
Registration Number: 161638044507 2020/2021

 People’s Democratic Republic of Algeria

 Ministry of Higher Education and Scientific Research

 University M’Hamed BOUGARA – Boumerdès

 Institute of Electrical and Electronic Engineering

 Department of Electronics
 Project Report Presented in Partial Fulfilment of

 the Requirements of the Degree of

‘MASTER’

In Electrical and Electronic Engineering

Option:

CONTROL

Title:

Presented by:

- CHADLI KOUIDER

Supervisor:

 -Dr. Guernane Reda

Feedback Motion Planning with Simulation

Based LQR-Trees

Abstract

In autonomous and non-autonomous systems, a motion planner generates
reference trajectories which are tracked by a low-level controller. In this report
we consider the problem of generating a feedback motion planning algorithm for
a nonlinear dynamical systems; the algorithm computes the stability regions to
build a set of LQR-stabilized trajectories by generating a feedback control law
from a set of initial conditions that are goal reachable. Furthermore, we consider
the case where these plans must be generated offline, because the LQR trees lack
the ability to handle events in which the goal and environments are unknown till
run-time. Moreover, the algorithm approximates the funnel [2] of a trajectory
using the one step Lyapunov method which is a sampling-based approach,
generating a control law that stabilizes the bounded set to the goal is equivalent
to adding trajectories to the tree until their funnels cover the design set. We
further validate our approach by carefully evaluating the guarantees on
invariance provided by funnels on nonlinear systems. We demonstrate and
validate our method using simulation experiments of some nonlinear models.
These demonstrations constitute examples of provably safe and robust control for
robotic systems with complex nonlinear dynamics with Obstacles and dynamic
constraints.

Acknowledgements

This document is the result of my research during my graduation project. Having a
sincere interest in control techniques and robotics I decided to perform my research
under the guidance of Dr. Guernane Reda. He suggested we worked over Feedback
motion planning using LQR controller. I was both challenged and fascinated to work on a
topic which is relatively new and thus less explored. I initially explored the potential of
planning using both cell decomposition and potential field approach, by imposing
simultaneous stabilization of multiple models. However, such approaches lead to
computationally complex algorithms, and for that I decided to approach the problem
with sampling-based planning techniques (PRM, RRT, RRT*…). During the period that I
worked in this project the feedback from my supervisor Dr. Guernane Reda kept me
motivated to keep up with my research and I am very thankful for that. Finally, I would
like to thank my parents and siblings for their unconditional love over the years.
Without them, none of this would be possible.

Contents

 Introduction I

 Overview I

 Problem statement II

 Contributions III

 Report outline III

Chapter 1: Background and Literature Review 1

 1.1 Basic definitions 1

 1.2 Transformation from workspace to SS 2

 1.3 Sampling-Based motion planning 3

 1.4 Rapid-Exploring Random Tree 4

 1.5 Collision Detection Module 7

 1.6 Linear Quadratic Regulator 7

Chapter 2: Planning in LQR-Trees 10

 2.1 The concept of LQR-trees algorithm 10

 2.1.1 LQR-Trees achieve “Probabilistic Feedback Coverage” 11

 2.2 The motion planning module 12

 2.2.1 The distance metric in growing the tree 12

 2.2.2 The proposed steering function used in RRT 13

 2.3 Stabilizing a Trajectory and funnel Approximation 15

 2.3.1 Stabilizing the goal state and Verification of the basin of attraction 15

 2.3.2 Linear time-varying linear quadratic regulator (TVLQR) 17

 2.3.3 Simulation-based funnel Approximation 18

 2.3.3.1 Funnel Hypothesis test in the free space 18

 2.3.3.2 The proposed Funnel Hypothesis test in an environment with obstacles 20

 2.4 Iteration of the Algorithm 20

 2.4.1 Interpretation of Funnel Hypotheses 21

 2.5 Simulation-based LQR-Trees Algorithm 22

 2.6 Running the Tree policy 23

Chapter 3: Simulation models and Results 25

 3.1 The cart-pole model 25

 3.1.1 Generate the LQR-Trees (Processing phase) 26

 3.1.2 LQR-Trees policy (Execution phase) 27

 3.2 Planar Quadrotor model 29

 3.2.1 TI LQR design and goal set 30

 3.2.2 motion Planning and TV-LQR design 30

 3.2.3 Generate the LQR-Trees (Processing phase) 31

 3.2.4 LQR-Trees policy (Execution phase) 32

General Conclusion

 Discussion and Conclusion 36

 Future work 37

References 38

List of Figures

1-1 Simple motion planning problem ………………………………………………………….. 1

1-2 Minkowski convolution ……………………………………………………………………….... 3
1-3 Example of PRM and RRT ……………………………………………………………………….. 4
 1-4 A steering for a typical RRT ……………………………………………………………………… 7
1-5 The closed loop LQR system …………..……………………………………………………… 8
2-1 (a) the tree T consists of a single trajectory, (b) the tree T consists of multiple

trajectories …………………………………………………………………………….. 12

2-2 The Lyapunov function as a funnel ………………………………………………………… 16

2-3 The sequential composition of funnels ………………………………………………….. 17

2-4 Adjusting the funnel after a failed simulation ……………………………………… 19

2-5 Adjusting the funnel after a collision detection ………….……………………… 20

2-6 Overlap of funnel hypotheses ……………………………………………….…………….. 21

3-1 A free body diagram depicting a cart-pole system ………………………………. 25

3-2 The generated tree phase plots for the cart-pole system ……………………… 27

3-3 The success and failures of all 150 experiments ……………………………………. 28

3-4 Phase plots of some successful experiments …………………………………………. 28

3-5 The used Planar Quadrotor System ……………………………………………………….. 29

3-6 The quadrotor maneuvering through a forest of obstacles in a collision-free

manner …….. 30

3-7 The generated LQR-trees phase plots for the quadrotor system ………..… 32

3-8 Initial conditions of all 200 experiments inside the design set ………………. 33

3-9 Initial conditions of all 200 experiments in and out of the design set ……. 33

3-10 initial conditions of all 200 experiments in an environment with obstacles…….34

3-11 Phase plots of a two successful simulations …………………………………………….35

List of Acronyms

PRM Probabilistic Road Map

RRT Rapid Random-exploring Tree

NLP Non-Linear Programming

DC Direct Collocation

TI Time invariant

TV Time Varying

LQR Linear Quadratic Regulator

SOS Sum of Squares

SS State Space

C-Space Configuration space

HJB Hamilton–Jacobi–Bellman equation

List of Algorithms

Algorithm 1 : Generate Rapid-Exploring Random Tree

Algorithm 2 : LQR-Trees

Algorithm 3 : DC-RRT Planner

Algorithm 4 : Simulation-Based LQR trees

Algorithm 5 : Executing LQR-Tree policy

I

Introduction

Overview
Over the recent decades, the field of robotics witnessed a great leap in technological

advancement and degree of autonomy; Autonomous robots can be simply defined as intelligent

machines that are capable of performing certain tasks in their environment without explicit

human interaction, lowering the operation costs and complexity.

Some of the most significant challenges confronting autonomous robotics lie in the area of

automatic motion planning. The goal is to be able to specify a task in high-level language and

have the robot automatically compile this specification into a set of low-level motion primitives,

or feedback controller. The task is accomplished if a trajectory for a robot is found from one

configuration to another while avoiding obstacles and potentially in an efficient manner,

whether it’s a mobile robot, robot arm or even a flying robot.

Since the action in the real world are subjected to physical laws, uncertainties and constraints,

the mathematical representation of the system no matter how reliable, can only be regarded as

an approximation of a complex underlying behavior. Thus, the inability to take into account

uncertainties can have disastrous consequences.

Every robot that operates in an environment requires some ability to plan motions in order to

interact with the world. Depending on the system in use, the application at hand, and the

computational tools available, there are various ways the motion planning problems can be

formulated and solved. In practice they are all equipped with feedback control to help with the

deviation from the planned trajectory.

The planning algorithms used in practical motion planning can be classified into: grid-based

planning algorithms like cell decomposition algorithms which are suitable for systems with low

dimensional state space (5 to 6 dimension at most) or with decoupled systems, however the

limitations of these algorithms lies in their computational and time complexities that grow

exponentially as the degree of freedom increases since.

 On the other hand, sampling-based algorithms like probabilistic roadmap (PRM) and rapidly-

exploring randomized tree (RRT)[1] and (RRT*) can handled large state-space dimensions and

complex constraints, these latter are applicable in both offline and online motion planning

applications. However, their limitation is their inability to detect uncertainties and disturbances

which can lead to failure if the system is deviated from its nominal trajectory.

II

 In this report, we used LQR-Trees algorithm that is used to explores the bounded set with

random state samples and, where needed, adds new trajectories to the tree using motion

planning. Simultaneously, the algorithm approximates the funnel of a trajectory, which is the

set of states that can be stabilized to the goal by the trajectory's feedback law. Generating a

control signal that stabilizes the bounded set to the goal is equivalent to adding trajectories to

the tree until their funnels cover the set. Which means this algorithm create a tree of stabilizing

controllers which takes any initial condition in some design set to the goal.

Problem statement
In order to properly define the problem, some notation needs an introduction. Let 𝑋 ⊆ ℝ𝑛 be

the state space of dimensionality n, where the elements of 𝑋 are known as states 𝑥, and

𝕌 ⊆ ℝ𝑚be the control space of dimensionality m, the state space where the robot is in collision

with the obstacles is denominated 𝑋𝑜𝑏𝑠 while the rest is the free space 𝑋𝑓𝑟𝑒𝑒 . A trajectory𝜈 ∈ 𝑋

is a continuous function 𝜈(𝑡) = (𝑥, 𝑡) connecting two states. It is said to be free if and only if

𝜈 ∈ 𝑋𝑓𝑟𝑒𝑒 and feasible if in addition it satisfies the dynamic and actuation constraints.

The motion planning problem is stated as: Given an initial state 𝑥𝑖𝑛𝑖𝑡 at 𝑡0, an environment with

obstacles 𝑋𝑜𝑏𝑠 and a goal state 𝑥𝑔𝑜𝑎𝑙, the motion planning problem deals with finding a feasible

collision-free trajectory connecting the initial state to the goal state. The strict goal state

condition can be instead relaxed to a goal region, denoted as 𝑋𝑔𝑜𝑎𝑙.

