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Abstract

Brain tumors are a common type of cancer that affects brain tissue. They often cause symp-
toms such as headaches or seizures. They are usually diagnosed through brain scans such
as magnetic resonance imaging (MRI). In recent years, computer scientists have developed
algorithms that have shown promising results in automatically classifying these images into
various types using deep learning models, which is a type of machine learning that uses
artificial neural networks to recognize patterns in data.

Publicly available MRI scans (1500 cancerous and 1500 non-cancerous) are used to train deep
learning models: VGG16, VGG19, ResNet50, and Xception. Each model is implemented
using three approaches, namely: implementation from scratch, transfer learning, and fine-
tuning. This comparative study aims to find the best approach for training models on small
datasets. The obtained overall accuracies ranged from 88% to 99%.
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Introduction

A brain tumor is an abnormal growth of cells or mass in the brain leading to nervous system
dysfunctions. It can be benign (non-cancerous) or malignant (cancerous), and it can be
categorized into many types according to its size, location, origin, and growth rate. A brain
tumor is a deadly disease having high mortality in all age groups. It is the third leading
cause of cancer death in children and young adults [1].

Many medical imaging techniques are used to provide information about the location, size,
shape, and type of brain tumor e.g. Position Emission Tomography (PET), Single-Photon
Emission Computed Tomography (SPECT), Computed Tomography (CT), Magnetic Res-
onance Imaging (MRI), and Magnetic Resonance Spectroscopy (MRS). Among them, MRI
imaging is the most popular and efficient technique due to the rich information it provides
about the anatomy of human tissues, and due to its widespread availability and soft tissue
contrast [2].

Machine learning and computer vision breakthroughs have paved the way for new inventions
and algorithms development. It has demonstrated outstanding performance and can be used
in a variety of areas, which captured the attention of researchers, particularly in the domain of
anomaly detection and disease classification. Deep learning is a subfield of machine learning
that has shown great and promising results in medical image classification.

The chance of recovery from brain tumors depends on the early detection of the brain tumor.
To improve the survival rate, doctors and radiologists need to accurately detect the tumors.
Deep learning has become a powerful tool for medical imaging analysis by contributing to
the development of robust computer-aided diagnosis systems, which reduce the cost and time
taken to detect brain tumors.

The objective of the proposed work is to participate in increasing the performance of early
detection of brain tumors, help reduce cancer mortality by assisting radiologists in inter-
preting images at a much faster rate, and improve accuracy. This work aims to provide a
comparative study of some of existing approaches and models for developing deep learning-
based computer-aided systems for brain tumor classification. For this purpose, we used a
dataset of MRI images obtained from the KAGGLE platform. It consists of MRI scans
labeled cancerous and non-cancerous.

This report is structured as follows. The first chapter discusses the theoretical background
including brain tumors, medical imaging techniques, deep learning theory, and related works.
The second chapter introduces the dataset used in this work, the investigated models used
for our image classification problem, and the used tools. The third chapter provides and
discusses the obtained results. Finally, the report is ended with a general conclusion followed
by future works and improvements.
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Chapter 1

Theoretical Background and Related
Works
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1.1 Introduction

This chapter introduces brain tumors, medical imaging, and deep learning theory. First,
It presents the anatomy of the brain and discusses brain tumors along with their symp-
toms, statistics, and types. Next, it provides an overview of medical imaging techniques
used to diagnose brain tumors, where it focuses on the MRI technique used methodology.
Additionally, it presents the theory behind deep learning, convolutional neural networks,
and fine-tuning. Finally, it discusses works related to brain tumor classification using deep
learning techniques.

1.2 Brain Tumor Overview

1.2.1 Brain Anatomy

The brain is a complex organ that supervises all the functions of the body [3]. It is made up of
more than 100 billion nerves that communicate in trillions of connections called synapses [4].
The human brain is divided into different parts responsible for different nervous functions.
It receives much information at one time through the five senses: sight, smell, touch, taste,
and hearing. It assembles the received information and stores it in our memory. The brain
controls thoughts, memory, speech, movement, and the function of organs within the human
body [3]. The cerebrum, cerebellum, and brainstem are the three main parts that make up
the brain, as depicted in Fig 1.1:

Figure 1.1: The three main parts of the brain [5].
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Cerebrum: The cerebrum is the largest region of the brain, it controls movement and tem-
perature. Speech, judgment, thinking, reasoning, problem-solving, emotions, and learning
are all enabled by several parts of the cerebrum. Vision, hearing, touch, and other senses are
covered by other functions. Each hemisphere (part of the cerebrum) of the brain is divided
into four lobes: frontal, parietal, temporal, and occipital. As shown in Fig 1.2.

Figure 1.2: The four lobes of the cerebrum [5].

Frontal lobe: The frontal lobe is the brain’s hugest lobe, located in the front of the
head. It is responsible for personality traits, decision-making, and movement. Parts of the
frontal lobe are frequently involved in recognizing smells. Broca’s area is located in the
frontal lobe and is related to speaking skills.

The parietal lobe: The parietal lobe, located in the middle of the brain, assists
in the identification of objects and spatial relationships. It is also involved in pain and
touch perception in the body. Wernicke’s region, which helps the brain understand spoken
language, is located in the parietal lobe.

The occipital lobe: The occipital lobe, located in the back of the brain, is responsible
for vision.

The temporal lobe: The temporal lobes are located on the sides of the brain. They
assist short-term memory, speaking, musical rhythm, and some degree of smell recognition.

Cerebellum: The cerebellum is a small region of the brain at the back of the head that
is about the size of a tennis ball. Its job is to keep posture, balance, and equilibrium by
coordinating voluntary muscle movements.
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Brainstem: The cerebrum and cerebellum are connected to the spinal cord by the brain-
stem, which acts as a transmission center. It controls all automatic functions such as:
breathing, heart rate, body temperature, wake and sleep cycles, digestion, sneezing, cough-
ing, vomiting, and swallowing.

The brain and spinal cord are surrounded by three protective covering layers called meninges,
as can be seen in Fig 1.3.

Figure 1.3: The meninges of the brain[5].

The dura mater: The dura mater, the outermost layer, is thick and robust. It contains
two layers: the periosteal layer borders the inner dome of the skull (cranium), and the
meningeal layer lies beneath it. Veins and arteries that feed blood to the brain can travel
through the spaces between the layers.

The arachnoid mater: The arachnoid mater is a web-like layer of connective tissue
that does not contain any nerves or blood arteries. The cerebrospinal fluid, or CSF, is found
underneath the arachnoid mater. The entire central nervous system (brain and spinal cord)
is cushioned by this fluid, which circulates these tissues to eliminate pollutants.

The pia mater: The pia mater is a thin membrane that surrounds and follows the
contours of the brain’s surface. Veins and arteries abound in the pia mater.
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1.2.2 Brain Tumors

A brain tumor is a growth of cells or a mass in the brain that is abnormal [1]. Because the
skull of the brain can not stretch out of shape, growth within such a limited space could
result in nervous system anomalies and deficiencies. When tumors grow, the pressure inside
the skull rises, causing brain damage and nervous system problems [6]. Examples of brain
tumors are illustrated in Fig 1.4.

Figure 1.4: Examples of brain tumors [7].

1.2.3 Brain Tumor Statistics

Brain tumors have a high death rate across all age groups. In 2020, the American cancer
society estimated the infection of 24,000 people and the death of 19,000. This year, they
estimated the infection of 25,050 adults (14,170 men and 10,080 women) in the United States
and the death of 18,280 adults (10,710 men and 7,570 women) from primary brain cancers
and central nervous system (CNS) tumors. About 4170 children under the age of 15 will
be diagnosed with a brain or CNS tumor this year in the United States. Worldwide, an
estimated 251,329 people died from primary cancerous brain and CNS tumors in 2020 [8].
In Algeria, the ”Global Cancer Observatory” estimated the infection of 1,777 people and the
death of 1,478 in 2020[9]
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1.2.4 Brain Tumor Symptoms

The troubles that a person may encounter are referred to as symptoms and signs. They
indicate a disease or a condition and help in the medical diagnosis. Brain tumor symptoms
can be general or specific. A general symptom is caused by the pressure of the tumor on the
brain or spinal cord. Specific symptoms are caused when a specific part of the brain is not
working well because of the tumor [10]. Symptoms of brain tumors depend on the location,
size, and growth rate of the tumor. Severe headaches are common symptoms, which worsen
with activity or in the early morning. Many people with brain tumors may also experience
[1]:

• Fatigue.

• Nausea.

• Vomiting.

• Loss of sensation or movement in an arm or leg over time.

• Difficulties with balance, vision, speech and hearing.

• Increasing weakening or paralysis on one side of the body.

• Confusion in ordinary things.

• Inability to make decisions.

• Difficulty to execute simple orders.

