

 
*ƒ 1( )ƒ l

gro kwth

p

k 
                                                             (3.4)

 

 

Void nucleation is defined in a strain-controlled nucleation function that considers a normal 

distribution for the nucleation strain. Consequently, the void nucleation rate can be written as: 
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Where ƒn  defines the void volume fraction of nucleated voids, n and nS  indicate the mean 

value and standard deviation of the nucleation strain, respectively, 
pl indicates the equivalent 

plastic strain and 
pl defines the equivalent plastic strain rate. Finally, the initial void volume 

fraction 0ƒ  denotes the presence of initial voids and is a measure for the relative density of the 

material.  In this investigation, the GTN damage parameters are considered typical constant 

material as obtained in Ref [163].  

 

3.3  GTN model and hardening parameters identification 

The objective of the first part of this study is to simultaneously identify the Gurson model 

parameters and the hardening law for API X70 steel. Thus, a numerical inverse analysis 

procedure based on the finite element method is used for the modelling see Figure 3. 1. The 

numerical model outputs are coupled with an optimization tool in MATLAB. 

                  
 

 

 

Figure 3. 1 Specimen geometry and finite element model of a notched tensile test. 

(a) (b) (c) 
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 A tensile test on notched specimens is used in this study using API X70 steel. The initial 

shrinkage of these specimens usually occurs at the notch. In Figure 3. 1-a, the experimental 

specimen with the dimensions is shown, and in Figure 3. 1-b and c the simulated model (FE) is 

illustrated.  This model was constructed in the software Abaqus / Explicit with conditions similar 

to the experiment. After obtaining the results, the experimental values are matched with the 

numerical values for a considerable number of tests. An optimum mesh consisting of elements 

C3D8R are used (element with eight nodes of isoparametric type). Mesh refinement is applied at 

the critical region as shown in Figure 3. 1 (c), where the size of element is very important for 

damage analysis (GTN) [164]. In this application, we used 8226 elements in the FE mesh with 

the assumption of quasi-static state.  The steel, API X70, is believed to have isotropic 

elastoplastic behaviour. The elastic model part is the Hooke model with Young's modulus of E  = 

210 GPa with Poisson's ratio of   = 0.3. The density of the material is 7850 kg / m
3
. In the 

plastic stage, the failure criterion of von Mises is used. It is added to the porous plastic part of the 

GTN parameters in the Abaqus / Dynamic Explicit software [165]. Several hardening laws exist 

in the literature to describe the hardening behaviours of metal. In this study, the law adopted in 

this reverse identification procedure is the Ramberg-Osgood law according to the following 

equation: 

  

 

1

( ) n

E H

 
                                                                   (3.6) 

 

       

 Where   is the value of the stress, E  is the modulus of elasticity of the material, H  is the 

material constant and n  is the strain hardening exponent of the material, which can be calculated 

from the known properties of the material. 

 

3.4  Identification strategy 

 

         Identification strategy based on the reverse procedure makes it possible to determine the 

work hardening law and Gurson parameters of the studied API X70 steel. Based on the numerical 

model described above and in order to minimize the difference between the experimental data 

and the numerical values, a program under MATLAB is used for the optimization of the results. 

The optimal GTN parameters are obtained by minimizing the cost function ( Q ) (see Eq. 3.7 ). To 

decrease the number of numerical simulations, we propose a factorial design in the process of 

identification of GTN parameters and we study the numerical output sensitivity by comparison 

with the experimental design. The optimal GTN parameter value is taken at the minimum of the 

cost function value having less than 5 percent (5 %) or close to this value as shown in the Figure 

3. 2. If all values are greater than 5 percent, we go to a new series of parameters proposed in a 
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factorial way. We already suggest less than 5 percent for the acceptable value of cost function to 

ensure the good performance of our simulation, this tool was widely used [166, 167] in the 

characterization under static, dynamic, uniaxial and biaxial stress in metal alloys. The scheme 

and steps of the reverse procedure are shown in Figure 3. 3. 

  
Figure 3. 2 The optimal GTN parameters.  

 

  
Figure 3. 3 Principle of the inverse analysis method used for the identification of parameters. 
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The minimized function is represented by: 
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Where  expiF   (or i numF  ) = (
iF ) and i =1, 2, … N ,  N  is the total number of measured  points in 

the numerical simulations and experimental. 

 

3.5  Procedure for identifying model parameters 

There are different methods for determining the damage parameters, one of which is the method 

of comparison between the experimental results and simulations, see for example some studies in 

which the damage parameters have been determined [168, 169]. In our study, we took two main 

parameters in the model (GTN), which greatly affect the behaviour of a ductile fracture, namely: 

critical void volume ƒc
and nucleation void size ƒn

with the application of the reverse method to 

determine their values. In the first step, by using a tensile test, the parameters of the Ramberg-

Osgood hardening behaviour of direct scheduling are determined using ABAQUS software. 

 

3.6  Results and Discussions 

Figure 3. 4 Shows the displacement versus load for tested notched specimen and that obtained 

from simulation. The comparison is made for the GTN model coupled to the Ramberg-Osgood 

hardening law as presented in Figure 3.4 and Table 3.1. 

We note that the identified GTN parameters are similar to those of the reference [23] and give 

a good approximation for the experimental fracture point. 

The plastic parameters ( H  = 840 MPa and n = 0.04) of hardening and the GTN parameters ( ƒc = 

0.022 and ƒn  = 0.0024) are also used to describe the fracture point “P” (Figure 3. 4). A good 

agreement between the numerical and experimental curves can be seen. 

 The results of the reverse identification used are summarized in Table 3. 1 
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Figure 3. 4 The load vs. displacement numerical and experimental curve in the case of the coupled identification of 

GTN model and Osgood hardening law. 

 

Table 3. 1 Identified GTN and Osgood parameters. 

 The initial values Range of values Identified parameters Ref. [170] 

n  0.02 0.02 to 0.06 0.040 - 

H  650 650 to 980 840 - 

ƒn
 0.0002 0.0002 to 0.008 0.0024 0.005 

 ƒc  
0.018 0.018 to 0.03 0.022 0.02 

Fixed   ƒF
 0.18 - 0.18 0.18 

Cost function 10% - 5.26 % - 

          

 The study is expanded to include a considerable number of experimental tests made at 

ALFAPIPE Ghardaia laboratory to determine GTN parameters and the constants of Ramberg-

Osgood. The results obtained are presented in Table 3. 2. 

. 

P
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Table 3. 2 Identified GTN and Osgood parameters for several tests. 

 Parameters Number of 

experimental 

test data (N) 

Identified parameters STDEVA 

Min Max Mean 

The strain 

hardening 

exponent 

n  71 
0.026 0.059 0.043 0.007 

the 

constants  H for 

the Ramberg-

Osgood 

H  71 
694.989 973.583 828.050 63.807 

nucleation micro-

void volume 

fraction 

ƒn
 71 

0.0002 0.0074 0.0038 

 

0,00233 

 

critical volume 

fraction 
ƒc

 71 
0.019 0.023 0.021 0.001 

void volume 

fraction (Fixed) 
ƒF

 71 
0.18 0.18 0.18 0 

Notation: N is number of cases (tests). STDEVA: Standard Deviation. 

 

3.7  Experimental methodology for the ANNGTN model 

 

       In the standard case, the development of a good and reliable ANN application depends on a 

good selection of training data. In many research works, the design architecture of the 

experimental methodology has been used, for example see Ledoux et al. [171] for the purpose of 

optimizing the process of parameter formation based on this technique. ANN model has been 

developed to predict the parameters of the Gurson-Tvergaard-Needleman Model (GTN) coupled 

with the hardening law that goes through the prediction of tensile and Charpy impact properties 

of a steel of API X70 pipeline depending on its chemical composition. The percentage by weight 

of chemical elements was considered as the inputs and the tensile and impact properties of 

Charpy were considered as the outputs in the first step and the GTN parameters and the 

hardening law parameters in the second step as shown in the Figure 3. 5. 
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Figure 3. 5 ANN development steps to predict GTN parameters and Osgood constants. 

 

       ANNs have been widely used in several research studies to study the correlation between 

numerical input data and target orientations [172]. ANN model was used to predict the tensile 

properties of ferrite-pearlite steels as a function of alloying element and microstructural factor, 

and was developed to prediction of mechanical properties of Sn-9Zn-Cu solder alloys. We try to 

use ANN to study the relationship between GTN parameters and chemical composition. 

Thus, in our study, 80% of the data provided in Table 3.3 is used for training and 20% for 

testing and validation of neural networks for the prediction of mechanical properties and damage 

parameters. In MATLAB [173], the desired inputs and outputs or targets are imported into the 

workspace and the network "nntool" is created using inputs and targets. The ANN model has a 

multi-layered structure, which is connected by nodes with three main layers, namely the input 

layer (14), the hidden layer (s) (8 neurons) and the output layer (step 1 = 8 neurons and step 2 = 4 

neurons) as shown in Figure 3. 6. The mass percentage values of API X70 elements are inputs: 

C, Si, Mn, Cr, Ni, Mo, Al, Co, Cu, Nb, S, P, Ti and V. The output layer (step1) represents the 

Charpy tensile test and impact resistance values: YS, UTS, UTS weld, EL, YT Ratio, CVN (BM-

FZ-HAZ). And in step2, the parameters are: n, H,   ,   .  
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Figure 3. 6 Architecture of Neural Network. 

 

Table 3. 3  Parameters of input data and targets data (1 and 2). 

Variable Symbol N Min Max Mean STDEVA 

Imput 

Carbon (wt.%) C 71 0.025 0.174 0.075 0.025 

Silicon (wt.%) Si 71 0.156 0.450 0.273 0.062 

Manganese (wt.%) Mn 71 0.788 1.920 1.575 0.215 

Chromium (wt.%) Cr 71 0.010 0.250 0.061 0.046 

Nickel (wt.%) Ni 71 0.011 0.400 0.069 0.070 

Molybdenum (wt.%) Mo 71 0.007 0.290 0.071 0.085 

Aluminium (wt.%) Al 71 0.003 0.050 0.034 0.009 

Cobalt (wt.%) Co 71 0.002 0.022 0.005 0.003 

Copper (wt.%) Cu 71 0.006 0.310 0.056 0.063 

Niobium (wt.%) Nb 71 0.010 0.081 0.051 0.015 

Titanium (wt.%) Ti 71 0.001 0.033 0.014 0.008 

Vanadium (wt.%) V 71 0.001 0.087 0.040 0.031 

Sulfur (wt.%) S 71 0.001 0.015 0.008 0.003 

Phosphorus (wt.%) P 71 0.008 0.040 0.020 0.006 
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The chemical composition test input values taken by chemical analysis in laboratory are shown in 

the Table 3. 3. The obtained results with the regression analysis (Figure 3. 7 (a) and (b)) and 

performance analysis (Figure 3. 7 (c)) for the prediction of GTN parameters coupled with the 

work hardening law and the prediction of mechanical properties of API X70 steel as a function of 

chemical composition are shown. 

 

 

 

Output 1 

Yield strength (MPa) YS 71 486.70 555.21 524.64 12.03 

Ultimate tensile strength 

(MPa) 

UTS 71 
592.07 696.96 632.19 24.74 

Ultimate tensile strength 

weld (MPa) 

UTSweld 71 
641.42 761.97 690.14 20.77 

Elongation (%) EL 71 35.86 44.17 40.36 1.46 

Yield to tensile ratio (%) YTRatio 71 72.40 86.42 80.78 2.55 

Charpy strength BM  

(J/cm
2
 ) 

KV (BM) 71 
262.80 372.81 315.79 31.09 

Charpy strength FZ  

(J/cm
2
 ) 

KV (FZ) 71 
129.85 244.34 239.59 56.14 

Charpy strength HAZ 

(J/cm
2
 ) 

KV 

(HAZ) 

71 
140.02 322.58 207.67 24.20 

Output 2 

The strain hardening 

exponent 

n  71 
0.026 0.059 0.043 0.007 

the constants  H for the 

Ramberg-Osgood 

H  71 
694.989 973.583 828.050 63.807 

nucleation micro-void 

volume fraction 

ƒn  71 
0.0002 0.0077 0.0039 0.0017 

critical volume fraction ƒc
 71 0.019 0.023 0.021 0.001 
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a- Regression analysis with Mechanical Properties-

Experimental data output 

 

b- Regression analysis  with GTN parameters and 

(n,H)-Numerical data output 

 

 

c- Performance analysis  with GTN parameters and ( n , H )-Numerical data output 

Figure 3. 7 The results obtained for the prediction of GTN parameters and Osgood constants and mechanical 

properties. 

 

The test input is considered (chemical compositions) to predict different parameters. The 

provided results are plotted in Figure 3. 8. 
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Figure 3. 8 Simulation by FEM versus predicted data (Results: values of each parameter). 

 

 

3.8  Experimental and numerical analyses 

3.8.1 Chemical composition of X70 steels used in this work 

The material of our study is a manganese carbon steel used for the transport of 

hydrocarbons under a service pressure of 70 bars denomination API X70, and meets the 

specification imposed by the API 5L standard. 

 

3.8.1.1 Preparation of the specimen 

From the plate of the base metal we cut a specimen of dimensions L×L=30mm×30mm 

(Figure 3. 9). The specimen is subjected to mechanical polishing with the ribbon in order to 

obtain a smooth surface.  
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Figure 3. 9 Test specimen used for chemical composition. 

