People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA - Boumerdes

Univers es
. . |
University of Boumerdes

< i
Institute of Electrical and Electronic Engineering
Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of
the Requirements of the Degree of

‘MASTER’

In: Computer Engineering

Title:

FPGA-based Artificial Neural Network
driving a Stepper Motor

Presented By:
- OUDJEHANI Celina
- BENNOUR Khadidja

Supervisor:
Dr. A. Benzekri

Registration Number: 2021/2022

ACKNOWLEDGEMENT

We would like to express our profound gratitude to our supervisor Dr.A.BENZEKRI for his guidance and
support throughout the making of this project.

A debt of gratitude is owed to our beloved parents, without whom none of this would have been possible.
We also thank our siblings, family and friends for their aid and encouragements.

ABSTRACT

This report describes the design and implementation of an FPGA-based Artificial Neural Network (ANN)
for character recognition. The ANN algorithm is fully developed using VHDL in the structural modelling
style. It comprises of 16 nodes in the input layer, 32 in the hidden layer and 16 in the output layer. The
processing of data is done in the IEEE single precision floating-point format. In order to train the ANN, a
dataset of 4x4 matrices stored in a VHDL file is used to represent the 16 letters to be recognized: A, C, D,
F,H 1,J,L,N,O,P, T, U, X, Y, Z that are selected based on the feasibility of their representation in such
dimensions. The weights are randomly initialized with a 16-bit Galois LFSR that has a maximum period
of 65535, which are stored in an on-board SRAM unit of 2MB storage capacity. The DE2-115 board
hardware platform is utilized to synthesize the overall system with the Quartus Il software version 13.0.
The built-in LCD display serves as an interface for the user to input the desired pattern on the two 4x4
grids, as well as to show the output class of the recognition process. We added a stepper motor circuit to
test the working of the ANN with “ON” and “OF” patterns.

Table of Contents

ACKNOWIEAZEIMENL. ...\ttt e e et et e e e e e e e e e |
ADSITACE . ..t e I
Table Of CONTENES.o e i
LISt OF FIQUIES. . oo e e e e e, VI
[T o] N 171 (ST PR IX
List Of ADDreVIAtIONS.o X
CHAPTER 1 Introduction
I 17 74 TP 2
1.1 Machine Learning and Deep Learning on FPGA.........ooiiiiiiiiiie 4
2. IMIOTIVALION ..o 6
TR Vo) (<o A @ o <11 A7 6
4. Structure of the FPGA-based Pattern RECOgNIZErc.oviiiiiit v, 7
5. Organization 0f the REPOITt e 8
CHAPTER 2 Theoretical Background
1. Artificial INtelligenCe. 10
1.1 Types of Artificial Intelligence.o, 10
a. Altype-1: Based 0N Capabilities.ouiuiriirititiiiteeie e 11
b. Al type-2: Based on Functionality...............oooiiiiiiiii 12
1. Reactive MacChings.........c.ouiu i 12
2. LIimMited MEBMOIY ..o 12
3. Theory of MiINd ... 12
4. SEIF-AWAIBNESSttt 12
1-2. The Major Branches of Artificial Intelligence. ..., 13
a. Natural Language Processing (NLP)...... ... 13
D, X OISy S OIS .ottt e 13
C. RODBOTICS ..t 14
O. FUZZY LOZIC. .ttt e e 14
€. NEUral NEIWOTKS.t e 14

2. MaChing LEAIMING.ttt e et et ettt e 15

2.1 SUPEIVISEA LBAMING ... vttt e e 16
2.2 Unsupervised Maching LEarningc.oieiiiriiiitii i e 17
2.3 Reinforcement Maching Learningcooeiriiiriiiiii e, 18
3. Artificial Neural NetwWorks (ANNS) ..ot et re e 18
3.1 Basic Architecture of Neural NetWOIKS..........coviiiiiiii e 19
3.2 Neural Network COMPONENLS.ueettieteteetet et et e e et e e e et eee e ete e eneneenenaens 20
Qe INPUE LAYET ..ttt e ek b et e e 21
D, HIAEN LAYET.......oieieeeeece ettt et eae st ese s st nn e o 21
3.3 Neural Network AlGOTithmsc.oiiriii e e e 22
3.4 BaCKPIOPAGALIONecviietiiieeitit ettt ettt bbbttt er et b e e ere s 22
3.5 Mean Squared ErTOr IMISE..........ccvoiiie it ere et re e aneens 24
4. The ProjeCt HAarOWArE.........ccoveiee i et ste et s e s s s se s e e e e e e e s e e e e e e s e e s e e sneanee s 25
O I 4T o = TSRS 25
AL FPGA TYPES..oeeeveeeeeeeeeestes e ses s sessesssssssasss s aesssessanssansssessanes s 27
A LOW ENG FPGAS ... 27
D, Mid Range FPGAS. ...t 27
C. HIGh ENA FPGAS ...ttt st e se e bbb enr s 27
4.2 FPGA APPIICALIONS.t e e e e 27
a. Communications, Software Defined Radio (SDR).............ccooiiiiiiiiiiiiiiii, 28
b. Artificial Vision SYSteMS. ..o, 28
c. Medical Imaging SYStemMS.ouitii i 29
d. Encryption Decryption and Cryptography...........ccoeeviiiiiiiiiiiiiieeienenen, 29
€. RO AStIONOMY .. .ot e, 29
f. SPEeCh RECOGNITION ... vt e 29
g. Aeronautics and DefenSe.ot 29
h. DataCenter / CloUd..........oniini i e 29
. CoNtrol ENGINEEIING: .. .ot e 30
4.3 The DE2-115 Development and Education board.................cccooiiiiiiiiiiiiiii i, 30
5. The 28BYJ-48 — 5V StePPer MOTOK. ..ot 31
6. The 4 Phase ULN2003 Stepper Motor Driver PCB..........cooiiiiiiiiiiciiiee e 31
CHAPTER 03 Design and implementation
I V1 (=] 0 I O A =] Y 1o 34
2. SYSIEM COMPONENES. ..\ttt ettt et et e et et et et et e et e et e e e e e e e e e ae e e anaeanans 37
2.1 PR COMPONENL.ttt ettt e 37
2.2 ANN COMPONEIL. ...ttt et e te e aenneanenas 39
1. The Initialization Phase...........cooouiiriiii e 40

https://www.datarobot.com/wiki/supervised-machine-learning/
https://www.datarobot.com/wiki/unsupervised-machine-learning/

2. LeAING Phase.ooviniitiiit et 41

3. RUNNING PRhase. ... oot 41

O 1 |1 o T T 41

2.3 16-bit Linear Feedback Shift Register............cooviiiiiii i 42

2.4 Float ALU COMPONENT. ...ttt et e e aans 43

2.5 SRAM COMPONENL. ...ttt ettt ettt et et et e et et e et e ae e e eaeenennenees 44

2.6 LCD COMPONEGNL.utiittiitt ettt et et e e e e et et et e te e eeeeaeae e 45

2.7 Display Control CoOmponent............c.o.ouiiiiuiiiiii e, 46

2.8 MOEOE CIICUIL. ...ttt 46

3. Altera Floating Point Megafunctions.............ooouiiiiiiiii e 47
4.1 ALTFP _COMPARE. ... e e 48

4.2, ALT P X P 50

4.3, ALTFP_ADD_SUB..ottt 50

A4, ALTEP_MULT ..o 51

A5, ALTRP DIV . e 52

4. RESOUICE USAZE. .. uettttitt ettt ettt e ettt ettt ettt e e e e 53
5. Experimental RESUILS. ... 54
CONCIUSION. ... 56
REFEIENCES. ... 57

List of Figures

Figure 1-1: An overall design schematic of the pattern recognizer system.................ccooeviinnnn. 7
Figure 2-1: Types of Artificial INtelligence...........ooieiii e 10
Figure 2-2: Capability based Al SYStemMS.ouiuiniiitit it 11
Figure 2-3: The major branches of Artificial Intelligence..............cooiiiiiiiiiiiiea 13
Figure 2-4: The types of machine learning................oooiiiiiiiiiii e 15
Figure 2-5: SUPErVISed [8arning.ouiuiiiieie it 16
Figure 2-6: UNSUPerviSed Learming.uvuirinit ittt et et e e ettt et e e e eaeaanes 17
Figure 2-7: ReinforcemMent ML ..ot e e 18
Figure 2-8: Biological neural NEtWOIK......... ..o 19
Figure 2-9: Comparison between the structure of a biological neuron and an artificial neuron.........19
Figure 2-10: The basic architecture of the perceptron............cooiiiiiiii i, 19
Figure 2-11: The architecture of neural NEtWOorks.c.oiiiiiii i, 20
Figure 2-12: Hlustration of an artificial NEUrON.......... ... 21
Figure 2-13: Backpropagation illustration...............oooiiiiii e 24
FIQUIe 2-14: MSE @QUALION.ttt et et ettt et e e e e e e e e aenenns 24
Figure 2-15: The FPGA archit@CtuIe.ouuute ettt et 26
Figure 2-16: Configurable Logic BIOCK.......... ..o, 26
Figure 2-17: FPGA APPLCAtioNS.iuiitit ittt e, 28
Figure 2-18: The DE2-115 board (10D VIEW). ... uvurieitiettetit ettt et ettt et e eeaeenanens 30
Figure 2-19: The 28BYJ-48 StePPer MOTOT.iuit ittt ettt 31
Figure 2-20: The28BYJ-48 unipolar internal Circuitry StruCtUre............oovvverirerineenineeianannnns 31
Figure 2-21: The stepper MOtOr ATIVET.ttt ittt et ettt e e eae s 32
Figure 3-1: Real picture of the designed SYStemouvuieiriniiiiiiiii e 35
Figure 3-2: The block diagram representation of the System.............ccoeviiiiiiiiiiiniiiiniiie e, 35
Figure 3-3: The Workflow of the system...........co.ouiiiiii e, 36
Figure 3-4: The training dataset.oeuenin it 37
Figure 3-5: Pattern recognizer block diagram representation..............coovviiiiiriiiiriniininneenn.n.. 37

Vi

Figure 3-6: The FSM diagram of the pattern reCoOgnizZer.o.vuvuiiiiiiiiiiiiiiiieaeenans 39

Figure 3-7: Block diagram representation of the Artificial Neural Network......................oooene. 39
Figure 3-8: The ANN modes FSM diagram............c.ouiiiiniiiniiii i 40
Figure 3-9: The32-bit format of the randomized weights values...................cccooiiiiiiiiiiiinnn, 40
Figure 3-10: The 16-bit GALOIS LFSR diagram........ccouiiiiiiiiiiiiiiiieeee e 42
Figure 3-11: The circuit diagram of the LFSR component in Quartus software......................... 42
Figure 3-12: Block diagram representation of the ALU ..., 43
Figure 3-13: Connections between FPGA and SRAMo, 44
Figure 3-14: SRAM Finite State Machine diagram representation.................ccooeeiriniininannns 45
Figure 3-15: Connections between the LCD module and Cyclone IV E FPGA......................... 45
Figure 3-16: Block diagram of display control Unit................oooeiiiiiiiiiiiiiiiii i, 46
Figure 3-17: LCD grid dimenSIonS.euuttititinii et et e e e eaeaees 46
Figure 3-18: The interfacing of the MOtOr CIrCUIt.oviuieiiiiiee e, 47
Figure 3-19: The ALTFP_COMPARE IP core block diagram.....................coooiiiiii.n. 48
Figure 3-20: MegaWizard Plug-In Manager WindoW............c.ouvuiriniiiiiiiiieeeeeeea 49
Figure 3-21: IP core Selection WInAOW.c.oiuiiriini it e 49
Figure 3-22: Features selection WindOW...........ouiuieitiriniiiie e 49
Figure 3-23: Output ports Selection WINAOW........... ..ot 49
Figure 3-24: Synthesis area and timing estimation netlist option selection window................... 49
Figure 3-25: Additional files generation Window..............covuiuiiiiiiiiiii e 49
Figure 3-26: The block diagram representation of the ALTFP_EXP IPcore...................ooeeii. 50
Figure 3-27: The block diagram of IEEE-754 floating-point adder/subtractor IP cores............... 51
(A AR ... 51
(B): SUDLIACHOT. ...ttt ettt e e s 51
Figure 3-28: Block diagram of ALTFP_ MULT TP COT@......cuvuvirintiriiireiiriiieieieeeeiaanenan, 52
Figure 3-29: Block diagram of ALTFP_DIV IP COT€.........oiiiiiiitiritiniiiiiieieieieieieeieaeanes 53
Figure 3-30: The synthesized system on FPGA shown in the RTL viewer of Quartus Il software..53
Figure 3-31: Resource usage from Quartus SOftwareccoviiveiiiniiiiniiiiiee e, 54
(A): The flOW SUMMATY.eutettine et et et e e e ae e enaaes 54

(B): Resource usage from Quartus software...............coooiiiiiiiiiiii 54

Figure 3-32:The real system shot in the training phase.............coooiiiiiiiiiiiii e, 55

