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Abstract

In the past few years, we have seen a rise in autonomous robots that are able to navigate
and operate in a variety of different environments. Autonomous navigation robots are now
capable of moving around in a given space without human intervention. They can navigate
independently, avoid obstacles and find their way back to a starting point. Research in
the development of autonomous navigation robots is intended to enhance their autonomy
in executing different tasks of varying complexity levels. One of these tasks is localization,
mapping, and path planning. Robot localization is the process of defining the location of
the mobile robot as it navigates through its environment. Mapping addresses the problem
of collecting spatial models of the environment by the robot as it navigates. Path planning
is the process of planning an obstacle-free trajectory for the mobile robot to navigate from
a starting position toward a given goal destination. This project introduces a simulation of
a mobile robot navigating in a closed indoor environment. The robot uses a lidar sensor to
collect data about its environment in order to build a model map of it that will be used later
on for path planning purposes. Both the SLAM (Simultaneous localization and mapping)
and RRT* algorithms are used for map building and trajectory planning respectively.
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Nomenclature

C − space The configuration Space

Cfree The free space

E The tree Edge

qi Configuration Space

qnearest The nearest sample point

Qnear The set of the neighboring nearest nodes

qnew The new sample point

qrand The random sample point

T The tree Graph

V The tree vertex
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Acronyms

AAV Autonomous Aerial Vehicle.

AGV Autonomous Ground Vehicle.

AUV Autonomous Underwater Vehicle.

CCD Charge-Coupled Device.

CMOS Complementary Metal-Oxide Semiconductor.

DOF Degrees of Freedom.

LIDAR Light Detection and Ranging.

RRT Rapidly Exploring Random Trees.

RRT* Improved Rapidly Exploring Random Trees.

SLAM Simultaneous Localization and Mapping.

UAV Unmanned Aerial Vehicle.

UUV Unmanned Underwater Vehicle.

UV Ultraviolet.
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General Introduction

In the past few decades, robotics has witnessed a significant advancement. Autonomous
machines are now able to navigate and operate independently in a variety of different
environments without any human intervention or guidance, which makes them invaluable
for emergency response situations as well as indoor environments.

There are numerous types of autonomous robots, which differ in terms of the tasks they
can perform and the environment in which they can operate. For this project, we will focus
on autonomous navigation mobile robots. Mobile robots are autonomous navigation robots
that move around and operate in human-inhabited areas. They’re often used in warehouses
and distribution centers to move inventory around, or perform other types of logistics tasks.

Mobile robot navigation is considered an active research field. For a robot to navigate
it needs to perform a set of tasks which are classified as follows: Localization, mapping,
trajectory planning and path following, and motion planning.

This report discusses two main problems in mobile robotics which are SLAM (Simul-
taneous localization and mapping) and path planning. SLAM deals with the problem of
simultaneously defining the location of the robot as it navigates and build a model map of
its environment. Path planning deals with the problem of finding an obstacle-free trajectory
for the mobile to navigate from its starting location to its goal destination within a short
amount of time.

The suggested work aims to implement a simulation of an autonomous mobile robot
navigating in a closed indoor environment. The robot uses a lidar sensor to gather environ-
ment data, the SLAM algorithm for map construction, and the RRT* algorithm for path
planning.

This report is divided into three main chapters. The first chapter gives a comprehen-
sive overview of autonomy and highlights basic information and definitions of autonomous
navigation mobile robots. The second chapter dives deep into the theory and mathematics
behind two major issues in autonomous navigation systems: SLAM (Simultaneous Local-
ization and Mapping) and path planning. The third chapter illustrates the overall system
design and demonstrates the simulation and obtained results of each section of it. The last
part of this report concludes the project and proposes future work.

x



Chapter 1

Basic definitions

1.1 Introduction

The globe is currently approaching a tipping point in the mobile robots revolution. A wide
range of robotics systems are being developed in order to solve daily life problems. In order
to ensure the success of these challenges and achieve optimal execution of tasks, we need
to add some intelligence to our autonomous system. However, inserting intelligence may
cause a rise of many problems within our robot, from which: localization, mapping, and
path planning.

This chapter provides a general overview and some basic knowledge about autonomous
systems, as well as discuss briefly the problem of localization, mapping, and path planning
in autonomous navigation robots.

1.2 Autonomous Robots

Autonomy in robotics systems is the ability to act without resources to human control.
An autonomous robot can perceive its environment, make decisions, and then actuate a
movement or a manipulation, using different sensors and actuators [1].