3.8.1.2 Presentation of results 

Using a flame spectrometer, the chemical composition of this steel was determined. 

Table 3. 4 represents the chemical composition of the steel used. The composition as it emerges 

from the casting analyzes complies with the requirements of the standard indicated in Table 3. 5. 

 

Table 3. 4 The chemical composition of API 5L X70 steel. 

Elements C Si Mn P S Cr Mo Ni Al 

Steel 

grade API 

X70. 

0,0844 0,374 1,665 0,0131 0,0064 0,0475 0,0068 0,031 0,0393 

 

Co Cu Nb Ti V W B N Fe CE 

0,0098 0,0193 0,0515 0,007 0,0874 0,007 0,0014 0,001 97,4 0,200 

 

 

Table 3. 5 Requirement of chemical composition for grade X70 analysis [27]. 

 C Mn Si Ni Mo S Cu 

Min 0.050 1.000 0.150 - - - - 

Max 0.140 1.700 0.350 0.250 0.250 0.005 0.080 

 

 V Nb Al P 

Min - - 0.010 - 

Max 0.080 0.040 0.040 0.020 
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3.8.1.3 Analysis and interpretation of results 

• From Table 3. 5, we find that API 5L X70 steel has a low carbon content. 

• The low carbon content is necessary to improve the weldability and toughness of the steel. 

• The carbon equivalent (CE) measured is below the maximum value (0.25%) indicated by the 

API standard. This is required to increase solderability. 

• Elements niobium, titanium and vanadium contribute to improved yield strength, 

microhardness, toughness and weldability. 

• The content of alloying elements does not exceed 5%, therefore API 5L X70 steel is a low alloy 

steel. 

3.8.2 HV10 microhardness test 

 The hardness of a material defines the resistance of a surface of the sample to the 

penetration of a punch, for example a hardened steel ball (Brinell hardness) or a diamond 

pyramid (Vickers hardness). If it resists well, it is said to be hard, otherwise it is said to be soft. 

Hardness is measured on different scales depending on the type of material considered. 

For our study, we use the Vickers hardness (see Table 3. 6). 

 

Table 3. 6 Main hardness tests. 

Test Symbol Principle and conduct of the test 

Vicker HV 

 

        
 

  
 

avec 

  
     

 
 

(F en N et      en 

mm) 
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3.8.2.1 Preparation of specimens 

Using the rest of plate 2 (plate which contains the weld bead), we cut out a test specimen of 

dimension 50mm × 30mm (Figure 3. 10). Then, we carried out a mechanical polishing with 

abrasive papers of silicon carbide until obtaining a smooth surface (Figure 3. 11). In order to 

reveal the different zones (base metal, ZAT, weld bead), a chemical attack with a Nital solution 

(4% nitric acid and 96% ethanol) was carried out. 

Finally, the specimen was rinsed with water to stop the effect of etching. 

 

 
Figure 3. 10 Mechanical polishing with abrasive papers.  

 

  
 

Figure 3. 11 Specimen for the microhardness test. 
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3.8.2.2 Performing microhardness tests 

The microhardness measurements were carried out on each zone using a ZWICK No. 

62108 Microhardness tester (Figure 3.12). This machine allows us to obtain Vickers 

microhardness (HV10). The measurement points are distributed as shown in Figure 3.13. 

 

 
 

Figure 3. 12 Microhardness tester used for microhardness measurements (Vickers type). 

The measurement points are distributed as shown in Figure 3.14. 

 

 
Figure 3. 13 The distribution of measuring points for microhardness 

3.8.2.3 Presentation of results 

 The results obtained by making measurements on different zones (see Figure 3.14) are 

summarized in Table 3.7, using the following notations to differentiate between the different 

zones: 
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                           BM: Base Metal. 

                            EW: External Welding. 

                            IW: Interior Welding. 

 

Table 3. 7 The values of microhardness (HV 10) for different measuring points. 

Points/areas BM EW IW 

1 616   

6 612   

3 613   

4 621   

5 198   

6 623   

7  632  

8  667  

9   668 

12   637 

11 195   

16 621   

13 199   

14 617   

15 619   

16 615   

 

 
 

Figure 3. 14 The values of microhardness (HV 10) depending on the measuring position. 
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3.8.2.4 Results and discussions 

      The microhardness value of points 4.MB, 5.MB, 6.MB, 11.MB, 12.MB and 13.MB is 

significantly lower than that of points 1.MB, 2.MB, 3.MB, 14.MB, 15.MB and 16.MB. This 

difference in microhardness value is due to the heating of the zone during the welding passes 

(interior and exterior passes). We can say that this zone becomes the heat affected zone (HAZ) 

with respect to the zone of the base metal (Figure 3. 15). 

 

• Figure 3. 14, exhibits fluctuating microhardness measurements. It shows many high peaks on 

the weld bead area whose values are 230HV, 227HV, 228HV and 237HV which are significantly 

higher than those of the base metal area. 

 

• In addition, it can also be noted that even in the area of the weld bead, the microhardness values 

obtained at points 7. EW and 10.IW are higher than those of 8. EW and 9. IW. This superiority 

can be attributed to the cooling mode, which is relatively fast on the external areas in contact with 

the air compared to the internal areas in the core of the bead.  

 
Figure 3. 15 Microscopic illustration of existing areas on a specimen containing the weld bead. 

 

3.8.3 Experimental Tensile test on a steel pipeline specimen 

 

        The investigation of our study is concerned with manganese carbon steel pipes used for the 

transport of hydrocarbons under a working pressure of 70 bars with the commercial name 

APIX70. The material meets the specification imposed by the standard API 5L [174].  

        In order to determine the load-displacement curves and the mechanical properties of X70 

steel, flat specimens according to French standard NF EN 10002-1 [175] were used. Uniaxial 

tensile tests were carried out on three specimens at room temperature using the Mohr machine 
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(ZAWICK) at the ALFAPIPE laboratory (Figure 3. 16 (a)). The initial material is presented in 

the form of coils  

Of the same casting. The specimens were characterized by the geometrical dimensions shown in 

Figure 3. 16 (b). Tensile tests were carried out by increasing the tensile load applied at the 

specimen‟s extremities. All tests were performed under displacement control.  

     
 

Figure 3. 16 Set up of uniaxial tensile tests with tensile extensometer (a); geometrical dimensions according to EN 

10002-1 standard (b). 

 

        From a tube, we cut a ferrule. Then, we took two plates from this ferrule, one transverse to 

the ferrule, which contains only the base metal, and the other transverse to the weld bead. The 

two plates obtained are illustrated in Figures 3. 17 (c) and 17 (d). From the plates (c) and (d), we 

cut 3 test specimens having 50 mm wide each. The ultimate shape of a tensile test specimen is 

obtained by the milling process (Figure 3. 17 (a) and 17(b)). The rest of the two plates were used 

for the other tests (impact test), see Figure 3. 17 (e). The obtained results for both cases are 

shown in the Tables 3.8 and 3.9. 

 

 

(a) 
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Figure 3. 17 Sample for tensile test  (a, b), Butt joint of API X 70 steel using arc welding (c), Steel plate (d), sample 

for impact test (e). 

 

Table 3. 8 Results of tensile tests for the base metal. 

Test number Width Thickness YS (MPa) UTS (MPa) EL (%) 

1 38.1 13.04 556 670 38 

2 38.3 13.05 560 671 37.7 

3 38.2 13.04 561 666 37 

 

 

Table 3. 9 Results of tensile tests for the weld metal. 

Test number Width Thickness YS (MPa) UTS (MPa) EL (%) 

1 38.4 12.89 645 713 27.32 

2 38.2  12.96 620 714 29.0 

3 38.4 12.95 638 716 29.6 
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3.8.4 Charpy Test 

 

     The mechanical characterizations deduced from the tensile test may be insufficient because 

failure may happen below the yield strength under special conditions rendering the material to a 

brittle state. The impact test is an essential complement to the tensile test. These tests were 

carried out on a Charpy V sheep (see Figure 3. 18), at a temperature of -10 °C. The resilience test 

was carried out on standard CVN 10×10 test specimens, following the geometry proposed 

according to API 5L. The dimensions of the test specimen are given in Figure 3. 19. Nine 

specimens were prepared: three specimens machined from Base Metal (BM), three others were 

taken at the level of the Welded Metal (WM), and the remaining three for the Heat-Affected Zone 

(HAZ), i.e. transition zone.  

 

   

Figure 3. 18 Resilience machine and cooler 

    

 

 

Figure 3. 19 Standardized test piece of the impact test 

 

       The variation in fracture energy, i.e. absorbed energy by the specimen, in the three zones is 

very large and the experimental results of the impact tests at different positions (BM-HAZ-WM) 

for API X 70 steel are presented in Table 3. 10. It is possible to notice that the energies of the test 
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specimens with welding are low compared to the material test specimens, which represents the 

effect of the welding.  

Table 3. 10 Macro-characteristics of Charpy specimens cut from X70 pipe steel tested for different impact position. 

Base metal  Welding Zone transition 

Energy 

(J) 

J/cm² Average 

(J/cm
2
) 

Energy 

(J) 

J/cm² Average 

(J/cm
2
) 

Energy 

(J) 

J/cm² Average 

(J/cm
2
) 

231.8 289.8 

286.1 

205.8 257.2 

210 

205.6 257.0 

234.7 237.8 297.3 152.6 190.8 176.6 220.7 

216.8 271.0 161.8 202.2 181.0 226.3 

 

3.9  Finite Element Modelling  

 

       According to the results obtained by ANN, the parameters of Ramberg-Osgood and other 

parameters of the model of damage GTN are related to the reinforcement of the material of the 

matrix, taking as 1q = 1, 5; 2q = 1.0 and    = 2.25. The mean equivalent plastic strain and the 

standard deviation of the nucleation strain are n = 0.3 and ns = 0.1, respectively. The load-

displacement curve evaluated by FEM is compared with that obtained by experimental tests. 

Finally, the comparison between the experimental values and those obtained by simulation based 

on ANN-GTN parameters is presented in Table 3.11. 

 

 

Table 3. 11 ANN-GTN model parameters. 

ANN-input 

 C Si Mn Cr Ni Mo Al Co Cu Nb Ti V S P 

MB 0.125 0.270 1.680 0.051 0.040 0.021 0.038 0.004 0.045 0.033 0.003 0.084 

 

0.005 0.012 

WM 0.06 0.41 1.24 0.032 0.56 0.008 0.003 0.046 0.027 0.003 0.032 0.013 0.010 0.007 

ANN-Output 

n  H  ƒn  ƒc  

0.043 837.69 0.0024 0.0214 

0.05 869.4 0.0002 0.022 
 

 

        Finite element analysis of tensile test base metal and weld metal is performed using 

ABAQUS software. The tensile test and Charpy impact are modelled as deformable bodies. A 3D 

solid finite element model was implemented to reproduce the laboratory scale Charpy V-Notch 

experiment (CVN). The ABAQUS/Explicit solver permitted the application of the GTN damage 

model for the simulation of dynamic propagation of fractures. For this purpose, the model called 

"porous metal plasticity" was used.  The geo metry was created based on the standard dimensions 
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of the specimen, as stated previously. In each model, the mesh was created using 8-node linear 

brick elements with reduced integration. The mesh size is of significant importance when the 

GTN damage model is implemented. In this study, an element size of 0.2 mm was used. The 

condition of zero penetration between the hammer and the test specimen has been implemented. 

In addition, friction has been taken into account using a penalty function with a coefficient of 

friction equal to 0.1. Due to the impact load in the CVN, the acceleration and, as consequence, 

force measurements can show pronounced oscillations. Therefore, the velocity data was extracted 

and derived to obtain acceleration and force data. This method reduced the presence of 

oscillations and made it possible to construct the force-displacement curves for each respective 

simulation. The Charpy Impactor is modelled as discrete rigid body in the simulation.  

    

          The proposed model is constrained on one side as follows: U1 = U2 = U3 = UR1 = UR2 = 

UR3 = 0, and on the second side it is allowed to move in the direction of (Y), see Figures 3.20 (a) 

and (b). In Figure 3.10 (c), macrograph of the weld zone is shown, from which we take a 

reference length of the properties of the weld zone in the finite element model. In this study and 

in the simulations of ABAQUS program, we consider the HAZ region as part of the weld region. 

From the experimental data, the weight of the impactor is 19.8 kg and its speed is 5.5 m/s in the Y 

direction only with the two ends of the part being fixed (Figures 3.21 (a) and (b)) 

  
Figure 3. 20 Tensile test modelling with boundary conditions: (a) Base metal and (b) Welded metal. 

 

 

          
Figure 3. 21 Impact test modelling with boundary conditions: (a) Base metal and (b) Welded metal. 

 

(a) 
(b) 

(a) 
(b) 
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Figure 3. 22 FE model of tensile test specimens: (a) Base metal and (b) Welded metal. 

 
Figure 3. 23 FE model of impact test specimens: (a) Base metal and (b) Welded metal. 

 

 

       The mesh patterns of the base metal and welded metal traction and Charpy samples are 

shown in Figures 3.22 (a) and (b) and Figure 3.23 (a) and (b), respectively. The mesh element 

type for both tests is a hexagonal element shape, i.e. a C3D8R element type. 

 

3.10  Results and discussion 

        The results of the experimental uniaxial tensile test and FE analysis are shown in Figure 

3.24. At the centre of the tensile test specimen, the necking behaviour with successive shrinkage 

and fracture of the metal in the experiment is illustrated in Figures 3.24 (a) and (c) and in the FE 

analysis is shown in Figures 3.24 (b) and (d), respectively. 

