


Abstract 

 

Classical feedback linearization which transforms the original nonlinear system into a  

Brunovsky form has poor robustness properties and cannot be easily combined with H∞   

type control law. We propose here to transform by feedback the original nonlinear   

system into its tangent linearized system around an operating point, and prove that this  

allows to preserve the good robustness properties obtained by a linear control law which  

it is associated with. This method constitutes a way of robustly controlling an uncertain  

nonlinear system around an operating point.  
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Introduction  

 

Almost all of the controller design techniques used for various processes are based on 

well-established results in linear control theory. For nonlinear systems (NLS), in 

particular, the predominant approach is linearization around an operating point 

followed by one of the controller design techniques developed for linear systems. For a 

certain class of nonlinear systems, the particular nature of nonlinearity can create 

difficult stability and performance problems and therefore renders the linear controllers 

unacceptable (Ray, 1981). 

Several authors proposed the method of feedback linearization (Chou & Wu, 1995), to 

design a nonlinear controller. The main idea with feedback linearization is based on 

the fact that the system is not entirely nonlinear, which allows to transform a nonlinear 

system into an equivalent linear system by effectively canceling out the nonlinear 

terms (Seo et al., 2007). It provides a way of addressing the nonlinearities in the 

system while allowing one to use the power of linear control design techniques to 

address nonlinear closed loop performance specifications. 

 

Nevertheless, the classical feedback linearization technique has certain disadvantages 

regarding robustness. A robust linear controller designed for the linearized system may 

not guarantee robustness when applied to the initial nonlinear system, mainly because 

the linearized system obtained by feedback linearization is in the Brunovsky form, a 

non robust form whose dynamics is completely different from that of the original 

system and which is highly vulnerable to uncertainties (Franco, et al., 2006). To 

eliminate the drawbacks of classical feedback linearization, a robust feedback 

linearization method has been developed for uncertain nonlinear systems (Franco, et 

al., 2006; Guillard & Bourles, 2000; Franco et al., 2005) and its efficiency proved 

theoretically by W-stability (Guillard & Bourles, 2000). The method proposed ensures 

that a robust linear controller, designed for the linearized system obtained using robust 

feedback linearization, will maintain the robustness properties when applied to the 

initial nonlinear system. 

 



In this project, the robust feedback linearization method is presented after a brief 

discussion about the classical feedback linearization approach. The mathematical steps 

are given in both approaches. It is shown how the classical approach can be altered in 

order to obtain a linearized system that coincides with the tangent linearized system 

around the chosen operating point, rather than the classical chain of integrators. 

Further, a robust linear controller is designed for the feedback linearized system using 

loop-shaping techniques and then applied to the original nonlinear system.  To test the 

robustness of the method, a flight dynamic model is given, concerning the control of 

an Unmanned Aerial Vehicle (UAV), a quad rotor.                   

The project is organized as follows. In chapter 1, the mathematical concepts of 

feedback linearization are presented both in the classical and robust approach. The 

authors propose a technique for disturbance rejection in the case of robust feed- back 

linearization, based on a feed-forward controller. Section 3 presents the H∞ robust 

stabilization problem. To exemplify the robustness of the method described, the 

nonlinear robust control of a quadcopter is given in Section 4. Simulations results for 

reference tracking, as well as disturbance rejection are given, considering uncertainties 

in the process parameters.  
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Classical versus robust approach 

 

Feedback linearization implies the exact cancelling of nonlinearities in a nonlinear 

system, being a widely used technique in various domains such as robot control 

(Robenack, 2005), power system control (Dabo et al., 2009), and also in chemical 

process control (Barkhordari Yazdi & Jahed-Motlagh, 2009; Pop & Dulf, 2010; Pop et 

al, 2010), etc. The majority of nonlinear control techniques using feedback 

linearization also use a strategy to enhance robustness. This section describes the 

mathematical steps required to obtain the final closed-loop control structure, to be later 

used with robust linear control. 

 

I.1 Classical feedback linearization 

 

      I.1.1 Feedback linearization for SISO systems 

In the classical approach of feedback linearization as introduced by Isidori (Isidori, 

1995), the Lie derivative and relative degree of the nonlinear system plays an 

important role. For a single input single output system, given by: 

 

                                                 𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢 

                                                 𝑦 = 𝑕(𝑥)                                               (1.1)       

 

with 𝑥 ∈ 𝑅𝑛  is the state, 𝑢 is the control input, 𝑦 is the output,  𝑓 and  𝑔  are smooth 

vector fields on 𝑅𝑛   and 𝑕 is a smooth nonlinear function. Differentiating 𝑦 with 

respect to time, we obtain: 

                                             𝑦 =
𝜕𝑕

𝜕𝑥
𝑓 𝑥 +

𝜕𝑕

𝜕𝑥
𝑔 𝑥  

                                             𝑦 = 𝐿𝑓𝑕 𝑥 + 𝐿𝑔𝑕 𝑥 𝑢                            (1.2) 

 

with 𝐿𝑓𝑕 𝑥 : 𝑅𝑛 → 𝑅 and 𝐿𝑔𝑕 𝑥 : 𝑅𝑛 → 𝑅, defined as the Lie derivatives of 𝑕 with 

respect to 𝑓 and 𝑔, respectively. Let 𝑈 be an open set containing the equilibrium point 

𝑥0 , that is a point where 𝑓 𝑥  becomes null – 𝑓(𝑥0 = 0. Thus, if in equation (1.2), the 
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Lie derivative of 𝑕 with respect to 𝑔 - 𝐿𝑔𝑕 𝑥  - is bounded away from zero for all 

𝑥 ∈ 𝑈 (Sastry, 1999), then the state feedback law 

 

                                         𝑢 =
1

𝐿𝑔𝑕 𝑥 
(−𝐿𝑓𝑕 𝑥 + 𝑣)                            (1.3) 

 

yields a linear first order system from the supplementary input 𝑣 to the initial output of 

the system, 𝑦. Thus, there exists a state feedback law, similar to (1.3), that makes the 

nonlinear system in (1.2) linear. The relative degree of system (1.2) is defined as the 

number of times the output has to be differentiated before the input appears in its 

expression. This is equivalent to the denominator in (1.3) being bounded away from 

zero, for all 𝑥 ∈ 𝑈. In general, the relative degree of a nonlinear system at 𝑥0 ∈ 𝑈 is 

defined as an integer 𝑟 satisfying: 

   