Figure 1.1: W.Grey Walter personal tortoise [2]
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The first robots that were programmed to think the way biological brains do were known
as Elmer and Elsie, and they were constructed in the 1940s by W.Grey Walter (see figure
1.1). They are often labeled as tortoises because of how they were shaped and the manner
in which they moved [3].

1.3 Types of autonomous robots

According to their locomotion we have different types of autonomous robots:

1. Stationary robots (Arm/Manipulators): These are industrial robots and ma-
nipulators. They are mostly used to provide solutions for tasks that are difficult for
humans to perform, an excellent example of that is robotic arms.

Figure 1.2: Industrial Robotic Arms [4]

2. Autonomous Ground Vehicle (AGV): These are vehicles that operate while in
contact with the ground. A good example is autonomous intelligent cars, which use
aspects like pattern recognition and image processing to be able to understand the
environment around and navigate easily.

Figure 1.3: Autonomous mobile robot [5]
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3. Autonomous Aerial Vehicle (AAV): These are aircraft that can make intelligent
decisions without the assistance of a human pilot. They constitute a part of a large
group of aerial systems called Unmanned Aerial Vehicle (UAV). Autonomous drones
are a good example of AAVs.

Figure 1.4: Autonomous drone [5]

4. Autonomous Underwater Vehicle (AUV): These are robots that travel underwa-
ter. They constitute a part of a large group of underwater systems named Unmanned
Underwater Vehicle (UUV) [6]. A good example of AUVs is an underwater drone.

Figure 1.5: Navatics MITO underwater drone [7]

1.4 Autonomous Navigation System

An autonomous navigation system is a system that is able to understand and determine
its location within an environment and plan its path and movements without any human
intervention [8]. The vehicle determines its location using different sensors such as lidar,
video cameras, and radar. As presented in figure 1.6, there are different levels of autonomy
ranging from a vehicle that is controlled by a human from a distance with some simple
algorithms onboard, to a fully autonomous vehicle with no human control.
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Figure 1.6: The spectrum of autonomy [9]

For the case of fully autonomous navigation systems, we can say that it is divided into
two different approaches: Heuristic and optimal approaches.

A “heuristic approach”, is a method where it is not necessary to have full data of the
environment and the robot may not follow an optimal path. An “Optimal approach”, is a
method in which the vehicle requires more information about the environment and follows
the best optimal path. The systems that employ this strategy construct/update a model
of the environment in which they operate, and then determine the shortest path to their
destination [10].

1.5 Capabilities of Autonomous Systems

For the autonomous systems to navigate, they need to perform a set of steps. The robot has
to collect data about its environment using sensors, try to understand and define obstacles,
build a model map, and determine the state, localization, and orientation of the vehicle
itself within that map (see figure 1.7). This information will be used later on to plan a path
to its goal [10].
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Figure 1.7: Reference control scheme for mobile robot [11]

1.5.1 Sense

The robot collects data of the environment around using different sensors. There is a wide
variety of sensors, and they are differentiated between Proprioceptive/Exteroceptive and
Passive/Active [11].

1. Proprioceptive Sensors Used for measurements related to robot’s internal state,
like position, voltages and currents, temperature, battery . . . etc.

2. Exteroceptive Sensors Used to gather information about the external environment,
for example, range measurement, robot orientation, light intensity . . . etc.

3. Passive Sensors Used to detect and respond to some form of input energy from
the physical environment. Temperature probes, microphones, and CCD or CMOS
cameras are examples of passive sensors [11].

4. Active Sensors They send energy into the environment and then measure the re-
sponse [11]. An ultrasonic sensor is an example of an active sensor.

For this project, we will use a lidar sensor for environment data collection.
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Environment data extraction using LIDAR sensor

Lidar stands for “Light detection and ranging” or “Laser imaging, detection, and ranging”,
is a remote sensing technique that uses light in form of a pulsed laser to measure ranges,
and create 2D and 3D models and maps of objects and environments.

Lidar uses Ultraviolet (UV), visible, or near-infrared light to image objects [12]. It
consists of a laser transmitter and a light receiver. A light beam is emitted by the transmitter
nearby objects and will be reflected later on to the sensor when hitting an object. The lidar
sensor records each beam and measures the time needed to reach each obstacle, and the
angle relative to the sensor frame.