Figure 3-33: Real SYStem OUIPUL.oviii e e e 55
(A): “OF” pattern SYSteM’S TESPOMSE. ... uvuvrtrarenrerinteteeareneareneareeareneanenen 55
(B): “ON” pattern SYStemM’S TESPOMNSE.uuurnterinearaneeraneareneerenearenaasenenenrnnans 55

Vil

Table 3.1: GPIO pins values

Table 3.2: The procedure of

List of Tables

including the ALTFP_COMPARE IP core..................... 48

List of Abbreviations

Aclr Asynchronous Clear
ADAS Advanced Driver Assistance Systems
ADC Analog to Digital Converter
AGI Artificial General Intelligence
Al Artificial Intelligence
ALU Arithmetic-Logic Unit
ANN Artificial Neural Networks
ASI Aurtificial Superintelligence
ASIC Application Specific Integrated Circuits
ASSP Application Specific Standard Products
BRAM Block Random Access Memory
CLB Configurable Logic Blocks
clk_en Clock Enable
CNN Convolutional Neural Network
CPU Central Processing Unit
CT scans Computerized Tomography Scans
DAC Digital to Analog Converter
DI Deep Learning
DRBG Deterministic Random Bit Generator
DSP Digital Signal Processing
FF Flip-Flops
FFT Fast Fourier Transforms
FPGA Field Programmable Gate Array
FSM Finite State Machine
GPIO General Purpose Input/Output
GPP General Purpose Processors
GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High-Level Synthesis

1P Intellectual Property

1/0 Input/Output

IEEE Institute of Electrical and Electronics Engineers
loT Internet of Things

LCD Liquid Crystal Display

LE Logic Element

LED Light Emitting Diode

LFSR Linear Feedback Shift Register
LUT Look-up Table

ML Machine Learning

MSE Mean Squared Error

MUX Multiplexer

NaN Not-a-Number

NLP Natural Language Processing

OCR Optical Character Readers

PCB Printed Circuit Boards

PET Positron Emission Tomography
PLD Programmable Logic Device

PR Pattern Recognizer

PRNG Pseudo-Random Numbers Generator
PROMs Programmable Read-Only Memories
RAM Random Access Memory

RTL Register-Transfer Level

SDR Software-Defined Radio

SoC System-On-Chip

SPLD Simple Programmable Logic Device
SRAM Static Random Access Memory

Xl

SVM Support Vector Machines
TPU Tensor Processing Unit

VHDL Very High Speed Integrated Circuit Hardware Description Language

Xl

Chapter 01

Introduction

This chapter provides an overview of the project, its motivation and objectives. It also
describes the system's structure and the report's organization.

1. OVERVIEW

In the age of artificial intelligence, machine learning takes the spotlight as a major topic of interest.
Nobody could have foreseen the dimension of impact computer vision and predictive analytics would have
on our day to day life. Whether it be self driving vehicles, speech, face recognition or Als accomplishing

everyday mundane tasks, what used to be science fiction is today, considered to be within reach.

Machine learning is probably the most well-known and widely used Al technology. It uses large amounts
of historical data to create machines that learn and enhance themselves through experience, much like
humans do via learning and observation. And as the constant need for data analysis increases with the
sheer quantity and pace at which individuals and enterprises generate data, machine learning is largely

solicited.

Data has become the equivalent of gold, in the 215 century; it has been propelled to the status of valuable
commodity. Businesses are actively and constantly looking for efficient and innovative ways to assess
their data and reveal insights that could aid in the improvement of their business processes and decision
making. This pushes them to seek Artificial Intelligence (Al) systems and technologies which enable them

to automate business processes and make better and more informed decisions.

Al and DL applications require a large amount of data. This is why domain experts and industry
practitioners associate them with the use of significant amounts of computing resources such as Graphics
Processing Unit (GPU) and Tensor Processing Unit (TPU) processors. This is largely due to the fact that
non-trivial deep learning applications include complex linear algebraic computations like matrix and
vector operations. GPUs and TPUs are extremely efficient and fast at performing such operations, making

them ideal for running deep learning algorithms [1].

Modern cloud computing is the primary infrastructure employed in running machine learning applications.
Cloud computing can also be thought of as utility computing or on-demand computing, and it provides

access to large amounts of computing resources, thus its use in machine learning.

However, executing Al in the cloud is not always the best option, particularly for applications that require
low latency and must be run close to end users. The benefits of bringing Al closer to users are felt on a
daily basis by millions of consumers who use deep learning applications in their smart phones, such as
Siri, OK Google, and Apple FacelD.

https://www.wevolver.com/article/the-embedded-machine-learning-revolution-the-basics-you-need-to-know
https://www.techtarget.com/searchdatacenter/definition/utility-computing
https://www.techtarget.com/searchitoperations/definition/on-demand-computing

This is where embedded machine learning comes into focus, as it liberates the previously untapped
potential of enterprise data. As with smart phones, machine learning models can be executed on a wide
range of embedded devices, from networked and mobile embedded systems to small scale
microcontrollers. Embedded ML works on the general principle that ML models, such as neural networks,
are trained on computing clusters or in the cloud, while inference operations and model execution occur
on embedded devices. Once trained, deep learning models' matrix operations can be effectively executed

on CPU (Central Processing Unit) constrained devices or even tiny (e.g., 16 or 32 bit) microcontrollers.

Embedded machine learning unleashes the power of data processing within the hundreds of billions of
readily available microprocessors and embedded controllers found in a wide range of settings such as
industrial plants, smart buildings, and residential environments. Throughout this way, it also facilitates the
processing of data generated by embedded devices (for example, Internet of Things devices), the majority

of which are currently underutilized.

The execution of machine learning models on embedded devices has several advantages over cloud-based
Al

e Low Latency: When low-latency operations must be performed close to the field, embedded
machine learning is far more efficient than cloud Al. This is because there is no need to send large
amounts of data to the cloud, which can cause significant network latency. As a result, embedded
machine learning is an excellent choice for supporting real-time use cases.

e Network Bandwidth Efficiency: Running machine learning models on embedded devices allows
for the extraction of features and insights at the data source. This eliminates the need to transfer
raw data to edge or cloud servers, saving bandwidth and network resources.

o Improved Environmental Performance: Cloud Al results in CO2 emissions and has very poor
environmental performance. Machine learning on embedded devices, on the other hand, has a far
reduced carbon footprint, resulting in much higher sustainability [1].

e Strong Privacy: Embedded machine learning eliminates the requirement for data to be transferred
and stored on cloud servers. This decreases the likelihood of data breaches and privacy leaks,
which is especially critical for apps that process sensitive data such as citizens' personal

information, intellectual property (IP) data, and company secrets.

Overall, an ecosystem of hardware and software assets exists to support the creation, deployment, and
operation of embedded machine learning applications. As more developers and integrators ride the wave
of embedded machine learning applications, this ecosystem is expanding. There is already a diverse
variety of embedded devices capable of running machine learning and deep learning applications. Many

gadgets are low-cost and can be used in a variety of 10T applications and the FPGA is one of them [1].

1.1 Machine Learning and Deep Learning on FPGA

Historically, when evaluating hardware platforms for acceleration, the trade-off between flexibility and
performance must be considered. On one end of the spectrum, general purpose processors (GPP) offer a
high level of flexibility and ease of use, but perform inefficiently. These platforms are more widely
available, less expensive to produce, and suitable for a wide range of uses and reuses. On the other end of
the spectrum, application specific integrated circuits (ASIC) provide high performance at the expense of
being more rigid and difficult to construct. These circuits are designed for a specific application and are

costly and time consuming to manufacture. FPGAs are a middle ground between these two extremes.

They are a type of programmable logic device (PLD) and, in the most basic sense, a reconfigurable
integrated circuit. As such, they combine the benefits of integrated circuit performance with the
reconfigurable flexibility of GPPs. FPGAs can implement sequential logic using flip-flops (FF) and

combinational logic using look-up tables at a low level (LUT) [2].

Hardened components for commonly used functions such as full processor cores, communication cores,
arithmetic cores, and block RAM are also included in modern FPGAs (BRAM). Furthermore, current
FPGA trends point to a system-on-chip (SoC) design approach, in which ARM coprocessors and FPGAs
are frequently found on the same fabric. AMD Xilinx and Intel FPGA currently dominate the FPGA
market, accounting for a combined 85 percent market share [3]. Furthermore, for fixed function logic,

FPGAs are rapidly replacing ASICs and application specific standard products (ASSP).

FPGAs provide an obvious potential for acceleration above and beyond what is possible on traditional
GPPs for deep learning. The traditional Von Neumann architecture is used for software-level execution on
GPPs, which stores instructions and data in external memory to be fetched when needed. This is the
motivation behind caches, which eliminate many of the costly external memory operations [3]. The

processor and memory are the bottlenecks in this architecture.

GPP performance is severely hampered by poor communication. Particularly for memory-bound
techniques that are frequently required in deep learning. By contrast, the programmable FPGA logic cells
can be used to implement the data and control path found in common logic functions that do not use Von
Neumann architecture. They can also take advantage of distributed on-chip memory and high levels of

pipeline parallelism, which fits well with the feed-forward nature of deep learning methods.

Modern FPGAs also support partial dynamic reconfiguration, which allows for the reprogramming of a
portion of the FPGA while another portion of the FPGA is in use. This has implications for large deep
learning models, as individual layers on the FPGA could be reconfigured without disrupting ongoing
computation in other layers. This would allow for models that are too large to fit on a single FPGA while

also reducing expensive global memory reads by storing intermediate results in local memory.

Above all, when compared to GPUs, FPGAs provide a unique perspective on what it means to accelerate
designs on hardware. A software execution model is followed with GPUs and other fixed architectures,

and it is structured around executing tasks in parallel on independent compute units.

As a result, the goal of developing deep learning techniques for GPUs is to adapt algorithms to follow this
model, which ensures parallel computation and data interdependence. In contrast, FPGA architecture is
application-specific. There is less emphasis on adapting algorithms for a fixed computational structure
when developing deep learning techniques for FPGAs, allowing more freedom to explore algorithm level
optimization Techniques that necessitate numerous complex low-level hardware control operations which
are difficult to implement in high-level software Languages, are particularly appealing for FPGA

implementations.

Both AMD Xilinx former Xilinx and Intel FPGA former Altera have advocated for the use of high-level
design tools that abstract away many of the difficulties associated with low-level hardware programming.
These tools are known as high-level synthesis (HLS) tools because they convert high-level designs into

low-level register-transfer level (RTL) or HDL code.

According to AMD Xilinx research, FPGAs can produce roughly the same or more compute power than
comparable GPUs. FPGAs also have more on-chip memory, which results in greater compute capability.
This memory alleviates bottlenecks caused by external memory access while also lowering the cost and

power required for high memory bandwidth solutions.

FPGAs can support a wide range of data types in computations, including FTP32, INT8, binary, and
custom types. FPGAs can be modified as needed, whereas GPUs require vendors to adapt architectures to

ensure compatibility. This may imply putting projects on hold while vendors make changes.

As for the safety aspect, GPUs were created for high-performance computing and graphics workloads.
Concerns about safety were unimportant. However, GPUs have been used in applications where functional
safety is a concern, such as ADAS. GPUs must be designed to meet safety requirements in these cases,

which can be time-consuming for vendors.

In contrast, because FPGAs are programmable, you can design them to meet whatever safety requirements
you have. These circuits have been successfully used in automation, avionics, and defense without the

need for custom manufacturing.

Ultimately, FPGAs constitute a better pick for the implementation of both machine learning and deep
learning applications. Amongst the several existing machine learning application, pattern recognition is

our field of interest.

Pattern recognition is a data analysis technique that employs machine learning algorithms to detect

patterns and regularities in data. This data can range from text and images to sounds and other definable

5

characteristics. Pattern recognition systems can quickly and accurately recognize familiar patterns. They
can also recognize and classify new objects, recognize shapes and objects from various angles, and

identify patterns and objects that are partially obscured.

Remote sensing in artificial systems entails the classification of spectral data for ecosystem and land
management, optical character readers (OCRs) must comprehend written text, and biometrics seeks human
identity based on how people look—face, iris, and retina—or act—gait, fingerprints, and/or hand
geometry. Furthermore, for safe navigation and efficient manipulation, robots must recognize obstacles

such as the layout and identities of surrounding objects [4].

Previous works related to machine learning on hardware include the execution of neural network training
on GPU and CPU, the use of vivado hls, python and Tenserflow and various microprocessors to achieve

the desired results. The newest topics of interest are FPGA-based Artificial Neural Networks.
2. Motivation

We aim through this project to lay the groundwork for the advancement of hardware implemented
machine learning applications, and more specifically pattern recognition algorithms .The FPGA has been
chosen as the main tool for embedding the machine learning application, due to the various advantages it

offers, from compute power to safety, as well as the worldwide interest in embedded ML’s constant rise.
3. Project Objectives

The purpose of this project is to implement an artificial neural network entirely using the VHDL language,
trained and deployed on the DE2-FPGA, whose main purpose is to recognize a set of patterns, more
specifically some characters of the alphabet. A stepper motor will then be controlled based on specific
patterns presented to the ANN as input from the user in the two 4x4 LCD grids.

-The switches of the DE2-115 FPGA, serve as a user interaction interface to input the desired patterns on
the LCD.