The feasibility of the trajectory𝜈 is determined by not only residing in the free space but also

governed by the non-linear state space dynamics described by:

 �̇� = 𝑓(𝑥, 𝑢) (1)

The above is the usual formulation of the motion planning problem which is concerned only

with finding a feasible trajectory. However, for many applications such as the one this report is

aimed at, an optimal trajectory is preferred. If the set of trajectories is denoted as Ρ, then a cost

function 𝐽 where 𝐽: Ρ → ℝ+ is a function that maps the candidates’ free trajectories to a non-

negative scalar cost. The optimal motion planning problem deals with finding a

trajectory 𝜐 such that 𝐽(𝜐∗) = min
𝜐∈𝑃

𝐽(𝜐). The time sequence input u propagating eq (1) forward

in time is called the control policy denoted as 𝜋. The optimal control policy is the sequence

yielding the minimal cost value with respect to the defined cost functional:

 𝜋∗ = argmin
𝜋

𝐽(𝑥, 𝑥𝑖𝑛𝑡, 𝑋𝑔𝑜𝑎𝑙) (2)

Contributions:
In this report, the following contributions are proposed:

III

1. Incorporate the nonlinear programming (Direct collocation method) to the steering

procedure of the RRT.

2. Generalizing the funnels concept to environments with obstacles using a sampling

based-method.

3. demonstrate and validate the approach using thorough simulation experiments of a cart

pole system with state constraints (4 dimensional system) and a quadrotor model

navigating through cluttered environments(6 dimensional system).

Report Outline

This report consists of 3 chapters, organized as follow:

 Chapter 1: it gives a brief explanation on motion planners and LQR controller.

 Chapter 2: It addresses the main idea behind the Planning in LQR-Trees along with an

extension in the RRT and a proposed algorithm in adjusting the funnels in an

environment with obstacles.

 Chapter 3: presents extensive simulation results on a cart-pole model and also

considers a quadrotor model and shows how one can use our approach to guarantee

collision-free flight in certain environments.

1

Chapter 1

Background and Literature Review

This chapter is devoted to classifying the classes of motion planning algorithms as well as the

basic theory behind the linear quadratic regulator (LQR). Thus it is convenient to first define

them here.

1.1 Basic definitions
Definition 1: The workspace is the environment where the robot and obstacle live in. for

instance an Autonomous vehicles navigate on a 3-dimensional surface that can be locally

approximated as a flat 2-dimensional plane. Therefore, the workspace can be described as

W=ℝ2.Obstacles within this workspace is defined as the obstacle region 𝑂 ⊂ 𝑊 and the region

that the vehicle (Agent) occupies as 𝐴 ⊂ 𝑊[1].

Definition 2: The configuration space C is the set of all possible configurations of the robot. For

instance, a 2-D dimensional pose of a moving vehicle (x, y, θ) is often considered as

configuration where (x, y) is the location of the vehicle and θ is its orientation. Thus the number

of degree of the robot is the dimension of the C-space. Furthermore, the configuration space

(C-space) is the combination of two important subspaces which are the free configuration space

(or free space 𝐶𝑓𝑟𝑒𝑒) and configuration space obstacle 𝐶𝑂𝑏𝑠 ,thus the C-space is defined as

 𝐶 = 𝐶𝑓𝑟𝑒𝑒 ⋃𝐶𝑂𝑏𝑠 and𝐶𝑓𝑟𝑒𝑒 ∩ 𝐶𝑂𝑏𝑠 = 𝜙.[1]

Definition 3: The state space is an extension of the C-space, it must be used when the problem

is time varying, thus the state space is defined as 𝑋 = 𝐶 × 𝑇.[11]

 Figure 1-1: Simple motion planning problem

2

Definition 4: The complexity of a Motion Planning algorithm can be described by an upper and

lower bound. The upper bound can be established by evaluating the run-time of an

implementation. The lower bound is the minimum theoretical complexity that a class of

algorithms can have [11]. This gives a good prior estimate of the difficulty of the problem to be

solved. Several classes of complexity exist, the most known are:

 P: can be solved in polynomial time.

 NP: can be solved in polynomial time by a nondeterministic Turing machine.

In this report the problem is NP-hard. Hence, no exact solution exists for the problem that

remains to be solved during this report.

Definition 5: Properties of motion planning

 Optimality: Return a feasible trajectory that optimizes performance in finite time [9].

 Completeness: A motion planning algorithm is complete if for any input it correctly

reports whether a solution exists in a finite amount of time. This solution must also be

returned within a finite amount of time [3].

 Asymptotic Optimality: The algorithm returns a sequence of solutions that converge to

the optimal solution[3]

1.2 Transformation from workspace to C-space or SS

The transformation of obstacles from a robot’s workspace into a robot state space is, naturally,

strongly related to the inverse kinematics of the robotic mechanism. In practice it can be quite

challenging to work with a robot that has complex shape, because additional parameters are

needed to represent it in the state space. In order to solve this dilemma, we try to convert it to

a point where it is easier to work with however by doing so the obstacle regions will get their

shapes deformed in the state space or C-space compared to the workspace.

The C-space or state space (SS) construction can be categorized into two different methods:

Geometry-based method and topology-based method. Geometry-based methods compute the

exact geometric representation of the configuration space, while topology-based methods

capture the connectivity of the configuration space.

Geometry-based methods also referred to as combinatorial approach are usually limited to low

dimensional configuration spaces, due to the combinatorial complexity involved in computing

C-space obstacle for high dimensional configuration spaces.

Topology-based methods or sampling-based approach captures the connectivity of the

configuration space, meaning the connection between the nodes in the free configuration

space. The basic idea is first to generate random samples(called milestones) in Cfree and then

organize these samples using a graph structure or a forest of tree structures .Topology-based

methods can compute an approximate C-space representation much faster than geometry-

3

based methods. However, these methods do not work well with narrow passages and can be

slow for high-DOF robots.

A very popular geometry-based method that’s also used in this report is the Minkowski

difference defined as:

𝑋 ⊖ 𝑌 = {𝑥 − 𝑦 ∈ ℝ𝑛|𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑦 ∈ 𝑌} 𝑤ℎ𝑒𝑟𝑒 𝑋, 𝑌 ⊂ ℝ𝑛

where in our case the configuration space obstacle case we written as 𝐶𝑂𝑏𝑠 = 𝒪 ⊖ 𝑅 where R is

dimensions of the robot and 𝒪 is the obstacle region.

(a) (b) (c)

Figure 1-2: (a) the workspace representation of the robot(circle) and the obstacle. (b) performing a

convolution-like operation between the robot and obstacle region. (c) the spanned C-space.

1.3 Sampling-Based motion planning
The sampling-based motion planning conduct a search that explores the configuration space (or

state space) with a sampling scheme in order to avoid the explicit construction of the

configuration space obstacle. Both PRM and RRT (including its variants) have proven to be

probabilistically complete. Moreover, they utilize the configuration space 𝐶 (or state space 𝑋)

and a metric to solve motion planning problems. The metric used is a measure of proximity

required to define state neighborhoods and quantify the cost of edges connecting states within

the space. The PRM offers several routes to the goal in a single query and therefore deals well

with wide open spaces. But it requires a search algorithm to find an optimal trajectory.

Whereas the RRTs are a better fit to the motion planning problems where building a roadmap

a-priori may be irrelevant or simply infeasible, due to its single query nature. This allows for

more options to consider for the metric and the tree edge connections. Although The RRT is

efficient in finding an initial solution, but it may contain unnecessary detours which makes it far

from optimal.

Sampling-based methods can be divided into two categories:

 Multi-query: here multiple start and goal configurations can be connected without

reconstructing the graph structure.

4

 Single-query: where the tree is built from scratch for every set of start and goal

configurations.

A summary of the two categories is shown in table 1-1

 MULTI-QUERY SINGLE-QUERY

PHASE 1-road construction
2-searching

1-Tree construction
2-searching

TYPICAL ALGORITHMS Probabilistic roadmap (PRM) Rapid-Exploring Random
Tree(RRT and it variants)

ADVANTAGES Fast searching No preprocessing
DISADVANTAGES Cannot deal with dynamic

environments
No memory

 Table 1-1: The comparison between multi-query and single-query method

(a) (b)

Figure 1-3 :(a) an example of a roadmap for a point robot in a two-dimensional Euclidean

space. (bt) an example of a Tree for a point robot in a two-dimensional Euclidean space. The

black areas are the obstacle space; the red point corresponds to the sampled states.

1.4 Rapid-Exploring Random Tree (RRT)
Initially presented by Kuffner and LaValle [1], RRT is an incremental single-query method, as

well as the most prevalent algorithm. Unlike PRM, RRT can be applied to nonholonomic and

kinodynamic planning. Starting from an initial configuration, RRT constructs a tree using

random sampling. The tree expands until a predefined time period expires or a fixed number of

iterations are executed.

5

The RRT involves five main components and each can be encapsulated into a function or

procedure as follows:

a) Sampling function when called, the sampling procedure returns a sampled state 𝑥 ∈

𝑋𝑓𝑟𝑒𝑒 from a random distribution.

b) Steering function when called, the function takes the sampled state and a set of states

in the tree, then the function attempts to connect the sampled state with one of the

states in the tree such that the constraints are not violated. It returns either a Boolean

value indicating the two states are to be connected or a trajectory between the nearest

state and not necessarily the sampled state as shown in figure 1-4.

c) Collision check function given a trajectory between 𝜐(𝑡) or a state 𝑥 then this returns a

Boolean value where it’s true if the trajectory 𝜐(𝑡) or state 𝑥 is in the free space in its

entirety.

d) Cost function this procedure evaluates the cost to go from one state to another. If the

two states are not connectible, the metric returns an infinite distance.

e) K Nearest Neighbors (KNN) function given a sampled state 𝑥, then the KNN function

returns a state that’s connected to the tree 𝑥𝑛𝑒𝑎𝑟 and is the nearest neighbor of 𝑥.

