
Order N°……/Faculty/UMBB/2023

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Faculty of Hydrocarbons and Chemistry

Final Year Thesis Presented in Partial Fulfillment of the Requirements for the

Degree of:

MASTER

In Automation of Industrial Processes

Option: Automatic control

Presented by:

BENSMAINE Abdelkrim HAMMA Hichem

Title

LSTM-Autoencoder deep learning model for

predictive maintenance of an electric motor

Jury Members:

Mr. BOUMEDIENE Mohamed Said MCA FHC President

Mr. HAMADACHE Mohamed MCB FHC Examiner

Mr. YOUSSEF Tewfik MCB FHC Examiner

Ms. LACHEKHAB Fadhila MCB FHC Supervisor

academic year: 2022/2023

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Faculty of Hydrocarbons and Chemistry

Department: Automation of Industrial Processes

Option: Automatic Control

Final Year Thesis Presented in Partial Fulfillment of the Requirements for the

Degree of:

MASTER

Title

LSTM-Autoencoder deep learning model for

predictive maintenance of an electric motor

Presented by: Favorable assessment of the Supervisor:

BENSMAINE Abdelkrim F. LACHEKHAB signature

HAMMA Hichem

Favorable opinion of the President of the Jury:

Name signature

stamp and signature

Acknowledgements

First and foremost, we are grateful and thankful to Allah, the most gracious,

and the most merciful for helping us complete this modest work.

We would also like to extend our thanks to our supervisor, Ms. F. Lachekhab,

for her guidance, support, and valuable insights throughout the entire project.

Her expertise and commitment were instrumental in shaping the direction of our

research and pushing us to achieve the best possible outcomes.

Furthermore, we are appreciative to our friends and family for their

unwavering support and encouragement throughout this journey. Their belief in

us has been a constant source of motivation.

To all those mentioned above and anyone else who has directly or indirectly

contributed to the completion of this project, we extend our heartfelt thanks.

Your support and involvement have played a crucial role in our personal and

academic growth.

Sincerely,

BENSMAINE Abdelkrim

HAMMA Hichem

Dedication

To my mother & father whose love & support for me was unlimited and their

care and warmth never left me alone, I thank you from the depths of my heart

for making me the person I am today. May Allah protect you.

To my siblings & family, you always have been there for me. Thank you

greatly.

To my friends who were a second family through this journey. Thank you for

everything.

-Abdelkrim-

To my mother and father, whose unwavering support, encouragement, and

sacrifices have been the foundation of my journey. Your presence, your

guidance, and your unconditional love have shaped the person I am today. I am

forever grateful for the countless sacrifices you have made to provide me with

opportunities and for instilling in me the values of hard work and perseverance.

This achievement would not have been possible without you. Thank you for

everything.

To my siblings and family, your simple presence always was heartwarming,

thank you.

To friends who became family through this valuable journey, thank you.

-Hichem-

Contents

General introduction ... 1

Chapter I: Overview on Predictive Maintenance and AI ... 3

Ⅰ.1 Introduction ... 3

Ⅰ.2 Industrial Maintenance .. 3

Ⅰ.2.1 Reactive Maintenance ... 4

Ⅰ.2.2 Preventive Maintenance.. 5

Ⅰ.2.3 Predictive Maintenance .. 6

Ⅰ.3 Artificial Intelligence .. 8

Ⅰ.3.1 Machine Learning ... 9

Ⅰ.3.1.1 Supervised Learning .. 10

Ⅰ.3.1.2 Unsupervised Learning .. 11

Ⅰ.3.1.3 Semi-Supervised Learning ... 12

Ⅰ.3.1.4 Reinforcement Learning .. 13

Ⅰ.3.2 Artificial Neural Network ... 14

Ⅰ.3.3 Deep Learning .. 15

Ⅰ.3.3.1 Deep Neural Networks ... 16

Ⅰ.3.3.2 Convolutional Neural Networks .. 17

Ⅰ.3.3.3 Recurrent Neural Networks ... 18

Ⅰ.4 Problem statement ... 19

Ⅰ.5 Related work ... 20

Ⅰ.6 Conclusion ... 22

Chapter Ⅱ: Long Short-Term Memory Networks .. 23

Ⅱ.1 Introduction .. 23

Ⅱ.2 Long Short-Term Memory Networks .. 23

Ⅱ.2.1 LSTM Architecture ... 24

Ⅱ.2.1.1 The cell state and hidden state .. 25

Ⅱ.2.1.2 The input gate ... 26

Ⅱ.2.1.3 The forget gate .. 28

Ⅱ.2.1.4 The output gate ... 29

Ⅱ.2.2 LSTM Applications ... 31

Ⅱ.2.2.1 Natural Language Processing ... 31

Ⅱ.2.2.2 Image and Video Analysis .. 31

Ⅱ.2.2.3 Time Series Analysis .. 32

Ⅱ.2.2.4 Anomaly Detection ... 32

Ⅱ.3 Autoencoders ... 33

Ⅱ.4 LSTM Autoencoders .. 34

Ⅱ.4.1 LSTM Autoencoders architecture ... 35

Ⅱ.4.1.1 LSTM Encoder ... 35

Ⅱ.4.1.2 Latent space/bottleneck layer ... 36

Ⅱ.4.1.3 LSTM Decoder ... 36

Ⅱ.4.2 LSTM Autoencoders applications ... 37

Ⅱ.4.2.1 Time Series Forecasting ... 37

Ⅱ.4.2.2 Data Compression ... 38

Ⅱ.4.2.3 Anomaly Detection ... 39

Ⅱ.5 LSTM Autoencoders vs Regular LSTMs .. 40

Ⅱ.5.1 Similarities... 40

Ⅱ.5.2 Differences .. 40

Ⅱ.6 Predictive Maintenance and Anomaly Detection... 41

Ⅱ.7 The state of the art .. 41

Ⅱ.8 Conclusion ... 44

Chapter Ⅲ: Autoencoder model ... 45

Ⅲ.1 Introduction ... 45

Ⅲ.2 System & Database description .. 45

Ⅲ.3 Autoencoder-based program ... 47

Ⅲ.3.1 The Libraries .. 47

Ⅲ.3.2 Data preparation ... 49

Ⅲ.3.2.1 Data download ... 49

Ⅲ.3.2.2 Data visualization .. 51

Ⅲ.3.2.3 Data split .. 56

Ⅲ.3.3 Data preprocessing ... 56

Ⅲ.3.3.1 Down-sampling ... 57

Ⅲ.3.3.2 Reshaping…………………………………………………………………….57

Ⅲ.3.4 Autoencoder model .. 58

Ⅲ.3.4.1 Creating the model .. 58

Ⅲ.3.4.2 Training the model .. 61

Ⅲ.3.4.3 Visualizing the model .. 63

Ⅲ.3.5 AE Anomaly Detection .. 66

Ⅲ.4 Conclusion .. 69

Chapter Ⅳ: LSTM-Autoencoder model .. 70

Ⅳ.1 Introduction .. 70

Ⅳ.2 LSTM Autoencoder-based program ... 70

Ⅳ.2.1 Creating the model ... 70

Ⅳ.2.2 Training the model ... 72

Ⅳ.2.3 Visualizing the model .. 73

Ⅳ.2.3.1 Training Time ... 73

Ⅳ.2.3.2 Model Loss .. 74

Ⅳ.2.3.3 Model Accuracy .. 74

Ⅳ.2.3.4 Model Mean Squared Error ... 75

Ⅳ.2.4 LSTM-AE Anomaly detection... 76

Ⅳ.3 LSTM-AE vs Regular AE .. 78

Ⅳ.3.1 Training Time .. 79

Ⅳ.3.2 Loss functions .. 79

Ⅳ.3.3 MSE Anomalies ... 80

Ⅳ.4 Conclusion .. 80

General conclusion ... 81

Bibliography ... 82

List of Figures

Figure I.1 Maintenance plans of RM, PM, and PdM .. 2

Figure I.2 Representation of Artificial Intelligence and its subfields .. 6

Figure I.3 Components of Machine Learning ... 7

Figure I.4 Diagram of ML classes .. 13

Figure I.5 Structure of a deep neural network .. 14

Figure I.6 An example of a fully connected RNN .. 16

Figure I.7 Diagram of different recurrent units .. 17

Figure Ⅱ.1 RNN vs LSTM diagram .. 22

Figure Ⅱ.2 LSTM gates diagram ...22

Figure Ⅱ.3 Input gate computations diagram .. 25

Figure Ⅱ.4 Forget gate computations diagram .. 26

Figure Ⅱ.5 Output gate computations diagram ... 28

Figure Ⅱ.6 Autoencoder model ... 31

Figure Ⅱ.7 LSTM Autoencoder model ... 33

Figure Ⅱ.8 Bottleneck representation .. 34

Figure Ⅲ.1 Specifications of the MFS ABVT ... 46

Figure Ⅲ.2 Vibrations of normal state ... 52

Figure Ⅲ.3 Vibrations of 6g imbalance state ... 53

Figure Ⅲ.4 Vibrations of 20g imbalance state ... 54

Figure Ⅲ.5 Vibrations of 35g imbalance state ... 55

Figure Ⅲ.6 Summary of the AE model .. 60

Figure Ⅲ.7 First & last five AE Epochs .. 62

Figure Ⅲ.8 AE Training time per epoch .. 63

Figure Ⅲ.9 AE Model Loss ... 64

Figure Ⅲ.10 Autoencoder MSE ... 65

Figure Ⅲ.11 AE 6g Imbalance Anomalies .. 67

Figure Ⅲ.12 AE 20g Imbalance Anomalies .. 68

Figure Ⅲ.13 AE 35g Imbalance Anomalies .. 68

Figure Ⅳ.1 Summary of LSTM Autoencoder model ... 72

Figure Ⅳ.2 First & last five LSTM-AE Epochs .. 72

Figure Ⅳ.3 LSTM-AE Training Time per Epoch .. 73

Figure Ⅳ.4 LSTM-AE Model Loss .. 74

Figure Ⅳ.5 LSTM-AE Model Accuracy .. 75

Figure Ⅳ.6 LSTM-AE MSE ... 76

Figure Ⅳ.7 LSTM-AE 6g Imbalance Anomalies ... 77

Figure Ⅳ.8 LSTM-AE 20g Imbalance Anomalies ... 77

Figure Ⅳ.9 LSTM-AE 20g Imbalance Anomalies ... 78

 List of Acronyms

RM

Reactive Maintenance

PM Preventive Maintenance

PdM Predictive Maintenance

AI Artificial Intelligence

ML Machine Learning

RL Reinforcement Learning

Q-Learning Quality Learning

ACL Actor Critic Learning

DL Deep Learning

ANN Artificial Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

FRNN Fully connected Recurrent Neural Network

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

AE Autoencoder

GPU Graphic Processing Unit

TPU Tensor Processing Unit

ReLU Rectified Linear Unit

NLP Natural Language Processing

MFS Machinery Fault Simulator

ABVT Alignment-Balance-Vibration Test

MSE Mean Squared Error

CSV Comma-Separated Value

1

General introduction

Since the first industrial revolution in the late 18th century, industrial maintenance techniques

have evolved over time to address the challenges of equipment reliability and performance in

industrial settings. Initially, the predominant approach was reactive maintenance, also known

as "breakdown maintenance". This involved waiting for equipment failures to occur and then

taking corrective actions to fix the issues. While this approach was simple and cost-effective in

the short term, it often resulted in significant production losses, safety hazards, and higher repair

costs.

As industries became more complex and downtime costs increased, preventive maintenance

emerged as a more proactive strategy, involving routine inspections and maintenance tasks

based on predetermined schedules. This approach aimed to prevent unexpected failures by

addressing known wear and tear issues. While preventive maintenance reduced unplanned

downtime to some extent, it was not always efficient and often led to unnecessary maintenance

activities and associated costs.

In recent years, with advancements in technology and the rising implementation of Artificial

Intelligence techniques in the industrial sector, predictive maintenance (PdM) has gained

prominence. This approach utilizes real-time data from sensors, monitoring systems, and

predictive algorithms to assess equipment condition, identify potential failures, and schedule

maintenance activities accordingly. By adopting this approach, organizations can optimize

maintenance schedules, reduce costs, maximize equipment uptime, and enhance overall

operational efficiency.

Furthermore, emerging technologies such as Artificial Intelligence, Artificial Neural

Networks (ANNs), and Deep Learning (DL) methods are being integrated into industrial

maintenance practices. These technologies enable more advanced data processing, anomaly

detection, and predictive modeling, leading to more accurate predictions and optimized

maintenance strategies.

PdM is a superior and complex maintenance technique, it requires large amounts of data to

establish a pattern and predict the failures before occurring, which is why deep learning

techniques are an essential part of PdM. One of the most common DL techniques is the Long

Short-Term Memory (LSTM) architecture, which is a type of recurrent neural network (RNN)

that is capable of modeling and predicting sequential data. In PdM, LSTM can be used to

analyze time-series data from sensors or monitoring systems to detect patterns, trends, and

2

General Introduction

anomalies. By learning the temporal dependencies in the data, LSTM models can make

predictions about future equipment behavior and identify potential faults or failures.

In this thesis, we divided our work into four Chapters:

• In the first Chapter, we will talk about industrial maintenance approaches, especially

PdM, and how it can improve the performance of industrial systems and machinery.

Furthermore, we will introduce AI and its different subfields, including Machine

Learning, ANNs and DL techniques.

• In the second Chapter, we will dive in the LSTM and Autoencoder architectures used

in our model, explaining how these architectures function and how they are utilized

in PdM and anomaly detection.

• In the third Chapter, we will introduce our Autoencoder model, the program used to

create it, the data-base used to train it, and visualize its performance.

• Finally, in the fourth and last Chapter, we will present our LSTM-Autoencoder

model, which is a combination of LSTM and Autoencoders that leverage the features

of both architectures. We will explain this final model and compare its performance

with the previous regular Autoencoder model introduced in Chapter three, and

eventually make our conclusions.

Chapter I

Overview on Predictive Maintenance and AI

3

Chapter I

Overview on Predictive Maintenance and AI

Ⅰ.1 Introduction

Predictive maintenance (PdM) approaches have recently been widely used in industries for

managing the health status of industrial equipment as smart systems, machine learning (ML),

and deep learning (DL), within artificial intelligence (AI) have emerged. As a result of the

development and increasing popularity of these DL algorithms, it is now possible to gather

enormous amounts of operational and process conditions data generated from various pieces of

equipment and use the data to make an automated fault detection, diagnosis, and most

importantly, a prognosis to reduce and predict downtime and increase the utilization rate of the

components [1].

In this chapter, we are going to talk about Predictive Maintenance, Artificial Intelligence,

and all its subfields in a general manner, including the deep learning method used in our model,

and how it is related to the PdM approach.

Ⅰ.2 Industrial Maintenance

Industrial maintenance, refers to the activities and processes carried out to ensure the optimal

functioning, reliability, and longevity of industrial machinery, equipment, and systems within

a manufacturing or production facility. It involves a range of tasks aimed at preventing

equipment failures, minimizing downtime, and maximizing productivity.

Over the years, the field of industrial maintenance has undergone remarkable development,

fueled by technological advancements, it shifted towards more proactive and efficient practices.

Initially, maintenance practices were reactive, with equipment failures addressed as they

occurred. As industries grew, preventive maintenance emerged, involving scheduled

inspections and component replacements based on predetermined time intervals. However, this

approach lacked precision.

The advent of sensor technology and data analysis led to the rise of condition-based

maintenance, which allowed monitoring equipment health in real-time and performing

Chapter Ⅰ. Overview on Predictive Maintenance and AI

4

maintenance based on actual conditions. Building on this, predictive maintenance emerged,

utilizing advanced analytics and machine learning to predict failures and enable proactive

planning.

In summary, the evolution of industrial maintenance has transitioned from reactive to more

proactive, data-driven, and technology-enabled approaches. Integrating these approaches

enhances equipment reliability, reduces downtime, and achieves higher operational efficiency

[42, 43, 44].

Generally, maintenance techniques can be resumed in three categories:

• Reactive maintenance (RM)

• Preventive maintenance (PM)

• Predictive maintenance (PdM)

Figure I.1 Maintenance plans of RM, PM, and PdM [44]

Ⅰ.2.1 Reactive Maintenance

In the early stages of industrialization, maintenance was predominantly reactive. Equipment

failures were addressed as they occurred, resulting in unplanned downtime, productivity losses,

and higher maintenance costs.

Also known as Breakdown Maintenance, Reactive Maintenance is a maintenance technique

where repairs or replacements are carried out in response to equipment failures or breakdowns.

In this reactive paradigm, maintenance actions are taken only after a failure occurs, rather than

being planned or anticipated in advance. When a piece of equipment stops functioning or

exhibits a malfunction, maintenance personnel are mobilized to address the issue and restore it

to working condition [42].