-KEY [3] is utilized to enable the user to trigger the recognition process and KEY [0] is provided as a

mean for resetting the whole system.

- The built-in LCD display provides the user for a visual interaction with the pattern recognition system.
-The PR block manages the training and running phases of the ANN.

-The onboard SRAM chip is used to store the ANN weights efficiently.

- The Linear feedback shift register allows for initializing the weights with pseudo-random numbers.

- The ANN processes the classes of the dataset sequentially for the learning stage and the two 4 x 4 LCD
grids user inputs in the running stage through the employment of a floating-point ALU.

-The floating-point ALU performs the necessary arithmetic operations to achieve the recognition.

- A 28BYJ-48 stepper motor circuit is designed as a demonstration example for the accuracy of the pattern

recognition system.

4. Structure of the FPGA-based pattern recognizer

The main hardware equipment employed in this project prototype is the DE2-115 FPGA board that
contains the on-chip synthesized system shown on Figure 1.1, which comprises of seven interlinked

elements that operate to control the off-chip hardware consisting of a stepper motor circuit.

| 5W1 | Inputz from the
grids

| |
swo | LERN_ENABLE
| f : Traini
— Two 44 grids Loadinz D.:::tg TARCET

from a VHDL Yy

fila

SERAM
Output clazs '

Display |4
control

¥y o
unit FPaLy ((— - - - .
Pattern Recognizer "
I S R o
[@@

Block
16 outputz]

A

LCD MSE output

&

EN

Motor
Circuit

Figure 1-1: An overall design schematic of the pattern recognizer system.
5. Organization of the report

This report is partitioned into three chapters. Chapter 2 delves into the theoretical background of the
project, it gives a detailed image of the science behind the main field that the work is built upon, and it

looks through the totality of the components used, their mode of operation and general description. The

majority of the report is contained in chapter 3. It describes the software design for the project; it includes
flowcharts that describe the algorithms used in the system’s configuration. It also relates in detail the
design and implementation of the project's hardware, as well as the interface between the various system-
components. The conclusion summarizes the work presented in this report, discusses the findings, and
makes recommendations for future research. The report ends with a list of references for further reading

on the subject.

Chapter 02

Theoretical background

This chapter explores the theoretical background of the project; it provides a detailed
image of the science behind the main area on which the work is based. It also examines the
totality of the components used, as well as their mode of operation and general description.

1. Artificial Intelligence

Artificial Intelligence (Al) is a field of study in computer science. It entails creating computer programs to

perform tasks that would otherwise require human intelligence.

Al algorithms are used in a variety of applications in the modern world, as they can tackle multiple
situations involving problem solving, and are used to achieve machine autonomy. In general, Al systems
operate by in taking large amounts of labeled training data, analyzing the data for correlations and

patterns, and then applying those same patterns to predict future states.

Learning, reasoning, and self-correction are the three cognitive skills that Al programming relies on. Al
systems operate on trained data, implying the quality of an Al system is as good as its data; they then

employ algorithms that discover patterns from huge amounts of information.

1-1 Types of Artificial Intelligence
Artificial Intelligence can be classified into two types: Al based on capability and Al based on
functionality, as illustrated by Figure 2-1.

Artificial Intelligence
]

Narrow General Strong Reactive
Al Al Al Machines Self
Awareness

Limited Theory
Memory of mind

Figure 2-1: Types of Artificial Intelligence [5].

10

a. Al type-1: Based on Capabilities

The most prevalent Artificial intelligence in the world today is known as Narrow Al, it is designed to
perform a specific narrow task (e.g. only speech recognition ,playing chess or only driving a car)
intelligently.

If narrow Al is pushed beyond its limits, it can fail in unexpected way. It cannot go beyond its field, hence

why it is called weak Al.

General Al is a type of intelligence that can perform any cognitive task with the same efficiency as a
typical human. Currently , there is no such system that falls under General Al , however , it is the long
time goal of global researchers to one day achieve an artificial general intelligence (AGI also known as
Strong Al).

Super Al is the overall hypothetical system that research aims to achieve, as it is a level at which machine
performance surpasses the human mind, and is capable of outperforming it in every task that requires
intellectual capabilities. Artificial Superintelligence (ASI) is still a speculative Al concept as its real world
development would be ground breaking, although it is predicted to be an after effect of creating general

Ai. Figure 2-2 presents the capability based Al systems.

2060

2040 .Artificial Super

Intelligence

Far Greater than

Artificial General Human intelligence

Intelligence
Today Equal to Human
. intelligence
Artificial Narrow
Intelligence

Less than Human
intelligence

Figure 2-2: Capability based Al systems [6].

11

b. Al type-2: Based on Functionality

1. Reactive Machines

This category of Al includes machines that operate solely on current data, taking only the current
situation into account. Reactive Al machines are unable to draw conclusions from data in order to plan

their future actions. They can only perform a limited set of pre-defined tasks.

The famous IBM Chess program that defeated world champion Garry Kasparov is an example of Reactive
Al.

2. Limited Memory
As the name implies, Limited Memory Al can make better decisions by studying past data from its
memory. Such an Al has a temporary or short-lived memory that can be utilized to store previous

experiences and thus evaluate future actions.

One of the best examples of Limited Memory systems is self-driving cars. These vehicles can store
the most recent speed of nearby vehicles, the distance between vehicles, the speed limit, as well as other

information to help them navigate the road.
3. Theory of Mind

The Theory of Mind is a more sophisticated form of Artificial Intelligence. This type of machine is
thought to play a significant role in psychology. This type of Al will primarily focus on emotional
intelligence in order to better understand human beliefs and thoughts. It should be able to understand
human emaotions, people, and beliefs, as well as interact socially with humans. This type of Al machine

has yet to be developed, but researchers are working hard to improve their chances of success.
4. Self-Awareness

Self-awareness Al is the future of Artificial Intelligence. These machines will be extremely
intelligent, with their own consciousness, feelings, and self-awareness. They will be more intelligent than

the human mind. Self-Awareness Al does not exist in reality and is only a theoretical concept.

12

1-2. The Major Branches of Artificial Intelligence

deep learnin

m machine learning
ML)

unsupervised 7~ N\ pTmmmmmmmmmmmmmesemmeseoeoesooeooeoooooooooes

content extraction

classification

; : natural language
machine translation guag

processing (NLP)

question answerin

text generation Machine Learning Neural Networks Robotics

Artificial Intelligence
(Al)

expert systems

image recognition .
. e vision 1

machine vision _~ #

speech to text

E speech O

text to speech
planning Expert Systems Fuzzy Logic Natural Language

. Processing

robotics e e e e i

Figure 2-3: The major branches of Artificial Intelligence [7].

a. Natural Language Processing

Natural language processing (NLP) enables computers to communicate with people in their native
language while also automating other language-related tasks. Simply put, this is the process of teaching
computer systems and machines basic human interactions. A machine receives human sound from
interaction and converts it to text format so that it can be easily read and understood. The computer system

then converts these texts into components that allow it to understand the human's intent.

b. Expert Systems

An expert system is a computer program that is designed to solve complex problems and make decisions
in the same way that a human does. And learns and mimics human decision-making abilities. It
accomplishes this by extracting knowledge from its knowledge base using reasoning and inference rules

based on user queries.

13

c. Robotics

Robotics is a technology branch that deals with robots. Robots are programmable machines that can
typically perform a series of actions autonomously or semi-autonomously. A robot is comprised of three

major important factors:

1. Sensors and actuators allow robots to interact with the physical world.
2. Robots can be programmed.

3. Most robots are autonomous or semi-autonomous.

d. Fuzzy Logic

Fuzzy logic is a computing approach based on the principles of “degrees of truth” instead of the usual

modern computer logic i.e. Boolean in nature.

e. Neural Networks

Another area of Al research, neural networks, is inspired by the natural neural network of the human

nervous system.

The concept of ANNs is based on the belief that by making the right connections, the workings of the

human brain can be imitated using silicon and wires as living neurons and dendrites.

The human brain is made up of 86 billion nerve cells known as neurons. Axons connect them to thousands
of other cells. Dendrites accept stimuli from the external environment as well as inputs from sensory
organs. These inputs generate electric impulses that travel quickly through the neural network. A neuron

can then forward the message to another neuron to handle the problem, or it can ignore it.

ANNSs are made up of multiple nodes that mimic biological neurons in the human brain. The neurons are
linked together and interact with one another. The nodes can accept input data and perform basic
operations on it. The outcome of these operations is communicated to other neurons. Each node's output is

referred to as its activation or node value.

Each link has a weight associated with it. ANNs have the ability to learn by changing their weight values.

14

2. Machine Learning

The concept of machine learning, or the idea that a computer can learn an abstract concept from data and
apply it to situations that have not yet been observed, is not new and has been present at least since the
1950s. However, during the past several years, there has been a surge in interest in machine learning (ML)
and artificial intelligence, which is being fueled by the enormous and constantly growing amounts of data

and computing power as well as the development of better learning algorithms.

Machine learning (ML) is a subfield of Artificial intelligence and it is devoted to understanding and
building methods that 'learn’, that is, methods that leverage data to improve performance on some set of
tasks [8]. Machine learning algorithms build a model based on sample data, known as training data, in
order to make predictions or decisions without being explicitly programmed to do so. Machine learning
algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech
recognition, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to
perform the needed tasks. There are three machine learning types: supervised, unsupervised, and
reinforcement learning. As illustrated by Figure 2-4.

Meaningful
Compression

Structure Image

. e Customer Retention
Discovery Classification

Big dara Dimensionality Feature Idenity Fraud

isualistai . Classification Diagnostics
Visualistaion Reduction Elicitation Detection

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
.
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised Supel"VISed

Systems

Clustering Regression
Targetted
Marketing Market

Forecasting

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robat Navigation Skill Acquisitien

Learning Tasks
Figure 2-4: The types of machine learning.

15

https://en.wikipedia.org/wiki/Training_data
https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Computer_vision

2-1. Supervised Learning

Supervised learning allows you to collect data or produce a data output from a previous ML deployment.

Supervised learning works in a similar way to how humans learn.

In supervised tasks, we give the computer a training set, which is a collection of labeled data points .A
training set is used in supervised learning to teach models to produce the desired output. It includes inputs
and correct outputs, allowing the model to learn over time. The algorithm evaluates its accuracy using the
loss function and adjusts until the error is sufficiently minimized. Supervised learning is represented in

Figure 2-5.

Supervised Learning ® o

Labeled Data
g 8 g Machine ML Model Predictions
o0 @ B A~

S N
Sbelso / ﬁ A[O O o

Rectangle Circle

N O N O

Triangle Hexagon
Test Data

Figure 2-5: Supervised learning [9].

When it comes to data mining, supervised learning can be divided into two types of problems:

classification and regression:

o Classification: An algorithm is used in classification to accurately assign test data to specific
categories. It identifies specific entities within the dataset and tries to draw conclusions about how
those entities should be labeled or defined. Linear classifiers, support vector machines (SVM),
decision trees, k-nearest neighbor, and random forests are examples of common classification
algorithms.

e Regression is a statistical method for determining the relationship between dependent and

independent variables. It is commonly used to make projections, such as those for a company's

16

https://www.datarobot.com/wiki/supervised-machine-learning/

sales revenue. Popular regression algorithms include linear regression, logistic regression, and

polynomial regression.

2-2. Unsupervised Machine Learning

Unsupervised machine learning allows to discover previously unknown patterns in data. With only
unlabeled examples, the algorithm attempts to learn some inherent structure to the data. Clustering and
dimensionality reduction are two common unsupervised learning tasks. Figure2-6 illustrates unsupervised

learning.

(Input Raw Data) (Algorithm)

* Unknown Output
«No Training Data Set

_

Processing)

Figure 2-6: Unsupervised learning [9].

Clustering attempts to group data points into meaningful clusters so that elements within a given cluster
are similar to one another but different from those in other clusters. Clustering algorithms can be

categorized into a few types, specifically exclusive, overlapping, hierarchical, and probabilistic.

Dimensionality reduction is the process of reducing the number of random variables under
consideration, by obtaining a set of principal variables. It can be divided into feature selection and
feature extraction. While more data generally yields more accurate results, it can also have an impact on
the performance of machine learning algorithms (e.g., overfitting) and make dataset visualization difficult.
When the number of features, or dimensions, in a given dataset is too large, dimensionality reduction is
used. It reduces the number of data inputs to a manageable number while preserving the dataset's integrity
as much as possible. It is commonly used during the preprocessing stage of data, and there are several

dimensionality reduction methods available.

17

https://www.datarobot.com/wiki/unsupervised-machine-learning/

2-3. Reinforcement Machine Learning

Reinforcement learning is a machine learning training method that rewards desired behaviors while
punishing undesirable ones. A reinforcement learning agent, in general, can perceive and interpret its

environment, act, and learn through trial and error. As depicted in Figure 2-7.

Agent

state reward action
A R, A,

sx
+
N\

Environment

Figure 2-7: Reinforcement ML.

It is up to the model to figure out how to perform the task in order to maximize the reward, beginning with
completely random trials and progressing to sophisticated tactics and superhuman abilities. Reinforcement
learning is currently the most effective way to hint machine creativity by leveraging the power of search
and many trials. Unlike humans, artificial intelligence can learn from thousands of parallel gameplays if a

reinforcement learning algorithm is run on a powerful enough computer infrastructure.