 

    
 

(a) (b) (c) (d) 

Figure 3. 24 The tensile test from experiment and FE analysis (a and b – necking, and c and d – fracture). 

(a) (b) 

(a) 
(b) 
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Figure 3. 25 Impact test in experiment and FE analysis. 

 

 

 

Figure 3. 26 Comparison of weld metal impact test between experimental and FE analysis. 

 

         The experimental fracture area indicates a ductile failure mode and that the fracture is 

identical to the FE analysis as shown in Figure 3.25. In addition, the narrowing and fracture 

location of the weld metal sample from an experimental analysis and FE is shown in Figure 3.26. 

Experimental analysis and FE show good agreement for weld metal describing failure behaviour. 

The engineering stress versus engineering strain curves from the experimental and FE analyses 

are shown in Figure 3.27. 
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Figure 3. 27 Engineering stress versus engineering strain plot for base metal and weld metal. 

  

         The fractured specimens base metal and weld metal also exhibit a ductile type fracture. 

Figure 3.28 shows the graphical representation of the energy displacement graph obtained by the 

base metal and weld bead impact test simulation. 

 

 
Figure 3. 28 Energy–Displacement graph (simulation-impact energy). 

 

        The graphical representation in Figure 3.28 shows on the X axis in terms of displacement 

(mm) and on the Y axis in terms of impact energy absorbed by the base metal and weld seam 

(J/cm²). The experimental load displacement curve and the corresponding numerical prediction 
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for the tests are shown in Figure 3.29. By comparing FE and experimental results, one may 

notice that a good correlation with the experimental data is obtained. 

 

 
 

 

Figure 3. 29 Experimental and numerical force-displacement curves for the CVN experiment. 

 

 

         From Table 3.12, we can see a comparison between the experimental results and the ANN 

prediction of the mechanical properties of API X70 steel.  In addition, the simulation results 

obtained from ABAQUS based on the values of the original parameters of prediction ANNGTN 

torque with the law of hardening are also given in Table 3.12. 

 

Table 3. 12 Comparison of mechanical properties for the three different sources. 

 

Results Experimental 
Prediction 

ANN 
Error (%) 

simulation based 

on ANNGTN 

parameters 

Error (%) 

Yield strength (MPa) YS 559 526 5.90 545 2.50 

Ultimate tensile 

strength (MPa) 

UTS 669 628 6.13 663 0.90 

Ultimate tensile 

strength (MPa) 

UTSw 714 643 9.94 650 8.96 

Elongation (%) EL 37.5 39.51 5.09 33 12 

Yield to tensile ratio 

(%) 

YTR 84 88 4.76 80 4.76 

Charpy strength BM 

(J/cm2 ) 

KV 

(BM) 

286.1 317 9.75 302 5.56 

Charpy strength FZ 

(J/cm2 ) 

KV 

(FZ) 

210 180 14.29 191 9.01 
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o Effect of specimen at different temperatures 

Several impact tests were performed at different temperatures and the specimens were cooled 

using a special type of cooler designed to provide cooling temperatures down to -60 ° C.  

These tests are carried out on a Charpy machine. We have carried out tests [-20 C; +20 C] at the 

ALFAPIPE mechanical test laboratory, in accordance with API 5L X70.  

The dimensions of the test piece are given in Figure 3.19, the resilience test was carried out on 

standard CVN 10 * 10 test specimens, the geometry of which according to API 5L. 

From Table 3.13, it is shown that as the temperatures of the specimen have high values, the 

corresponding impact energy required for failure increases rapidly due to the steel being moved 

to the ductile zone. At high temperatures, while at low temperatures, steel behaves like a brittle 

material, which requires quite a bit of energy to fracture. 

Table 3. 13 Macro-characteristics of Charpy specimens cut from X70 pipe steel tested for impact testing. 

 

 

The assigned physical material properties are shown in Table 3.14. Current stress and Charpy 

impact models are subjected to plastic strain, therefore plasticity material properties at different 

temperatures (-20, -10.0 and 20 ° C) for base metal are assigned using tensile test result data as 

shown in Figure 3.30. 

t, 
o
C 

Energy (J/cm²) Energy (J/cm²) 

Test 1 Test 2 Test 3 Average (1,2,3) 

Base metal 

(BM) 

 

          20   

 

262.8 254.1 266.5 261.13 

0 248 242 238 242.67 

-10 216 210 210 212 

-20 206 205 203 204.67 
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Figure 3. 30 True stress versus True strain at different temperatures. 

 

The thermophysical properties of API 5L X70 steel using for this simulation is shown in Table 

3.14. 

Table 3. 14 Thermophysical properties of API grade X70 steel [176]. 

Material Conductivity(W / 

m° C) 

Specific heat (J / 

Kg ° C) 

Thermal 

expansion (u m 

/m° C) 

API X70 52 420 8.5 

 

The finite element analysis of the impact test specimen was performed using a mesh size of 0.2 

mm around the notch area. The simulation parameters at different temperatures of (-20, -10.0 and 

20 ° C) are shown in Table 3.15.  

The GTN damage model parameters are: 
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Table 3. 15 GTN parameters used in the simulations. 

Temperature Parameters q1 q2 
n  

fn fc Parameters q1 q2 
n  

fn fc 

Step1:20 °C; 

Step2:0 °C; 

Step3: -10 °C; 

Step4: -20 °C. 

1 1.5 1 0.3 0.012 0.0002 39 1.43 0.95 0.5 0.02 0.0042 

2 1.47 1 0.3 0.012 0.0002 40 1.5 0.95 0.5 0.02 0.0042 

 

3 1.43 1 0.3 0.012 0.0002 41 1.47 0.95 0.5 0.02 0.0042 

4 1.4 1 0.3 0.012 0.0002 42 1.4 0.95 0.5 0.02 0.0042 

5 1.5 0.975 0.3 0.012 0.0002 43 1.43 1 0.5 0.02 0.0042 

6 1.5 0.95 0.3 0.012 0.0002 44 1.43 0.975 0.5 0.02 0.0042 

7 1.5 0.925 0.3 0.012 0.0002 45 1.43 0.925 0.5 0.02 0.0042 

8 1.5 1 0.4 0.012 0.0002 46 1.43 0.95 0.3 0.02 0.0042 

9 1.5 1 0.5 0.012 0.0002 47 1.43 0.95 0.4 0.02 0.0042 

10 1.5 1 0.7 0.012 0.0002 48 1.43 0.95 0.7 0.02 0.0042 

11 1.5 1 0.3 0.016 0.0002 49 1.43 0.95 0.5 0.012 0.0042 

12 1.5 1 0.3 0.02 0.0002 50 1.43 0.95 0.5 0.016 0.0042 

13 1.5 1 0.3 0.024 0.0002 51 1.43 0.95 0.5 0.024 0.0042 

14 1.5 1 0.3 0.028 0.0002 52 1.43 0.95 0.5 0.028 0.0042 

15 1.5 1 0.3 0.012 0.0022 53 1.43 0.95 0.5 0.02 0.0002 

16 1.5 1 0.3 0.012 0.0042 54 1.43 0.95 0.5 0.02 0.0022 

17 1.5 1 0.3 0.012 0.005 55 1.43 0.95 0.5 0.02 0.005 

18 1.5 1 0.3 0.012 0.0062 56 1.43 0.95 0.5 0.02 0.0062 

19 1.5 1 0.3 0.012 0.008 57 1.43 0.95 0.5 0.02 0.008 

20 1.47 0.975 0.4 0.016 0.0022 58 1.4 0.925 0.7 0.024 0.005 

21 1.5 0.975 0.4 0.016 0.0022 59 1.5 0.925 0.7 0.024 0.005 

22 1.43 0.975 0.4 0.016 0.0022 60 1.47 0.925 0.7 0.024 0.005 

23 1.4 0.975 0.4 0.016 0.0022 61 1.43 0.925 0.7 0.024 0.005 

24 1.47 1 0.4 0.016 0.0022 62 1.4 1 0.7 0.024 0.005 

25 1.47 0.95 0.4 0.016 0.0022 63 1.4 0.975 0.7 0.024 0.005 

26 1.47 0.925 0.4 0.016 0.0022 64 1.4 0.95 0.7 0.024 0.005 

27 1.47 0.975 0.3 0.016 0.0022 65 1.4 0.925 0.3 0.024 0.005 

28 1.47 0.975 0.5 0.016 0.0022 66 1.4 0.925 0.4 0.024 0.005 

29 1.47 0.975 0.7 0.016 0.0022 67 1.4 0.925 0.5 0.024 0.005 

30 1.47 0.975 0.4 0.012 0.0022 68 1.4 0.925 0.7 0.012 0.005 

31 1.47 0.975 0.4 0.02 0.0022 69 1.4 0.925 0.7 0.016 0.005 

32 1.47 0.975 0.4 0.024 0.0022 70 1.4 0.925 0.7 0.02 0.005 

33 1.47 0.975 0.4 0.028 0.0022 71 1.4 0.925 0.7 0.028 0.005 

34 1.47 0.975 0.4 0.016 0.0002 72 1.4 0.925 0.7 0.024 0.0002 

35 1.47 0.975 0.4 0.016 0.0042 73 1.4 0.925 0.7 0.024 0.0022 

36 1.47 0.975 0.4 0.016 0.005 74 1.4 0.925 0.7 0.024 0.0042 

37 1.47 0.975 0.4 0.016 0.0062 75 1.4 0.925 0.7 0.024 0.0062 

38 1.47 0.975 0.4 0.016 0.008 76 1.4 0.925 0.7 0.024 0.008 
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 Results  

 

Simulated Load-displacement/time curve  

 

Typical load Vs displacement/time curve obtained from the FEM simulation is shown in Figure 

3.31.  Similar to the analysis of the experimental results, the load-displacement curve is divided 

into three parts: I-before the general yield point, II-between the general yield point and the peak 

point, and III-after the maximum point till the final fracture. All three points are marked in 

Figure 3.31. 

 

Figure 3. 31 The simulated load-displacement curve for Impact testing-X70. 

It can be seen in Figure 3.31 that the load increases linearly with the displacement in Part I. 

between the general yield point and the peak point the material starts to be deformed plastically. 

In Part III, the crack propagates and the load decreases to end of impact and the final separation is 

observed. All results at different temperatures and GTN parameters values of FEM simulated 

load values are summarized in Table 3.16. 



Chapter 3.                                        Prediction of GTN parameters using chemical properties 

 

118 
 

Table 3. 16 Summary of experiment and FEM simulation results for the impact specimen. 

Material 

Specimen 

Temperature 
Experiment FEM simulation 

general yield 

Min-Max 

(KN) 

peak load 

Min-Max 

(KN) 

general yield 

Min-Max 

(KN) 

peak load 

Min-Max 

(KN) 

Group1 20 °C 17.78 18.65 19.05 19.98 14.07 15.15 15.01 24.22 

Group2 0 °C 16.66 17.36 17.85 18.6 14.72 15.67 15.53 25.33 

Group3 -10 °C 14.7 15.12 15.75 16.2 15.64 16.11 15.96 26.92 

Group4 -20 °C 14.21 14.42 15.225 15.45 15.85 16.37 16.23 27.28 
 

Figure 3.32 shows examples of the effect of the value of GTN parameters on the resulting 

fracture surface for Charpy specimen, and Figure 3.33 shows the simulated impact test and the 

experimentally tested one.  

Two faces fracture area can be observed in both pictures. 

Max Parameter Value Min Parameter Value 

q1 

  

q2 

  

   

  

fn 

  

fc 
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Figure 3. 32 Examples of the effect of GTN parameters on the resulting fracture surface. 

  

 
 

 

(a) (b) 

Figure 3. 33 The fractured impact specimen: tested specimen (a); Simulated specimen 

(b). 

 

3.11  Predicting and analyzing of initiation and maximum impact 

loading 

3.11.1 Artificial neural network (ANN) 

The fractures simulation by GTN model in Abaqus software provides detailed information and 

data of the load fracture initiation and propagation in a ductile impact testing specimen. In this 

case, the development of ANN application depends on a good selection of training data. In this 

work, ANN model has been developed to predict the initial and maximum values of loading in 

impact test at different temperatures. The percentages by weight of GTN parameters were 

considered as the inputs and the initial and maximum loads were considered as the outputs as 

shown in Figure 3.34. 
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Figure 3. 34 Architecture of Neural Network. 

 

ANNs have been widely used in several research studies to investigate the correlation between 

numerical input data elements and target orientation in Refs [177, 178]. We try to use ANN to 

study the relationship and the sensitivity between the GTN parameters and the initial and 

maximum loads for the specimen fracture. 

Thus, in our study, the 80% of the data provided in Table 4.16 is used for training and 20% for 

testing and validation of neural networks for the prediction of initial and maximum load at 

different temperatures. In MATLAB, the desired inputs and outputs or targets are imported into 

the workspace and the network "nntool" is created using inputs and targets. The ANN model has 

a multi-layered structure, which is connected by nodes with three main layers, namely the input 

layer (6), the hidden layer (s) (12 neurons) and the output layer (2 neurons) as shown in Figure 

3.34. The mass percentage values of API X70 steel elements are inputs: q1, q2,   , fn, fc, and 

T(°C). The output layer represents the initial and maximum load values:          and         .
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3.11.2 Results and discussion 

The obtained results with the regression analysis (see Figure 3.35 (a)) and performance analysis 

(see Figure 3.35 (b)) for the prediction of the initial and maximum load values in impact testing 

at different temperatures of API X70 steel as a function of GTN model parameters are provided 

using ANN. 