Chapter Ⅰ. Overview on Predictive Maintenance and AI

5

RM is characterized by its unplanned and reactive nature, without any preventive measures

in place, equipment failures can occur suddenly and disrupt operations, resulting in delays,

reduced output, and potential safety risks. The focus of reactive maintenance is to resolve the

immediate problem and get the equipment back up and running as quickly as possible.

While reactive maintenance may be necessary in certain situations, it is generally regarded

as a less desirable approach compared to proactive maintenance strategies. It can be costlier

due to the urgent nature of repairs, the need for rush orders of replacement parts, and the

potential for collateral damage caused by the failure. Additionally, unplanned downtime can

result in missed production targets, customer dissatisfaction, and increased overtime costs.

Reactive maintenance can be suitable for non-critical equipment with minimal impact on

overall operations or when the cost of implementing preventive or predictive maintenance

strategies outweighs the potential losses from reactive maintenance.

However, in modern industrial settings, organizations strive to minimize reactive

maintenance by adopting more proactive and preventive maintenance approaches. These

proactive strategies, such as preventive maintenance or predictive maintenance, aim to identify

and address potential issues before they lead to equipment failures, resulting in improved

reliability, increased equipment lifespan, and reduced operational disruptions.

Ⅰ.2.2 Preventive Maintenance

As industries grew, and with the several downsides of RM, the concept of preventive

maintenance emerged.

Preventive maintenance is a systematic approach to maintenance that focuses on scheduled

inspections to prevent equipment failures and maximize operational efficiency. In preventive

maintenance, maintenance activities are planned and carried out before any signs of failure or

breakdown occur. The goal is to maintain equipment in optimal condition, extend its lifespan,

and minimize the risk of unexpected failures [44].

PM strategies typically involve routine inspections, lubrication, cleaning, and adjustments

based on manufacturer recommendations, industry best practices, and historical data. These

scheduled maintenance tasks are performed at predetermined intervals, such as daily, weekly,

monthly, or annually, depending on the equipment and its operating conditions.

By adhering to these schedules, potential issues can be identified early, allowing for timely

intervention and minimizing the likelihood of major breakdowns or malfunctions.

Chapter Ⅰ. Overview on Predictive Maintenance and AI

6

The benefits of preventive maintenance are numerous. By conducting regular inspections

and addressing minor issues promptly, the likelihood of equipment failure and unscheduled

downtime is significantly reduced. This leads to improved productivity, increased operational

efficiency, and reduced costs associated with emergency repairs and production interruptions.

Additionally, preventive maintenance helps identify and replace worn-out or faulty components

before they cause further damage or affect the performance of other interconnected systems.

To effectively implement a preventive maintenance program, organizations often maintain

detailed maintenance records, including equipment histories, maintenance schedules, and task

checklists. These records help track maintenance activities, identify trends, and plan future

maintenance tasks.

Preventive maintenance is particularly suitable for critical equipment, machinery, and

systems that have a significant impact on production, safety, or compliance. By investing in

regular maintenance and inspections, organizations can ensure equipment reliability, enhance

workplace safety, comply with regulatory requirements, and achieve higher levels of customer

satisfaction.

While preventive maintenance offers numerous benefits, it also has several downsides that

must be taken into consideration [43].

Firstly, implementing a preventive maintenance program incurs costs, as resources must be

allocated for regular inspections, servicing, and component replacements. Over-maintenance is

another concern, as excessive or unnecessary maintenance tasks can lead to increased costs and

inefficiencies. Additionally, preventive maintenance activities can disrupt operations, requiring

equipment to be temporarily taken offline and impacting production schedules. Lastly, despite

regular maintenance, unforeseen failures can still occur, and relying solely on preventive

measures may not address these unexpected events.

For these reasons, another maintenance technique had to be developed to improve the

effectiveness and reliability of the machinery. Thus, Predictive maintenance emerged.

Ⅰ.2.3 Predictive Maintenance

Predictive Maintenance (PdM) is a maintenance strategy that uses data analysis tools and

techniques to predict when maintenance or repair work on a specific piece of equipment or

machinery is required. The idea behind predictive maintenance is to avoid unscheduled

downtime and cut maintenance costs by performing maintenance work only when it is

necessary [15].

Chapter Ⅰ. Overview on Predictive Maintenance and AI

7

Predictive maintenance relies on a variety of methods, including data analytics, machine

learning, and artificial intelligence, to identify patterns and trends in equipment performance

data. PdM algorithms can detect early warning signs of equipment failure or deterioration by

analyzing data from sensors, maintenance logs, and other sources, and then provide

recommendations for maintenance actions to prevent or at least mitigate the issues detected

[16].

The foundation of predictive maintenance lies in collecting and analyzing relevant data such

as vibration, temperature, pressure, and performance metrics. Advanced analytics algorithms

process the data to identify trends, deviations from normal operating conditions, and indicators

of potential failure. Machine learning techniques can be applied to these datasets to develop

models that can predict failure probabilities and estimate remaining useful life.

By analyzing historical data and correlating it with real-time data (from sensors for

example), predictive maintenance algorithms can detect early signs of equipment degradation,

wear, or impending failure. This enables maintenance teams to intervene proactively,

performing targeted maintenance tasks such as component replacements, or adjustments when

the data indicates an increased risk of failure. This approach minimizes the chances of

unexpected breakdowns, reduces downtime, and optimizes the utilization of maintenance

resources.

The benefits of predictive maintenance are numerous. By addressing maintenance needs

before failures occur, organizations can significantly reduce unplanned downtime, which can

be costly and disruptive. PdM enables the scheduling of maintenance activities during planned

downtime or low-demand periods, minimizing the impact on production schedules. The ability

to anticipate failures and plan maintenance tasks in advance also reduces the need for

emergency repairs and rush orders for replacement parts, resulting in cost savings.

Furthermore, predictive maintenance allows for better asset management by optimizing the

lifespan of critical equipment. By identifying and addressing potential issues early,

organizations can extend the life of their assets, postpone costly capital investments, and

maximize return on investment. Predictive maintenance also supports condition-based

optimization, where maintenance intervals are adjusted based on actual equipment health,

ensuring that maintenance efforts are performed when needed, rather than on a fixed schedule.

However, implementing a predictive maintenance program requires a robust data

infrastructure, reliable sensors, and sophisticated analytics capabilities. It also requires skilled

personnel who can interpret the data and act upon the insights provided by predictive models.

Additionally, the success of predictive maintenance relies on the availability of historical data

Chapter Ⅰ. Overview on Predictive Maintenance and AI

8

and the continuous monitoring of equipment health. Therefore, organizations need to invest in

data collection systems, data storage, and analytics tools to support predictive maintenance

initiatives effectively.

In summary, predictive maintenance enables organizations to move from reactive or time-

based maintenance approaches to a proactive and data-driven strategy. By leveraging real-time

data analytics and machine learning, predictive maintenance allows for early detection of

equipment failures, targeted maintenance interventions, and optimized resource utilization.

Ⅰ.3 Artificial Intelligence

Artificial Intelligence (AI) is a rapidly evolving field that has the potential to revolutionize

the way we live and work. In recent years, it has been applied to a wide range of industries and

has shown promising results in improving efficiency, accuracy, and decision-making.

According to a recent report by McKinsey, AI could contribute up to $13 trillion to the global

economy by 2030 [2].

At its core, AI is a discipline of study that focuses on creating intelligent machines that can

perform tasks that typically require human intelligence, such as learning, problem-solving,

decision-making, and perception. The goal of AI is to develop systems that can operate

autonomously, adapt to new situations, and interact with humans and the environment in a

natural and seamless way [3].

From an industrial perspective, AI can be defined as the brain that allows a system to detect

its environment, interpret the data it collects, solve complicated issues, and learn from

experience [4].

Figure I.2 Representation of Artificial Intelligence and its subfields [5]

Chapter Ⅰ. Overview on Predictive Maintenance and AI

9

Ⅰ.3.1 Machine Learning

One of the key drivers of Artificial Intelligence is machine learning (ML), a subset of AI

that focuses on developing algorithms that can learn from data and improve their performance

over time.

Machine learning algorithms organize the data, learn from it, gather insights, and make

predictions based on the information it analyzed without the need for additional explicit

programming. Training a model with data and after that using the model to predict any new

data is the concern of Machine Learning [5].

One of the significant advantages of machine learning is its ability to handle complex and

large-scale datasets. By processing vast amounts of data, machine learning algorithms can

uncover intricate patterns and relationships that may not be apparent to humans. This enables

applications in various domains, such as image and speech recognition, natural language

processing, recommendation systems, fraud detection, and autonomous vehicles.

ML is a powerful field of study that enables computers to learn from data, discover patterns,

and make predictions or decisions. Through the use of sophisticated algorithms and statistical

techniques, machine learning has the potential to transform industries and solve complex

problems. As technology continues to advance, machine learning will play a crucial role in

shaping the future of artificial intelligence and driving innovation in various domains.

Machine learning techniques can be subdivided into supervised, unsupervised, semi-

supervised, and reinforcement learning [6, 7].

Figure I.3 Components of Machine Learning [5]

Chapter Ⅰ. Overview on Predictive Maintenance and AI

10

Ⅰ.3.1.1 Supervised Learning

Supervised learning is a machine learning technique where the algorithm learns from labeled

data, with each data point having corresponding input features and known output labels. The

goal of supervised learning is to build a predictive model that can accurately map input data to

the correct output labels based on the provided training examples [47].

The process of supervised learning begins with the collection of a labeled dataset, where

each data instance is associated with a known output value. This dataset is then divided into

two parts: the training set and the test set. The training set is used to train the model by

presenting it with input features and their corresponding labels. The model learns from the

training data by adjusting its internal parameters or weights based on the observed input-output

relationships. The objective is to minimize the difference between the predicted output and the

actual label for each training example.

Once the model is trained, it is evaluated using the test set, which consists of unseen data

with known labels. The model's performance is assessed by comparing its predicted outputs

with the true labels.

The main advantage of supervised learning is its ability to make accurate predictions or

classifications based on labeled data. It is widely used in various applications, including spam

detection, sentiment analysis, image recognition, speech recognition, and medical diagnosis.

Supervised learning models can also be extended to handle multiclass classification problems

and support probabilistic predictions, providing valuable insights for decision-making.

However, supervised learning also has limitations. It heavily relies on the availability of

labeled data, which can be expensive and time-consuming to obtain. An insufficient or biased

dataset may lead to inaccurate models and poor generalization of unseen data. Additionally,

supervised learning models may struggle when faced with data that falls outside the range of

the training examples, making them sensitive to outliers and noise [47].

In summary, supervised learning is a powerful machine learning approach that leverages

labeled data to build predictive models. It enables accurate predictions or classifications by

learning from observed input-output relationships. While it has its limitations, supervised

learning has proven to be valuable in solving a wide range of real-world problems and continues

to be a fundamental technique in the field of machine learning.

Chapter Ⅰ. Overview on Predictive Maintenance and AI

11

Ⅰ.3.1.2 Unsupervised Learning

In unsupervised learning, the data is not labelled, which means that the ML model aims to

discover unknown patterns in the data, by searching for similarities between the data points for

example. Algorithms are therefore formulated such that they can find patterns and structures in

the data on their own [48].

The process of unsupervised learning begins with collecting a dataset consisting of input

features without corresponding output labels. The goal is to find meaningful representations or

groupings within the data. Clustering is one common technique in unsupervised learning, where

similar data points are grouped based on their inherent similarities. Clustering algorithms, such

as k-means, hierarchical clustering, and DBSCAN, are used to identify clusters and partition

the data accordingly.

Another key approach in unsupervised learning is dimensionality reduction, which aims to

reduce the number of input features while preserving important information. This helps in

visualizing high-dimensional data and extracting relevant features. Autoencoders are

commonly used methods for dimensionality reduction.

Unsupervised learning algorithms can also be used for anomaly detection, where the goal is

to identify unusual or abnormal data points that deviate significantly from the norm. By learning

the regular patterns in the data, unsupervised algorithms can detect outliers or anomalies that

may indicate potential fraud, errors, or unusual behavior.

Evaluation in unsupervised learning is more challenging than in supervised learning since

there are no predefined output labels to compare against. Instead, the quality of unsupervised

learning algorithms is assessed based on the coherence and meaningfulness of the discovered

patterns, the compactness of clusters, or the ability to separate anomalies from normal data.

However, unsupervised learning has its challenges. Since there are no ground truth labels,

evaluating the performance of unsupervised algorithms can be subjective and depend on

domain knowledge. The algorithms heavily rely on the quality and representativeness of the

data, making it crucial to preprocess and clean the data appropriately. Additionally,

unsupervised learning algorithms can be computationally expensive, especially when dealing

with large-scale datasets or complex structures.

In summary, unsupervised learning is a valuable approach in machine learning that allows

for exploring and extracting patterns from unlabeled data. By uncovering hidden structures and

relationships, unsupervised learning algorithms provide insights, aid in data exploration, and

serve as a foundation for various downstream tasks.

Chapter Ⅰ. Overview on Predictive Maintenance and AI

12

Ⅰ.3.1.3 Semi-Supervised Learning

Semi-supervised learning is a branch of machine learning that combines elements of both

supervised and unsupervised learning. It deals with datasets that contain a small portion of

labeled data and a larger portion of unlabeled data. The goal of semi-supervised learning is to

leverage the limited labeled data together with the unlabeled data to improve the model's

performance and generalization [49].

The process of semi-supervised learning begins by partitioning the available data into

labeled and unlabeled subsets. The labeled data consists of input features along with their

corresponding output labels. The unlabeled data, on the other hand, contains input features

without any associated labels. The labeled data is used to train a model using supervised

learning techniques, while the unlabeled data is leveraged to enhance the model's performance.

Semi-supervised learning algorithms often incorporate unsupervised learning methods to

exploit the unlabeled data. By leveraging the inherent structure and patterns within the

unlabeled data, the algorithms aim to improve the model's ability to generalize to unseen data.

Unsupervised learning techniques such as clustering, dimensionality reduction, or generative

models can be used to extract additional information from the unlabeled data.

One common approach in semi-supervised learning is to use the unlabeled data to create a

smoother decision boundary or to estimate the underlying data distribution. By considering the

relationships and similarities among the unlabeled data points, the model can make more

informed predictions for new, unseen instances.

Semi-supervised learning is particularly useful in scenarios where obtaining labeled data is

costly, time-consuming, or difficult. By making effective use of a small labeled dataset in

conjunction with a larger unlabeled dataset, semi-supervised learning can achieve comparable

or even superior performance to supervised learning approaches that rely solely on labeled data.

In conclusion, semi-supervised learning is a powerful approach that combines elements of

supervised and unsupervised learning to leverage both labeled and unlabeled data. By

effectively utilizing the unlabeled data, semi-supervised learning algorithms can improve the

model's performance and generalization, particularly in scenarios where obtaining labeled data

is limited or expensive. Despite its challenges, semi-supervised learning continues to be an

active area of research, driving advancements in machine learning and expanding the range of

problems that can be addressed.

Chapter Ⅰ. Overview on Predictive Maintenance and AI

13

Ⅰ.3.1.4 Reinforcement Learning

In a reinforcement learning (RL) system, instead of providing input and output pairs, we

describe the current state of the system, specify a goal, provide a list of allowable actions and

their environmental constraints for their outcomes, and let the ML model experience the process

of achieving the goal by itself using the principle of trial and error to maximize a reward [8].

An agent interacts with an environment sequentially. At each step, the agent observes the

current state of the environment and takes action. The environment responds by transitioning

to a new state and providing feedback in the form of a reward signal, which indicates the

desirability of the agent's action. The goal of the agent is to learn a policy (a mapping from

states to actions) that maximizes the expected cumulative reward over time [41].

One key aspect of reinforcement learning is the trade-off between exploration and

exploitation. Initially, the agent explores different actions and learns about the environment. As

it gathers more knowledge, it shifts towards exploiting its current knowledge to maximize

rewards.

Reinforcement learning has been successfully applied to various domains, such as robotics,

game playing, autonomous vehicles, recommendation systems, and resource management.

RL encompasses a wide range of algorithms that can be used depending on the problem at

hand, the most common ones are Q-Learning and Actor-Critic Learning (ACL).

• Q-Learning is a model-free algorithm used in reinforcement learning to learn the

optimal action-value function, often referred to as the Q-function. The Q-function

represents the expected cumulative reward for taking a particular action in a given

state and following a specific policy. The Q-Learning algorithm iteratively updates

the Q-values based on the observed rewards and the estimated future rewards. It uses

a technique called Temporal Difference learning, which calculates the difference

between the estimated Q-value and the observed reward to update the Q-value. By

repeatedly interacting with the environment and updating the Q-values, the agent can

learn the optimal policy that maximizes the cumulative reward [45].

• Actor-Critic Learning (ACL) is an approach of RL that combines elements of both

policy-based and value-based methods. It utilizes two components: an actor and a

critic. The actor is responsible for learning and selecting actions based on the current

policy. It explores the environment, take actions, and gathers experiences. The critic,

Chapter Ⅰ. Overview on Predictive Maintenance and AI

14

on the other hand, evaluates the actions taken by the actor and provides feedback in

the form of a value function or Q-values. The actor-critic architecture allows for

continuous learning and policy improvement. The actor uses the feedback from the

critic to update its policy, while the critic uses the observed rewards to update its

value estimates. This way, the actor-critic algorithm can learn both the best actions

to take and the value of those actions [46].

