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General introduction 

Since the first industrial revolution in the late 18th century, industrial maintenance techniques 

have evolved over time to address the challenges of equipment reliability and performance in 

industrial settings. Initially, the predominant approach was reactive maintenance, also known 

as "breakdown maintenance". This involved waiting for equipment failures to occur and then 

taking corrective actions to fix the issues. While this approach was simple and cost-effective in 

the short term, it often resulted in significant production losses, safety hazards, and higher repair 

costs. 

As industries became more complex and downtime costs increased, preventive maintenance 

emerged as a more proactive strategy, involving routine inspections and maintenance tasks 

based on predetermined schedules. This approach aimed to prevent unexpected failures by 

addressing known wear and tear issues. While preventive maintenance reduced unplanned 

downtime to some extent, it was not always efficient and often led to unnecessary maintenance 

activities and associated costs. 

In recent years, with advancements in technology and the rising implementation of Artificial 

Intelligence techniques in the industrial sector, predictive maintenance (PdM) has gained 

prominence. This approach utilizes real-time data from sensors, monitoring systems, and 

predictive algorithms to assess equipment condition, identify potential failures, and schedule 

maintenance activities accordingly. By adopting this approach, organizations can optimize 

maintenance schedules, reduce costs, maximize equipment uptime, and enhance overall 

operational efficiency. 

Furthermore, emerging technologies such as Artificial Intelligence, Artificial Neural 

Networks (ANNs), and Deep Learning (DL) methods are being integrated into industrial 

maintenance practices. These technologies enable more advanced data processing, anomaly 

detection, and predictive modeling, leading to more accurate predictions and optimized 

maintenance strategies. 

PdM is a superior and complex maintenance technique, it requires large amounts of data to 

establish a pattern and predict the failures before occurring, which is why deep learning 

techniques are an essential part of PdM. One of the most common DL techniques is the Long 

Short-Term Memory (LSTM) architecture, which is a type of recurrent neural network (RNN) 

that is capable of modeling and predicting sequential data. In PdM, LSTM can be used to 

analyze time-series data from sensors or monitoring systems to detect patterns, trends, and 
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anomalies. By learning the temporal dependencies in the data, LSTM models can make 

predictions about future equipment behavior and identify potential faults or failures. 

In this thesis, we divided our work into four Chapters: 

• In the first Chapter, we will talk about industrial maintenance approaches, especially 

PdM, and how it can improve the performance of industrial systems and machinery. 

Furthermore, we will introduce AI and its different subfields, including Machine 

Learning, ANNs and DL techniques. 

• In the second Chapter, we will dive in the LSTM and Autoencoder architectures used 

in our model, explaining how these architectures function and how they are utilized 

in PdM and anomaly detection. 

• In the third Chapter, we will introduce our Autoencoder model, the program used to 

create it, the data-base used to train it, and visualize its performance. 

• Finally, in the fourth and last Chapter, we will present our LSTM-Autoencoder 

model, which is a combination of LSTM and Autoencoders that leverage the features 

of both architectures. We will explain this final model and compare its performance 

with the previous regular Autoencoder model introduced in Chapter three, and 

eventually make our conclusions. 
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Chapter I 

Overview on Predictive Maintenance and AI 

 

 
Ⅰ.1 Introduction 

Predictive maintenance (PdM) approaches have recently been widely used in industries for 

managing the health status of industrial equipment as smart systems, machine learning (ML), 

and deep learning (DL), within artificial intelligence (AI) have emerged. As a result of the 

development and increasing popularity of these DL algorithms, it is now possible to gather 

enormous amounts of operational and process conditions data generated from various pieces of 

equipment and use the data to make an automated fault detection, diagnosis, and most 

importantly, a prognosis to reduce and predict downtime and increase the utilization rate of the 

components [1]. 

In this chapter, we are going to talk about Predictive Maintenance, Artificial Intelligence, 

and all its subfields in a general manner, including the deep learning method used in our model, 

and how it is related to the PdM approach. 

 

Ⅰ.2 Industrial Maintenance 

Industrial maintenance, refers to the activities and processes carried out to ensure the optimal 

functioning, reliability, and longevity of industrial machinery, equipment, and systems within 

a manufacturing or production facility. It involves a range of tasks aimed at preventing 

equipment failures, minimizing downtime, and maximizing productivity. 

Over the years, the field of industrial maintenance has undergone remarkable development, 

fueled by technological advancements, it shifted towards more proactive and efficient practices. 

Initially, maintenance practices were reactive, with equipment failures addressed as they 

occurred. As industries grew, preventive maintenance emerged, involving scheduled 

inspections and component replacements based on predetermined time intervals. However, this 

approach lacked precision. 

The advent of sensor technology and data analysis led to the rise of condition-based 

maintenance, which allowed monitoring equipment health in real-time and performing 
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maintenance based on actual conditions. Building on this, predictive maintenance emerged, 

utilizing advanced analytics and machine learning to predict failures and enable proactive 

planning. 

In summary, the evolution of industrial maintenance has transitioned from reactive to more 

proactive, data-driven, and technology-enabled approaches. Integrating these approaches 

enhances equipment reliability, reduces downtime, and achieves higher operational efficiency 

[42, 43, 44]. 

Generally, maintenance techniques can be resumed in three categories: 

• Reactive maintenance (RM) 

• Preventive maintenance (PM) 

• Predictive maintenance (PdM) 
 

 
 

Figure I.1 Maintenance plans of RM, PM, and PdM [44] 

 
 

Ⅰ.2.1 Reactive Maintenance 

In the early stages of industrialization, maintenance was predominantly reactive. Equipment 

failures were addressed as they occurred, resulting in unplanned downtime, productivity losses, 

and higher maintenance costs. 

Also known as Breakdown Maintenance, Reactive Maintenance is a maintenance technique 

where repairs or replacements are carried out in response to equipment failures or breakdowns. 

In this reactive paradigm, maintenance actions are taken only after a failure occurs, rather than 

being planned or anticipated in advance. When a piece of equipment stops functioning or 

exhibits a malfunction, maintenance personnel are mobilized to address the issue and restore it 

to working condition [42]. 
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RM is characterized by its unplanned and reactive nature, without any preventive measures 

in place, equipment failures can occur suddenly and disrupt operations, resulting in delays, 

reduced output, and potential safety risks. The focus of reactive maintenance is to resolve the 

immediate problem and get the equipment back up and running as quickly as possible. 

While reactive maintenance may be necessary in certain situations, it is generally regarded 

as a less desirable approach compared to proactive maintenance strategies. It can be costlier 

due to the urgent nature of repairs, the need for rush orders of replacement parts, and the 

potential for collateral damage caused by the failure. Additionally, unplanned downtime can 

result in missed production targets, customer dissatisfaction, and increased overtime costs. 

Reactive maintenance can be suitable for non-critical equipment with minimal impact on 

overall operations or when the cost of implementing preventive or predictive maintenance 

strategies outweighs the potential losses from reactive maintenance. 

However, in modern industrial settings, organizations strive to minimize reactive 

maintenance by adopting more proactive and preventive maintenance approaches. These 

proactive strategies, such as preventive maintenance or predictive maintenance, aim to identify 

and address potential issues before they lead to equipment failures, resulting in improved 

reliability, increased equipment lifespan, and reduced operational disruptions. 

 
Ⅰ.2.2 Preventive Maintenance 

As industries grew, and with the several downsides of RM, the concept of preventive 

maintenance emerged. 

Preventive maintenance is a systematic approach to maintenance that focuses on scheduled 

inspections to prevent equipment failures and maximize operational efficiency. In preventive 

maintenance, maintenance activities are planned and carried out before any signs of failure or 

breakdown occur. The goal is to maintain equipment in optimal condition, extend its lifespan, 

and minimize the risk of unexpected failures [44]. 

PM strategies typically involve routine inspections, lubrication, cleaning, and adjustments 

based on manufacturer recommendations, industry best practices, and historical data. These 

scheduled maintenance tasks are performed at predetermined intervals, such as daily, weekly, 

monthly, or annually, depending on the equipment and its operating conditions. 

By adhering to these schedules, potential issues can be identified early, allowing for timely 

intervention and minimizing the likelihood of major breakdowns or malfunctions. 
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The benefits of preventive maintenance are numerous. By conducting regular inspections 

and addressing minor issues promptly, the likelihood of equipment failure and unscheduled 

downtime is significantly reduced. This leads to improved productivity, increased operational 

efficiency, and reduced costs associated with emergency repairs and production interruptions. 

Additionally, preventive maintenance helps identify and replace worn-out or faulty components 

before they cause further damage or affect the performance of other interconnected systems. 

To effectively implement a preventive maintenance program, organizations often maintain 

detailed maintenance records, including equipment histories, maintenance schedules, and task 

checklists. These records help track maintenance activities, identify trends, and plan future 

maintenance tasks. 

Preventive maintenance is particularly suitable for critical equipment, machinery, and 

systems that have a significant impact on production, safety, or compliance. By investing in 

regular maintenance and inspections, organizations can ensure equipment reliability, enhance 

workplace safety, comply with regulatory requirements, and achieve higher levels of customer 

satisfaction. 

While preventive maintenance offers numerous benefits, it also has several downsides that 

must be taken into consideration [43]. 

Firstly, implementing a preventive maintenance program incurs costs, as resources must be 

allocated for regular inspections, servicing, and component replacements. Over-maintenance is 

another concern, as excessive or unnecessary maintenance tasks can lead to increased costs and 

inefficiencies. Additionally, preventive maintenance activities can disrupt operations, requiring 

equipment to be temporarily taken offline and impacting production schedules. Lastly, despite 

regular maintenance, unforeseen failures can still occur, and relying solely on preventive 

measures may not address these unexpected events. 

For these reasons, another maintenance technique had to be developed to improve the 

effectiveness and reliability of the machinery. Thus, Predictive maintenance emerged. 

 
Ⅰ.2.3 Predictive Maintenance 

Predictive Maintenance (PdM) is a maintenance strategy that uses data analysis tools and 

techniques to predict when maintenance or repair work on a specific piece of equipment or 

machinery is required. The idea behind predictive maintenance is to avoid unscheduled 

downtime and cut maintenance costs by performing maintenance work only when it is 

necessary [15]. 
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Predictive maintenance relies on a variety of methods, including data analytics, machine 

learning, and artificial intelligence, to identify patterns and trends in equipment performance 

data. PdM algorithms can detect early warning signs of equipment failure or deterioration by 

analyzing data from sensors, maintenance logs, and other sources, and then provide 

recommendations for maintenance actions to prevent or at least mitigate the issues detected 

[16]. 

The foundation of predictive maintenance lies in collecting and analyzing relevant data such 

as vibration, temperature, pressure, and performance metrics. Advanced analytics algorithms 

process the data to identify trends, deviations from normal operating conditions, and indicators 

of potential failure. Machine learning techniques can be applied to these datasets to develop 

models that can predict failure probabilities and estimate remaining useful life. 

By analyzing historical data and correlating it with real-time data (from sensors for 

example), predictive maintenance algorithms can detect early signs of equipment degradation, 

wear, or impending failure. This enables maintenance teams to intervene proactively, 

performing targeted maintenance tasks such as component replacements, or adjustments when 

the data indicates an increased risk of failure. This approach minimizes the chances of 

unexpected breakdowns, reduces downtime, and optimizes the utilization of maintenance 

resources. 

The benefits of predictive maintenance are numerous. By addressing maintenance needs 

before failures occur, organizations can significantly reduce unplanned downtime, which can 

be costly and disruptive. PdM enables the scheduling of maintenance activities during planned 

downtime or low-demand periods, minimizing the impact on production schedules. The ability 

to anticipate failures and plan maintenance tasks in advance also reduces the need for 

emergency repairs and rush orders for replacement parts, resulting in cost savings. 

Furthermore, predictive maintenance allows for better asset management by optimizing the 

lifespan of critical equipment. By identifying and addressing potential issues early, 

organizations can extend the life of their assets, postpone costly capital investments, and 

maximize return on investment. Predictive maintenance also supports condition-based 

optimization, where maintenance intervals are adjusted based on actual equipment health, 

ensuring that maintenance efforts are performed when needed, rather than on a fixed schedule. 

However, implementing a predictive maintenance program requires a robust data 

infrastructure, reliable sensors, and sophisticated analytics capabilities. It also requires skilled 

personnel who can interpret the data and act upon the insights provided by predictive models. 

Additionally, the success of predictive maintenance relies on the availability of historical data 
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and the continuous monitoring of equipment health. Therefore, organizations need to invest in 

data collection systems, data storage, and analytics tools to support predictive maintenance 

initiatives effectively. 

In summary, predictive maintenance enables organizations to move from reactive or time- 

based maintenance approaches to a proactive and data-driven strategy. By leveraging real-time 

data analytics and machine learning, predictive maintenance allows for early detection of 

equipment failures, targeted maintenance interventions, and optimized resource utilization. 

 
Ⅰ.3 Artificial Intelligence 

Artificial Intelligence (AI) is a rapidly evolving field that has the potential to revolutionize 

the way we live and work. In recent years, it has been applied to a wide range of industries and 

has shown promising results in improving efficiency, accuracy, and decision-making. 

According to a recent report by McKinsey, AI could contribute up to $13 trillion to the global 

economy by 2030 [2]. 

At its core, AI is a discipline of study that focuses on creating intelligent machines that can 

perform tasks that typically require human intelligence, such as learning, problem-solving, 

decision-making, and perception. The goal of AI is to develop systems that can operate 

autonomously, adapt to new situations, and interact with humans and the environment in a 

natural and seamless way [3]. 

From an industrial perspective, AI can be defined as the brain that allows a system to detect 

its environment, interpret the data it collects, solve complicated issues, and learn from 

experience [4]. 

 

Figure I.2 Representation of Artificial Intelligence and its subfields [5] 
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Ⅰ.3.1 Machine Learning 

One of the key drivers of Artificial Intelligence is machine learning (ML), a subset of AI 

that focuses on developing algorithms that can learn from data and improve their performance 

over time. 

Machine learning algorithms organize the data, learn from it, gather insights, and make 

predictions based on the information it analyzed without the need for additional explicit 

programming. Training a model with data and after that using the model to predict any new 

data is the concern of Machine Learning [5]. 

One of the significant advantages of machine learning is its ability to handle complex and 

large-scale datasets. By processing vast amounts of data, machine learning algorithms can 

uncover intricate patterns and relationships that may not be apparent to humans. This enables 

applications in various domains, such as image and speech recognition, natural language 

processing, recommendation systems, fraud detection, and autonomous vehicles. 