 

a- Regression analysis 

 

b- Performance analysis 

Figure 3. 35 The results obtained for the prediction of initial and maximum loads.
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The test input is considered (GTN model parameters) to predict different values of load (initial 

and maximum) and at different temperatures. The provided results are plotted in Figures. 3. 36 

and 3.37.  

 

 

Figure 3. 36 The initial and maximum loads with number of parameters GTN model (min and max values). 

 

Figure 3. 37 The maximum loads at different temperatures and max GTN parameters values of impact testing. 

 

3.12  Conclusion 

 

         An artificial neural network model was developed in this work to predict the parameters of 

the GTN damage model and the constants of the Ramberg-Osgood hardening law of API X70 

steel pipelines. Based on the data obtained, the following conclusions can be drawn:
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 Despite the high number of parameters and simulations, the approach applied in this 

study allows to determine the parameters with minimal errors and good accuracy using a 

reverse identification procedure. 

 

 The minimum difference between the numerical results in the case of coupled 

identification allows the identification to be broadened to include a considerable number 

of experimental tests from the previous results obtained at the ALFAPIPE Ghardaia 

laboratory. 

 

 Subsequently, the identified GTN parameters are used to develop an ANN model to 

predict two principal parameters of the GTN damage model, namely ƒn
 and ƒc

, coupled 

with hardening law. 

 

 The developed model offers the basic metal chemical composition API X70 as an input 

because it directly influences the mechanical properties of this steel. 

 

 The results obtained by the ANNGTN were used in the numerical model of the tensile 

test and of the Charpy test. After that the numerical load-displacement curve was 

compared with the experimental results and provided good results. 

 

 It can be said that the ANN has been used successfully to facilitate the prediction of GTN 

parameters and mechanical properties of steel, thanks to the good compatibility of the 

experimental and numerical analyses. 

 

 The developed model has a great capacity to make the prediction of the results before 

making mechanical tests and determines the variation in mechanical properties by the 

simulation according to the chemical compositions of steel. 

 

An Artificial Neural Network model was developed in this work to predict the initial and 

maximum loads and to analyze the GTN damage parameters at different temperatures for 

dynamic fracture propagation in X70 steel pipeline. Based on the data obtained, the following 

conclusions can be drawn: 

 The calibration of certain parameters requires data and experimental tests and therefore 

the result of this calibration depends on the latter, which varies according to the condition 

of the tests. So in this work we try to predict and analyze the influences of number GTN 

parameters on the initial and maximum load and in a temperature range in the Charpy 
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 From the results, we can say that each GTN model parameter influences the final results 

by different percentages and this allows taking the sensitivity of the parameters into 

consideration in the calibration part. 

 

 Use of the damage model exists in many studies and researches, but the values of the 

GTN parameters in the calibration of the models are not fixed and equal to them. 

Therefore, our study goes through the study of the sensitivity of the initial and maximum 

loads in the test of the impact according to the changes of the values of the parameters of 

the model GTN and in a limited temperature interval. 

 

 The developed model has a great capacity to make the prediction of the results before 

making calibration and determines the variation between different parameters by the 

simulation according to the mechanical properties of X70 Steel. 

The forthcoming chapter presents crack identification through static analysis using ANNs 

enhanced with various optimization algorithms. 
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4.1  Introduction 

  

Intelligent systems have recently gained recognition for their ability to solve extremely 

complicated and multidimensional problems. Artificial Neural Networks (ANN) has achieved 

considerable success in overcoming such challenges, but they do have some limitations. In this 

chapter, we delve into the application of the WOA-ANN hybrid model for predicting crack length 

based on various input values, such as strains, stresses, and displacements, to assess the accuracy 

of this presented technique. 

 

The proposed technique is compared with other approaches, including GA-ANN, AOA-ANN, 

and WOABAT-ANN. By coupling metaheuristic optimization algorithms with ANN, the aim is 

to enhance its efficiency. The connectivity between neurons carries some weight, and neurons are 

also associated with biases. These connection weights and biases are adjusted to minimize the 

error function based on the input values and corresponding target output values provided, a 

process commonly known as Back Propagation (BP). 

 

The investigated approach is relevant to real engineering applications and involves controlling 

the state of structures. Standard ASTM test specimens are selected to study the evolution of 

fracture mechanics parameters. Subsequently, an analytical model is developed by simulating the 

tests using the Finite Element Method (FEM) and validated with experimental results. FEM is 

utilized to analyze the tensile failure process of one-sided notch samples with the mesoscopic 

GTN damage model and to extract the data required for WOA-ANN. Once the database is 

collected, our model is ready to predict different scenarios. 

 

The obtained results using WOA-ANN demonstrate higher efficiency compared to other 

techniques. 

 

4.2  Experimental crack identification of API X70 steel pipeline using Improved 

Artificial Neural Networks based on Whale Optimization Algorithm 

 

4.2.1 Numerical models 

 

        The FE analysis of the tensile test of base metal is improved using ABAQUS software. A 

3D solid FE model was implemented in order to reproduce the fracture tensile experiment on a 

laboratory scale. ABAQUS explicit solver allowed the application of the GTN damage model for 

the simulation of dynamic crack propagation. For this purpose, a model called “porous metal 

plasticity” is used.  
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The geometry was created based on the standard dimensions of the specimen (ASTM). In each 

model, the mesh was created using an eight nodes linear brick (C3D8R).  

The accuracy of the numerical calculation is strongly linked to the quality of the mesh around the 

crack structure.  The mesh size has more significant importance when the GTN damage model is 

used. In this study, approximate element size is 0.2. Using the data from the results of the 

previous uniaxial tensile tests, we have implemented the materials plasticity properties. The 

boundary conditions in the numerical model are fixed in the bottom end including all degree of 

freedom (DOF). Next, another side at the top of the model is allowed to move only in the 

direction of the load in the y-axis, as shown in Figure 4. 1. 

 

   

Figure 4. 1 Boundary conditions for the modeled tensile test specimens of base metal.

In this section, the numerical simulation is performed to be used for the simulation of different 

crack lengths in the critical zone, the refinement mesh is considered where the high-stress 

concentration is expected, in particular at the interface as indicated in Figure 4. 2-a. The 

dimensions of the specimen are presented in Figure 4. 2-b.  
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(a) (b) 

Figure 4. 2 a- Mesh refinement in the critical zone b-The geometry. 

 

4.2.2 Load-displacement simulation curve  

Based on the experimental results, the obtained load-displacement curve from the FEM 

simulation in ABAQUS is plotted in Figure 4. 3. Three regions are considered in this curve: I-

before the yield point, II-between the yield point and the ultimate point, and III-after the 

maximum point till the final fracture. All points P1, P2, P3, and P4, are represented in Figure 4. 

3.
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Figure 4. 3 Load-displacement simulation curve of single edge crack of API X70. 

In Figure 4. 3, Firstly, a region I that the load increases linearly with the displacement to the 

yield point P1, the material API X70 steel deformed plastically.  Secondly, in region II, between 

P1 and P2, the load with the displacement continuously increases. Thirdly, in region III, the 

necking is observed and represented by the specimen area reduced to the final separation is 

observed at P4.  Crack behavior is presented based on experimental analysis using a camera at 

different times see Figure 4. 4-a. A good agreement of the specimen geometries predicted in the 

simulation based on stress contours is presented in Figure 4. 4-b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXP 

 
(a) 

 

 

 

 

 

FEM 
 

(b) 

Figure 4. 4 Fracture process of API X70 steel during the test: Experiment (a) and FEM simulation (b). 

 



Chapter 4.                   Identification of a Single Crack length in API X 70 steel Using Stress, Strain 

and Displacement 

 

130 
 

4.3  Experimental tensile test of pipeline steel  

 

4.3.1 The tensile test of a specimen without crack  

The material of our study is a manganese carbon steel used for the transport of hydrocarbons 

under a working pressure of 70 bars with the name API X70. In order to determine the load-

deformation curves and the mechanical properties of API X70 steel, flat specimens according to 

standard NF EN 10002-1 [70]  were used under simple traction at room temperature in the tensile 

testing machine (ZwickRoell) at ALFAPIPE (Algerian manufacturing pipes laboratory) see 

Figure 4. 5. The initial material is presented in coils of the same casting. The thickness of the test 

specimens and the geometrical dimension of all the specimens are shown in Figure 4. 5.

 

 
Figure 4. 5 Test specimen with a tensile extensometer in the tensile testing machine. 

 

The experimental results for the tensile tests 1, 2, and 3 give the evolution of the stress according 

to the strain of the material as shown in Figure 4. 6. The general appearance of these curves 

shows ductile behaviour. Table 4. 1 shows the mechanical properties of API X70 pipeline steel, 

which can be used for numerical simulation, with E Young's modulus, ν the Poisson's ratio, YS 

the yield strength according to the standard, UTS is the ultimate tensile strength, EL% is the 

elongation at break, and k and n are the parameters of Hollomon. 
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Table 4. 1 Mechanical properties of API X70 steel. 

E (MPa) 

 

 

ν Yield strength 

YS 

(MPa) 

Ultimate 

tensile 

strength UTS 

(MPa) 

Elongation 

EL 

% 

k n 

 

2.12*10
5
 0.3 558 672 38 850 0.095 

 

 

The tensile tests were carried out using a Zwick/Roell materials testing machine type tensile 

machine, which is directly connected with a computerized system for the acquisition of 

experimental data. 

  

 

Figure 4. 6  Stress-strain diagrams of API X70 pipeline steel. 

           

Comparison between experimental and numerical results using the GTN model are shown in Table 4. 2. 

Table 4. 2 Comparison between the experimental and numerical results of the tensile test. 

 YS (MPa) UTS(MPa) (ΔL)u (mm) εu (-) 

Experimental (average between 

tests 1,2, and 3) 

558 

 
671 7.62 0.15 

Simulation (GTN model) 547 659 6.75 0.135 
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4.3.2 The tensile test of a specimen with cracks  

In this section, different crack lengths are considered; L = 4, 7, and 10 mm. Two specimens are 

tested for each crack length for highly accurate results. To realize the test specimens, we have 

extracted a sufficient plate that we have cut from the pipe. Next, a plate is taken from this sample, 

one transverse to the shell, which contains only the base metal, see Figure 4. 7-b. The obtained 

plate is illustrated in Figure 4. 7-c.  

 

  

 
 

(a) (b) (c) 

Figure 4. 7  A part of pipe (a), Removal of the transverse base metal (b), and Plate "1" completely from base metal 

(c). 

 

To produce the specimens, a mechanical saw was used in order to cut the plate into two parts 

sufficient for the production of two specimens per plate. After cutting the plate, the specimens are 

manufactured by the milling process to obtain the specimens standard dimensions, see Figure 4. 

8. 

 

 
Figure 4. 8  Specimens used for tensile testing.
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Next, different crack lengths with 4, 7, and 10 mm, are illustrated in Figure 4. 9.   

 

 
 

Figure 4. 9  Test specimens carried out for tensile tests according to different crack lengths. 

 

The mechanical properties of a test specimen with three different crack lengths (l=4 mm,7 mm, 

and 10 mm) from the experimental analysis and FEM results are presented in Table 4. 3. 

Table 4. 3 Comparison between experimental and FEA stress results for different crack length. 

 

 

 

The obtained results in Table 4. 3 are more effective, the error percentage between the 

experimental and FEM is less than 3.5% for test specimens with notches. Therefore, to better 

Yield Stress YS (Mpa) Maximum Stress MS (Mpa) 

 Experimental 

Average  (test 1-2) 
FEM % Error 

Experimental 

Average  (test 1-2) 
FEM % Error 

L=4mm 540 548 1.46 614 612 0.33 

L=7mm 505.5 514 1.55 574.5 563 2.00 

L=10mm 446 464 3.28 507 497 1.63 
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predict the crack length using WOA-ANN, more data are collected from FEM for different crack 

lengths after validation. 

4.4  Improved Artificial Neural Network for crack prediction using WOA 

Once an ANN is adequately trained, it can be used as a black-box model to link complex input 

and output datasets. Weights and biases connect the neurons together. The input layer, hidden 

layer, and output layer are the three layers of an ANN network. The hidden and output layers 

contain all neurons, while the input layer is devoid of them. Figure 4. 10 illustrates a typical 

ANN model. 

 

 

 
Figure 4. 10 A typical ANN architecture. 

 

wij is the weights of neuron connection between i
th

 input node and j
th

 neuron in the hidden layers. 

bj represents the bias associated with j
th

 neuron in the hidden layer.  wj is the weights of neuron 

connection between j
th

 neuron in a hidden and single neuron in the output layers. b1 represents 

bias associated with the single neuron in output layer neuron. Indices i = 1, 2, …, m and j = 1, 2, 

…, n is input features and hidden layer neurons respectively. The total number of parameters 

used in the network is n*(m + 2) + 1. Following the creation of the ANN model's structure, 

training with known input and output sets is carried out to determine the optimum weights and 

biases of the neurons. Various strategies are typically used to determine the optimum weights and 

biases for the ANN. In this study, MATLAB was used to perform optimum network training 

using WOA. Whales are creatures of fancy. They are considered as the world's largest mammals. 