Meaning 𝑥𝑛𝑒𝑎𝑟 hold for the following inequality 𝐽(𝑥, 𝑥𝑛𝑒𝑎𝑟) ≤ 𝐽(𝑥, 𝑥𝑖) for all 𝑖 =

1,2,…… , 𝑘 where k is the number of states in the tree and 𝑥𝑖 ≠ 𝑥𝑛𝑒𝑎𝑟

The building of an RRT can be summarized in the following algorithm:

6

DATA:
𝑥: A variable consisting of positions and velocities

𝒯: Tree (Output)

𝑢: robot input

𝜐: the trajectory between the two states

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: Ending or terminating condition Δ𝑡: time step

1: 𝒯. 𝑖𝑛𝑖𝑡(𝑥𝑖𝑛𝑖𝑡)

2: While 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛do

3: 𝑥𝑟𝑎𝑛𝑑 ← 𝑅𝑎𝑛𝑑𝑜𝑚_𝑆𝑡𝑎𝑡𝑒()

4: 𝑥𝑛𝑒𝑎𝑟 ← 𝐾𝑁𝑁(𝑥𝑟𝑎𝑛𝑑, 𝒯)

5: 𝑢 ← 𝑅𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑝𝑢𝑡()

6: [𝑥𝑛𝑒𝑤 , 𝜐] ← 𝑁𝑒𝑤_𝑆𝑡𝑎𝑡𝑒(𝑥𝑛𝑒𝑎𝑟 , 𝑢, Δ𝑡)

7: If CollisionFree(𝜐, 𝑋𝑓𝑟𝑒𝑒)do

8: 𝒯. 𝑎𝑑𝑑_𝑛𝑜𝑑𝑒(𝑥𝑛𝑒𝑤)

9: 𝒯. 𝑎𝑑𝑑_𝑒𝑑𝑔𝑒(𝜐)

10: End if

11: End While

𝒯. 𝑖𝑛𝑖𝑡(𝑥𝑖𝑛𝑖𝑡) creates the tree and adds the start state as a root node to the tree. The next step

is to grow the tree. This is done until the termination 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is reached, it might be a time

limit or reaching a state close to the goal. The first step in expanding the tree is to choose a

random state. In practice the goal state can also be used with some probability as the random

state in order to speed up the planning process. This probability is the goal bias; it was proven

experimentally that 5-10% is the right choice [5]. Then the closest node to this state is selected

for expansion. This closest node is determined using some defined metric. The tree will then

expand from this closest node. It will do so by selecting a random viable input and applying this

input for duration of time. The state reached through this applied input will then be added to

the tree, as well as the motion or edge used to reach this state. At this point the planner either

reaches a Condition or a new random state is chosen. Using a random control input is

probabilistically complete for extensive time durations. It is, however in practice undesired to

let a motion planner run for an extended duration of time. A basic idea to speed up the motion

planning process is to use multiple random inputs and then using the cost function to

Algorithm 1: Generate Rapid-Exploring Random Tree

7

determine the best newfound state. This, however, makes it so that the planning method is

potentially no longer probabilistically complete.

Figure 1-4: Adding a new state to RRT, the state 𝑥𝑟𝑎𝑛𝑑 is selected randomly from a uniform

distribution in 𝑋𝑓𝑟𝑒𝑒 . the state 𝑥𝑛𝑒𝑎𝑟 is the closest state in the tree to it. The state 𝑥𝑛𝑒𝑤 is

obtained by moving 𝑥𝑛𝑒𝑎𝑟 with u. Thus only 𝑥𝑛𝑒𝑤 is added to the tree.

1.5 Collision Detection Module
Once it has been decided where the samples will be placed, the next problem is to determine

whether the configuration is in collision. Thus, collision detection is a critical component of

sampling-based planning. Even though it is often treated as a black box, it is important to study

its inner workings to understand the information it provides and its associated computational

cost. A variety of collision detection algorithms exist, ranging from theoretical algorithms that

have excellent computational complexity to heuristic, practical algorithms whose performance

is tailored to a particular application. The collision detection algorithm developed in this report

relies on sampling a linear segment between two configurations then treat each sample in

between as Boolean value {true, false} , if the sample is in the free space return true, otherwise

return false.

Henceforth, the whole transition from the initial configuration to the next is removed if at least

one of the sampled configurations in between the two is in collision.

1.6 Linear Quadratic Regulator (LQR)
For the majority of systems, open-loop trajectories are almost always unstable, so once given a

trajectory from the RRT or any other method; one must chose a feedback solution to ensure

that the system will stay near the given path. There are a number of options for this feedback,

8

including model predictive control (MPC) and time-varying linear quadratic regulators (TVLQR).

We further note that in some cases, we can provide stability guarantees on these systems

(using funnels), under the assumption of the correctness of our models.

With the Linear Quadratic Regulator (LQR) we enter the class of model-based controllers. The

LQR controller is a special case of general optimization based controllers, exploiting the

required linearity of the model and the quadratic form of the objective function. Depending on

the task, the LQR can be formulated for continuous- or discrete-time and finite or infinite

horizons.

Structure:

The controller structure forms around the central optimization problem,

 {

min
𝑥(∙),𝑢(∙)

∑ 𝑥𝑖𝑄𝑥𝑖 + 𝑢𝑖𝑅𝑢𝑖
𝑁
𝑖=0

𝐺𝑖𝑣𝑒𝑛 𝑄 = 𝑄𝑇 ≥ 0 , 𝑅 = 𝑅𝑇 > 0
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒙𝑖+1 = 𝐴𝒙𝑖 + 𝐵𝒖𝑖 𝑖 = 0,1, … . . , 𝑁 − 1

 (1.1)

Where > and ≥ denote the positive definite (PD) and positive semi-definite (PSD) of the

matrices respectively. And A, B are the Jacobians then discretization the of the non-linear

dynamic model in (1). Minimizing the quadratic cost subject to the initial value of the state and

the model dynamics. The relevant tunable parameters are the weighting matrices Q, R. For the

used single input model, R is a scalar representing the cost of deviating the controls from the

neutral position. It may be chosen just small enough to represent the real-world cost, in this

case the delay of the control surface. The matrix Q incorporates penalties of the state deviating

from the zero state (i.e. the chosen reference point of the model).

 Figure 1-5: The closed loop LQR system

Our goal is to find the optimal cost-to-go function 𝑱∗(𝑥) which satisfies the HJB:

 ∀𝒙 0 = min
𝒖

[𝒙𝑇𝑄𝒙 + 𝒖𝑇𝑅𝒖 +
𝜕𝑱∗

𝜕𝒙
(𝐴𝒙 + 𝐵𝒖)] (1.2)

It is well known that for this problem the optimal cost-to-go function is quadratic. This is easy to

verify. Let us choose the form

9

 𝑱∗(𝒙) = 𝒙𝑇𝑺𝒙 , 𝑺 = 𝑺𝑇 ≥ 𝟎 (1.3)

The gradient of this function is

𝜕𝑱∗

𝜕𝒙
= 𝟐𝒙𝑇𝑺 (1.4)

Since we have guaranteed, by construction, that the terms inside the 𝒎𝒊𝒏 are quadratic and

convex (because 𝑹 > 0), we can take the minimum explicitly by finding the solution where the

gradient of those terms vanishes:

𝜕

𝜕𝒖
= 2𝒖𝑇𝑹 + 𝟐𝒙𝑇𝑺𝑩 = 0 (1.5)

This yields the optimal policy

 𝒖∗ = 𝜋∗(𝒙) = −𝑹−1𝑩𝑇𝑺𝒙 = −𝑲𝒙 (1.6)

Inserting this back into the HJB and simplifying yields

 0 = 𝒙𝑇[𝑸 − 𝑺𝑩𝑹−1𝑩𝑇𝑺 + 𝟐𝑺𝑨]𝒙 (1.7)

All of the terms here are symmetric except for the 𝟐𝑺𝑨 , but since 𝒙𝑇𝑺𝑨𝒙 = 𝒙𝑇𝑨𝑻𝑺𝒙 we can

write

 0 = 𝒙𝑇[𝑸 − 𝑺𝑩𝑹−1𝑩𝑇𝑺 + 𝑺𝑨 + 𝑨𝑻𝑺]𝒙 (1.8)

And since this condition must hold for all 𝒙, it is sufficient to consider the matrix equation

 0 = 𝑺𝑨 + 𝑨𝑻𝑺 − 𝑺𝑩𝑹−1𝑩𝑇𝑺 + 𝑸 (1.9)

This extremely important equation is a version of the algebraic Riccati equation. Note that it is

quadratic in 𝑺, making its solution non-trivial, but it is well known that the equation has a single

positive-definite solution if and only if the system is controllable and there are good numerical

methods for finding that solution, even in high-dimensional problems.

10

Chapter 2

Planning in LQR -Trees

In this chapter, we presented a brief overview of the LQR-tree along with the proposed

extension on the steering function of the RRT, as well as the proposed method the proposed in

adjusting the funnels in en environments with obstacles using a sampled-based approach.

2.1 The concept of LQR-Tree algorithm
The key idea in [9] is that the algorithm generates a tree 𝒯 = {𝐽1, 𝐽2, …… . }that consists of a set

of feedback-stabilized nominal trajectories that cover the set of states in the design set that are

to be stabilized to the goal G with the union of their funnels. The tree is generated iteratively

with randomized sampling approach.

1) If there is a trajectory in the current tree whose feedback policy can stabilize the

sample state to the goal 𝒳𝑔𝑜𝑎𝑙, i.e., the sample is in the funnel of that trajectory, the

algorithm proceeds to the next iteration.

2) If there is no such trajectory, the motion-planner module attempts to find a trajectory

from the sample state to the goal 𝒳𝑔𝑜𝑎𝑙 .

3) If motion-planning is successful, a feedback policy is generated by the feedback-control

module, and the new trajectory is added to the tree.

4) If motion-planning fails, then the sample state is not in the stabilizable set, and the

algorithm proceeds to the next iteration.

These steps are iterated until the stabilized set is covered by the funnels of the trajectories in

the trees. This iterative procedure is outlined in pseudo code in Algorithm 2 along with the

illustration from [9].

11

DATA:

𝑐: The cost to go function

𝒯: Tree (Output)

𝒳𝑔𝑜𝑎𝑙: the goal region

𝑆𝐷: The stabilizable set

1: 𝒯 ← ∅

2: While 𝑁𝑜𝑡𝐶𝑜𝑣𝑒𝑟𝑒𝑑(𝑆𝐷, 𝒯)do

3: 𝑥𝑠 ← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒()

4: If 𝐼𝑠𝐼𝑛𝐹𝑢𝑛𝑛𝑒𝑙(𝑥𝑠, 𝒯)𝑜𝑟 𝐼𝑛𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒then

5: Continue

6: Else

7: {{𝑢𝑘}, {𝑥𝑘}} ← 𝑅𝑅𝑇_𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑥𝑠, 𝑐, ℐ,𝒳𝑔𝑜𝑎𝑙)

8: If 𝑃𝑙𝑎𝑛𝑛𝑒𝑟𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 then

9: 𝜋 ← 𝑎𝑑𝑑𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝐶𝑜𝑛𝑡𝑟𝑜𝑙({{𝑢𝑘}, {𝑥𝑘}}) // detailed in 2.3

10: 𝒯 ← 𝑎𝑑𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝒯, 𝜋, {{𝑢𝑘}, {𝑥𝑘}})

11: Else

12: Continue

13: End if

14: End if

15: End while

2.1.1 LQR-Trees achieve “Probabilistic Feedback Coverage”
While dealing with large dimensional problems, covering the reachable state space may be

unnecessary or impractical. Based on the RRTs, the LQR-trees can easily be steered towards a

region of state space (e.g., by sampling from that region with slightly higher probability)

containing important initial conditions. Termination could then occur when some important

subspace is covered by the tree. Hence, the goal of the algorithm is to cover an entire region of

interest, the set of points from which the goal state is reachable, or a specified bounded subset

of this region, with this stabilizing controller. This property is defined as ”probabilistic feedback

Algorithm 2: LQR-Trees

12

coverage”, the latter implies that, as the number of algorithm iterations tends to infinity, the

tree-policy is able to stabilize all states in the stabilized set 𝑆𝐷 to the goal set G. To achieve this,

we grow our trees in the fashion of an RRT, where new sub goals are chosen at random from a

uniform distribution over the state space. Unlike the RRTs, we have additional information from

the estimated regions of stability (funnel) and differential constraints, and we can immediately

discard sample points which are sampled inside the previously verified region.