Figure 1.8: lidar working principle [13]

Lidar determines the distance to an object using the following formula:

d =
c ∗ t
2

(1.1)

Where c is the speed of light and t is the time spent for the laser light to travel to the object
or surface being detected, then travel back to the detector [12].

Lidar Wavelengths range from around 10 micrometers (infrared) to roughly 250 nanome-
ters (UV) depending on the target.

Figure 1.9: Comparison of wavelength, frequency and energy for the electromagnetic spec-
trum. (Credit: NASA’s Imagine the Universe) [14]
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1.5.2 Localization

Robot localization is the process of determining where a mobile robot is in relation to
its environment. In a typical case, the robot is equipped with a map of the environment
and sensors in order to observe its surroundings as well as monitor its motion. Using the
information received from these sensors, the localization challenge becomes one of estimating
the robot’s location and orientation inside the map. A localization system must be able
to cope with noisy observations and produce an estimate of the robot’s location, and a
measure of the location estimate’s uncertainty [15].

Figure 1.10: General schematic for mobile robot localization [11]

There are two types of localization: local and global.

Local localization:

Local localization is the process of determining the current position of the robot as a function
of past position and displacement. This technique requires that the initial location of the
robot to be known, as it is not able to recover if it loses track of its position [16]. Its main
disadvantage is the accumulation of errors from measurements.

Global localization:

Global localization techniques always require a previous representation of the environment
around, hence it can localize a robot without any previous knowledge about its position.
Global localization techniques are more powerful than local localization approaches, as they
are able to handle situations in which the robot is likely to experience serious positioning
errors [16].
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More details about the different localization methods used will be discussed in the second
chapter.

1.5.3 Map representation

Robotic mapping addresses the problem of acquiring spatial models of physical environments
through mobile robots [17].The study of robotic mapping has a long history. In the 1980s and
early 1990s, this field has been widely divided between metric and topological approaches.
Topological maps describe the connection of multiple places, whereas metric maps record
the geometric aspects of the environment [17].

Topological Map:

A topological map is a type of graph that has been reduced such that only essential infor-
mation remains and extraneous detail has been removed (see example in figure 1.11). These
maps lack scale, and distance and direction are subject to change and variation, but the
relationship between points is maintained [18].

There are several methods to extract such a graph. More modern techniques add nodes
to the graph every time the robot goes a specific distance or captures a unique input
sensory pattern. Nodes are connected when it is possible to find a path free of obstacles
between them. Nodes inserted consecutively in the graph are implicitly connected by an
arc. However, in order to link recently inserted nodes to previous ones, it is necessary to
analyze the graph. This process is known as disambiguation [19].

Figure 1.11: London Underground map of May 2022 [20]

Metric Map:

A metric maps are made by collecting accurate geometric descriptions of the environ-
ment.These descriptions are gathered from different sensors. There are many metric schemes:
Configuration space, Voronoi diagrams, grid models, etc. The major benefit of these repre-
sentations is that their geometry is identical to the geometry of the represented environment.
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Probabilistic Occupancy Grid:

A probabilistic occupancy map is a location-based metric map, where each cell is associated
with a given probabilistic value ranging from 0 to 1. Given a map m, z1:t the set of
measurements from time 1 to t, and the set of robot poses x1:t, the estimated posterior
probability is defined as follow P (m|z1:t, x1:t) [21].

Figure 1.12: Example of a Probabilistic Occupancy Grid [21]

Binary occupancy map:

The binary occupancy grid is a map where each cell is associated with a given binary value:
0 if the cell is empty and 1 if the cell is occupied.

Figure 1.13: Binary Occupancy Grid [22]
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1.5.4 Path planning

Path planning is a computational problem that involves determining a set of optimal config-
urations for moving a robot from one location to another. In the ideal case, path planning
is done in a static environment with stationary obstacles and targets, however, the reality
imposes the opposite of that. Hence, different ways to plan the robots’ path in an unknown
environment have been developed. The task of deducing a path increases in complexity
as the configuration space (C-space) expands. The C-space represents the space that the
robot may attain with respect to external constraints [23].

Problem formulation:

We can say that the path planning problem is defined as follows [24]:

1. A ⊂ W : The robot, is a single moving rigid object in world W represented in the
Euclidean space as R2 or R3.

2. O ⊂ W : The obstacles are stationary rigid objects in W.

3. The geometry, the position, and the orientation of A and O are known a priori.

4. The localization of the O in W is accurately known.

Given a start and goal positions of A ⊂ W , plan a path P ⊂ W denoting the set of
positions so that A(p) ∩ O = ∅ for any position p ∈ P along the path from start to goal,
and terminate and report P or ∅ if a path has been found or no such path exists [24].