Up to 30 m long and 180 tons‟ weight, an adult whale can grow. The remarkable thing about 

whales is that they are viewed with emotion as highly intelligent creatures. The location of prey 
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can be recognized and encircled by humpback whales. The optimal design location in the search 

space is not known in advance. WOA assumes that the target prey is close to the optimum and is 

the current best candidate solution. Other search agents will then try to update their positions to 

the best search agent when it is identified. The following equations represent this behaviour:  

 

 

   *D C X t X t                                                       (4.1) 

    *1X t X t A D                                                           (4.2) 

where, the latest iteration is defined by t , coefficient vectors are Aand C , X  position vector, and 

*X  is a position vector of the best solution obtained so far. 

Aand C  can be calculated using the following formulations:  

 2A a r a                                                                 (4.3) 

 2C r                                                                       (4.4) 

Then, a spiral equation is created to approximate the helix-shaped movement of humpback 

whales between the location of Whale and prey as presented in the following formulation: 

      *1 cos 2blX t D e l X t      (4.5) 

where    *D X t X t    

 ,X Y : Whale located. 

 * *,X Y : Prey located.  

Humpback whales swim within a decreasing circle around the prey and along a spiral-shaped 

direction at the same time. Furthermore, to model this concurrent behaviour, we expect that there 

is 50 % chance of choosing between either the shrinking encircling process or the spiral model to 

adjust the location of whales through optimization. The mathematical model is given as follows: 

  
 

   

*

*

0.5
1

cos 2 0.5bl

X t A D if p
X t

D e l X t if p

   
  

    

                                  (4.6) 

where p is a random number in [0,1]. For more details, the author may refer to Ref. [179]. 
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The mathematical model is expressed as: 

   randD C X X                                                            (4.7)

 

   1   randX t X t A D                                                      (4.8) 

Where randX  is a random position vector (a random whale) chosen from the current population. 

More details about this algorithm can be found in Ref [179].  

The objective function used to minimize root-mean-square error (RMSE) of the network, 

which is described in the following formulation:  

RMSE= √
∑        

  
   

  
                                                     (4.9) 

where Ol denotes the output corresponding to l
th

 data point in the training set by the network, Il 

denotes the actual output as consider in the target set. nd is the number of data points used in the 

training dataset. The RMSE has been used as the objective function as mentioned of the ANN 

whose parameters (weights and biases) have to be optimised to improve the training. WOA is 

compared with GA-ANN, AOA-ANN, and WOA-BAT-ANN using different inputs. The number 

of collected data is 61 using different crack lengths from 4 mm to 34 mm.  

 

4.5     Results and discussion 

To study the effectiveness of WOA-ANN, different optimization techniques GA-ANN, AOA-

ANN, and WOA-BAT-ANN are used with different inputs such as stress, strain, and 

displacement. The number of hidden layers (Hidden neurons) is considered to select the adequate 

number using three scenarios with crack length 10 mm, 15 mm, 32 mm. The parameters used for 

all optimization techniques are 100 populations, and 100 Iterations.  The characteristic of the 

computer used for the calculation are Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz 2.59 GHz 

and the RAM memory is 16 GB.  The results are shown in Figure 4. 11.  
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a b c 

Displacement 

 

 

 

   
a b c 

Strain 

 
  

 

a b c 

Stress 

Figure 4. 11 Different hidden neurons with different scenarios. 

Notation :Crack length :  a=10 mm, b=15 mm, and c=32 mm. 



Chapter 4.                   Identification of a Single Crack length in API X 70 steel Using Stress, Strain 

and Displacement 

 

138 
 

The results show that the most optimum network obtained considering WOA, WOA-BAT, AOA, 

and GA has eight hidden neurons using different inputs based on the fitting examination. Next, 

five scenarios with actual crack lengths 10 mm, 15 mm, 24 mm, 28 mm, and 32 mm are 

considered using eight hidden neurons to predict the exact crack lengths. Based on the previous 

results, GA fails to predict the exact crack length. However, the population size is increased from 

100 to 2000. Figure 4. 12 shows the training performance of the best network using different 

inputs (displacement, strain and stress), including different optimization techniques.  

WOA 

   
(a) (b) (c) 

WOABA

T 

   
(a) (b) (c) 

 AOA 

   
(a) (b) (c) 
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Figure 4. 12  Regression analysis: a) Displacement, b) Strain, c) Stress. 

Notation: GA-1: 100 populations-100 iterations, and GA-2: 2000 populations-100 iterations.  

After the training performance, the model is ready to predict the five considered scenarios. The 

obtained results are presented in Figure 4. 13.    

 

 
(a)

GA-1 

   
(a) (b) (c) 

GA-2 

   
 

(a) (b) (c) 
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(b) 

 
(c) 

Figure 4. 13 Predicted crack length using 61 collected databases; a-Displacement, b-Strain, c-Stress. 

 

  

Based on the presented results, the most effective predicted results can be found by WOA 

compared with the actual crack length using different inputs. For better evaluation, the errors 

between exact and predicted crack length for all scenarios using various optimizations techniques 

are presented in Figure 4. 14.  

 

 
 (a)



Chapter 4.                   Identification of a Single Crack length in API X 70 steel Using Stress, Strain 

and Displacement 

 

141 
 

  

 
(b) 

 
(c) 

Figure 4. 14 Error percentage using 61 collected databases; a-Displacement, b-Strain, c-Stress. 

 

Table 4. 4.  Summarized the results of three inputs (strain-stress-displacement) compared with 

actual crack length, including errors between actual and predicted. Thus, the CPU times are 

computed for each scenario and shown in Table 4. 5. 
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Table 4. 4 Error percentage of predicted WOA, WOA-BAT, AOA, GA-1, and GA-2 for each crack length scenario. 

Crack 

length 

Optimisation Data inputs 

  Displacement Error 

(%) 

Strain Error 

(%) 

Stress Error 

(%) 

L=10 

mm 

 

 

 

 

 

WOA 10.111 1.110 10.012 0.120 10.088 0.880 

WOABAT 10.050 0.500 10.483 4.830 10.244 2.440 

AOA 9.888 1.120 10.050 0.500 10.009 0.090 

GA-2 10.942 9.421 9.976 0.245 8.813 11.870 

GA-1 15.409 54.089 12.425 24.246 13.731 37.307 

L=15 

mm 

 

 

 

 

 

      WOA 15.050 0.333 14.634 2.440 15.012 0.080 

WOABAT 15.721 4.807 15.666 4.440 15.278 1.853 

AOA 15.567 3.780 14.734 1.773 15.079 0.527 

GA-2 15.527 3.512 15.483 3.221 14.844 1.039 

GA-1 17.177 14.514 16.223 8.153 13.853 7.649 

L=24 

mm 

 

 

 

 

 

WOA 24.001 0.004 24.265 1.104 24.006 0.025 

WOABAT 24.289 1.204 24.310 1.292 24.265 1.104 

AOA 23.464 2.233 23.599 1.671 24.276 1.150 

GA-2 24.521 2.172 25.116 4.650 24.229 0.955 

GA-1 28.908 20.452 20.281 15.494 31.121 29.671 

L=28 

mm 

 

 

 

 

 

      WOA 27.928 0.257 27.801 0.711 28.358 1.279 

WOABAT 27.042 3.421 27.947 0.189 27.627 1.332 

AOA 28.121 0.432 27.373 2.239 27.878 0.436 

GA-2 28.692 2.470 28.218 0.780 27.596 1.444 

GA-1 28.954 3.405 23.590 15.751 29.509 5.391 

L=32 

mm 

 

 

 

 

 

WOA 31.918 0.256 31.856 0.450 32.151 0.472 

WOABAT 31.595 1.266 30.166 5.731 31.900 0.313 

AOA 32.351 1.097 31.846 0.481 31.907 0.291 

GA-2 31.442 1.744 31.208 2.476 31.504 1.551 

GA-1 29.005 9.359 31.021 3.060 29.557 7.633 

 

The obtained results describe the effectiveness of used optimization techniques. First, a critical 

observation was made from the results using GA-1 using different inputs. Furthermore, after 

increasing the population size and iterations, the results are improved (GA-2). 
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Table 4. 5 CPU time of WOA, WOA-BAT, AOA, and GA for each crack length scenario. 

Crack 

length 

Optimisation CPU Time based on different database 

inputs (Sec) 

 Displacement Strain Stress 

L=10 mm 

 

 

 

 

 

    

WOA 80.9837 94.9460 87.8769 

WOABAT 2288.975006 2499.596441 2726.764726 

AOA 80.6388 85.0736 78.0631 

GA-2 3038.0734 3167.739 3082.5555 

GA-1 156.58166 155.37554 163.83296 

L=15 mm 

 

 

 

 

 

    

WOA 85.8602 83.7848 84.2638 

WOABAT 2713.802802 2433.929142 2797.347175 

AOA 85.8118 76.3816 75.0310 

GA-2 3189.2067 3050.9033 3084.3608 

GA-1 163.45587 171.36059 160.12588 

L=24 mm 

 

 

 

 

 

    

WOA 82.1883 85.4778 80.7935 

WOABAT 2196.416295 2411.864277 2879.339001 

AOA 75.4474 78.5609 81.2045 

GA-2 2956.2631 2949.6275 3185.1473 

GA-1 148.49252 154.43498 160.82294 

L=28 mm 

 

 

 

 

 

    

WOA 87.0286 75.0774 87.2644 

WOABAT 2044.215224 2814.371634 3327.286624 

AOA 75.9095 78.2227 80.6060 

GA-2 2872.9348 3202.2556 3290.9627 

GA-1 152.56876 176.48117 162.28916 

L=32 mm 

 

 

 

 

 

    

WOA 82.1251 75.9302 83.6858 

WOABAT 1995.307727 2314.740854 3254.794972 

AOA 76.9729 78.1226 83.6941 

GA-2 2856.5266 3105.268 3345.6769 

GA-1 157.83188 170.99801 163.864 

 

The best computational time can be found in WOA and AOA between 75-95 seconds compared 

with significant differences in WOABAT, and GA-
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4.6    Conclusion 

A comprehensive analysis was done for the development of hybrid ANN with optimization 

techniques to predict crack length using different parameters (Hidden layer neurons, bias, and 

weight). Recent optimization techniques are used to improve ANN for better prediction compared 

with other techniques to describe the effectiveness of the presented method. Different inputs such 

as strains, stresses, and displacements are compared using WOA-ANN, GA-ANN, AOA-ANN, 

and WOA-BAT-ANN. Numerical and experimental tests are investigated for validation in both 

cases uncracked and cracked specimens. After validating the model, different crack lengths are 

supposed to build a database. The following observations have been reached based on this study: 

 

1- Artificial neural network with eight neurons in the hidden layer is the most optimum 

network in all optimization techniques.  

2- GA-ANN has a critical result with less population and generation (100-100). 

3- The best CPU time found by WOA and AOA compared with GA and WOA-BAT. 

 

Based on the results obtained on this work, we can cite these points: 

 

 The simulation by the GTN model parameters gives good results allowing making 

necessary modifications with good calibration with the experimental models. 

 

 According to the results of the experimental tensile tests, the existence of the notches of 

the pipelines under pressure directly influence the yield stress and the ultimate stress but 

this influence increases rapidly with the increase in the notch depth compared to the 

thickness of the pipe. 

 The presence of notches is a point of localization of stress and knowing the influence the 

presence and the depth of the notches plays a very important role, and its passing by 

creation of the ANN model based of the experimental and numerical data makes it 

possible to predict the elastic and maximum stress as a function of the depth in our study. 

 

 The output of our ANN model gives very good results in the prediction of notches depth 

in part of the faulty pipelines and allows help to make the right decision in the notch 

situation and helps our in optimizing the right geometry of composite patch in certain 

necessary cases. 

The last chapter investigates impact protection in API X70 pipeline steel, studying ductile and brittle 

fracture modes through experimental tests and numerical simulations. Machine Learning models predict 

peak load and crack initiation energy for dynamic brittle fracture with varying crack lengths.  
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5.1  Introduction 

 

In this final chapter, a robust technique is presented to predict the peak load and crack initiation 

energy of dynamic brittle fracture in X70 steel pipes using an improved artificial neural network 

(IANN). The primary objective is to investigate the behavior of API X70 steel based on two 

experimental tests: the Drop Weight Tear Test (DWTT) and the Charpy V-notch impact (CVN) 

for steel pipe specimens. 

The mechanical properties influencing the brittle fracture behavior of API X70 steel pipes are 

predicted using numerical approaches with different crack lengths. To simulate the impact of API 

X70 steel pipes at lower temperatures through a numerical approach, a cohesive approach using 

the extended Finite Element Method (XFEM) is employed. 

The data obtained from these simulations are then used as input for the proposed IANN, which 

utilizes Balancing Composite Motion Optimization (BCMO), Particle Swarm Optimization 

(PSO), and Jaya optimization algorithms to predict the peak load values and crack initiation 

energy of dynamic brittle fractures in API X70 steel with varying crack lengths. 

The results demonstrate the effectiveness of ANN-PSO and ANN-BCMO, as evidenced by the 

convergence of the results and the accuracy of the prediction of peak load and crack initiation 

energy. These findings highlight the potential of using artificial neural networks in conjunction 

with optimization algorithms to predict critical fracture properties in API X70 steel pipes, thereby 

contributing to a deeper understanding of their behavior and performance. 