In summary, Q-Learning is a value-based algorithm that learns the optimal action-value

function, while Actor-Critic Learning combines policy-based and value-based methods to learn

both the policy and the value function simultaneously. Both approaches have been widely used

in reinforcement learning and have contributed to many successful applications.

Ⅰ.3.2 Artificial Neural Network

Artificial Neural Network (ANN) is a type of ML inspired by the principle of information

processing in biological systems, ANNs consist of mathematical representations of connected

processing units called artificial neurons [8].

Like synapses in a brain, each connection between neurons transmits signals whose strength

can be amplified or attenuated by a weight that is continuously adjusted during the learning

process. Signals are only processed by subsequent neurons if a certain threshold is exceeded as

determined by an activation function.

Typically, neurons are organized into networks with different layers. An input layer usually

receives the data input and an output layer produces the ultimate result. In between, there are

zero or more hidden layers that are responsible for learning a non-linear mapping between input

and output.

“Feed-forward” is the first, most common and simplest architecture. It is formed by stacked

neurons creating layers, where all the neurons of a layer are connected to all the neurons of the

next layer by feeding their output to others’ input. However, there are no connections to neurons

of previous layers or among neurons of the same layer [11].

Artificial neural networks are of particular interest since their flexible structure allows them

to be modified for a wide variety of contexts across all types of ML, therefore, ANNs can be

referred to as “Shallow” or “Deep” depending on the number of hidden layers it contains.

Chapter Ⅰ. Overview on Predictive Maintenance and AI

15

Figure I.4 Diagram of ML classes [8]

Ⅰ.3.3 Deep Learning

Deep learning is a subset of machine learning that focuses on the development and

application of artificial neural networks with multiple layers, known as deep neural networks.

It aims to enable computers to learn and make predictions or decisions by mimicking the

structure and function of the human brain. Deep learning has gained significant attention and

popularity due to its remarkable ability to automatically learn hierarchical representations from

raw data, leading to a state-of-the-art performance in various domains [50].

At the core of deep learning are artificial neural networks, which consist of interconnected

nodes, called neurons, organized in layers. The neurons receive input signals, apply

mathematical transformations, and produce output signals that are passed on to the next layer.

The layers are stacked hierarchically, with each layer learning increasingly complex features or

representations of the input data.

One of the key advantages of deep learning is its ability to handle and extract meaningful

features from large-scale datasets. Deep neural networks can learn intricate representations of

images, text, audio, and other forms of data, leading to breakthroughs in computer vision,

natural language processing, predictive maintenance, and many other fields. Convolutional

neural networks (CNNs) are widely used in image-related tasks, while recurrent neural

networks (RNNs) are commonly employed for sequential and language-based data.

Deep learning has also benefited from advancements in hardware and computational

resources, as training deep neural networks often requires significant computational power.

Graphics processing units (GPUs) and specialized hardware accelerators, such as tensor

processing units (TPUs), have enabled faster training and inference of deep learning models.

Chapter Ⅰ. Overview on Predictive Maintenance and AI

16

In conclusion, deep learning is a powerful branch of machine learning that uses deep neural

networks to learn hierarchical representations from data. Its ability to automatically learn

features from raw data has revolutionized numerous fields and led to breakthroughs in various

applications. As hardware and algorithms continue to advance, DL is poised to drive further

innovation and impact a wide range of industries, shaping the future of artificial intelligence.

DL involves training artificial neural networks in order to detect patterns in large

unstructured data sets. These ANNs, containing several hidden layers and performing complex

tasks with minimal human interference, are mostly called Deep Neural Networks (DNNs).

Ⅰ.3.3.1 Deep Neural Networks

A Deep Neural Network (DNN) is simply an artificial neural network containing a large

number of hidden layers, which explains the term “deep”.

Figure I.5 Structure of a deep neural network

Deep neural networks typically consist of more than one hidden layer, organized in deeply

nested network architectures. Furthermore, they usually contain advanced neurons in contrast

to simple ANNs.

Therefore, DNNs may use multiple advanced operations in one neuron rather than using a

simple activation function. These characteristics allow deep neural networks to be fed with raw

input data and automatically discover a representation or output that is needed for the

corresponding learning task. This is the networks’ core capability, which is commonly known

as deep learning [8].

Chapter Ⅰ. Overview on Predictive Maintenance and AI

17

While there are numerous types of DNNs, the most widely known are Convolutional Neural

Networks and Recurrent Neural Networks.

Ⅰ.3.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural networks commonly used for

image and video processing tasks, such as image classification, object detection, and image

segmentation. CNNs consist of multiple layers of convolutional and pooling operations that

learn to extract features from images. In other words, CNNs have the human-like ability to

recognize and classify objects based on their appearance [9].

One of the significant advantages of CNNs is their ability to automatically learn hierarchical

representations from raw image data. By employing multiple layers, CNNs can capture

increasingly complex and abstract features, enabling them to perform tasks such as image

classification, object detection, and semantic segmentation. CNN architectures, such as

AlexNet, VGGNet, ResNet, and InceptionNet, have achieved remarkable performance in

various computer vision benchmarks and competitions.

Based on the dimension of the training data, CNNs can be devised into 1D CNNs and 2D

CNNs. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to

learn complex objects and patterns providing that they can be trained on a massive size visual

database with ground-truth labels. With proper training, this unique ability makes them the

primary tool for various engineering applications for 2D signals such as images and video

frames.

Yet, this may not be a viable option in numerous applications over 1D signals especially

when the training data is scarce or application specific. To address this issue, 1D CNNs have

recently been proposed and immediately achieved state-of-the-art performance levels in several

applications such as anomaly detection and identification in power electronics and electrical

motor fault detection. Another major advantage is that a real-time and low-cost hardware

implementation is feasible due to the simple and compact configuration of 1D CNNs that

perform only 1D convolutions (scalar multiplications and additions) [10].

In summary, CNNs are a key architecture in deep learning, particularly for computer vision

tasks. Their ability to automatically learn and extract features from images has led to significant

advancements in various applications. By leveraging convolutional and pooling layers, CNNs

can effectively capture spatial patterns and hierarchical representations, enabling them to

Chapter Ⅰ. Overview on Predictive Maintenance and AI

18

achieve state-of-the-art performance in image recognition, object detection, and other computer

vision tasks.

Ⅰ.3.3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural networks that excel in processing

sequential data, such as time series, text, and speech. RNNs contain feedback connections that

allow information to flow in both directions, unlike feedforward neural networks which only

flow in one direction. The feedback connections in RNNs allow the network to process

sequential data and capture temporal dependencies, by passing information from one step to the

next. At each step, the current input is combined with the previous hidden state to produce a

new hidden state and output. This process is repeated for each step in the sequence, allowing

the network to capture the context and dependencies of the input data [12].

Figure I.6 An example of a fully connected RNN [13]

In the last years, several RNN architectures have been developed to meet the industries’

standards, some of the most popular ones are the fully-connected RNN (FRNN), the long short-

term memory (LSTM), and the gated recurrent unit (GRU).

• FRNNs connect the output of the previous time step with the additional input of the

next time step, preserving important information about different time steps in the

network [13].

• LSTM architecture has one cell state and three gates: an input gate, an output gate,

and a forget gate. The cell state acts as a memory, while each gate functions like a

conventional neuron, providing a weighted sum of its inputs. The forget gate decides

what information to retain from previous steps. The input gate decides what

information to add from the current step. The output gate decides what the next

hidden state should be. Hence, only relevant information can pass through the

hierarchy of the network. Thus, the LSTM has mechanisms to process both short-

term and long-term memory components [14].

Chapter Ⅰ. Overview on Predictive Maintenance and AI

19

• GRU is similar to LSTM but has only two gates: an update gate and a reset gate. The

update gate works similarly to the forget gate and the input gate of LSTM. It decides

what information to throw away and what to add. The reset gate decides how much

past information to forget. GRU has fewer parameters, uses less memory, and is

faster to train than LSTM [14].

Figure I.7 Diagram of different recurrent units [14]

In conclusion, RNNs are powerful neural network architectures designed for processing

sequential data. Their ability to capture dependencies across time steps enables them to model

complex temporal patterns and make predictions or generate outputs based on sequential inputs.

With variants like LSTM and GRU, RNNs have achieved state-of-the-art results in various

sequential tasks, making them a fundamental tool in fields such as natural language processing,

speech recognition, and time series analysis.

Ⅰ.4 Problem statement

Predictive maintenance is a very advanced maintenance technique, it requires a large amount

of data to properly function and predict future failures before occurring. In order to properly

handle the large amount of data required, the implementation of AI and specifically DL models

might be essential.

In our thesis, we chose to use and study the Long Short-Term Memory architecture LSTM

as our main model for its ability to deal with large datasets and extract patterns to perform

efficient training. LSTM networks can capture long-term dependencies and model contextual

information making them particularly useful for tasks involving sequential data with temporal

dynamics. Thus, LSTM is perfectly suited to treat, train and learn from our database which

contain a large number of sequential vibration data.

To prove the LSTM efficiency, we will create a regular Autoencoder model using Python

programming language and the TensorFlow machine learning framework, and compare its

performance with our main LSTM-based Autoencoder model.

Chapter Ⅰ. Overview on Predictive Maintenance and AI

20

The two models will be trained on the exact same database, and evaluated on three primary

points:

• Training time

• Loss function

• MSE anomalies

By comparing these two models, we will be able to see how the LSTM layers affect the

performance of a regular Autoencoder, and make deductions from the results gathered.

Ⅰ.5 Related work

Bughin, Jacques, et al. (2018). presented a discussion paper on how AI will impact the global

economy in the future, the potential of AI for boosting the global economy was reviewed, and

concluded that it will be impressive and visible over time [2].

Peres, Ricardo Silva, et al. (2020). published a paper pinpointing the current landscape of AI

in manufacturing. A systematic review of different journals and science source materials was

made to better understand the requirements and steps necessary for a successful transition into

Industry 4.0 supported by AI and the challenges that may arise during this process [4].

Zhang, C., & Lu, Y. (2021) presented a paper that provides a state-of-the-art analysis of the

ongoing and upcoming AI research. Noting that AI is a multidisciplinary field with various

applications in numerous domains, concluding that the next advancement in this field can not

only provide computers better logical thinking powers but can also give them emotional

capabilities. It's possible that soon machine intelligence may surpass human intelligence [7].

Zonta, Tiago, et al. (2020) presented a survey that discusses the current obstacles and

restrictions in PdM while also categorizing this field of study in regard to Industry 4.0's

requirements. They concluded that computer science, including AI and distributed computing

areas, is increasingly prominent in a field where engineering was predominant, highlighting the

necessity of a multidisciplinary approach to properly meet Industry 4.0 [15].

Poór, P., Basl, J., & Zenisek, D. (2019) published an article to familiarize the reader with

maintenance challenges in the industry. The historical overview of maintenance was mentioned.

In the article, potential for a "new" kind of maintenance associated with Industry 4.0, namely

PdM, was proposed. They concluded that PdM, being the most advanced form of all

maintenance, is what companies strive to develop and what can give them an advantage over

others [42].

Chapter Ⅰ. Overview on Predictive Maintenance and AI

21

Çınar, Zeki Murat, et al. (2020). provided a study about the recent advancements of ML

techniques applied to PdM, the most commonly used ML algorithms for PdM were mentioned,

and the continuous growth of PdM was highlighted [1].

Theissler, Andreas, et al. (2021). surveyed papers related to the automotive industry from an

ML perspective, mentioning the adequacy of ML for PdM, concluding that the implementation

of DL techniques will increase but requires the availability of large amounts of labelled data

[6].

Serradilla, Oscar, et al. (2022). Published an article that aims at facilitating the task of

choosing the right DL model for PdM, by reviewing cutting-edge DL architectures, and how

they integrate with PdM to satisfy the needs of industrial companies (anomaly detection, root

cause analysis, remaining useful life estimation). They are categorized in industrial

applications, with an explanation of how to close any gaps. Open difficulties and potential

directions for further research are then outlined [11].

Janiesch, et al. (2021). published an article summarizing the fundamentals of ML and DL to

generate a broader understanding of the systematic framework of current intelligent systems.

They abstractly defined keywords and concepts, described how to develop automated analytical

models using ML and DL, and talked about the difficulties in applying such intelligent systems

in the context of electronic marketplaces and networked commerce [8].

Zhou, Z. H. (2018). presented an article that reviews the state of supervised learning

research, concentrating on three common forms of weak supervision: incomplete supervision,

inexact supervision, and inaccurate supervision. It was determined that when there is a

multitude of training instances with ground-truth labels, supervised learning techniques have

had remarkable success. However, in practical applications, gathering supervision information

incurs costs, making the ability to perform weakly supervised learning often beneficial. [47]

Van Engelen, J. E., & Hoos, H. H. (2020). presented a description of semi-supervised

learning as a field. The survey provides an up-to-date analysis of this crucial area of ML,

covering techniques from the early 2000s as well as more recent developments. Additionally,

they have introduced a new taxonomy for semi-supervised categorization techniques that makes

distinctions between the approach's main goal and how unlabeled data is employed [49].

Dike, Happiness Ugochi, et al. (2018). Published a paper that explores the training and

learning of ANN-based unsupervised learning. It gives an explanation of the procedures for

choosing and fixing a number of hidden nodes in an ANN-based unsupervised learning

environment. Additionally, a summary of the status, advantages, and difficulties of

unsupervised learning is provided. [48]

Chapter Ⅰ. Overview on Predictive Maintenance and AI

22

François-Lavet, Vincent, et al. (2018) provided a manuscript introducing deep RL models,

algorithms, and techniques. Focusing in particular on the generalization features and the

practical uses of deep RL [41].

Kiranyaz, Serkan, et al. (2021). wrote a paper that provides a thorough analysis of the

fundamental design ideas and technical uses of 1D CNNs, with a particular emphasis on current

advancements in this area. Finally, their distinctive qualities are highlighted, capping off their

cutting-edge performance [10].

Salehinejad, Hojjat, et al. (2017). published a paper presenting a survey on RNNs and several

new advances for newcomers and professionals in the field. The fundamentals and recent

advances are explained and the research challenges are introduced, mentioning the LSTM and

other RNNs architectures [12].

Na Pattalung, T., Ingviya, T., & Chaichulee, S. (2021). proposed a data-driven approach that

combines RNNs with graspable explanations for predicting the probability of mortality. This

method was able to identify and clarify the historical contributions of the linked elements to the

prediction, in addition to providing the anticipated mortality risk. It was determined that if

patients' clinical observations in the ICU are continually monitored in real time, they may

benefit from early intervention [14].

Ⅰ.6 Conclusion

With the advancement of technologies, and at the age of “Big-Data” where industries are

generating and collecting vast amounts of data from a variety of sources at an unprecedented

scale, predictive maintenance can be particularly effective at improving the reliability of the

machinery and industrial processes in general.

The vast amounts of data available present both an advantage and a challenge to the

predictive maintenance approach, because although having a lot of data can help PdM

algorithms predict failures and identify patterns, properly using these amounts of data can be

challenging, and one of the best ways to take on such a challenge is by using AI and deep

learning algorithms, such as DNNs, CNNs, and RNNs.

Chapter Ⅱ

Long Short-Term Memory Networks

23

Chapter Ⅱ

Long Short-Term Memory Networks

Ⅱ.1 Introduction

Predictive maintenance is a vital process that helps organizations optimize the maintenance

of their machinery and equipment by predicting and preventing equipment failure. To achieve

this, it is crucial to have accurate and timely predictions of equipment failures, which can be

achieved through machine learning techniques such as RNN’s Long Short-Term Memory

(LSTM).

LSTM is a type of neural network that has been proven to be highly effective at modeling

sequential data, making it well-suited for predictive maintenance tasks. By analyzing historical

data on equipment performance, LSTMs can learn patterns and correlations that are indicative

of future equipment failure.

In this Chapter, we are going to explain in detail what exactly are LSTMs and LSTM

Autoencoders, including their architecture, training, and how they can be used in the industrial

sector with the PdM approach.

Ⅱ.2 Long Short-Term Memory Networks

The typical feature of the RNN architecture is a cyclic connection, which enables the RNN

to possess the capacity to update the current state based on past states and current input data.

These networks, consisting of standard recurrent cells, have had incredible success with

numerous challenges. Unfortunately, when the gap between the relevant input data is large, the

above RNNs are unable to connect the relevant information [17].

To handle the “long-term dependencies,” Hochreiter and Schmidhuber [54] proposed the

long short-term memory (LSTM) model.

Chapter Ⅱ. Long Short-Term Memory Networks

24

Figure Ⅱ.1 RNN vs LSTM diagram [51]

Long short-term memory (LSTM) is a type of Recurrent Neural Network (RNN) that are

particularly useful for working with sequential data, such as time series anomaly detection,

which makes it convenient to implement in the PdM approach.