Path planning categories:

Path planning methods for a mobile robotic system have some properties that vary according
to the environment. These properties are whether it is static or dynamic, local or global,
and exact or heuristic [25].

Static path planning refers to an environment with no moving objects or barriers,
whereas dynamic path planning refers to an environment with dynamic moving and chang-
ing obstacles [25].

Global path planning is for when we have information about the environment based on a
given map, grid, or cells. Local path planning is when the mobile robot has no information
about the environment. The robot has to sense its surroundings before deciding how to
move toward its target.

For completeness, the exact algorithms for mobile robot path planning find an optimal
solution toward its goal if it exists, or simply prove that no optimal path is present. Whereas
heuristic algorithms search for a good optimal solution in a shorter amount of time.
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Figure 1.14: Images/Path Planning Categories [24]

1.6 Conclusion

This chapter presented a general knowledge and basic definitions of autonomous navigation
systems and the different problems within autonomy. The next chapter will discuss two
main problems in autonomous navigation which are Simultaneous Localization and Mapping
(SLAM) and path planning.
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Chapter 2

Theoretical background

2.1 Introduction

In robotics, SLAM (Simultaneous Localization and Mapping) is the process of constructing
a map of an unknown environment in which the robot is navigating. The robot gathers
information from its surroundings via sensors and generates a map over time.

Path planning is the process of finding the optimal path from a start to a goal state,
in order for the robot to navigate freely. The generated path can be in a form of a set of
states or way-points. To plan a path a map of the environment along with a start and a
goal state input is required.

This chapter provides the theoretical background and the mathematical description
behind these two problems, as well as discusses the methods that will be used in this
project.

2.2 Simultaneous Localization and Mapping

2.2.1 Formulation of SLAM problem

Simultaneous Localization and mapping abbreviated as SLAM is one of the most funda-
mental problems in robotics. It was first introduced in 1986 at the IEEE Robotics and
Automation Conference in San Francisco by the researchers Peter Cheeseman, Jim Crow-
ley, and Hugh Durrant-Whyte, where they were trying to apply some theoretical estimation
methods to mapping and localization [26].

SLAM asks about the possibility of placing some mobile robot in an unknown environ-
ment and simultaneously building a model map and determining the location of the robot
within that map using different sensors. One major problem with SLAM is that the mea-
surements read from the sensors will invariably contain noise, and the motion performed by
the robot too will produce uncertainties in its positioning [27].
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2.2.2 Mathematical description of SLAM

GivenXT = {x0, x1, x2....xT} the robot path, where x0 is known. The robot relative motions
are given as follow UT = {u0, u1, u2....uT}, where ut is the robot motion between t− 1 and
t. MT = {m0,m1,m2....mn−1} where M is the true map of the environment and mi are
the set of vectors that represents the positions of landmarks. ZT = {z0, z1, z2....zT} are the
robot measurements at each time.

SLAM is defined as the problem recovering a map M , robot path XT from odometry
UT and observations ZT [11].

Figure 2.1: SLAM problem example [26]

Full SLAM problem:

It estimates the posterior probability over full data XT and M and it is given by:

p(xT ,M |ZT , UT )

Online SLAM problem:

It estimates the posterior probability over current pose xt and M and it is given by:

p(xt,M |ZT , UT )

13



Figure 2.2: Forms of SLAM problem [28]

2.2.3 Solutions to the SLAM problem

A solution to the SLAM problem requires finding a representation for both the observation
and the motion model which allows efficient computation of the prior and posterior dis-
tribution. Several algorithms have been developed to solve the SLAM problem. They are
classified into two groups depending on whether we are dealing with full or online SLAM.

2.2.4 Graph-Based SLAM using pose-graphs

It is an approach that aims to solve the full SLAM problem. It attempts to model a map
using a sparse graph of nodes and constraints [29].The nodes represent the robot poses
x0, x1, x2....xT and the features of the map m0,m1,m2....mn−1, whereas the relative position
between two poses xt−1, xt are represented by constraints [11].