3. Artificial Neural Networks (ANNSs)

Avrtificial neural networks are a class of machine learning algorithms that simulate the mechanism of
learning in biological organisms. The human nervous system contains cells, which are referred to as
neurons. The neurons are connected to one another with the use of axons and dendrites, and the
connecting regions between axons and dendrites are referred to as synapses. These connections are
illustrated in Figure 2-8. The strengths of synaptic connections often change in response to external
stimuli. This change is how learning takes place in living organisms. This biological mechanism is
simulated in artificial neural networks, which contain computation units that are referred to as neurons
[10].

18

Figure 2-8: Biological neural network [10].

The analogous structure of both biological neurons and artificial neurons is depicted on Figure 2-9

dendrites

cell

nucleus

axon
terminals

.

Figure 2-9: Comparison between the structure of a biological neuron and an artificial neuron [11].

3-1. Basic Architecture of Neural Networks

The simplest neural network is referred to as the perceptron, also known as single computational layer.

This neural network contains a single input layer and an output node. The basic architecture of the

perceptron can be seen in Figure 2-10.

INPUT NODES

x; OUTPUT NODE

X3

X5

(a) Perceptron without bias

INPUT NODES

(b) Perceptron with bias

Figure 2-10: The basic architecture of the perceptron.

19

Neural networks are complex structures composed of artificial neurons that can accept multiple inputs and
produce a single output. A Neural Network's primary function is to convert input into meaningful output.

A Neural Network typically consists of an input and output layer, as well as one or more hidden layers.

All neurons in a Neural Network influence each other and are thus all connected. The network can
recognize and observe every aspect of the dataset at hand, as well as how the various parts of data may or
may not be related to one another. This is how Neural Networks can find extremely complex patterns in

massive amounts of data.
The flow of information in a Neural Network occurs in two ways:

o Feedforward Networks: The signals in this model only travel in one direction, towards the
output layer. Feedforward networks have an input layer, a single output layer, and one or more
hidden layers. They are commonly employed in pattern recognition.

o Feedback Networks: In this model, recurrent or interactive networks process the sequence of
inputs using their internal state (memory). Signals can travel in both directions through the
network's loops (hidden layer/s). They are commonly employed in time-series and sequential

tasks.

3-2. Neural Network Components

Figure 2-11 represents the architecture of neural networks.

input layer hidden layer 1 hidden layer 2 output layer

Figure 2-11: The architecture of neural networks.

20

a. Input layer

In Figure 2-11, the input layer is the yellow outermost layer. A neuron is the basic building block of a
neural network. They receive input from a remote source or from other nodes. Each node is connected to
another node in the next layer, and each connection has a weight. Weights are assigned to neurons based

on their relative importance in comparison to other inputs.

When all of the node values from the input layer are multiplied and summarized (along with their weight),
a value for the first hidden layer is generated. The blue layer has a predefined "activation" function that
determines whether or not this node will be "activated" and how "active" it will be based on the

summarized value.

b. Hidden layer

The hidden layer is the layer or layers that are hidden between the input and output layers. The hidden

layer is so named because it is always hidden from the outside world.

The hidden layers of a Neural Network are where the majority of the computation occurs. As a result, the
hidden layer takes all of the inputs from the input layer and runs the necessary calculations to produce a

result. This result is then sent to the output layer, where the user can see the outcome of the computation.

Hidden layers allow a neural network's function to be broken down into specific data transformations.
Each hidden layer function is tailored to produce a specific result. For example, a hidden layer function
that identifies human eyes and ears may be used by subsequent layers to identify faces in images. While
the functions to identify eyes alone are insufficient to recognize objects independently, they can work

together within a neural network.

Hidden layers are common in neural networks, but their application and architecture vary widely. As
previously stated, hidden layers can be distinguished by their functional characteristics. In a CNN used for
object recognition, for example, a hidden layer used to identify wheels cannot identify a car on its own;
however, when combined with additional layers used to identify windows, a large metallic body, and
headlights, the neural network can then make predictions and identify possible cars within visual data

[12]. Figure 2-12 depicts an artificial neuron.

Input Weight

T O—» Activation Output
! Function

20— (W)—> Sum Y
;II_'J,O—b-

:J;,?O—Iv

T illustration of an artificial neuron. Source: Becoming Human.

Figure 2-12: Illustration of an artificial neuron.

21

3-3. Neural network Algorithms
The learning (or training) process in a Neural Network begins by dividing the data into three distinct sets:

e Training Dataset: The initial data used to train machine learning models is known as training
data (or a training dataset).
Machine learning algorithms are fed training datasets to teach them how to make predictions or
perform a desired task.

e Validation Dataset: A validation dataset is a sample of data from your model's training that is
used to estimate model skill while tuning the model's hyperparameters.

e Test Dataset: Data that has been specifically identified for use in tests, typically of a computer
program, is referred to as test data. Some data can be used to confirm that a given set of input to a

given function produces the expected result.

After the data has been segmented into these three parts, Neural Network algorithms are used to train
the Neural Network. The optimization procedure is used to facilitate the training process in a Neural
Network, and the algorithm used is known as the optimizer. There are various types of optimization
algorithms, each with its own set of characteristics and features such as memory requirements,

numerical precision, and processing speed.

3-4. Backpropagation

The training process in a single-layer neural network is relatively simple because the error (or loss
function) can be computed as a direct function of the weights, allowing for easy gradient computation.
The problem with multi-layer networks is that the loss is a complicated composition function of the
weights in previous layers. The backpropagation algorithm is used to compute the gradient of a
composition function. It employs the differential calculus chain rule to compute error gradients as

summations of local-gradient products over the various paths from a node to the output.

Despite the fact that this summation has an exponential number of components (paths), it can be
efficiently computed using dynamic programming. Dynamic programming is used directly in the
backpropagation algorithm. It has two major phases, known as the forward and backward phases,
respectively. The forward phase must compute the output values and local derivatives at each node,
and the backward phase must accumulate the products of these local values along all paths from the

node to the output.

1. Forward phase: The inputs for a training instance are fed into the neural network during this

phase. This causes a forward cascade of computations across the layers to be performed using the

22

current set of weights. The predicted output is compared to the training instance, and the derivative
of the loss function with respect to the output is calculated. This loss' derivative must now be
computed with respect to the weights in all layers in the backwards phase [10].

2. Backward phase: The primary goal of the backward phase is to learn the gradient of the loss
function with respect to the different weights using differential calculus' chain rule. The weights
are updated using these gradients. Because these gradients are learned backwards, beginning with

the output node, this learning process is referred to as the backward phase [10].

Backpropagation Algorithm Set all weights to small, random numbers [13].
* For each training example, do

1. Input the training example and compute the results.

2. For each output unit k:
O < 0k (1 — 0p) (tr — 01)

3. For each hidden unit h:

O < ox(1—o0y) 2 Wh i Ok

koutputs

4. Update each network weight:

Wij < Wi +Awg;

Where: AWi_j = r[iji,j

23

Backpropagation of weights

Inputs

Qutput Layer

Hidden Layer

Input Layer

Figure 2-13: Backpropagation illustration [14].

Backpropagation is illustrated in Figure 2-13.

3-5. Mean squared error MSE

The Mean Squared Error (MSE) is perhaps the most basic and widely used loss function, and it is
frequently taught in introductory Machine Learning courses. To compute the MSE, divide the difference

between your model's predictions and the ground truth by two, square it, and average it over the entire

Because we are always squaring the errors, the MSE will never be negative. The MSE is mathematically

defined as it is shown in Figure 2-14.

N
1
MSE = = (y; — 4i)°
S N2 (i — 1:)

Figure 2-14: MSE equation.

24

4. The project hardware

In this project, we will use the field programmable gate array FPGA integrated circuit to embed a

pattern recognition application, which will control a stepper motor.
4-1. The FPGA

A Field Programmable Gate Array (FPGA) is an integrated circuit made up of internal hardware blocks
with user-programmable interconnects that allow it to be customized for a specific application's operation.
They are easily reprogrammable, allowing an FPGA to accommodate design changes or even support a

new application during the part's lifetime.

The FPGA evolved from earlier devices like programmable read-only memories (PROMSs) and
programmable logic devices (PLDs). In the late 1980s, the concept of FPGA was created through an
experiment suggested by Steve Casselman. His goal was to create a computing device with over 600,000
reprogrammable gates. FPGA stores its configuration data in a reprogrammable medium such as static
RAM (SRAM) or flash memory. Intel, Lattice Semiconductor, Microchip Technology, and Microsemi are

among the FPGA manufacturers [15].

The FPGA architecture is typically configured using a language similar to that used for ASICs
(Application Specific Integrated Circuit), namely HDL (Hardware Description Language).

The typical FPGA architecture (Figure 2-15) is made up of three kinds of modules. 1/O blocks or Pads,
Switch Matrix/Interconnection Wires, and Configurable logic blocks (CLB). The fundamental FPGA
architecture consists of two-dimensional arrays of logic blocks with the ability for the user to configure the

connectivity between the logic blocks. The following are the functions of an FPGA architectural module:

e The CLB (Configurable Logic Block) consists of digital logic, inputs, and outputs. It carries out
the user logic.
e Interconnects provide guidance between logic blocks in order to implement the user logic.

e Switch matrix provides switching between interconnects based on the logic.

e |/O Pads allow the outside world to communicate with various applications.

25

Interconnect

Configurable

-~ Logic Block
(CLB)

Switch
1" Matrix

_1/OBank

L

HjEEEjEjEjRIRIRIN|R|R|R]E]N
Figure 2-15: The FPGA architecture [16].

MUX (Multiplexer), D flip flop, and LUT are all part of the logic block. The LUT implements
combinational logical functions; the MUX handles selection logic; and the D flip flop stores the
LUT output.

The Look Up Table-based function generator is the FPGA's fundamental building block. After
experiments, the number of inputs to the LUT ranges from 3, 4, 6, and even 8. With the
implementation of two function generators, we now have adaptive LUTS that provide two outputs
per single LUT. An illustration of configurable logic block is shown in Figure 2-16.

1 1
! Logic Cell !
1 1
: 4 Inputs :
1 1
| . Full Adderand| 7| & ouT
' MUX Logic '
i :
1 CLK 1
1 1
1 1
1 1
1 1
1 1
1 1
! Logic Cell '
i i
! 4 Inputs '
|— LUT L] Full Adder and FF out |
] MUX Logic :
1 i
: CLK_l |
1 1
1 1
1 1

Figure 2-16: Configurable Logic Block.

26

4-1-1.

The 4 input Lookup table LUT is used to implement one of the following features: Combinational
Logic design, Distributed RAM, Shift Register. The current FPGA is made up of millions of

configurable logic blocks.

FPGA types:
FPGAs are classified into three types based on their applications: low-end FPGAs, mid-range
FPGAs, and high-end FPGAs [17].

Low End FPGAs

These FPGAs are intended to have low power consumption, low logic density, and low
complexity per chip. Low-end FPGAs include Altera's Cyclone family, Xilinx's Spartan family,
Microsemi's Fusion family, and Lattice semiconductor's Mach XO/ICE40 [17].

Mid Range FPGAs

These FPGAs are the best compromise between low-end and high-end FPGAs, and they are
designed to strike a balance between performance and cost. Arria from Altera, Artix-7/Kintex-7
series from Xlinix, IGL002 from Microsemi, and ECP3 and ECP5 series from Lattice

semiconductor are examples of mid-range FPGAs [17].

High End FPGAs

These FPGAs are designed for high logic density and performance. High-end FPGASs include
Altera's Stratix family, Xilinx's Virtex family, Achronix's Speedster 22i family, and Microsemi's
ProASIC3 family [17].

4-2. FPGA Applications

The wide range of applications in which FPGAs can operate (Figure 2-17) has made their growth

significant over the past decade. Examples of the applications of FPGAS are Digital signal processing,

bioinformatics, device controllers, software-defined radio, random logic, ASIC prototyping, medical

imaging, computer hardware emulation, integrating multiple SPLDs, voice recognition, cryptography,

filtering, communication encoding, and many more.

27

FPGA

Applications

Server &
Cloud

Figure 2-17: FPGA Applications [18].

a. Communications, Software Defined Radio (SDR)

Software Defined Radio/Network and other complex algorithms such as FFT must be implemented in
FPGA in order to be used in a Hard Real-Time environment. Traditionally, a radio consisted of an antenna
for receiving and transmitting a signal, as well as hardware for processing that signal, filtering it,
modifying its frequency, and so on. This hardware was not capable of significantly altering the
functionality for which it was designed. Much of this functionality is now transferred to an electronic
device, which is frequently an FPGA, and the analog component can be limited to an antenna and ADC
and DAC converters. The main advantage of this type of radio is that its functionality is defined by the
software design, making modification or updating simple and requiring no hardware replacement. In some
cases, ADC and DAC are also integrated into the FPGA chip.

b. Artificial vision systems

In today's world, an increasing number of devices have an artificial vision system. Video surveillance
cameras, robots, and other similar devices are examples of this. Many of these devices require a system to
know their location, recognize objects in their surroundings, recognize people's faces, and act and interact
appropriately with them. This feature necessitates dealing with massive amounts of images and processing

them in real time to detect objects, recognize faces, and so on.