In particular, LSTMs excel at handling the complex and dynamic nature of equipment

performance data, which often contains multiple variables and dependencies. By capturing the

long-term dependencies in the data, LSTMs can provide more accurate predictions of future

equipment failures, enabling organizations to take preventive measures before failures occur

[18].

Ⅱ.2.1 LSTM Architecture

The LSTM architecture consists of several units, each containing three main components:

the input gate, the forget gate, and the output gate. These gates work together to control the

flow of information into and out of the memory cell [19].

Figure Ⅱ.2 LSTM gates diagram [52]

Chapter Ⅱ. Long Short-Term Memory Networks

25

In the LSTM network and generally any neural network, a lot of computations happen to

produce the appropriate output needed. Activation functions are necessary and play a vital role

in these computations.

Activation functions are mathematical functions that introduce non-linearity to the output of

a neural network's neurons or nodes. These functions are essential in neural networks because

they allow the network to learn and model complex relationships between inputs and outputs.

They introduce non-linearities, enabling the network to approximate non-linear functions, make

complex decisions, and handle diverse data distributions.

There are several activation functions used in neural networks, the most common ones are

the Sigmoid function, the Hyperbolic Tangent (Tanh) function, and the Rectified Linear Unit

(ReLU) Function.

• Sigmoid function: The sigmoid function, also known as the logistic function, maps

the input to a value between 0 and 1. It has an S-shaped curve and is often used in

binary classification problems.

The mathematical formula of the sigmoid function can be expressed as followed:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝑒(𝑥) = 𝜎(𝑥) = 1⁄1 + exp(−𝑥) Ⅱ.1

• Hyperbolic Tangent (Tanh) function: The hyperbolic tangent function is similar

to the sigmoid function but maps the input to a value between -1 and 1. It has a

symmetric S-shaped curve and is useful in classification tasks. The mathematical

formula of the Tanh function can be expressed as followed:

tanh(𝑥) = exp(𝑥) − exp(−𝑥)
⁄exp(𝑥) + exp(−𝑥) Ⅱ.2

• Rectified Linear Unit (ReLU) Function: The ReLU function is a popular choice in

deep learning due to its simplicity and effectiveness. It outputs the input directly if it

is positive, and 0 otherwise. The equation for the ReLU function is:

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) Ⅱ.3

Ⅱ.2.1.1 The cell state and hidden state

The cell state is the long-term memory and the core of the LSTM network, its main role is

to store information over long time periods and can be selectively read, written to, and erased

by the network. It can be thought of as a conveyor belt that runs through the entire chain of

LSTM cells, carrying information from the previous cell to the next one.

Chapter Ⅱ. Long Short-Term Memory Networks

26

In each time step, the cell state is updated based on the three gates: the input gate, the forget

gate, and the output gate. The input gate determines which information should be stored in the

cell state, the forget gate determines which information should be erased, and the output gate

determines which information should be used to compute the output [20].

On the other hand, the hidden state is the output of each cell in the LSTM network, which is

a function of the current input and the previous hidden state. It is also sometimes referred to as

the short-term memory of the network, as it stores information over short periods of time.

Unlike the cell state, the hidden state is not directly involved in the gating mechanisms of

the LSTM, but it is computed from the cell state and can be thought of as a summary of the

information stored in the cell state.

To summarize, the cell state and hidden state are both important components in LSTM

networks, with distinct roles. The cell state stores information over long time periods and is

updated based on the gating mechanisms of the LSTM. The hidden state, on the other hand, is

the output of each cell and stores information over short periods. While they both carry

information from the previous cell to the next one, the cell state is the primary carrier of long-

term information, while the hidden state summarizes the information stored in the cell state and

is used for making predictions or passing information to downstream tasks.

Ⅱ.2.1.2 The input gate

The input gate determines which information is relevant to the current time step and should

be stored in the memory cell. It takes as input the current input and the previous hidden state

and applies an activation function (typically a sigmoid function) to each component. The

sigmoid function is commonly used in neural networks as an activation function for binary

classification problems [21].

In the input gate, the sigmoid function is used to "gate" the input by deciding which values

should be allowed into the memory cell and which should be ignored, it outputs values between

0 and 1, which can be interpreted as the degree of importance that should be assigned to each

input value. Values closer to 0 will be less important and may be ignored, while values closer

to 1 will be considered important and allowed into the memory cell.

While using only the sigmoid function in the input gate of an LSTM may be sufficient in

some cases and could simplify the model’s architecture, using a combination of sigmoid and

hyperbolic tangent (tanh) function is the most common approach.

Chapter Ⅱ. Long Short-Term Memory Networks

27

Figure Ⅱ.3 Input gate computations diagram [52]

The sigmoid function alone is capable of regulating the flow of information, but it doesn't

provide any control over the range of values that can be stored in the memory cell, that is why

the tanh function is implemented.

The tanh function is another widely used activation function in neural networks. It maps the

input values to a range between -1 and 1, which helps to control the range of the values that are

stored in the memory cell. This is important because the memory cell can store both positive

and negative values, and the tanh function helps to keep these values (called candidate values)

stable by preventing them from growing too large or too small.

By combining these two activation functions, the input gate can effectively "gate" the input

and store the relevant information in the memory cell, while filtering out irrelevant information

and avoiding any possible instability in the learning process.

This combination can be achieved by using two layers, the sigmoid function and the

hyperbolic tangent function would be applied respectively to the first and second layers.

As the first layer is being trained, the “weights” (parameters that are learned during the

training process) in the sigmoid function will be updated such that it learns to filter the

information received as previously explained.

The calculations of the first layer can be represented by the following equation:

Where:

𝑖1 = 𝜎(𝑊𝑖1 ∙ (𝐻𝑡−1 , 𝑥𝑡) + 𝑏𝑖𝑎𝑠𝑖1) Ⅱ.4

• 𝑊𝑖1 is the weight matrix of the first layer 𝑖1

• 𝐻𝑡−1 is the previous hidden state

Chapter Ⅱ. Long Short-Term Memory Networks

28

• 𝑥𝑡 is the current input

• 𝑏𝑖𝑎𝑠𝑖1 is a vector added to improve the accuracy of the model

The second layer represents the calculation of the candidate values, regulating the network

by passing the previous hidden state and current input into the hyperbolic tangent function,

as followed:

𝑖2 = 𝑡𝑎𝑛ℎ(𝑊𝑖2 ∙ (𝐻𝑡−1 , 𝑥𝑡) + 𝑏𝑖𝑎𝑠𝑖2) Ⅱ.5

The outputs of these two layers are then multiplied and the information that needs to be

stored in the memory cell results:

𝑖𝑖𝑛𝑝𝑢𝑡 = 𝑖1 ∙ 𝑖2 Ⅱ.6

Ⅱ.2.1.3 The forget gate

The forget gate in an LSTM network determines which information in the memory cell

should be forgotten or discarded, based on the current input and the previous hidden state. Its

main role is to prevent the network from remembering irrelevant or outdated information, which

could lead to overfitting or poor performance [22].

Figure Ⅱ.4 Forget gate computations diagram [52]

To achieve this, the LSTM's forget gate calculates a forget vector, which is a set of values

between 0 and 1 that determine how much of each element in the previous long-term memory

should be preserved or forgotten. The forget vector is created by passing the concatenation of

the current input and the previous short-term memory through a sigmoid activation function.

This sigmoid function maps the input to a range between 0 and 1, similarly to the input gate,

Chapter Ⅱ. Long Short-Term Memory Networks

29

with values closer to 0 indicating that the corresponding element in the previous long-term

memory should be forgotten, and values closer to 1 indicating that the element should be

preserved.

The forget vector has values ranging from 0 to 1 and can be mathematically represented by

the following equation:

𝑓 = 𝜎(𝑊𝑓𝑜𝑟𝑔𝑒𝑡 ∙ (𝐻𝑡−1 , 𝑥𝑡) + 𝑏𝑖𝑎𝑠𝑓𝑜𝑟𝑔𝑒𝑡) Ⅱ.7

Once the forget vector is calculated, it is multiplied element-wise by the previous long-term

memory to obtain the new long-term memory, as follows:

𝐶𝑡 = 𝑓 ⊙ 𝐶𝑡−1 Ⅱ.8

Where:

• 𝐶𝑡 is the new long-term memory

• 𝑓 is the forget vector

• ⊙ represents the element-wise multiplication

• 𝐶𝑡−1 is the previous long-term memory

The new long-term memory is then updated with the information from the current input

using the input gate, which determines which parts of the current input should be added to the

long-term memory.

𝐶𝑡 = 𝑓 ⊙ 𝐶𝑡−1 + 𝑖𝑖𝑛𝑝𝑢𝑡 Ⅱ.9

This process effectively erases information from the previous long-term memory that is no

longer relevant to the current input. By doing so, the network can learn to focus on the most

important features of the input data and make better predictions or decisions.

Ⅱ.2.1.4 The output gate

The output gate in an LSTM cell is a key component that determines which parts of the long-

term memory and current input are passed on to the next cell or used as the final output of the

network. It is responsible for regulating the flow of information and selectively passing on

relevant information to subsequent time steps or as output [23].

Chapter Ⅱ. Long Short-Term Memory Networks

30

Figure Ⅱ.5 Output gate computations diagram [52]

The output gate takes as input the current input, the previous hidden state, and the current

long-term memory, which have all been processed by their respective gates (input and forget

gates) as previously explained.

First, the current input and the previous hidden state are passed into the sigmoid activation

function with the appropriate weights, which will determine the proportion of the current long-

term memory that should be included in the new short-term memory.

𝑂1 = 𝜎(𝑊𝑂1 ∙ (𝐻𝑡−1 , 𝑥𝑡) + 𝑏𝑖𝑎𝑠𝑂1) Ⅱ.10

Then, the tanh activation function is applied to the new long-term memory, which was

calculated by the forget gate and updated by the input gate. This normalizes the values of the

new long-term memory.

𝑂2 = 𝑡𝑎𝑛ℎ(𝑊𝑂2 ∙ 𝐶𝑡 + 𝑏𝑖𝑎𝑠𝑂2) Ⅱ.11

The normalized new long-term memory is then multiplied element-wise with the output of

the sigmoid gate to produce the new short-term memory:

𝐻𝑡 , 𝑂𝑡 = 𝑂1 ⊙ 𝑂2 Ⅱ.12

The hidden state/short-term memory and cell state/ long-term memory produced by these

gates is then passed to the next time step for the process to be repeated or used as the final

output of the network.

Chapter Ⅱ. Long Short-Term Memory Networks

31

Ⅱ.2.2 LSTM Applications

Long short-term memory networks have been widely used over the years and are constantly

gaining popularity with the development of artificial intelligence and deep learning, therefore,

LSTMs have a wide range of applications, such as Natural Language Processing (NLP), Image

and Video Analysis, time series analysis and anomaly detection.

Ⅱ.2.2.1 Natural Language Processing

Natural Language Processing (NLP) involves the use of computers to analyze, understand,

and generate human language in various forms, including written text, spoken language, and

even sign language.

LSTMs are widely used in NLP tasks such as language modeling, speech recognition,

machine translation, and sentiment analysis, among others. One of the key advantages of

LSTMs in NLP is their ability to handle variable-length input sequences and capture long-term

dependencies in the data. This makes LSTMs particularly effective in tasks such as language

modeling, where the model must predict the likelihood of a sequence of words based on the

context of the previous words [24].

Ⅱ.2.2.2 Image and Video Analysis

Image and video analysis is a field of study that involves the use of computers to interpret

and understand visual information. This field has many applications, ranging from object

recognition and image captioning to medical imaging and surveillance systems.

In the context of machine learning, image, and video analysis often involves the use of deep

learning techniques, such as convolutional neural networks (CNNs) and LSTMs. While CNNs

are particularly well-suited for image analysis tasks, such as identifying objects or classifying

images into different categories, LSTMs have also shown great promise in the image and video

analysis application, as they can be used to analyze the temporal aspect of video data, such as

identifying changes in motion or tracking objects over time [25].

One of the main advantages of LSTMs in these applications is their ability to capture the

temporal dependencies in the data and to maintain context over longer sequences. For example,

in video analysis tasks, LSTMs can analyze a sequence of frames to identify objects or events

that occur over time. In image captioning tasks, LSTMs can be used to generate descriptive

captions that capture the content and context of the image.

Chapter Ⅱ. Long Short-Term Memory Networks

32

Ⅱ.2.2.3 Time Series Analysis

Time series analysis is a field of study that focuses on analyzing and modeling data that

varies over time. This type of data is often collected at regular intervals, such as hourly, daily,

or monthly, depending on the specific operation monitored, and can be found in many different

domains, including finance, economics, and engineering [26]. Time series analysis involves

identifying patterns and trends in the data, as well as forecasting future values, which could be

very effective for applying predictive maintenance.

In recent years, there has been a growing interest in using machine learning techniques, such

as deep learning, for time series analysis. Recurrent neural networks (RNNs), and LSTMs in

particular, have emerged as a powerful tool for time series analysis and forecasting.

Time series data can exhibit complex temporal dependencies and nonlinear relationships that

are difficult to capture with traditional statistical methods. LSTMs can learn these complex

patterns by maintaining a memory of previous values, allowing them to effectively model long-

term dependencies in the data [27].

One of the key advantages of LSTMs in time series analysis is their ability to handle variable-

length sequences of data. This is particularly important for time series data, which can have

varying lengths depending on the specific application. LSTMs are able to adapt to these

variable-length sequences by using a gating mechanism that controls the flow of information

through the network.

In addition to forecasting future values, LSTMs can also be used for anomaly detection,

identifying unusual patterns or outliers in the data that may indicate equipment failure or other

abnormal conditions.

Ⅱ.2.2.4 Anomaly Detection

Anomaly detection is the process of identifying unusual or unexpected patterns or events in

data. Anomalies can be caused by a variety of factors, including equipment failure, malicious

activity, or changes in the underlying distribution of the data. Anomaly detection techniques

are used in many different domains, including finance, healthcare, cybersecurity, and industrial

automation [28].

One of the key challenges in anomaly detection is balancing the trade-off between sensitivity

and specificity. A highly sensitive anomaly detection system will identify as many anomalies

as possible, but may also generate a high number of false positives. On the other hand, a highly

specific system may generate fewer false positives but miss some true anomalies. Balancing

Chapter Ⅱ. Long Short-Term Memory Networks

33

these trade-offs requires careful tuning of the anomaly detection algorithm and consideration

of the specific domain and application.

In recent years, there has been growing interest in using deep learning techniques, such as

LSTMs for anomaly detection.

In anomaly detection, the goal is to identify patterns in data that deviate significantly from

what is considered normal or expected. Anomaly detection using LSTM networks is

particularly effective for time series data, where patterns can change over time and may be

difficult to detect using traditional methods [29].

To use LSTM anomaly detection, the first step is to train an LSTM network on normal data

to learn the patterns and relationships in the time series. This training process involves feeding

the LSTM network with historical data and optimizing the network's parameters to minimize

the difference between the predicted and actual values. Once the network has been trained on

normal data, it can be used to detect anomalies in new data.

When the LSTM network encounters a time series data point that deviates significantly from

the learned patterns, it can flag that data as anomalous and alert users about potential issues.

For example, in the context of predictive maintenance, an LSTM network trained on sensor

data from industrial equipment can identify patterns that indicate potential equipment failures,

allowing maintenance teams to take proactive measures to prevent downtime.

Ⅱ.3 Autoencoders

Autoencoders are a type of neural networks that can learn to encode and decode different

types of data. Commonly used in unsupervised learning tasks, the goal of an autoencoder is to

learn a compressed representation of the input data in a lower-dimensional space, and then use

this representation to reconstruct the original data as accurately as possible [30].

Figure Ⅱ.6 Autoencoder model [53]

Chapter Ⅱ. Long Short-Term Memory Networks

34

Autoencoders consist of two main parts: an encoder and a decoder. The encoder takes the

input data and maps it to a lower-dimensional latent space, while the decoder takes the encoded

data and reconstructs the original input data.

By training the network to minimize the difference between the input data and the

reconstructed data, the autoencoder can learn to capture the most important features of the input

data and ignore any irrelevant or noisy information.

Autoencoders have a wide range of applications, including data compression, image and

speech recognition, and anomaly detection [30].

In anomaly detection, autoencoders can be used to identify patterns in temporal data by

learning to encode the normal behavior of a system. The idea is to train the autoencoder on a

dataset of normal, or non-anomalous, instances, and then use it to reconstruct new instances.

When an anomalous instance is encountered, it will likely have a higher reconstruction error

than normal instances, since it does not fit the learned pattern. Thus, the reconstruction error

can be used as a metric for anomaly detection, and instances with high reconstruction error can

be flagged for further investigation.

Autoencoders have several advantages over traditional anomaly detection methods, they can

learn complex patterns in data and do not require explicit feature engineering. They are also

able to adapt to new and changing patterns in the data, making them suitable for dynamic

systems.