ML is a powerful field of study that enables computers to learn from data, discover patterns, 

and make predictions or decisions. Through the use of sophisticated algorithms and statistical 

techniques, machine learning has the potential to transform industries and solve complex 

problems. As technology continues to advance, machine learning will play a crucial role in 

shaping the future of artificial intelligence and driving innovation in various domains. 

Machine learning techniques can be subdivided into supervised, unsupervised, semi- 

supervised, and reinforcement learning [6, 7]. 

 

 
 

 
Figure I.3 Components of Machine Learning [5] 
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Ⅰ.3.1.1 Supervised Learning 

Supervised learning is a machine learning technique where the algorithm learns from labeled 

data, with each data point having corresponding input features and known output labels. The 

goal of supervised learning is to build a predictive model that can accurately map input data to 

the correct output labels based on the provided training examples [47]. 

The process of supervised learning begins with the collection of a labeled dataset, where 

each data instance is associated with a known output value. This dataset is then divided into 

two parts: the training set and the test set. The training set is used to train the model by 

presenting it with input features and their corresponding labels. The model learns from the 

training data by adjusting its internal parameters or weights based on the observed input-output 

relationships. The objective is to minimize the difference between the predicted output and the 

actual label for each training example. 

Once the model is trained, it is evaluated using the test set, which consists of unseen data 

with known labels. The model's performance is assessed by comparing its predicted outputs 

with the true labels. 

The main advantage of supervised learning is its ability to make accurate predictions or 

classifications based on labeled data. It is widely used in various applications, including spam 

detection, sentiment analysis, image recognition, speech recognition, and medical diagnosis. 

Supervised learning models can also be extended to handle multiclass classification problems 

and support probabilistic predictions, providing valuable insights for decision-making. 

However, supervised learning also has limitations. It heavily relies on the availability of 

labeled data, which can be expensive and time-consuming to obtain. An insufficient or biased 

dataset may lead to inaccurate models and poor generalization of unseen data. Additionally, 

supervised learning models may struggle when faced with data that falls outside the range of 

the training examples, making them sensitive to outliers and noise [47]. 

In summary, supervised learning is a powerful machine learning approach that leverages 

labeled data to build predictive models. It enables accurate predictions or classifications by 

learning from observed input-output relationships. While it has its limitations, supervised 

learning has proven to be valuable in solving a wide range of real-world problems and continues 

to be a fundamental technique in the field of machine learning. 
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Ⅰ.3.1.2 Unsupervised Learning 

In unsupervised learning, the data is not labelled, which means that the ML model aims to 

discover unknown patterns in the data, by searching for similarities between the data points for 

example. Algorithms are therefore formulated such that they can find patterns and structures in 

the data on their own [48]. 

The process of unsupervised learning begins with collecting a dataset consisting of input 

features without corresponding output labels. The goal is to find meaningful representations or 

groupings within the data. Clustering is one common technique in unsupervised learning, where 

similar data points are grouped based on their inherent similarities. Clustering algorithms, such 

as k-means, hierarchical clustering, and DBSCAN, are used to identify clusters and partition 

the data accordingly. 

Another key approach in unsupervised learning is dimensionality reduction, which aims to 

reduce the number of input features while preserving important information. This helps in 

visualizing high-dimensional data and extracting relevant features. Autoencoders are 

commonly used methods for dimensionality reduction. 

Unsupervised learning algorithms can also be used for anomaly detection, where the goal is 

to identify unusual or abnormal data points that deviate significantly from the norm. By learning 

the regular patterns in the data, unsupervised algorithms can detect outliers or anomalies that 

may indicate potential fraud, errors, or unusual behavior. 

Evaluation in unsupervised learning is more challenging than in supervised learning since 

there are no predefined output labels to compare against. Instead, the quality of unsupervised 

learning algorithms is assessed based on the coherence and meaningfulness of the discovered 

patterns, the compactness of clusters, or the ability to separate anomalies from normal data. 

However, unsupervised learning has its challenges. Since there are no ground truth labels, 

evaluating the performance of unsupervised algorithms can be subjective and depend on 

domain knowledge. The algorithms heavily rely on the quality and representativeness of the 

data, making it crucial to preprocess and clean the data appropriately. Additionally, 

unsupervised learning algorithms can be computationally expensive, especially when dealing 

with large-scale datasets or complex structures. 

In summary, unsupervised learning is a valuable approach in machine learning that allows 

for exploring and extracting patterns from unlabeled data. By uncovering hidden structures and 

relationships, unsupervised learning algorithms provide insights, aid in data exploration, and 

serve as a foundation for various downstream tasks. 
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Ⅰ.3.1.3 Semi-Supervised Learning 

Semi-supervised learning is a branch of machine learning that combines elements of both 

supervised and unsupervised learning. It deals with datasets that contain a small portion of 

labeled data and a larger portion of unlabeled data. The goal of semi-supervised learning is to 

leverage the limited labeled data together with the unlabeled data to improve the model's 

performance and generalization [49]. 

The process of semi-supervised learning begins by partitioning the available data into 

labeled and unlabeled subsets. The labeled data consists of input features along with their 

corresponding output labels. The unlabeled data, on the other hand, contains input features 

without any associated labels. The labeled data is used to train a model using supervised 

learning techniques, while the unlabeled data is leveraged to enhance the model's performance. 

Semi-supervised learning algorithms often incorporate unsupervised learning methods to 

exploit the unlabeled data. By leveraging the inherent structure  and patterns within the 

unlabeled data, the algorithms aim to improve the model's ability to generalize to unseen data. 

Unsupervised learning techniques such as clustering, dimensionality reduction, or generative 

models can be used to extract additional information from the unlabeled data. 

One common approach in semi-supervised learning is to use the unlabeled data to create a 

smoother decision boundary or to estimate the underlying data distribution. By considering the 

relationships and similarities among the unlabeled data points, the model can make more 

informed predictions for new, unseen instances. 

Semi-supervised learning is particularly useful in scenarios where obtaining labeled data is 

costly, time-consuming, or difficult. By making effective use of a small labeled dataset in 

conjunction with a larger unlabeled dataset, semi-supervised learning can achieve comparable 

or even superior performance to supervised learning approaches that rely solely on labeled data. 

In conclusion, semi-supervised learning is a powerful approach that combines elements of 

supervised and unsupervised learning to leverage both labeled and unlabeled data. By 

effectively utilizing the unlabeled data, semi-supervised learning algorithms can improve the 

model's performance and generalization, particularly in scenarios where obtaining labeled data 

is limited or expensive. Despite its challenges, semi-supervised learning continues to be an 

active area of research, driving advancements in machine learning and expanding the range of 

problems that can be addressed. 
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Ⅰ.3.1.4 Reinforcement Learning 

In a reinforcement learning (RL) system, instead of providing input and output pairs, we 

describe the current state of the system, specify a goal, provide a list of allowable actions and 

their environmental constraints for their outcomes, and let the ML model experience the process 

of achieving the goal by itself using the principle of trial and error to maximize a reward [8]. 

An agent interacts with an environment sequentially. At each step, the agent observes the 

current state of the environment and takes action. The environment responds by transitioning 

to a new state and providing feedback in the form of a reward signal, which indicates the 

desirability of the agent's action. The goal of the agent is to learn a policy (a mapping from 

states to actions) that maximizes the expected cumulative reward over time [41]. 

One key aspect of reinforcement learning is the trade-off between exploration and 

exploitation. Initially, the agent explores different actions and learns about the environment. As 

it gathers more knowledge, it shifts towards exploiting its current knowledge to maximize 

rewards. 

Reinforcement learning has been successfully applied to various domains, such as robotics, 

game playing, autonomous vehicles, recommendation systems, and resource management. 

RL encompasses a wide range of algorithms that can be used depending on the problem at 

hand, the most common ones are Q-Learning and Actor-Critic Learning (ACL). 

 
• Q-Learning is a model-free algorithm used in reinforcement learning to learn the 

optimal action-value function, often referred to as the Q-function. The Q-function 

represents the expected cumulative reward for taking a particular action in a given 

state and following a specific policy. The Q-Learning algorithm iteratively updates 

the Q-values based on the observed rewards and the estimated future rewards. It uses 

a technique called Temporal Difference learning, which calculates the difference 

between the estimated Q-value and the observed reward to update the Q-value. By 

repeatedly interacting with the environment and updating the Q-values, the agent can 

learn the optimal policy that maximizes the cumulative reward [45]. 

 
• Actor-Critic Learning (ACL) is an approach of RL that combines elements of both 

policy-based and value-based methods. It utilizes two components: an actor and a 

critic. The actor is responsible for learning and selecting actions based on the current 

policy. It explores the environment, take actions, and gathers experiences. The critic, 
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on the other hand, evaluates the actions taken by the actor and provides feedback in 

the form of a value function or Q-values. The actor-critic architecture allows for 

continuous learning and policy improvement. The actor uses the feedback from the 

critic to update its policy, while the critic uses the observed rewards to update its 

value estimates. This way, the actor-critic algorithm can learn both the best actions 

to take and the value of those actions [46]. 

 
In summary, Q-Learning is a value-based algorithm that learns the optimal action-value 

function, while Actor-Critic Learning combines policy-based and value-based methods to learn 

both the policy and the value function simultaneously. Both approaches have been widely used 

in reinforcement learning and have contributed to many successful applications. 

 
Ⅰ.3.2 Artificial Neural Network 

Artificial Neural Network (ANN) is a type of ML inspired by the principle of information 

processing in biological systems, ANNs consist of mathematical representations of connected 

processing units called artificial neurons [8]. 

Like synapses in a brain, each connection between neurons transmits signals whose strength 

can be amplified or attenuated by a weight that is continuously adjusted during the learning 

process. Signals are only processed by subsequent neurons if a certain threshold is exceeded as 

determined by an activation function. 

Typically, neurons are organized into networks with different layers. An input layer usually 

receives the data input and an output layer produces the ultimate result. In between, there are 

zero or more hidden layers that are responsible for learning a non-linear mapping between input 

and output. 

“Feed-forward” is the first, most common and simplest architecture. It is formed by stacked 

neurons creating layers, where all the neurons of a layer are connected to all the neurons of the 

next layer by feeding their output to others’ input. However, there are no connections to neurons 

of previous layers or among neurons of the same layer [11]. 

Artificial neural networks are of particular interest since their flexible structure allows them 

to be modified for a wide variety of contexts across all types of ML, therefore, ANNs can be 

referred to as “Shallow” or “Deep” depending on the number of hidden layers it contains. 
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Figure I.4 Diagram of ML classes [8] 

 

Ⅰ.3.3 Deep Learning 

Deep learning is a subset of machine learning that focuses on the development and 

application of artificial neural networks with multiple layers, known as deep neural networks. 

It aims to enable computers to learn and make predictions or decisions by mimicking the 

structure and function of the human brain. Deep learning has gained significant attention and 

popularity due to its remarkable ability to automatically learn hierarchical representations from 

raw data, leading to a state-of-the-art performance in various domains [50]. 

At the core of deep learning are artificial neural networks, which consist of interconnected 

nodes, called neurons, organized in layers. The neurons receive input signals, apply 

mathematical transformations, and produce output signals that are passed on to the next layer. 

The layers are stacked hierarchically, with each layer learning increasingly complex features or 

representations of the input data. 

One of the key advantages of deep learning is its ability to handle and extract meaningful 

features from large-scale datasets. Deep neural networks can learn intricate representations of 

images, text, audio, and other forms of data, leading to breakthroughs in computer vision, 

natural language processing, predictive maintenance, and many other fields. Convolutional 

neural networks (CNNs) are widely used in image-related tasks, while recurrent neural 

networks (RNNs) are commonly employed for sequential and language-based data. 

Deep learning has also benefited from advancements in hardware and computational 

resources, as training deep neural networks often requires significant computational power. 

Graphics processing units (GPUs) and specialized hardware accelerators, such as tensor 

processing units (TPUs), have enabled faster training and inference of deep learning models. 
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In conclusion, deep learning is a powerful branch of machine learning that uses deep neural 

networks to learn hierarchical representations from data. Its ability to automatically learn 

features from raw data has revolutionized numerous fields and led to breakthroughs in various 

applications. As hardware and algorithms continue to advance, DL is poised to drive further 

innovation and impact a wide range of industries, shaping the future of artificial intelligence. 

DL involves training artificial neural networks in order to detect patterns in large 

unstructured data sets. These ANNs, containing several hidden layers and performing complex 

tasks with minimal human interference, are mostly called Deep Neural Networks (DNNs). 

 
Ⅰ.3.3.1 Deep Neural Networks 

A Deep Neural Network (DNN) is simply an artificial neural network containing a large 

number of hidden layers, which explains the term “deep”. 

 
 

Figure I.5 Structure of a deep neural network 

 

 
Deep neural networks typically consist of more than one hidden layer, organized in deeply 

nested network architectures. Furthermore, they usually contain advanced neurons in contrast 

to simple ANNs. 

Therefore, DNNs may use multiple advanced operations in one neuron rather than using a 

simple activation function. These characteristics allow deep neural networks to be fed with raw 

input data and automatically discover a representation or output that is needed for the 

corresponding learning task. This is the networks’ core capability, which is commonly known 

as deep learning [8]. 
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While there are numerous types of DNNs, the most widely known are Convolutional Neural 

Networks and Recurrent Neural Networks. 

 
Ⅰ.3.3.2 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a type of neural networks commonly used for 

image and video processing tasks, such as image classification, object detection, and image 

segmentation. CNNs consist of multiple layers of convolutional and pooling operations that 

learn to extract features from images. In other words, CNNs have the human-like ability to 

recognize and classify objects based on their appearance [9]. 

One of the significant advantages of CNNs is their ability to automatically learn hierarchical 

representations from raw image data. By employing multiple layers, CNNs can capture 

increasingly complex and abstract features, enabling them to perform tasks such as image 

classification, object detection, and semantic segmentation. CNN architectures, such as 

AlexNet, VGGNet, ResNet, and InceptionNet, have achieved remarkable performance in 

various computer vision benchmarks and competitions. 

Based on the dimension of the training data, CNNs can be devised into 1D CNNs and 2D 

CNNs. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to 

learn complex objects and patterns providing that they can be trained on a massive size visual 

database with ground-truth labels. With proper training, this unique ability makes them the 

primary tool for various engineering applications for 2D signals such as images and video 

frames. 

Yet, this may not be a viable option in numerous applications over 1D signals especially 

when the training data is scarce or application specific. To address this issue, 1D CNNs have 

recently been proposed and immediately achieved state-of-the-art performance levels in several 

applications such as anomaly detection and identification in power electronics and electrical 

motor fault detection. Another major advantage is that a real-time and low-cost hardware 

implementation is feasible due to the simple and compact configuration of 1D CNNs that 

perform only 1D convolutions (scalar multiplications and additions) [10]. 