                                                  𝐿𝑔𝐿𝑓
𝑖 𝑕 𝑥 = 0, ∀𝑥 ∈ 𝑈, 𝑖 = 0,…… , 𝑟 − 2 

                                           𝐿𝑔𝐿𝑓
𝑟−1𝑕 𝑥0 ≠ 0                                        (1.4) 

 

Thus, if the nonlinear system in (1.1) has relative degree equal to 𝑟, then the 

differentiation of 𝑦 in (1.2) is continued until: 

 

                                            𝑦(𝑟) = 𝐿𝑓
𝑟𝑕 𝑥 + 𝐿𝑔𝐿𝑓

𝑟−1𝑕 𝑥 𝑢                  (1.5) 

 

with the control input equal to: 

 

                                            𝑢 =
1

𝐿𝑔𝐿𝑓
𝑟−1𝑕 𝑥 

(−𝐿𝑓
𝑟𝑕 𝑥 + 𝑣)                   (1.6) 

The final (new) input – output relation becomes 

 

                                                    𝑦(𝑟) = 𝑣                                                          (1.7) 

 

which is linear and can be written as a chain of integrators (Brunovsky form). The 

control law in (6) yields (n-𝑟) states of the nonlinear system in (1.1) unobservable 

through state feedback. 
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The problem of measurable disturbances has been tackled also in the framework of 

feedback linearization. In general, for a nonlinear system affected by a measurable 

disturbance 𝑑: 

𝑥 = 𝑓 𝑥 + 𝑔 𝑥 + 𝑝 𝑥 𝑑 

                                       𝑦 = 𝑕(𝑥)                                                         (1.8) 

 

with 𝑝 𝑥  a smooth vector field. 

Similar to the relative degree of the nonlinear system, a disturbance relative degree is 

defined as a value k for which the following relation holds:      

    

                                          𝐿𝑝𝐿𝑓
𝑖 𝑕 𝑥 = 0, ∀𝑥 ∈ 𝑈, 𝑖 = 0,…… , 𝑘 − 2 

                                          𝐿𝑝𝐿𝑓
𝑘−1𝑕 𝑥0 ≠ 0                                         (1.9)   

   

Thus, a comparison between the input relative degree and the disturbance relative 

degree gives a measure of the effect that each external signal has on the output 

(Daoutidis and Kravaris, 1989). If 𝑘 < 𝑟, , the disturbance will have a more direct 

effect upon the output, as compared to the input signal, and therefore a simple control 

law as given in (1.6) cannot ensure the disturbance rejection (Henson and Seborg, 

1997). In this case complex feedforward structures are required and effective control 

must involve anticipatory action for the disturbance. The control law in (1.6) is 

modified to include a dynamic feedforward/ state feedback component which 

differentiates a state- and disturbance-dependent signal up to 𝑟 − 𝑘 times, in addition 

to the pure static state feedback component. In the particular case that 𝑟 = 𝑘, both the 

disturbance and the manipulated input affect the output in the same way. Therefore, a 

feed-forward/state feedback element which is static in the disturbance is necessary in 

the control law in addition to the pure state feedback element (Daoutidis and Kravaris, 

1989):  

 

𝑢 =
1

𝐿𝑔𝐿𝑓
𝑟−1𝑕 𝑥 

(−𝐿𝑓
𝑟𝑕 𝑥 + 𝑣 − 𝐿𝑝𝐿𝑓

𝑟−1𝑝 𝑥 𝑑)              (1.10) 

                                                                             

 



CHAPTER 1 :                         FEEDBACK LINEARIZATION 

4 

 

      I.1.2 Feedback linearization for MIMO systems 

 

The feedback linearization method can be extended to multiple input multiple output 

nonlinear square systems (Sastry, 1999). For a MIMO nonlinear system having 𝑛 

states and 𝑚 inputs/outputs the following representation is used: 

 

                                            𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢 

                                            𝑦 = 𝑕(𝑥)                                 (1.11)                        

 

where 𝑥 ∈ 𝑅𝑛    is the state, 𝑢 ∈ 𝑅𝑚  is the control input vector and 𝑦 ∈ 𝑅𝑚  is the 

output vector. 

Similar to the SISO case, a vector relative degree is defined for the MIMO system in 

(1.11). The problem of finding the vector relative degree implies differentiation of 

each output signal until one of the input signals appears explicitly in the 

differentiation. For each output signal, we define 𝑟𝑗  as the smallest integer such that at 

least one of the inputs appears in 𝑦
𝑗

𝑟𝑗
 :      

                                            𝑦
𝑗

𝑟𝑗 = 𝐿𝑓
𝑟𝑗𝑕𝑗 +  𝐿𝑔𝑖

(𝐿𝑓
𝑟𝑗−1

𝑕𝑗 )𝑢𝑖
𝑚
𝑖=1         (1.12)                       

 

and at least one term 𝐿𝑔𝑖(𝐿𝑓
𝑟𝑗−1

𝑕𝑗 )𝑢𝑖 ≠ 0 for some 𝑥 (Sastry, 1999). In what follows 

we assume that the sum of the relative degrees of each output is equal to the number of 

states of the nonlinear system. Such an assumption implies that the feedback 

linearization method is exact. Thus, neither of the state variables of the original 

nonlinear system is rendered unobservable through feedback linearization. The 

matrix𝑀(𝑥), defined as the decoupling matrix of the system, is given as: 

 

                                   𝑀 =  

𝐿𝑔1
(𝐿𝑓

𝑟1−1
𝑕1) ⋯ 𝐿𝑔𝑚 (𝐿𝑓

𝑟1−1
𝑕1)

⋮ ⋱ ⋮

𝐿𝑔1
(𝐿𝑓

𝑟𝑚−1
𝑕𝑚 ) ⋯ 𝐿𝑔𝑚 (𝐿𝑓

𝑟𝑚−1
𝑕𝑚 )

        (1.13)                  

 

The nonlinear system in (11) has a defined vector relative degree 𝑟1, 𝑟2, ......, 𝑟𝑚  at the 

po11int 𝑥0 if 𝐿𝑔𝑖  𝐿𝑓
𝑘𝑕𝑗  𝑥  = 0, 0 ≤ 𝑘 ≤ 𝑟𝑖 − 2 for 𝑖 = 1, … . ,𝑚 and the matrix 
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𝑀(𝑥0) is nonsingular, If the vector relative degree  𝑟1, 𝑟2, ......, 𝑟𝑚   is well defined, then 

(1.12) can be written as: 

 

                                     
𝑦1

(𝑟1)

⋮

𝑦𝑚
(𝑟𝑚 )