(a) (b)

Figure 2-1: (a) the tree T consists of a single trajectory J with nominal states {𝑥0 …… . 𝑥4}.The funnel is

shown in medium dark gray. The intersection of the stabilizable set S (dashed outline) with the design

set is shown in light gray. The random sample 𝑥𝑠
𝑖drawn at iteration𝑖 is not in 𝑆𝒥andthe algorithm adds a

trajectory to the tree that connects 𝑥𝑠
𝑖 to the goal set G (dark gray). The next random sample 𝑥𝑠

𝑖+1 is not

in 𝑆𝐷, causing the motion-planner to fail, and the algorithm proceeds to the next iteration. (b) The

algorithm terminates after enough trajectories were added to cover 𝑆𝐷 with their funnels [9].

2.2 The Motion Planning Module
An essential component of the LQR-tree algorithm is the method by which the tree is extended.

Following the RRT approach, we select a sample at random from some distribution over the

state space, and attempt to grow the tree towards that sample. Unfortunately, RRTs typically

do not grow very efficiently in differentially constrained (e.g., underactuated) systems, because

simple distance metrics like the Euclidean distance are inefficient in determining which node in

the tree to extend from. Further embracing LQR as a tool for motion planning, in this section we

develop an affine quadratic regulator around the sample point, and then use the resulting cost-

to-go function to determine which node to extend from, and use the open-loop optimal policy

to extend the tree. In order to grow the RRT in an efficient way, we used the metric derived in

[4] as a measure of closeness between the states in the state space.

2.2.1 The distance metric in growing the tree
Choose a random sample (not necessarily a fixed point) in state space, xrand and a default u0,

and use �̅� = x − xrand, �̅� = u − u0.

13

Now linearize around xrand:

�̇̅� =
𝑑

𝑑𝑡
(𝑥(𝑡) − 𝑥𝑟𝑎𝑛𝑑) = �̇�

 �̇̅� ≈ 𝑓(𝑥𝑟𝑎𝑛𝑑, 𝑢0) +
𝜕𝑓

𝜕𝑥
(𝑥(𝑡) − 𝑥𝑟𝑎𝑛𝑑) +

𝜕𝑓

𝜕𝑢
(𝑢(𝑡) − 𝑢0) (2.1)

�̇̅� = 𝑐 + 𝐴�̅� + 𝐵�̅�

Assume 𝑢0, the input vector at 𝑡𝑓 , the end of the finite horizon, is zero. Define an affine

quadratic regulator problem with a hard constraint on the final state, but with the final

time, 𝑡𝑓, left as a free variable

 𝐽(�̅�, 𝑡0, 𝑡𝑓) = ∫ (1 +
1

2
�̅�𝑇𝑅�̅�) 𝑑𝑡

𝑡𝑓
𝑡0

 𝑅 = 𝑅𝑇 > 0 (2.2)

𝑠. 𝑡 �̅�(𝑡𝑓) = 0 , �̅�(𝑡0) = �̅�0, �̇̅� = 𝑐 + 𝐴�̅� + 𝐵�̅�

Using Pontryagin’s minimum principle, a necessary condition for optimality, it can be derived

that the inverse of S(t), referred to here as P(t), is governed by the following differential matrix

equation:

 �̇�(𝑡) = 𝐴𝑃(𝑡) + 𝑃(𝑡)𝐴𝑇 + 𝐵𝑅−1𝐵𝑇 , 𝑃(𝑡0) = 0 (2.3)

The resulting cost-to-go is:

 𝐽∗(�̅�, 𝑡𝑓) = 𝑡𝑓 +
1

2
𝑑𝑇(�̅�, 𝑡𝑓)𝑃−1(𝑡𝑓)𝑑(�̅�, 𝑡𝑓) (2.4)

Where:

𝑑(𝑡) = 𝑒𝐴𝑡 + ∫ 𝑒𝐴(𝑡𝑓−𝜏)𝑑𝜏
𝑡𝑓

0

The LQR-based proximity heuristic’s value for the distance from x to xrand is:

𝐿𝑄𝑅_𝐵𝑎𝑠𝑒𝑑_𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 (𝑥 → 𝑥𝑟𝑎𝑛𝑑) = 𝑚𝑖𝑛𝑡𝑓 𝐽∗(�̅�, 𝑡𝑓)

2.2.2 The proposed steering function used in RRT
In order to build an LQR-Tree, nodes within the tree must be linked together with valid

trajectories through state-space with arbitrary endpoints [7] [x0; xrand] provided by the global

planner. For local trajectory generation routine the 4th order Runge-Kutta transcription on the

nonlinear equality constraints is used and the Euler transcription on the cost to go function in

the direct collocation method with P collocated states to find an optimal open loop trajectory

for the system. In order to generate these trajectories we solved the optimization program

using MATLAB’s fmincon. While direct collocation may introduce small errors from

approximating trajectories as cubic splines and the control as linear interpretation, it is often

better numerically conditioned than multiple shooting as direct collocation features a sparse

14

constraint matrix. In addition to penalizing input and state we also chose to make the trajectory

time step a decision variable. This allows for a trade-off between time and energy efficiency.

min
𝑧

∑ Δ𝑡 ((𝑥𝑘 − 𝑥𝑔𝑜𝑎𝑙)
𝑇
𝑄(𝑥𝑘 − 𝑥𝑔𝑜𝑎𝑙) + (𝑢𝑘 − 𝑢𝑔𝑜𝑎𝑙)

𝑇
𝑅(𝑢𝑘 − 𝑢𝑔𝑜𝑎𝑙))

𝑁−1

𝑘=0

Subjected to: 𝑥𝑘+1 = 𝑥𝑘 +
∆𝑡

6
(𝑘0𝑘 + 2𝑘1𝑘 + 2𝑘2𝑘 + 𝑘3𝑘)

𝑘0𝑘 = 𝑓(𝑡𝑘 , 𝑥𝑘, 𝑢𝑘)

𝑘1𝑘 = 𝑓(𝑡𝑘 + 0.5∆𝑡, 𝑥𝑘 + 0.5𝑘0𝑘∆𝑡, 𝑢𝑘)

𝑘2𝑘 = 𝑓(𝑡𝑘 + 0.5∆𝑡, 𝑥𝑘 + 0.5𝑘1𝑘∆𝑡, 𝑢𝑘)

𝑘3𝑘 = 𝑓(𝑡𝑘 + 0.5∆𝑡, 𝑥𝑘 + 𝑘2𝑘∆𝑡, 𝑢𝑘+1)

𝑥0 = 𝑥𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝐼𝑛 𝑇𝑟𝑒𝑒 𝐴𝑛𝑑 𝑥𝑃 = 𝑥𝑛𝑒𝑤

 |𝑢𝑘| ≤ 𝑢𝑚𝑎𝑥
𝑙𝑜𝑐𝑎𝑙 ∀𝑘

 𝑥𝑘 ∈ 𝜒𝑓𝑟𝑒𝑒 ∀𝑘

 Δ𝑡𝑚𝑖𝑛 < Δ𝑡 < Δtmax

𝑧 = [Δ𝑡, 𝑥0, 𝑥1, ……𝑥𝑃 , 𝑢0, 𝑢1, … . . 𝑢𝑃]

Where 𝑥𝑛𝑒𝑤 is closer to 𝑥𝑟𝑎𝑛𝑑 than 𝑥0 with respect to the metric (2.4), It is also worth noting

that 𝑢𝑚𝑎𝑥
𝑙𝑜𝑐𝑎𝑙 < 𝑢𝑚𝑎𝑥 in order to allow some controllability to the LQR controller.

Once 𝑥𝑃 reaches the goal region, the RRT planning stops and then we performed a backtracking

from the goal state to the initial sampled state. Furthermore we extended this procedure by

adding a collision detection function that checks if all the collocated states are collision free. If

there is no collision then append the extension to the RRT, otherwise truncate the segment and

remove all the states that occur after the first state is not collision free.

The algorithm of the direct collocation based RRT (DC-RRT) planner is as follows:

15

1: 𝒥 ← ∅
2: 𝒥 ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑥𝑖𝑛𝑖𝑡 , 𝒥)

3: For 𝑘 = 1 𝑡𝑜 𝑘 = 𝐾

4: 𝑥𝑟𝑎𝑛𝑑 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑡𝑎𝑡𝑒()

5: 𝑥𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑆𝑡𝑎𝑡𝑒(𝑥𝑟𝑎𝑛𝑑, 𝒥) // using the metric (4)

6: [𝑡𝑓, {𝑥}𝑃 , {𝑢}𝑝, 𝑓𝑙𝑎𝑔] = 𝑑𝑐_𝑠𝑡𝑒𝑒𝑟(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑟𝑎𝑛𝑑) // using the proposed method in 2.2.2

7: If 𝑓𝑙𝑎𝑔 == 1 then // flag is 1 if the solution from the solver is

 feasible

8: If 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒 then

9: 𝒥 ← 𝐼𝑛𝑠𝑒𝑟𝑡_𝑡𝑟𝑎𝑗({𝑥}𝑃 , {𝑢}𝑃 , 𝒥)

10: Else // truncate the trajectory

11: 𝒥 ← 𝐼𝑛𝑠𝑒𝑟𝑡_𝑡𝑟𝑎𝑗({𝑥}𝑞, {𝑢}𝑞, 𝒥) // q<p

12: End if

13: Else

14: Continue

15: End if

16: End for

2.3 Stabilizing a Trajectory and Funnel Approximation

The Key to the implementation of the LQR-Tree algorithm are the funnels of the trajectories in

the tree. The funnel 𝑆𝒥 of the trajectory 𝒥 is the set of states that can be stabilized to the goal G

by its feedback policy 𝜋𝑘(𝑥) without violating state constraints.Funnels are, in general, not

straight forward to estimate, they depend on the system dynamics, the feedback policy, the

state and input constraints, and the goal set.

2.3.1 Stabilizing the Goal State and Verification of the Basin of Attraction

Goal state controller is derived using the time-invariant linear quadratic regulator (TILQR).

Consider the continuous nonlinear system (1), by linearizing it around the goal state and input

(𝑥𝐺 , 𝑢𝐺) and discretizing it to obtain the discrete-time, time-invariant linear system dynamics:

 �̅�𝑘+1 = 𝐴�̅�𝑘 + 𝐵�̅�𝑘 (2.5)

Algorithm 3: DC-RRT planner

16

Figure 2-2: The Lyapunov function as a funnel: an idealized graph of a positive-definite function over its

state space centered at the goal point [8].