In summary, CNNs are a key architecture in deep learning, particularly for computer vision 

tasks. Their ability to automatically learn and extract features from images has led to significant 

advancements in various applications. By leveraging convolutional and pooling layers, CNNs 

can effectively capture spatial patterns and hierarchical representations, enabling them to 
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achieve state-of-the-art performance in image recognition, object detection, and other computer 

vision tasks. 

 
Ⅰ.3.3.3 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are a type of neural networks that excel in processing 

sequential data, such as time series, text, and speech. RNNs contain feedback connections that 

allow information to flow in both directions, unlike feedforward neural networks which only 

flow in one direction. The feedback connections in RNNs allow the network to process 

sequential data and capture temporal dependencies, by passing information from one step to the 

next. At each step, the current input is combined with the previous hidden state to produce a 

new hidden state and output. This process is repeated for each step in the sequence, allowing 

the network to capture the context and dependencies of the input data [12]. 

Figure I.6 An example of a fully connected RNN [13] 

 
 

In the last years, several RNN architectures have been developed to meet the industries’ 

standards, some of the most popular ones are the fully-connected RNN (FRNN), the long short- 

term memory (LSTM), and the gated recurrent unit (GRU). 

• FRNNs connect the output of the previous time step with the additional input of the 

next time step, preserving important information about different time steps in the 

network [13]. 

• LSTM architecture has one cell state and three gates: an input gate, an output gate, 

and a forget gate. The cell state acts as a memory, while each gate functions like a 

conventional neuron, providing a weighted sum of its inputs. The forget gate decides 

what information to retain from previous steps. The input gate decides what 

information to add from the current step. The output gate decides what the next 

hidden state should be. Hence, only relevant information can pass through the 

hierarchy of the network. Thus, the LSTM has mechanisms to process both short- 

term and long-term memory components [14]. 
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• GRU is similar to LSTM but has only two gates: an update gate and a reset gate. The 

update gate works similarly to the forget gate and the input gate of LSTM. It decides 

what information to throw away and what to add. The reset gate decides how much 

past information to forget. GRU has fewer parameters, uses less memory, and is 

faster to train than LSTM [14]. 

 
 

Figure I.7 Diagram of different recurrent units [14] 

 
 

In conclusion, RNNs are powerful neural network architectures designed for processing 

sequential data. Their ability to capture dependencies across time steps enables them to model 

complex temporal patterns and make predictions or generate outputs based on sequential inputs. 

With variants like LSTM and GRU, RNNs have achieved state-of-the-art results in various 

sequential tasks, making them a fundamental tool in fields such as natural language processing, 

speech recognition, and time series analysis. 

 

Ⅰ.4 Problem statement 

Predictive maintenance is a very advanced maintenance technique, it requires a large amount 

of data to properly function and predict future failures before occurring. In order to properly 

handle the large amount of data required, the implementation of AI and specifically DL models 

might be essential. 

In our thesis, we chose to use and study the Long Short-Term Memory architecture LSTM 

as our main model for its ability to deal with large datasets and extract patterns to perform 

efficient training. LSTM networks can capture long-term dependencies and model contextual 

information making them particularly useful for tasks involving sequential data with temporal 

dynamics. Thus, LSTM is perfectly suited to treat, train and learn from our database which 

contain a large number of sequential vibration data. 

To prove the LSTM efficiency, we will create a regular Autoencoder model using Python 

programming language and the TensorFlow machine learning framework, and compare its 

performance with our main LSTM-based Autoencoder model. 
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The two models will be trained on the exact same database, and evaluated on three primary 

points: 

• Training time 

• Loss function 

• MSE anomalies 

 

By comparing these two models, we will be able to see how the LSTM layers affect the 

performance of a regular Autoencoder, and make deductions from the results gathered. 

 
Ⅰ.5 Related work 

Bughin, Jacques, et al. (2018). presented a discussion paper on how AI will impact the global 

economy in the future, the potential of AI for boosting the global economy was reviewed, and 

concluded that it will be impressive and visible over time [2]. 

Peres, Ricardo Silva, et al. (2020). published a paper pinpointing the current landscape of AI 

in manufacturing. A systematic review of different journals and science source materials was 

made to better understand the requirements and steps necessary for a successful transition into 

Industry 4.0 supported by AI and the challenges that may arise during this process [4]. 

Zhang, C., & Lu, Y. (2021) presented a paper that provides a state-of-the-art analysis of the 

ongoing and upcoming AI research. Noting that AI is a multidisciplinary field with various 

applications in numerous domains, concluding that the next advancement in this field can not 

only provide computers better logical thinking powers but can also give them emotional 

capabilities. It's possible that soon machine intelligence may surpass human intelligence [7]. 

Zonta, Tiago, et al. (2020) presented a survey that discusses the current obstacles and 

restrictions in PdM while also categorizing this field of study in regard to Industry 4.0's 

requirements. They concluded that computer science, including AI and distributed computing 

areas, is increasingly prominent in a field where engineering was predominant, highlighting the 

necessity of a multidisciplinary approach to properly meet Industry 4.0 [15]. 

Poór, P., Basl, J., & Zenisek, D. (2019) published an article to familiarize the reader with 

maintenance challenges in the industry. The historical overview of maintenance was mentioned. 

In the article, potential for a "new" kind of maintenance associated with Industry 4.0, namely 

PdM, was proposed. They concluded that PdM, being the most advanced form of all 

maintenance, is what companies strive to develop and what can give them an advantage over 

others [42]. 
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Çınar, Zeki Murat, et al. (2020). provided a study about the recent advancements of ML 

techniques applied to PdM, the most commonly used ML algorithms for PdM were mentioned, 

and the continuous growth of PdM was highlighted [1]. 

Theissler, Andreas, et al. (2021). surveyed papers related to the automotive industry from an 

ML perspective, mentioning the adequacy of ML for PdM, concluding that the implementation 

of DL techniques will increase but requires the availability of large amounts of labelled data 

[6]. 

Serradilla, Oscar, et al. (2022). Published an article that aims at facilitating the task of 

choosing the right DL model for PdM, by reviewing cutting-edge DL architectures, and how 

they integrate with PdM to satisfy the needs of industrial companies (anomaly detection, root 

cause analysis, remaining useful life estimation). They are categorized in industrial 

applications, with an explanation of how to close any gaps. Open difficulties and potential 

directions for further research are then outlined [11]. 

Janiesch, et al. (2021). published an article summarizing the fundamentals of ML and DL to 

generate a broader understanding of the systematic framework of current intelligent systems. 

They abstractly defined keywords and concepts, described how to develop automated analytical 

models using ML and DL, and talked about the difficulties in applying such intelligent systems 

in the context of electronic marketplaces and networked commerce [8]. 

Zhou, Z. H. (2018). presented an article that reviews the state of supervised learning 

research, concentrating on three common forms of weak supervision: incomplete supervision, 

inexact supervision, and inaccurate supervision. It was determined that when there is a 

multitude of training instances with ground-truth labels, supervised learning techniques have 

had remarkable success. However, in practical applications, gathering supervision information 

incurs costs, making the ability to perform weakly supervised learning often beneficial. [47] 

Van Engelen, J. E., & Hoos, H. H. (2020). presented a description of semi-supervised 

learning as a field. The survey provides an up-to-date analysis of this crucial area of ML, 

covering techniques from the early 2000s as well as more recent developments. Additionally, 

they have introduced a new taxonomy for semi-supervised categorization techniques that makes 

distinctions between the approach's main goal and how unlabeled data is employed [49]. 

Dike, Happiness Ugochi, et al. (2018). Published a paper that explores the training and 

learning of ANN-based unsupervised learning. It gives an explanation of the procedures for 

choosing and fixing a number of hidden nodes in an ANN-based unsupervised learning 

environment. Additionally, a summary of the status, advantages, and difficulties of 

unsupervised learning is provided. [48] 
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François-Lavet, Vincent, et al. (2018) provided a manuscript introducing deep RL models, 

algorithms, and techniques. Focusing in particular on the generalization features and the 

practical uses of deep RL [41]. 

Kiranyaz, Serkan, et al. (2021). wrote a paper that provides a thorough analysis of the 

fundamental design ideas and technical uses of 1D CNNs, with a particular emphasis on current 

advancements in this area. Finally, their distinctive qualities are highlighted, capping off their 

cutting-edge performance [10]. 

Salehinejad, Hojjat, et al. (2017). published a paper presenting a survey on RNNs and several 

new advances for newcomers and professionals in the field. The fundamentals and recent 

advances are explained and the research challenges are introduced, mentioning the LSTM and 

other RNNs architectures [12]. 

Na Pattalung, T., Ingviya, T., & Chaichulee, S. (2021). proposed a data-driven approach that 

combines RNNs with graspable explanations for predicting the probability of mortality. This 

method was able to identify and clarify the historical contributions of the linked elements to the 

prediction, in addition to providing the anticipated mortality risk. It was determined that if 

patients' clinical observations in the ICU are continually monitored in real time, they may 

benefit from early intervention [14]. 

 

Ⅰ.6 Conclusion 

With the advancement of technologies, and at the age of “Big-Data” where industries are 

generating and collecting vast amounts of data from a variety of sources at an unprecedented 

scale, predictive maintenance can be particularly effective at improving the reliability of the 

machinery and industrial processes in general. 

The vast amounts of data available present both an advantage and a challenge to the 

predictive maintenance approach, because although having a lot of data can help PdM 

algorithms predict failures and identify patterns, properly using these amounts of data can be 

challenging, and one of the best ways to take on such a challenge is by using AI and deep 

learning algorithms, such as DNNs, CNNs, and RNNs. 
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Chapter Ⅱ 

Long Short-Term Memory Networks 

 

 
Ⅱ.1 Introduction 

Predictive maintenance is a vital process that helps organizations optimize the maintenance 

of their machinery and equipment by predicting and preventing equipment failure. To achieve 

this, it is crucial to have accurate and timely predictions of equipment failures, which can be 

achieved through machine learning techniques such as RNN’s Long Short-Term Memory 

(LSTM). 

LSTM is a type of neural network that has been proven to be highly effective at modeling 

sequential data, making it well-suited for predictive maintenance tasks. By analyzing historical 

data on equipment performance, LSTMs can learn patterns and correlations that are indicative 

of future equipment failure. 

In this Chapter, we are going to explain in detail what exactly are LSTMs and LSTM 

Autoencoders, including their architecture, training, and how they can be used in the industrial 

sector with the PdM approach. 

 
Ⅱ.2 Long Short-Term Memory Networks 

The typical feature of the RNN architecture is a cyclic connection, which enables the RNN 

to possess the capacity to update the current state based on past states and current input data. 

These networks, consisting of standard recurrent cells, have had incredible success with 

numerous challenges. Unfortunately, when the gap between the relevant input data is large, the 

above RNNs are unable to connect the relevant information [17]. 

To handle the “long-term dependencies,” Hochreiter and Schmidhuber [54] proposed the 

long short-term memory (LSTM) model. 
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Figure Ⅱ.1 RNN vs LSTM diagram [51] 

 
 

Long short-term memory (LSTM) is a type of Recurrent Neural Network (RNN) that are 

particularly useful for working with sequential data, such as time series anomaly detection, 

which makes it convenient to implement in the PdM approach. 

In particular, LSTMs excel at handling the complex and dynamic nature of equipment 

performance data, which often contains multiple variables and dependencies. By capturing the 

long-term dependencies in the data, LSTMs can provide more accurate predictions of future 

equipment failures, enabling organizations to take preventive measures before failures occur 

[18]. 

 
Ⅱ.2.1 LSTM Architecture 

The LSTM architecture consists of several units, each containing three main components: 

the input gate, the forget gate, and the output gate. These gates work together to control the 

flow of information into and out of the memory cell [19]. 

 

Figure Ⅱ.2 LSTM gates diagram [52] 
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In the LSTM network and generally any neural network, a lot of computations happen to 

produce the appropriate output needed. Activation functions are necessary and play a vital role 

in these computations. 

Activation functions are mathematical functions that introduce non-linearity to the output of 

a neural network's neurons or nodes. These functions are essential in neural networks because 

they allow the network to learn and model complex relationships between inputs and outputs. 

They introduce non-linearities, enabling the network to approximate non-linear functions, make 

complex decisions, and handle diverse data distributions. 

There are several activation functions used in neural networks, the most common ones are 

the Sigmoid function, the Hyperbolic Tangent (Tanh) function, and the Rectified Linear Unit 

(ReLU) Function. 

• Sigmoid function: The sigmoid function, also known as the logistic function, maps 

the input to a value between 0 and 1. It has an S-shaped curve and is often used in 

binary classification problems. 

The mathematical formula of the sigmoid function can be expressed as followed: 

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝑒(𝑥) = 𝜎(𝑥) = 1⁄1 + exp(−𝑥) Ⅱ.1 

 

• Hyperbolic Tangent (Tanh) function: The hyperbolic tangent function is similar 

to the sigmoid function but maps the input to a value between -1 and 1. It has a 

symmetric S-shaped curve and is useful in classification tasks. The mathematical 

formula of the Tanh function can be expressed as followed: 

tanh( 𝑥) = exp(𝑥) − exp(−𝑥) 
⁄exp(𝑥) + exp(−𝑥) Ⅱ.2 

 
 

• Rectified Linear Unit (ReLU) Function: The ReLU function is a popular choice in 

deep learning due to its simplicity and effectiveness. It outputs the input directly if it 

is positive, and 0 otherwise. The equation for the ReLU function is: 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) Ⅱ.3 

 
 

Ⅱ.2.1.1 The cell state and hidden state 

The cell state is the long-term memory and the core of the LSTM network, its main role is 

to store information over long time periods and can be selectively read, written to, and erased 

by the network. It can be thought of as a conveyor belt that runs through the entire chain of 

LSTM cells, carrying information from the previous cell to the next one. 



Chapter Ⅱ. Long Short-Term Memory Networks 

26 

 

 

 

 

In each time step, the cell state is updated based on the three gates: the input gate, the forget 

gate, and the output gate. The input gate determines which information should be stored in the 

cell state, the forget gate determines which information should be erased, and the output gate 

determines which information should be used to compute the output [20]. 

On the other hand, the hidden state is the output of each cell in the LSTM network, which is 

a function of the current input and the previous hidden state. It is also sometimes referred to as 

the short-term memory of the network, as it stores information over short periods of time. 

Unlike the cell state, the hidden state is not directly involved in the gating mechanisms of 

the LSTM, but it is computed from the cell state and can be thought of as a summary of the 

information stored in the cell state. 