 =  

(𝐿𝑓
𝑟1𝑕1(𝑥))

⋮
(𝐿𝑓

𝑟𝑚 𝑕𝑚 (𝑥))
 + 𝑀(𝑥)  

𝑢1

⋮
𝑢𝑚

     (1.14)                          

 

Since 𝑀(𝑥0) is nonsingular, then 𝑀 𝑥 ∈ 𝑅𝑚×𝑚  is nonsingular for each 𝑥 ∈ 𝑈. As a 

consequence, the control signal vector can be written as: 

 

          𝑢 = −𝑀−1 𝑥  

𝐿𝑓
𝑟1𝑕1

𝐿𝑓
𝑟𝑚 𝑕𝑚

 + 𝑀−1 𝑥 𝑣 = 𝛼𝑐 𝑥 + 𝛽𝑐 𝑥 𝑣        (1.15)                 

 

yielding the linearized system as: 

 

                                        
𝑦1

(𝑟1)

⋮

𝑦𝑚
(𝑟𝑚 )

 =  

𝑣1

⋮
𝑣𝑚

                                                  (1.16)  

 

The states 𝑥 undergo a change of coordinates given by: 

 

                    𝑥𝑐 =  𝑦1  … 𝐿𝑓
𝑟1−1

𝑦1 ………… 𝑦𝑚  …  𝐿𝑓
𝑟𝑚−1

𝑦𝑚  
𝑇
         (1.17) 

 

The nonlinear MIMO system in (1.11) is linearized to give: 

 

                                       𝑥 𝑐 = 𝐴𝑐𝑥𝑐 + 𝐵𝑐𝑣                                        (1.18) 

with: 

𝐴𝑐 =

 
 
 
 
𝐴𝑐1

0𝑟1×𝑟2
… . 0𝑟1×𝑟𝑚

0𝑟2×𝑟1
𝐴𝑐2

… . 0𝑟2×𝑚

⋮ ⋮ ⋮ ⋮
0𝑟𝑚 ×𝑟1

0𝑟𝑚 ×𝑟2
0𝑟𝑚 ×𝑟3

𝐴𝑐𝑚  
 
 
 

, 𝐵𝑐 =

 
 
 
 
𝐵𝑐1

0𝑟1×𝑟2
… . 0𝑟1×𝑟𝑚

0𝑟2×𝑟1
𝐵𝑐2

… 0𝑟2×𝑟𝑚

⋮ ⋮ ⋮ ⋮
0𝑟𝑚 ×𝑟1

0𝑟𝑚 ×𝑟2
0𝑟𝑚 ×𝑟3

𝐵𝑐𝑚  
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where each term individually is given by: 

  

𝐴𝑒𝑖 =  

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋯ 1
0 0 0 ⋯ 0

                                  𝐵𝑒𝑖 = [0 0 ⋯ 0 1]𝑇 .    

 

In the classical approach, the feedback linearization is achieved through a feedback 

control law and a state transformation, leading to a linearized system in the form of a 

chain of integrators (Isidori, 1995). Thus the design of the linear controller is difficult, 

since the linearized system obtained bears no physical meaning similar to the initial 

nonlinear system (Pop et al., 2009). In fact, two nonlinear systems having the same 

degree will lead to the same feedback linearized system. 

 

I.2 Robust feedback linearization 

 

Contrarily to the classical feedback linearization which transforms the original 

nonlinear system (1.11) into a Brunovsky form, the present method consists in 

transforming it into its tangent linearized system around an operating point. 

Consider the multivariable nonlinear system with disturbance vector 𝑑 given in the 

following equation: 

 

                                                 𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢 + 𝑝 𝑥 𝑑 

                                                 𝑦 = 𝑕(𝑥)                                       (1.19) 

 

with 𝑥 ∈ 𝑅𝑛  is the state, 𝑢 ∈ 𝑅𝑚  is the control input vector, 𝑦 ∈ 𝑅𝑚  is the output 

vector,  𝑓 and  𝑔  are smooth vector fields on 𝑅𝑛   and 𝑕 is a smooth nonlinear function.   

Choosing the operating point as 𝑥 = 0. 

 

                                                𝑧 = 𝐴𝑧 + 𝐵𝑤                                  (1.20) 
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with              𝐴 =  𝜕𝑓
𝜕𝑥
 
𝑥=0

           and                  𝐵 =  𝜕𝑔
𝜕𝑥
 
𝑥=0

 

 

In what follows, we assume that the feedback linearization conditions (Isidori, 1995) 

are satisfied and that the output of the nonlinear system given in (1.19) can be chosen 

as:  

𝑦 𝑥 =  𝜆(𝑥), where 𝜆 𝑥 =  𝜆1 𝑥   𝜆2 𝑥 …… 𝜆𝑚 𝑥   is a vector formed by real- 

valued functions 𝜆𝑖 𝑥  defined on a neighborhood 𝑈 of 𝑥 = 0 satisfying, for numbers 

𝑟1, 𝑟2, ......, 𝑟𝑚  such that 𝑟1 + 𝑟2 + ......+ 𝑟𝑚 = 𝑛 

 

i) for all 𝑖 ∈  1,𝑚 , all j ∈  1,𝑚  and all 𝑥 ∈ 𝑢 

 

𝐿𝑔𝑖
𝜆𝑗  𝑥 = 𝐿𝑔𝑖

𝐿𝑓𝜆𝑗  𝑥 = ⋯ = 𝐿𝑔𝑖
𝐿𝑓
𝑟𝑗−2

𝜆𝑗  𝑥 = 0 

 

 

ii) the 𝑚 × 𝑚 matrix :  

𝑀 =  

𝐿𝑔1
𝐿𝑓
𝑟1−1

𝜆1 ⋯ 𝐿𝑔𝑚 𝐿𝑓
𝑟1−1

𝜆1

⋮ ⋱ ⋮

𝐿𝑔1
𝐿𝑓
𝑟𝑚−1

𝜆𝑚 ⋯ 𝐿𝑔𝑚 𝐿𝑓
𝑟𝑚−1

𝜆𝑚

  

 

is nonsingular at 𝑥 = 0, we will denote 𝑀 ≜ 𝑀(0). 