1.2.5 Types of Brain Tumors

Many types of brain tumors exist, some are noncancerous (benign) and some are cancerous
(malignant). According to their site of origination, brain tumors can be classified as primary
(originate from inside the brain) and secondary (originate from inside the body and then
travels to the brain).

Primary brain tumors grow in the brain or the surrounding tissues, they begin when the
DNA of normal cells undergoes modifications (mutations). The mutations instruct the cells
to reproduce and grow fast, even healthy cells would die. As a result, a tumor is developed
from a mass of abnormal cells. Primary brain tumors come in a variety of types. The sort
of cells involved gives each its name. Different types of brain tumors are mentioned below:

Gliomas: Astrocytomas, ependymomas, glioblastomas, oligoastrocytomas, and oligo-
dendrogliomas are cancers that originate inside the brain or spinal cord.
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Meningiomas: A meningioma is a type of tumor that grows inside the tissue sur-
rounding both the brain and spinal cord (meninges). The majority of meningiomas are
benign.

Acoustic neuromas (schwannomas): These are benign tumors that grow on the
nerves that control balance and hearing in the inner ear and lead to the brain.

Pituitary adenomas: These tumors form in the pituitary gland, which is located
near the base of the brain. These tumors can disrupt pituitary hormones, which can have
far-reaching consequences throughout the body.

Secondary brain tumors grow after cancer spreads from another part of the body to the
brain. Any cancer can spread to the brain. The following are examples of common types:

• Breast cancer.

• Colon cancer.

• Kidney cancer.

• Lung cancer.

• Melanoma.

How quickly a brain tumor grows can vary greatly. The growth rate as well as the shape
and location of the brain tumor determine how it will affect the function of the nervous
system. According to the World Health Organization (WHO), malignant brain tumors can
be categorized into four grades[11], as demonstrated below:

Grade 1: The tumor grows slowly, and rarely spreads into nearby tissues. It may be possible
to completely remove the tumor with surgery.

Grade 2: The tumor grows slowly but may spread to nearby tissues or recur.

Grade 3: The tumor grows quickly, it is likely to spread into nearby tissues, The tumor
cells are abnormal. It has a high chance of transforming into a higher grade.

Grade 4: The tumor grows and spreads very quickly, very abnormal appearance, very short
survival rate.
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1.3 Medical Imaging Overview

Medical imaging is the technique and process of imaging the interior of the body for clinical
examination and medical intervention, as well as visual representation of the function of
particular organs or tissues. It is used by doctors and radiologists to inspect the human body
to detect, diagnose, and monitor medical conditions and diseases. Many medical imaging
techniques exist, where each type of technology provides specific pieces of information on the
body part being investigated or treated, such as disease, injury, or the efficiency of medical
treatment. The currently used are:

• Computed Tomography (CT).

• Positron Emission Tomography (PET).

• Single-photon Emission Computed Tomography (SPECT).

• Magnetic Resonance Imaging (MRI).

• Magnetic Resonance Spectroscopy (MRS).

1.3.1 Methodology of MRI

Magnetic Resonance Imaging (MRI) is the standard technique, the most popular, and effi-
cient one [12]. According to the Statistics Portal, more than 36,000 MRI scanning machines
were estimated to be in use in 2016 [2]. An example of an MRI machine can be seen in Fig
1.5 below.

Figure 1.5: MRI imaging machine [13].

Our work focuses on magnetic resonance imaging, which is a medical noninvasive 3D process
that uses radio waves to generate images of the anatomy and physiological processes of the
body. MRI scanners use high magnetic fields and computer-generated radio waves (radiofre-
quency energy) to create images, where the protons in fat and water molecules in the body
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provide the majority of the signal in an MRI scan. The idea is to place the body inside a
strong magnetic field which causes the water molecules to produce a faint signal, while a
transmitter/receiver in the machine sends and receives radio waves, which are used to create
cross-sectioned MRI images. An example of brain tumor MRI scans is shown in Fig 1.6.

Figure 1.6: Brain tumor MRI scans [14].

1.4 Deep Learning Theory

Deep Learning (DL) is a subfield of machine Learning (ML). It is inspired by the structure
and workings of the human brain using Artificial Neural Networks (ANN) that imitates
biological neural networks. It gives machines the ability to learn without being explicitly
programmed [15]. Deep learning uses multi-layer artificial neural network architectures to
extract progressively higher-level features from data, so it delivers state-of-the-art accuracy
in tasks such as object detection and speech recognition. Many types of learning exist and
can be presented in the following three classes:

Supervised Learning:

Supervised deep learning model learns and makes predictions using labeled data. It can be
thought of as a teacher supervising the learning process, the correct answers are given.

Unsupervised Learning:

An unsupervised deep learning model learns and makes predictions using unlabelled data.
It is a learning process where the model does not need to be supervised, the dataset is
unlabelled.

Semi-Supervised Learning:

Semi-Supervised learning is the process where the dataset contains a very small amount
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of labeled data and a very huge amount of unlabelled data. Where extracting important
features from data is challenging and labeling samples is time-consuming for professionals.

1.4.1 Artificial Neural Network

Artificial Neural Networks (ANN), usually called Neural Networks (NN), are computing
systems inspired by the biological neural networks that constitute the human brain. An
ANN is a collection of connected units or nodes called artificial neurons, which imitate
the biological neurons. In the brain, a neuron collects the input signal from its dendrite.
The neuron sends out spikes of electrical activity through its axon, which can be split into
thousands of branches. At the end of each branch, a synapse converts the activity from
the axon into electrical effects that inhibit or excite activity on the contracted neuron. An
example of a biological neural network is shown in Fig 1.7:

Figure 1.7: Example of a biological neural network [14].

ANNs are typically composed of interconnected units which serve as model neurons. They
multiply each input by a weighting factor, then biasing the sum of the multiplier factor.
They contain three types of layers: an input layer, an output layer, and hidden layers as
demonstrated in Fig 1.8:

Figure 1.8: Artificial neural networks architecture [16].
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Deep Neural Networks (DNN) are Artificial Neural Networks (ANN) with multiple layers
between the input and output layers. There are different types of neural networks but they
always consist of the same components: neurons, synapses, weights, biases, and functions

1.4.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN or ConvNet) is one of the most popular types of
deep neural networks [17]. It is a deep learning processing for data with a grid pattern,
such as an image. The CNN model does not require a hand-crafted feature extraction or
image segmentation. It obtains abstract features when input propagates toward deep layers,
which are arranged in such a way to detect simpler patterns first and more complex patterns
further. A typical convolutional neural network is demonstrated in Fig 1.9:

Figure 1.9: Convolutional neural network layers [18].

1.4.3 Types of CNN Architecture Layers

Convolutional Layer: The convolutional layer is a fundamental component of the CNN
architecture that performs feature extraction. It carries the main portion of the network’s
computational load. The kernel slides across the height and width of the image performing
a dot multiplication between the kernel and the portion of the receptive field. The layer
outputs another image with different dimensions. An example of a convolutional layer and
the convolution operation is shown in Fig 1.10:
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Figure 1.10: Convolutional layer operation [19].

Kernel size: The kernel, also called the convolution matrix, is a matrix that is slid
over the image and multiplied with the input to enhance the output in the desired way.

Stride: The kernel’s step size when sliding through the image is defined by the stride.

Padding: It is the term used in convolutional neural networks to describe how many
pixels are added to an image when it is processed by the CNN kernel.

Non-Linear Layer: Convolution is a linear operation, while images are far from linear.
Hence, the outputs of the convolution operation pass through a nonlinear activation function.
There are several types of nonlinear functions, the popular ones being: sigmoid, hyperbolic
tangent, and Rectified Linear Unit (RELU).

Pooling Layer: The pooling layer provides a typical down-sampling operation, which helps
in reducing the spatial size of the feature map, it decreases the required amount of computa-
tion and weights. There are two types of pooling: average pooling and max-pooling, which
can be shown in Fig 1.11 below:

Figure 1.11: Max-pooling and Average-pooling layers [20].

Flatten Layer: Flattening layer converts the pooling output of 2-dimensional arrays into
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a single long continuous linear vector before it is fed to the fully connected layer to classify
the image.

Fully Connected Layer: The fully connected layer, also known as the dense layer, has
several outputs equal to the number of classes. Once the features are extracted by the
convolutional layer and down-sampled by the pooling layer are created, they are mapped by
a subset of fully connected layers to the final outputs of the network, as the probabilities for
each class in classification.

1.4.4 Training a Convolutional Neural Network

1.4.4.1 Forward Propagation:

Forward Propagation, also known as forwarding pass, means in simple words moving in the
forward direction from input to output layers and passing through the hidden layers. Given
its input from the previous layer, each unit computes the weighted sum as follows:

y = f(
N∑

n=1

wn . xn + b) (1.1)

Then the activation function is applied to the result:

Activation Function: The resultant weighted sum is used by the activation function
as input and calculated activation outputs are fed as input to the next layer. The activation
output varies between 0 and 1 or -1 and 1, it can be interpreted as yes or no. Since linear
activation functions can not learn complex mappings, Non-linear are the most used, namely:

Rectified Linear Unit: Rectified Linear Unit (RELU) provides faster compu-
tation since it does not compute exponent operations and divisions. It will give the input
directly if it is positive, otherwise, it will result in zero. It computes the function depicted
in Fig 1.12:

Figure 1.12: Rectified Linear Unit [21].