To summarize, the cell state and hidden state are both important components in LSTM 

networks, with distinct roles. The cell state stores information over long time periods and is 

updated based on the gating mechanisms of the LSTM. The hidden state, on the other hand, is 

the output of each cell and stores information over short periods. While they both carry 

information from the previous cell to the next one, the cell state is the primary carrier of long- 

term information, while the hidden state summarizes the information stored in the cell state and 

is used for making predictions or passing information to downstream tasks. 

 

Ⅱ.2.1.2 The input gate 

The input gate determines which information is relevant to the current time step and should 

be stored in the memory cell. It takes as input the current input and the previous hidden state 

and applies an activation function (typically a sigmoid function) to each component. The 

sigmoid function is commonly used in neural networks as an activation function for binary 

classification problems [21]. 

In the input gate, the sigmoid function is used to "gate" the input by deciding which values 

should be allowed into the memory cell and which should be ignored, it outputs values between 

0 and 1, which can be interpreted as the degree of importance that should be assigned to each 

input value. Values closer to 0 will be less important and may be ignored, while values closer 

to 1 will be considered important and allowed into the memory cell. 

While using only the sigmoid function in the input gate of an LSTM may be sufficient in 

some cases and could simplify the model’s architecture, using a combination of sigmoid and 

hyperbolic tangent (tanh) function is the most common approach. 
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Figure Ⅱ.3 Input gate computations diagram [52] 

 
 

The sigmoid function alone is capable of regulating the flow of information, but it doesn't 

provide any control over the range of values that can be stored in the memory cell, that is why 

the tanh function is implemented. 

The tanh function is another widely used activation function in neural networks. It maps the 

input values to a range between -1 and 1, which helps to control the range of the values that are 

stored in the memory cell. This is important because the memory cell can store both positive 

and negative values, and the tanh function helps to keep these values (called candidate values) 

stable by preventing them from growing too large or too small. 

By combining these two activation functions, the input gate can effectively "gate" the input 

and store the relevant information in the memory cell, while filtering out irrelevant information 

and avoiding any possible instability in the learning process. 

This combination can be achieved by using two layers, the sigmoid function and the 

hyperbolic tangent function would be applied respectively to the first and second layers. 

As the first layer is being trained, the “weights” (parameters that are learned during the 

training process) in the sigmoid function will be updated such that it learns to filter the 

information received as previously explained. 

The calculations of the first layer can be represented by the following equation: 
 

 

 

Where: 

𝑖1 = 𝜎(𝑊𝑖1 ∙ (𝐻𝑡−1 , 𝑥𝑡) + 𝑏𝑖𝑎𝑠𝑖1 ) Ⅱ.4 

• 𝑊𝑖1 is the weight matrix of the first layer 𝑖1 

• 𝐻𝑡−1 is the previous hidden state 
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• 𝑥𝑡 is the current input 

• 𝑏𝑖𝑎𝑠𝑖1 is a vector added to improve the accuracy of the model 

 
The second layer represents the calculation of the candidate values, regulating the network 

by passing the previous hidden state and current input into the hyperbolic tangent function, 

as followed: 

𝑖2 = 𝑡𝑎𝑛ℎ(𝑊𝑖2 ∙ (𝐻𝑡−1 , 𝑥𝑡) + 𝑏𝑖𝑎𝑠𝑖2 ) Ⅱ.5 

 
The outputs of these two layers are then multiplied and the information that needs to be 

stored in the memory cell results: 

𝑖𝑖𝑛𝑝𝑢𝑡 =  𝑖1 ∙ 𝑖2 Ⅱ.6 

 

Ⅱ.2.1.3 The forget gate 

The forget gate in an LSTM network determines which information in the memory cell 

should be forgotten or discarded, based on the current input and the previous hidden state. Its 

main role is to prevent the network from remembering irrelevant or outdated information, which 

could lead to overfitting or poor performance [22]. 

 

Figure Ⅱ.4 Forget gate computations diagram [52] 

 
 

To achieve this, the LSTM's forget gate calculates a forget vector, which is a set of values 

between 0 and 1 that determine how much of each element in the previous long-term memory 

should be preserved or forgotten. The forget vector is created by passing the concatenation of 

the current input and the previous short-term memory through a sigmoid activation function. 

This sigmoid function maps the input to a range between 0 and 1, similarly to the input gate, 
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with values closer to 0 indicating that the corresponding element in the previous long-term 

memory should be forgotten, and values closer to 1 indicating that the element should be 

preserved. 

The forget vector has values ranging from 0 to 1 and can be mathematically represented by 

the following equation: 

𝑓 = 𝜎(𝑊𝑓𝑜𝑟𝑔𝑒𝑡 ∙ (𝐻𝑡−1 , 𝑥𝑡) + 𝑏𝑖𝑎𝑠𝑓𝑜𝑟𝑔𝑒𝑡) Ⅱ.7 

 

Once the forget vector is calculated, it is multiplied element-wise by the previous long-term 

memory to obtain the new long-term memory, as follows: 

𝐶𝑡 = 𝑓 ⊙ 𝐶𝑡−1 Ⅱ.8 

 

Where: 

• 𝐶𝑡 is the new long-term memory 

• 𝑓 is the forget vector 

• ⊙ represents the element-wise multiplication 

• 𝐶𝑡−1 is the previous long-term memory 

The new long-term memory is then updated with the information from the current input 

using the input gate, which determines which parts of the current input should be added to the 

long-term memory. 

𝐶𝑡 = 𝑓 ⊙ 𝐶𝑡−1 + 𝑖𝑖𝑛𝑝𝑢𝑡 Ⅱ.9 

 

This process effectively erases information from the previous long-term memory that is no 

longer relevant to the current input. By doing so, the network can learn to focus on the most 

important features of the input data and make better predictions or decisions. 

 
Ⅱ.2.1.4 The output gate 

The output gate in an LSTM cell is a key component that determines which parts of the long- 

term memory and current input are passed on to the next cell or used as the final output of the 

network. It is responsible for regulating the flow of information and selectively passing on 

relevant information to subsequent time steps or as output [23]. 
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Figure Ⅱ.5 Output gate computations diagram [52] 

 
 

The output gate takes as input the current input, the previous hidden state, and the current 

long-term memory, which have all been processed by their respective gates (input and forget 

gates) as previously explained. 

First, the current input and the previous hidden state are passed into the sigmoid activation 

function with the appropriate weights, which will determine the proportion of the current long- 

term memory that should be included in the new short-term memory. 

𝑂1 = 𝜎(𝑊𝑂1 ∙ (𝐻𝑡−1 , 𝑥𝑡) + 𝑏𝑖𝑎𝑠𝑂1 ) Ⅱ.10 

Then, the tanh activation function is applied to the new long-term memory, which was 

calculated by the forget gate and updated by the input gate. This normalizes the values of the 

new long-term memory. 

𝑂2 = 𝑡𝑎𝑛ℎ(𝑊𝑂2 ∙ 𝐶𝑡 + 𝑏𝑖𝑎𝑠𝑂2 ) Ⅱ.11 

 
The normalized new long-term memory is then multiplied element-wise with the output of 

the sigmoid gate to produce the new short-term memory: 

𝐻𝑡 , 𝑂𝑡 = 𝑂1 ⊙ 𝑂2 Ⅱ.12 

 

The hidden state/short-term memory and cell state/ long-term memory produced by these 

gates is then passed to the next time step for the process to be repeated or used as the final 

output of the network. 
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Ⅱ.2.2 LSTM Applications 

Long short-term memory networks have been widely used over the years and are constantly 

gaining popularity with the development of artificial intelligence and deep learning, therefore, 

LSTMs have a wide range of applications, such as Natural Language Processing (NLP), Image 

and Video Analysis, time series analysis and anomaly detection. 

 
Ⅱ.2.2.1 Natural Language Processing 

Natural Language Processing (NLP) involves the use of computers to analyze, understand, 

and generate human language in various forms, including written text, spoken language, and 

even sign language. 

LSTMs are widely used in NLP tasks such as language modeling, speech recognition, 

machine translation, and sentiment analysis, among others. One of the key advantages of 

LSTMs in NLP is their ability to handle variable-length input sequences and capture long-term 

dependencies in the data. This makes LSTMs particularly effective in tasks such as language 

modeling, where the model must predict the likelihood of a sequence of words based on the 

context of the previous words [24]. 

 
Ⅱ.2.2.2 Image and Video Analysis 

Image and video analysis is a field of study that involves the use of computers to interpret 

and understand visual information. This field has many applications, ranging from object 

recognition and image captioning to medical imaging and surveillance systems. 

In the context of machine learning, image, and video analysis often involves the use of deep 

learning techniques, such as convolutional neural networks (CNNs) and LSTMs. While CNNs 

are particularly well-suited for image analysis tasks, such as identifying objects or classifying 

images into different categories, LSTMs have also shown great promise in the image and video 

analysis application, as they can be used to analyze the temporal aspect of video data, such as 

identifying changes in motion or tracking objects over time [25]. 

One of the main advantages of LSTMs in these applications is their ability to capture the 

temporal dependencies in the data and to maintain context over longer sequences. For example, 

in video analysis tasks, LSTMs can analyze a sequence of frames to identify objects or events 

that occur over time. In image captioning tasks, LSTMs can be used to generate descriptive 

captions that capture the content and context of the image. 
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Ⅱ.2.2.3 Time Series Analysis 

Time series analysis is a field of study that focuses on analyzing and modeling data that 

varies over time. This type of data is often collected at regular intervals, such as hourly, daily, 

or monthly, depending on the specific operation monitored, and can be found in many different 

domains, including finance, economics, and engineering [26]. Time series analysis involves 

identifying patterns and trends in the data, as well as forecasting future values, which could be 

very effective for applying predictive maintenance. 

In recent years, there has been a growing interest in using machine learning techniques, such 

as deep learning, for time series analysis. Recurrent neural networks (RNNs), and LSTMs in 

particular, have emerged as a powerful tool for time series analysis and forecasting. 

Time series data can exhibit complex temporal dependencies and nonlinear relationships that 

are difficult to capture with traditional statistical methods. LSTMs can learn these complex 

patterns by maintaining a memory of previous values, allowing them to effectively model long- 

term dependencies in the data [27]. 

One of the key advantages of LSTMs in time series analysis is their ability to handle variable- 

length sequences of data. This is particularly important for time series data, which can have 

varying lengths depending on the specific application. LSTMs are able to adapt to these 

variable-length sequences by using a gating mechanism that controls the flow of information 

through the network. 

In addition to forecasting future values, LSTMs can also be used for anomaly detection, 

identifying unusual patterns or outliers in the data that may indicate equipment failure or other 

abnormal conditions. 

 

Ⅱ.2.2.4 Anomaly Detection 

Anomaly detection is the process of identifying unusual or unexpected patterns or events in 

data. Anomalies can be caused by a variety of factors, including equipment failure, malicious 

activity, or changes in the underlying distribution of the data. Anomaly detection techniques 

are used in many different domains, including finance, healthcare, cybersecurity, and industrial 

automation [28]. 

One of the key challenges in anomaly detection is balancing the trade-off between sensitivity 

and specificity. A highly sensitive anomaly detection system will identify as many anomalies 

as possible, but may also generate a high number of false positives. On the other hand, a highly 

specific system may generate fewer false positives but miss some true anomalies. Balancing 
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these trade-offs requires careful tuning of the anomaly detection algorithm and consideration 

of the specific domain and application. 

In recent years, there has been growing interest in using deep learning techniques, such as 

LSTMs for anomaly detection. 

In anomaly detection, the goal is to identify patterns in data that deviate significantly from 

what is considered normal or expected. Anomaly detection using LSTM networks is 

particularly effective for time series data, where patterns can change over time and may be 

difficult to detect using traditional methods [29]. 

To use LSTM anomaly detection, the first step is to train an LSTM network on normal data 

to learn the patterns and relationships in the time series. This training process involves feeding 

the LSTM network with historical data and optimizing the network's parameters to minimize 

the difference between the predicted and actual values. Once the network has been trained on 

normal data, it can be used to detect anomalies in new data. 

When the LSTM network encounters a time series data point that deviates significantly from 

the learned patterns, it can flag that data as anomalous and alert users about potential issues. 

For example, in the context of predictive maintenance, an LSTM network trained on sensor 

data from industrial equipment can identify patterns that indicate potential equipment failures, 

allowing maintenance teams to take proactive measures to prevent downtime. 

 
Ⅱ.3 Autoencoders 

Autoencoders are a type of neural networks that can learn to encode and decode different 

types of data. Commonly used in unsupervised learning tasks, the goal of an autoencoder is to 

learn a compressed representation of the input data in a lower-dimensional space, and then use 

this representation to reconstruct the original data as accurately as possible [30]. 

Figure Ⅱ.6 Autoencoder model [53] 
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Autoencoders consist of two main parts: an encoder and a decoder. The encoder takes the 

input data and maps it to a lower-dimensional latent space, while the decoder takes the encoded 

data and reconstructs the original input data. 

By training the network to minimize the difference between the input data and the 

reconstructed data, the autoencoder can learn to capture the most important features of the input 

data and ignore any irrelevant or noisy information. 

Autoencoders have a wide range of applications, including data compression, image and 

speech recognition, and anomaly detection [30]. 

In anomaly detection, autoencoders can be used to identify patterns in temporal data by 

learning to encode the normal behavior of a system. The idea is to train the autoencoder on a 

dataset of normal, or non-anomalous, instances, and then use it to reconstruct new instances. 

When an anomalous instance is encountered, it will likely have a higher reconstruction error 

than normal instances, since it does not fit the learned pattern. Thus, the reconstruction error 

can be used as a metric for anomaly detection, and instances with high reconstruction error can 

be flagged for further investigation. 

Autoencoders have several advantages over traditional anomaly detection methods, they can 

learn complex patterns in data and do not require explicit feature engineering. They are also 

able to adapt to new and changing patterns in the data, making them suitable for dynamic 

systems. 

 

Ⅱ.4 LSTM Autoencoders 

Long Short-Term Memory autoencoders are a type of autoencoder that incorporates LSTM 

units in their architecture to handle sequential data. 

Regular autoencoders, in their standard form, are not specifically designed to handle 

sequential data. They are primarily suited for static, non-sequential data such as images, tabular 

data, or fixed-length feature vectors, in contrast to LSTM autoencoders, they are typically not 

equipped to capture the temporal dependencies and sequential patterns present in sequential 

data. 

LSTM autoencoders were created to address the unique challenges of modeling and 

reconstructing sequential data. By leveraging the temporal modeling capabilities of LSTM 

units, these models offer improved performance in capturing temporal dependencies, 

compressing sequential data, and generating/reconstructing sequences. They have become a 

valuable tool in various fields where sequential data analysis is required [31-32]. 
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Ⅱ.4.1 LSTM Autoencoders architecture 

The LSTM autoencoder architecture combines the power of LSTM units for sequential 

modeling with the principles of autoencoders for learning compressed representations. This 

enables the model to effectively encode and reconstruct sequential data while preserving its 

essential characteristics. 