Consider on this basis the associated classical linearizing stete feedback 

 

                                  𝑢𝑐 𝑥, 𝑣 = 𝛼𝑐 𝑥 + 𝛽𝑐 𝑥 𝑣                        (1.21) 

with  

                                𝛼𝑐 𝑥 ≜ −𝑀−1 𝑥 𝑁 𝑥 ,    𝐵𝑐 𝑥 ≜ −𝑀−1 𝑥  

𝑁(𝑥) ≜  𝐿𝑓
𝑟1𝜆1(𝑥)  𝐿𝑓

𝑟2𝜆2(𝑥) …… . 𝐿𝑓
𝑟𝑚 𝜆𝑚 (𝑥) 

𝑇
 

 

and change of coordinates 

                                             𝑥𝑐 = 𝛼𝑐 𝑥                                        (1.22) 
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given by 

𝛼𝑐 𝑥 =   𝛼𝑐1
 𝑥   𝛼𝑐2

 𝑥  ………𝛼𝑐𝑚
 𝑥  

𝑇
 

 

𝛼𝑐𝑖
 𝑥 =   𝜆𝑖 𝑥   𝐿𝑓𝜆𝑖 𝑥   … . . 𝐿𝑓

𝑟𝑖−1𝜆1 𝑥  
𝑇
 

 

Then under state feedback 

  

𝑢 𝑥, 𝑤 =  𝛼 𝑥 + 𝛽 𝑥 𝑤 

 

and change of coordinate 

𝑧 =  ∅ 𝑥  

defined by 

𝛼 𝑥 ≜ 𝛼𝑐 𝑥 + 𝛽𝑐 𝑥 𝐿𝑇
−1∅𝑐(𝑥) 

                                     𝛽(𝑥) ≜  𝛽𝑐 𝑥 𝑅
−1                                           (1.23) 

                                 ∅(𝑥)  ≜ 𝑇−1∅𝑐 𝑥   

where  

            𝐿 ≜ −𝑚.  
𝜕𝛼𝑐

𝜕𝑥
 
𝑥=0

 ,     𝑇 ≜ −𝑚.  
𝜕∅𝑐

𝜕𝑥
 
𝑥=0

   and  𝑅 ≜ 𝑀−1 , 

 

system (1.11) is transformed into system (1.20). 
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        II.1 Preliminar notions 

 

The quadrotor, an aircraft made up of four engines, holds the electronic board in the 

middle and the engines at four extremities. Before describing the mathematical model 

of a quadrotor, it is necessary to introduce the reference coordinates in which we 

describe the structure and the position. For the quadrotor, it is possible to use two 

reference systems. The first is fixed and the second is mobile. 

The fixed coordinate system, called also inertial, is a system where the first Newton’s 

law is considered valid. As fixed coordinate system, we use the 𝑂𝑁𝐸𝐷systems, where 

𝑁𝐸𝐷 is for North-East-Down. As we can observe from the following Figure (), its 

vectors are directed to Nord, East and to the center of the Earth. 

 

Figure 2.1: 𝑂𝑁𝐸𝐷 fixed reference system. 

 

The mobile reference system that we have previously mentioned is united with the 

barycenter of the quadrotor. In the scientific literature it is called OABC system, where 

ABC is for Aircraft Body Center. Figure 2.2 illustrates underlines the two coordinate 

systems. 
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Figure 2.2: Mobile reference system and fixed reference system. 

The quadrotor helicopter is shown in figure (). Two diagonal motors (1) and (3) are 

running in the same direction (counter-clockwise) whereas the two others (2) and (4) in 

the clockwise direction to eliminate the anti-torque. On varying the rotor speeds 

altogether with the same quantity the lift forces will change affecting in this case the 

altitude 𝑧 of the system and enabling vertical take-Off/On landing. Yaw angle is 

obtained by speeding up the clockwise motors or slowing down depending on the 

desired angle direction. Tilting around 𝑥 (roll angle) axis allows the quadrotor to move 

toward y direction. The sense of direction depends on the sense of angle whether it is 

positive or negative. Tilting around y (pitch angle) axis allows the quadrotor to move 

toward 𝑥 direction. 

 

Figure 2.3: A quadcopter model  
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      II.2 Euler angles: 

The Euler angles are three angles introduced by Leonhard Euler to describe the 

orientation of a rigid body. To describe such an orientation in the 3-dimensional 

Euclidean space, three parameters are required. They are also used to describe the 

orientation of a frame of reference relative to another and they transform the 

coordinates of a point in a reference frame in the coordinates of the same point in 

another reference frame. The Euler angles are typically denoted as ∅ ∈  −𝜋, 𝜋 , 

𝜃 ∈  
−𝜋

2
,
𝜋

2
  and 𝜓 ∈  −𝜋, 𝜋 . Euler angles represent a sequence of three elemental 

rotations, i.e. rotations about the axes of a coordinate system, since any orientation can 

be achieved by composing three elemental rotations. These rotations start from a 

known standard orientation. This combination used is described by the following 

rotation matrices:                            

 

𝐑𝑥 𝜙 =  

1 0 0
0 𝑐 𝜙 −𝑠 𝜙 

0 𝑠 𝜙 𝑐 𝜙 
 ,                                     (2.1)

𝐑𝑦 𝜃 =  
𝑐 𝜃 0 𝑠 𝜃 

0 1 0
−𝑠 𝜃 0 𝑐 𝜃 

 ,                                      (2.2)

𝐑𝑧 𝜓 =  
𝑐 𝜓 −𝑠 𝜓 0

𝑠 𝜓 𝑐 𝜓 0
0 0 1

 ,                                     (2.3)

 

 

where 𝑐  = cos   𝑎𝑛𝑑  𝑠  = sin  . So, the inertial position coordinates and 

the body reference coordinates are related by the rotation matrix 𝑅𝑧𝑦𝑥 (∅, 𝜃, 𝜓). 

𝑅𝑧𝑦𝑥  ∅, 𝜃, 𝜓 =  𝑅𝑧 𝜓 . 𝑅𝑦 𝜃 . 𝑅𝑥(∅) 

 

=  

𝑐(𝜃)𝑐(𝜓) 𝑠(𝜙)𝑠(𝜃)𝑐(𝜓) − 𝑐(𝜙)𝑠(𝜓) 𝑐(𝜙)𝑠(𝜃)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜓)
𝑐(𝜃)𝑠(𝜓) 𝑠(𝜙)𝑠(𝜃)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓) 𝑐(𝜙)𝑠(𝜃)𝑠(𝜓) − 𝑠(𝜙)𝑐(𝜓)
−𝑠(𝜃) 𝑠(𝜙)𝑐(𝜃) 𝑐(𝜙)𝑐(𝜃)

     

(2.4) 
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       II.3 Quadrotor mathematical model 

 

We provide here a mathematical model of the quadrotor, exploiting Newton and Euler 

equations for the 3D motion of a rigid body. The goal of this section is to obtain a 

deeper understanding of the dynamics of the quadrotor and to provide a model that is 

sufficiently reliable for simulating and controlling its behavior. 