14



Softmax: The softmax activation function is used in a neural network to normalize
the output of a network to a probability distribution over predicted output classes. It assigns
to each class in a multi-class problem a value in the interval [0,1]. Those probabilities add
up to 1. The below mathematical equation models the softmax activation function:

δ(xi) =
exj∑
i e

xi
(1.2)

Hyperbolic Tangent: It stands for tangent hyperbolic function. The advantage
of this mathematical approach is that negative input will be mapped strongly negative and
the zero inputs will be mapped near zero in the hyperbolic tangent graph.

The forward pass workflow is depicted in Fig 1.13:

Figure 1.13: Illustration of weighted sum and activation function operations on a neuron
[22].

The model performance on training data is calculated by the cost function.

Cost Function: It measures the compatibility between the output predictions and
the given labels. The algorithm performance increases as the cost function decrease. It is
the average of the loss function over all the training samples. Most used loss function for
measuring performances of a classification model whose output is a probability between 0
and 1 is cross-entropy:

£(y, ŷ) = −
M∑
j

N∑
i

(yji . log ŷij) (1.3)

where M represents number of classes and N number of samples

1.4.4.2 Optimizing a Neural Network

The optimization seeks the convergence of the loss function by continuously updating the
parameters in each iteration. Different optimization algorithms are presented below:
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Gradient Descent: Gradient descent is the most used optimization algorithm for
linear regression and classification problems. It calculates the first-order derivative of a loss
function to find the weights for which the loss function reaches a local minimum. There are
mainly three types of gradient descent, namely:

Batch Gradient Descent: Batch gradient descent takes into consideration all
the training data in every step. It calculates the average of the gradients of all the training
examples and uses it to update the network parameters. It calculates:

θ︸︷︷︸
the new parameter

= θ︸︷︷︸
the old parameter

− η︸︷︷︸
the learning rate

. ▽θı(θ)︸ ︷︷ ︸
the gradient

(1.4)

Stochastic Gradient Descent: Stochastic Gradient Descent (SGD) updates the
model’s parameters on each training example. SGD updates the model parameters more
frequently and requires less time and less memory for convergence.

Mini Batch Gradient Descent: Mini Batch Gradient Descent merges the ro-
bustness of stochastic gradient descent and the efficiency of batch gradient descent. It splits
the training dataset into mini-batches, which are used to calculate model cost functions and
update model parameters.

Adam Optimizer: Adaptive Moment Estimation (ADAM) combines two gradient
descent methodologies, namely:

Momentum: It calculates the exponentially weighted average which accelerates
the gradient descent algorithm.

Root Mean Squared Propagation (RMSP): It takes the exponential moving
average.

The ADAM optimizer is given by:

mt = β1mt−1 + (1− β1)gt (1.5)

vt = β2vt−1 + (1− β2)g
2
t (1.6)

v̂t = max( ˆvt−1, vt) (1.7)

θt+1 = θt −
η√

v̂t + ε
(1.8)

Batch Normalization: Batch normalization re-centers and re-scales the layer’s input.
It is a type of supplement layer that normalizes the input values of the next layer which
mitigates the risk of over-fitting and improves gradient flow through the network. It allows
the use of higher learning rates without the risk of divergence.
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z(i)norm =
z(i) − µ√
δ2 + ε

(1.9)

z̃(i) = γ.z(i)norm + β (1.10)

Where, the mean and variance are given as follows:

µ =
1

m

∑
i

zi (1.11)

δ2 =
1

m

∑
i

(zi − µ)2 (1.12)

1.4.4.3 Backward Propagation

Backward propagation is the process of moving in the backward direction, from the output
to the input layer. It is a computational approach for adjusting and correcting the weights
to reach the minimized loss function using gradient descent.

The back propagation algorithm differentiates the loss function for each weight in the net-
work, then the obtained gradient is fed to the gradient descent method.

An illustration of the back-propagation is demonstrated in Fig 1.14:

Figure 1.14: Illustration of back-propagation [23].
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1.4.5 Bias-variance Trade-off

Deep learning models may experience bias and variance related prediction errors.

Bias: The difference between the average predictions of the model and the correct
values it is trying to predict. High bias oversimplifies the model.

Variance: The variability of a model to a certain data point or a value. A high variance
may result in over-fitting problems.

So, balancing the bias and variance is necessary to avoid issues such as:

1.4.5.1 Over-fitting: high variance low bias

Over-fitting is a concept in deep learning which occurs when the model fits perfectly to the
data used during training but can not be generalized to unseen data. This happens when
the problem learns the noise in the training data, that does not apply to new data, which
negatively impacts the ability of the model to generalize. Over-fitting can be reduced by
regularization techniques, such as:

L1/L2 Regularization: L1 and L2 regularization techniques constrain a complex
learning model, which reduces over-fitting. It applies a penalty to the cost function to push
the weights toward zero. The main difference between L1 and L2 regularization techniques
is that, unlike the L1 technique, the L2 regularization reduces the weights to zero.

L1Regularization = λ

p∑
j=1

∥βj∥ (1.13)

L2Regularization = λ

p∑
j=1

(βj)
2 (1.14)

Dropout: Dropout is a regularization method that refers to randomly dropping out
units in a neural network during a training phase. Dropping out refers to randomly not
considering some neurons during a particular forward or backward pass.

Early Stopping: Early stop is a regularization method that stops the training phase
and saves the model once the loss starts increasing. It can be implemented either by moni-
toring the loss graph or by setting an early stopping trigger.

Hold Out: Hold out technique is used by splitting the data-set into training and testing
subsets. The most common split ratio is 80 percent for training and 20 percent for testing.
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1.4.5.2 Under-fitting: low variance high bias

Under-fitting is a problem in deep learning that occurs when the model is too simple that
it is unable to underlay the relationship between the input and output data accurately. An
under-fitted model performs poorly on both training and testing data. It can be reduced by
some techniques, such as:

Increasing duration of training: Stopping the model too soon may result in an
under-fitted model. However, as mentioned before, too late stopping may result in over-
fitting. Hence, it is important to find the appropriate training time.

Data augmentation: It is a technique used to increase the amount of data by mod-
ifying the already existing dataset. Data augmentation is done by applying various image
transformation techniques to the available dataset, such as flipping, rotating, re-scaling, and
shifting. Fig 1.15 demonstrates the three cases of overfitting, underfitting, and Optimal-
Fitting:

Figure 1.15: Overfitting underfitting and optimal-Fitting [24].

On both training and validation sets, learning curves indicate the relationship between the
training set and the selected evaluation metric (e.g., loss, accuracy, etc.). They can be a
very valuable tool for evaluating model performance because they can inform if the model
has a bias or variance problem. the relationship between bias, variance, and total error can
be seen in the graphs in Fig 1.16:
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Figure 1.16: Bias-variance trade-off [25].

1.4.6 Steps of Deep Learning Classification Approach

The deep learning models follow conventionally standard predefined steps to classify input
images. The description of steps and approaches is as follows:

1.4.6.1 Image Preprocessing

Image preprocessing consists of removing unwanted data from the input images, which im-
proves the quality of the input so that the results are more accurate. The input dataset
images are split into training, validation, and testing sets. According to the model classes,
each set is partitioned into labeled subsets. During this step, the input size and batch size
are set.

1.4.6.2 Data Augmentation

As mentioned before, data augmentation is the process of increasing the available data for
training the model. In deep learning, data augmentation refers to approaches for increasing
the amount of data by adding slightly changed copies of current data or creating new syn-
thetic data from already existing data. One technique to augment the data is flipping the
input images by random degrees.

1.4.6.3 Segmentation

Image segmentation refers to splitting the digital image into multiple parts or subgroups
called segments. It is an important step for further processing as feature extraction. The
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main objective of image segmentation is to group sections of a picture that belong to the
same object class together.

1.4.6.4 Feature Extraction

Feature extraction is the process of capturing the important parts of the image. Convolu-
tional neural networks do the feature extraction on their own. The most significant benefit
of deep learning is that it eliminates the need to extract features from images manually.
During the training phase, the network learns to extract features [26].

1.4.6.5 Classification

The model learns to identify the category of new observations based on training data. It
outputs the probability of an image belonging to each class and assigns it to the class with
the highest probability.