The cost-to-go function to be minimized is:

 𝑱(�̅�0) = ∑ �̅�𝒏
𝑻𝑄�̅�𝒏 +∞

𝑛=0 �̅�𝒏
𝑻𝑅�̅�𝒏 (2.6)

Where �̅�0 is the initial state. The optimal cost-to-go for a linear system is given by:

 𝑱∗(�̅�𝑘) = �̅�𝒌
𝑻𝑆𝑮�̅�𝒌 (2.7)

Where𝑆𝑮 ≥ 0 is the unique stabilizing solution to the discrete algebraic Riccati equation:

 0 = 𝑄 − 𝑆𝐺 + 𝐴𝑇(𝑆𝐺 − 𝑆𝐺𝐵(𝑅 + 𝐵𝑇𝑆𝐺𝐵)−1𝐵𝑇𝑆𝐺)𝐴 (2.8)

The optimal feedback policy is given by:

 �̅�𝑘
∗ = −(𝑅 + 𝐵𝑇𝑆𝐺𝐵)−1𝐵𝑇𝑆𝐺𝐴�̅�𝒌 = −𝐾𝐺 �̅�𝒌 (2.9)

Thus by combining (2.5) and (2.9) we’ll get the following closed-loop dynamic formula:

 �̅�𝑘+1 = (𝐴 − 𝐵𝐾𝐺)�̅�𝑘 (2.10)

Next, the approximated the region of attraction of the nonlinear closed-loop system at the goal

state which is defined using the optimal cost-to-go function as a metric to describe the goal as a

sub level set.

 ℬ(𝜌𝐺) = {�̅�: �̅�𝑇𝑆𝐺 �̅� ≤ 𝜌𝐺} (2.11)

In this report the parameter 𝜌𝐺 is determined through the following sampling-based procedure:

1. Initialize 𝜌𝐺 > 0 such that ℬ(𝜌𝐺) belongs to the design set.

2. Draw a random sample 𝑥𝑆 ∈ ℬ(𝜌𝐺) from a uniform distribution on ℬ(𝜌𝐺). The used
algorithm for the distribution is introduced in [6].

3. Check the state constraints, if 𝑥𝑆 ∈ 𝒳 proceed to step 4; else proceed to step 5.

17

4. Calculate 𝑓(𝑥𝑆, �̅�𝑠
∗) using numerical integration (ode45 in MATLAB) , then check if the

following Lyapunov test holds :
 𝑱∗(𝑓(�̅�𝑆, �̅�𝑠

∗))−𝑱∗(�̅�𝑆) < 0 (2.12)
if yes, then return to step 2; otherwise proceed to step 5

5. Shrink the approximated ellipse with
 𝜌𝐺 ← �̅�𝑆

𝑇𝑆𝐺 �̅�𝑆
Then return to step 2.

The above procedure is terminated when a consecutive sequence of M samples fulfill the
Lyapunov test.

2.3.2 Linear time-varying linear quadratic regulator (TVLQR)
To stabilize the nominal trajectory, we use a time-varying linear quadratic regulator (TVLQR). To

apply this control methodology, we linearize then discretized the nonlinear system (1) about

the nominal trajectory to obtain a time-varying linear system which can be represented as:

 �̇̅�𝒌+𝟏 = 𝐴𝑘�̅�𝒌 + 𝐵𝑘�̅�𝒌 (2.13)

Where

�̅�𝑘 = 𝑥𝑘 − 𝑥0𝑘 , �̅�𝑘 = 𝑢𝑘 − 𝑢0𝑘 k=0,1,……..,N

 and 𝐴𝑘, 𝐵𝑘 are the Jacobian of the nonlinear system around the local stability points.

This method would allow us to divide the motion planning problems into sub problems;

therefore, using the TVLQR we construct multiple funnels and sequentially combine them in

order to reach the final goal state.

Figure 2-3: The sequential composition of funnels. The goal point of each controller lies within the

domain of attraction induced by the next-lower controller. Each controller is only active outside the

domains of lower controllers. The lowest controller stabilizes the system at the final destination [8].

18

It is important to Note that the controller represented by each funnel is only active when the

system state is in the appropriate region of the state space (beyond the reach of lower

funnels).As each controller drives the system toward its local goal, the state crosses a boundary

into another region of state space where another controller is active. This process is repeated

until the state reaches the final cell, which is the only one to contain the goal set of its own

controller.

Let us define the following cost function for the maneuver for the discrete system that

minimizes the control:

 𝑱(�̅�𝑘) = �̅�𝑮
𝑻𝑆𝑮�̅�𝑮 + ∑ �̅�𝒌

𝑻𝑄�̅�𝒌 +𝑁−1
𝑛=𝑘 �̅�𝒌

𝑻𝑅�̅�𝒌 (2.14)

Where 𝑆𝑮, 𝑄and 𝑅 are penalty matrices on the final state deviation and state and input

deviation from the nominal trajectory, respectively. The optimal cost-to-go is given by:

 𝑱𝒌
∗ (�̅�𝑘) = �̅�𝒌

𝑻𝑆𝒌�̅�𝒌 (2.15)

Where 𝑆𝒌 ≥ 0 is given by backwards-iterating the of the Riccati equation:

 𝑆𝑘 = 𝑄 + 𝐴𝑘
𝑇(𝑆𝑘+1 − 𝑆𝑘+1𝐵𝑘(𝑅 + 𝐵𝑘

𝑇𝑆𝑘+1𝐵𝑘)−1𝐵𝑘
𝑇𝑆𝑘+1)𝐴𝑘 (2.16)

 𝐾𝑘 = (𝑅 + 𝐵𝑘
𝑇𝑆𝑘+1𝐵𝑘)

−1𝐵𝑘
𝑇𝑆𝑘+1𝐴𝑘

With the boundary condition 𝑆𝑁 = 𝑆𝑮. The optimal inputis given by:

 �̅�𝑘
∗ = −(𝑅 + 𝐵𝑘

𝑇𝑆𝑘+1𝐵𝑘)
−1𝐵𝑘

𝑇𝑆𝑘+1𝐴𝑘�̅�𝒌 (2.17)

 �̅�𝑘
∗ = −𝐾𝑘�̅�𝒌 (2.18)

Where 𝐾𝑘 𝜖 ℝ𝑚×𝑛 is the time-varying compensator matrix.

2.3.3 Simulation-Based Funnel Approximation

2.3.3.1 Funnel Hypothesis test in the free space

The funnel of a trajectory is the set of states around the trajectory which the TVLQR policy can

get to the approximated goal basin without violating state and input constraints. After

calculating the TVLQR policy for a trajectory, each nominal state 𝑥0𝑘. of the trajectory has an

associated optimal cost-to-go matrix 𝑆𝑘and compensator matrix 𝐾𝑘. The matrix 𝑆𝑘together with

the funnel parameter𝜙𝑘 𝜖 ℝ describes a hyper ellipsis around the nominal state 𝑥0𝑘. A state 𝑥

is inside this ellipsis if:

 (𝑥 − 𝑥0𝑘)
𝑇𝑆𝑘(𝑥 − 𝑥0𝑘) ≤ 𝜙𝑘 (2.19)

The union of the ellipses around all nominal states in a trajectory is the approximated funnel of

the trajectory. We also used an ellipsis to describe the approximated goal basin ℬ(𝜌
𝐺
). But

there is an important difference between the two parameters 𝜌𝐺 and 𝜙𝑘;𝜌𝐺 is fixed while

19

the 𝜙𝑘 of a trajectory may change in an iteration of the algorithm. This is due to the fact that

We approximated the funnel of a trajectory by falsification (sampled-based method).

Figure 2-4: Adjusting the funnel after a failed simulation. The simulated trajectory (solid black) failed to reach the

goal basin ℬ(𝜌𝐺) using the policy starting at nod e𝑞: 𝑋00 , 𝜙0. However, the funnel described by the darker grey

ellipses defined by 𝜙−
0,1

 around the first two nodes of the policy’s nominal trajectory (dashed line) predicted a

successful simulation. Therefore, we adjust 𝜙−
0,1

to 𝜙+
0,1

according to (2.19), resulting in the light grey ellipses.

The simulated state at time index N - 1 was not inside the ellipsis of node N - 1 and thus 𝜙𝑁−1. Remains

unchanged.

The funnel approximation mechanism using simulation and falsification is somewhat similar to

the one used to compute the goal region.

Consider a random sample 𝑥𝑠 which belongs to the design set. And let’s assume that 𝑥𝑠

happens to be inside an estimated funnel of node 𝑥𝑛 in trajectory 𝒥 where 𝑥𝑛 is the starting

node of a nominal trajectory, 𝑥𝑆 ∈ ℬ(�̅�𝑛, 𝜙𝑛). We then test if the hypothesis holds for 𝑥𝑆, i.e.

we check if 𝑥𝑆 is in the funnel 𝑥𝑛. This test is straightforward when 𝑥𝑆 is simulated with the

policy of node 𝑥𝑛:

1. Set 𝑥𝑛 = 𝑥𝑠, simulate the system by applying the control of node 𝑥𝑛 (closed loop

control), and obtain the state trajectory { 𝑥𝑛 , 𝑥𝑛+1, ……… , 𝑥𝑁}

2. Check if the following condition holds for the obtained trajectory.

 𝑥𝑁 ∈ ℬ(𝜌𝐺) 𝑎𝑛𝑑 𝑥𝑘 ∈ 𝒳 ∀𝑘 ∈ {𝑛, 𝑛 + 1,…… , 𝑁 − 1}

3. If the condition is satisfied then the simulation is successful and the funnel doesn’t need

to be adjusted; otherwise the simulation fails and we need to shrink the size of the

funnel, therefore after the failed simulation we set

 𝜙𝑘 ← min{ 𝑱𝒌
∗ (𝑥𝑘 − 𝑥0𝑘), 𝜙𝑘} ∀𝑘 ∈ {𝑛, 𝑛 + 1,…… , 𝑁 − 1}

20

It is important to notice that the only ellipses that are adjusted are only the ones at which they

contain the state trajectory but fail to reach the goal. Furthermore, the procedure above only

shrinks the ellipses but never expand them.

2.3.3.2 The proposed Funnel Hypothesis test in an environment with obstacles:

This is a proposed extension of the previous approach where the model is in an environment

with obstacles. The Algorithm is as follow:

If the procedure presented in 2.3.3.1 if the second step holds, then add then check the

following condition:

1. Load the simulated state trajectory { 𝑥𝑛 , 𝑥𝑛+1, ……… , 𝑥𝑁}.

2. Omit first derivatives of each configuration, therefore the state trajectory becomes

{ 𝑞𝑛 , 𝑞𝑛+1, ……… , 𝑞𝑁} where dim(𝑞𝑛) = dim(𝑥𝑛)/2.