According to graph-based SLAM formalization a map is represented in a form of a graph
G = ⟨X,C⟩, where each node is associated to a robot pose and each edge e = ⟨xi, xj⟩ ∈ C
expresses the spatial relationship between poses [29]. Nodes are also referred to pose graphs.

LetX = (x1, x2, ..., xn)
T a vector of poses, we define the mean zij and Ωij the information

matrix of an edge between two nodes i and j. zij can be seen as an equilibrium point of a
spring with stiffness Ωij connecting the masses at Xi and Xj.

We let ẑij(zi, zj) the relative transformation between two nodes. The error function
e(xi, xj, zij) that computes the distance from the two poses to the equilibrium point is given
by:

e(xi, xj) = Zij − ẑij(xi, xj) (2.1)
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Figure 2.3: A pose-graph representation of a SLAM process [30]

Pose-graphs optimization:

To minimize the error in the graph, we need to find the configuration of the nodes x∗ that
minimize the energy of all edges:

F (x) =
∑

⟨i,j⟩∈C

eTijΩijeij (2.2)

hence we seek to solve the following equation:

x∗ = argmin
x

F (x) (2.3)

To solve this problem several algorithms has been developed. Some useful techniques
has been discussed in [31].

2.3 Path planning

A path is a sequence of pose states or way-points that smoothly connect the start and the
goal, while avoiding obstacles. Determining this sequence is referred to as path planning [32].
Path planning requires a map of the environment along with start and goal positions. The
map can be represented in different ways such as grid-maps, state spaces, and topological
road-maps [33].

Consider the system ẋ(t) = f(x(t), u(t)) where x ∈ X the state space and u ∈ U the
input space. The path planning problem consists of finding the input u : [0, T ] → U that
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yields to a feasible path x ∈ Cfree (The obstacle-free space) for t ∈ [0, T ] from the initial
state to the goal state [34].

The optimal path planning problem imposes the additional requirement that the re-
sulting feasible path minimize a given cost function c(x) [34]. To solve the optimal path
planning problem, several algorithms have been developed, some of which will be discussed
later in this chapter.

2.3.1 Configuration space

The configuration space also referred to as C-space, is defined as the n-dimensional space
that gathers the set of all possible configurations of the robot (see figure 2.4). For every
configuration, there is a unique point in the C-space, and for every point in the C-space,
there is a unique configuration of the robot [35].

Definition 01: The configuration of a robot is a complete specification of the position
of every point of the robot [35].

Definition 02: The dimension of the configuration space is defined by the Degrees of
Freedom (DOF), which is basically the number of variables specified.

(a) (b)

Figure 2.4: (a) The configuration of a door is described by the angle θ. (b) The configuration
of a point in a plane is described by coordinates (x, y) [35]

.

For this project, the robot configuration is described by the coordinates (x, y, θ). x and
y are the coordinates of along the x and y axes, and θ is the orientation of the robot at the
specific position.

Free space:

The free space Cfree is the set of configurations that avoids collision with obstacles [36].

Obstacle space space:

The obstacle space is a space that the robot can not move to [36].
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Figure 2.5: Schematic of a two-dimensional C-space [37]

2.3.2 Path planning methods

There are two major types of algorithms used for path planning: Grid-based and Sampling-
based search algorithms.

Grid based methods

It overlays on a grid configuration space and assumes that each configuration is defined
with a grid point. At each grid point, the robot can move to the adjacent grid point as long
as the line between them is within the free space Cfree [36].

The main disadvantage of this method is that it fails to find a path through narrow
portions of Cfree. Moreover, it is not useful for high-dimensional spaces as it requires more
memory for computation. Several grid-based algorithms have been developed from which
A* and Hybrid A*.
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Figure 2.6: Grid-based mobile robot path planning [38]

Sampling based methods

It represents the configuration space with a road-map of sampled configurations [36]. It
creates a searchable tree by randomly sampling new nodes in the state space. They are useful
for both low and high dimensional search spaces [33]. Several sampling-based algorithms
have been developed, the most used ones are RRT and RRT* (rapidly exploring random
trees ).

Figure 2.7: Sampling-based Motion Planners [39]
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2.4 Rapidly Exploring Random Trees

2.4.1 RRT Algorithm

It attempts to generate random nodes within the state space and connect them to form a
path to the goal position. These nodes need to be validated or excluded based on the map
constraints so that the robot does not collide with obstacles. The path generated by the
RRT algorithm may be fast but it does not validate an optimal path.