Ⅱ.4 LSTM Autoencoders

Long Short-Term Memory autoencoders are a type of autoencoder that incorporates LSTM

units in their architecture to handle sequential data.

Regular autoencoders, in their standard form, are not specifically designed to handle

sequential data. They are primarily suited for static, non-sequential data such as images, tabular

data, or fixed-length feature vectors, in contrast to LSTM autoencoders, they are typically not

equipped to capture the temporal dependencies and sequential patterns present in sequential

data.

LSTM autoencoders were created to address the unique challenges of modeling and

reconstructing sequential data. By leveraging the temporal modeling capabilities of LSTM

units, these models offer improved performance in capturing temporal dependencies,

compressing sequential data, and generating/reconstructing sequences. They have become a

valuable tool in various fields where sequential data analysis is required [31-32].

Chapter Ⅱ. Long Short-Term Memory Networks

35

Ⅱ.4.1 LSTM Autoencoders architecture

The LSTM autoencoder architecture combines the power of LSTM units for sequential

modeling with the principles of autoencoders for learning compressed representations. This

enables the model to effectively encode and reconstruct sequential data while preserving its

essential characteristics.

Figure Ⅱ.7 LSTM Autoencoder model [33]

The architecture of an LSTM autoencoder consists of three main components: an LSTM

encoder, a bottleneck layer (latent state), and an LSTM decoder [33].

Ⅱ.4.1.1 LSTM Encoder

The LSTM encoder takes a sequential input and processes it step by step. At each time step,

the LSTM unit computes the information detected (inputs) as described earlier. It receives an

input and its hidden state from the previous time step, it then updates its hidden state and cell

state based on the current input and the previous hidden state and cell state.

The encoder typically consists of multiple LSTM units stacked on top of each other, forming

a deep LSTM architecture, this architecture processes the input sequence sequentially,

capturing the temporal dynamics and dependencies within the data. It gradually encodes the

sequential information into a compressed representation [34].

As the input sequence is processed step by step, the final LSTM layer in the encoder outputs

the compressed representation or the latent space. This latent space represents a compressed

and abstract representation of the input sequence, capturing its most salient features.

Chapter Ⅱ. Long Short-Term Memory Networks

36

Ⅱ.4.1.2 Latent space/bottleneck layer

The latent space or bottleneck layer in an LSTM autoencoder represents the compressed and

abstract representation of the input sequence obtained from the encoder. It acts as an

information bottleneck, capturing the essential features and patterns from the input sequence in

a lower-dimensional representation. This layer effectively compresses the input data, reducing

its dimensionality [35].

The term "bottleneck" highlights the idea that the representation space is narrowed down,

analogous to a bottleneck in a physical sense where the flow of a substance is constrained to

pass through a smaller opening. This analogy reflects the compression and dimensionality

reduction that occur in the bottleneck layer of an LSTM autoencoder.

Figure Ⅱ.8 Bottleneck representation

The dimensionality of the bottleneck layer is typically much smaller than the input sequence,

representing a more compact and informative representation of the sequential data.

The bottleneck layer/latent space acts as the bridge between the encoder and the decoder,

providing the encoded information, it serves as the foundation for the reconstruction process in

the decoder.

Ⅱ.4.1.3 LSTM Decoder

The decoder is responsible for reconstructing the original input sequence from the

compressed representation obtained from the bottleneck layer. It plays a crucial role in the

autoencoder's task of generating an output that closely resembles the input [35].

Similar to the encoder, the decoder typically consists of one or more LSTM layers. These

layers receive the compressed representation, which serves as the initial input. The LSTM

layers sequentially process this input, generating output at each time step.

At each time step, the LSTM layer takes the input from the previous time step and its own

hidden state as inputs. It then performs computations to generate an output for the current time

Chapter Ⅱ. Long Short-Term Memory Networks

37

step. The hidden state of the LSTM layer captures the temporal dependencies and patterns in

the data, allowing the decoder to generate a sequential output that reflects the original sequence.

By repeating this process for each time step, the decoder gradually reconstructs the original

input sequence. Each LSTM layer builds upon the information from the previous time steps,

utilizing its hidden state to inform the generation of the current output.

During training, the reconstruction loss is calculated to quantify the dissimilarity between

the reconstructed output sequence and the original input sequence. A suitable loss function,

such as mean squared error (MSE), is employed depending on the nature of the input data [36].

The goal of training the autoencoder is to minimize this reconstruction loss. By optimizing

the model's parameters, the autoencoder learns to generate reconstructed output sequences that

closely resemble the original input sequences. Minimizing the reconstruction loss encourages

the autoencoder to capture and reproduce the most salient features of the input data.

The final output of the decoder is the reconstructed output sequence, which ideally should

closely match the original input sequence. This reconstructed output can be used for various

purposes, such as data analysis, anomaly detection, or generating predictions.

Ⅱ.4.2 LSTM Autoencoders applications

LSTM autoencoders have emerged as powerful tools with a wide range of applications in

the field of sequence modeling and analysis. Their ability to capture complex temporal

dependencies, compress input data into a latent space, and reconstruct the original sequence

make them well-suited for various tasks.

From anomaly detection and data compression to time series forecasting, LSTM

autoencoders offer versatile solutions in different domains such as cybersecurity, finance, and

manufacturing. By leveraging the strengths of LSTM networks in combination with the

reconstruction capabilities of autoencoders, these models have proven effective in addressing

real-world challenges and extracting valuable insights from sequential data.

Ⅱ.4.2.1 Time Series Forecasting

Time series forecasting is one of the most common and well-established applications of

LSTM autoencoders. The particular ability of LSTM autoencoders to capture temporal

dependencies and patterns in sequential data, make them highly effective for time series

forecasting tasks.

Chapter Ⅱ. Long Short-Term Memory Networks

38

In time series forecasting, the goal is to predict future values or patterns based on past

observations. LSTM autoencoders can learn to encode the input time series into a compressed

representation or latent space, capturing the most relevant information. The decoder part of the

autoencoder can then generate future predictions based on this compressed representation.

While regular LSTM networks can also be used for time series forecasting, LSTM

autoencoders can offer additional benefits in this area due to their enhanced ability to capture

temporal dependencies and model complex patterns.

The unsupervised nature of autoencoders allows them to learn from unlabeled data without

explicit future targets, making them adaptable to scenarios where future labels are scarce or

unavailable. Furthermore, the compression aspect of autoencoders enables them to extract and

represent the most relevant features from the input time series, reducing the dimensionality and

focusing on key information for accurate forecasting [37].

By leveraging the reconstruction loss during training, LSTM autoencoders learn to capture

the intricate temporal dependencies in the data, making them highly effective in capturing long-

term patterns and handling irregularities. These characteristics, combined with the ability to

detect anomalies through higher reconstruction errors, make LSTM autoencoders well-suited

for time series forecasting, providing a powerful tool to model and predict complex temporal

dynamics in various domains.

Ⅱ.4.2.2 Data Compression

Data compression refers to the process of reducing the size of data files or streams without

losing essential information. The goal of data compression is to minimize storage space

requirements, reduce transmission bandwidth, and improve overall efficiency in handling and

processing data.

While regular LSTM networks can perform data compression to some extent, LSTM

autoencoders are generally better suited for data compression tasks.

LSTM autoencoders are specifically designed with a bottleneck layer that serves the purpose

of compressing the input data into a lower-dimensional latent space. The training objective of

the autoencoder is to reconstruct the original input sequence from this compressed

representation. By leveraging this reconstruction process, the autoencoder learns to capture and

encode the most salient features of the input data, effectively reducing its dimensionality.

Chapter Ⅱ. Long Short-Term Memory Networks

39

Regular LSTM networks, on the other hand, are primarily designed for sequence modeling

and prediction. While they can implicitly capture temporal dependencies and represent

sequential patterns, their primary focus is not on explicit data compression.

LSTM autoencoders, with their dedicated architecture for compression, tend to offer better

compression capabilities compared to regular LSTM networks. The inclusion of the bottleneck

layer in LSTM autoencoders specifically facilitates the extraction and representation of

essential features in a lower-dimensional space [35, 36, 37].

Therefore, when it comes to data compression tasks, LSTM autoencoders are generally

preferred over regular LSTM networks due to their specialized design and the explicit inclusion

of a compression mechanism in their architecture.

Ⅱ.4.2.3 Anomaly Detection

As previously explained, anomaly detection is the process of identifying patterns or instances

that deviate significantly from the norm or expected behavior within a dataset. An anomaly

refers to a data point or a set of data points that do not conform to the usual patterns or behaviors

observed in the majority of the data.

Regular LSTM networks have been successfully applied to anomaly detection tasks and can

effectively identify deviations from expected behavior. They are capable of capturing temporal

dependencies and modeling sequential patterns, which can be advantageous for detecting

anomalies in time series data.

On the other hand, LSTM autoencoders offer additional features that can be beneficial for

anomaly detection. The unsupervised nature of autoencoders allows them to learn

representations of normal data without requiring explicit anomaly labels. The reconstruction-

based approach, where the model aims to reconstruct the input data, can help identify anomalies

as instances with high reconstruction errors. The dimensionality reduction aspect of

autoencoders can also enhance their ability to capture salient features and reduce the impact of

noise [38].

However, it is important to note that the performance of both LSTM autoencoders and

regular LSTM networks in anomaly detection tasks can vary depending on factors such as the

complexity and nature of the data, the choice of hyperparameters, and the specific

characteristics of the anomalies being targeted [39]. Therefore, it is recommended to conduct

empirical evaluations and comparisons to determine which approach is more suitable for a

particular anomaly detection scenario.

Chapter Ⅱ. Long Short-Term Memory Networks

40

Ⅱ.5 LSTM Autoencoders vs Regular LSTMs

Regular LSTMs and LSTM autoencoders are both deep learning models that are increasingly

applied to various domains due to their ability to capture long-term dependencies and learn

complex patterns in sequential data.

These two models present various similarities and also differences that make one of them

more appropriate to use than the other depending on the task at hand.

Ⅱ.5.1 Similarities

The are several similarities between the LSTM autoencoders and the regular LSTMs, these

similarities can be resumed in the following points:

• Architecture: Both regular LSTMs and LSTM autoencoders are built upon the

architecture of Long Short-Term Memory (LSTM) networks. They both utilize the

recurrent nature of LSTMs to capture sequential dependencies and handle time series

data.

• Temporal Modeling: Both models excel in modeling and analyzing temporal

sequences. They are designed to handle time series data, where the order of data points

matters, and capturing sequential patterns is crucial.

• Flexibility in Input Data: Both models can handle various types of input data,

including numerical, categorical, or textual data. They can be adapted and configured

to process different data modalities, making them versatile for a wide range of

applications.

Ⅱ.5.2 Differences

While the LSTM autoencoders have similarities with the regular LSTMs, they also present

differences that make them stand off from each other, these differences can be expressed in the

following points:

• Objective and Task: Regular LSTMs are primarily used for tasks such as sequence

prediction, natural language processing, and sentiment analysis. They aim to model and

predict the next element in a sequence. In contrast, LSTM autoencoders are designed

for unsupervised learning tasks, such as data compression and anomaly detection.

• Output and Reconstruction: Regular LSTMs typically produce an output sequence,

which is often the predicted value or label for each element in the input sequence. LSTM

Chapter Ⅱ. Long Short-Term Memory Networks

41

autoencoders, on the other hand, focus on reconstructing the input sequence using the

compressed latent space representation. The reconstruction objective guides the

learning process and enables tasks like data compression and anomaly detection.

• Training Data: Regular LSTMs are often trained using labeled data, where each input

sequence is associated with a corresponding target or label. LSTM autoencoders, on the

other hand, can be trained with either labeled or unlabeled data. In the case of anomaly

detection, they can be trained on normal data only and identify anomalies as instances

with high reconstruction errors.

• Latent Space Representation: One key distinction of LSTM autoencoders is the

presence of a latent space or bottleneck layer. This compressed representation captures

the most salient features of the input sequence. Regular LSTMs do not have an explicit

mechanism for dimensionality reduction or latent space representation.

Ⅱ.6 Predictive Maintenance and Anomaly Detection

As discussed in Chapter Ⅰ, predictive maintenance aims to predict and prevent equipment

failures or malfunctions by monitoring and analyzing the condition of the equipment. Anomaly

detection plays a crucial role in PdM as it helps identify abnormal patterns or behavior in the

data collected from the equipment. It helps prevent equipment failures, improve maintenance

efficiency, and enhance overall operational reliability [40].

By utilizing anomaly detection techniques, such as LSTM autoencoders, abnormalities or

deviations from the normal operating behavior of the equipment can be detected. This can

include unusual sensor readings, irregular patterns, or unexpected changes in the data.

Identifying these anomalies early on can provide valuable insights into potential equipment

failures or maintenance needs.

Predictive maintenance systems can utilize anomaly detection to trigger alerts or generate

maintenance schedules based on the detected anomalies. By addressing potential issues

proactively, organizations can minimize equipment downtime, reduce repair costs, and

optimize maintenance operations.

Ⅱ.7 The state of the art

Yu, Yong, et al. (2019) mentioned in this paper that LSTM has become the focus of DL. To

investigate its learning capacity, they examined the LSTM cell and its variations. They also

divided LSTM networks into two primary types: LSTM-dominated networks, and integrated

Chapter Ⅱ. Long Short-Term Memory Networks

42

LSTM networks, and discussed their different applications. Finally, LSTM network research

directions were outlined [17].

Li, Zhuohan, et al. (2018). designed an original LSTM training algorithm by leveraging the

information flow. The training algorithm proposed can force the input and forget gates' values

to 0 or 1, creating a robust LSTM model. The usefulness of the suggested training algorithm

was demonstrated in experiments on language modeling and machine translation. [22].

Smagulova, K., & James, A. P. (2019). In this paper, they examined the starting point and

motivations for the creation of the LSTM neural network, and offered an overview of the current

LSTM approaches, highlighting the most recent advancements in memristive LSTM structures

[21].

Okut, H. (2021). reviewed the training process of RNNs, and explained how the LSTM

neural networks can handle the main weakness of RNNs by learning long-term dependencies

[20].

BERRAJAA, A. (2022). In this paper, an RNN-LSTM sentiment analysis model was put

forth. In order to provide structured knowledge that can be applied to certain tasks, the goal was

to build systems capable of extracting subjective information from natural language documents,

such as feelings and opinions. With a 96% success rate, the LSTM model's performance was

quite remarkable [24].

Zhao, T. (2019, July). In this article, in order to categorize massive amounts of video data,

they suggest certain RNN variants, such as stacked bidirectional LSTM/GRU networks with

attention mechanisms. The model, which incorporates audio and visual data, produced excellent

results. It was referred to this approach as Deep Multimodal Learning (DML) due to its

multimodal features. This DML-based model was assessed in a well-known video classification

competition on Kaggle hosted by Google [25].

Lindemann, Benjamin, et al. (2021). It was shown in this paper that stacked LSTM networks

can learn higher-level temporal patterns without prior knowledge of the pattern duration and

that it may be a practical method to model typical time series behavior, which can be used to

detect anomalies [28].

Bank, D., Koenigstein, N., & Giryes, R. (2020). In this paper, Autoencoders, a specific type

of neural network was introduced. The autoencoders’ architecture, goal, and different

applications were mentioned [30].

Saumya, S., & Singh, J. P. (2022). In this study, to identify between spam reviews and

legitimate reviews, an unsupervised learning model integrating LSTM networks and

autoencoder (LSTM-autoencoder) was suggested. The model in question was trained on how

Chapter Ⅱ. Long Short-Term Memory Networks

43

to identify real review trends from textual details only. The experimental findings demonstrate

that the model can distinguish between legitimate and spam reviews with reasonable accuracy

[31].

Kang, Jaeyong, et al. (2021). In this article, they propose a method for detecting anomalies

using a one-class LSTM autoencoder. Only normal subsequences are used as training data for

the model. The mean absolute error (MAE) for each subsequence is determined in order to

identify anomalies in test data. An example is labeled an anomaly if the error exceeds a

predetermined threshold that was set to the maximum value of MAE in the training (normal)

dataset. The experiments used data from metro trains in Korea and showed good results [32].

Do, J. S., Kareem, A. B., & Hur, J. W. (2023). In this paper, an LSTM-autoencoder model

was utilized for training and testing to improve the accuracy of the anomaly detection

procedure. This strategy enabled identifying patterns and trends in the vibration data that might

not have been obvious when using more conventional techniques. The accuracy percentage for

finding anomalies in the vertical carousel system using the correlation coefficient model and

LSTM-autoencoder was 97% [33].

Nguyen, H. Du, et al. (2021). This study proposed an LSTM network-based approach for

multivariate time series data forecasting, in addition to an LSTM Autoencoder network-based

approach coupled with a one-class SVM algorithm for anomaly detection in sales. The acquired

results demonstrate that, in comparison to the LSTM-based method proposed in prior work, the

LSTM Autoencoder-based method leads to improved performance for anomaly identification

[36].