1.4.7 Transfer Learning

Transfer learning is a machine learning research subject that focuses on storing and trans-
ferring knowledge learned while tackling one problem to a different but related one. It is a
machine learning technique in which a model created for one task is utilized as the basis for
a model on a different task. Transfer learning is the process of applying features acquired
on one problem to a new related problem. Features from a model trained to recognize an
object may be used to kick-start a model that learns to identify another object. Transfer
learning is useful when the dataset contains insufficient data to train a model from scratch.

A pre-trained model is a saved network previously trained on a large dataset like IMAGENET
typically on a large-scale image classification task.

The following workflow is the most common manifestation of transfer learning in deep learn-
ing: freeze layers from a previously trained model to prevent any of the knowledge they
contain from being lost during subsequent training rounds. On top of the frozen layers, add
some new trainable layers. They will learn how to convert previous features into predictions
on a new dataset. Train the new layers on the new dataset.

1.4.8 Fine Tuning

Fine-tuning is a technique for putting transfer learning into practice. It is the process of
taking a model that has already been trained for one task and then refining or adjusting it to
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perform a second task comparable to the first one. Researchers can take advantage of what
the model has previously learned by utilizing an artificial neural network that has already
been created and trained rather than developing it from scratch.

Fine-tuning includes unfreezing the entire model (or a portion of it) and retraining it with a
very low learning rate on the new data. Incrementally adapting the pre-trained features to
the new data, has the potential to achieve significant improvement.

1.5 Related Work

Computer vision and machine learning have revolutionized the world in every way possi-
ble over the last couple of years [27]. It has demonstrated outstanding achievements in
every sector, especially in the domain of anomaly detection. Its capability has also been
applied and studied in detecting brain tumors utilizing MRI scans for effective prediction
with outstanding results [28].

Kalaiselvi et al. [29] compared several CNN models for classifying brain MRI scans and chose
the best CNN model for brain tumor detection. They built six CNN models in this study,
that were trained on the BraTS2013 dataset and tested on the WBA dataset. Among the
six models, the best model for tumor slice classification was discovered. They have attained
about 96–99% of accuracy.

Çinar et al. [30] classified brain tumors based on MRI images in their research paper. The
brain tumor MRI images utilized in this study were from the Kaggle platform ”Brain MRI
Images for Brain Tumor Detection” dataset. The classification process utilises CNN models,
the base architecture is the Resnet50, whose last five layers have been removed and eight
new layers have been added. They have attained about 97.2% of accuracy.

Sadad et al. [31] implemented segmentation using Unet architecture with ResNet50 as a
backbone. The brain tumor MRI images utilized in this study were from the Figshare
dataset. To improve the classification rate, the preprocessing and data augmentation tech-
niques were applied. Different CNN models such as MobileNet V2, Inception V3, ResNet50,
DenseNet201, and NASNet, were used for tumor classification and achieved accuracy of
91.8%, 92.8%, 92.9%, 93.1%, and 99.6% respectively.

Rehman Khan et al. [32] provided a deep learning approach to classify brain tumors using
MRI data analysis through a finetuned VGG19 model. They categorized tumors into their
appropriate classes. The data augmentation concept was used to expand available dataset
for classifier training, which improves classification accuracy over 92%.

Makde et al. [33] presented a convolutional neural network framework in this paper. The
framework is implemented using AlexNet and ZFNet architectures, and the system has been
trained to detect tumors in lung nodules and the brain. For both architectures and datasets
of lung CT and brain MRI images, classification accuracy is greater than 97%.
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1.6 Summary

Over the last few years, computer vision and machine learning have revolutionized the world
in every way possible, especially in the area of medical anomaly detection, including brain
tumor classification. In this chapter, we went through the theoretical background needed for
this project and its related works. We briefly discussed brain tumors, medical imaging, and
deep learning theory. Then, we mentioned works related to our domain of interest.
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Chapter 2

Design and Implementation of Deep
Neural Networks for MRI-Based
Brain Tumor Classification
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2.1 Introduction

This chapter provides the details of our methodology in conducting the project. First, it
discusses the dataset used for training, validation, and testing the models. After that, it
presents an overview of used deep learning models, their history, and architectures. Finally,
the chapter discusses the tools used for implementing the mentioned models.

2.2 Dataset

Deep learning algorithms require huge amounts of data for both training and validation.
Fortunately, many brain tumor MRI-based datasets are available for research purposes. Our
deep learning model must learn from input images how to successfully classify the unsees
brain MRI scans to cancerous and non-cancerous. The dataset was acquired online from the
KAGGLE platform. It belongs to Ahmed Hamada, a data scientist from Cairo, Egypt. It
contains two classes, yes and no, each containing 1500 images. Since we are working on a
supervised learning approach, each input image has a yes or no label.

2.3 Proposed Methodology

This section describes the methodology used in dealing with brain tumor classification using
deep learning. First, we preprocessed the input images to ensure smooth learning and more
accurate results. Then, we augmented our dataset to avoid any bias-variance related prob-
lems. Finally, we employed CNN, which is one of the most reliable deep learning algorithms.

2.3.1 Data Preprocessing

Data preprocessing is necessary before delivering the input images to the CNN models. As
a first step, cleaning the input dataset is done by deleting improper pieces of information,
which is images in inappropriate formats. Then, the dataset is split into 80% for training and
20% for testing data, where the training subset is split again to 80% for training and 20%
for validation. Next, each subset is divided into ”yes” and ”no” classes. The distribution of
samples after cleaning and splitting the dataset is demonstrated in Fig 2.1:
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Figure 2.1: Distribution of samples after cleaning and splitting.

Finally, a label (0 or 1) is assigned to each image according to its class and the image size is
fixed depending on the implemented model. Fig 2.2 illustrates an example of some images
from the used dataset, each with its label:

Figure 2.2: Example of labeled dataset images.

2.3.2 Data Augmentation

We artificially generated sample variety by applying random transformations to the training
images, such as random horizontal flipping or slight random rotations. This allows the model
to be exposed to a variety of training data while also slowing overfitting. An example of an
augmented image from the dataset is illustrated in Fig 2.3:
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Figure 2.3: Example of augmented dataset image.

2.3.3 Hyperparameters

Learning rate:The learning rate of a network is the rate at which its parameters are up-
dated. The learning process is slowed by a low learning rate, but it converges smoothly. A
faster learning rate accelerates the learning process, although it may not converge.

Batch size: It refers to the number of training samples given to the neural network in one
iteration before updating the parameters.

Number of epochs: The number of epochs is the total number of times the training dataset
has been processed.

2.3.4 Neural Network Models Used for Image Classification

The architectures of models implemented in this report are discussed below:
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2.3.4.1 AlexNet

AlexNet is a convolutional neural network architecture designed by Alex Krizhevsky in col-
laboration with Ilya Sutskever and Geoffrey Hinton [34]. It was the ILSVRC 2012 challenge
winner with a top 5 error. It is an 8-layer model, it consists of five convolutional layers with
a combination of max pooling followed by 3 fully connected layers, they use RELU activation
in each of these layers except the output layer(Softmax) [34].

The size of the input images is 227x227x3. The first convolution layer with 96 filters of size
11x11 with a stride of 4 is applied with a RELU activation function, This outputs a feature
map with a size of 55x55x96. The output is passed through the first max-pooling layer, of
size 3x3 and stride 2. Then, the resulting feature map of size 27x27x96 is passed through the
second convolutional layer with 256 filters of size 5x5 each, stride 1, padding 2, and a RELU
activation function. The output of size 27x27x256 is passed through the second max-pooling
layer of size 3x3 and stride 2, the resulting feature map is of dimensions 13x13x256. The
third convolution layer with 384 filters of size 3x3, stride 1, and padding 1 are applied with a
RELU activation function. The output feature map is of shape 13x13x384. The fourth layer
is identical to the third so the output remains of the same dimensions. The final convolution
layer of 256 filters with size 3X3, stride 1, and padding 1, The activation function is RELU,
resulting in a feature map of shape 13X13X256. The third max-pooling layer of size 3X3
and stride 2 results in a feature map of the shape 6X6X256.

After this, the first dropout layer of rate 0.5 is applied. Then the first fully connected layer
with a RELU activation function generates the output of size 4096. Next comes another
dropout layer with a dropout rate fixed at 0.5, followed by a second fully connected layer
with 4096 neurons and RELU activation. Finally, the last fully connected layer or output
layer with 1000 neurons. The activation function used at this layer is softmax. Fig 2.4
demonstrates the Alexnet architecture:

Figure 2.4: AlexNet architecture [35].

2.3.4.2 VGG16

VGG16 is an acronym for Visual Geometric Group. It was designed by K.Symonian and
A.Zisserman from Oxford University in the paper ”Very Deep Convolutional Neural Network
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for large scale image recognition” [36]. VGG16 is a 16 layers model that consists of 13
convolutional layers, 5 max-pooling layers, and 3 fully connected layers. It was the first
runner-up of the ILSVRC 2014 challenge.