 

 

Figure Ⅱ.7 LSTM Autoencoder model [33] 

 
 

The architecture of an LSTM autoencoder consists of three main components: an LSTM 

encoder, a bottleneck layer (latent state), and an LSTM decoder [33]. 

 
Ⅱ.4.1.1 LSTM Encoder 

The LSTM encoder takes a sequential input and processes it step by step. At each time step, 

the LSTM unit computes the information detected (inputs) as described earlier. It receives an 

input and its hidden state from the previous time step, it then updates its hidden state and cell 

state based on the current input and the previous hidden state and cell state. 

The encoder typically consists of multiple LSTM units stacked on top of each other, forming 

a deep LSTM architecture, this architecture processes the input sequence sequentially, 

capturing the temporal dynamics and dependencies within the data. It gradually encodes the 

sequential information into a compressed representation [34]. 

As the input sequence is processed step by step, the final LSTM layer in the encoder outputs 

the compressed representation or the latent space. This latent space represents a compressed 

and abstract representation of the input sequence, capturing its most salient features. 
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Ⅱ.4.1.2 Latent space/bottleneck layer 

The latent space or bottleneck layer in an LSTM autoencoder represents the compressed and 

abstract representation of the input sequence obtained from the encoder. It acts as an 

information bottleneck, capturing the essential features and patterns from the input sequence in 

a lower-dimensional representation. This layer effectively compresses the input data, reducing 

its dimensionality [35]. 

The term "bottleneck" highlights the idea that the representation space is narrowed down, 

analogous to a bottleneck in a physical sense where the flow of a substance is constrained to 

pass through a smaller opening. This analogy reflects the compression and dimensionality 

reduction that occur in the bottleneck layer of an LSTM autoencoder. 

 

Figure Ⅱ.8 Bottleneck representation 

 
 

The dimensionality of the bottleneck layer is typically much smaller than the input sequence, 

representing a more compact and informative representation of the sequential data. 

The bottleneck layer/latent space acts as the bridge between the encoder and the decoder, 

providing the encoded information, it serves as the foundation for the reconstruction process in 

the decoder. 

 
Ⅱ.4.1.3 LSTM Decoder 

The decoder is responsible for reconstructing the original input sequence from the 

compressed representation obtained from the bottleneck layer. It plays a crucial role in the 

autoencoder's task of generating an output that closely resembles the input [35]. 

Similar to the encoder, the decoder typically consists of one or more LSTM layers. These 

layers receive the compressed representation, which serves as the initial input. The LSTM 

layers sequentially process this input, generating output at each time step. 

At each time step, the LSTM layer takes the input from the previous time step and its own 

hidden state as inputs. It then performs computations to generate an output for the current time 
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step. The hidden state of the LSTM layer captures the temporal dependencies and patterns in 

the data, allowing the decoder to generate a sequential output that reflects the original sequence. 

By repeating this process for each time step, the decoder gradually reconstructs the original 

input sequence. Each LSTM layer builds upon the information from the previous time steps, 

utilizing its hidden state to inform the generation of the current output. 

During training, the reconstruction loss is calculated to quantify the dissimilarity between 

the reconstructed output sequence and the original input sequence. A suitable loss function, 

such as mean squared error (MSE), is employed depending on the nature of the input data [36]. 

The goal of training the autoencoder is to minimize this reconstruction loss. By optimizing 

the model's parameters, the autoencoder learns to generate reconstructed output sequences that 

closely resemble the original input sequences. Minimizing the reconstruction loss encourages 

the autoencoder to capture and reproduce the most salient features of the input data. 

The final output of the decoder is the reconstructed output sequence, which ideally should 

closely match the original input sequence. This reconstructed output can be used for various 

purposes, such as data analysis, anomaly detection, or generating predictions. 

 

Ⅱ.4.2 LSTM Autoencoders applications 

LSTM autoencoders have emerged as powerful tools with a wide range of applications in 

the field of sequence modeling and analysis. Their ability to capture complex temporal 

dependencies, compress input data into a latent space, and reconstruct the original sequence 

make them well-suited for various tasks. 

From anomaly detection and data compression to time series forecasting, LSTM 

autoencoders offer versatile solutions in different domains such as cybersecurity, finance, and 

manufacturing. By leveraging the strengths of LSTM networks in combination with the 

reconstruction capabilities of autoencoders, these models have proven effective in addressing 

real-world challenges and extracting valuable insights from sequential data. 

 
Ⅱ.4.2.1 Time Series Forecasting 

Time series forecasting is one of the most common and well-established applications of 

LSTM autoencoders. The particular ability of LSTM autoencoders to capture temporal 

dependencies and patterns in sequential data, make them highly effective for time series 

forecasting tasks. 
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In time series forecasting, the goal is to predict future values or patterns based on past 

observations. LSTM autoencoders can learn to encode the input time series into a compressed 

representation or latent space, capturing the most relevant information. The decoder part of the 

autoencoder can then generate future predictions based on this compressed representation. 

While regular LSTM networks can also be used for time series forecasting, LSTM 

autoencoders can offer additional benefits in this area due to their enhanced ability to capture 

temporal dependencies and model complex patterns. 

The unsupervised nature of autoencoders allows them to learn from unlabeled data without 

explicit future targets, making them adaptable to scenarios where future labels are scarce or 

unavailable. Furthermore, the compression aspect of autoencoders enables them to extract and 

represent the most relevant features from the input time series, reducing the dimensionality and 

focusing on key information for accurate forecasting [37]. 

By leveraging the reconstruction loss during training, LSTM autoencoders learn to capture 

the intricate temporal dependencies in the data, making them highly effective in capturing long- 

term patterns and handling irregularities. These characteristics, combined with the ability to 

detect anomalies through higher reconstruction errors, make LSTM autoencoders well-suited 

for time series forecasting, providing a powerful tool to model and predict complex temporal 

dynamics in various domains. 

 

Ⅱ.4.2.2 Data Compression 

Data compression refers to the process of reducing the size of data files or streams without 

losing essential information. The goal of data compression is to minimize storage space 

requirements, reduce transmission bandwidth, and improve overall efficiency in handling and 

processing data. 

While regular LSTM networks can perform data compression to some extent, LSTM 

autoencoders are generally better suited for data compression tasks. 

LSTM autoencoders are specifically designed with a bottleneck layer that serves the purpose 

of compressing the input data into a lower-dimensional latent space. The training objective of 

the autoencoder is to reconstruct the original input sequence from this compressed 

representation. By leveraging this reconstruction process, the autoencoder learns to capture and 

encode the most salient features of the input data, effectively reducing its dimensionality. 
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Regular LSTM networks, on the other hand, are primarily designed for sequence modeling 

and prediction. While they can implicitly capture temporal dependencies and represent 

sequential patterns, their primary focus is not on explicit data compression. 

LSTM autoencoders, with their dedicated architecture for compression, tend to offer better 

compression capabilities compared to regular LSTM networks. The inclusion of the bottleneck 

layer in LSTM autoencoders specifically facilitates the extraction and representation of 

essential features in a lower-dimensional space [35, 36, 37]. 

Therefore, when it comes to data compression tasks, LSTM autoencoders are generally 

preferred over regular LSTM networks due to their specialized design and the explicit inclusion 

of a compression mechanism in their architecture. 

 

Ⅱ.4.2.3 Anomaly Detection 

As previously explained, anomaly detection is the process of identifying patterns or instances 

that deviate significantly from the norm or expected behavior within a dataset. An anomaly 

refers to a data point or a set of data points that do not conform to the usual patterns or behaviors 

observed in the majority of the data. 

Regular LSTM networks have been successfully applied to anomaly detection tasks and can 

effectively identify deviations from expected behavior. They are capable of capturing temporal 

dependencies and modeling sequential patterns, which can be advantageous for detecting 

anomalies in time series data. 

On the other hand, LSTM autoencoders offer additional features that can be beneficial for 

anomaly detection. The unsupervised nature of autoencoders allows them to learn 

representations of normal data without requiring explicit anomaly labels. The reconstruction- 

based approach, where the model aims to reconstruct the input data, can help identify anomalies 

as instances with high reconstruction errors. The dimensionality reduction aspect of 

autoencoders can also enhance their ability to capture salient features and reduce the impact of 

noise [38]. 

However, it is important to note that the performance of both LSTM autoencoders and 

regular LSTM networks in anomaly detection tasks can vary depending on factors such as the 

complexity and nature of the data, the choice of hyperparameters, and the specific 

characteristics of the anomalies being targeted [39]. Therefore, it is recommended to conduct 

empirical evaluations and comparisons to determine which approach is more suitable for a 

particular anomaly detection scenario. 
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Ⅱ.5 LSTM Autoencoders vs Regular LSTMs 

Regular LSTMs and LSTM autoencoders are both deep learning models that are increasingly 

applied to various domains due to their ability to capture long-term dependencies and learn 

complex patterns in sequential data. 

These two models present various similarities and also differences that make one of them 

more appropriate to use than the other depending on the task at hand. 

 
Ⅱ.5.1 Similarities 

The are several similarities between the LSTM autoencoders and the regular LSTMs, these 

similarities can be resumed in the following points: 

• Architecture: Both regular LSTMs and LSTM autoencoders are built upon the 

architecture of Long Short-Term Memory (LSTM) networks. They both utilize the 

recurrent nature of LSTMs to capture sequential dependencies and handle time series 

data. 

• Temporal Modeling: Both models excel in modeling and analyzing temporal 

sequences. They are designed to handle time series data, where the order of data points 

matters, and capturing sequential patterns is crucial. 

• Flexibility in Input Data: Both models can handle various types of input data, 

including numerical, categorical, or textual data. They can be adapted and configured 

to process different data modalities, making them versatile for a wide range of 

applications. 

 

Ⅱ.5.2 Differences 

While the LSTM autoencoders have similarities with the regular LSTMs, they also present 

differences that make them stand off from each other, these differences can be expressed in the 

following points: 

• Objective and Task: Regular LSTMs are primarily used for tasks such as sequence 

prediction, natural language processing, and sentiment analysis. They aim to model and 

predict the next element in a sequence. In contrast, LSTM autoencoders are designed 

for unsupervised learning tasks, such as data compression and anomaly detection. 

• Output and Reconstruction: Regular LSTMs typically produce an output sequence, 

which is often the predicted value or label for each element in the input sequence. LSTM 
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autoencoders, on the other hand, focus on reconstructing the input sequence using the 

compressed latent space representation. The reconstruction objective guides the 

learning process and enables tasks like data compression and anomaly detection. 

• Training Data: Regular LSTMs are often trained using labeled data, where each input 

sequence is associated with a corresponding target or label. LSTM autoencoders, on the 

other hand, can be trained with either labeled or unlabeled data. In the case of anomaly 

detection, they can be trained on normal data only and identify anomalies as instances 

with high reconstruction errors. 

• Latent Space Representation: One key distinction of LSTM autoencoders is the 

presence of a latent space or bottleneck layer. This compressed representation captures 

the most salient features of the input sequence. Regular LSTMs do not have an explicit 

mechanism for dimensionality reduction or latent space representation. 

 

Ⅱ.6 Predictive Maintenance and Anomaly Detection 

As discussed in Chapter Ⅰ, predictive maintenance aims to predict and prevent equipment 

failures or malfunctions by monitoring and analyzing the condition of the equipment. Anomaly 

detection plays a crucial role in PdM as it helps identify abnormal patterns or behavior in the 

data collected from the equipment. It helps prevent equipment failures, improve maintenance 

efficiency, and enhance overall operational reliability [40]. 

By utilizing anomaly detection techniques, such as LSTM autoencoders, abnormalities or 

deviations from the normal operating behavior of the equipment can be detected. This can 

include unusual sensor readings, irregular patterns, or unexpected changes in the data. 

Identifying these anomalies early on can provide valuable insights into potential equipment 

failures or maintenance needs. 

Predictive maintenance systems can utilize anomaly detection to trigger alerts or generate 

maintenance schedules based on the detected anomalies. By addressing potential issues 

proactively, organizations can minimize equipment downtime, reduce repair costs, and 

optimize maintenance operations. 

 
Ⅱ.7 The state of the art 

Yu, Yong, et al. (2019) mentioned in this paper that LSTM has become the focus of DL. To 

investigate its learning capacity, they examined the LSTM cell and its variations. They also 

divided LSTM networks into two primary types: LSTM-dominated networks, and integrated 
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LSTM networks, and discussed their different applications. Finally, LSTM network research 

directions were outlined [17]. 

Li, Zhuohan, et al. (2018). designed an original LSTM training algorithm by leveraging the 

information flow. The training algorithm proposed can force the input and forget gates' values 

to 0 or 1, creating a robust LSTM model. The usefulness of the suggested training algorithm 

was demonstrated in experiments on language modeling and machine translation. [22]. 

Smagulova, K., & James, A. P. (2019). In this paper, they examined the starting point and 

motivations for the creation of the LSTM neural network, and offered an overview of the current 

LSTM approaches, highlighting the most recent advancements in memristive LSTM structures 

[21]. 

Okut, H. (2021). reviewed the training process of RNNs, and explained how the LSTM 

neural networks can handle the main weakness of RNNs by learning long-term dependencies 

[20]. 

BERRAJAA, A. (2022). In this paper, an RNN-LSTM sentiment analysis model was put 

forth. In order to provide structured knowledge that can be applied to certain tasks, the goal was 

to build systems capable of extracting subjective information from natural language documents, 

such as feelings and opinions. With a 96% success rate, the LSTM model's performance was 

quite remarkable [24]. 

Zhao, T. (2019, July). In this article, in order to categorize massive amounts of video data, 

they suggest certain RNN variants, such as stacked bidirectional LSTM/GRU networks with 

attention mechanisms. The model, which incorporates audio and visual data, produced excellent 

results. It was referred to this approach as Deep Multimodal Learning (DML) due to its 

multimodal features. This DML-based model was assessed in a well-known video classification 

competition on Kaggle hosted by Google [25]. 

Lindemann, Benjamin, et al. (2021). It was shown in this paper that stacked LSTM networks 

can learn higher-level temporal patterns without prior knowledge of the pattern duration and 

that it may be a practical method to model typical time series behavior, which can be used to 

detect anomalies [28]. 

Bank, D., Koenigstein, N., & Giryes, R. (2020). In this paper, Autoencoders, a specific type 

of neural network was introduced. The autoencoders’ architecture, goal, and different 

applications were mentioned [30]. 