5.2  Cohesive segment approach based on extended finite elements 
 

Belytschko and Black [180] introduced the XFEM technique. Regional enrichment processes can be 

effectively integrated into a FE approximation using an extension of the traditional FEM based on the 

principle of unity separation. Static and moving damage can both be simulated using XFEM's damage and 

crack modeling. To work on the structural mesh, crack propagation simulation using XFEM does not 

require basic descriptions of cracks and fracture routes. The crack's direction is determined by the 

resolution. The fissures are allowed to reproduce via elements, allowing the rupture of the huge material to 

be modeled. Enrichment operations are defined as near-tip asymptotic procedures that capture the 

singularity at the notch's tip and a discontinuous procedure that designates the displacement jump over the 

crack's surfaces. The division of unit enrichment approximation for a part displacement vector u  is: 

4

1 1

( )[ ( ) ( ) ]
N

I I I I

I a

u N x u H x a F x b 


 

     (5.1)

 

Where; 

( )IN x : These are the standard nodal shape functions. 
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Iu : The usual nodal displacement vector associated with the finite element solution's continuous 

component. 

 

Ia : The nodal enriched degree of freedom vector's product. 

( )H x : The discontinuous jump function that goes with it. 

Ib 
: The nodal enriched degree of freedom vector's product. 

( )F x
: The asymptotic crack-tip functions of elastic materials. 

( )H x  Can be used as: 

1.......... ( *). 0
( )

1...........

if x x n
H x

otherwise

 
 


 (5.2) 

Where;  
x : The point of Gauss. 

*x : The crack's point that is closest to x . 

n : The unit's normal outward from the crack is *x . 

( )F x
 Are portrayed by 

( ) [ sin , cos , sin sin , sin cos ]
2 2 2 2

F x r r r r

   
   (5.3) 

 

 

( , )r   At the crack tip, a polar coordinate system is used. 0   The crack at the tip is tangent. 

 
 

XFEM methods are based on the cohesive tensile-separation behavior [181, 182], which may be modified 

to simulate crack initiation and propagation in brittle or ductile fracture API X70 steel. Crack initiation 

and solution-dependent propagation passage in dimensional materials can be simulated using the XFEM-

based cohesive segment approach. 

On the level of the enriched elements, the damage and initiation of fractures, guide the start of the 

deterioration of the cohesive response. When stresses or strains meet the damage initiation conditions 

defined in the model, the degradation mechanism begins. The largest primary stress criteria was used to 

model damage onset in this study, and it may be represented as: 

max

max

f
T

 
  
 

 (5.4) 

Where;  

maxT : The maximum principal stress that can be applied. 

max : The standard interpretation of the Macaulay bracket. 

 

When the highest main stress ratio (as described in the presentation slide) comes into contact with a value 

of one, the fracture is deemed to be initiated. Then, after reaching equilibrium, a new crack is presented or 
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the size of an existing crack is increased when the failure criterion reaches 1.0 within a given tolerance
tolf

: 

1.0 1.0 tolf f    (5.5) 

 
 

If 1.0 tolf f   The time increment is adjusted until the crack initiation requirement is satisfied. The 

value of 
tolf  was discovered to be 0.05 in this study. 

Once the corresponding initiation requirement is met, the crack growth law reflects the rate at which the 

cohesive stiffness diminishes. The average general damage at the intersection of the surfaces of the cracks 

and the edges of the cracked elements of the model is designated by the scalar damage parameter D . It has 

a value of 0 at the start. D gets monotonous from 0 to 1 during multiple loadings once the damage is 

initiated if the damage evolution is implemented. The damage simulates the portions of normal tension 

and shear according to: 

(1 ) .... .... 0

...........

n n

n

n

D T if T
t

T otherwise

 
 


 
(5.6) 

 
 

(1 )s st D T   (5.7) 

 
 

(1 )t tt D T   (5.8) 

 

Where , ,n t sT T T  The elastic traction separation behavior for the current partitions without crack indicates 

the normal and shear stress elements and the effective separation is defined as: 

2 2 2

max n s t       (5.9) 

An exponential model has been suggested to explain the growth of the damage variable D . The following 

relationship, in particular, is maintained by such a model. 

max

max

0

T
D d




  

(5.10) 

maxT  Denotes the cohesive stress, and   denotes the efficacious displacement. Furthermore,   denotes 

the cohesive energy, whereas max  denotes the effective displacement at ultimate failure. When the 

damage (crack initiation) criterion (MPs criterion) was chosen, the newly introduced crack was defined to 

remain vertical to the MPs direction when the fracture condition was satisfied. 
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5.3 Experimental 

 

5.3.1 Material characteristics of API X70 steel 

 

In Algeria's high-pressure gas transportation pipelines and networks, API X70 steel and API X65 

steel are the most frequently used for pipeline transportation. Spiral welding was used to 

construct the pipes that are being considered.  

 

The true stress-strain curves for the tested steel are represented in Figure 5. 1. The average 

mechanical properties of API X70 steel were obtained from test data and are presented in Table 

5. 1 along with goal values laid out by API 5L. As can be observed from the results, that the 

material met the API requirements for API X70 pipeline steel (yield strength > 482.65 MPa, 

tensile strength > 565.056 MPa) [99]  

 

Figure 5. 1 The yield stress and plastic strain of API X70 steel. 

Table 5. 1 Mechanical properties of API X70 steel [27]. 

Parameters 
E 

(MPa) 
ν 

Yield Strength 

YS[Mpa] 

Ultimate 

tensile 

strength UTS 

[Mpa] 

Elongation EL 

[%] 

Hollomon 

parameters 

k n 

Values 2.10*10
5
 0.3 558 672 38 850 0.095 
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5.3.2 DWTT specimens and experimental set up 

 

Figure 5. 2 represents the dimensions and geometry of the DWTT specimen. A test plate was 

first selected and cut from the principal pipe part to prepare test samples. Second, in accordance 

with the test standard API [64], test samples were taken from this test plate and flattened to 

remove their initial curvature. It should be mentioned that none of the test specimens had any 

seam welds and were made entirely of base metal. 

 

 

For the DWTT experiment, the impactor was designed with a cross section of 9.5 mm x 76.2 mm 

and a length of 152.5 mm (see Figure 5. 2), an initial velocity of 5.4 m/s, and a mass of 1209 kg. 

The hammer X70 material properties limits were applied to the specimen in Figure 5. 3. A Zwick 

Roell machine was used to carry out the DWT tests (See Figure 5.3)  

 

 

 

  

Figure 5. 2 Specimen and dimensions used for DWTT. 

 

 

Figure 5. 3 Specimen used for DWTT and the impact machine for steel X70 
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Table 5. 2 Experimental conditions for DWTT. 

Grade 
Weight 

[Kg] 

Height 

[mm] 

Velocity 

[m/s] 

DWTT 

energy 

[J] 

X70 1209 1497 5.4 17952 

Noting that before performing the impact test, the specimen must be cooled using a cooler (Figure 5. 5.a)

 

5.3.3 CVN specimens and experimental set up 

 

The CVN specimens were prepared in accordance with ASTM E23 standard with dimensions of 

10*10*55 mm (see Figure 5. 4-a)[183]. A hammer, two anvils, and the CVN specimen, and a 

starting velocity of 5.5 m/s and a mass of 19.8 kg for the CVN experiments. In Figure 5. 4-b, 

three Base Metal (BM), three Welded Metal (WM), and three Heat-Affected Zone (HAZ) or 

transition zone specimens totaling nine and other specimens for testing at different temperatures 

in base metal (BM) were produced. The experimental results of the API X 70 steel impact tests 

conducted at various locations (BM-HAZ-WM see Figure 5. 5.c) indicate that the fracture 

energy, or absorbed energy by the specimen, varies significantly between the three zones. 

 
 

 

a b 

Figure 5. 4 Specimen and dimensions used for CVN and various locations. 

 

A Zwick Roell machine was used to carry out the CVN using Charpy Impact Testing Machine 

(See Figure 5. 5-b). 

Noting that before performing the impact test, the specimens must be cooled using a cooler 

(Figure 5. 5-a) 
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Figure 5. 5 Specimen used for CVN and the impact machine for steel X70. 

5.3.4 Experimental results 

 

5.3.4.1 DWTT impact 

The obtained results on the base metal with a notch are formed for two tests and illustrated in 

Figure 5. 6 in the temperature range of 20 
o
C and -10 

o
C. 

 

  

Figure 5. 6 The obtained results on the base metal with DWTT. 
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The initial fracture mode looked at the notch tip is ductile on all specimens of API X70 tested in 

the temperature range of 20 
o
C and -10 

o
C, as illustrated in Figure 5. 6 for an API X70 pipeline 

steel specimen. At -10 
o
C, a very few of separations started to show on the ductile fractured area. 

These fracture appearances are indicative of the inverse fracture, indicated by a line on the photos 

in Figure 5. 6. At -10 
o
C, the impact side away from the initial bending neutral axis had a minor 

density and this is where the inverse fracture started. For each energy term and various energy 

components, the following figure is presented (see Figure 5. 7). 

 

 
 

Figure 5. 7 Contribution of different energy components, such as (Ei) initiation energy and (Ep) 

propagation energy. 

 

5.3.4.2 CVN impact 

The results obtained from the energy absorbed and the resilience for each type of specimen are presented 

respectively in Table 5. 3, 4 and 5. Noting that the resilience is obtained by dividing the energy absorbed 

by the section (S) of the specimen where (S=0.8 cm
2
). 

A digital display is integrated into the resilience machine to display directly the energy absorbed and the 

angle of ascent. We made three types of specimens (see Figure 5.5-c): 

 Notch created in the center of the base metal (specimen completely in base metal). 
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 Notch initiated in the center of the weld metal. 

 Notch initiated at the HAZ. 

 

Table 5. 3 Absorbed energy values for the different zones. 

Absorbed energy (J) 

Test 1 2 3 Average 

Base metal 210.2 203.3 213.2 208.9 

HAZ 184.4 177.1 172.6 178.0 

Weld metal 139.9 144.3 149.8 144.6 

 

Table 5. 4 Resilience values for different zones 

Resilience  ( J/cm
2
 ) 

Test 1 3 3 Average 

Base metal 262.8 254.1 266.5 261.1 

ZAT 230.5 221.4 215.7 222.5 

Weld metal 174.9 180.4 187.3 180.8 

  

Table 5. 5 Absorbed energy values for the different temperatures. 

T (
o
C) 

Absorbed energy (J/cm²) 

Test 

1 

Test 

2 

Test 

3 

Average 

(1.2.3) 

Base metal 

(BM) 

 

20 262.8 254.1 266.5 261.13 

0 248 242 238 242.67 

-10 216 210 210 212 

-20 206 205 203 204.67 

 

Tables 5.3, 4 and 5 present the obtained results. Since their energies are lower than those of the 

material test specimens, it is reasonable to see that the test specimens with welding explain the 

impact of the welding. It is interesting to note that API 5L X70 steel is a ductile steel, which also 

justifies its choice for the manufacture of pipelines. In addition, it can also be seen that the 

ductility decreases approaching the weld bead because the HAZ is more ductile than the weld 

bead and less ductile than the base metal. 
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5.4  Simulation of CVN impact and determination of peak load and 

absorbed energy in different crack lengths 
 

In this part, improved numerical CVN impact tests using XFEM are studied to obtain the 

approximation parameters at low temperature, and used in different cases of crack lengths 

simulation, to build a database after validation of the experimental model, which will be used for 

training different optimization techniques, in order to get the best prediction of peak force and 

absorbed energy as a function of different crack lengths. 

5.4.1 Model dimensions and meshes 

ABAQUS software was used to model the Charpy V-notch impact and its steps. The prototype is made up 

of three parts: a hammer, two anvils, and a CVN specimen that may be meshed on its own. Figure 5.8 

depict the model's FE mesh as well as a rendered view. 

 

   
Figure 5. 8 CVN specimen with an initial crack and 3D meshing with applied velocity. 

 

The simulation setting was modeled using an 8-node linear brick with decreased integration and 

hourglass control (C3D8R). The anvils and hammer are represented by a fixed piece of rigid 

form. Between two stiff anvils and the impactor, the sample is placed at the probable locations of 

propagation of the fracture and a mesh size of 0.3 was used in the critical part which gradually 

improved in the center of the specimen. 
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Moreover, the mesh size was reduced to 0.3 mm in this part to perfectly capture the gradient of 

multiaxial stresses at the crack tip. Coulomb's law of friction with a coefficient of friction of 0.1 

was used to explain the contact between the impactor and the sample, as well as between the 

sample and the anvils. The impactor and support surfaces were represented as slave surfaces, 

while the sample surface was represented as a master surface. The impactor was shown to be able 

to travel vertically while the supports remained constrained. The impactor had a mass of 19.8 kg 

and an initial speed of 5.5 m/s. Explicit codes are utilized to capture the complex reaction of the 

system as a function of time. The XFEM service is currently not supported by the ABAQUS 

Dynamic/Explicit solver. The Dynamic/Implicit solution was used to address this problem in this 

study. 

5.4.2 Material parameters 

To model the Charpy V-notch impact and its steps, an extrapolated flow curve at -196 C that was 

employed in finite element modeling (see Figure 5. 9).  

 

 

Figure 5. 9 The true stress–strain curve at -196 C for API X70 [30] 

 

The cohesive energy is the sole characteristic that is affected by strain rate (fracture energy). The 

cohesive energy was calibrated using data from the impact test. As a result, the behavior of 

isotropically hardened elastoplastic materials has been described. The enrichment area was 

chosen within the damage propagation region of interest, which was the mesh refinement part. 
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Crack modeling replicates the cracking of the enriched zone in the solution field and its eventual 

defeat. 