28

c. Medical imaging systems

FPGAs are increasingly being used to treat biomedical images obtained through PET processes, CT scans,
X-rays, three-dimensional images, and so on. These medical vision systems growingly require higher
resolution and greater processing capacity, and many must be developed in real time, so the benefits of

frequency FPGAs and parallel processing are well suited to these requirements.
d. Encryption decryption and cryptography

massive computing parallelism, the ability to configure the computational units to the bit-width required,

and low latency are the primary reasons why FPGAs are used in encrypting/decrypting and Post-quantum

cryptography [19].
e. Radio astronomy

Radio astronomy is the science that studies the phenomena that occur in space by collecting
electromagnetic radiation from it. Similar to previous applications, it necessitates the processing of a large

amount of data in order for the FPGA to reach its full potential.
f. Speech recognition

Speech recognition is a technique used in security, information retrieval systems, and other applications,
and its range of applications is expected to expand in the future. When comparing a person's voice to

previously stored patterns, the FPGA is very efficient in this context.
g. Aeronautics and defense

In addition to the other applications FPGAs are used in a wide range of aeronautical and defense

applications due to the benefits they provide.
h. Data Center / Cloud

The internet of things (1oT) and big data in general are causing an exponential increase in the amount of
data acquired and processed, which, combined with computational analysis of the same using deep
learning techniques of multiple operations parallel / concurrent, is causing a high demand for low-latency,
flexible, and secure computational capacity, which cannot be met by adding more servers / blades due to
the insane increase in space cost. Under this scenario, FPGAs are rapidly entering the Data Center world
due to their capacity for computational acceleration, configuration flexibility, and the security that

hardware provides against software [19].

29

i. Control engineering
The ability to implement an FPGA-based controller as a hard Real-Time system, that is capable of
responding to any time-critical changes inside the controlling environment, in a calculated
deterministic time. Another feature is the ability to reconfigure the FPGA during run-time,
allowing adaptation to a changing environment by selecting the best fitting controller algorithm

while reducing the required logic resources and deployment time.
4-3. The DE2-115 Development and Education board

The DE2 series has consistently been at the forefront of educational development boards by
distinguishing itself with a plethora of interfaces to accommodate a wide range of application

requirements, extending its dominance and success.

The DE2-115 provides an optimal balance of low cost, low power, and a comprehensive set of logic,
memory, and DSP capabilities. The Cyclone EPACE115 device, which is based on the DE2-115, has
114,480 logic elements (LEs), which is the largest of the Cyclone IV E series, up to 3.9-Mbits of RAM,
and 266 multipliers.

Figure 2-18 depicts a photograph of the DE2-115 board. It shows the layout of the board and where the

connectors and key components are located.

Ao TV Docooes 20054
CODEC INTSCPAL) Osollssr

Everet Ethermedt

uss uss USE M Lewe Les s = vGA OO 1000 000N RS2D
Sester Port Devxce Host ir n Owt n Onst Pon O Pon 1 Port

E Y

"y AP
AN D Power o
Supply Connecin

Porwet ONOF T Switch VGA 2400 DAL

Aberty USES Blsstor
Conirobier ohigaet

Choutt | irwenot PHY

USH Host Save
Cortnlion
Expormsion MHoocke (J15)
(i Protechion Dwodes)

Al EPCSM
Conhgumdon Devios

HSMC Connecton

———— 7% - Al 00 un Oychonn IV 1

FPOA with 119 LIS
LED 16x2 Moduk vy
Cyosone™ It
T35 A
Sl . - SO0 OsctPntos
Q _ am-
- : g A ¢
< T e |
7 -~ as] fon = . SMA Exl Clock Oue
7 mogment Displays) QQI 9 5 :—J ‘J | A
Programiming s rrrrr e, T T I T YT I I Ty vy e | SMA Ext Oock In
Muode Switch . 1 =2 -
e Pl i - Ty Ty Ty T Py iy T i e - - PN - o
Bigl | [~
»
€
18 Red LEDs 18 Shce Switches (228 1) 28 s Push-bation SMB 8 Grven
SDRAM 2 SRAA FLASH LEDs

Figure 2-18: The DE2-115 board (top view) [20].

30

5. The 28BYJ-48 — 5V Stepper Motor

The 28BYJ-48, Figure 2-19, is a small stepper motor suitable for a large range of applications [21].

Figure 2-19: The 28BYJ-48 stepper motor [21].

2, Pink Womrmiy
—
J l“"4’/.'l_:| u———j

Figure 2-20: The 28BYJ-48 unipolar internal circuitry structure [21].

6. The 4 Phase ULN2003 Stepper Motor Driver PCB

The ULN2003 stepper motor driver PCB connects the microcontroller to a stepper motor directly. The
PCB has four inputs for the microcontroller, a power supply connection for the stepper motor voltage, an

ON/OFF jumper, a direct connect stepper motor header, and four LEDs to indicate stepping state [22].

31

STEP STATE LEDs

STEPPER MOTOR

STEPPER MOTOR
ON/OFF JUMPER

SUPPLY - 5to 12VDC

MICROCONTROLLER CONNECTION

Figure 2-21: The stepper motor driver [22].

32

Chapter 03

Design and implementation

This chapter examines the detailed design and implementation of the pattern recognizer system and
the underlying logic that connects all of its components, as well as the results obtained and a
conclusion of the findings.

33

1. System Overview

The synthesized system using Quartus Il software version 13.0 on the DE2-115 FPGA board is a
hardware-based pattern recognizer circuit composed of eight main units. A pattern recognizer control unit
that manages the operation of the ANN, a floating-point ALU unit designed with megafunctions, an
SRAM unit that stores the ANN weights, a linear feedback shift register (LFSR) that generates random
initial values for the weights, a display control unit, the built-in LCD module, the ANN block and a motor
circuit, Figure 3-1.This pattern recognizer is trained to identify 16 different letters that are: A, C, D, F, H,
ILJ,L,N,O,P, T, U, X, Y, Z and takes its inputs from the 16 toggle switches that populate the pixels of
two 4x4 LCD grids alternatively based on the status of switches SW1 and SWO0. The output generated by
the system is an array of 16 values ranging between 0.0 and 1.0 indicating the percentage of each class
occurrence. The highest value specifies the recognized pattern. Figure 3-2 shows the real picture of the
system. When the program is loaded to the board, the pattern recognizer control unit starts training the
ANN by uploading the dataset inputs. The weights are updated continuously and stored in the SRAM
memory block. Once finished, the green LED number 8 lights up to signal a ready ANN for use. It can be
tested by entering any pattern and pushing KEY [3] to trigger the running phase that requires massive
computations in the ALU to perform the recognition task. When completed, the display control unit
adjusts the LCD to output the result and the motor receives the appropriate command to function. Figure
3-3 illustrates the working of the system.

The algorithm chosen in this project is a feed forward neural network, also known as a multilayer
perceptron with a sigmoid activation function. It is trained with backpropagation technique using a
database that consists of a set of 4x4 matrices with values of 1s and 0s representing the pattern shape, as
shown in Figure 3-4.

Since the selected signals are of float type, all operations are carried out in single precision floating-point
format. The advantage of using floating-point numbers over fixed-point numbers is that they can cover a
much wider range of values. The radix point is always at the same location in fixed-point number
representation. Even though, the convention simplifies and saves memory, it limits the magnitude and
precision. A relocatable radix point is desirable in situations that require a wide range of numbers or high
resolution. It allows for a reliable implementation of a hardware-based neural network that can recognize
interesting features from the set of inputs and produce accurate results compared to when using fixed-
point format, which is prone to errors.

34

dei

CLOCK LEDGIE =
KEYT3.1 LEDRIM T
SWIMT7.. UART "

UART R SRAM DQITE

SRAM ADDRT™

SRAM U

SRAM L[

- SRAM W[
ik SRAM C 1
. s
—

| i

|

|

|

[

P

TTTT

i

SRAM C
GPIOI3
LCD ¢
LCD Bl
LCD F
LCD
LCD
LCD DATAI

Figure 3-1: The block diagram representation of the system.

Figure 3-2: Real picture of the system

35

[ANN on I'raining]
[Weights: Updatc]

Storage on SRAM

Is it completed 7
Yes

[ANN: Running mode
®

({Reoecoguition process ln progress)

No
Yes
Output display Motor control based
X on the recognized
O=n LCD pattern

(e)

Figure 3-3: The workflow of the system.

36

1
o110 & ! - 1111 &
L oc = .
1o01" =& Ty = 0110 &
L1111 & el ooo = o110 &
10071 & "I 1111 &
EEE & 5
FEEN =
1111 & e = 1111 &
TlLo00" & G1ao - coo1 &
Tloo00" & o7 LOO1 &
#1111 & Loo1" & 1110 &
=) LlooT " & I
- loo1l = clooor &
1110 & 1111 & e loo0
TLIO001"Y & 3 &
“1001" & Looi" = "1l000" &
“l110" = o110 = 11117 &
I TE o110 = d
T1111T & reos = LroolT &
TLOOO" & 1L OOl - \!fll &
1111 & ool - 1011 &
TLOO0" & [SE RIS & "T1001" &
I H bl B B = o
O = 1111 &
Loo1 &
L1711 = - "
T1111" & FY-EW: = Lroern =
Tt &| O L e = “J l" &
~lo001" & e 1111 &

Figure 3-4: The training dataset

2. System Components

2.1 PR Component

The pattern recognizer component is a control unit; designed using finite state machines. It handles the
running and learning mode of the ANN. It has many input ports such as the asynchronous reset that is
assigned the value of KEY [0], the 50 MHz clock available on the board, the training dataset, and the
training classes etc. Likewise, it has many output ports such as the output of the recognition process, the
ready signal, the ann_alpha, the ann_inputs that represent the input data converted to float type, the
ann_targets etc, as illustrated in Figure 3-5. It utilizes ALTFP_COMPARE megafunction to carry some
needed comparison operations.

] LSS L
| ipl iy
e | |

i Pouti311=
LA eloc reacr|
s Aalphalat=| - -
“o | Tdatain t*n i- AlNsIn 1,011 - -
[Tmser31. ATGTsIn o-1.1%| -
CEEUNsIn i1 B
- |#=1AQUTsIn o-1.01% I
L[AMSED31.

C % ARD

o s

.| LFSRouts5

Figure 3-5: Pattern recognizer block diagram representation

37

Its FSM consists of eleven states that are:

Init

Train

Train_validate
Train_validate_wait
Train_validate_complete
Run

Run_complete
Run_validate

. Run_validate_wait

10. Run_validate_complete
11. Idle

©oN O~ WD R

Where in each state, a certain set of operations are executed:

Init: In this state, some signals are initialized to zero e.g. the ready output port, as an indication that the
pattern recognizer is not ready. The next state is set to train.

Train: The training phase, it converts progressively each value in the corresponding class of the dataset to
float type, since the ANN works with floating-point numbers, then the appropriate bit in ann_targets signal
is set. These latter are sent to the ANN in order to begin the learning process. The next state is set to the
Train_validate.

Train_validate: After the completion of instructions execution in the ANN’s learning phase, the floating-
point comparator is enabled. It compares between the training_mse and the ann_mse to evaluate whether
the error is reduced sufficiently. The next state is set train_validate_wait.

Train_validate_wait: It introduces a necessary delay in the FSM. It then, goes to the following state
Train_validate_complete.

Train_validate_complete: In this state, we use a condition statement to check if the ANN has been
trained with all of the 16th classes in the dataset; if not, we increment the pointer that indicates the current
class it is being trained on. After which we disable the comparator and examine its output. For each class
we verify if the output is zero, implying that the training_mse is still less than the ann_mse; we continue
the training until the output of the comparator becomes "1" to consider it learned. We therefore, increment
the counter of successfully learned classes. Following that, we check if the counter has reached the
total number of available classes; if not, the state remains in the training phase; otherwise, the PR block
outputs a ready signal to confirm that the user can test the system, and the next state is set to run.

Run: The toggle switches inputs are converted to float type to be transferred to the ANN block. The ANN
mode is set to run. The next state is run_complete.

Run_complete: At this stage, the comparator is enabled to start comparison between the 16 generated
outputs to determine the highest value. The following state is set to run_validate.

Run_validate: We insert the comparator's inputs, to start the comparison between the output values. The
following state is run_validate_wait, which accomplishes the same task as Train_validate_wait. The state
then goes to Run_validate_complete.

Run_validate_complete: It compares between the 16 outputs and determines the highest one. Once
finished it goes to idle state.

38

Idle: We keep checking if KEY [3] is pressed, to set the ANN mode to run. The FSM diagram of the
pattern recognizer component is shown in Figure 3-6.

Figure 3-6: The FSM diagram of the pattern recognizer.