Figure 2.8: RRT Algorithm [40]

1. Set a graph that includes the initial pose qi and its single vertex.

2. For every incrementation we select a random point qrand in the free space Cfree.

3. A connection qnear is made to relate the nearest vertex v ∈ V to the new sample qnew
within a distance ϵ.

4. if there is an obstacle in the space of the new connection, qrand is added to the vertex
set, and (v, qrand) is added to the edge set.

Algorithm 1 RRT Algorithm

V ← qi;
E ← ∅;
for i=1, ...., k do
qrand ← SampleRandomNode();
qnear ← Nearest(T = (V,E), qrand);
qnew ← Steer(qnear, qrand);
if NoObstacle(qnear, qnew) then
V ← V ∪ qnew;
E ← E ∪ (qnear, qnew);

end if
end for
return T = (V,E);
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Sampling random node function: The SampleRandomNode() function samples a
random point in the free space.

Nearest neighbor: The Nearest(T = (V,E), qrand) function returns the nearest ran-
dom point in terms of the distance function.

Steering function: The Steer(qnear, qrand) function deduces the direction between qnear
and qrand along the path x : [0, T ]→ X.

Collisions avoidance: The NoObstacle((qnear, qnew) function checks for collisions be-
tween the two states (qnear and qnew).

2.4.2 RRT* Algorithm

It is an optimized version of the RRT algorithm. It aims to find the shortest path to the
goal position within a small amount of time and with less memory consumption. That is
achieved by constantly choosing the right parent node at each step.

Algorithm 2 T = (V,E)← RRT ∗ (qi)

T ← InitializeTree();
T ← InsertNode(∅, qi, T );
for i=1, ...., N do
qrand ← RandomNode(i);
qnearest ← Nearest(T, qrand);
qnew ← Steer(qnearest, qrand);
if NoObstacle(qnew) then
Qnear ← Near(T, qnew);
qmin ← ChooseParent(Qnear, qnew, qnearest);
T ← Insertnode(qmin, qnew, T );
T ← Rewire(qmin, qnew, Qnear, T );

end if
end for
return T ;

RRT* incrementally builds a tree by sampling a random node qrand in the free space,
and solves for the trajectory that connects the new node qnew to the nearest node qnearest
[34].

The basic RRT algorithm inserts qnew into the tree with qnearest as its parent and contin-
ues with the next iteration. It is here that the operation of the RRT* differs. The algorithm
checks all the nodes in the neighborhood of qnew and evaluates the cost of choosing each
parent. The node that yields the smallest cost is selected as a parent node [34]. This process
is done through the ChooseParent() function.

Near function: The Near(T, qnew) function returns the vertices in V that are near the
node qnew.

20



Algorithm 3 qmin ← ChooseParent(Qnear, qnearest, qnew)
qmin ← qnearest;
cmin ← Cost(qnearest) + C(qnew);
for qnear ∈ Qnear do
qnew ← Steer(qnear, qnew);
if NoObstacle(qpath) then
cnew = Cost(qnear) + C(qpath);
if cnew < cmin then
qmin ← qnear;
cmin ← cnew;

end if
end if

end for
return qmin;

The Rewire function checks each node qnear in the neighborhood of qnew to see if reaching
qnear through qnew would achieve a lower cost than doing so through its current parent.

Algorithm 4 T ← Rewire(qmin, qnew, Qnear, T );

for qnear ∈ Qnear do
qpath← Steer(qnear, qnew);
if NoObstacle(qpath) and Cost(qnew) + C(qpath) < Cost(qnear) then
T ← Reconnect(qnew, qnear, T );

end if
end for
return T ;

2.5 Conclusion

This chapter discussed the mathematical description behind both the SLAM (Simultaneous
Localization and Mapping) and the path planning problems. It also covered the most used
methods in order to resolve these problems, which are the pose-graph estimation and the
rapidly exploring random trees. The next chapter will cover the simulation and the results
of the project.
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Chapter 3

Simulation and Results

3.1 Introduction

This project aims to implement a simulation of an autonomous mobile robot navigating in
a closed indoor environment. The proposed model uses a lidar sensor for environment data
extraction, the SLAM algorithm for map construction, and the RRT* algorithm for path
planning.

All the functions and algorithms used for this project were implemented and tested using
MATLAB2021a.

This chapter will describe the overall system design of the project, then dive deeply into
each part of it.