The first reaction is linear, while a fracture initiation criterion and a damage propagation law 

make up the defeat mechanism. On the cohesive stress of 
max 1.4 yT  , the damage initiation was 

modeled and established. According to Schider [8], the cohesive stress was determined by 

examining the crack process at the microscopic scale using the so-called unit cell technique. The 

stress triaxiality at the fracture tip changes as the impact load increases. In the unit cell technique, 

the highest value of the triaxiality of the stress at the crack tip was utilized to estimate the 

cohesive stress. The ultimate load capacity can be calculated using the unit cell technique during 

the crack initiation process under the stress of triaxiality. The cohesion energy was calculated 

using the following formula: 

2

2/ (1 )

IC
IC

K
G

E 
  


 (5.11) 

Where 
ICG : Fracture energy. 

ICK : Fracture toughness. 

E  : Young‟s modulus. 

  : Poisson's ratio. 

 

The following equation can be derived using Barsom and Rolfe's [10] connection between CVN energy (

KCV ) and fracture toughness for the descending shelf of the DBTT curve: 

3/46.76( )ICK KCV  (5.12) 

The fracture toughness values 25 MPa m  were chosen in this study by entering them into XFEM  in the 

fracture energies for Mode I and Mode II, respectively in the mixed-mode [184]. 

5.4.3 Results and discussion  

The example of distribution in the model during crack propagation (initial crack length equal to 2 mm) 

using the XFEM method is shown in Figure 5. 10. 
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Figure 5. 10 Von Mises distribution in model during crack initiation and propagation. 

 

The parameters of the XFEM method for API X70 were chosen based on a comparison of the 

numerical and experimental results (see Figure 5. 11.a), taking into account the impact of the 

type and number of mesh elements used in this investigation. It's important to note that the figure 

depicts the maximum contact point (peak load „Point (P)‟) as the crack starting onset as shown in 

Figure 5. 11.b. The first crack length (a0) was considered to be equal to the depth of the initial 

artificial notch a=2mm.  
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a b-[185] 

Figure 5. 11  a- shows the CVN test simulation result compared to experimental observation; b- shows the 

maximal contact point (peak load) as the crack starting onset. 

 

Increasing the crack length in the structures will cause their resistance to decrease and they will 

not be able to resist more loading, in our case, the increase in crack length in the samples will 

decrease the thickness of the samples and higher stress intensity will be generated at the crack tip, 

resulting will be getting a decrease in the peak load and energy absorbed, the obtained results are 

used to simulate more states of the initial crack length of API X70 pipeline steel samples at low 

temperature through a numerical approach based cohesive segment in extended Finite Element 

Method (XFEM). 

 

5.5  Optimization technique  

 

5.5.1 Initialization part (Balancing composite motion optimization (BCMO)) 

According to the following equation, the population distribution is uniformly initialized in the solution 

space during the first generation. 

(1, )*( )l U L

i i i iX X rand d X X    (5.13) 

 

where rand is a d -dimensional vector that satisfies a uniform distribution in the interval [0, 1], 
L

iX and 

U

iX are the lower and upper limits of the 
thi  individual, respectively. 
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5.5.2 Identifying the optimal individual and the current global point 

According to the equation below, the 
thi individual's absolute movement in each generation can be a two-

component composite consisting of a relative motion to the thj individual's superior ranking and a 

transportation motion of the thj individual to the global optimization point o : 

/i i j jv v v   (5.14) 

where 
iv and 

jv  represent, respectively, the 
thi and thj individual's movement vectors with respect to o  . 

The relative movement vector is shown as 
/i jv  . 

Next, a point about instant global optimization 
ino  The actual global optimization point o is replaced with 

ino . Simply define, 
1

1in

t t

oX X   assigns 
ino . Additionally, updated 

ino  should be defined using the prior 

best of 
1

1

tX 
 and trial individual 

1

tu  using the objective function. 

1

1

1

in

t

t

O t

u
X

X 


 


 
If 

1

1 1( ) ( )t tf u f X 
 

(5.15) 
otherwise 

 where 
1

tu is determined using the following population data for the current generation:  

1 2 21 / /1

t t t

c k k ku u v v    
2

c

LB UB
u


  (5.16) 

where the center of upper and lower design space is indicated by the symbol
cu  

 Composite motion of individuals in solution space. 

The movement of the global search jv in BCMO is determined by: 

( )
inj j o jv X X   (5.17) 

  

where j denotes for the first order derivative, which may be calculated using the formula shown below: 

2

2

1

1
(1 )

* ;

j

j

j
r

dNP

j GS j GS j
r

d NP

e
L dv L

e





 




  



 

If  0.5jTV   

(5.18) 

otherwise 

 

where jTV is the trial number, 
GSL is the global size scaling of the movement, and jdv is a direction 

vector. 
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(1, )

(1, )
j

rand d
dv

rand d


 


 

If  0.5jTV   
(5.19) 

otherwise 

where the following equation can be used to estimate the relative movement 
ijv and 

jr is the distance from 

the thj individual to 
ino  : 

/; ( ); *
inj j o i j ij j i ij LS ijr X X v X X L dv       (5.20) 

where 
LSL can be defined to 1. 

These 
ikv  all have equal probabilities and can be estimated as follows: 

/( ) ( )* ( ) 0.5*0.5 0.25ik i j jP v P v P v    (5.21) 

The following is an updated statement of the 
thi individual in the following generation: 

1

/

t t

i i i j jX X v v     (5.22) 

Ref [142] contains additional information concerning BCMO. 

5.5.3 Training part 

As previously noted, the ANN's parameters (weights and biases) must be optimized to improve 

training, and the RMSE has been employed as the objective function. Using peak load and 

absorbed energy outputs, BCMO is compared with PSO and Jaya. 31 distinct crack lengths 

ranging from 0.16 mm to 9.5 mm were used in the collection of the data, and the ANN 

architecture is shown in Figure 5. 12.  

 
Figure 5. 12 ANN architecture 
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Three optimization algorithms are used to improve ANN parameters, the actual peak load and 

energy absorbed with various crack lengths will be predicted in this section. The Artificial Neural 

Network (ANN) is a computer technique focused on biological nervous systems, and the first one 

implements an upgraded Artificial Neural Network using BCMO. Analysis, administrative 

procedures, detection, and picture identifying are only a few of the areas and industrial 

applications where ANN can be applied. ANN exercise parameters (bias and weight) may be 

improved by lowering the discrepancy between actual and desired products, and these parameters 

could then be used to create the network using BCMO. As a resolution, the BCMO algorithm 

examines all values of the training parameters (weight and bias). We used BCMO with Particle 

Swarm Optimization (PSO) and Jaya algorithms. In this investigation, the parameters utilized in 

this work were held constant in different optimization codes to estimate peak load and absorbed 

energy at peak force. 

An input zone, a hidden zone, and an output zone are the three main components of an ANN 

network. Where 
ijw  is the weight of an input neuron's association with another neuron in the 

hidden folds, jb  is the bias. More explanation and detail in this paper Refs [140, 186-188]. 

 

5.5.4 Results and discussion 

 

Where the crack length is input in training, the peak force and absorbed energy in the steel as 

considered as outputs (the target set), see Table 5.6. 

  

 

Table 5. 6 Inputs and outputs parameters used in this study. 

 

 

 

Parameter Minimum Maximum Number of collected data 

Output 
 

Peak load 

(N) 
5737.248 12199.330 31.000 

Absorbed 

energy 

(mJ) 

1392.290 3370.590 31.000 

Input 
   

Crack 

lengths 

(mm) 

0.156 9.531 31.000 
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PSO, BCMO and Jaya algorithms are employed using crack lengths as inputs to change the 

weights and biases of ANN to investigate the utility of different optimization strategies. The 

number of hidden layer sizes (hidden neurons) is calculated using two of our outputs peak load 

and absorbed energy to determine the appropriate number (see Figure 5. 12). All of the proposed 

optimization approaches employ the same parameters: 200 populations and 200 iterations. The 

PC used for the analysis has an Intel(R) Core (TM) i7-6700HQ CPU running at 2.60GHz and a 

RAM memory of 16 GB. The consequences are illustrated in Figures 5. 13 and 14. 

 

 

Figure 5. 13 Different neurons with different scenarios load. 

 

  
Figure 5. 14 Different hidden neurons with different scenarios energy. 
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The research indicates that the most effective network, which took into account ANN-BCMO, 

ANN-PSO, and ANN-Jaya, has ten hidden neurons employing various outputs depending on the 

fitting analysis. In order to determine the precise peak load and energy absorbed, four scenarios 

with crack lengths of 2.968 mm, 4.531 mm, 6.093 mm, 28 mm, and 7.656 mm are taken into 

consideration. 

The regression analysis of different optimization codes in this study is shown in Figures 5. 15 and 16. 

 

 

 

 

 

 

 

Figure 5. 15 Regression analysis for peak load data (Hidden neuron=10). 

   

Figure 5. 16 Regression analysis for absorbed energy data (Hidden neuron=10) 

 

After the training performance, the comparisons between the peak load and absorbed energy 

actual and predicted by PSO, BCMO and Jaya algorithm for all cases and all scenarios are 

represented in Figures 5. 17, 18 and Table 5.7. 
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Figure 5. 17 Predicted peak load using 31 collected databases ( Scenario 1‟L= 2.968mm‟; Scenario 2‟L= 4.531mm‟; Scenario 

3‟L= 6.093 mm‟; Scenario 4‟L= 7.656 mm‟). 

 

 
Figure 5. 18 Predicted absorbed energy using 31 collected databases ( Scenario 1‟L= 2.968mm‟; Scenario 2‟L= 4.531mm‟; 

Scenario 3‟L= 6.093 mm‟; Scenario 4‟L= 7.656 mm‟). 

 

Based on the results, PSO can provide the effectiveness results compared to the actual peak load 

and absorbed energy while utilizing various crack length inputs. The errors between exact and 

estimated peak load and absorbed energy for four scenarios utilizing various optimization 

approaches are illustrated in Figures 5. 19 and 20 for a more reasonable evaluation. With varying 

situations load, different hidden layer sizes (hidden neurons) are used. 

 



Chapter 5.                  Prediction of the peak load and crack initial energy of dynamic brittle 

fracture using improved ANN 

 

166 
 

 
Figure 5. 19 Error percentage of peak load using 31 collected databases ( Scenario 1‟L= 2.968mm‟; Scenario 2‟L= 4.531mm‟; 

Scenario 3‟L= 6.093 mm‟; Scenario 4‟L= 7.656 mm‟). 

 

 
Figure 5. 20 Error percentage of absorbed energy using 31 collected databases ( Scenario 1‟L= 2.968mm‟; Scenario 2‟L= 

4.531mm‟; Scenario 3‟L= 6.093 mm‟; Scenario 4‟L= 7.656 mm‟). 

 

Tables 5.7 and 5.8. Summarized the results of crack lengths inputs compared with actual peak 

load and absorbed energy, including the difference in error values between the actual and 

estimated results. The CPU time for each proposed scenario are computed and presented in Table 

5.8. 
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Table 5. 7 Error percentages of predicted PSO, BCMO and Jaya algorithm for each peak load scenario. 

Scenarios 
Hidden 

neurons 
H=4 

Error 

(%) 
H=6 

Error 

(%) 
H=8 

Error 

(%) 
H=10 

Error 

(%) 
H=12 

Error 

(%) 

L=2.9688 

mm 
P=9908.338 

N 

BCMO 10064.000 1.571 9987.000 0.794 10000.000 0.925 9911.900 0.036 10086.000 1.793 

PSO 10082.000 1.753 10083.000 1.763 10078.000 1.712 10078.000 1.712 10095.000 1.884 

JAYA 10093.000 1.864 9961.300 0.535 10332.000 4.276 9840.500 0.685 9835.900 0.731 

 

L=4.5313 

mm 

P=7697.8 N 

BCMO 8391.600 9.013 8443.700 9.690 8449.500 9.765 8402.700 9.157 8447.200 9.735 

PSO 8391.300 9.009 8382.300 8.892 8400.200 9.125 8371.500 8.752 8390.000 8.992 

JAYA 8606.900 11.810 8479.100 10.150 8569.700 11.327 8194.200 6.449 8380.800 8.873 

L=6.0938 

mm 
P=7137.262 

N 

BCMO 7085.700 0.722 7164.300 0.379 7154.000 0.235 7131.300 0.084 7066.200 0.996 

PSO 7083.200 0.757 7076.700 0.849 7076.900 0.846 7094.200 0.603 7059.500 1.090 

JAYA 7278.500 1.979 7248.600 1.560 7105.100 0.451 6922.400 3.010 7290.400 2.146 

 

L=7.6563 

mm 
P=6325.385 

N 

BCMO 6344.300 0.299 6314.600 0.171 6299.700 0.406 6313.900 0.182 6243.500 1.295 

PSO 6323.400 0.031 6341.600 0.256 6318.900 0.103 6343.700 0.290 6357.300 0.505 

JAYA 6299.100 0.416 6474.200 2.353 6126.800 3.139 6270.000 0.876 6588.600 4.161 

Table 5. 8 Error percentages of predicted PSO, BCMO and Jaya algorithm for each absorbed energy scenario. 