3. Pass { 𝑞𝑛 , 𝑞𝑛+1, ……… , 𝑞𝑁} through a collision detection module.

4. If the collision detection module returns false then there is collision and the funnel

should be adjusted (need to be shrunk), otherwise the simulation is successful and the

funnel doesn’t need to be adjusted. Henceforth after the collision is detected we set

𝜙𝑘 ← 𝑱𝒌
∗ (𝑥𝑘 − 𝑥0𝑘) ∀𝑘 ∈ {𝑛, 𝑛 + 1,…… ,𝑚}

Where 𝑚 represents the number of applied policies before collision as depicted in

figure 2-5.

Moreover, in many cases there are some configurations that are redundant, the redundancy of

these latter are high related to the geometric shapes of both the obstacles and the robot.

Hence in these cases: dim(𝑞𝑛) ≤ dim(𝑥𝑛)/2.

Figure 2-5: Adjusting the funnel after a collision is detected. The simulated trajectory (solid black) reached the

goal basin ℬ(𝜌𝐺) using the policy starting at nod e𝑞: 𝑋00 , 𝜙0 but a collision was detected. Therefore, we adjust

𝜙−
0,1

to 𝜙+
0,1

according to (2.19), resulting in the light grey ellipses. The simulated state at time index N - 1 was

after the collision and thus 𝜙𝑁−1. Remains unchanged since the policies were applied after the collision has

occurred.

21

2.4 Iteration of the Algorithm
An iteration of the algorithm can be summarized as follows:

1. Draw a i.i.d random sample

2. Find a node policy that could stabilize the random sample to the goal region by picking

nominal states from the LQR-Trees starting from the closest w.r.t to the TV-LQR metric.

If no feasible policy is found, then shrink the funnel (through funnel adjustment

procedure) such that the random sample is outside any funnels, and then attempt to

add a new nominal trajectory to the tree. And proceed to the next iteration.

2.4.1 Interpretation of Funnel Hypotheses
The specific steps taken in an iteration of the algorithm have an implication on the funnel

hypotheses that is not obvious, but that is useful to point out for the interpretation of the

generated tree-policy: First, note that a sample xs can be in multiple funnel hypotheses due to

possible overlap. Second, note that the algorithm immediately proceeds to the next iteration

after the first successful stabilization of the sample xs (xs may be simulated with multiple node

policies until the first successful stabilization occurs). The consequence of both observations is

that some subsets of funnel hypotheses may never be tested, and therefore may contain states

that cannot be stabilized by the respective node-policy. This creates an issue in the execution

phase where the initial random state is in an overlap of funnel hypotheses then picks the

closest node policy, but it cannot be stabilized.

Figure 2-6: Overlap of funnel hypotheses (circles) and policy assignment. There are two trajectories A
and B. If the funnel hypothesis of node x1 in Trajectory A never shrinks, the light gray set of states in the
hypothesis of x1 in Trajectory b is never tested since the states are closer to x1 than x2. In this case, it
may be that some states in the light gray region cannot be stabilized by the node-policy of x2 , but they
are never tested because the hypothesis of x1 hides them from the algorithm.

22

In order to fix this problem or decrease its occurrence we set a heuristic termination condition
besides reaching the maximum number of iterations, and that is to set the algorithm terminates
after a consecutive sequence of M samples 𝑥𝑠 ∈ 𝐷 does not cause the tree-policy to change: no
funnels are adjusted and no new trajectories are added. Furthermore a sample xs of the success
sequence must be stabilized by the first node policy that is applied, otherwise funnels are
adjusted and the sequence for termination (heuristic termination condition) is reset to zero.

2.5 Simulation-Based LQR-Tree Algorithm
We now combine the key concepts and present the LQR-tree generating algorithm. A pseudo-

code overview is given in Algorithm 4.

The following algorithm performs the following:

1: Evaluate the goal region using TILQR and LQR parameters (𝑆𝐺 𝑎𝑛𝑑 𝐾𝐺).

2: Construct a nominal trajectory containing nominal states 𝑥0𝑘 and nominal inputs 𝑢0𝑘

leading to the goal region or other nominal trajectories if the sample isn’t in a funnel or

goal region.

3: Evaluate the funnels using TVLQR and compute LQR parameters (𝑆𝑘 𝑎𝑛𝑑 𝐾𝑘).

23

1: 𝒯 ← ∅

2: [𝐴, 𝐵] ← 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑜𝑢𝑛𝑑 𝑥𝐺 𝑎𝑛𝑑 𝑢𝐺 𝑡ℎ𝑒𝑛 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛

3: [𝑆𝐺 , 𝐾𝐺] = 𝑑𝑇𝐼𝐿𝑄𝑅(𝐴,𝐵,𝑄, 𝑅)

4: 𝜌𝐺 ← 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑡ℎ𝑒 𝑔𝑜𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑖𝑛 [6]

5: 𝒯. 𝑖𝑛𝑖𝑡({𝑥𝐺 , 𝑢𝐺 , 𝑆𝐺 , 𝐾𝐺 , 𝜌𝐺 , 𝑁𝑈𝐿𝐿}) //{NULL is a pointer that points to the parent state }

6: For 𝑖 = 1 𝑡𝑜 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒_𝑆𝑢𝑐𝑐𝑒𝑠𝑠 do

7: 𝑥𝑆 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝒳

8: While 𝐼𝑠𝐼𝑛𝐹𝑢𝑛𝑛𝑒𝑙(𝑥𝑆, 𝒯) do

9: 𝑁∗ ← 𝐺𝑒𝑡𝑆𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒(𝑥𝑆)

10: 𝑥𝑆𝑖𝑚 ← 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑆𝑦𝑠𝑡𝑒𝑚(𝒯, 𝑁∗, 𝑥𝑆)

11: If 𝐼𝑠𝐼𝑛𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 𝑎𝑛𝑑 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑂𝐾 then

12: If 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑓𝑟𝑒𝑒 then

13: Continue

14: Else

15: 𝒯 ← 𝐴𝑑𝑗𝑢𝑠𝑡𝐹𝑢𝑛𝑛𝑒𝑙(𝒯, 𝑥𝑠𝑖𝑚)

16: End If

17: Else

18: 𝒯 ← 𝐴𝑑𝑗𝑢𝑠𝑡𝐹𝑢𝑛𝑛𝑒𝑙(𝒯, 𝑥𝑠𝑖𝑚)

19: End if

20: End while

21: If 𝑁𝑜𝑡𝐼𝑛𝐹𝑢𝑛𝑛𝑒𝑙(𝑥𝑆, 𝒯)𝑜𝑟 𝑁𝑜𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑆𝑖𝑚(𝑥𝑆, 𝒯)𝑜𝑟 𝑁𝑜𝑡𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑓𝑟𝑒𝑒 then

22: [{�̅�𝑘}𝑁 , {�̅�𝑘}𝑁] = 𝑅𝑅𝑇_𝑚𝑜𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛𝑒𝑟(𝑥𝑠)

23: If 𝑀𝑜𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛𝑛𝑒𝑟𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 then

24: 𝜋 ← 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑃𝑜𝑙𝑖𝑐𝑦({�̅�𝑘}𝑁 , {�̅�𝑘}𝑁) //using eqs: (2.16) and (2.17)

25: 𝒥 ← 𝑖𝑛𝑖𝑡𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝜋, {�̅�𝑘}𝑁 , {�̅�𝑘}𝑁)

26: 𝒯 ← 𝒯 ∪ 𝒥

27: 𝑟𝑒𝑠𝑒𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟

28: End If

29: End If

30: End For

2.6 Running the tree policy
Given an initial sample state 𝑥𝐼𝐶 from the design set, the program tries to find a nominal state

in a specific trajectory that 𝑥𝐼𝐶 is in its funnel with minimum cost-to-go from the initial sampled

state to the goal region by after applying the closed loop control.

Algorithm 4: Simulation-Based LQR trees

24

Let assume that 𝑥𝐼𝐶 is stabilized by the TV-LQR from the nominal trajectory {𝑥1, 𝑥2, …… . . , 𝑥𝑛}

and open loop control {𝑢1, 𝑢2, …… . . , 𝑢𝑛} . The following feedback policy defines the tree-

policy that is applied to 𝑥𝐼𝐶

 𝜋𝑘
𝑇𝑟𝑒𝑒(𝑥𝐼𝐶) = {

𝑢𝑖 − 𝐾𝑖(𝑥𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑥𝑖) 1 ≤ 𝑖 ≤ 𝑛, 𝑓𝑜𝑟 𝑖 = 1 𝑥𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑥𝐼𝐶

𝑢𝑔𝑜𝑎𝑙 − 𝐾𝐺(𝑥𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑥𝑔𝑜𝑎𝑙) 𝑖 > 𝑛
 (2.20)

Our approach also allows us to incorporate actuator limits into the verification procedure.
Although we examine the single-input case in this section, this framework is easily extended to
handle multiple inputs (via clipping procedure).
Let the control input 𝜋𝑘 at time k is mapped through the following control saturation function:

 𝑠𝑎𝑡(𝜋𝑘) {

𝑢𝑚𝑎𝑥 𝑖𝑓 𝜋𝑘 > 𝑢𝑚𝑎𝑥
𝑢𝑚𝑖𝑛 𝑖𝑓 𝜋𝑘 < 𝑢𝑚𝑖𝑛

𝜋𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.21)

Finally, if 𝑥𝐼𝐶 isn’t in any funnel hypothesis, one possible approach is to relax the in-funnel
constraint, by applying the policy of closest node “w.r.t the quadratic metric” as measured by
the TV-LQR cost-to-go.

1: 𝑥𝑆 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝒳
2: [{𝑢}𝑛 , {𝑥}𝑛 , {𝐾}𝑛 , 𝑓𝑙𝑎𝑔] = min{(𝑥𝑖 − 𝑥𝑆)

𝑇𝑆𝑖(𝑥𝑖 − 𝑥𝑆)} //
 𝑖 ∈ {1,… . , 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑜𝑓 𝐿𝑄𝑅 − 𝑡𝑟𝑒𝑒𝑠}

3: If 𝑓𝑙𝑎𝑔 == −1 then
4: 𝑁𝑜𝑡𝐼𝑛𝐴𝑛𝑦𝐹𝑢𝑛𝑛𝑒𝑙
5: Else
6: 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑢𝑠𝑖𝑛𝑔 (2.20)𝑎𝑛𝑑 (2.21) 𝑎𝑛𝑑 𝑐ℎ𝑒𝑐𝑘 𝑓𝑜𝑟
7: 𝑠𝑡𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑎𝑛𝑑 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
8: End If

Algorithm 5: Executing LQR-Tree policy

25

Chapter 3

Simulation models and Results

In this chapter we apply the planning technique presented in this report on two simulation

examples. The computations and Implementations in this chapter were performed using

MATLAB R2017b on a PC laptop (CPU : Intel(R) Core(TM) i7-9750H with 2.60 GHz and 8 Go

RAM) running on Windows 10 x64 bits.