Saumya, S., & Singh, J. P. (2022). In this study, to identify between spam reviews and 

legitimate reviews, an unsupervised learning model integrating LSTM networks and 

autoencoder (LSTM-autoencoder) was suggested. The model in question was trained on how 
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to identify real review trends from textual details only. The experimental findings demonstrate 

that the model can distinguish between legitimate and spam reviews with reasonable accuracy 

[31]. 

Kang, Jaeyong, et al. (2021). In this article, they propose a method for detecting anomalies 

using a one-class LSTM autoencoder. Only normal subsequences are used as training data for 

the model. The mean absolute error (MAE) for each subsequence is determined in order to 

identify anomalies in test data. An example is labeled an anomaly if the error exceeds a 

predetermined threshold that was set to the maximum value of MAE in the training (normal) 

dataset. The experiments used data from metro trains in Korea and showed good results [32]. 

Do, J. S., Kareem, A. B., & Hur, J. W. (2023). In this paper, an LSTM-autoencoder model 

was utilized for training and testing to improve the accuracy of the anomaly detection 

procedure. This strategy enabled identifying patterns and trends in the vibration data that might 

not have been obvious when using more conventional techniques. The accuracy percentage for 

finding anomalies in the vertical carousel system using the correlation coefficient model and 

LSTM-autoencoder was 97% [33]. 

Nguyen, H. Du, et al. (2021). This study proposed an LSTM network-based approach for 

multivariate time series data forecasting, in addition to an LSTM Autoencoder network-based 

approach coupled with a one-class SVM algorithm for anomaly detection in sales. The acquired 

results demonstrate that, in comparison to the LSTM-based method proposed in prior work, the 

LSTM Autoencoder-based method leads to improved performance for anomaly identification 

[36]. 

Bampoula, Xanthi, et al. (2021). This study addresses a strategy to facilitate the transition 

from a PM to a PdM approach. A DL algorithm is employed to enable such transition. To train 

and test a prototype implementation of LSTM-autoencoders for determining the remaining 

usable life of the monitored equipment, real-world data gathered from manufacturing operations 

is employed. Finally, a use case involving a manufacturing process for the steel sector is used 

to evaluate the proposed approach [39]. 

Kamat, P., & Sugandhi, R. (2020). The core of PdM, according to this research, is anomaly 

detection, with a primary goal of identifying anomalies in operational equipment at an early 

stage. The difficulties with conventional anomaly detection methods are discussed, and a unique 

DL method for predicting anomalies before actual machinery breakdown is suggested. The 

suggested system uses an unsupervised learning technique called autoencoders, a kind of deep 

learning that can be used to find new classes of anomalies [40]. 
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Ⅱ.8 Conclusion 

In conclusion, this chapter delved into the concepts, architecture, and applications of LSTMs 

and LSTM autoencoders, highlighting the anomaly detection method used in our main 

predictive maintenance model and its advantages. 

LSTMs are powerful recurrent neural networks that excel in modeling sequential data, 

capturing long-term dependencies, and making accurate predictions. They have found success 

in various domains such as language modeling and time series forecasting. On the other hand, 

LSTM autoencoders extend the capabilities of LSTMs by incorporating the benefits of 

autoencoders. They offer unique advantages in unsupervised learning tasks, data compression, 

and anomaly detection. 

Anomaly detection is a well-suited technique for predictive maintenance approaches, by 

enabling early detection of abnormal behavior or patterns in equipment data, it plays a vital role 

in PdM. It helps prevent equipment failures, improve maintenance efficiency, and enhance 

overall operational reliability. 
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Chapter Ⅲ 

Autoencoder model 

 

 
Ⅲ.1 Introduction 

After introducing predictive maintenance and how it can affect the reliability of numerous 

systems and machinery in general, and after presenting different deep learning approaches, 

mainly Autoencoders, LSTM Autoencoders, and how they are used for anomaly detection. It is 

time to introduce our first model. 

In this chapter, we introduce our Autoencoder-based model, along with the system and 

database used to evaluate it. We are going to explain in detail every part of our program, point 

out the results gathered, and clarify these results using plots. 

 
Ⅲ.2 System & Database description 

Before we introduce our program and model, we need to clarify the source and 

characteristics of our data and system. The database we used is composed of time-series data 

collected from sensors installed on a SpectraQuest's Machinery Fault Simulator (MFS) 

Alignment-Balance-Vibration (ABVT) system. 

SpectraQuest is a company that specializes in providing solutions for machinery fault 

diagnosis, condition monitoring, and vibration analysis. They offer a range of products and 

services aimed at helping industries ensure the reliability, performance, and safety of their 

machinery and equipment. 

The SpectraQuest's MFS ABVT is a specialized equipment designed to simulate various 

fault conditions and performance scenarios in machinery. It is commonly used for research, 

testing, and training purposes in the field of fault diagnosis and condition monitoring. 

The following figure represent the characteristics of the MFS ABVT we used: 
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Figure Ⅲ.1 Specifications of the MFS ABVT [55] 

 
 

To collect the data, four sensors were used: 

• Three Industrial IMI Sensors, Model 601A01 accelerometers on the radial, axial and 

tangential directions: 

o Sensibility (±20%) 100 mV per g (10.2 mV per m/s2). 

o Frequency range (±3 dB) 16-600000 CPM (0.27-10.000 Hz). 

o Measurement range ±50 g (±490 m/s2). 

 

• One IMI Sensors triaxial accelerometer, Model 604B31, returning data over the 

radial, axial and tangential directions: 

o Sensibility (±20%) 100 mV per g (10.2 mV per m/s2). 

o Frequency range (±3 dB) 30-300000 CPM (0.5-5.000 Hz). 

o Measurement range ±50 g (±490 m/s2). 
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Our database contains two simulated states: 

• Normal functioning state: This state represents the normal operating condition of the 

machinery, where all components are functioning properly, and there are no faults or 

abnormalities. 

• Imbalance state: This state simulates an imbalance in the rotating components of the 

machinery by adding weights ranging from 6g to 35g. Imbalance can occur due to 

uneven distribution of mass, leading to vibrations and performance issues. 

 
In the dataset, there are 49 normal sequences without any faults. Each normal sequence 

corresponds to a fixed rotation speed ranging from 737 rpm to 3686 rpm, with an increment of 

approximately 60 rpm between each sequence. 

For the imbalance sequences, the same 49 rotation frequencies used in the normal operation 

case are employed for loads below 30g. However, for loads equal to or above 30g, the resulting 

vibrations make it impractical for the system to achieve rotation frequencies above 3300 rpm. 

This limitation reduces the number of distinct rotation frequencies and measurements available. 

To conclude, we used in our program a simulated database obtained from SpectraQuest's 

Machinery Fault Simulator, and after clarifying the system and database, we can now introduce 

our first program. 

 
 

Ⅲ.3 Autoencoder-based program 

Our program consists of several Python commands, and we will explain every component 

of it. We divided the code into 4 main points: 

• The libraries 

• Data preparation 

• Data preprocessing 

• Autoencoder model 

 
 

Ⅲ.3.1 The Libraries 

In the field of coding, a library refers to a collection of precompiled code and resources that 

provide specific functionality, features, or tools for developers. Libraries are designed to be 

reused, making development more efficient and enabling programmers to leverage existing 

code rather than building everything from scratch. 
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There are several libraries used in our program, some of which are part of the Python 

standard library, and some are not, meaning that they need to be preinstalled. 

The libraries and modules used are: 

• glob: The glob library provides a function that helps in finding files and directories 

whose names match specific patterns. It is useful for working with file paths and 

retrieving a list of files based on specific criteria. 

• Pandas: The pandas library is a popular data manipulation and analysis tool. It 

provides data structures like DataFrames for efficient handling of structured data, as 

well as functions for data cleaning, filtering, merging, and more. 

• NumPy: The NumPy library is a fundamental package for scientific computing in 

Python. It provides support for large, multi-dimensional arrays and matrices, along 

with a collection of mathematical functions to operate on these arrays efficiently. 

• SkLearn: Also known as Scikit-Learn, it is a comprehensive machine learning 

library in Python. It provides a wide range of algorithms and tools for tasks such as 

classification, dimensionality reduction, and model selection. 

• pyplot: it is a module within the Matplotlib library that provides a MATLAB-like 

interface for creating and manipulating plots. 

• TensorFlow: It is a library commonly used for deploying machine learning models 

and various DL. 

• Keras: Keras is a powerful library that facilitates the development of DL models by 

providing a high-level and intuitive interface. It is widely used in the deep learning 

community and has become a popular choice for building neural networks due to its 

simplicity and flexibility. With its different modules, this library may be the most 

important one in our program, as it allows us to implement our model with relative 

ease, without directly having to program it. 

• random: The random module allows you to generate random numbers, shuffle 

sequences, select random elements, and perform other randomization-related tasks. 

• time: the time library in Python provides various functions and classes for working 

with time-related operations and measurements. It is a standard library in Python and 

does not require any external installation. 

 
All these mentioned libraries and modules will be necessary for the right functioning of our 

program, the following lines of code show how the libraries are imported using the command 

“import”: 
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cur_path = "/content/fault-induction-motor-dataset/imbalance" 

 
normal_file_names = glob.glob("/content/fault-induction-motor- 

dataset/normal"+'/normal/*.csv') 

 
imnormal_file_names_20g = glob.glob(cur_path+'/imbalance/20g/*.csv') 

def dataReader(paths): 

data = pd.DataFrame() 

for i in paths: 

lowdata = pd.read_csv(i,header=None) 

data = pd.concat([data,lowdata],ignore_index=True) 

return data 

 

 

 
 

After importing all the needed libraries and modules, we can begin the data preparation step. 

 
 

Ⅲ.3.2 Data preparation 

In this step, we are going to prepare the data by downloading it to our program, clarify it 

using plots, and categorize it as needed. 

 
Ⅲ.3.2.1 Data download 

 

These lines of code use the glob.glob() function to retrieve the file paths of the data used in 

our program. The second and third line retrieves the file paths for the normal functioning and 

the 20g imbalance respectively. 

After that, we define a function that will allow us to read the data as followed: 
 

import glob 

import pandas as pd 

import numpy as np 

import sklearn 

import matplotlib.pyplot as plt 

import tensorflow as tf 

import time 

from keras.callbacks import Callback 

from keras.layers import Dense, LSTM, RepeatVector, TimeDistributed, 

Dropout, Input 

from keras.models import Model 

from keras import regularizers 

from keras.callbacks import EarlyStopping 

 
import random 
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def ref_data(data): 

# Convert the input data to a pandas DataFrame 

data = pd.DataFrame(data) 

 
# Check the number of columns in the data 

num_columns = data.shape[1] 

 
# Define the selected indices 

selected_indices = [1, 2, 3] 

 

# Validate the selected indices 

valid_indices = [i for i in selected_indices if i < num_columns] 

 
# Select the columns with the valid indices 

selected_data = data.iloc[:, valid_indices] 

 
# Return the selected data 

return selected_data 

 

 

The function takes a parameter “paths”, which represent the file paths of our data. Inside the 

function, an empty data-frame named “data” is created using “pd.DataFrame()”. This data- 

frame will be used to store the data from all the CSV files. 

The function then iterates over each file path in the “paths” list using a for loop. The read 

CSV data is stored in a temporary data-frame named “lowdata”. Then, the “pd.concat()” 

function is used to concatenate the “lowdata” with the existing “data”. The 

“ignore_index=True” argument ensures that the concatenated data-frame has a continuous 

index. 

Finally, the function returns the concatenated “data”, which contains the combined data 

from all the CSV files. 

To resume, the “dataReader” function will allow us to pass a list of file paths to it, and it 

will return a single data-frame containing readable data from all the data files. 

We use the “dataReader” function to assign the normal functioning data and imbalance data 

to the variables “data_n” and “data_20g” respectively. 

 
After that, we define another function named “ref_data” that will allow us to easily extract 

specific columns from the input data based on predefined indices. 
 

data_n = dataReader(normal_file_names) 

 
data_20g = dataReader(imnormal_file_names_20g) 
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We use this function to extract the axial, radial, and tangential data columns from the normal 

functioning and the imbalance data as following: 

 

 

Ⅲ.3.2.2 Data visualization 

To clarify the data used we will plot the three columns of both the normal and imbalance 

data as followed: 

 

 

These lines plot the axial, radial, and tangential data for the normal state, three plots will 

result after executing: 

data_n.columns = ['axial', 'radial', 'tangential'] 

data_20g.columns = ['axial', 'radial', 'tangential'] 

fig, axs = plt.subplots(3, sharex=False, sharey=False, figsize=(15, 

15)) 

 

for i, column in enumerate(data_n.columns): 

axs[i].plot(data_n[column][0:12000000:10000]) 

axs[i].set_ylabel('m/s^2') 

axs[i].set_xlabel('number of samples') 

axs[i].set_title('{} vibration'.format(column)) 

 

plt.subplots_adjust(hspace=0.5) 

plt.show() 

data_n = ref_data(data_n) 

 
data_20g = ref_data(data_20g) 
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Figure Ⅲ.2 Vibrations of normal state 

 
 

To compare with the vibrations of the normal state, we choose to plot the imbalance data of 

the lightest, heaviest and average weights. 

Using the same lines of code, by modifying only the input of the enumerate parameter, we 

plot the three axes of the 6g, 20g, and 35g imbalance data. 

The results are showed in the following figures: 
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Figure Ⅲ.3 Vibrations of 6g imbalance state 

 

 
We notice that the 6g vibrations are slightly more important than the normal state vibrations, 

where there is no weight added to the system, which is logical considering that the amount of 

weight added here is not significant. 

We continue to plot the 20g imbalance state: 
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Figure Ⅲ.4 Vibrations of 20g imbalance state 

 
 

We can see that the vibrations after adding 20g of weight are considerable compared to the 

normal state and the 6g imbalance states’ vibrations. These results suggest that the more weight 

we add to the system, the more vibrations we are going to have, which is logically acceptable. 

We proceed to our last plot of vibrations with the 35g imbalance state: 



Chapter Ⅲ. Autoencoder model 

55 

 

 

 

 
 

 

 
 

Figure Ⅲ.5 Vibrations of 35g imbalance state 

 
 

We can notice here that the 35g imbalance state have significantly more vibrations than the 

other states, which is due to the added weight difference. 

After plotting and visualizing all the vibrations from different states, we conclude that the 

amount of weight added can directly affect the importance of the systems’ vibrations, and we 

confirm that the more weight we add to our system, the more vibrations are going to occur. 
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Ⅲ.3.2.3 Data split 

To effectively train our model, we need to split the data into a training set and a test set. 