The size of input images is fixed to be 224x224x3. The first block consists of 2 convolutional
layers, each with 64 filters of size 3x3, stride 1, and padding 1. Followed by a RELU activation
function, resulting in an output of the same shape as the input images. The output is passed
through a max-pooling layer of size 2x2 and stride 2. This results in an output of dimensions
112x112x64. The output is then passed through a second block similar to the first one, but
with a kernel of size 3x3 each. The third block consists of 4 convolutional layers with 256
filters of size 3x3, stride 1, padding 1, and a RELU activation function for each. Then the
output is passed through a max-pooling layer of size 2x2 and stride 2. The resulting output
is of dimensions 28x28x256. The fourth and fifth blocks are identical, each block consists of
4 convolutional layers with 512 filters of size 3x3, stride 1, padding, 1 and a RELU activation
function for each, and a max-pooling layer of size 2x2, and stride 2. The output of the fourth
block is of shape 14x14x512. The output of the fifth layer is of shape 7x7x512.

The output of the convolutional layer passes through three fully connected layers with a
flattening layer in-between. The first two fully connected layers have 4,096 neurons each,
and the last fully connected layer is the output layer. It uses a sigmoid and has 1,000 neurons.
Fig 2.5 illustrates the VGG16 architecture:

Figure 2.5: VGG16 architecture [37].

2.3.4.3 VGG19

VGG19 is a variant of the VGG19 convolutional neural network model. It consists of 19
layers (16 convolution layers, 3 fully connected layers, 5 max-pooling layers, and 1 softMax
layer).

The size of input images is fixed to be 224x224x3. The first block consists of 2 convolutional
layers each with 64 filters of size 3x3, stride 1, and padding 1. Followed by a RELU activation
function, it results in an output of the same shape as the input images. The output is passed
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through a max-pooling layer of size 2x2 and stride 2. This results in an output of dimensions
112x112x64. The output is then passed through a second block similar to the first one, but
with a size of 3x3 each. The third block consists of 3 convolutional layers with 256 filters
of size 3x3, stride 1, padding 1, and a RELU activation function for each. Then the output
is passed through a max-pooling layer of size 2x2, and stride 2. The resulting output is of
dimensions 28x28x256. The fourth and fifth blocks are identical, each block consists of 3
convolutional layers with 512 filters of size 3x3, stride 1, padding 1, and a RELU activation
function for each, and a max-pooling layer of size 2x2 and stride 2. The output of the fourth
block is of shape 14x14x512. The output of the fifth layer is of shape 7x7x512.

The output of convolutional layers passes through three fully connected layers with a flat-
tening layer in-between. The first two have fully connected layers 4,096 neurons each, and
the last fully connected layer is the output layer. It uses a sigmoid activation function and
has 1,000 neurons. Fig 2.6 demonstrates the VGG19 architecture:

Figure 2.6: VGG19 architecture [38].

2.3.4.4 ResNet50

ResNet is an acronym for Residual neural Network. ResNet was proposed in 2015 by Mi-
crosoft researchers Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun in a research
paper entitled ”Deep Residual Learning for Image Recognition” [39].

Involving more extra layers aids in the resolution of complex problems and increases the
accuracy of the result. However, deeper networks may face the issue of degradation. In other
words, as the number of layers increases, the accuracy levels may eventually get saturated
or decline. This is due to the vanishing gradient problem:

Vanishing gradient problem: The gradients of the loss function approach zero when
more layers with specific activation functions are added to the neural network, making the
network difficult to train. This occurs because of the activation functions that convert a
huge input space into a smaller one, limited between 0 and 1. Hence, a significant change in
the input of the activation function results in a minor change in the outputs.
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Residual neural networks proposed using residual blocks as a solution to the gradient van-
ishing:

Residual blocks are also called skip connections or shortcuts. They learn residual functions
based on the layer’s input. The skip connection adds the input value of the block to its output
directly without passing through activation functions, as a result of which the block’s overall
derivative is increased.

The ResNet50 architecture is 50 layers deep. It is divided into 5 stages, each stage contains
a convolutional and an identity block:

Identity Block it has 3 convolutional layers. The input is passed directly through the
shortcut, so it is used when the X and X-shortcut match up.

Convolutional Block It has 3 convolutional layers. The input is passed through a
convolution layer in the shortcut, so it is used when the X and X-shortcut do not match up.
Fig 2.7 demonstrates the ResNet50 architecture:

Figure 2.7: ResNet 50 architecture [40].

2.3.4.5 XCEPTION

Xception is a convolutional neural network model. It was introduced by Francois Chollet in
the research paper entitled ”Xception: Deep Learning with Depthwise Separable Convolu-
tions” [41]. It was the first runner-up in ILSVRC 2015 challenge. XCEPTION is 71 layers
deep, it uses depthwise separable convolution.
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The convolution operation is computationally expensive. Depth-wise separable convolutions
have been introduced to reduce the cost of these computations. The computation is broken
into two phases when using depth-wise separable convolutions, namely:

Depth-wise convolution: It is so-called because it deals with depth dimensions as well
as spatial dimensions. It does not perform the convolution computation over all channels,
but rather one at a time.

Point-wise convolution: It performs a typical convolution to change the dimensions.

The Xception architecture is based on the use of depth-wise separable convolution and resid-
ual blocks. It consists of 36 convolutional layers divided into 14 modules. Except for the
first and last modules, all of the modules have linear residual connections surrounding them.
Fig 2.8 shows the ResNet50 architecture:

Figure 2.8: XCEPTION architecture [42].

2.3.5 Evaluation Experiments

In this project, we implemented each of the previously mentioned architectures using the
three approaches explained below:

2.3.5.1 Implementation from scratch

In this first approach, we re-built the architectures: Alexnet, VGG16, VGG19, Resnet50,
and Xception from scratch using Keras.layers API’s from Tensorflow and Keras libraries. We
kept the same types and numbers of layers, strides, paddings, kernel sizes, and input sizes
as in the original research papers. The objective is to test the ability of models that have
been trained on small datasets to generalize and give accurate results on unseen data.
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2.3.5.2 Transfer Learning

In this second approach, we re-used model weights from previously trained models devel-
oped for large-scale computer vision problems, such as classifying 1,000,000 images for 1000
categories. We took layers of the pre-trained models and unfroze them using Keras.model
API’s from Tensorflow and Keras libraries. Then, we added new trainable layers, such as
flattening and dense layers, on top of the frozen layers. Finally, we trained the model on our
dataset.

2.3.5.3 Fine Tuning

In this third approach, we re-used the same previously trained models as in approach two,
except that this time we froze the model weights during the first 20 epochs. Then, we unfroze
them during the following 80 epochs.

2.3.6 Tools

2.3.6.1 Python

Python is an open-source interpreted high-level general-purpose programming language. It
supports multiple programming paradigms, including structured, object-oriented, and func-
tional programming. It has a philosophy that emphasizes code readability with the use of
significant indentation. Python provides several modules and built-in packages. It has au-
tonomous memory management and a dynamic typing system. It was first released in 1991
by Guido van Rossum at Centrum Wiskunde Informatica (CWI) [43].

2.3.6.2 Tensorflow

TensorFlow is an open-source machine learning platform that runs from start to end. It has a
large and flexible ecosystem of tools, libraries, and community resources that allow academics
to advance the state-of-the-art in machine learning and developers to easily construct and
deploy ML applications.

2.3.6.3 Keras

Keras is an open-source software library that provides a Python interface for artificial neural
networks. Keras acts as an interface for the TensorFlow library. It is the high-level API
of TensorFlow 2: an approachable, highly-productive interface for solving machine learning
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problems, with a focus on modern deep learning. It provides essential abstractions and
building blocks for developing and shipping machine learning solutions with high iteration
velocity. Keras empowers engineers and researchers to take full advantage of the scalability
and cross-platform capabilities of TensorFlow 2: you can run Keras on TPU or large clusters
of GPUs, and you can export your Keras models to run in the browser or on a mobile device.

2.3.6.4 Google Colab

Google Colaboratory, or ”Colab” for short, is a product from Google Research. Colab allows
anybody to write and execute arbitrary python code through the browser. It is especially
well suited to machine learning, data analysis, and education. It allows speeding up the
program by using the GPU and TPU.

2.4 Summary

In this project, we have classified images from a publicly available brain tumor MRI-based
dataset using several deep learning approaches and models, benefiting from many deep learn-
ing development tools. In this chapter, we discussed the methodology of our project. First,
we discussed our dataset and plotted the distribution of its samples. After that, we went
through the used deep learning models and their architectures, namely: AlexNet, VGG16,
VGG19, ResNet50, and Xception. Finally, the chapter discusses the tools used for imple-
menting the mentioned models, such as Python, Tensorflow, Keras, and Google Cloab.
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Chapter 3

Results and Discussion
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3.1 Introduction

In this chapter, we will discuss the various performance metrics used to implement and
evaluate deep learning models. Then, we will discuss the results obtained from the techniques
we outlined earlier in the second chapter.