Bampoula, Xanthi, et al. (2021). This study addresses a strategy to facilitate the transition

from a PM to a PdM approach. A DL algorithm is employed to enable such transition. To train

and test a prototype implementation of LSTM-autoencoders for determining the remaining

usable life of the monitored equipment, real-world data gathered from manufacturing operations

is employed. Finally, a use case involving a manufacturing process for the steel sector is used

to evaluate the proposed approach [39].

Kamat, P., & Sugandhi, R. (2020). The core of PdM, according to this research, is anomaly

detection, with a primary goal of identifying anomalies in operational equipment at an early

stage. The difficulties with conventional anomaly detection methods are discussed, and a unique

DL method for predicting anomalies before actual machinery breakdown is suggested. The

suggested system uses an unsupervised learning technique called autoencoders, a kind of deep

learning that can be used to find new classes of anomalies [40].

Chapter Ⅱ. Long Short-Term Memory Networks

44

Ⅱ.8 Conclusion

In conclusion, this chapter delved into the concepts, architecture, and applications of LSTMs

and LSTM autoencoders, highlighting the anomaly detection method used in our main

predictive maintenance model and its advantages.

LSTMs are powerful recurrent neural networks that excel in modeling sequential data,

capturing long-term dependencies, and making accurate predictions. They have found success

in various domains such as language modeling and time series forecasting. On the other hand,

LSTM autoencoders extend the capabilities of LSTMs by incorporating the benefits of

autoencoders. They offer unique advantages in unsupervised learning tasks, data compression,

and anomaly detection.

Anomaly detection is a well-suited technique for predictive maintenance approaches, by

enabling early detection of abnormal behavior or patterns in equipment data, it plays a vital role

in PdM. It helps prevent equipment failures, improve maintenance efficiency, and enhance

overall operational reliability.

Chapter Ⅲ

Autoencoder model

45

Chapter Ⅲ

Autoencoder model

Ⅲ.1 Introduction

After introducing predictive maintenance and how it can affect the reliability of numerous

systems and machinery in general, and after presenting different deep learning approaches,

mainly Autoencoders, LSTM Autoencoders, and how they are used for anomaly detection. It is

time to introduce our first model.

In this chapter, we introduce our Autoencoder-based model, along with the system and

database used to evaluate it. We are going to explain in detail every part of our program, point

out the results gathered, and clarify these results using plots.

Ⅲ.2 System & Database description

Before we introduce our program and model, we need to clarify the source and

characteristics of our data and system. The database we used is composed of time-series data

collected from sensors installed on a SpectraQuest's Machinery Fault Simulator (MFS)

Alignment-Balance-Vibration (ABVT) system.

SpectraQuest is a company that specializes in providing solutions for machinery fault

diagnosis, condition monitoring, and vibration analysis. They offer a range of products and

services aimed at helping industries ensure the reliability, performance, and safety of their

machinery and equipment.

The SpectraQuest's MFS ABVT is a specialized equipment designed to simulate various

fault conditions and performance scenarios in machinery. It is commonly used for research,

testing, and training purposes in the field of fault diagnosis and condition monitoring.

The following figure represent the characteristics of the MFS ABVT we used:

Chapter Ⅲ. Autoencoder model

46

Figure Ⅲ.1 Specifications of the MFS ABVT [55]

To collect the data, four sensors were used:

• Three Industrial IMI Sensors, Model 601A01 accelerometers on the radial, axial and

tangential directions:

o Sensibility (±20%) 100 mV per g (10.2 mV per m/s2).

o Frequency range (±3 dB) 16-600000 CPM (0.27-10.000 Hz).

o Measurement range ±50 g (±490 m/s2).

• One IMI Sensors triaxial accelerometer, Model 604B31, returning data over the

radial, axial and tangential directions:

o Sensibility (±20%) 100 mV per g (10.2 mV per m/s2).

o Frequency range (±3 dB) 30-300000 CPM (0.5-5.000 Hz).

o Measurement range ±50 g (±490 m/s2).

Chapter Ⅲ. Autoencoder model

47

Our database contains two simulated states:

• Normal functioning state: This state represents the normal operating condition of the

machinery, where all components are functioning properly, and there are no faults or

abnormalities.

• Imbalance state: This state simulates an imbalance in the rotating components of the

machinery by adding weights ranging from 6g to 35g. Imbalance can occur due to

uneven distribution of mass, leading to vibrations and performance issues.

In the dataset, there are 49 normal sequences without any faults. Each normal sequence

corresponds to a fixed rotation speed ranging from 737 rpm to 3686 rpm, with an increment of

approximately 60 rpm between each sequence.

For the imbalance sequences, the same 49 rotation frequencies used in the normal operation

case are employed for loads below 30g. However, for loads equal to or above 30g, the resulting

vibrations make it impractical for the system to achieve rotation frequencies above 3300 rpm.

This limitation reduces the number of distinct rotation frequencies and measurements available.

To conclude, we used in our program a simulated database obtained from SpectraQuest's

Machinery Fault Simulator, and after clarifying the system and database, we can now introduce

our first program.

Ⅲ.3 Autoencoder-based program

Our program consists of several Python commands, and we will explain every component

of it. We divided the code into 4 main points:

• The libraries

• Data preparation

• Data preprocessing

• Autoencoder model

Ⅲ.3.1 The Libraries

In the field of coding, a library refers to a collection of precompiled code and resources that

provide specific functionality, features, or tools for developers. Libraries are designed to be

reused, making development more efficient and enabling programmers to leverage existing

code rather than building everything from scratch.

Chapter Ⅲ. Autoencoder model

48

There are several libraries used in our program, some of which are part of the Python

standard library, and some are not, meaning that they need to be preinstalled.

The libraries and modules used are:

• glob: The glob library provides a function that helps in finding files and directories

whose names match specific patterns. It is useful for working with file paths and

retrieving a list of files based on specific criteria.

• Pandas: The pandas library is a popular data manipulation and analysis tool. It

provides data structures like DataFrames for efficient handling of structured data, as

well as functions for data cleaning, filtering, merging, and more.

• NumPy: The NumPy library is a fundamental package for scientific computing in

Python. It provides support for large, multi-dimensional arrays and matrices, along

with a collection of mathematical functions to operate on these arrays efficiently.

• SkLearn: Also known as Scikit-Learn, it is a comprehensive machine learning

library in Python. It provides a wide range of algorithms and tools for tasks such as

classification, dimensionality reduction, and model selection.

• pyplot: it is a module within the Matplotlib library that provides a MATLAB-like

interface for creating and manipulating plots.

• TensorFlow: It is a library commonly used for deploying machine learning models

and various DL.

• Keras: Keras is a powerful library that facilitates the development of DL models by

providing a high-level and intuitive interface. It is widely used in the deep learning

community and has become a popular choice for building neural networks due to its

simplicity and flexibility. With its different modules, this library may be the most

important one in our program, as it allows us to implement our model with relative

ease, without directly having to program it.

• random: The random module allows you to generate random numbers, shuffle

sequences, select random elements, and perform other randomization-related tasks.

• time: the time library in Python provides various functions and classes for working

with time-related operations and measurements. It is a standard library in Python and

does not require any external installation.

All these mentioned libraries and modules will be necessary for the right functioning of our

program, the following lines of code show how the libraries are imported using the command

“import”:

Chapter Ⅲ. Autoencoder model

49

cur_path = "/content/fault-induction-motor-dataset/imbalance"

normal_file_names = glob.glob("/content/fault-induction-motor-

dataset/normal"+'/normal/*.csv')

imnormal_file_names_20g = glob.glob(cur_path+'/imbalance/20g/*.csv')

def dataReader(paths):

data = pd.DataFrame()

for i in paths:

lowdata = pd.read_csv(i,header=None)

data = pd.concat([data,lowdata],ignore_index=True)

return data

After importing all the needed libraries and modules, we can begin the data preparation step.

Ⅲ.3.2 Data preparation

In this step, we are going to prepare the data by downloading it to our program, clarify it

using plots, and categorize it as needed.

Ⅲ.3.2.1 Data download

These lines of code use the glob.glob() function to retrieve the file paths of the data used in

our program. The second and third line retrieves the file paths for the normal functioning and

the 20g imbalance respectively.

After that, we define a function that will allow us to read the data as followed:

import glob

import pandas as pd

import numpy as np

import sklearn

import matplotlib.pyplot as plt

import tensorflow as tf

import time

from keras.callbacks import Callback

from keras.layers import Dense, LSTM, RepeatVector, TimeDistributed,

Dropout, Input

from keras.models import Model

from keras import regularizers

from keras.callbacks import EarlyStopping

import random

Chapter Ⅲ. Autoencoder model

50

def ref_data(data):

Convert the input data to a pandas DataFrame

data = pd.DataFrame(data)

Check the number of columns in the data

num_columns = data.shape[1]

Define the selected indices

selected_indices = [1, 2, 3]

Validate the selected indices

valid_indices = [i for i in selected_indices if i < num_columns]

Select the columns with the valid indices

selected_data = data.iloc[:, valid_indices]

Return the selected data

return selected_data

The function takes a parameter “paths”, which represent the file paths of our data. Inside the

function, an empty data-frame named “data” is created using “pd.DataFrame()”. This data-

frame will be used to store the data from all the CSV files.

The function then iterates over each file path in the “paths” list using a for loop. The read

CSV data is stored in a temporary data-frame named “lowdata”. Then, the “pd.concat()”

function is used to concatenate the “lowdata” with the existing “data”. The

“ignore_index=True” argument ensures that the concatenated data-frame has a continuous

index.

Finally, the function returns the concatenated “data”, which contains the combined data

from all the CSV files.

To resume, the “dataReader” function will allow us to pass a list of file paths to it, and it

will return a single data-frame containing readable data from all the data files.

We use the “dataReader” function to assign the normal functioning data and imbalance data

to the variables “data_n” and “data_20g” respectively.

After that, we define another function named “ref_data” that will allow us to easily extract

specific columns from the input data based on predefined indices.

data_n = dataReader(normal_file_names)

data_20g = dataReader(imnormal_file_names_20g)

Chapter Ⅲ. Autoencoder model

51

We use this function to extract the axial, radial, and tangential data columns from the normal

functioning and the imbalance data as following:

Ⅲ.3.2.2 Data visualization

To clarify the data used we will plot the three columns of both the normal and imbalance

data as followed:

These lines plot the axial, radial, and tangential data for the normal state, three plots will

result after executing:

data_n.columns = ['axial', 'radial', 'tangential']

data_20g.columns = ['axial', 'radial', 'tangential']

fig, axs = plt.subplots(3, sharex=False, sharey=False, figsize=(15,

15))

for i, column in enumerate(data_n.columns):

axs[i].plot(data_n[column][0:12000000:10000])

axs[i].set_ylabel('m/s^2')

axs[i].set_xlabel('number of samples')

axs[i].set_title('{} vibration'.format(column))

plt.subplots_adjust(hspace=0.5)

plt.show()

data_n = ref_data(data_n)

data_20g = ref_data(data_20g)

Chapter Ⅲ. Autoencoder model

52

Figure Ⅲ.2 Vibrations of normal state

To compare with the vibrations of the normal state, we choose to plot the imbalance data of

the lightest, heaviest and average weights.

Using the same lines of code, by modifying only the input of the enumerate parameter, we

plot the three axes of the 6g, 20g, and 35g imbalance data.

The results are showed in the following figures:

Chapter Ⅲ. Autoencoder model

53

Figure Ⅲ.3 Vibrations of 6g imbalance state

We notice that the 6g vibrations are slightly more important than the normal state vibrations,

where there is no weight added to the system, which is logical considering that the amount of

weight added here is not significant.

We continue to plot the 20g imbalance state:

Chapter Ⅲ. Autoencoder model

54

Figure Ⅲ.4 Vibrations of 20g imbalance state

We can see that the vibrations after adding 20g of weight are considerable compared to the

normal state and the 6g imbalance states’ vibrations. These results suggest that the more weight

we add to the system, the more vibrations we are going to have, which is logically acceptable.

We proceed to our last plot of vibrations with the 35g imbalance state:

Chapter Ⅲ. Autoencoder model

55

Figure Ⅲ.5 Vibrations of 35g imbalance state

We can notice here that the 35g imbalance state have significantly more vibrations than the

other states, which is due to the added weight difference.

After plotting and visualizing all the vibrations from different states, we conclude that the

amount of weight added can directly affect the importance of the systems’ vibrations, and we

confirm that the more weight we add to our system, the more vibrations are going to occur.

Chapter Ⅲ. Autoencoder model

56

Ⅲ.3.2.3 Data split

To effectively train our model, we need to split the data into a training set and a test set.

• The training set is the portion of the dataset on which the model learns the

underlying patterns and relationships between the input features and the target

variable. The training set is typically larger than the test set to provide enough data

for the model to learn from.

• The test set is a subset of the data that is used to evaluate the performance of the

trained model. It serves as an unseen dataset that the model has not been exposed to

during the training phase. The test set is used to assess how well the model

generalizes to new, unseen data. By making predictions on the test set, the model's

performance metrics, such as accuracy, precision, recall, or mean squared error, can

be evaluated. The test set helps determine the effectiveness and reliability of the

trained model.

With the following line of code, we perform the train-test split on our dataset using the

“train_test_split” function from the scikit-learn library:

The shape of the training set and split set vary according to the amount of data used. In

general, the larger the data the more percentage we can use for the training set, in our case, we

used 12 million data values, which allowed us to do a 95% to 5% train-test split.

Ⅲ.3.3 Data preprocessing

After downloading, visualizing, and finally splitting the data, it is time to start the

preprocessing step. Preprocessing is a necessary step applied to transform the raw data into a

format that maximizes the performance and reliability of our model.

data = data_n.copy()

from sklearn.model_selection import train_test_split

X_train, X_test = train_test_split(data, test_size=0.05,

random_state=42)

train = X_train

test = X_test

print("Shape of Train Data : {}".format(train.shape))

print("Shape of Test Data : {}".format(test.shape))

Shape of Train Data : (11637500, 3)

Shape of Test Data : (612500, 3)

Chapter Ⅲ. Autoencoder model

57

Ⅲ.3.3.1 Down-sampling

Down-sampling is a preprocessing technique often used when the dataset is too large to be

handled effectively. It aims to reduce the amount of data treated in order to create a more

balanced dataset, which can improve the performance and fairness of the DL model.

With the following lines of code, we define the “downSampler” function, an implementation

of a down-sampling technique that reduces the size of a given dataset by calculating the mean

of consecutive subsets of the data:

Using the “downSampling” function, we down-sample the train and test data with a sampling

rate of 1000, the code reduces the size of both datasets by aggregating consecutive subsets of

1000 samples into single rows.

Ⅲ.3.3.2 Reshaping

LSTM models are primarily designed to work with three-dimensional data format, thus, to

benefit from the full potential of our model, we will reshape the 2D data we have into a 3D data

using the following code lines:

def downSampler(data, a, b):

'''

data is the dataset we want to sample

a is the start index

b is the sampling rate

'''

data_decreased = pd.DataFrame()

x = b

for i in range(int(len(data)/x)):

data_mean = data.iloc[a:b,:].sum() / x

data_decreased = pd.concat([data_decreased,

data_mean.to_frame().T])

a += x

b += x

return data_decreased

train = downSampler(train,0,1000)

test = downSampler(test,0,1000)

print('train data after down sampling: ',train.shape)

print('test data after down sampling: ', test.shape)

train data after down sampling: (11637, 3)

test data after down sampling: (612, 3)

Chapter Ⅲ. Autoencoder model

58

After executing, the “X_train” and “X_test” variable will contain our final datasets, down-

sampled, reshaped, and ready to implement in our model.

Ⅲ.3.4 Autoencoder model

After preparing and preprocessing the data, it is time to introduce our Autoencoder model.

We will explain how we created the model, trained it, and finally visualize it.

Ⅲ.3.4.1 Creating the model

We create our model by defining the function “standard_autoencoder” with the following

lines of code:

The standard_autoencoder function defines a standard autoencoder model architecture that

takes a three-dimensional tensor as input. The model architecture consists of several layers:

• Input Layer: Takes the input data tensor.

• Encoding Layers: Two fully connected (dense) layers with 128 units each, using ReLU

activation function. These layers aim to learn a compressed representation (encoding)

of the input data.

• Dropout Layer: A dropout layer is applied to the encoded representation with a dropout

rate of 0.3. Dropout helps to prevent overfitting by randomly dropping out units during

training, forcing the model to learn more robust and generalized representations.

def standard_autoencoder(X):

input_data = Input(shape=(X.shape[1], X.shape[2]))

encoded = Dense(units=128, activation='relu',

kernel_regularizer=regularizers.l1(0.01))(input_data)

encoded = Dense(units=128, activation='relu',

kernel_regularizer=regularizers.l2(0.01))(encoded)

encoded = Dropout(0.3)(encoded)

decoded = Dense(X_train.shape[2], activation='sigmoid')(encoded)

autoencoder = Model(input_data, decoded)

return autoencoder

X_train = train.values.reshape(train.shape[0], 1, train.shape[1])

X_test = test.values.reshape(test.shape[0], 1, test.shape[1])

print('Training data shape:', X_train.shape)

print('Test data shape:', X_test.shape)

Training data shape: (11637, 1, 3)

Test data shape: (612, 1, 3)

Chapter Ⅲ. Autoencoder model

59

• Decoding Layer: A dense layer with the same number of units as the input data's feature

dimension and using the sigmoid activation function. It aims to reconstruct the original

input data from the encoded representation.