3.2 System design

In order for our autonomous mobile robot to navigate, it has to perform a set of tasks. For
this project, we developed a simulation of an autonomous mobile robot in a closed indoor
environment that is able to perform the following tasks:

1. Environment data extraction using a lidar sensor.

2. Map construction from lidar scans using the SLAM Map Builder app from MATLAB.

3. Path planning using RRT* algorithm.

The next sections of this chapter will discuss the simulation and results obtained from each
of these steps.

Figure 3.1 demonstrates the flowchart of the overall system.
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Figure 3.1: The full system design

3.2.1 Environment data extraction

For the robot to navigate, it needs to have a map that represents its environment. To
construct a map, the robot needs to explore its environment first and capture data.

For this project, we assume that our robot has no information about its surroundings.
To make the robot explore its environment, we give it a path with a set of poses it needs to
follow while capturing data within a reference map we already have previous information
about.

The robot uses a lidar sensor to capture data. The detection range of the lidar is 0 to
50 meters, with a 360-degree detection angle.

Figure 3.2 describes the environment data extraction process.
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Figure 3.2: Environment data extraction process

Figures 3.3a and 3.3b demonstrates the reference map and the given input trajectory
for environment exploration.

(a) (b)

Figure 3.3: (a) The reference map, (b) Mobile robot following the input trajectory

After this process is done we get two output matrices: An odometry sensor matrix (n×3)
and lidar-scans matrix (n × 1), where for every given pose in the odometry sensor matrix
there is a unique corresponding lidar scan in the lidar-scans matrix.

The reference map is of size 30 × 30 and the robot poses are given by (x, y, θ). x and
y are the coordinates of the robot along the x and y axes, and θ is the orientation of the
robot at the specific position.

The obtained outputs will be used on the upcoming section to build a model map of the
environment.
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3.2.2 Map building

To construct an occupancy map of the environment, we need the lidar scans and their
corresponding odometry sensor data (poses) obtained from the previous section. The poses
and scans are used to generate and update a pose graph, this is done by matching the scan
corresponding to each pose to previous scans each time. To optimize our pose graph we
need to simultaneously compensate for the robot odometry drift as the robot moves. This
process is referred to as loop closures detection and it is accomplished by detecting the
previously visited positions each time. After exploring all the data, we obtain an occupancy
map that is close to the given input reference map.

Figure 3.4 summaries the map building process.

Figure 3.4: Map Building Process

For this project, the map building process is done using the SLAM Map Building Map
from MATLAB.

The SLAM Map Builder app:

The SLAM Map Builder app loads recorded lidar scans and odometry sensor data to build
a 2-D occupancy grid using simultaneous localization and mapping (SLAM) algorithms.
Incremental scan matching aligns and overlays scans to build the map. Loop closure detec-
tion adjusts for drift of the vehicle odometry by detecting previously visited locations and
adjusting the overall map [41].

Simulation and results:

As it is illustrated in the figures 3.5, we start first by uploading our data (Lidar scans and
their corresponding poses) into the SLAM MAP Builder.
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Figure 3.5: Importing data

For a faster computational time, we down-sample our data by 33.3% (see figure 3.6).

Figure 3.6: Selecting scans and poses

The imported data is shown in figure 3.7.

Figure 3.7: Imported data down-sampled by 33.3%
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Figure 3.8 demonstrates the SLAM algorithm in process.

Figure 3.8: SLAM algorithm in process

For every single pose, the software overlay its corresponding scan with the scan of its
precedent in order to build a map (see figure 3.9).

Figure 3.9: Scan matching the observation of the current pose with its precedent

The software tries to compare the scans corresponding to each odomotry data with old
scans. If a match exists we say a loop closure has been detected. As it is demonstrated in
figure 3.10, the current scan (scan 55) matches the scan 39. The software connects the two
poses with a red line to indicate the detection of a loop closure (see figure 3.8).
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Figure 3.10: Detection of a loop closure

The software continues matching scans and detecting loop closures for all the given
poses. This process helps optimize the map each time, which leads to better results. After
the end of the simulation, we get the following map (see figure 3.11).

Figure 3.11: SLAM algorithm after the end of the simulation

The corresponding occupancy map is demonstrated in figure 3.12.
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Figure 3.12: Occupancy map

We save the map obtained in the MATLAB workspace, so that we can use it later for
path planning.