3.2 Performance Metrics

The main goal of developing a deep learning model is to create one that can generalize
and classify unseen data. We use metrics to evaluate and visualize how well the model is
performing. There are a wide variety of metrics that may be used to evaluate deep learning
models, but we will focus on the four most commonly used, namely: accuracy, precision,
recall, and F1-score.

3.2.1 Confusion Matrix

The confusion matrix is one of the measures for determining the model’s correctness and
accuracy. It is a square matrix used to visualize the performance of the model. Each entry in
a confusion matrix represents the number of predictions generated by the model on the test
set, correctly and wrongly classifying the classes. In our case, the following four parameters
make up the confusion matrix:

True positive: The number of accurately classified tumor photos.

True negative: The number of accurately classified non-tumor photos.

False positive: The number of non-tumor photos that have been misclassified as tumors.

False negative: The number of tumor photos that have been misclassified as non-tumor
images.

Fig 3.1 demonstrates a confusion matrix:

Figure 3.1: Binary classification confusion matrix [44].
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3.2.2 Average Accuracy

The average accuracy, often known as the overall accuracy, is the percentage of total samples
correctly classified by the classifier. It is calculated using the following formula:

average accuracy =
1

N

N∑
i=1

TP + TN

TP + TN + FP + FN
(3.1)

3.2.3 Precision

The fraction of correct positive predictions among all positive predictions is known as the
precision. The equation that represents it is:

precision =
TP

TP + FP
(3.2)

3.2.4 Recall

This metric calculates the capacity of the model to make accurate predictions for each class.
Its mathematical modeling is seen below:

recall =
TP

TP + FN
(3.3)

In binary classification, recall of the positive class is “sensitivity” and recall of the negative
class is “specificity”.

3.2.5 F1-score

The F1-score is defined as the harmonic mean of precision and recall. It measures the
model’s performance and provides a better assessment of erroneously classified samples. It
is represented by the following equation:

F1− score =
precision ∗ recall
precision+ recall

(3.4)
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3.2.6 Reported Averages

Macro Average: Averaging the unweighted mean per label.

Weighted Average Averaging the support-weighted mean per label.

3.3 Results and Discussion

Overall, we implemented the previously explained CNN models using three approaches,
namely: implementation from scratch, transfer learning (frozen weights), and fine-tuning
(unfrozen weights). The details of the three experiments is presented in the following.

3.3.1 First Approach: Implementation from Scratch

3.3.1.1 Alexnet

The Alexnet model has 87,655,170 total parameters (87,652,418 trainable and 2,752 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig 3.2 and Fig 3.3 respectively.

Figure 3.2: Training and validation accuracies curve of Alexnet model using first approach.

It can be seen from the accuracy curve that the model is doing well on training data but
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less performing on the unseen validation data. We can also notice the fluctuation in the
validation accuracy which means that the number of correct predictions is rising and falling
irregularly.

Figure 3.3: Loss curve of Alexnet model using first approach.

It can be seen from the loss curves that the validation loss is always greater than the training
loss. This confirms that our model is poorly generalizing on unseen data.

The confusion matrix is plotted to verify and compare the misclassified labels and the cor-
rectly classified labels as can be seen in 3.4:

Figure 3.4: Confusion matrix of Alexnet model using first approach.
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The resulted evaluations metrics are given in Table 3.1:

precision recall f1-score support

0.0 0.95 0.82 0.88 299

1.0 0.84 0.95 0.89 299

accuracy 0.89 598

macro avg 0.89 0.89 0.89 598

weighted avg 0.89 0.89 0.89 598

Table 3.1: Classification report of AlexNet model using first approach

3.3.1.2 VGG16

The VGG16 model has 21,220,674 total parameters (21,212,226 trainable and 8,448 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig 3.5 and Fig 3.6 respectively:

Figure 3.5: Tradining and validation accuracies curve of VGG16 model using first approach

The gap between the training and validation accuracies means that we are performing better
in training than in validation, so the model is poorly generalizing on unseen data. However,
the fluctuations in the validation data were reduced compared to AlexNet. The small-size
convolution filters allow VGG16 to have a large number of weights, which leads to improved
performance.
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Figure 3.6: Loss curve of VGG16 model using first approach

VGG16 showed remarkable improvement in predicting correct labels making the validation
loss closer to the training loss.

The confusion matrix of the VGG16 model using the first approach can be seen in Fig 3.7:

Figure 3.7: Confusion matrix of VGG16 model using first approach
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The classification report of the VGG16 model using the first approach can be seen in Table
3.2:

precision recall f1-score support

0.0 0.96 0.97 0.96 299

1.0 0.97 0.96 0.96 299

accuracy 0.96 598

macro avg 0.96 0.96 0.96 598

weighted avg 0.96 0.96 0.96 598

Table 3.2: Classification report of VGG16 model using first approach

3.3.1.3 VGG19

The VGG19 model has 26,535,490 total parameters (26,524,482 trainable and 11,008 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig 3.8 and Fig 3.9 respectively:

Figure 3.8: Accuracy curve of VGG19 model using first approach
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Figure 3.9: Loss curve of VGG19 model using first approach

The VGG19 model is a variant of VGG16, the only difference is that VGG19 has three
additional convolutional layers. VGG19 behaved during this experiment exactly as VGG16
in terms of accuracy as well as loss.

The confusion matrix of the VGG19 model using the first approach can be seen in Fig 3.10:

Figure 3.10: Confusion matrix of VGG19 model using first approach
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The classification report of the VGG19 model using the first approach can be seen in Table
3.3 :

precision recall f1-score support

0.0 0.95 0.97 0.96 299

1.0 0.97 0.95 0.96 299

accuracy 0.96 598

macro avg 0.96 0.96 0.96 598

weighted avg 0.96 0.96 0.96 598

Table 3.3: Classification report of VGG19 model using first approach

3.3.1.4 ResNet50

The ResNet50 model has 23,591,810 total parameters (23,538,690 trainable and 53,120 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig ?? and Fig 3.9 respectively:

Figure 3.11: Accuracy curve of ResNet50 model using first approach
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Figure 3.12: Loss curve of VGG19 model using first approach

The gap between validation and training accuracies is due to the inability to generalize
on new unseen data. The spikes in the loss function are consequences of the mini-batch
gradient descent in the ADAM optimizer because some batches are noisy or harder to learn
than others.

The confusion matrix of the ResNet50 model using the first approach can be seen in Fig
3.13:

Figure 3.13: Confusion matrix of ResNet50 model using first approach
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The classification report of ResNet50 model using first approach can be seen in Table 3.4:

precision recall f1-score support

0.0 0.94 0.96 0.95 299

1.0 0.96 0.94 0.95 299

accuracy 0.95 598

macro avg 0.95 0.95 0.95 598

weighted avg 0.95 0.95 0.95 598

Table 3.4: Classification report of ResNet50 model using first approach

3.3.1.5 Xception

The Xception model has 2,782,649 total parameters (2,773,913 trainable and 8,736 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig 3.14 and Fig 3.15 respectively:

Figure 3.14: Accuracy curve of Xception model using first approach
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Figure 3.15: Loss curve of Xception model using first approach

The gap between training and validation accuracies was reduced significantly as compared to
the other models as well as the range of fluctuations. This improvement is because the model
is much deeper, it uses identity mapping to prevent gradient vanishing, and it uses depth-
wise separable convolution which has fewer parameters than classic convolutional layers and
thus is less prone to overfitting.

The confusion matrix of the Xception model using the first approach can be seen in Fig 3.16:

Figure 3.16: Confusion matrix of Xception model using first approach
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The classification report of the Xception model using the first approach can be seen in Table
3.5:

precision recall f1-score support

0.0 0.94 0.96 0.95 299

1.0 0.96 0.94 0.95 299

accuracy 0.95 598

macro avg 0.95 0.95 0.95 598

weighted avg 0.95 0.95 0.95 598

Table 3.5: Classification report of Xception model using first approach

3.3.2 Second Approach: Transfer Learning

3.3.2.1 VGG16

The VGG16 model has 14,912,322 total parameters (197,634 trainable and 14,714,688 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig 3.17 and Fig 3.18 respectively:

Figure 3.17: Accuracy curve of VGG16 model using second approach

The absence of fluctuations means that the model predictions are more accurate. We can
also notice that the gap between training and validation accuracy is reduced, so our model
generalizes better to unseen data.
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Figure 3.18: Loss curve of VGG16 model using second approach

The increase in the validation loss means that our model is suffering from vanishing gradient
problem.