2.2 ANN Component

The artificial neural network is designed to be a generic unit in order to introduce flexibility into its
structure; in other words, the number of perceptrons in each layer can be reconfigured so that it can be
utilized in other applications. The architecture of the ANN consists of 16 perceptrons in the input layer, 32
in the hidden layer, and 16 in the output layer, plus a bias connection for each perceptron that is initially
set to a value of one. Because of this architecture, a total of 1072 weights were produced and needed to be
stored in memory; hence, we used an external SRAM with relatively cheap storage space to make efficient
use of resources. It is considered as the central element in the design since it represents the processing unit
that achieves the pattern recognition task by employing an external floating-point ALU to perform the
necessary computations.

The ANN takes some of its input ports from the PR block; which are the targets, the toggle switches
inputs converted to float type, the ann_mode and the ann_alpha; a constant set to a value of float half that
is represented as "00111111000000000000000000000000" in the IEEE-754 32-bit floating point format. It
also has the 50 MHz clock, the KEY [0] as an asynchronous reset, the output of the float ALU unit, the
SRAM ready signal and SRAM output, and lastly the inputs from the LFSR; which are the generated
pseudo-random numbers. Its output ports include a ready signal, a mean squared error (MSE) signal, the
float ALU inputs A and B, the SRAM input and address, and the 16 outputs of the recognition process.
Figure 3-7 illustrates its block diagram representation.

rese outoutsin o-1.11*

cloc msel31
alphal31. reac[e o
inputsin i-1..013 float alu alt=¢|::
taraetsin o-1..01I% float alu bIT=y ::
fioat alu cf31 sram addri |
fioat alu re: sram inputl T

sram outoutl3
sram rea
Ifsr outout1E£

Figure 3-7: Block diagram representation of the Artificial Neural Network.

39

It has three modes of operation, Figure 3.8: idle, learn, and run, which are selected one at a time by the
controlling unit (PR block) depending on certain conditions. It executes a specific set of instructions in
each of these modes, which is implemented as a complex FSM involving 92 states that can be classified
into four major states (phases) composed of many substates that represent the instructions to be done.

KEY [0]= "1’
+

* *
KEY [3]= 1F KEY ['D]= o

— j' idle~reql j run-reql) _-j.‘ learn-regl

" 4 '

Figure 3-8: The ANN modes FSM diagram.

The four major states of the FSM are:

1) The Initialization Phase

In this phase, some variables, such as the SRAM address and the ready signal, are set to zero, and the mse
output port is set to float zero. In order to start the process of storing the random initialized values of the
weights, the SRAM address gets loaded with the first value that is zero, to store the first SRAM input. All
of the randomized weights that are the SRAM inputs share the same structure that utilizes the 16 outputs
of the LFSR, Figure 3.9. The SRAM mode is set to write mode.

\0UT(15)\0|1\1|0UT(14-11)\0\ OUT(10-0) \0\0|0\0\0\0\0\0\0\0\0\0\
;‘\.I// l

Figure 3-9: The32-bit format of the randomized weight values.

Since our ANN requires 1072 weights to store, we will need to iterate 1072 times through the same
procedure described above to complete the initialization process of the weights by incrementing the
address value after checking if it did not reach the last one (1071) and repeat the steps of loading the
SRAM address with the appropriate value and store its corresponding SRAM input. Once completed, the
ann_mode is assigned the idle state.

40

2) Learning Phase

When the learning phase begins, the ann_mode, which was previously in the idle state, is set to learn, and
the learning flag is given the HIGH value to indicate that it has started. It sequentially executes many
substates to perform the following computations:

1. Calculation of the weighted sum and the output from the sigmoid function for every perceptron
in the hidden layer.

2. Calculation of the weighted sum and the output from the sigmoid function for all perceptrons in
the output layer.

3. Subtraction output from its corresponding training target for each perceptron in the output layer
to obtain the error estimation.

4. Computation of Mean Squared Error (MSE) by adding up the errors calculated for all the
perceptrons in the output layer.

5. For each perceptron in the output layer, the derivative of the sigmoid function is calculated and
multiplied by the error.

6. To update the weights, calculation of delta multiplied with weight for each of the input
connections for all the perceptrons in the output layer should be performed to obtain new weights
based on the delta multiplied with weight for these connections.

7. Utilizing the calculated deltas for the perceptrons in the output layer, it determines the error for
each hidden layer perceptron.

8. For each perceptron in the hidden layer, it determines delta as the derivative of the sigmoid
function multiplied by the error.

9. Updates the weight based on the delta weight for these connections and calculates the delta
weight for each of the input connections for each of the perceptrons in the hidden layer.

3) Running Phase

At this stage, the ANN is already trained and reached the optimal values for the weights through the
backpropagation process and is fully capable of accomplishing the pattern recognition task, therefore, the
ready signal is set to HIGH and LEDI8] lights up to show to the user that it is ready and can be tested.
When the user presses KEY [0], the ANN mode is set to run and starts the recognition, by executing a
number of operations in order to perform the following:

1. Calculation of the weighted sum and sigmoid function’s output for every perceptron in the
hidden layer.

2. Calculation of the weighted sum and the output from the sigmoid function for all perceptrons
in the output layer.

4) Idle phase

Whenever the ANN completes the execution of all instructions in each of the three previously mentioned
phases, it enters an idle state in which no computations are undertaken and no hardware is being used. It
aims to reduce energy consumption.

41

2.3 16-Bit Linear Feedback Shift Register

The linear feedback shift register is a pseudo-random numbers generator (PRNG), also known as
deterministic random bit generator (DRBG), is an algorithm that produces a sequence of numbers having
approximately the same properties as of random numbers sequences, a type of shift registers that
constitute of a series of flip-flops connected in a sequential architecture. The generation process of these
numbers is not completely random since it is based on an initial inserted value, which is called the seed.
The first output is calculated using the seed value processed with a linear function that is usually
composed of some XOR gates, and the subsequent outputs are dependent on their previous value that is
fed back to the system as an input. Since, the register has a finite number of possible states; it will
eventually enter a repeating cycle. Although, an LFSR with a well-chosen number of bits and an
appropriate linear function can produce a pseudo-random sequence with a long cycle. For an n-bit LFSR,
the maximum Period is 2"-1. There exist two types of LFSR implementation, which are the Fibonacci and
Galois implementations. The main difference between them is the arrangement of gates (usually XOR
gates) in the circuit. In the former, the XOR gates are cascaded, resulting in a bigger propagation delay
that affects the timing performance of the circuit due to its architecture. While in the latter, the XOR gates
are placed between two consecutive registers, allowing for parallel computations and a minimum
propagation delay, equivalent to that of a single XOR gate.

We have chosen the 16-bit Galois LFSR version (Figure 3-10) and utilized it primarily in our design to
initialize the artificial neural network’s weights with random values. It contains only two input ports and
one output port, which are the 50MHz clock for synchronization, the reset signal that is assigned the value
of KEY [0], and the 16-bit output port, respectively.Figure3-11shows its circuit diagram.

In the implementation, we used a seed value of “ACE1” in hexadecimal notation which is equivalent to
“1010 1100 1110 0001”in binary notation. When the reset signal is HIGH, we assign the seed value as an
initial value to start the pseudo random generation of the LFSR, in order to have a maximum period
(65,535), we defined our linear function to be the XORing of the following pair of bits:

1- (12, 1) as the input to bit number 11.
2- (14, 1) as the input to bit number 13.
3- (15, 1) as the input to bit number 14.

Figure 3-10: The 16-bit GALOIS LFSR diagram.

NE
jiiii:ﬂ;i

=y

i i JL‘ B

Figure 3-11: The circuit diagram of the LFSR component in Quartus software.

42

2.4 Float ALU Component

The floating-point arithmetic logic unit is a synthesized block built using the IP cores since the Altera
DE2-115 FPGA board does not have an onboard built-in floating point ALU. It includes five
subcomponents that are a floating-point adder, subtractor, multiplier, divider, and a floating-point
exponentiator. It is the major element that handles all of the operations required for the ANN to operate
properly. Its IN/OUT structure consists of three input ports that are:

- Reset that is given the value of KEY [0].

- Clock signal which is the available 50 MHz oscillator on the board.

- The ALU mode that determines which operation to execute (addition, subtraction,
multiplication...etc).

And two output ports that are the ready signal and the 32-bit floating point result of the operations. All of
its subcomponents have an additional input port that is the clock enable signal that activates them when
being selected. Figure 3-12 illustrates the IN/OUT structure.

float alu ;
X rese ins cI31. X
X< clocl reac|
X al31..(
X1 bI31..(
I mode

Figure 3-12: Block diagram representation of the ALU.

When we programmed this ALU in VHDL, we utilized the subcomponents in the structural modelling
style, meaning that we declared them as components and mapped their ports with the corresponding
signals. Likewise, we declared the ALU as a component and implemented an FSM that represents how it
operates. It is comprised of six states that refer to the ALU modes, which are selected one at a time by the
ANN based on the computations needed. The six states are:

-Idle: The ALU does not execute any operation and remains unused by the ANN.

-Add: The ALTFP_ADD_SUB IP core is employed to perform the floating-point addition.
-Sub: The ALU uses the ALTFP_ADD_SUB IP core to do the floating-point subtraction.
-Mul: The multiplication operation is executed with the help of the ALTFP_MULT IP core.
-Div: The division operation is undertaken by the ALU using the ALTFP_DIV IP core.

-Exp: The exponentiation operation is carried out by utilizing the ALTFP EXP IP core.

43

All of the ALU subcomponents require different clock cycle delays to work properly; therefore, we
designed the ANN to wait for a flexible number of clock cycles to obtain the ALU results before
employing it for further processing.

2.5 SRAM Component

The Static Random Access Memory or SRAM is a known type of semiconductor random access memory
that employs an array of latching circuitries (flip-flops) to store each bit. It retains storage bits as long as
power is being provided. Unlike its counterpart Dynamic Random Access Memory or DRAM, which
requires continuous refreshment, the SRAM does not have this necessity, resulting in low power
consumption and higher performance. Consequently, we used the on-board SRAM chip on the DE2-115
board in our project to store the 1072 32-bit floating-point weight values. The DE2-115 board has 2MB
SRAM memory with 16-bit data width. Being featured with a maximum performance frequency of about
125MHz under the condition of standard 3.3V single power supply makes it suitable of dealing with high-
speed media processing applications that need ultra-data throughput. The related schematic is shown in
Figure 3-13 [20]. In its VHDL code, we added the asynchronous reset signal (KEY [0]) and the 50MHz
clock signal input ports.

ui7
SRAM_ADDR[19..0]
SRAM_DQ[15..0]

A[19.0]
1/O[15..0)

Yy

A

SRAM CE N

\ 4

CE n
OE_n
WE_n
UB n
LB n

& SRAM_OE_N
Cyclone™ IV s

. SRAM _WE N

SRAM UB N

SRAM_LB N

Yy vy vy

SRAM

Figure 3-13: Connections between FPGA and SRAM [20].

Although, since we needed a total of 4,288 bytes to store all the weights, we only employed one fourth of
the available SRAM chip memory to have an efficient program and save on hardware utilization.
Therefore, we set the address bus port to be 18bits wide. It operates in three different modes: idle, write,
and read that are selected by the ANN depending on the current running operations. The writing to and
reading from the SRAM are managed by an FSM that is designed with six states (Figure 3-14), which are:

-Init: The SRAM input (SRAM_DQ), ready signal and write enable are all initialized to zero in this state.

-Idle: The SRAM module remains inactive and unused by the ANN, meaning that no writing or reading
operation execution.

44

-Read_low: When the mode is set to read by the ANN, the SRAM masks the two most significant bytes of
the 32-bit weight value and places on its output port the two least significant bytes to send them to the
ANN unit. Once finished, the next state is set to read_high.

-Read_high: The SRAM masks the two least significant bytes, and places on its output port the value of
the two most significant bytes of the weight value to complete the reading operation. Then, the state goes
back to idle.

-Write_low: When the mode is set to write, the SRAM receives inputs from the ANN block and places
the two least significant bytes in its input port by masking the two most significant bytes in order to store
16-bit from the weight value at a time. Following that, the next state is assigned to write_high state.

-Write_high: In this state, the SRAM stores the two most significant bytes of the weight’s value by
masking the least significant ones. When the operation is completed, the state is sent back to idle.

Figure 3-14: SRAM Finite State Machine diagram representation.
2.6 LCD Component:

The LCD unit with dimensions of 80.0x36.0x13.5(MAX) mm and a maximum of 16 charactersx2 Lines
as the number of characters, has built-in fonts and can be used to display text by sending appropriate
commands to the display controller called HD44780 [20]. The controller has two 8-bit registers, an
instruction register (IR) and a data register (DR) that manage the operation of the LCD. The schematic
diagram of the LCD module showing connections to the Cyclone IV E FPGA is given in Figure 3-15
[20].We mainly employed this component in our project to enter the letters on the 4x4 grids using the
toggle switches and to show the output of the recognition process in each of the two grids. In the VHDL
code, we utilized an FSM to handle the reading and writing of our data to the LCD.

Ul
16X2 LCD Module

Figure 3-15: Connections between the LCD module and Cyclone IV E FPGA [20].