Let us call  𝑋, 𝑌, 𝑍, ∅, 𝜃, 𝜓 𝑇 the vector containing the linear and angular position of 

the quadrotor in the earth frame and  𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟 𝑇  the vector containing the linear 

and angular velocities in the body frame. From 3D body dynamics, it follows that the 

two reference frames are linked by the following relations: 

 

𝑉 = 𝑅. 𝑉𝐵                                                  (2.5)             

                                            𝑊 = 𝑇. 𝑊𝐵                                                 (2.6) 

 

 

where =  𝑥  𝑦  𝑧  𝑇  ∈  𝑅3 , 𝑊 =  ∅  𝜃  𝜓  
𝑇

 ∈  𝑅3 , 𝑉𝐵 =  𝑢 𝑣 𝑤 𝑇  ∈  𝑅3  and 𝑊𝐵 =

 𝑝 𝑞 𝑟 𝑇  ∈  𝑅3 and T is a matrix for angular transformations  

𝐓 =

 
 
 
 
1 𝑠 𝜙 𝑡 𝜃 𝑐 𝜙 𝑡 𝜃 

0 𝑐 𝜙 −𝑠 𝜙 

0
𝑠 𝜙 

𝑐 𝜃 

𝑐 𝜙 

𝑐 𝜃  
 
 
 

                                                      2.7  

where t 𝜃 = tan⁡(𝜃). So, the kinematic model of the quadrotor is: 

 
 
 
 
 

 
 
 
 𝑥

˙
= 𝑤[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)] − 𝑣[𝑐(𝜙)𝑠(𝜓) − 𝑐(𝜓)𝑠(𝜙)𝑠(𝜃)] + 𝑢[𝑐(𝜓)𝑐(𝜃)]

𝑦
˙

= 𝑣[𝑐(𝜙)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜓)𝑠(𝜃)] − 𝑤[𝑐(𝜓)𝑠(𝜙) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃)] + 𝑢[𝑐(𝜃)𝑠(𝜓)]

𝑧
˙

= 𝑤[𝑐(𝜙)𝑐(𝜃)] − 𝑢[𝑠(𝜃)] + 𝑣[𝑐(𝜃)𝑠(𝜙)]

𝜙
˙

= 𝑝 + 𝑟[𝑐(𝜙)𝑡(𝜃)] + 𝑞[𝑠(𝜙)𝑡(𝜃)]

𝜃
˙

= 𝑞[𝑐(𝜙)] − 𝑟[𝑠(𝜙)]

𝜓
˙

= 𝑟
𝑐(𝜙)

𝑐(𝜃)
+ 𝑞

𝑠(𝜙)

𝑐(𝜃)  
 
 
 
 

 
 
 
 

 

(2.8) 
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Newton’s law states the following matrix relation for the total force acting on the 

quadrotor: 

𝑚 𝑊𝐵 ∧ 𝑉𝐵 + 𝑉 𝐵 = 𝑓𝐵                                            (2.9) 

 

where m is the mass of the quadrotor,  ∧ is the cross product and 𝑓𝐵 =  𝑓𝑥  𝑓𝑦   𝑓𝑧 
𝑇
∈ 𝑅3 

is the total force. 

Euler’s equation gives the total torque applied to the quadrotor: 

I. 𝑊 
𝐵 + 𝑊𝐵 ∧  I. 𝑊𝐵 = 𝑚𝐵                                                 (2.10) 

 

Where 𝑚𝐵 =  𝑚𝑥  𝑚𝑦   𝑚𝑧 
𝑇
∈ 𝑅3 is the total torque and I is the diagonal inertia 

matrix: 

𝐈 =  

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

 ∈ ℝ3×3 

 

So, the dynamic model of the quadrotor in the body frame is: 

 

 
 
 
 
 

 
 
 
 𝑓𝑥 = 𝑚(𝑢

˙
+ 𝑞𝑤 − 𝑟𝑣)

𝑓𝑦 = 𝑚(𝑣
˙
− 𝑝𝑤 + 𝑟𝑢)

𝑓𝑧 = 𝑚(𝑤
˙

+ 𝑝𝑣 − 𝑞𝑢)

𝑚𝑥 = 𝑝
˙
𝐼𝑥 − 𝑞𝑟𝐼𝑦 + 𝑞𝑟𝐼𝑧

𝑚𝑦 = 𝑞
˙
𝐼𝑦 + 𝑝𝑟𝐼𝑥 − 𝑝𝑟𝐼𝑧

𝑚𝑧 = 𝑟
˙
𝐼𝑧 − 𝑝𝑞𝐼𝑥 + 𝑝𝑞𝐼𝑦 

 
 
 
 

 
 
 
 

                                                                     (2.11) 

The equations stand as long as we assume that the origin and the axes of the body 

frame coincide with the barycenter of the quadrotor and the principal axes. 
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     II.4 Forces and moments 

 

The external forces in the body frame, 𝐹𝐵given by  

𝑓𝐵 = 𝑚𝑔𝑅𝑇 . 𝑒 𝑍 − 𝑓𝑡𝑒 3 + 𝑓𝑤                                        (2.12) 

 

Where 𝑒 𝑍  is the unit vector in the inertial 𝑍 axis, 𝑒 3 is the unit vector in the body 

𝑧 axis,  𝑔 is the gravitational acceleration, 𝑓𝑡  is the total thrust generated by rotors and  

𝑓𝑤 =  𝑓𝑤𝑥  𝑓𝑤𝑦   𝑓𝑤𝑧  
𝑇
∈ 𝑅3 are the forces produced by wind on the quadrotors. The 

external moments in the body frame, 𝑚𝐵  are given by  

 

𝑚𝐵 = 𝜏𝐵 + 𝜏𝑤  

 

where 𝜏𝐵 =  𝜏𝑥  𝜏𝑦   𝜏𝑧 
𝑇
∈ 𝑅3 are the control torques generated by differences in the 

rotor speeds and  𝜏𝑤 =  𝜏𝑤𝑥  𝜏𝑤𝑦   𝜏𝑤𝑧  
𝑇
∈ 𝑅3 are the torques produced by wind on the 

quadrotors. So, the complete dynamic model of the quadrotor in the body frame is 

obteined substituting the force expression in (2.11): 

 

 
 
 
 
 

 
 