• The training set is the portion of the dataset on which the model learns the 

underlying patterns and relationships between the input features and the target 

variable. The training set is typically larger than the test set to provide enough data 

for the model to learn from. 

• The test set is a subset of the data that is used to evaluate the performance of the 

trained model. It serves as an unseen dataset that the model has not been exposed to 

during the training phase. The test set is used to assess how well the model 

generalizes to new, unseen data. By making predictions on the test set, the model's 

performance metrics, such as accuracy, precision, recall, or mean squared error, can 

be evaluated. The test set helps determine the effectiveness and reliability of the 

trained model. 

 
With the following line of code, we perform the train-test split on our dataset using the 

“train_test_split” function from the scikit-learn library: 

 
The shape of the training set and split set vary according to the amount of data used. In 

general, the larger the data the more percentage we can use for the training set, in our case, we 

used 12 million data values, which allowed us to do a 95% to 5% train-test split. 

 
Ⅲ.3.3 Data preprocessing 

After downloading, visualizing, and finally splitting the data, it is time to start the 

preprocessing step. Preprocessing is a necessary step applied to transform the raw data into a 

format that maximizes the performance and reliability of our model. 

data = data_n.copy() 

from sklearn.model_selection import train_test_split 

 
X_train, X_test = train_test_split(data, test_size=0.05, 

random_state=42) 

train = X_train 

test = X_test 

print("Shape of Train Data : {}".format(train.shape)) 

print("Shape of Test Data : {}".format(test.shape)) 

 

# Shape of Train Data : (11637500, 3) 

# Shape of Test Data : (612500, 3) 
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Ⅲ.3.3.1 Down-sampling 

Down-sampling is a preprocessing technique often used when the dataset is too large to be 

handled effectively. It aims to reduce the amount of data treated in order to create a more 

balanced dataset, which can improve the performance and fairness of the DL model. 

With the following lines of code, we define the “downSampler” function, an implementation 

of a down-sampling technique that reduces the size of a given dataset by calculating the mean 

of consecutive subsets of the data: 

 

 

Using the “downSampling” function, we down-sample the train and test data with a sampling 

rate of 1000, the code reduces the size of both datasets by aggregating consecutive subsets of 

1000 samples into single rows. 

 
Ⅲ.3.3.2 Reshaping 

LSTM models are primarily designed to work with three-dimensional data format, thus, to 

benefit from the full potential of our model, we will reshape the 2D data we have into a 3D data 

using the following code lines: 

def downSampler(data, a, b): 

''' 

data is the dataset we want to sample 

a is the start index 

b is the sampling rate 

''' 

data_decreased = pd.DataFrame() 

x = b 

for i in range(int(len(data)/x)): 

data_mean = data.iloc[a:b,:].sum() / x 

data_decreased = pd.concat([data_decreased, 

data_mean.to_frame().T]) 

a += x 

b += x 

return data_decreased 

 
train = downSampler(train,0,1000) 

test = downSampler(test,0,1000) 

print('train data after down sampling: ',train.shape) 

print('test data after down sampling: ', test.shape) 

 

# train data after down sampling: (11637, 3) 

# test data after down sampling: (612, 3) 
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After executing, the “X_train” and “X_test” variable will contain our final datasets, down- 

sampled, reshaped, and ready to implement in our model. 

 
 

Ⅲ.3.4 Autoencoder model 

After preparing and preprocessing the data, it is time to introduce our Autoencoder model. 

We will explain how we created the model, trained it, and finally visualize it. 

 
 

Ⅲ.3.4.1 Creating the model 

We create our model by defining the function “standard_autoencoder” with the following 

lines of code: 

 
The standard_autoencoder function defines a standard autoencoder model architecture that 

takes a three-dimensional tensor as input. The model architecture consists of several layers: 

• Input Layer: Takes the input data tensor. 

• Encoding Layers: Two fully connected (dense) layers with 128 units each, using ReLU 

activation function. These layers aim to learn a compressed representation (encoding) 

of the input data. 

• Dropout Layer: A dropout layer is applied to the encoded representation with a dropout 

rate of 0.3. Dropout helps to prevent overfitting by randomly dropping out units during 

training, forcing the model to learn more robust and generalized representations. 

def standard_autoencoder(X): 

 
input_data = Input(shape=(X.shape[1], X.shape[2])) 

encoded = Dense(units=128, activation='relu', 

kernel_regularizer=regularizers.l1(0.01))(input_data) 

encoded = Dense(units=128, activation='relu', 

kernel_regularizer=regularizers.l2(0.01))(encoded) 

encoded = Dropout(0.3)(encoded) 

decoded = Dense(X_train.shape[2], activation='sigmoid')(encoded) 

autoencoder = Model(input_data, decoded) 

return autoencoder 

X_train = train.values.reshape(train.shape[0], 1, train.shape[1]) 

X_test = test.values.reshape(test.shape[0], 1, test.shape[1]) 

 
print('Training data shape:', X_train.shape) 

print('Test data shape:', X_test.shape) 

 
# Training data shape: (11637, 1, 3) 

# Test data shape: (612, 1, 3) 
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• Decoding Layer: A dense layer with the same number of units as the input data's feature 

dimension and using the sigmoid activation function. It aims to reconstruct the original 

input data from the encoded representation. 

• Autoencoder Model: The model is defined by specifying the input and output layers. 

 

After defining a function that creates our model, we will now configure its training process 

with the following code: 

 
Our autoencoder model is created using the standard_autoencoder function with X_train 

as the input. The autoencoder is compiled with the Adam optimizer which is an efficient 

optimization algorithm for neural networks, and the mean squared error (MSE) is used as the 

loss function to measure the discrepancy between the model's predictions and the true values., 

as it computes the average squared difference between the predicted and target values. The 

accuracy metric is also specified to evaluate the model's performance. 

The MSE function is defined as follows: 

𝑀𝑆𝐸 = 
1 
∑𝑛 

 

(𝑦 − ŷ )2 Ⅲ.1 

 
Where: 

• n is the number of samples 

• y is the target value 

• ŷ is the predicted value 

𝑛 𝑖=1 𝑖 𝑖 

 
 

To monitor the training progress and prevent overfitting, an early stopping callback is 

defined. This callback tracks the validation loss (val_loss) and halts the training process if no 

improvement is observed for a specified number of epochs (20 in our case) based on the 

patience parameter. 

The summary() method is then called on the autoencoder model to display a summary of its 

architecture, including the number of parameters and the shape of each layer. The summary 

provides useful information about the model's structure, allowing us to verify the number of 

trainable parameters and check for any potential issues or discrepancies. 

autoencoder = standard_autoencoder(X_train) 

autoencoder.compile(optimizer='adam', loss='mse') 

early_stopping = EarlyStopping(patience=20, monitor='val_loss', 

restore_best_weights=True) 

autoencoder.summary() 
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Figure Ⅲ.6 Summary of the AE model 

 
 

The summary of the autoencoder model shows the architecture and the number of 

parameters. The model consists of four layers: 

• InputLayer: The input layer receives data with a shape of (None, 1, 3), indicating a batch 

size of None (variable), a single time step, and three features. 

• Dense: This layer is a fully connected layer with 128 units. It takes the input from the 

previous layer and produces an output of shape (None, 1, 128). The number of 

parameters in this layer is 512. 

• Dense_1: Another fully connected layer with 128 units follows. It takes the previous 

layer's output as input and produces an output of shape (None, 1, 128). The number of 

parameters in this layer is 16,512. 

• Dropout: A dropout layer is applied with a rate of 0.3, which randomly sets 30% of the 

input units to 0 at each training step. It helps in preventing overfitting. 

• Dense_2: The final dense layer has 3 units, corresponding to the original shape of the 

data. It produces an output of shape (None, 1, 3). The number of parameters in this layer 

is 387. 

The total number of trainable parameters in the model is 17,411. 
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class TrainingTimeCallback(Callback): 

def __init (self): 

self.training_times = [] 

 
def on_epoch_begin(self, epoch, logs=None): 

self.start_time = time.time() 

 
def on_epoch_end(self, epoch, logs=None): 

end_time = time.time() 

epoch_time = end_time - self.start_time 

self.training_times.append(epoch_time) 

 
# Create an instance of the TrainingTimeCallback 

training_time_callback = TrainingTimeCallback() 

 

 

Ⅲ.3.4.2 Training the model 

After visualizing our model and before starting the training process, we define a custom 

callback class called TrainingTimeCallback that tracks the training time for each epoch during 

the model training. The callback records the time taken for each epoch and stores it in the 

training_times list attribute. 

By using this custom callback during model training, we can access the training_times list 

to analyze and evaluate the training time for each epoch, which can be useful for performance 

monitoring and optimization purposes. 

After that, we finally start the training process of our model using the fit method, as shown 

in the following lines: 

 
The training process is executed with the following parameters: 

• X_train: The input training data, which consists of the original sequences that the 

model will learn to reconstruct. 

• X_train: The target training data, which is set to be the same as the input data. The 

goal of the Autoencoder is to reconstruct the input sequences. 

• Epochs = nb_epochs: The number of training epochs, specifying how many times 

the model will iterate over the entire training dataset. 

nb_epochs = 100 

batch_size = 40 

 
history = model.fit(X_train, X_train, epochs=nb_epochs, 

batch_size=batch_size, validation_split=0.2, verbose=1, 

callbacks=[early_stopping,training_time_callback]) 
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• batch_size = batch_size: The number of samples per gradient update. The training 

data is divided into smaller batches, and the model's weights are updated after 

processing each batch. 

• validation_split = 0.2: The fraction of the training data to be used as validation data. 

In this case, 20% of the training data will be used for validation during training. 

• Verbose = 1: Controls the verbosity of the training process. Setting it to 1 displays a 

progress bar and training information during each epoch. 

• Callbacks = [early_stopping, training_time_callback]: Specifies the list of callbacks 

to be used during training. In this case, the early_stopping callback and the custom 

training_time_callback are included. 

 
To summarize, the model.fit method starts the training process and returns a history object, 

which contains information about the training metrics and loss values for each epoch. This 

object can be used to analyze and visualize the training progress and performance of the model. 

 
 

Figure Ⅲ.7 First & last five AE Epochs 

 
 

Figure Ⅲ.7 shows us the first and last five epochs of the training process, we can see that 

the training time of the last epochs is shorter than the training time of the last ones, the loss 

values are also decreasing which indicates the model is learning and performing well. The 

training stopped at epoch 41 due to the early-stopping parameter used, showing that the best 

epoch performance was the 21st epoch. 
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plt.plot(training_time_callback.training_times) 

plt.title('Training Time per Epoch') 

plt.xlabel('Epoch') 

plt.ylabel('Time (seconds)') 

plt.show() 

 

# calculate the total training time 

training_times = training_time_callback.training_times 

total_time = np.sum(training_times) 

print('Total training time:', total_time, 'seconds') 

 

 

Ⅲ.3.4.3 Visualizing the model 

We continue by plotting the epochs’ training time, which will allow us to identify any 

significant variations or trends in training time and provide insights into the efficiency of the 

training process. 

We can plot the training time by executing the following code: 
 

 
 

 

Figure Ⅲ.8 AE Training Time per Epoch 

 
 

The total training time was only 40.07 seconds due to the early-stopping parameter that 

prevented the model from continuing unnecessary training by stopping the training process at 

epoch 41. We can see that the training time decreases significantly during the first epochs, and 

fluctuates from around the 15th epoch until the last one. This means that our model reached its 

optimal capacities in the first epochs, and continuing the training will not result in major 

improvements. 
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fig, ax = plt.subplots(figsize=(14, 6), dpi=80) 

ax.plot(history.history['loss'], 'b', label='Train', linewidth=2) 

ax.plot(history.history['val_loss'], 'r', label='Validation', 

linewidth=2) 

ax.set_title('Model Loss', fontsize=18) 

ax.set_ylabel('Loss (MSE)') 

ax.set_xlabel('Epoch') 

ax.legend(loc='upper right') 

plt.show() 

 

 

To further clarify our results, we will plot the model loss with the following code: 
 

The plot allows us to visualize the model's performance in terms of how well it is reducing 

the loss function during training and validation. We can see that the training loss decrease and 

reach stability within the first epochs, overlapping with the validation loss. It means that the 

model has learned the underlying patterns and is able to make accurate predictions on both the 

training and validation datasets. It quickly adapts to the data and reduces the loss, reaching its 

full potential early on, suggesting that continuing the training process may only result in minor 

improvements. 

Figure Ⅲ.9 Autoencoder Model Loss 

 
 

We conclude by visualizing the MSE for each vibration (axial, radial, and tangential) in the 

predicted output compared to the original test data. Using the following code: 

 

fig, axs = plt.subplots(num_features, 1, figsize=(15, 10), 

sharex=False) 
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Figure Ⅲ.10 Autoencoder MSE 

 
 

By plotting the MSE, we can now assess how well the autoencoder model is reconstructing 

each individual feature. We notice that the MSE values are very small (from 10−5 to 10−7), 

which indicates that the predicted values are closer to the original values, implying better 

reconstruction accuracy and overall performance. 

 

for i in range(num_features): 

feature_mse  

axs[i].plot(feature_mse) 

axs[i].set_ylabel('MSE') 

axs[i].set_xlabel('Data Point Index') 

axs[i].set_title('MSE for {}'.format(feature_names[i])) 

 

 
plt.subplots_adjust(hspace=0.5) 

plt.show() 
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fig, axs = plt.subplots(num_features, 1, figsize=(15, 10), 

sharex=False) 

feature_names = ['Axial vibration', 'Radial vibration', 'Tangential 

vibration'] 

 

for i in range(num_features): 

feature_mse_6g = np.square(data_6g[:, 0, i] - predict_data_6g[:,0, 

i]) 

threshold_6g = np.percentile(feature_mse_6g, 95) 

axs[i].axhline(threshold_6g, color='red', linestyle='--', 

label='Threshold') 

axs[i].plot(feature_mse_6g) 

axs[i].set_ylabel('MSE') 

axs[i].set_xlabel('Data Point Index') 

axs[i].set_title('MSE for {}'.format(feature_names[i])) 

axs[i].legend(loc='upper right') 

print('Threshold for {} is:'.format(feature_names[i]),threshold_6g) 

 
plt.subplots_adjust(hspace=0.5) 

plt.show() 

 

 

The sudden peaks are anomalies that can be treated using a threshold, which is the subject 

of the next title. 

 
Ⅲ.3.5 AE Anomaly Detection 

After preparing, explaining, and visualizing our AE model, we finally reach the anomaly 

detection step. 

We begin by plotting anomalies of the 6g imbalance data with the following code: 
 

This code allows us to plot the MSE for each vibration of the 6g imbalance data, overlaying 

a threshold line on the plot. The purpose of this is to visually identify data points that have MSE 

values above the threshold, which indicates anomalies or deviations from the expected 

behavior. 