The confusion matrix of the VGG16 model using the second approach can be seen Fig 3.19:

Figure 3.19: Confusion matrix of VGG16 model using second approach
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The classification report of the VGG16 model using the second approach can be seen in
Table 3.6:

precision recall f1-score support

0.0 0.99 0.98 0.98 299

1.0 0.98 0.99 0.98 299

accuracy 0.98 598

macro avg 0.98 0.98 0.98 598

weighted avg 0.98 0.98 0.98 598

Table 3.6: Classification report of VGG16 model using second approach

3.3.2.2 VGG19

The VGG19 model has 20,222,018 total parameters (197,634 trainable and 14,714,688 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig 3.20 and Fig 3.21 respectively:

Figure 3.20: Accuracy curve of VGG19 model using second approach
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Figure 3.21: Loss curve of VGG19 model using second approach

As we said earlier, VGG19 is a variant of VGG16, so VGG19 behaved again during this
experiment exactly as VGG16 in terms of accuracy as well as loss.

The confusion matrix of the VGG19 model using the second approach can be seen in Fig
3.22:

Figure 3.22: Confusion matrix of VGG19 model using second approach
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The classification report of VGG19 model using second approach can be seen in Table 3.7:

precision recall f1-score support

0.0 0.98 0.98 0.98 299

1.0 0.98 0.98 0.98 299

accuracy 0.98 598

macro avg 0.98 0.98 0.98 598

weighted avg 0.98 0.98 0.98 598

Table 3.7: Classification report of VGG19 model using second approach

3.3.2.3 ResNet50

The ResNet50 model has 23,591,810 total parameters (4,098 trainable and 23,587,712 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig 3.23 and Fig 3.24 respectively:

Figure 3.23: Accuracy curve of ResNet50 model using second approach
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Figure 3.24: Loss curve of ResNet50 model using second approach

Unlike the previous two models, ResNet50 validation loss is not increasing. This is because
it uses identity mappings to prevent vanishing problems.

The confusion matrix of the ResNet50 model using the second approach can be seen in Fig
3.25:

Figure 3.25: Confusion matrix of ResNet50 model using second approach
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The classification report of the ResNet50 model using the second approach can be seen in
Table 3.8:

precision recall f1-score support

0.0 0.99 0.98 0.98 299

1.0 0.98 0.99 0.99 299

accuracy 0.98 598

macro avg 0.99 0.98 0.98 598

weighted avg 0.99 0.98 0.98 598

Table 3.8: Classification report of ResNet50 model using second approach

3.3.2.4 Xception

The Xception model has 20,863,529 total parameters (2,049 trainable and 20,861,480 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig 3.26 and Fig 3.27 respectively:

Figure 3.26: Accuracy curve of Xception model using second approach

The validation accuracy is higher than the training accuracy, it can also be seen that the
accuracy is reduced as compared to the previous experiments, this is because Xception is a
deeper and more complex model, so as the weights are frozen and can not be updated, it
overfits.
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Figure 3.27: Loss curve of Xception model using second approach

The confusion matrix of the Xception model using the second approach can be seen in Fig
3.28:

Figure 3.28: Confusion matrix of Xception model using second approach

The classification report of the Xception model using the second approach can be seen in
Table 3.9:
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precision recall f1-score support

0.0 0.87 0.95 0.91 299

1.0 0.95 0.86 0.90 299

accuracy 0.91 598

macro avg 0.91 0.91 0.91 598

weighted avg 0.91 0.91 0.91 598

Table 3.9: Classification report of Xception model using second approach

3.3.3 Third Appraoch: Fine Tuning

3.3.3.1 VGG16

The VGG16 model has 14,912,322 total parameters (14,912,322 trainable and 0 non-trainable),
using 2385 samples where it resulted in the learning curves of the accuracy and loss over 100
epochs, as shown in Fig 3.29 and Fig 3.30 respectively:

Figure 3.29: Accuracy curve of VGG16 model using third approach

The model performed well in both training and validation sets resulting in good close enough
accuracies.
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Figure 3.30: Loss curve of VGG16 model using third approach

The increase in the validation loss means that the model is still suffering from the vanishing
gradient problem.

The confusion matrix of the VGG16 model using the third approach can be seen in Fig 3.31:

Figure 3.31: Confusion matrix of VGG16 model using third approach

The classification report of the VGG16 model using the third approach can be seen in Table
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3.10:

precision recall f1-score support

0.0 1.00 0.99 0.99 299

1.0 0.99 1.00 1.00 299

accuracy 0.99 598

macro avg 1.00 0.99 0.99 598

weighted avg 1.00 0.99 0.99 598

Table 3.10: Classification report of VGG16 model using third approach

3.3.3.2 VGG19

The VGG19 model has 20,222,018 total parameters (20,222,018 trainable and 10 non-trainable),
using 2385 samples where it resulted in the learning curves of the accuracy and loss over 100
epochs, as shown in Fig 3.32 and Fig 3.33 respectively:

Figure 3.32: Accuracy curve of VGG19 model using third approach
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Figure 3.33: Loss curve of VGG19 model using third approach

As mentioned earlier, VGG19 is a variant of VGG16, so VGG19 behaved again during this
experiment exactly as VGG16 in terms of accuracy as well as loss.

The confusion matrix of the VGG19 model using the third approach can be seen in Fig 3.34:

Figure 3.34: Confusion matrix of VGG19 model using third approach

The classification report of the VGG19 model using the third approach can be seen in Table
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3.11:

precision recall f1-score support

0.0 1.00 0.99 0.99 299

1.0 0.99 1.00 1.00 299

accuracy 0.99 598

macro avg 1.00 0.99 0.99 598

weighted avg 1.00 0.99 0.99 598

Table 3.11: Classification report of VGG19 model using third approach

3.3.3.3 ResNet50

The ResNet50 model has 23,591,810 total parameters (23,538,690 trainable and 53,120 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig 3.35 and Fig 3.36 respectively:

Figure 3.35: Accuracy curve of ResNet50 model using third approach

The model performed well in both training and validation sets resulting in good close enough
accuracies.
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Figure 3.36: Loss curve of ResNet50 model using third approach

Again, ResNet50 has shown remarkable performance in preventing vanishing gradient prob-
lems, ResNet50 validation loss is not increasing. This is because it uses identity mappings.

The confusion matrix of the ResNet50 model using the third approach can be seen in Fig
3.37:

Figure 3.37: Confusion matrix of ResNet50 model using third approach

61



The classification report of the ResNet50 model using the third approach can be seen in
Table 3.12:

precision recall f1-score support

0.0 0.99 0.95 0.97 299

1.0 0.95 0.99 0.97 299

accuracy 0.97 598

macro avg 0.97 0.97 0.97 598

weighted avg 0.97 0.97 0.97 598

Table 3.12: Classification report of ResNet50 model using third approach

3.3.3.4 Xception

The Xception model has 20,863,529 total parameters (20,809,001 trainable and 54,528 non-
trainable), using 2385 samples where it resulted in the learning curves of the accuracy and
loss over 100 epochs, as shown in Fig 3.38 and Fig 3.39 respectively:

Figure 3.38: Accuracy curve of Xception model using third approach

The model performed well in both training and validation sets resulting in good close enough
accuracies.
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Figure 3.39: Loss curve of Xception model using third approach

Xception has shown remarkable performance in preventing vanishing gradient problems by
using identity mappings.

The confusion matrix of the Xception model using the third approach can be seen in Fig
3.40:

Figure 3.40: Confusion matrix of Xception model using third approach
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The classification report of the Xception model using the third approach can be seen in Table
3.13:

precision recall f1-score support

0.0 1.00 0.98 0.99 299

1.0 0.98 1.00 0.99 299

accuracy 0.99 598

macro avg 0.99 0.99 0.99 598

weighted avg 0.99 0.99 0.99 598

Table 3.13: Classification report of Xception model using third approach

As a summary, table 3.14 demonstrates the loss and accuracy for each implemented model:

1st approach 2nd approach 3rd approach

Alexnet 0.88795

VGG16 0.96153 0.98160 0.99498

VGG19 0.96153 0.97826 0.99498

ResNet50 0.95150 0.98494 0.97157

Xception 0.98662 0.90802 0.98996

Table 3.14: Accuracy for each implemented model
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3.3.4 Results Comparison with Recent Works

Many research papers were published in the field of brain tumor classification. Unfortunately,
we have experienced troubles in finding peviously published works that have used our dataset.
However, we compared our results to other notebooks on the KAGGLE platform. The
comparaison is demonstrated in Table 3.15 below:

Model Model Accuracy

First notebook [45] EfficientNetB4 98.6%

Second notebook [46] 4-layers CNN 89%

Third notebook [47] Pretrained ResNet34 89%

Fourth notebook [notebookfourth] 3-layers CNN 97%

Fifth notebook [48] EfficientNetB2 99.6%

Fine-tuned VGG16 99.5%

Fine-tuned VGG19 99.5%

Xception implemented from scratch 99.6%

Table 3.15: Results Comparison with Recent Works

3.3.5 Conclusions

The main objective of this project is to make a comparative study between the three ap-
proaches and between the CNN models themselves.