45

2.7 Display Control Component

The display element is a control unit for the LCD; it has five input ports and two output ports that are
respectively: the asynchronous reset KEY [0] input, the 50MHz clock signal, the display mode input port,
the 18 toggle switches inputs, the output class from the pattern recognition process as an input, and the
two output ports; character graphics (Icd_cg) and pattern switches display (lcd_dd). Its block diagram
representation is illustrated on Figure 3-16. In its VHDL code, we defined the character graphics, which
are the customized pixels since we represented the letters on a 4x4 grid, meaning that we specified an area
of two rows and four columns in the LCD for one grid (Figure 3-17). In addition to that, we assigned
each switch to its corresponding pixel and based on the state of the switches “0” and “1”, one grid is
selected at a time to be populated by the remaining 16 switches [17 - 2]. It has three display modes that
depend on the state of the ANN. When it is training, the display mode is also set to training, and the
message "train" is written on the rightmost portion of the LCD. When the KEY [3] is pressed, the display
mode is set to running, and the message "run" is displayed on the LCD. While in the idle state, it displays
the output class.

................................... L S

dispia .

| rese led ddio.3177%| -

S| cloc led cal0. 7T

W inputsi5. SW STI3r¥g -

[classIT.. o
F=ISWIM

Figure 3-16: Block diagram of display control unit.

O 2233333333333 1a KIIA ‘@)
28Y2E“S5333555

e T

T %%““ﬂjﬁ%%%m%%%

s

(@)

" Figure 3-17: LCD grid dimensions.

2.8 Motor Circuit

The motor circuit is a designed off-chip system that serves as a demonstration of the proper functioning of
the pattern recognizer system. It consists of a ULN2003AN motor driver hardware and a 28BYJ-48
unipolar stepper motor (Figure2-20) that requires a 5v power supply, which is suitable for our application
since it can be provided by the DE2-115 board. The driver PCB is connected to the board through the
GPIO pins that allow for a communication between the FPGA and the motor. The interfacing circuit is
shown on Figure 3-18.

46

Sv

GND
‘ DE2-115

GPIO [7]
GPIO [5]
GPIO [3]
GPIO [1]

ofo bl b

I
N2
N3
INa
NS
NG
N7
oD

ULNB034

ouTt

oura
ouTr3
ouTs-
ouTs
ouTeée
our?

<
com

16

BLU

coIu

A

cotu

14

coIu

= |

=(hjw|s

coIu

1030

S v =
5. -
>

» COMMOrN

When the pattern “ON” is detected on the two 4x4 LCD grids the motor is turned ON in full step mode
and when the “OF” pattern is entered, the motor is turned OFF. This behaviour 1s cunuulled by the PR
block that is responsible for sending and setting the value of the motor’s enable signal based on the
detected letters on the grids. In case the enable signal is set to ‘1°, a 3-bit counter starts counting using the
50MHz clock and in each state, the GPIO pins connected to ULN2003AN [IN1-IN4] ports are given a
certain value to energize the appropriate coils which are shown in Table 3-1. However, if the enable

Ik

o

Figure 3-18: The interfacing of the Motor circuit.

signal is zero, the counter is disabled and stays at state “000”” and the motor is off.

Counter state

GPIO(7)

GPIO(5)

GPIO(3)

GPIO(1)

000

001

010

011

100

101

110

111

R OO0O|0O|0OO(F|F

O |0O|0|0|F |k |k O

OO |IF|IFkIOO0|I0O

el ol e llellelle] e

Table 3-1: GPIO pins values.

3 Altera Floating Point Megafunctions

As design complexities increase, the use of vendor-specific intellectual property (IP) blocks has become a
common design methodology. Altera offers parameterizable and specifically optimized floating-point
megafunctions that comply with the IEEE-754 standard for its device architectures. Using megafunctions
instead of coding our own logic saves valuable design time. Altera's functions enable efficient and faster

logic synthesis and device implementation. Its General Features are:

- Support for floating-point formats: single precision, double precision etc.

- Input support for not-a-number (NaN), infinity, zero, and normal numbers.

- Support for round-to-nearest-even rounding mode.
- Optional asynchronous input ports including asynchronous clear (aclr) and clock enable (clk_en).

- Denormal number inputs are not supported by Altera's floating-point megafunctions. When given a
denormal value as an input, the megafunction forces the value to zero and handles it as such before

performing any operation.

47

3.1 ALTFP_COMPARE

The Altera floating-point compare megafunction implements comparison functions, it offers many
features such as seven-status output ports where each one denotes the result obtained for a certain
comparison operation. Its block diagram is depicted on Figure 3-19. In this project, the single precision,
the agb output port and the optional input ports: asynchronous clear “aclr” ", and a clock enable
“clk_en”, which, as its name implies, enables the comparison operation to occur when the port is asserted
high are used.

Let us suppose two floating-point numbers A and B that are represented by equations (3.1) and
(3.2).

)Sax2EaX I.Ma........coovvviiiniiiiinnnnnn. Eq. (3.1)

A=
B=(=1)Sb X 2Eb X I.Mb...veoveeeeeeeoeeeeeeeee Eq. (32)

(_
(_
These equations have the following values:
- Sa and Sb are sign bits
- Ea and Eb are exponent values

- Ma and Mb are mantissa bits

The output of the floating-point comparator is obtained from the result of comparing input A and input B
using equation 3.3.

Agb = (~1) Sa x 2Ea x 1.Ma > (—1) Sb X 2Eb X 1.Mb.....cvvveeveeereeireein, Eqg. (3.3)

w
fn cnr

dataal31.. aat 1=
databl31..

clocl
clk e :
acl M-
Clock Cvcles
Sinale Precis
Exponent Widt
Mantissa Width

TTT 17

ns

In order to include this IP core in the design, the corresponding steps to follow are summarized in Table3-
2.

Steps | description

Step 01 | On the tool menu, we choose MegaWizard Plug-In Manager. Then we select the option of creating a new
custom megafunction variation (Figure 3-20)

Step 02 | We select the megafunction ALTFP_COMPARE. We then specify the device family, the type of output
file (AHDL “.tdf” or VHDL “vhd” or HDL “.v"), and the name of the output file. (Figure 3-21)

Step 03 | In this step, we choose the features of the IP core, such as the type of precision (single precision for this
project) and the output latency in clock cycles. (Figure 3-22)

Step 04 | We select only one output port that is agb and create the optional input ports “aclr” and “clk_en™.
(Figure 3-23)

Step 05 | At this point, we can choose to generate a synthesis area and timing estimation netlist. Since we do not
need information about time estimation and resource usage in our project for a third party EDA synthesis
tool, therefore we do not select it. (Figure 3-24)

Step 06 | Finally, we can specify some other additional types of files to be generated; we then click on the finish
button. (Figure 3-25)

Table3-2: The procedure of including the ALTFP_COMPARE IP core.

48

Figure 3-20: MegaWizard Plug-In Manager

window.

% MegaWizard Plug-In Manager [page 3 of 6]

-ﬂ ALTFP_COMPARE

@ MegaWizard Plug-In Manager [page 1]

The MegaWizard Plug-In Manager helps you create or modify design files that contain custom variations of

\ megafunctions.

Wihich action do you want to perform?

(®) Create a new custom megafundtion variation
() Edit an existing custom megafundtion variation
() Copy an existing custom megafunction variation

Copyright (C) 1991-2013 Altera Corporation

Cancel < Back. Next >

Currently selected device family: |Cyclane IVE ~

match project/defauit
What is the floating point format?

(®) Single precision {32 bits)

() Double predsion (64 bits)

() Single extended precision (43 bits to 64 bits)

Hows wide should the ‘dataa’ inpur, and ‘datab input buses gy
be?
How wide should the exponent field be? 8 © bits.
Mantissa width = 23 bits
(data input width) - (exponant field width) - 1 .
What is the output lateney in dodk cycles? 1 -
Resource Usage

Figure 3-22:Features selection Window.

< MegaWizard Plug-in Manager [page 5 of 61

& ALTFP_COMPARE

‘Smulation Librar

To property simulate the generated design files, the fallowing simulation
madel file(s) are needed

File Description

Ipm LM megafunction simulotion library

Timing and resource esti
oraias 3 neifis for ning and recource eximation for thic
csizing your desian with =t party EDA synthests al, using o
B S TesaLHee SRmaIon BONHSE San SHow PO/ DLt SN SRMIIEh

Nt oll third-perty synthesis tools support this Festure - check with the tool
or for complata Support information.

Nt Nt gomoration can b 3 fin Infonsive prucess. The size of the desion
ur systom affect the time It takes for netiist generation to
kate.

] Generate netist

[Gancel] [=Gmck] [FERE=] [Gnisn |

Figure 3-24: Synthesis area and timing estimation netlist

option selection window.

49

@3 MegaWizard Plug-ln Manager [page 2a] x

Which megafundtion would you like to customize? which device family will you be using? Cyclone IV E -
5:"‘1 ey inc Oh Froomy e et Beioo . Which type of output le do you viant to creste?
~ 1% Installed Plug-Ins] © AHoL
~ 3 Arithmetic (® vHDL
L ALTECC D Verilog HOL
% ALTERA_FP_ACC_CUSTOM
< ALTERA_MULT_ADD v13.0 What name do you want for the output file?
“ ALTFP_ABS [\Users\pe-dell\Desktop\pattern recognizer\library\fp_comparater.vhd |
Al Output files will be generated using the dassic file structure
%, ALTFP_COMPARE [C] Return to this page for another create operation
< ALTFP_CONVERT Note: |0 compile a project successtuily i the Quartus LI software, you
L ALTFP_DIV design files must be in the project directory, in a library specified in'the
< ALTFB_BXP Libraries page of the Options dialog box (Tools menu), or a library
- T i e P e T e e
LALTFP_INY
. ALTFP_INV_SQRT Your current user library directories are:
~ ALTFP_LOG
L ALTFP_MATRIX_INV
< ALTFP MATRIX MULT ¥
cancel < Back Next > Finish
|

Figure 3-21: IP core selection window.

% MegaWirard Plug-In Manager [page 4 of 6]

& ALTFP_COMPARE

Which outputs do you want?
(select at least one)

[= b tequal)

[]a <= b(not equal)

a > b (greater than)

[& >= b (greater than or equal)
[a < b dess than)

[] a <= b (less than or equal}
[unardered

Do you want ta crests optional inputs?
Croate an ssynchronous dear port
[Create a dock enable part

Figure 3-23: Output ports selection window.

g]
X MegaWizard Plug-In Manager [page 6 of 6] ? x |
- Tum on the files you wish to generate. A gray checkmark indicates a file that is
'p_comparator generated, and a green checkmark Indicates an optional file. Click
Hdataa[31 0] agb}oll Finish to generate the selected files. The state of each checkbox is maintained in
[Haatab(31. 0} subsequent MegaWizard Plug-In Manager sessions.
k- clock The MegaWizard Plug-In Manager creates the selected files in the following
Hcik_en directory:
= C:\Users\pc-dell\Desktop\pattern recognizer\library\
Snge =
8 | File. Description
Marwata | b compara... vartation file
["]fp_compara... AHDL Include file
[fp_compara... VHDL component dedaration file
[Jfp_compara... Quartus 11 symbol file
fp_compara.... Instantiation tempiate file
[STt+ireg | T
[Gnish |

Figure 3-25: Additional files generation window.

3.2 ALTFP_EXP

The Floating Point Exponent (ALTFP_EXP) megafunction calculates the exponential value of a given
input. The representation of this IP core is illustrated on Figure 3-26. It is the main building block for the
implementation of the sigmoid activation function.

The same procedures outlined in Table 3-2 are used to add this IP core to our architecture. The
megafunction provides many other features as the previously mentioned ones. However, we will only use
the single precision format and the optional input ports, asynchronous clear ("aclr), and a clock enable
("clk en™).

fo ex

atal31.. resulti31..

oCl

k e

cl £
Clock cvcles
Sinale Precis

) Exponent widtr

ins Mantissa widih

i

Figure 3-26: The block diagram representation of the ALTFP_EXP IP core.

3.3 ALTFP_ADD SUB

The ALTFP_ADD_SUB implements a floating-point adder/substractor. Given the two floating-point
numbers A and B in equations 3.1 and 3.2, the output “out” is obtained from the sum or difference as
expressed by equation 3.4:

Out= (-1) Sa x 2Ea x 1.Ma# (=1) Sb X 2Eb X L.Mb.....eeovveereeereeeeeeenen, Eq. (3.4)

Only when both exponents of two floating-point integers are equal can the mantissa of those numbers be
added or subtracted. Therefore, it is implemented using the following procedures:

o Input verification and alignment:

The inputs should be verified first to see whether they are denormal numbers; if so, the inputs should
be forced to zero, the output is a don’t care and ignored and the indefinite output flag is set. In case
they are not denormal numbers the followed steps are:

- Finding the input with the smallest exponent.

- Obtain the difference between both exponents.

- Expand by 1-bit the mantissa field of the inputs since they are normalized numbers.

- Right shift the number with the smallest exponent by an amount equal to the difference of the two
exponents using a barrel shifter.

- At this stage, the two numbers should have the same exponent, which is equal to the one of the
larger number.

- The sign bit of the inputs remain unchanged.

o Addition or subtraction of the expanded mantissa of the two numbers:

50

The two inputs with expanded mantissa fields are added or subtracted based on the status of the
add_sub port and the sign bit field of both numbers.

o Renormalizing the result by shifting left and decrementing the exponent.
o Rounding the result to the nearest even.
o Checking for exceptions and set output flags accordingly.