3.1 The cart-pole model
The first example we considered is a cart-pole model with state constraints on its x-axis, a

pictorial depiction of the model is provided in Figure 3-1. The cart is constrained to move within

a sub range of the design set.

 Figure 3-1: A free body diagram depicting a cart-pole system

We show the state constraint capability with the cart-pole, see Figure 3-1. It consists of an

actuated cart with an undamped simple pendulum attached. The parameters are:

𝑚𝑐 = 1.5 𝑘𝑔,𝑚𝑝 = 0.175𝑘𝑔, 𝑙 = 0.28 𝑚, 𝑔 = 9.81 𝑚/𝑠2 with input u constrained ± 60 𝑁.The

states are defined as cart position 𝑥1 = 𝜉, pendulum angle 𝑥2 = 𝜃, cart velocity 𝑥3 = �̇�,

pendulum angular velocity 𝑥4 = �̇�. The goal state is 𝑥1 = 0 , 𝑥2 = 0, 𝑥3 = 0 , 𝑥4 = 0. Where

the cart is at rest and the pendulum is pointing up. The position x is constrained to ± 0.5 𝑚,

which is given by a limited rail the cart can move on. we set the following parameters from [9].

The full non-linear dynamics of the system are then given by:

26

𝐱 = [

𝜉
𝜃
�̇�

�̇�

] , �̇� =

[

 �̇�

�̇�
𝑢 + 𝑚𝑝 sin 𝜃 (𝑔𝑐𝑜𝑠𝜃 − 𝑙�̇�2)

𝑚𝑐 + 𝑚𝑝(1 − 𝑐𝑜𝑠2𝜃)

𝑐𝑜𝑠𝜃(𝑢 − 𝑙𝑚𝑝�̇�
2𝑠𝑖𝑛𝜃) + 𝑔𝑠𝑖𝑛𝜃(𝑚𝑐 + 𝑚𝑝)

𝑙(𝑚𝑐 + 𝑚𝑝(1 − cos2𝜃))]

With 𝜉 ∈ [−0.5,0.5] 𝑚, 𝜃 ∈ [0,2𝜋] 𝑟𝑎𝑑, �̇� ∈ [−6 , 6] 𝑚/𝑠 , �̇� ∈ [−20,20] 𝑟𝑎𝑑/𝑠 . The control

input is bounded in the range 𝑢 ∈ [−60, 60] 𝑁

The time invariant LQR control is designed with:

∆𝑡 = 0.01𝑠 , 𝑄𝐺 = 𝑑𝑖𝑎𝑔([5000, 50, 0.5, 5]) 𝑎𝑛𝑑 𝑅𝐺 = 0.1

The time varying LQR control is designed with:

𝑄 = 𝑑𝑖𝑎𝑔([1000,300, 1000,100]) 𝑎𝑛𝑑 𝑅 = 0.1

3.1.1 Generate the LQR-Trees (Pre-Processing-phase)
The algorithm takes significantly long amount of time in generating a tree policy for the cart-

pole model. It converged after 17832 iterations and generating a tree with 28478 nodes

corresponding to 75 different nominal trajectories and took about 49.6 hours on my PC in order

to generate them. We show the resulting tree in figure 3-2. For convergence, a heuristic was set

such that if the tree successfully gets 480 consecutive random samples to the goal basin using

the node policy of the nearest node then the program would terminate. The large number of

iterations needed is partly because of the dimensionality of the model, but a larger part is due

to both its complex dynamics and the increased complexity of adding the state constraints.

It is worth noting that about 97% of the time complexity is spent on the back-end procedure

that generates the nominal trajectory with the open loop control using the Algorithm 3, we also

set the time horizon of 3 seconds in (2.4). And the tolerance for reaching the goal is

‖𝐱 − 𝐱𝐆‖ ≤ 10−2 .

Note that we did not plot the funnels as the projections from 4D to 2D since it can be

misleading mainly due to the number of generated trajectories in order to stabilize the whole

design set.

The average time for a random sample to be simulated for the whole tree was 10 to 50

milliseconds and stays almost constant over all iterations. Major spikes in time to simulate a

sample can be observed after the tree has been grown and many funnels are adjusted and it

can reach up to a few seconds.

27

Figure 3-2: The generated tree phase plots for the cart-pole system. (a) 1 nominal trajectory (solid red), (b) 5

nominal trajectories, (c) 19 nominal trajectories , (d) 52 nominal trajectories, (e) 75 nominal trajectories

3.1.2 LQR-Trees policy (Execution-phase)
In this phase no additional nominal trajectories are generated and there are no funnels

adjustments. In this step the nominal trajectories with their respective open loop control along

with the time varying Riccati matrix 𝑆𝑘 and the compensation matrix 𝐾𝑘 of each state in the

nominal trajectories were loaded, and then we performed 150 experiments, of which 138 were

successful. This results in a success rate of 92% with a confidence interval of [84.55%, 96.64%].

The experimental results are shown in the following figures.

28

 (a) (b)

 Figure 3-3: (a) initial conditions of all 150 experiments, Green circles indicate success while circles indicate

failure. Moreover all the initial conditions are in the design set. (b) The Crosses indicate the failed simulations that

are inside a funnel.

The phase plots of some successful experiment shown in Figure 3-4. It is seen that the
simulated trajectory is trying to converge to the nominal one all while mimicking its behavior;
this phenomena can be observed clearly in the upper half of phase plots. Furthermore the
speed at which the simulated trajectory converges to the nominal trajectory depends on the
penalty matrices Q and R as well as the saturation input.

Figure 3-4: Phase plots of a successful experiment (Exp #73 and #122) respectively. The red trajectory represents

the nominal one whereas the brown trajectory represents the simulated one. The Green cross represents the

initial state and the black cross represents the Goal state.

29

3.2 Planar Quadrotor model
The next example a model of a quadrotor system navigating through a forest of circular

obstacles is considered. A visualization of the system is provided in Figure 3-6. The goal of this

example is to demonstrate that we can derive simple geometric conditions on the environment

that guarantee collision-free flight. In other words if the environment satisfies these conditions,

the Algorithm 4 presented in the previous chapter will always succeed in finding or create a

collision-free funnel such that the quadrotor will fly through the environment with no collisions.

The quadrotor model has a 6 dimensional state space consisting of the x-z position of the

centre of mass, the roll angle of the body, and the time derivatives of these configuration space

variables. Moreover; since it is restricted to live in the plane. Then it only needs two propellers.

Figure 3-5: The Planar Quadrotor System. The model parameters are mass, m, moment of inertia, I, and the

distance from the center to the base of the propeller, r.

The full non-linear dynamics of the system are then given by:

 𝐱 =

[

𝑥
𝑧
𝜃
�̇�
�̇�
�̇�]

 , �̇� =

[

�̇�
�̇�
�̇�

−
(𝑢1+𝑢2)𝑠𝑖𝑛𝜃

𝑚
(𝑢1+𝑢2)𝑐𝑜𝑠𝜃

𝑚
− 𝑔

(𝑢1 − 𝑢2)𝑟/𝐼]

 Where the value of mass of the quadrotor, m is 0.486 Kg, moment of inertia, I is 0.00383

Kg.m2, and the distance from the center to the base of the propeller, r is 0.25 m. Furthermore

we imposed the state-space bounds and inputs bounds:

30

(𝑥, 𝑧) ∈ [−5,5] × [0,6] 𝑚 ,(�̇�, �̇�) ∈ [−2,2] × [−1,1] 𝑚/𝑠 and (𝜃, �̇�) ∈ [−
𝜋

4
,
𝜋

4
] 𝑟𝑎𝑑 ×

[−
𝜋

3
,
𝜋

3
] 𝑟𝑎𝑑/𝑠. (𝑢1, 𝑢2) ∈ [−25,25] × [−25,25] 𝑁.

The goal state is set as 𝑥𝐺 = [−3,2,0,0,0,0]𝑇 and the goal input as 𝑢𝐺 = [𝑚𝑔/2,𝑚𝑔/2]𝑇 , it’s

worth noting that 𝑢𝐺 is set such that 𝑓(𝑥𝐺 , 𝑢) = 𝟎.

2.2.1 TI LQR design and Goal set
The Feedback policy that stabilizes the goal state is designed with the sampling period ∆𝑡 =

0.02 𝑠 and the LQR penalty matrices are

𝑄 = 𝑑𝑖𝑎𝑔([10,10,10,1,1,
𝑟

2𝜋
]) And 𝑅 = [0.1 0.05

0.05 0.1
] The goal set was approximated with

the procedure outlines in 2.3.1, and The approximation takes less than 20 s

3.2.2 Motion Planning and TV LQR design
Motion planning and trajectory stabilization are implemented as described in 2.2 and 2.3.2

respectively. First, we used motion planning to find a trajectory as further away from the goal

state. And then manually tuned 𝑄 𝑎𝑛𝑑 𝑅 achieve acceptable tracking performance. It was

found that 𝑄 = 𝑑𝑖𝑎𝑔([200,100,5000,100,100,60]) 𝑎𝑛𝑑 𝑅 = 𝑑𝑖𝑎𝑔([1,1]) works quite well.

Moreover in order to obtain homogeneous sampling times of the trajectories for the TV LQR

design, the trajectories were resampled to ∆𝑡 = 0.02𝑠 along with an interpolation of the

controls and states. In particular, the sweet spot for this algorithm is taking 𝑢 to be a first-order

polynomial and 𝑥 to be a cubic polynomial.

Figure 3-6: The plot shows the quadrotor maneuvering through a forest of obstacles in a collision-free

manner. The environment satisfies simple geometric conditions that allow us to guarantee collision-free

flight (from Exp #144). The Continuous line is the nominal trajectory, the dash line is the simulated

trajectory and the sequence of ellipses represents the funnels.

31

3.2.3 Generate the LQR-Trees (Pre-Processing-phase)
The algorithm takes significantly long amount of time in generating a tree policy for the planar

quadrotor model. It converged after 210587 iterations generating a tree with 561710 nodes

corresponding to 320 different nominal trajectories and took about 182.7 hours on my PC in

order to generate them. The resulting trees are shown in figure 3-7. For convergence, a

heuristic was set such that if the tree successfully gets 193 consecutive random samples to the

goal basin then the program would terminate. The large number of iterations needed is partly

because of the dimensionality of the model, but a larger part is due to both its complex

dynamics and the increased complexity of adding the state constraints as well as the added

obstacles.

It is worth noting that almost all of the time complexity is spent on the back-end procedure that

generates the nominal trajectory with the open loop control using the Algorithm 2, I also set

the time horizon of 7 seconds in (2.4). And the tolerance for reaching the goal is

‖𝐱 − 𝐱𝐆‖ ≤ 10−3 .

Note that we did not plot the funnels as the projections from 6D to 2D since it can be

misleading mainly due to the number of generated trajectories in order to stabilize the whole

design set. And also it makes our program even slower.