Scenarios 
Hidden 

neurons 
H=4 

Error 

(%) 
H=6 

Error 

(%) 
H=8 

Error 

(%) 
H=10 Error (%) H=12 

Error 

(%) 

L=2.9688 

mm 

E=2652.09 

mJ 

BCMO 2608.500 1.644 2606.600 1.715 2605.300 1.764 2590.600 2.319 2621.200 1.165 

PSO 2616.600 1.338 2610.000 1.587 2613.000 1.474 2618.200 1.278 2611.600 1.527 

JAYA 2585.200 2.522 2715.800 2.402 2519.900 4.984 2590.600 2.319 2663.300 0.423 

L=4.5313 

mm 

E=2079.43 

mJ 

BCMO 2089.200 0.470 2102.700 1.119 2062.900 0.795 2082.300 0.138 2093.000 0.653 

PSO 2074.700 0.227 2087.500 0.388 2078.300 0.054 2081.600 0.104 2078.800 0.030 

JAYA 2059.200 0.973 2185.500 5.101 1995.500 4.036 2193.300 5.476 2054.300 1.209 

L=6.0938 

mm 

E=1684.66 

mJ 

BCMO 1718.400 2.003 1730.300 2.709 1696.000 0.673 1740.500 3.315 1710.800 1.552 

PSO 1718.900 2.032 1722.100 2.222 1720.700 2.139 1709.500 1.474 1718.400 2.003 

JAYA 1720.800 2.145 1769.200 5.018 1675.300 0.556 1820.500 8.063 1623.400 3.636 

L=7.6563 

mm 

E=1589.57 

mJ 

BCMO 1519.100 4.433 1517.700 4.521 1517.000 4.565 1537.900 3.251 1492.700 6.094 

PSO 1531.700 3.641 1518.700 4.458 1527.800 3.886 1534.200 3.483 1531.200 3.672 

JAYA 1521.100 4.307 1523.000 4.188 1501.800 5.522 1561.400 1.772 1402.100 11.794 

 

*Notation: L= Crack length (mm); P= Peak load (N); E= Absorbed energy (mJ). 
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The results show how smoothly the optimization strategies, particularly when absorbed energy 

data is applied, performed. First, a critical finding was drawn from the ANN-Jaya results 

employing a variety of output scenarios. 

 

Table 5. 8 CPU time of ANN-PSO. ANN-BCMO. and ANN-Jaya algorithm. 

  Best CPU time 

Peak load 

output 

BCMO 271.990064 273.217883 317.297330 291.338334 298.854786 

PSO 296.361061  301.474612 414.808215 292.326594 342.148799 

JAYA 405.826414 346.794978 305.384011 276.172631 288.996327 

 
      

Energy 

absorbed 

BCMO 291.692811 291.125877 304.623502 308.377327 437.229567 

PSO 333.740750 292.598183 309.506450 302.132373 471.979203 

JAYA 454.014712 357.087412 286.427631 288.263229 415.414165 

 

The computational time can be taken in different optimisation techniques between 270-475 seconds. 

 

5.6  Conclusion 

 

 The impact test was used in this experiment to examine the dynamic fracture properties of API 

X70 pipeline steel. To investigate the resistance of materials subjected to impact loading 

conditions, the CVN tests were conducted at various temperatures. The validity of numerical and 

experimental tests is examined in CVN impact specimens. Different crack lengths are expected to 

generate a database after the model has been validated, it is reasonable to suppose that the test 

specimens with welding explain the impact of the welding because their energies are lower than 

those of the material test specimens. It's interesting to note that API 5L X70 steel is ductile steel, 

which also supports the decision to use it for pipeline construction. Because the HAZ is more 

ductile than the weld bead and less ductile than the base metal, it can also be seen that the 

ductility diminishes as it approaches the weld joint. This article presents an experimental part of 

fracture mechanics for API X70 steel, as well as a study of convergence between different 

optimization algorithm codes (BCMO, PSO and Jaya) to predict the maximum load and initial 

energy absorbed in a base metal sample at a lower temperature represented by the brittle state. 

To design a hybrid ANN using optimization techniques to predict peak load and absorbed energy 

using various parameters, a thorough analysis was conducted (Hidden layer neurons, bias, and 

weight). The results of this investigation have led to the following conclusions: 

 Using diverse hidden layer neurons, a detailed inquiry was conducted for the construction 

of hybrid ANNs with optimization approaches to estimate peak load and absorbed energy. 

 Current optimization techniques are used with the same crack lengths in the inputs are 

compared using PSO, BCMO and Jaya algorithm. 
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 An artificial neural network with ten neurons in the hidden layer neurons is the most 

optimal network in global optimization approaches in this collected database. 

 Jaya algorithm has critical results with different types of outputs (peak load and absorbed 

energy) with less population and generation (200-200). 

 The best results found by PSO and BCMO compared to Jaya algorithm and particularly in 

the case of data represented by absorbed energy. 
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The goal of the current work, as stated at the outset, was to create a numerical model that relates 

to the three-dimensional analysis of stress concentration in a perforated plate under tension and 

the impact of different types of defects on the mechanical behavior of a plate under strain. In the 

first section, we described an experimental characterization of the API 5L X70 steel that the 

ALFAPIPE GHARDAIA company uses to make pipelines. We also looked at the effects of a 

circular hole and a crack in straight specimens that were subjected to tensile loading on the 

development of the mechanical properties of steel. 

In order to deal with the issue of a plate having a lateral form defect and corroborate Griffith's 

hypothesis, we also used the ABAQUS calculation software, in its version 6.16, which represents 

one of the numerical tools based on the finite element approach. We were able to draw the 

following conclusions thanks to the results: 

 

• The weld bead used to weld pipelines has resistance to higher fracture and microhardness than 

base metal and lower resilience than HAZ and base metal.  

• The API 5L X70 steel used for the manufacture of pipelines has properties particular meeting 

the conditions of choice for such a use because of its high elastic limit, good ductility, and widely 

acceptable microhardness. 

• Massive holes increase the degree of stress factors. 

This action demonstrates unequivocally that the existence of holes in a plate is a location of stress 

concentration that can cause the onset and spread of fractures. 

• This concentration rises sharply and gets weaker and weaker as the hole gets bigger. As a result, 

rounded holes are less hazardous than sharp ones. The radius of the semicircular defect has a 

significant impact on both the stress intensity factor KI and the energy restitution rate GI. 

The KI and GI factors, on the other hand, barely change with the angle of opening for the notch 

type defect, and we may even argue that they are nearly constant. The 88 values of the KI and GI 

factors for a lateral fracture depend on the size of the crack and might be high compared to other 

types of faults. 

• When compared to other types of faults, lateral semi-circular faults produce the least amount of 

stresses. 

• Cracks are the flaws that most affect the stress field, which is highly dependent on the size of 

the crack. 

We have included a definition, a broad overview, and the key phases of design and production for 

pipeline technology, additionally to welding flaws and steel characteristics. 

The chemical and mechanical characterisation of API 5L X70 steel was covered in the chapter 

that followed. Welding's influence on the latter's mechanical behavior will also be covered. 

 

Based on the analysis of the mechanical properties and the modal analysis of the structure 

represented in the specific case of the pipes, we produced a bibliographical analysis and synthesis 

of the methods of crack identification. These comprised... (eg: WOA, AOA, PSO, Jaya...etc). 

Therefore, a variety of factors are utilized to identify cracks; however, for the remainder of our 
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work, we will pay particular attention to the mechanical parameters (stress, deformation, and 

displacement) based on the enhancement of the ANN utilizing various optimization techniques. 

         In order to forecast the parameters of the GTN damage model and the constants of the 

Ramberg-Osgood hardening law for API X70 steel pipelines, an artificial neural network model 

was created. The following conclusions can be made from the obtained data: 

 

• Despite the large number of parameters and simulations, the strategy used in this work enabled 

their determination using a reverse identification technique with a low error rate and good 

accuracy. 

 

• The identification can be expanded to cover a significant number of experimental tests from the 

prior results acquired at the ALFAPIPE Ghardaia laboratory because there is a minimum 

difference between the numerical results in the case of coupled identification. 

 

• Then, using the detected GTN parameters, an ANN model is created to forecast the two key 

parameters of the GTN damage model, and paired with the hardening law. 

 

• Because it directly affects the mechanical properties of this steel, the developed model 

incorporates API X70's basic metal chemical composition as an input. 

 

• The tensile test and the Charpy test numerical models both used the ANNGTN's results as input. 

The comparison of the computational load-displacement curve with the experimental findings 

that followed produced positive results. 

• Due to the strong compatibility of the experimental and numerical studies, it can be claimed that 

the ANN has been employed successfully to facilitate the prediction of GTN parameters and 

mechanical properties of steel. 

• The proposed model has a remarkable ability to forecast outcomes prior to performing 

mechanical testing, and it can also be used to simulate variations in mechanical properties based 

on the chemical composition of steel. 

 

In order to estimate the starting and maximum loads as well as to examine the GTN damage 

parameters at various temperatures for dynamic fracture propagation in X70 steel pipeline, an 

Artificial Neural Network model was created in this study. The following conclusions can be 

made from the data obtained: 

• Data and experimental tests are needed for the calibration of some parameters, and as a result, 

the calibration's outcome depends on the latter, which fluctuates depending on the test conditions. 

In order to improve findings and reduce the number of simulations, we use modulation of neural 
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networks in this study to try to anticipate and assess the effects of a number of GTN parameters 

on the initial and maximum load as well as in a temperature range in the Charpy impact test. 

• Based on the findings, we can conclude that each GTN model parameter affects the results in a 

different percentage, which enables the calibration phase to take the parameter sensitivity into 

account. 

• The damage model is used in several studies and investigations, but the GTN parameter 

values used to calibrate the models are not constant and identical. As a result, our study 

investigates the sensitivity of the initial and maximum loads in the impact test to changes 

in the parameter values of the GTN model and throughout a finite temperature range. 

 

• The created model has a strong ability to forecast results prior to calibration and identifies 

variance between various parameters by simulating them in accordance with the mechanical 

properties of X70 Steel. 

To build a hybrid ANN using optimization techniques to forecast fracture length using various 

parameters, a thorough analysis was conducted (Hidden layer neurons, bias, and weight). To 

describe the efficacy of the proposed method, recent optimization techniques are employed to 

enhance ANN for better prediction when compared to other methodologies. The WOA-ANN, 

GA-ANN, AOA-ANN, and WOA-BAT-ANN algorithms are used to compare various inputs, 

including strains, stresses, and displacements. The validity of numerical and experimental tests is 

examined for both uncracked and cracked specimens. Different crack lengths are expected to 

generate a database after the model has been validated. The results of this investigation have led 

to the following conclusions: 

 

1- Among all optimization strategies, an artificial neural network with eight neurons in the 

hidden layer is the most ideal network. 

2- GA-ANN has a significant outcome with fewer generation and population (100-100). 

3- The most efficient CPU time as determined by WOA and AOA when compared to GA and 

WOA-BAT 

We can cite the following points based on the work's findings: 

 

 The GTN model parameters' simulation produces good results that enable making the 

necessary adjustments with accurate calibration against the experimental models. 

 

 The findings of experimental tensile testing show that the presence of notches in pipelines 

under pressure directly influences the elastic limit and the ultimate stress, but that this 

influence grows quickly as the notch depth is increased relative to the pipe thickness. 
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 The presence of notches is a place where stress localization occurs, and understanding the 

impact of their presence and depth is crucial. By using experimental and numerical data to 

build an ANN model, we were able to predict the elastic and maximum stress as a 

function of the depth in our study. 

 

 The output of our ANN model provides very good results in the prediction of notch depth 

in some defective pipelines, enables assistance in making the appropriate choice in the 

notch situation, and aids in optimizing the appropriate geometry of composite patch in 

some necessary instances. 

 

In this experiment, the dynamic fracture characteristics of API X70 pipeline steel were 

investigated using the impact test. The CVN tests were carried out at various temperatures in 

order to examine the resistance of materials subjected to impact loading conditions. In CVN 

impact specimens, the reliability of numerical and experimental tests is investigated. After the 

model has been validated, it is anticipated that different fracture lengths will provide a database. 

It is logical to assume that test specimens with welding explain the influence of the welding 

because their energies are lower than those of the material test specimens. 

The fact that API 5L X70 steel is ductile steel is significant and supports the choice of the 

substance for pipeline building. Because the HAZ is more ductile than the weld bead and less 

ductile than the base metal, it is also evident that ductility diminishes as it approaches the weld 

joint. This article presents an experimental component of fracture mechanics for API X70 steel as 

well as a study of convergence between various optimization algorithm codes in order to forecast 

the maximum load and initial energy absorbed in a base metal sample at a lower temperature 

indicative of the brittle state (BCMO, PSO, and Jaya). 

A thorough investigation was done in order to create a hybrid ANN that uses optimization 

approaches to forecast peak load and absorbed energy using different parameters (Hidden layer 

neurons, bias, and weight). The investigation's findings have produced the following conclusions

• A thorough investigation was undertaken for the building of hybrid ANNs with optimization 

methods to estimate peak load and absorbed energy using a variety of hidden layer neurons. PSO, 

BCMO, and the Jaya algorithm are used to compare current optimization strategies with inputs 

that have the same crack lengths. 

• In this gathered database, the most advantageous artificial neural network is one with 10 hidden 

layer neurons, according to global optimization methods. 

• The Jaya algorithm produces important outcomes with various outputs (peak load and absorbed 

energy) and low population and generation (200-200). 

• PSO and BCMO discovered the best outcomes when compared to the Jaya algorithm, especially 

when it came to data represented by absorbed energy. 
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