3.2.3 Path planning

In order for the robot to plan its path, it needs to have a map of the static environment it
is moving in as well as a starting and a goal position within that map. On this part we will
be using the occupancy map we obtained on the previous section (The map represented on
figure 3.12). Figure 3.13 illustrates the path planning process.

Figure 3.13: Path planning process
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To use our occupancy map we need to inflate the occupied position, this aids in avoiding
collision with walls. Figure 3.14 demonstrates the occupancy map before and after inflation.

(a) (b)

Figure 3.14: (a) Map before inflation, (b) Map after inflating the occupied positions

Simulation and results:

For the first testing scenario, we set the starting position to (5, 3, 0) and the goal position
to (15, 26, 0). Figure 3.15 illustrates the first path planning scenario.
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Figure 3.15: The first path planning scenario

For the second testing scenario, we set the starting position to (5, 3, 0) and the goal
position to (25, 7, 0). Figure 3.16 illustrates the second path planning scenario.

Figure 3.16: The second path planning scenario
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For the third testing scenario, we set the starting position to (5, 3, 0) and the goal
position to (5, 27, 0). Figure 3.20 illustrates the third path planning scenario.

Figure 3.17: The third path planning scenario

3.2.4 Obstacle avoidance

Obstacle avoidance is the task of accomplishing some control objective while adhering to
non-intersection or non-collision position constraints.

We used the same path planning scenarios, but this time by adding different obstacles
each time and applying RRT* algorithm. We get the following results:

First scenario, with starting goal (5, 3, 0) and goal (15, 26, 0).
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Figure 3.18: The third path planning scenario

Second scenario, with starting goal (5, 3, 0) and goal (25, 7, 0).

Figure 3.19: The third path planning scenario
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Third scenario, with starting goal (5, 3, 0) and goal (5, 7, 0).

Figure 3.20: The third path planning scenario

3.3 Discussion

Based on the simulation results, many interesting insights can be made:

• The detection angle of the lidar sensor plays an important role in the environment
data extraction and the map-building process. Decreasing the lidar range leads to
less efficient results since the robot will not be able to detect all the obstacles in its
environment.

• Down-sampling the input lidar scan in the SLAM Map Builder app from MATLAB,
gave us a good output occupancy map. However, using the full input sensor data
will lead to a better and more efficient result, but due to hardware limitations, we
down-sampled the lidar scans to 33.3% to be able to perform the simulation.

• The generated paths obtained in the last section using the RRT* algorithm were shown
to be good. The algorithm also managed to avoid the obstacles added successfully.

3.4 Conclusion

This chapter illustrated our mobile robot’s overall system design and discussed the sim-
ulation and the obtained results of each part: environment data extraction using lidar,
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map building using the SLAM Map Builder app from MATLAB, and path planning using
the RRT* algorithm. The following section draws a broad conclusion regarding the entire
project as well as discusses proposed future work.
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General conclusion and future Work

In this project, we handled two fundamental problems in robotics which are the SLAM
problem (Simultaneous localization and mapping) and the path planning problem.

The proposed work aimed to implement a simulation of an autonomous mobile robot
in a closed indoor environment using a lidar sensor for environment data extraction, the
SLAM algorithm for map building, and the RRT* algorithm for path planning.

In order for the robot to extract data from an unknown environment, we gave it a
trajectory to follow on a map that we already have previous information about. While
navigating the robot captured data from its surroundings using a lidar sensor. At the end
of the process, we got a set of lidar scans with their corresponding odometry poses which
we used later on to build a model map of the environment.

To build the model of the environment, we used the SLAM Map Builder app from
MATLAB, which utilizes SLAM algorithms to construct a map. The app took the lidar
scans and their corresponding odometry data as an input and returned the model map of
the environment in a form of a probabilistic occupancy map. The provided map was then
used for path planning.

To plan a path within the given environment, we used the RRT* algorithm. The RRT*
algorithm assists the robot to navigate from a particular starting location to a goal position
in a short period of time by attempting to determine the shortest path toward its destination.

All the functions, algorithms, and tests of this project have been implemented in MAT-
LAB2021a using a laptop with an Intel Core i7 processor and 8Go of RAM.

Future work:

For future work, I aim to develop my project in the following areas:

• Consider dealing with dynamic obstacles.

• Optimize the path obtained by the RRT* algorithm using curve smoothing techniques.

• Improve the environment exploration process by using local path planning algorithms
such as the Bug algorithm.

• Extend the work to the outdoor environment.
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