 
 −𝑚𝑔[𝑠(𝜃)] + 𝑓𝑤𝑥 = 𝑚(𝑢

˙
+ 𝑞𝑤 − 𝑟𝑣)

𝑚𝑔[𝑐(𝜃)𝑠(𝜙)] + 𝑓𝑤𝑦 = 𝑚(𝑣
˙
− 𝑝𝑤 + 𝑟𝑢)

𝑚𝑔[𝑐(𝜃)𝑐(𝜙)] + 𝑓𝑤𝑧 − 𝑓𝑡 = 𝑚(𝑤
˙

+ 𝑝𝑣 − 𝑞𝑢)

𝜏𝑥 + 𝜏𝑤𝑥 = 𝑝
˙
𝐼𝑥 − 𝑞𝑟𝐼𝑦 + 𝑞𝑟𝐼𝑧

𝜏𝑦 + 𝜏𝑤𝑦 = 𝑞
˙
𝐼𝑦 + 𝑝𝑟𝐼𝑥 − 𝑝𝑟𝐼𝑧

𝜏𝑧 + 𝜏𝑤𝑧 = 𝑟
˙
𝐼𝑧 − 𝑝𝑞𝐼𝑥 + 𝑝𝑞𝐼𝑦  

 
 
 
 

 
 
 
 

                                         (2.15) 
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II.5 Actuator dynamics 

 

Here we consider the inputs that can be applied to the system in order to control the 

behavior of the quadrotor. The rotors are four and the degrees of freedom we control 

are as many: commonly, the control inputs that are considered are one for the vertical 

thrust and one for each of the angular motions. Let us consider the values of the input 

forces and torques proportional to the squared speeds of the rotors; their values are the 

following:          

 

                                           𝑓𝑡 = 𝐾𝑏 Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2  

𝜏𝑥 = 𝐾𝑏 𝑙  Ω3
2 − Ω1

2  

                                            𝜏𝑦 = 𝐾𝑏 𝑙  Ω4
2 − Ω2

2                                  (2.16) 

                                             𝜏𝑧 = 𝐾𝑑 𝑙  Ω2
2 + Ω4

2 − Ω1
2 − Ω3

2                      

 

where  𝑙 is the distance between any rotor and the center of the drone, 𝐾𝑏  is the thrust 

factor and 𝐾𝑑  is the drag factor. Substituting (2.16) in (2.15), we have: the dynamic 

model of the quadrotor in the body frame is: 

 

 

 
 
 
 
 

 
 
 
 −𝑚𝑔[𝑠(𝜃)] + 𝑓𝑤𝑥 = 𝑚(𝑢

˙
+ 𝑞𝑤 − 𝑟𝑣)

𝑚𝑔[𝑐(𝜃)𝑠(𝜙)] + 𝑓𝑤𝑦 = 𝑚(𝑣
˙
− 𝑝𝑤 + 𝑟𝑢)

𝑚𝑔[𝑐(𝜃)𝑐(𝜙)] + 𝑓𝑤𝑧 − 𝑏(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2) = 𝑚(𝑤
˙

+ 𝑝𝑣 − 𝑞𝑢)

𝑏𝑙(Ω3
2 − Ω1

2) + 𝜏𝑤𝑥 = 𝑝
˙
𝐼𝑥 − 𝑞𝑟𝐼𝑦 + 𝑞𝑟𝐼𝑧

𝑏𝑙(Ω4
2 − Ω2

2) + 𝜏𝑤𝑦 = 𝑞
˙
𝐼𝑦 + 𝑝𝑟𝐼𝑥 − 𝑝𝑟𝐼𝑧

𝑑(Ω2
2 + Ω4

2 − Ω1
2 + Ω3

2) + 𝜏𝑤𝑧 = 𝑟
˙
𝐼𝑧 − 𝑝𝑞𝐼𝑥 + 𝑝𝑞𝐼𝑦  

 
 
 
 

 
 
 
 

        (2.17) 
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      II.6 State-space model 

𝐱 = [𝜙 𝜃 𝜓 𝑝 𝑞 𝑟 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧]𝑇 ∈ ℝ12               (2.18) 

It is possible to rewrite the equations of the dynamics of the quadrotor in the state 

space from (2.8) and (2.15): 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 𝜙

˙

= 𝑝 + 𝑟 𝑐 𝜙 𝑡 𝜃  + 𝑞 𝑠 𝜙 𝑡 𝜃  

𝜃
˙

= 𝑞 𝑐 𝜙  − 𝑟 𝑠 𝜙  

𝜓
˙

= 𝑟
𝑐 𝜙 

𝑐 𝜃 
+ 𝑞

𝑠 𝜙 

𝑐 𝜃 

𝑝
˙

=
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑟𝑞 +

𝜏𝑥 + 𝜏𝑤𝑥

𝐼𝑥

𝑞
˙

=
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝜏𝑦 + 𝜏𝑤𝑦

𝐼𝑦

𝑟
˙

=
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞 +

𝜏𝑧 + 𝜏𝑤𝑧

𝐼𝑧

𝑢
˙

= 𝑟𝑣 − 𝑞𝑤 − 𝑔 𝑠 𝜃  +
𝑓𝑤𝑥

𝑚

𝑣
˙

= 𝑝𝑤 − 𝑟𝑢 + 𝑔 𝑠 𝜙 𝑐 𝜃  +
𝑓𝑤𝑦

𝑚

𝑤
˙

= 𝑞𝑢 − 𝑝𝑣 + 𝑔 𝑐 𝜃 𝑐 𝜙  +
𝑓𝑤𝑧 − 𝑓𝑡

𝑚

𝑥
˙

= 𝑤 𝑠 𝜙 𝑠 𝜓 + 𝑐 𝜙 𝑐 𝜓 𝑠 𝜃  − 𝑣 𝑐 𝜙 𝑠 𝜓 − 𝑐 𝜓 𝑠 𝜙 𝑠 𝜃  + 𝑢 𝑐 𝜓 𝑐 𝜃  

𝑦
˙

= 𝑣 𝑐 𝜙 𝑐 𝜓 + 𝑠 𝜙 𝑠 𝜓 𝑠 𝜃  − 𝑤 𝑐 𝜓 𝑠 𝜙 − 𝑐 𝜙 𝑠 𝜓 𝑠 𝜃  + 𝑢 𝑐 𝜃 𝑠 𝜓  

𝑧
˙

= 𝑤 𝑐 𝜙 𝑐 𝜃  − 𝑢 𝑠 𝜃  + 𝑣 𝑐 𝜃 𝑠 𝜙   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  (2.19) 