When the sum or difference of the inputs produces a denormal number, the underflow and denormal
flags are set. The block diagram representation of the instantiated adder and substractor modules are
shown in Figure 3-27.

fn ac fn a1

dataal31. resulti31| | — dataal31. resulti31.| 1=
databl31. : databi31

clocl

117

ck e

ach

B [Clock Cvcles
Sinale Precis
Exponent Widt
Mantissa Width
Direction: Subt
Optimization: St

(A): Adder. (B): Subtractor.

Figure 3-27: The block diagram of IEEE-754 floating-point adder/subtractor IP cores.

We instantiated this IP core twice in our design, once as an adder only and later as a substractor and we
did not utilize any exception handling ports.

3.4 ALTFP_MULT

This megafunction implements floating-point multiplier functions. When it takes A and B of equations
(3.1) and (3.2) respectively as inputs it generates the result “R” of the floating-point multiplication based
on equation 3.5:

R= (Ma x 2Ea) x (Mb x 2Eb) = (Ma x Mb) x 2Ea+Eb..................... Eqg. (3.5)

Where:
- Ea, Eb are the exponent bits of A and B respectively.
- Ma, Mb are the mantissa bits of A and B subsequently.

The result of the multiplication has a sign bit equal to the exclusive OR of the inputs’ sign bits, a
mantissa equal to the multiplication of the inputs’ mantissa fields, and an exponent field that is the
sum of the inputs’ exponents. However, when the exponents of the inputs are added, an extra bias
occurs and it should be removed to have the correct value of the result’s exponent. The following
calculations demonstrate how their addition causes an extra bias:

51

Let us express the inputs’ exponents as:
-Exp_A = Exp_A actual + bias
-Exp_B = Exp_B_actual+ bias, where the bias for single precision is 127

Their addition “ad” is:
Ad=Exp A+ Exp B= Exp_A actual + Exp_B_actual + bias + bias
Ad = Exp_A_actual + Exp_B_actual+ 2xbias.

The term 2xbias should be reduced to 1xbias only to remove the excess and get the correct result.

when we instantiated this megafunction in our design, we did not use any exception signal and as in the
previous ones, we selected the optional ports aclr and clk_en. Figure 3-28 shows the block diagram
representation of this IP core.

fo m
ataal31.. resufti31..
atabls1.
e
Tocl
cl
L |
Clock cvcles
Sinale Precis
Exponent Widt
ins Mantissa Width
[|

Figure 3-28: Block di'ag'ram of ALTFP_MULT IP core.

3.5ALTFP_DIV

This megafunction implements a floating-point division function. When given inputs A and B, it
calculates the result “R” based on equation 3.6:

(-1) Sa x 2Ea x 1.Ma
R0 Eq. (3.6)
(1) Sb x 2Eb x 1.Mb

Where:

-Sign of R = Sign bit of A @ Sign bit of B
-Exponent of R = Exponent of A — Exponent of B + Bias

Mantissa of A
- Mantissa =

Mantissa of B

52

The bias is added to the exponent because when the subtraction operation between the input exponents is
performed, the obtained result will not contain any bias, so it is reintroduced to have a correct exponent for
the result.

In the instantiation of this IP core,we have only added the optional ports “aclr” and “clk_en” as in the
previous megafunctions. Figure 3-29 shows its block representation.

#=dataal31resulti31.. = -
- - |¥=databl31.. i
- - ¥ clocl
r—clk e
s Lpach o
-- M |Clock Cvcles m---
Sinale Precis H
Exponent Widt
Mantissa Width
Optimization: St

FFEH A

el
e

e
PRI em

AR A AR)

Figure 3-30: The synthesized system on FPGA shown in the RTL viewer of Quartus 11 software.

4 Resource Usage

At the end of the compilation process of all the project VHDL files, Quartus Il software generates some
reports that summarize the resource usage on the EP4CE115F29C7Cyclone IV E FPGA device which has

53

a total of 114 480 logic elements. It utilized 10% of the total LESs; in other words 11 574 of LEs and the
synthesized system displayed in the RTL viewer is shown on Figure 3-30. The resource usage report for
our project is presented on Figure 3-31.

Family Cyclone IV E

Device EP4CE115F29C7

Timing Models Final

Total logic elements 11,574 [/ 114,480 (10 %)
Total combinational functions 11,096/ 114,480 (10 %)
Dedicated logic registers 5,839/ 114,480 (5 %)

Total registers 5839

Total pins 108 /520 (20 %)

Total virtual pins 0

Total memory bits 4,056 /3,981,312 (< 1%)

Embedded Multiplier 9-bit elements 54 / 532 (10 %)

Total PLLs 0/4(0%)

(A): The flow summary.

Analysis & Synthesis Resource Utilization by Entity

Compilation Hierarchy Node LC Combinationals LC Registers Memory Bits DSP Elements ~ DSPOx9 DSP18x18 Pins Virtual Pins
1 v |de2 11094 (11) 5978 (0) 4956 54 2 26 08 0
1 [Motor:Motor0| BD) 19(19) 0 0 0 0 0 0
2 |ann;ann0)| 0032 (6632) 3608 (3608) 0 0 0 0 0 0
3 |display:display0| 37(37) 0(0) 0 0 0 0 0 0
4 [float_alu:float_aluo| 3017 (196) 1876 (140) 4956 54 2 2% 0 0
5 led:cd0] 413 (413) 159 (159) 0 0 0 0 0 0
6 [IfsrIfsr0)] 9(9) 16(16) 0 0 0 0 0 0
7 |pr:pr0] 916 (831) 160 (159) 0 0 0 0 0 0
8 |sram:sram0| 36(36) 140 (140) 0 0 0 0 0 0

(B): Resource usage by entity.

Figure 3-31: Resource usage from Quartus Il software.

5 Experimental Results

One of our main research design concerns was to achieve a fully hardware implementation of an artificial
neural network on FPGA that is trained with a dataset defined inside a VHDL file and tested by the user
with an interactive interface. Therefore, this project involved the employment of many features provided
by the DE2-115 board such as the SRAM module, the LCD display, the 18 toggle switches etc.

After loading the program to the board, we observed satisfactory system performance that met our
expectations, revealing that the design procedure was successful. At the start, the LCD displays the “train”
message, which notifies the user that the ANN block is still in the learning phase, as indicated by Figure
3-32. Then, the system becomes ready to receive user inputs from the switches to enter the desired pattern
on the selected grid and once KEY [3] is pressed, the recognition phase begins, and after few seconds,
around approximately 10secs, the output class is displayed on the rightmost portion of the LCD as shown
on Figure 3-33. Whenever, the pattern ON is detected on the two LCD grids, an enable signal with a value
of ‘1’ is sent to the motor control circuit, which in turn sets the motor in full step drive. While, if the

54

pattern is OF, the motor control circuit is deactivated by an enable signal of value ‘0’ and keeps the motor
inactive by preventing the occurrence of the right coils energizing sequence that yields to its movement.

Figures 3-33 (A) and (B) demonstrates the system’s output for the two mentioned patterns (OF and ON
respectively).

(A): “OF” pattern system’s response

(B): “ON” pattern system’s response.

Figure 3-33: Real system output.

55

Conclusion

This report presents the design and implementation of an artificial neural network on a reprogrammable
platform, the EPACE115F29C7Cyclone IV E FPGA. The IEEE-754 single precision floating-point format
is utilized for the representation of data. The 16 mentioned characters can be represented on the 4x4 grids
of the LCD. The weights are randomly initialized by an implemented 16-bit Galois LFSR with a
maximum period of 65,535 and then stored in the built-in onboard SRAM.

The pattern recognition Machine learning application is implemented to validate the capability of the
ANN to produce satisfying results with the help of a control unit labelled as PR block that handles its
working. Moreover, an illustrative circuit that consists of a stepper motor and its driver are added to the
system to serve as a physical demonstration. No work is ever complete; there is always room for possible
improvements to be made in the future. Some useful additions to enhance the performance of the system
are:

- Increasing the dimensions of the grids, by employing an external display to have more freedom in the
representation of patterns and include more than 16 letters.

- An interface can be implemented to enable the ANN to recognize hand-written characters.

- A text-to-speech application can be designed to transform the recognized characters into audio.
Ultimately, this project lays a solid foundation for future work in the field of embedded pattern
recognizer circuits. It tackled the most difficult parts of such systems, essentially, a scalable ANN
architecture with all the necessary computational power that learns and outputs results within few seconds.

56

References:

[1] John, Soldatos. “The Embedded Machine Learning Revolution: The Basics You Need to Know.”

Wevolver, www.wevolver.com/article/the-embedded-machine-learning-revolution-the-basics-

you-need-to-know (Accessed 4 Aug. 2022).

[2] Lacey, Griffin, et al. “Deep Learning on FPGAs: Past, Present, and Future.” ArXiv, vol. v1, 13 Feb.
2016, pp. 4-5, 1602.04283.

[3] Bacon, David F., et al. “FPGA Programming for the Masses.” Communications of the ACM, vol. 56,
no. 4, Apr. 2013, pp. 56-63, 10.1145/2436256.2436271.

[4] Rosenfeld, Azriel, and Harry Wechsler. “Pattern Recognition: Historical Perspective and Future
Directions.” International Journal of Imaging Systems and Technology, vol. 11, no. 2, 2000, pp.
1-2, 3.0.c0;2-j">10.1002/1098-1098(2000)11:2<101::aid-imal1>3.0.co;2-j.

[5] “Types of Artificial Intelligence - Javatpoint.” Www.javatpoint.com, 2011,

www.javatpoint.com/types-of-artificial-intelligence (Accessed 10 Aug. 2022).

[6] R. Saracco, "Computers keep getting better ... than us," IEEE Future Directions, 2018.

[7] Ziyad, Mohammed. Artificial Intelligence Definition, Ethics and Standards. 2019.
[8] Mitchell, Tom. “Machine Learning.” New York: McGraw Hill, 1997.
[9] Raj, Ravish. “Supervised, Unsupervised, and Semi-Supervised Learning with Real-Life Usecase.”

Www.enjoyalgorithms.com, www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-

semisupervised-learning (Accessed 15 Aug. 2022).

[10] Aggarwal, Charu C. Neural Networks and Deep Learning a Textbook. Cham, Springer International
Publishing, 2018.

[11] Kinsley, Harrison, and Daniel Kukieta. Neural Networks from Scratch in Python. 2020, p. 9.

[12] “Hidden Layer.” DeepAl, 17 May 2019, deepai.org/machine-learning-glossary-and-terms/hidden-

layer-machine-learning (Accessed 9 Aug. 2022).

57

http://www.wevolver.com/article/the-embedded-machine-learning-revolution-the-basics-you-need-to-know
http://www.wevolver.com/article/the-embedded-machine-learning-revolution-the-basics-you-need-to-know
http://www.javatpoint.com/types-of-artificial-intelligence
http://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning
http://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning

[13] Artificial Neural Networks * Threshold Units « Gradient Descent « Multilayer Networks ¢
Backpropagation « Hidden Layer Representations * Example: Face Recognition Advanced Topics
CS 8751 ML & KDD Atrtificial Neural Networks 2 Connectionist Models Consider Humans.

[14] Hassim, Yana MazwinMohmad, and RozaidaGhazali. “Training a Functional Link Neural Network
Using an Artificial Bee Colony for Solving a Classification Problems.” ArXiv:1212.6922 [Cs], 31
Dec. 2012, arxiv.org/abs/1212.6922. Accessed 19 July 2022.

[15] “What Is FPGA? FPGA Basics, Applications and Uses | Arrow.com.” Arrow.com, 24 Sept. 2018,
www.arrow.com/en/research-and-events/articles/fpga-basics-architecture-applications-and-uses.
Accessed 10 July 2022.

[16] Akhtar. “FPGA Architecture.” Invent Logics, 16 Apr. 2014, allaboutfpga.com/fpga-architecture/
(Accessed 22 July 2022).

[17] “Know about FPGA Architecture and Their Applications.” EIProCus - Electronic Projects for

Engineering Students, 18 Sept. 2014, www.elprocus.com/fpga-architecture-and-applications/

(Accessed 25 July 2022).

[18] “FPGA Applications.” HardwareBee, 15 Feb. 2020, hardwarebee.com/fpga-common-applications/
(Accessed 3 July 2022).

[19] Technologies, GENERA. “FPGA Engineering: FPGA Applications - GENERA Technologies.”

Www.generatecnologias.es,www.generatecnologias.es/en/fpga_applications.html. Accessed 4

July 2022.

[20] DE2-115 User Manual. Terasic Technologies Inc, 2003-2013.
[21] 28BYJ-48 -5V Stepper Motor.
[22] Specifications Subject to Change without Further Notice. 4 Phase ULN2003 Stepper Motor Driver

PCB.

58

http://www.elprocus.com/fpga-architecture-and-applications/
http://www.generatecnologias.es/
http://www.generatecnologias.es/en/fpga_applications.html.%20Accessed%204%20July%202022
http://www.generatecnologias.es/en/fpga_applications.html.%20Accessed%204%20July%202022