The average time for a random sample to be simulated for the whole tree was 100 to 200

milliseconds and stays almost constant over all iterations. Major spikes in time to simulate a

sample can be observed after the tree has been grown and many funnels are adjusted and it

can reach up to a few seconds or even a few minutes when the number of nodes reaches

around thirty thousands. Furthermore by adding obstacles there is also a need to incorporate a

collision detection procedure, the latter resulted in a major increase of the average time for a

random sample to be simulated for the whole tree which took a few minutes even though the

tree has a few hundred nodes, thus It is concluded that the collision detection function increase

the time complexity in the procession phase in an exponential manner.

32

Figure 3-7: The generated tree phase plots for the quadrotor system. (a) 1 nominal trajectory (solid red), (b) 5

nominal trajectories, (c) 10 nominal trajectories , (d) 44 nominal trajectories,(e) 225 nominal trajectories

 3.2.4 LQR-Trees policy (Execution-phase)
In this step, the generated LQR-Trees shown in the previous section were uploaded on the run

tree program, and then pick a random initial state and look for the closes nominal trajectory

w.r.t the LQR metric explained in the last chapter and finally simulate the close loop control in

order to reach the goal while avoiding the obstacles.

We performed 200 experiments in each of the following case:

1- State constraints with no obstacles

33

Figure 3-8: initial conditions of all 200 experiments. The green circles indicate success while red indicate failure

and the crosses indicates that the samples are outside any funnels. The success rate was 89.6% for the initial

conditions that are inside the design set.

Moreover, from the simulation it was concluded that the success rate would be slightly lesser if

the initial samples were outside of the design set. And that no matter the number of LQR-Trees

generated.

Figure 3-9: initial conditions of all 200 experiments. The green circles indicate success while red indicate failure

and the crosses indicates that the samples are outside any funnels. The success rate was 69.5% for the initial

conditions are both in and out of the design set.

34

2- State constraints with obstacles

Figure 3-10: initial conditions of all 200 experiments. The green circles indicate success while red indicate failure

and the crosses indicates that the samples are outside any funnels. The success rate was 76% for the initial

conditions that are inside the design set.

we argue that the main reasons for failures are the tuning of the TVLQR penalty matrices since

they are used in picking the appropriate and closest nominal trajectory using the formula in

(14).Another reason would be that maneuvers of the quadrotor can lead it to hitting the system

bounds and activating the limit switch (saturations). Another contribution may be from the

interpolation error that resulted from the re-sampling procedure.

The phase plots of the experiments shown in Figure 3-11. Towards the end, the Quadrotor has

to perform a large corrective maneuver to keep the system state close to the nominal

trajectory.

35

Figure 3-11: Phase plots of a two successful simulations. The red trajectory represents the nominal one whereas

the brown trajectory represents the simulated one. The Green cross represents the initial state and the black cross

represents the Goal state.

Finally, we stress that the purpose of these simulations was to illustrate the feasibility of

converting the rich theoretical analysis into a practical tool capable of running on modern

hardware, and obtain true validation of the complete planning methodology. Further

performance improvements may be obtained through incorporating richer dynamic models and

leveraging higher rate dedicated controllers.

36

General Conclusion

Discussion and Conclusion

In this report we have presented an approach for an offline motion planning in a prior known

environment using the LQR-Trees algorithm. Furthermore, in this report we added obstacles.

The application of the LQR-Trees algorithm presented here represents one of the most complex

(in terms of dimensionality of the state space, and numerical conditioning of the Riccati

differential equation due to limited controllability) demonstrations of this nonlinear feedback

control approach to date.

The finite time invariant sets or funnels of the trajectories are approximated with a simulation-

based falsification method which is a sampling-based technique. Furthermore, it is unlikely that

a hyper-ellipsis is the best geometrical primitive to describe the funnel around a trajectory.

Simulation-based approximation of the funnel would allow exploring different primitives that

could potentially yield tighter fits to the real funnel, further improving the sparsity of the

resulting tree. The advantage of the hyper-ellipsis we used is that they are simple to reason

about geometrically and are founded on the TVLQR design, thus are dynamically plausible. The

main advantage is that the approach allows generating tree-policies for a wider range of

dynamic systems, and feedback designs for trajectory stabilization. Theoretical results showed

that in the long run, the algorithm tends to improve both the coverage of the initial conditions

to be stabilized, and the approximations to the funnels. However While LQR-Trees has broad

applicability in the realm of nonlinear systems, it does have limitations with respect to the

dimension of the systems that can be solved. Its scaling behavior can best be understood by

considering the components that make up the algorithm 4, which consists of a motion planner

(RRT planner) , control design (TV-LQR) and a simulation-based falsification method to

compute the funnels.

The control design (TV-LQR) scale well with dimension. The motion planner (RRT) has poor

asymptotic behavior, but has been shown to work well on systems with 30 or more dimensions,

moreover; it tends to perform poorly by adding differential constraints even with low

dimensional state spaces; however, the performance can be improved by adding heuristics .

The bottleneck in addressing systems of increasing dimensionality is the simulation-based

falsification procedure which is a sampling-based approach isn’t accurate enough and can be

problematic in handling systems with a large dimension of state space, which leads to an

increase in finding non-stabilizable sets in the already constructed funnels after the

preprocessing. However this problem can be solved by adding more iteration in the

preprocessing phase and use fast and more efficient nonlinear solver like SNOPT or IPOPT.

 We have demonstrated the approach using extensive simulation experiments on a quadrotor

and cart-pole model. These experiments demonstrate that the approach can afford significant

37

advantages over other offline motion planning techniques. The main pro of this method was

the computation of finite trajectories from random initial conditions to cover as much of the

desired range initial conditions as possible with funnels. We first initialize the tree with the final

goal region. Then, we sample randomly from our set of initial conditions. For each sample point

that does not fall in a verified region, a new trajectory to the goal state were constructed. Next,

we verify the trajectory by computing a funnel and add this new verified region to the tree. And

then repeat this process until all sample points from the set of initial conditions we wish to

cover fall in the verified region.

Finally, the two main Limitations of LQR-Trees are the time complexity it requires to generate

the nominal trajectories and the open loop control this is mostly related to the dimensionality

of the nonlinear system. And the reliance on linearized controller synthesis means that LQR-

Trees are not directly applicable to nonlinear systems which are controllable but have

uncontrollable linearizations.

Future work
The main contributions of this report project are the Incorporation of the direct collocation
technique in the steering procedure of the RRT, Creation of a method in adjusting the funnels in
environments with obstacles using a sampling based-method and the demonstration and
validate the approach using simulation experiments. However, the models used here have a 6
dimension state space at most and the obstacles are assumed to be simple circles and the
geometry of the robots were approximated relatively accurately by circle in order to avoid
making the topology of the free configuration space complex; This allowed us to project the
funnel onto the x-z plane (in contrast to the full configuration space of the system) and inflate
this projection by the radius of the corresponding sphere. These inflated funnels were then
used for collision-checking using the proposed method. For robots with complex geometries,
inflating the funnel in x-z space in this manner is not an entirely straightforward operation.
However, this is potentially a more promising approach than performing collision-checking
against C-space obstacles since the inflation can be computed using SoS programming which
can be time demanding as it depends not only on the geometry of the robot the obstacles but
also the dimension of the system.

38

References
[1] LaValle, S. M. (2006), Planning Algorithms, Cambridge University Press.

[2] M. Mason, “The mechanics of manipulation”, in Robotics and Automation. Proceedings.

1985 IEEE International Conference on, vol. 2, Mar 1985.

[3] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”International Journal of

Robotics Research, vol. 20, no. 5.

[4] Glassman, E. and Tedrake, R. (2010), “A Quadratic Regulator-Based Heuristic for Rapidly

Exploring State Space”, Proc. IEEE Int. Conf. Robot. Autom. 2010

[5] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,”

International Journal of Robotics Research, June 2011

[6] Sun, H. and Farooq, M. (2002), “Note on the Generation of Random Points Uniformly

Distributed in Hyper- Ellipsoids” in `Proc. Int. Conf. Inf. Fusion', pp. 489,496.

[7] Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M. and Inoue,H. (2001), “Motion Planning for

Humanoid Robots Under Obstacle and Dynamic Balance Constraints”, Proc. IEEE Conf. Robot.

Autom.

[8] Burridge, R. R., Rizzi, A. A. and Koditschek, D. E. (1998),”Sequential Composition of

Dynamically Dexterous Robot Behaviors”, Int. J. Rob.

[9] P. Reist, P. Preiswerk, and R. Tedrake. “Feedback-motion planning with simulation-based

LQR-trees”. In To appear in the Proceedings of the International Conference on Robotics and

Automation (ICRA), 2010.

[10] R. Murray and J. Hauser, “A case study in approximate linearization: The acrobot example,”

EECS Department, University of California, Berkeley

[11] Frank C. Park_ Kevin M. Lynch - Modern Robotics: Mechanics, Planning, and Control,

Cambridge University Press (2017)

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Acronyms
	List of Algorithms
	Introduction
	Overview
	Problem statement
	Contributions:
	Report Outline

	Chapter 1
	Background and Literature Review
	1.1 Basic definitions
	1.2 Transformation from workspace to C-space or SS
	1.3 Sampling-Based motion planning
	1.4 Rapid-Exploring Random Tree (RRT)
	1.5 Collision Detection Module
	1.6 Linear Quadratic Regulator (LQR)

	Chapter 2
	Planning in LQR -Trees
	2.1 The concept of LQR-Tree algorithm
	2.1.1 LQR-Trees achieve “Probabilistic Feedback Coverage”

	2.2 The Motion Planning Module
	2.2.1 The distance metric in growing the tree
	2.2.2 The proposed steering function used in RRT

	2.3 Stabilizing a Trajectory and Funnel Approximation
	2.3.1 Stabilizing the Goal State and Verification of the Basin of Attraction
	2.3.2 Linear time-varying linear quadratic regulator (TVLQR)
	2.3.3 Simulation-Based Funnel Approximation
	2.3.3.1 Funnel Hypothesis test in the free space
	2.3.3.2 The proposed Funnel Hypothesis test in an environment with obstacles:

	2.4 Iteration of the Algorithm
	2.4.1 Interpretation of Funnel Hypotheses

	2.5 Simulation-Based LQR-Tree Algorithm
	2.6 Running the tree policy

	Chapter 3
	Simulation models and Results
	3.1 The cart-pole model
	3.1.1 Generate the LQR-Trees (Pre-Processing-phase)
	3.1.2 LQR-Trees policy (Execution-phase)

	3.2 Planar Quadrotor model
	2.2.1 TI LQR design and Goal set
	3.2.2 Motion Planning and TV LQR design
	3.2.3 Generate the LQR-Trees (Pre-Processing-phase)
	3.2.4 LQR-Trees policy (Execution-phase)

	General Conclusion
	Discussion and Conclusion
	Future work

	References