• Autoencoder Model: The model is defined by specifying the input and output layers.

After defining a function that creates our model, we will now configure its training process

with the following code:

Our autoencoder model is created using the standard_autoencoder function with X_train

as the input. The autoencoder is compiled with the Adam optimizer which is an efficient

optimization algorithm for neural networks, and the mean squared error (MSE) is used as the

loss function to measure the discrepancy between the model's predictions and the true values.,

as it computes the average squared difference between the predicted and target values. The

accuracy metric is also specified to evaluate the model's performance.

The MSE function is defined as follows:

𝑀𝑆𝐸 =
1
∑𝑛

(𝑦 − ŷ)2 Ⅲ.1

Where:

• n is the number of samples

• y is the target value

• ŷ is the predicted value

𝑛 𝑖=1 𝑖 𝑖

To monitor the training progress and prevent overfitting, an early stopping callback is

defined. This callback tracks the validation loss (val_loss) and halts the training process if no

improvement is observed for a specified number of epochs (20 in our case) based on the

patience parameter.

The summary() method is then called on the autoencoder model to display a summary of its

architecture, including the number of parameters and the shape of each layer. The summary

provides useful information about the model's structure, allowing us to verify the number of

trainable parameters and check for any potential issues or discrepancies.

autoencoder = standard_autoencoder(X_train)

autoencoder.compile(optimizer='adam', loss='mse')

early_stopping = EarlyStopping(patience=20, monitor='val_loss',

restore_best_weights=True)

autoencoder.summary()

Chapter Ⅲ. Autoencoder model

60

Figure Ⅲ.6 Summary of the AE model

The summary of the autoencoder model shows the architecture and the number of

parameters. The model consists of four layers:

• InputLayer: The input layer receives data with a shape of (None, 1, 3), indicating a batch

size of None (variable), a single time step, and three features.

• Dense: This layer is a fully connected layer with 128 units. It takes the input from the

previous layer and produces an output of shape (None, 1, 128). The number of

parameters in this layer is 512.

• Dense_1: Another fully connected layer with 128 units follows. It takes the previous

layer's output as input and produces an output of shape (None, 1, 128). The number of

parameters in this layer is 16,512.

• Dropout: A dropout layer is applied with a rate of 0.3, which randomly sets 30% of the

input units to 0 at each training step. It helps in preventing overfitting.

• Dense_2: The final dense layer has 3 units, corresponding to the original shape of the

data. It produces an output of shape (None, 1, 3). The number of parameters in this layer

is 387.

The total number of trainable parameters in the model is 17,411.

Chapter Ⅲ. Autoencoder model

61

class TrainingTimeCallback(Callback):

def __init (self):

self.training_times = []

def on_epoch_begin(self, epoch, logs=None):

self.start_time = time.time()

def on_epoch_end(self, epoch, logs=None):

end_time = time.time()

epoch_time = end_time - self.start_time

self.training_times.append(epoch_time)

Create an instance of the TrainingTimeCallback

training_time_callback = TrainingTimeCallback()

Ⅲ.3.4.2 Training the model

After visualizing our model and before starting the training process, we define a custom

callback class called TrainingTimeCallback that tracks the training time for each epoch during

the model training. The callback records the time taken for each epoch and stores it in the

training_times list attribute.

By using this custom callback during model training, we can access the training_times list

to analyze and evaluate the training time for each epoch, which can be useful for performance

monitoring and optimization purposes.

After that, we finally start the training process of our model using the fit method, as shown

in the following lines:

The training process is executed with the following parameters:

• X_train: The input training data, which consists of the original sequences that the

model will learn to reconstruct.

• X_train: The target training data, which is set to be the same as the input data. The

goal of the Autoencoder is to reconstruct the input sequences.

• Epochs = nb_epochs: The number of training epochs, specifying how many times

the model will iterate over the entire training dataset.

nb_epochs = 100

batch_size = 40

history = model.fit(X_train, X_train, epochs=nb_epochs,

batch_size=batch_size, validation_split=0.2, verbose=1,

callbacks=[early_stopping,training_time_callback])

Chapter Ⅲ. Autoencoder model

62

• batch_size = batch_size: The number of samples per gradient update. The training

data is divided into smaller batches, and the model's weights are updated after

processing each batch.

• validation_split = 0.2: The fraction of the training data to be used as validation data.

In this case, 20% of the training data will be used for validation during training.

• Verbose = 1: Controls the verbosity of the training process. Setting it to 1 displays a

progress bar and training information during each epoch.

• Callbacks = [early_stopping, training_time_callback]: Specifies the list of callbacks

to be used during training. In this case, the early_stopping callback and the custom

training_time_callback are included.

To summarize, the model.fit method starts the training process and returns a history object,

which contains information about the training metrics and loss values for each epoch. This

object can be used to analyze and visualize the training progress and performance of the model.

Figure Ⅲ.7 First & last five AE Epochs

Figure Ⅲ.7 shows us the first and last five epochs of the training process, we can see that

the training time of the last epochs is shorter than the training time of the last ones, the loss

values are also decreasing which indicates the model is learning and performing well. The

training stopped at epoch 41 due to the early-stopping parameter used, showing that the best

epoch performance was the 21st epoch.

Chapter Ⅲ. Autoencoder model

63

plt.plot(training_time_callback.training_times)

plt.title('Training Time per Epoch')

plt.xlabel('Epoch')

plt.ylabel('Time (seconds)')

plt.show()

calculate the total training time

training_times = training_time_callback.training_times

total_time = np.sum(training_times)

print('Total training time:', total_time, 'seconds')

Ⅲ.3.4.3 Visualizing the model

We continue by plotting the epochs’ training time, which will allow us to identify any

significant variations or trends in training time and provide insights into the efficiency of the

training process.

We can plot the training time by executing the following code:

Figure Ⅲ.8 AE Training Time per Epoch

The total training time was only 40.07 seconds due to the early-stopping parameter that

prevented the model from continuing unnecessary training by stopping the training process at

epoch 41. We can see that the training time decreases significantly during the first epochs, and

fluctuates from around the 15th epoch until the last one. This means that our model reached its

optimal capacities in the first epochs, and continuing the training will not result in major

improvements.

Chapter Ⅲ. Autoencoder model

64

fig, ax = plt.subplots(figsize=(14, 6), dpi=80)

ax.plot(history.history['loss'], 'b', label='Train', linewidth=2)

ax.plot(history.history['val_loss'], 'r', label='Validation',

linewidth=2)

ax.set_title('Model Loss', fontsize=18)

ax.set_ylabel('Loss (MSE)')

ax.set_xlabel('Epoch')

ax.legend(loc='upper right')

plt.show()

To further clarify our results, we will plot the model loss with the following code:

The plot allows us to visualize the model's performance in terms of how well it is reducing

the loss function during training and validation. We can see that the training loss decrease and

reach stability within the first epochs, overlapping with the validation loss. It means that the

model has learned the underlying patterns and is able to make accurate predictions on both the

training and validation datasets. It quickly adapts to the data and reduces the loss, reaching its

full potential early on, suggesting that continuing the training process may only result in minor

improvements.

Figure Ⅲ.9 Autoencoder Model Loss

We conclude by visualizing the MSE for each vibration (axial, radial, and tangential) in the

predicted output compared to the original test data. Using the following code:

fig, axs = plt.subplots(num_features, 1, figsize=(15, 10),

sharex=False)

Chapter Ⅲ. Autoencoder model

65

Figure Ⅲ.10 Autoencoder MSE

By plotting the MSE, we can now assess how well the autoencoder model is reconstructing

each individual feature. We notice that the MSE values are very small (from 10−5 to 10−7),

which indicates that the predicted values are closer to the original values, implying better

reconstruction accuracy and overall performance.

for i in range(num_features):

feature_mse

axs[i].plot(feature_mse)

axs[i].set_ylabel('MSE')

axs[i].set_xlabel('Data Point Index')

axs[i].set_title('MSE for {}'.format(feature_names[i]))

plt.subplots_adjust(hspace=0.5)

plt.show()

Chapter Ⅲ. Autoencoder model

66

fig, axs = plt.subplots(num_features, 1, figsize=(15, 10),

sharex=False)

feature_names = ['Axial vibration', 'Radial vibration', 'Tangential

vibration']

for i in range(num_features):

feature_mse_6g = np.square(data_6g[:, 0, i] - predict_data_6g[:,0,

i])

threshold_6g = np.percentile(feature_mse_6g, 95)

axs[i].axhline(threshold_6g, color='red', linestyle='--',

label='Threshold')

axs[i].plot(feature_mse_6g)

axs[i].set_ylabel('MSE')

axs[i].set_xlabel('Data Point Index')

axs[i].set_title('MSE for {}'.format(feature_names[i]))

axs[i].legend(loc='upper right')

print('Threshold for {} is:'.format(feature_names[i]),threshold_6g)

plt.subplots_adjust(hspace=0.5)

plt.show()

The sudden peaks are anomalies that can be treated using a threshold, which is the subject

of the next title.

Ⅲ.3.5 AE Anomaly Detection

After preparing, explaining, and visualizing our AE model, we finally reach the anomaly

detection step.

We begin by plotting anomalies of the 6g imbalance data with the following code:

This code allows us to plot the MSE for each vibration of the 6g imbalance data, overlaying

a threshold line on the plot. The purpose of this is to visually identify data points that have MSE

values above the threshold, which indicates anomalies or deviations from the expected

behavior.

The threshold is calculated using the 95th percentile of the feature MSE distribution. This

means that 95% of the MSE values fall below this threshold, and the remaining 5% are

considered potential anomalies.

Chapter Ⅲ. Autoencoder model

67

Figure Ⅲ.11 AE 6g Imbalance Anomalies

Using the 95th percentile as a threshold offers a balanced approach. Higher percentiles create

a more conservative threshold, reducing false positives but potentially missing some anomalies.

Lower percentiles increase sensitivity to anomalies but may result in more false positives. The

selection of the threshold depends on the specific application and the desired level of sensitivity

and precision.

By setting the threshold at the 95th percentile, we can capture a majority of the normal data

while allowing a small portion of anomalies.

Using the same code and threshold, we plot the MSE for the 20g and 35g imbalances.

Chapter Ⅲ. Autoencoder model

68

Figure Ⅲ.12 AE 20g Imbalance Anomalies

Figure Ⅲ.13 AE 35g Imbalance Anomalies

Chapter Ⅲ. Autoencoder model

69

We can notice from the MSE imbalance plots that the 35g anomalies are more important

than the 20g anomalies, and the 20g anomalies are more important than the 6g ones, which

means that increasing the imbalances weight led to increased anomalies, due to the increased

vibrations.

In other words, increasing imbalance weights in the rotating components of the machinery

will increase vibrations, and these vibrations lead to more errors, and thus, more anomalies are

detected.

Ⅲ.4 Conclusion

In this chapter, we introduced and explained our database, our Autoencoder model, and the

program used to create, and visualize the model. We discussed and clarified the results by

several different plots and figures. Lastly, we integrated the anomaly detection approach using

a defined threshold and applied it to the different imbalances from our database.

We conclude that the imbalance weights have a direct exponential relationship with the

amount of vibrations and potential anomalies.

Chapter Ⅳ

LSTM-Autoencoder model

70

def LSTM_AE_model(X):

inputs = Input(shape=(X.shape[1], X.shape[2]))

L1 = LSTM(64, activation='relu', return_sequences=True,

kernel_regularizer=regularizers.l2(0.00))(inputs)

L2 = LSTM(64, activation='relu',return_sequences=False)(L1)

L3 = RepeatVector(X.shape[1])(L2)

L4 = LSTM(32, activation='relu',return_sequences=True)(L3)

L5 = LSTM(64, activation='relu',return_sequences=True)(L4)

output = TimeDistributed(Dense(X.shape[2]))(L5)

model = Model(inputs = inputs, outputs = output)

return model

Chapter Ⅳ

LSTM-Autoencoder model

Ⅳ.1 Introduction

After introducing our Autoencoder model and explaining in detail every part of it, in this

chapter, we review the LSTM Autoencoder-based model and compare it with the regular

Autoencoder. The performance and accuracy of both models trained on the same data will be

compared and the obtained results will be clarified.

Ⅳ.2 LSTM Autoencoder-based program

Similar to our regular Autoencoder-based program proposed in Chapter Three, we used the

same lines of code to download, prepare and preprocess the same database used on the first

model. Thus, we will directly introduce the LSTM Autoencoder model.

Ⅳ.2.1 Creating the model

We create our model using the function “LSTM_AE” which is defined as the following:

Chapter Ⅳ. LSTM-Autoencoder model

71

In this architecture, the input data X is passed through several LSTM layers. The first LSTM

layer (L1) processes the input data, returning sequences to preserve the temporal information.

The second LSTM layer (L2) further processes the output from the first layer, but does not

return sequences. Instead, it compresses the information into a fixed-length vector. Line L3

creates a layer that repeats the compressed representation of the input sequence, allowing

subsequent LSTM layers to process it and generate a reconstructed sequence of the same length

as the original input. The third LSTM layer (L4) takes this compressed representation and

reconstructs a sequence of the same length as the original input.

Finally, the fourth LSTM layer (L5) refines the reconstructed sequence. The output layer

applies a dense transformation to each time step independently using the TimeDistributed

wrapper, aiming to reconstruct the original input data. The resulting model is an LSTM

Autoencoder that learns to compress and reconstruct the input data while capturing temporal

dependencies and patterns.

After defining a function that creates our model, we configure the training process of the

LSTM Autoencoder model, including the optimizer, loss function, metrics, and early stopping

callback, and provide a summary of the model's architecture with the following code:

The provided lines of code perform the necessary setup and configuration for training an

LSTM Autoencoder model, using the Adam optimizer and MSE loss function the same way as

for the Autoencoder model.

The early stopping is defined with a number of 20 epochs for the patience, and the model

summary is finally displayed.

model = LSTM_AE_model(X_train)

model.compile(optimizer='adam', loss='mse', metrics=['accuracy'])

Define early stopping callback

early_stopping = EarlyStopping(monitor='val_loss', patience=20,

verbose=1, mode='min', restore_best_weights=True)

model.summary()

Chapter Ⅳ. LSTM-Autoencoder model

72

Figure Ⅳ.1 Summary of LSTM Autoencoder model

Ⅳ.2.2 Training the model

After displaying the model, we proceed to use the custom callback used in the previous

chapter to access the training time of each epoch, and then we start the training.

The model.fit method starts the training process and returns a history object, which contains

information about the training metrics and loss values for each epoch.

Figure Ⅳ.2 First & last five LSTM-AE Epochs

Chapter Ⅳ. LSTM-Autoencoder model

73

Figure Ⅳ.2 shows us that the last epochs have a better loss and accuracy compared to the

first ones, which means that our model performance has improved during training. By using the

early-stop method, our model stopped the training at epoch 85, mentioning and keeping the best

epoch values (epoch 65), and thus, the training process is concluded.

Ⅳ.2.3 Visualizing the model

To better clarify our results, we will plot and further explain them, starting from the training

time, model loss, model accuracy, and finally the models’ MSE.

Ⅳ.2.3.1 Training Time

We plot the epochs’ training time to see how our model performs. The total training time

was 355.83 seconds, which is approximately 6 minutes.

Figure Ⅳ.3 LSTM-AE Training Time per Epoch

By analyzing the plot result, we notice that the model quickly converges to a relatively

optimal solution. This indicates that the model has learned the underlying patterns and features

of the training data efficiently within the initial epochs.

The stagnation of training time from around the 40th epoch suggests that further training

does not significantly enhance the model's performance, which is why our model saved the 65th

epoch as the best one and stopped the training at the 80th epoch.

Chapter Ⅳ. LSTM-Autoencoder model

74

Ⅳ.2.3.2 Model Loss

The model loss represents the difference between the reconstructed sequences (output)

generated by the LSTM Autoencoder model and the original input sequences (target).

The loss value is calculated using the MSE as the loss function, the plot of the model loss

over the training epochs provides insights into how the loss changes as the model undergoes

training.

Figure Ⅳ.4 LSTM-AE Model Loss

By monitoring the loss, we can evaluate the model's learning progress and convergence. A

decreasing loss indicates that the model is learning to reconstruct the sequences effectively,

which is the case of our model.