The threshold is calculated using the 95th percentile of the feature MSE distribution. This 

means that 95% of the MSE values fall below this threshold, and the remaining 5% are 

considered potential anomalies. 
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Figure Ⅲ.11 AE 6g Imbalance Anomalies 

 
 

Using the 95th percentile as a threshold offers a balanced approach. Higher percentiles create 

a more conservative threshold, reducing false positives but potentially missing some anomalies. 

Lower percentiles increase sensitivity to anomalies but may result in more false positives. The 

selection of the threshold depends on the specific application and the desired level of sensitivity 

and precision. 

By setting the threshold at the 95th percentile, we can capture a majority of the normal data 

while allowing a small portion of anomalies. 

Using the same code and threshold, we plot the MSE for the 20g and 35g imbalances. 
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Figure Ⅲ.12 AE 20g Imbalance Anomalies 
 
 

Figure Ⅲ.13 AE 35g Imbalance Anomalies 
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We can notice from the MSE imbalance plots that the 35g anomalies are more important 

than the 20g anomalies, and the 20g anomalies are more important than the 6g ones, which 

means that increasing the imbalances weight led to increased anomalies, due to the increased 

vibrations. 

In other words, increasing imbalance weights in the rotating components of the machinery 

will increase vibrations, and these vibrations lead to more errors, and thus, more anomalies are 

detected. 

 

Ⅲ.4 Conclusion 

In this chapter, we introduced and explained our database, our Autoencoder model, and the 

program used to create, and visualize the model. We discussed and clarified the results by 

several different plots and figures. Lastly, we integrated the anomaly detection approach using 

a defined threshold and applied it to the different imbalances from our database. 

We conclude that the imbalance weights have a direct exponential relationship with the 

amount of vibrations and potential anomalies. 
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def LSTM_AE_model(X): 

inputs = Input(shape=(X.shape[1], X.shape[2])) 

L1 = LSTM(64, activation='relu', return_sequences=True, 

kernel_regularizer=regularizers.l2(0.00))(inputs) 

L2 = LSTM(64, activation='relu',return_sequences=False)(L1) 

L3 = RepeatVector(X.shape[1])(L2) 

L4 = LSTM(32, activation='relu',return_sequences=True)(L3) 

L5 = LSTM(64, activation='relu',return_sequences=True)(L4) 

output = TimeDistributed(Dense(X.shape[2]))(L5) 

model = Model(inputs = inputs, outputs = output) 

return model 
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Ⅳ.1 Introduction 

After introducing our Autoencoder model and explaining in detail every part of it, in this 

chapter, we review the LSTM Autoencoder-based model and compare it with the regular 

Autoencoder. The performance and accuracy of both models trained on the same data will be 

compared and the obtained results will be clarified. 

 
Ⅳ.2 LSTM Autoencoder-based program 

Similar to our regular Autoencoder-based program proposed in Chapter Three, we used the 

same lines of code to download, prepare and preprocess the same database used on the first 

model. Thus, we will directly introduce the LSTM Autoencoder model. 

 

Ⅳ.2.1 Creating the model 

We create our model using the function “LSTM_AE” which is defined as the following: 
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In this architecture, the input data X is passed through several LSTM layers. The first LSTM 

layer (L1) processes the input data, returning sequences to preserve the temporal information. 

The second LSTM layer (L2) further processes the output from the first layer, but does not 

return sequences. Instead, it compresses the information into a fixed-length vector. Line L3 

creates a layer that repeats the compressed representation of the input sequence, allowing 

subsequent LSTM layers to process it and generate a reconstructed sequence of the same length 

as the original input. The third LSTM layer (L4) takes this compressed representation and 

reconstructs a sequence of the same length as the original input. 

Finally, the fourth LSTM layer (L5) refines the reconstructed sequence. The output layer 

applies a dense transformation to each time step independently using the TimeDistributed 

wrapper, aiming to reconstruct the original input data. The resulting model is an LSTM 

Autoencoder that learns to compress and reconstruct the input data while capturing temporal 

dependencies and patterns. 

After defining a function that creates our model, we configure the training process of the 

LSTM Autoencoder model, including the optimizer, loss function, metrics, and early stopping 

callback, and provide a summary of the model's architecture with the following code: 

 

 

The provided lines of code perform the necessary setup and configuration for training an 

LSTM Autoencoder model, using the Adam optimizer and MSE loss function the same way as 

for the Autoencoder model. 

The early stopping is defined with a number of 20 epochs for the patience, and the model 

summary is finally displayed. 

model = LSTM_AE_model(X_train) 

model.compile(optimizer='adam', loss='mse', metrics=['accuracy']) 

# Define early stopping callback 

early_stopping = EarlyStopping(monitor='val_loss', patience=20, 

verbose=1, mode='min', restore_best_weights=True) 

model.summary() 
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Figure Ⅳ.1 Summary of LSTM Autoencoder model 

 
 

Ⅳ.2.2 Training the model 

After displaying the model, we proceed to use the custom callback used in the previous 

chapter to access the training time of each epoch, and then we start the training. 

The model.fit method starts the training process and returns a history object, which contains 

information about the training metrics and loss values for each epoch. 

 

 

 
Figure Ⅳ.2 First & last five LSTM-AE Epochs 



Chapter Ⅳ. LSTM-Autoencoder model 

73 

 

 

 

 

Figure Ⅳ.2 shows us that the last epochs have a better loss and accuracy compared to the 

first ones, which means that our model performance has improved during training. By using the 

early-stop method, our model stopped the training at epoch 85, mentioning and keeping the best 

epoch values (epoch 65), and thus, the training process is concluded. 

 
Ⅳ.2.3 Visualizing the model 

To better clarify our results, we will plot and further explain them, starting from the training 

time, model loss, model accuracy, and finally the models’ MSE. 

 

Ⅳ.2.3.1 Training Time 

We plot the epochs’ training time to see how our model performs. The total training time 

was 355.83 seconds, which is approximately 6 minutes. 

 
 

Figure Ⅳ.3 LSTM-AE Training Time per Epoch 

 
 

By analyzing the plot result, we notice that the model quickly converges to a relatively 

optimal solution. This indicates that the model has learned the underlying patterns and features 

of the training data efficiently within the initial epochs. 

The stagnation of training time from around the 40th epoch suggests that further training 

does not significantly enhance the model's performance, which is why our model saved the 65th 

epoch as the best one and stopped the training at the 80th epoch. 
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Ⅳ.2.3.2 Model Loss 

The model loss represents the difference between the reconstructed sequences (output) 

generated by the LSTM Autoencoder model and the original input sequences (target). 

The loss value is calculated using the MSE as the loss function, the plot of the model loss 

over the training epochs provides insights into how the loss changes as the model undergoes 

training. 

Figure Ⅳ.4 LSTM-AE Model Loss 

 
 

By monitoring the loss, we can evaluate the model's learning progress and convergence. A 

decreasing loss indicates that the model is learning to reconstruct the sequences effectively, 

which is the case of our model. 

 
Ⅳ.2.3.3 Model Accuracy 

We pursue our plotting phase with the next code that will access the accuracy values and 

plot the model accuracy: 

 

# Access the accuracy values from the training history 

accuracy =history.history['accuracy'] 

val_accuracy = history.history['val_accuracy'] 

# Plot the accuracy 

plt.plot(accuracy, label='Training Accuracy') 

plt.plot(val_accuracy, label='Validation Accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.title('Model Accuracy') 
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The plot of training accuracy and validation accuracy provides valuable insights into the 

model's performance during training. By comparing the two curves, we can assess the model's 

ability to learn and generalize. 

In our plot, we can see both lines increasing and converging, indicating that the model is 

learning well and generalizing to unseen data. A large gap between the two lines may suggest 

overfitting, which is not our case. We can also observe the overall trend of the curves, with 

increasing accuracy over time indicating successful learning. 

 
 

Figure Ⅳ.5 LSTM-AE Model Accuracy 

 
 

By comparing the accuracy and the loss plots, we can observe that the model's accuracy 

increases while the loss decreases. This indicates that the model is effectively optimizing its 

predictions and learning from the training data. 

 
Ⅳ.2.3.4 Model Mean Squared Error 

We conclude the LSTM-AE visualization by plotting the models’ mean squared error of the 

imbalance axial, radial, and tangential vibrations using the same lines of code introduced in 

Chapter 3. 

plt.legend() 

plt.show() 
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Figure Ⅳ.6 LSTM-AE MSE 

 
 

We can see that the MSEs of the model are very small, which means that our model learned 

effectively and its performance is acceptable. The random peaks of MSE indicate the presence 

of anomalies which will be detected next. 

 

Ⅳ.2.4 LSTM-AE Anomaly detection 

After explaining and visualizing the LSTM-AE model, we will now review its performance 

in detecting anomalies. 

We will plot the 6g, 20g, and 35g MSE imbalances and apply a 95% threshold the same way 

we did with the regular AE model in the previous chapter. 
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Figure Ⅳ.7 LSTM-AE 6g Imbalance Anomalies 
 

 
 

Figure Ⅳ.8 LSTM-AE 20g Imbalance Anomalies 
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Figure Ⅳ.9 LSTM-AE 35g Imbalance Anomalies 

 
 

We can see that the LSTM-AE imbalances act the same way as the regular AE imbalances, 

meaning that the heaviest weight vibrations are the most important ones perceived, which 

confirms the conclusion stated in chapter 3 about the exponential relationship between the 

weights added to the rotation components of the machinery, the vibrations, and the anomalies 

resulted. 

 
Ⅳ.3 LSTM-AE vs Regular AE 

After introducing both models, we will now compare their performance by reviewing three 

aspects: 

• Training time 

• Loss functions 

• MSE Anomalies 
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Ⅳ.3.1 Training Time 

After plotting the training time of both models on the same data, we notice that the training 

process of the LSTM-AE took a significant amount of time compared to the training process of 

the regular AE (6 minutes vs 40 seconds). This can be explained by the more complex 

architecture of the LSTM-AE. 

The LSTM-AE requires more time for each epoch due to the additional computations 

involved in training the LSTM layers. These computations include the forward and backward 

propagation of information through the recurrent connections and updating of the LSTM cell 

states. 

Consequently, the overall training process takes longer compared to the regular AE, which 

has a simpler architecture and fewer computational operations. 

 
Ⅳ.3.2 Loss functions 

The MSE loss functions of both models decrease significantly with time and reach a plateau 

suggesting that both models successfully learned the data patterns and reached their optimal 

performance. 

On the other hand, the MSE loss values of the LSTM-AE were remarkably less important 

than the loss values of the regular AE (0.0003 vs 0.4), which proves the superiority of the 

LSTM-AE in handling large complex amount of data and detect temporal features and 

dependencies. 

The LSTM layers allow the model to learn and exploit the temporal relationships between 

the input features. This enables the LSTM-AE to better reconstruct the input data and minimize 

the reconstruction error, as quantified by the MSE loss function. 

In contrast, the regular AE lacks the ability to explicitly model and capture temporal 

dependencies. It treats the input data as independent and identically distributed samples, 

neglecting any underlying sequential information. As a result, the regular AE may struggle to 

effectively reconstruct the time-dependent patterns in the data, leading to higher MSE loss 

values. 

By leveraging the memory cells and recurrent connections, the LSTM-AE is able to better 

preserve the temporal information and reconstruct the input data with higher fidelity, resulting 

in lower MSE loss values. This highlights the advantage of using LSTM-based architectures 

when dealing with sequential or time-dependent data. 
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Ⅳ.3.3 MSE Anomalies 

While both models had impressive low mean squared error values on the different axes of 

the weighted imbalances, the MSEs of the LSTM-AE were significantly smaller than the ones 

on the regular AE (10−15 vs 10−7). 

This means that while both models are performing well, the LSTM-AE performances are 

superior due to its complexity and capability to handle big amounts of data and temporal 

dependencies, which is confirmed by the loss results discussed previously. 

The remarkably smaller values of the MSE in the LSTM-AE also indicates that the anomalies 

present and detected in the machinery are less important and less common compared to the 

anomalies in the regular AE model, which only solidate and confirms our results and findings. 

 
Ⅳ.4 Conclusion 

After introducing our LSTM-AE model, explain it, and finally visualizing it, we compared 

its performance to the regular AE model proposed in Chapter 3. 

We found that due to the complexity of its architecture and additional computational 

operations present in the LSTM layers of the LSTM-AE, the regular AE offers faster training 

time, while the LSTM-AE provides superior performance in terms of MSE and its ability to 

capture intricate temporal dependencies. 

In the end, the choice between the two models depends on the specific requirements of the 

application, weighing the trade-off between training time and performance. 
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General conclusion 

In this work, we talked about industrial maintenance in a general manner and showcased 

how and why Predictive Maintenance is generally superior when it comes to industrial 

maintenance approaches due to its ability to predict failures, minimize downtime, and improve 

the reliability of the machinery. 

Artificial Intelligence plays a significant role in the field of PdM, AI techniques and 

methodologies are employed to analyze large volumes of data, extract meaningful insights, and 

make accurate predictions about the health and performance of industrial equipment. Therefore, 

we introduced Artificial Intelligence and all its subfields, including Machine Learning, 

Artificial Neural Networks, Deep Learning, and finally Autoencoders and Long Short-Term 

Memory architectures used in our model. 

Our model presented a combination of the two architectures, LSTM layers were added to the 

Autoencoder in order to leverage the LSTM capacity for handling large amounts of temporal 

data. 

To prove the efficiency of the model, we first introduced a regular Autoencoder and trained 

both models on the same data using the same code written with Python. After visualizing the 

results and competence of the two models, we compared and reviewed their performance on 

three points: Training time, Loss function, and MSE anomalies. We found that the LSTM- 

Autoencoder had significantly smaller loss values (0.0003 vs 0.4) and MSE anomalies (10−15 

vs 10−7) compared to the regular Autoencoder, while the regular Autoencoder outperformed 

the LSTM when it comes to training time (40 seconds vs 6 minutes). We concluded that the 

LSTM-Autoencoder had superior performance although it was slower than the regular 

Autoencoder due to the complexity of the LSTM layers added. 

In spite of the proven efficiency of the LSTM-Autoencoder model in predictive maintenance 

and anomaly detection, there are several deep learning techniques developed and constantly 

being improved at this time, due to the increased popularity of AI in general and the continuous 

implementation of this field in the industrial sector in particular. 

Finally, the most appropriate DL model or approach may vary depending on the systems’ 

characteristics, specific requirements, data features, and goals of the PdM application. That 

being the case, it is recommended to experiment and compare different models to determine the 

most effective approach for a particular use case. 
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