Training deep learning models implemented from scratch performed well in terms of evalua-
tion metrics. Additionally, it provides more freedom to exploit the layers and modify them in
case needed. However, deep learning models trained on small-scale datasets may suffer from
the inability to generalize on unseen data and from overfitting even when data augmentation
and regularization techniques are used.

Transfer learning with frozen weights is a great tool to take knowledge of a previously trained
model (on a large-scale dataset) and apply it to a new problem. This second approach gave
better results in general. However, deep and complex models may degrade in terms of
accuracy because of the inability to adjust weights.

Fine-tuning gave the best results in terms of evaluation metrics with all the implemented
CNN models. Models pre-trained on large-scale datasets perform well on small ones when
weights are unfrozen. Additionally, the use of models pre-trained on large-scale datasets
eliminates the overfitting problems and helps generalize better. The most significant disad-
vantage of utilizing pre-trained models is that we are forced to employ the same architecture,
which may be so limiting.

VGG16 and VGG19 models have shown remarkable performance in extracting and classifying
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the input MRI scans into cancerous and noncancerous. However, their both loss curves start
increasing after a number of epochs, which means they suffer from the vanishing gradient
problem.

ResNet50 has shown satisfactory results in terms of accuracy. Additionally, it resolved the
vanishing gradient problem by introducing residual blocks.

Xception model gave the best results by using the first approach, and promising results
in the third approach. It also resolved the vanishing gradient problem by using residual
blocks. Introducing the depth-wise separable convolutions made the model faster and less
computationally expensive.

3.4 Summary

In this chapter, we described the performance metrics used to implement and evaluate deep
learning models. Then, we separately plotted and discussed for each experiment the learning
curves, confusion matrices, and classification reports. Next, we draw a summary table to
resume all the models’ findings. Additionally, we interpreted and discussed the results for
the three approaches as well as the implemented models. Finally,
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3.5 Conclusion and Future Work

Computer vision and deep learning have shown remarkable performance in the field of
biomedical imaging due to their promising results in the detection and classification of med-
ical anomalies, especially cancerous diseases. Brain tumors are growths of abnormal cells in
the brain. They can affect anyone at any age. Brain cancer is the leading cause of death from
cancer in children and young adults [49]. There are several ways to detect brain tumors.
This project focused on MRI-based brain tumor classification, which uses radio waves to
create detailed images of the brain.

The proposed work -Brain Tumor Classification using Deep Learning- aims to compare three
approaches to implementing deep learning models: implementation from scratch, transfer
learning, and fine-tuning. In addition, we implemented four CNN models: VGG16, VGG19,
ResNet50, and Xception. Each one using the three approaches, namely: implementation
from scratch, transfer learning, and fine-tuning.

In the last chapter, the performance metrics chosen for evaluation were presented allowing
the discussion of classification reports and confusion matrices after the analysis of learning
curves of both training and validation sets. As a summary, a table including the accuracies
and losses for each experiment was illustrated. Fine-tuning proved to be the most effective
approach for training models with small datasets. Xception model has shown the best
performance in training a small dataset from scratch with 98.66% accuracy, while VGG16
resulted in the best accuracy among fine-tuned models with more than 99%.

In the light of these findings, we believe that developing robust and automatic brain tumor
classification approaches is greatly beneficial to healthcare experts as it decreases the time
and cost to detect and diagnose to detect anomalies diseases, which is a life saver.

Many improvements can be done in our work. We propose to explore more advanced deep
learning algorithms, such as R-CNN, Fast R-CNN, Faster R-CNN, and Capsule Networks.
Additionally, we can introduce different noise reduction techniques for more accurate re-
sults. Finally, we can exploit many other image classification tasks in the field of biomedical
imaging.

67



Bibliography

[1] Brain tumor. https://www.mayoclinic.org/diseases-conditions/brain-tumor/
symptoms-causes/syc-20350084. may,2022.

[2] Survey of magnetic resonance imaging availability in West Africa. https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC6295297/. may,2022.

[3] Brain Anatomy and How the Brain Works. https://www.hopkinsmedicine.org/
health/conditions-and-diseases/anatomy-of-the-brain. may,2022.

[4] MIND BRAIN 100 Trillion Connections: New Efforts Probe and Map the Brain’s
Detailed Architecture. https : / / www . scientificamerican . com / article / 100 -

trillion-connections/. may,2022.

[5] Brain Anatomy and How the Brain Works. https://www.hopkinsmedicine.org/
health/conditions-and-diseases/anatomy-of-the-brain. may,2022.

[6] Understanding Brain Tumors. https://www.healthline.com/health/brain-tumor.
may,2022.

[7] The Most Common Brain Tumor: 5 Things You Should Know. https://www.hopkinsmedicine.
org/health/wellness- and- prevention/the- most- common- brain- tumor- 5-

things-you-should-know. may,2022.

[8] Brain Tumor: Statistics. https://www.cancer.net/. may,2022.

[9] “12-algeria-fact-sheets”. In: International Agency for Research On Cancer (March,2021),
p. 2.

[10] Brain tumours. https://www.nhs.uk/conditions/brain-tumours/. may,2022.

[11] Brain Tumors. https://www.aans.org/en/Patients/Neurosurgical-Conditions-
and-Treatments/Brain-Tumors. may,2022.

[12] Gopal S Tandel et al. “A Review on a Deep Learning Perspective in Brain Cancer
Classification”. In: Cancers 11 (2019).

[13] NOVA-MRI: Novel Applications in 19F Magnetic Resonance Imaging. https://nova-
mri.eu/EU_Projects/NOVA.nsf/xStart_Basic.xsp. may,2022.

[14] Ali M. Hasan et al. “Segmentation of Brain Tumors in MRI Images Using Three-
Dimensional Active Contour without Edge”. In: Symmetry 8.11 (2016). issn: 2073-
8994. doi: 10.3390/sym8110132. url: https://www.mdpi.com/2073-8994/8/11/
132.

68



[15] Artificial Neural Network, Its inspiration and the Working Mechanism. https : / /
www.analyticsvidhya.com/blog/2021/04/artificial-neural-network-its-

inspiration-and-the-working-mechanism/. may,2022.

[16] Facundo Bre, Juan Gimenez, and Vı́ctor Fachinotti. “Prediction of wind pressure coeffi-
cients on building surfaces using Artificial Neural Networks”. In: Energy and Buildings
158 (Nov. 2017). doi: 10.1016/j.enbuild.2017.11.045.

[17] Introduction to Convolutional Neural Networks (CNN). https://www.analyticsvidhya.
com/blog/2021/05/convolutional-neural-networks-cnn/. may,2022.

[18] Convolutional Neural Network: An Overview. https://www.analyticsvidhya.com/
blog/2022/01/convolutional-neural-network-an-overview/. may,2022.

[19] What Is A Convolutional Layer? https://analyticsindiamag.com/what-is-a-

convolutional-layer/. may,2022.

[20] Muhamad Yani, S Irawan, and Casi Setianingsih. “Application of Transfer Learning
Using Convolutional Neural Network Method for Early Detection of Terry’s Nail”. In:
Journal of Physics: Conference Series 1201 (May 2019), p. 012052. doi: 10.1088/
1742-6596/1201/1/012052.

[21] Leo Pauly et al. “Deeper Networks for Pavement Crack Detection”. In: July 2017. doi:
10.22260/ISARC2017/0066.

[22] Machine Learning Activation Function in Neural Network. https://hamdi-ghorbel78.
medium.com/machine- learning- activation- function- in- neural- network-

12caac615964. may,2022.

[23] ARTIFICIAL NEURAL NETWORK (ANN) 4 - BACKPROPAGATION OF ER-
RORS. https : / / www . bogotobogo . com / python / scikit - learn / Artificial -

Neural-Network-ANN-4-Backpropagation.php. may,2022.

[24] ML— Underfitting and Overfitting. https://www.geeksforgeeks.org/underfitting-
and-overfitting-in-machine-learning/. may,2022.

[25] ML Fundamentals: Bias Variance Trade-off. https : / / analyticsindiamag . com /
what-is-a-convolutional-layer/. may,2022.

[26] Pedro Costa. Do we need any feature extraction of image to train Deep neural network
for image classifications? Aug. 2017.

[27] How Artificial Intelligence Revolutionized Computer Vision: A Brief History. https:
//www.motionmetrics.com/how- artificial- intelligence- revolutionized-

computer-vision-a-brief-history/. may,2022.

[28] Maria Nazir, Sadia Shakil, and Khurram Khurshid. “Role of deep learning in brain
tumor detection and classification (2015 to 2020): A review”. In: Computerized Medical
Imaging and Graphics 91 (2021), p. 101940.

[29] T Kalaiselvi et al. “Deriving tumor detection models using convolutional neural net-
works from MRI of human brain scans”. In: International Journal of Information
Technology 12.2 (2020), pp. 403–408.

69
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