Ⅳ.2.3.3 Model Accuracy

We pursue our plotting phase with the next code that will access the accuracy values and

plot the model accuracy:

Access the accuracy values from the training history

accuracy =history.history['accuracy']

val_accuracy = history.history['val_accuracy']

Plot the accuracy

plt.plot(accuracy, label='Training Accuracy')

plt.plot(val_accuracy, label='Validation Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.title('Model Accuracy')

Chapter Ⅳ. LSTM-Autoencoder model

75

The plot of training accuracy and validation accuracy provides valuable insights into the

model's performance during training. By comparing the two curves, we can assess the model's

ability to learn and generalize.

In our plot, we can see both lines increasing and converging, indicating that the model is

learning well and generalizing to unseen data. A large gap between the two lines may suggest

overfitting, which is not our case. We can also observe the overall trend of the curves, with

increasing accuracy over time indicating successful learning.

Figure Ⅳ.5 LSTM-AE Model Accuracy

By comparing the accuracy and the loss plots, we can observe that the model's accuracy

increases while the loss decreases. This indicates that the model is effectively optimizing its

predictions and learning from the training data.

Ⅳ.2.3.4 Model Mean Squared Error

We conclude the LSTM-AE visualization by plotting the models’ mean squared error of the

imbalance axial, radial, and tangential vibrations using the same lines of code introduced in

Chapter 3.

plt.legend()

plt.show()

Chapter Ⅳ. LSTM-Autoencoder model

76

Figure Ⅳ.6 LSTM-AE MSE

We can see that the MSEs of the model are very small, which means that our model learned

effectively and its performance is acceptable. The random peaks of MSE indicate the presence

of anomalies which will be detected next.

Ⅳ.2.4 LSTM-AE Anomaly detection

After explaining and visualizing the LSTM-AE model, we will now review its performance

in detecting anomalies.

We will plot the 6g, 20g, and 35g MSE imbalances and apply a 95% threshold the same way

we did with the regular AE model in the previous chapter.

Chapter Ⅳ. LSTM-Autoencoder model

77

Figure Ⅳ.7 LSTM-AE 6g Imbalance Anomalies

Figure Ⅳ.8 LSTM-AE 20g Imbalance Anomalies

Chapter Ⅳ. LSTM-Autoencoder model

78

Figure Ⅳ.9 LSTM-AE 35g Imbalance Anomalies

We can see that the LSTM-AE imbalances act the same way as the regular AE imbalances,

meaning that the heaviest weight vibrations are the most important ones perceived, which

confirms the conclusion stated in chapter 3 about the exponential relationship between the

weights added to the rotation components of the machinery, the vibrations, and the anomalies

resulted.

Ⅳ.3 LSTM-AE vs Regular AE

After introducing both models, we will now compare their performance by reviewing three

aspects:

• Training time

• Loss functions

• MSE Anomalies

Chapter Ⅳ. LSTM-Autoencoder model

79

Ⅳ.3.1 Training Time

After plotting the training time of both models on the same data, we notice that the training

process of the LSTM-AE took a significant amount of time compared to the training process of

the regular AE (6 minutes vs 40 seconds). This can be explained by the more complex

architecture of the LSTM-AE.

The LSTM-AE requires more time for each epoch due to the additional computations

involved in training the LSTM layers. These computations include the forward and backward

propagation of information through the recurrent connections and updating of the LSTM cell

states.

Consequently, the overall training process takes longer compared to the regular AE, which

has a simpler architecture and fewer computational operations.

Ⅳ.3.2 Loss functions

The MSE loss functions of both models decrease significantly with time and reach a plateau

suggesting that both models successfully learned the data patterns and reached their optimal

performance.

On the other hand, the MSE loss values of the LSTM-AE were remarkably less important

than the loss values of the regular AE (0.0003 vs 0.4), which proves the superiority of the

LSTM-AE in handling large complex amount of data and detect temporal features and

dependencies.

The LSTM layers allow the model to learn and exploit the temporal relationships between

the input features. This enables the LSTM-AE to better reconstruct the input data and minimize

the reconstruction error, as quantified by the MSE loss function.

In contrast, the regular AE lacks the ability to explicitly model and capture temporal

dependencies. It treats the input data as independent and identically distributed samples,

neglecting any underlying sequential information. As a result, the regular AE may struggle to

effectively reconstruct the time-dependent patterns in the data, leading to higher MSE loss

values.

By leveraging the memory cells and recurrent connections, the LSTM-AE is able to better

preserve the temporal information and reconstruct the input data with higher fidelity, resulting

in lower MSE loss values. This highlights the advantage of using LSTM-based architectures

when dealing with sequential or time-dependent data.

Chapter Ⅳ. LSTM-Autoencoder model

80

Ⅳ.3.3 MSE Anomalies

While both models had impressive low mean squared error values on the different axes of

the weighted imbalances, the MSEs of the LSTM-AE were significantly smaller than the ones

on the regular AE (10−15 vs 10−7).

This means that while both models are performing well, the LSTM-AE performances are

superior due to its complexity and capability to handle big amounts of data and temporal

dependencies, which is confirmed by the loss results discussed previously.

The remarkably smaller values of the MSE in the LSTM-AE also indicates that the anomalies

present and detected in the machinery are less important and less common compared to the

anomalies in the regular AE model, which only solidate and confirms our results and findings.

Ⅳ.4 Conclusion

After introducing our LSTM-AE model, explain it, and finally visualizing it, we compared

its performance to the regular AE model proposed in Chapter 3.

We found that due to the complexity of its architecture and additional computational

operations present in the LSTM layers of the LSTM-AE, the regular AE offers faster training

time, while the LSTM-AE provides superior performance in terms of MSE and its ability to

capture intricate temporal dependencies.

In the end, the choice between the two models depends on the specific requirements of the

application, weighing the trade-off between training time and performance.

81

General conclusion

In this work, we talked about industrial maintenance in a general manner and showcased

how and why Predictive Maintenance is generally superior when it comes to industrial

maintenance approaches due to its ability to predict failures, minimize downtime, and improve

the reliability of the machinery.

Artificial Intelligence plays a significant role in the field of PdM, AI techniques and

methodologies are employed to analyze large volumes of data, extract meaningful insights, and

make accurate predictions about the health and performance of industrial equipment. Therefore,

we introduced Artificial Intelligence and all its subfields, including Machine Learning,

Artificial Neural Networks, Deep Learning, and finally Autoencoders and Long Short-Term

Memory architectures used in our model.

Our model presented a combination of the two architectures, LSTM layers were added to the

Autoencoder in order to leverage the LSTM capacity for handling large amounts of temporal

data.

To prove the efficiency of the model, we first introduced a regular Autoencoder and trained

both models on the same data using the same code written with Python. After visualizing the

results and competence of the two models, we compared and reviewed their performance on

three points: Training time, Loss function, and MSE anomalies. We found that the LSTM-

Autoencoder had significantly smaller loss values (0.0003 vs 0.4) and MSE anomalies (10−15

vs 10−7) compared to the regular Autoencoder, while the regular Autoencoder outperformed

the LSTM when it comes to training time (40 seconds vs 6 minutes). We concluded that the

LSTM-Autoencoder had superior performance although it was slower than the regular

Autoencoder due to the complexity of the LSTM layers added.

In spite of the proven efficiency of the LSTM-Autoencoder model in predictive maintenance

and anomaly detection, there are several deep learning techniques developed and constantly

being improved at this time, due to the increased popularity of AI in general and the continuous

implementation of this field in the industrial sector in particular.

Finally, the most appropriate DL model or approach may vary depending on the systems’

characteristics, specific requirements, data features, and goals of the PdM application. That

being the case, it is recommended to experiment and compare different models to determine the

most effective approach for a particular use case.

Bibliography

82

Bibliography

[1] Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B.

(2020). Machine learning in predictive maintenance towards sustainable smart manufacturing

in industry 4.0. Sustainability, 12(19), 8211.

[2] Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier:

Modeling the impact of AI on the world economy. McKinsey Global Institute, 4.

[3] Russell, S. J., & Norvig, P. (2022). Artificial intelligence: A modern approach (4th ed.).

Pearson.

[4] Peres, R. S., Jia, X., Lee, J., Sun, K., Colombo, A. W., & Barata, J. (2020). Industrial

artificial intelligence in industry 4.0-systematic review, challenges and outlook. IEEE

Access, 8, 220121-220139.

[5] Dankwa, S., & Zheng, W. (2019). Special issue on using machine learning algorithms in the

prediction of kyphosis disease: a comparative study. Applied Sciences, 9(16), 3322.

[6] Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive

maintenance enabled by machine learning: Use cases and challenges in the automotive

industry. Reliability engineering & system safety, 215, 107864.

[7] Zhang, C., & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future

prospects. Journal of Industrial Information Integration, 23, 100224.

[8] Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep

learning. Electronic Markets, 31(3), 685-695.

[9] Kiangala, K. S., & Wang, Z. (2020). An effective predictive maintenance framework for

conveyor motors using dual time-series imaging and convolutional neural network in an

industry 4.0 environment. Ieee Access, 8, 121033-121049.

[10] Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D

convolutional neural networks and applications: A survey. Mechanical systems and signal

processing, 151, 107398.

[11] Serradilla, O., Zugasti, E., Rodriguez, J., & Zurutuza, U. (2022). Deep learning models for

predictive maintenance: a survey, comparison, challenges and prospects. Applied

Intelligence, 52(10), 10934-10964.

Bibliography

83

[12] Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2017). Recent advances in

recurrent neural networks. arXiv preprint arXiv:1801.01078.

[13] Medsker, L. R., & Jain, L. C. (2001). Recurrent neural networks. Design and

Applications, 5, 64-67.

[14] Na Pattalung, T., Ingviya, T., & Chaichulee, S. (2021). Feature explanations in recurrent

neural networks for predicting risk of mortality in intensive care patients. Journal of

Personalized Medicine, 11(9), 934.

[15] Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G.

P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature

review. Computers & Industrial Engineering, 150, 106889.

[16] Mobley, R. K. (2002). An introduction to predictive maintenance. Elsevier.

[17] Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM

cells and network architectures. Neural computation, 31(7), 1235-1270.

[18] Dey, D., & Jana, R. (2022, November). Bearing Fault Predictive Maintenance using

LSTM. In 2022 3rd International Conference on Computing, Analytics and Networks

(ICAN) (pp. 1-6). IEEE.

[19] Gao, R., Huo, Y., Bao, S., Tang, Y., Antic, S. L., Epstein, E. S., ... & Landman, B. A.

(2019). Distanced LSTM: time-distanced gates in long short-term memory models for lung

cancer detection. In Machine Learning in Medical Imaging: 10th International Workshop,

MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019,

Proceedings 10 (pp. 310-318). Springer International Publishing.

[20] Okut, H. (2021). Deep learning for subtyping and prediction of diseases: Long-short term

memory. In Deep Learning Applications. IntechOpen.

[21] Smagulova, K., & James, A. P. (2019). A survey on LSTM memristive neural network

architectures and applications. The European Physical Journal Special Topics, 228(10), 2313-

2324.

[22] Li, Z., He, D., Tian, F., Chen, W., Qin, T., Wang, L., & Liu, T. (2018, July). Towards

binary-valued gates for robust lstm training. In International Conference on Machine

Learning (pp. 2995-3004). PMLR.

[23] Pulver, A., & Lyu, S. (2017, May). LSTM with working memory. In 2017 International

Joint Conference on Neural Networks (IJCNN) (pp. 845-851). IEEE.

Bibliography

84

[24] BERRAJAA, A. (2022). Natural Language Processing for the Analysis Sentiment using a

LSTM Model. International Journal of Advanced Computer Science and Applications, 13(5).

[25] Zhao, T. (2019, July). Deep multimodal learning: An effective method for video

classification. In 2019 IEEE International Conference on Web Services (ICWS) (pp. 398-402).

IEEE.

[26] Cryer, J. D., & Kellet, N. (1991). Time series analysis. Royal Victorian Institute for the

Blind. Tertiary Resource Service.

[27] Vennerød, C. B., Kjærran, A., & Bugge, E. S. (2021). Long short-term memory

RNN. arXiv preprint arXiv:2105.06756.

[28] Lindemann, B., Maschler, B., Sahlab, N., & Weyrich, M. (2021). A survey on anomaly

detection for technical systems using LSTM networks. Computers in Industry, 131, 103498.

[29] Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015, April). Long Short-Term Memory

Networks for Anomaly Detection in Time Series. In ESANN (Vol. 2015, p. 89).

[30] Bank, D., Koenigstein, N., & Giryes, R. (2020). Autoencoders. arXiv preprint

arXiv:2003.05991.

[31] Saumya, S., & Singh, J. P. (2022). Spam review detection using LSTM autoencoder: an

unsupervised approach. Electronic Commerce Research, 22(1), 113-133.

[32] Kang, J., Kim, C. S., Kang, J. W., & Gwak, J. (2021). Anomaly detection of the brake

operating unit on metro vehicles using a one-class LSTM autoencoder. Applied

Sciences, 11(19), 9290.

[33] Do, J. S., Kareem, A. B., & Hur, J. W. (2023). LSTM-Autoencoder for Vibration Anomaly

Detection in Vertical Carousel Storage and Retrieval System (VCSRS). Sensors, 23(2), 1009.

[34] Yan, Y., Qi, L., Wang, J., Lin, Y., & Chen, L. (2020, June). A network intrusion detection

method based on stacked autoencoder and LSTM. In ICC 2020-2020 IEEE International

Conference on Communications (ICC) (pp. 1-6). IEEE.

[35] Pravin, S. C., & Palanivelan, M. (2021). Regularized deep LSTM autoencoder for

phonological deviation assessment. International Journal of Pattern Recognition and Artificial

Intelligence, 35(04), 2152002.

[36] Nguyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M. (2021). Forecasting and

Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the

Bibliography

85

applications in supply chain management. International Journal of Information

Management, 57, 102282.

[37] Sagheer, A., & Kotb, M. (2019). Unsupervised pre-training of a deep LSTM-based stacked

autoencoder for multivariate time series forecasting problems. Scientific reports, 9(1), 1-16.

[38] Yuan, L. P., Liu, P., & Zhu, S. (2020). Recomposition vs. Prediction: A Novel Anomaly

Detection for Discrete Events Based on Autoencoder. arXiv preprint arXiv:2012.13972.

[39] Bampoula, X., Siaterlis, G., Nikolakis, N., & Alexopoulos, K. (2021). A deep learning

model for predictive maintenance in cyber-physical production systems using lstm

autoencoders. Sensors, 21(3), 972.

[40] Kamat, P., & Sugandhi, R. (2020). Anomaly detection for predictive maintenance in

industry 4.0-A survey. In E3S web of conferences (Vol. 170, p. 02007). EDP Sciences.

[41] François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., & Pineau, J. (2018). An

introduction to deep reinforcement learning. Foundations and Trends® in Machine

Learning, 11(3-4), 219-354.

[42] Poór, P., Basl, J., & Zenisek, D. (2019, March). Predictive Maintenance 4.0 as next

evolution step in industrial maintenance development. In 2019 International Research

Conference on Smart Computing and Systems Engineering (SCSE) (pp. 245-253). IEEE.

[43] Coandă, P., Avram, M., & Constantin, V. (2020, December). A state of the art of predictive

maintenance techniques. In IOP Conference Series: Materials Science and Engineering (Vol.

997, No. 1, p. 012039). IOP Publishing.

[44] Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A survey of predictive

maintenance: Systems, purposes and approaches. arXiv preprint arXiv:1912.07383.

[45] O'Donoghue, B., Munos, R., Kavukcuoglu, K., & Mnih, V. (2016). Combining policy

gradient and Q-learning. arXiv preprint arXiv:1611.01626.

[46] Han, M., Zhang, L., Wang, J., & Pan, W. (2020). Actor-critic reinforcement learning for

control with stability guarantee. IEEE Robotics and Automation Letters, 5(4), 6217-6224.

[47] Zhou, Z. H. (2018). A brief introduction to weakly supervised learning. National science

review, 5(1), 44-53.

[48] Dike, H. U., Zhou, Y., Deveerasetty, K. K., & Wu, Q. (2018, October). Unsupervised

learning based on artificial neural network: A review. In 2018 IEEE International Conference

on Cyborg and Bionic Systems (CBS) (pp. 322-327). IEEE.

Bibliography

86

[49] Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine

learning, 109(2), 373-440.

[50] Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its

applications. Computer Science Review, 40, 100379.

[51] Yasrab, R., Pound, M. P., French, A. P., & Pridmore, T. P. (2020). PhenomNet: bridging

phenotype-genotype gap: a CNN-LSTM based automatic plant root anatomization

system. bioRxiv, 2020-05.

[52] Gabriel Loye 2019, Long Short-Term Memory: From Zero to Hero with PyTorch. In

FloydHub Blog.

[53] Sublime, J. (2021). Contributions to modern unsupervised learning: Case studies of multi-

view clustering and unsupervised Deep Learning.

[54] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

[55] Ribeiro, F.M.L.: MaFaulDa-Machinery Fault Database Signal, Multimedia and

Telecommunications Laboratory, federal university of Rio De Janeiro.