 

Below we obtain two alternative forms of the dynamical model useful for studying the 

control. From Newton’s law we can write: 

                                     𝑚𝑣 = 𝑅. 𝑓𝐵 = 𝑚𝑔𝑒 𝑍 − 𝑓𝑡𝑅. 𝑒 3                  (2.20) 

 

Therefore:  
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 𝑥

¨
= −

𝑓𝑡
𝑚

[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)]

𝑦
¨

= −
𝑓𝑡
𝑚

[𝑐(𝜙)𝑠(𝜓)𝑠(𝜃) − 𝑐(𝜓)𝑠(𝜙)]

𝑧
¨

= 𝑔 −
𝑓𝑡
𝑚

[𝑐(𝜙)𝑐(𝜃)]  
 
 

 
 

                                                              (2.21) 

 

Now a simplification is made by setting  ∅  𝜃  𝜓  
𝑇

=   𝑝 𝑞 𝑟  𝑇.This assumption holds 

true for small angles of movement. So, the dynamic model of the quadrotor in the 

inertial frame is: 

 
 
 
 
 
 
 

 
 
 
 
 
 𝑥

¨
= −

𝑓𝑡
𝑚

[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)]

𝑦
¨

= −
𝑓𝑡
𝑚

[𝑐(𝜙)𝑠(𝜓)𝑠(𝜃) − 𝑐(𝜓)𝑠(𝜙)]

𝑧
¨

= 𝑔 −
𝑓𝑡
𝑚

[𝑐(𝜙)𝑐(𝜃)]

𝜙
¨

=
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝜃
˙

𝜓
˙

+
𝜏𝑥
𝐼𝑥

𝜃
¨

=
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
𝜙
˙

𝜓
˙

+
𝜏𝑦

𝐼𝑦

𝜓
¨

=
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝜙
˙

𝜃
˙

+
𝜏𝑧
𝐼𝑧  

 
 
 
 
 
 

 
 
 
 
 
 

                                                                (2.22) 

 

Redefining the state’s vector as: 

𝐱 = [𝑥 𝑦 𝑧 𝜓 𝜃 𝜙 𝑥
˙

𝑦
˙

𝑧
˙

𝑝 𝑞 𝑟]𝑇 ∈ ℝ12             (2.23) 

It is possible to rewrite the equations of the quadrotor in the spate-space: 

x
˙

= f x +   gi x 𝑢𝑖

4

𝑖=1

                                                        (2.24) 

Where: 
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𝐟 𝐱 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑥

˙

𝑦
˙

𝑧
˙

𝑞
𝑠 𝜙 

𝑐 𝜃 
+ 𝑟

𝑐 𝜙 

𝑐 𝜃 

𝑞 𝑐 𝜙  − 𝑟 𝑠 𝜙  

𝑝 + 𝑞 𝑠 𝜙 𝑡 𝜃  + 𝑟 𝑐 𝜙 𝑡 𝜃  

0
0
𝑔

 𝐼𝑦 − 𝐼𝑧 

𝐼𝑥
𝑞𝑟

 𝐼𝑧 − 𝐼𝑥 

𝐼𝑦
𝑝𝑟

 𝐼𝑥 − 𝐼𝑦 

𝐼𝑧
𝑝𝑞

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                        (2.25) 

 

And  

     g1(x) = [0 0 0 0 0 0 𝑔1
7 𝑔1

8 𝑔1
9 0 0 0]𝑇 ∈ ℝ12

 g2(x) = [0 0 0 0 0 0 0 0 0
1

𝐼𝑥
0 0]𝑇 ∈ ℝ12

 g3(x) = [0 0 0 0 0 0 0 0 0 0
1

𝐼𝑦
0]𝑇 ∈ ℝ12

 g4(x) = [0 0 0 0 0 0 0 0 0 0 0
1

𝐼𝑧
]𝑇 ∈ ℝ12

 

 

 

With  

                     

𝑔1
7 = −

1

𝑚
[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)]

𝑔1
8 = −

1

𝑚
[𝑐(𝜓)𝑠(𝜙) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃)]

𝑔1
9 = −

1

𝑚
[𝑐(𝜙)𝑐(𝜃)]
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      II.7 Control strategies 

 

In this section we discuss two control strategies, both of them are nonlinear, the first is 

the classical feedback linearization method, whereas the second one is the robust 

feedback linearization approach. Some comparisons about these control strategies are 

done. 

     

                 II.7.1 Feedback linearization control 

 

The quadrotor has six outputs 𝑦 =  𝑥 𝑦 𝑧 ∅ 𝜃 𝜓 𝑇 and the vehicle has four inputs. 

There are two degrees of freedom that are left uncontrollable. A solution to this 

problem is to use dynamic feedback control (Exact linearization and non-interacting 

control via dynamic feedback). Such control structures are based on the input-output 

linearization described earlier. 

First, it is necessary to define the control objective by choosing an output function for 

the system (2.24). To avoid unnecessary complications, we set the number of input 

channels equal to the number of output channels. We would like to control the absolute 

position of the quadrotor  𝑥 𝑦 𝑧 𝑇 and the angle 𝜓. Therefore, the output function is 

chosen as: 

𝐲 = 𝐡 𝐱 =  𝑥 𝑦 𝑧 𝜓 𝑇                                            (2.26) 

We assume the state x of the system being fully available for measurements and we 

seek a static state feedback control law of the form: 

u = 𝛼 x + 𝛽 x ⋅ v                                                           2.27  

Where V is an external reference input to be defined later, 

 

𝛼 𝑥 =  𝛼1 𝑥  𝛼2 𝑥  𝛼3 𝑥 𝛼4 𝑥   𝑇       and                𝛽(𝑥) ∈ 𝑅4×4 

 

          Let   𝑟1 𝑟2 𝑟3 𝑟4 
𝑇 be the relative degree vector of the system (2.24).                                        

We have: 

 

[𝑦1
(𝑟1)

𝑦2
(𝑟2)

𝑦3
(𝑟3)

𝑦4
(𝑟4)]𝑇 = b x + Δ x ⋅ u          (2.28) 
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Where  

Δ x =

 
 
 
 
 
 𝐿𝑔1𝐿𝑓

𝑟1−1
𝑕1 x 𝐿𝑔2𝐿𝑓

𝑟1−1
𝑕1 x 𝐿𝑔3𝐿𝑓

𝑟1−1
𝑕1 x 𝐿𝑔4𝐿𝑓

𝑟1−1
𝑕1 x 

𝐿𝑔1𝐿𝑓
𝑟2−1

𝑕2 x 𝐿𝑔2𝐿𝑓
𝑟2−1

𝑕2 x 𝐿𝑔3𝐿𝑓
𝑟2−1

𝑕2 x 𝐿𝑔4𝐿𝑓
𝑟2−1

𝑕2 x 

𝐿𝑔1𝐿𝑓
𝑟3−1

𝑕3 x 𝐿𝑔2𝐿𝑓
𝑟3−1

𝑕3 x 𝐿𝑔3𝐿𝑓
𝑟3−1

𝑕3 x 𝐿𝑔4𝐿𝑓
𝑟3−1

𝑕3 x 

𝐿𝑔1𝐿𝑓
𝑟4−1

𝑕4 x 𝐿𝑔2𝐿𝑓
𝑟4−1

𝑕4 x 𝐿𝑔3𝐿𝑓
𝑟4−1

𝑕4 x 𝐿𝑔4𝐿𝑓
𝑟4−1

𝑕4 x  
 
 
 
 
 

 

(2.29) 

𝐛 𝐱 =

 
 
 
 
 
 
𝐿𝑓
𝑟1𝑕1 𝐱 

𝐿𝑓
𝑟2𝑕2 𝐱 

𝐿𝑓
𝑟3𝑕4 𝐱 

𝐿𝑓
𝑟4𝑕4 x  

 
 
 
 
 

                                             2.30  

The input-output decoupling problem is solvable if and only if the matrix ∆(𝑥) is 

nonsingular. In this case, the static state feedback with: 

 
𝛼(x) = −Δ−1(x) ⋅ b(x)

𝛽(x) = Δ−1(x)
                                                                (2.31) 

 

renders the closed loop system linear and decoupled from an input-output point of 

view. More precisely, we have 

𝑦𝑖
(𝑟𝑖) = 𝑣𝑖  for all 𝑖, 1 ≤ 𝑖 ≤ 4                                                (2.32) 

However, for the nonlinear system (2.24), we have 

𝑟1 = 𝑟2 = 𝑟3 = 𝑟4 = 2 

and  

Δ(x) =

 
 
 
 
𝛿1,1 0 0 0

𝛿2,1 0 0 0

𝛿3,1 0 0 0

0 0 𝛿4,3 𝛿4,4 
 
 
 

 

with  
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𝛿1,1 = 𝑔1
7

𝛿2,1 = 𝑔1
8

𝛿3,1 = 𝑔1
9

𝛿4,3 =
𝑠(𝜙)

𝐼𝑦𝑐(𝜃)

𝛿4,4 =
𝑐(𝜙)

𝐼𝑧𝑐(𝜃)

 

 

Obviously ∆(𝑥) is singular for all 𝑥 and therefore the input-output decoupling problem 

is not solvable for the system (2.24) by means of a static state feedback control law.  

Setting 𝑢1 equal to the output of a double integrator driven by 𝑢1 , i.e 

                              

 
 

 
𝑢1 = 𝜁

𝜁
˙

= 𝜉

𝜉
˙

= 𝑢
¯

1 
 

 
                                                                         (2.33) 

 

For consistency of notation we also set, for the other input channels which have been 

left unchanged, the following 

 
 

 𝑢2 = 𝑢
¯

2

𝑢3 = 𝑢
¯

3

𝑢4 = 𝑢
¯

4 
 

 
                                                   (2.34) 

Note that 𝑢1 is not anymore an input for the system (2.24) but becomes the internal 

state 𝜉 for the new dynamical system (2.33). The extended system obtained is 

described by equations of the form: 

x
―
˙

= f
―

 x
―
 +  g

―

i x
―
 𝐮
―

𝑖

4

𝑖=1

                                               (2.35) 

In which  

x
―

= [𝑥 𝑦 𝑧 𝜓 𝜃 𝜙 𝑥
˙

𝑦
˙

𝑧
˙

𝜁 𝜉 𝑝 𝑞 𝑟]𝑇 ∈ ℝ14          (2.36) 
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𝐟
―

 𝐱
―
 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑥

˙

𝑦
˙

𝑧
˙

𝑞
𝑠 𝜙 

𝑐 𝜃 
+ 𝑟

𝑐 𝜙 

𝑐 𝜃 

𝑞 𝑐 𝜙  − 𝑟 𝑠 𝜙  

𝑝 + 𝑞 𝑠 𝜙 𝑡 𝜃  + 𝑟 𝑐 𝜙 𝑡 𝜃  

𝑔1
7 𝜓, 𝜃, 𝜙 𝜁

𝑔1
8 𝜓, 𝜃, 𝜙 𝜁

𝑔1
9 𝜓, 𝜃, 𝜙 𝜁

𝜉
0

 𝐼𝑦−𝐼𝑧 

𝐼𝑥
𝑞𝑟

 𝐼𝑧−𝐼𝑥 

𝐼𝑦
𝑝𝑟

 𝐼𝑥−𝐼𝑦  

𝐼𝑧
𝑝𝑞  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                           (2.37)                                            

And 

g
―

1(x
―

) = [0 0 0 0 0 0 0 0 0 0 1 0 0 0]𝑇 ∈ ℝ14

g
―

2(x
―

) = [0 0 0 0 0 0 0 0 0 0 0
1

𝐼𝑥
0 0]𝑇 ∈ ℝ14

g
―

3(x
―

) = [0 0 0 0 0 0 0 0 0 0 0 0
1

𝐼𝑦
0]𝑇 ∈ ℝ14

g
―

4(x
―

) = [0 0 0 0 0 0 0 0 0 0 0 0 0
1

𝐼𝑧
]𝑇 ∈ ℝ14

 

Now, the input-output decoupling problem is solvable for the nonlinear system (2.24) 

by means of a dynamic feedback control law if it is solvable via a static feedback for 

the extended system (2.35). For the nonlinear system, the relative degree vector 

 𝑟1 𝑟2 𝑟3 𝑟4  is given by 

𝑟1 = 𝑟2 = 𝑟3 = 4,                                      𝑟4 = 2 

And we have 

[𝑦1
(𝑟1)

𝑦2
(𝑟2)

𝑦3
(𝑟3)

𝑦4
(𝑟4)]𝑇 = 𝐛 𝐱

―
 + Δ 𝐱

―
 𝐮                                  (2.38) 

where ∆(𝑥 ) and 𝑏(𝑥) are computed using equations (2.29) and (2.30).                                                                      

The matrix ∆(𝑥 ) is nonsingular. 
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Therefore, the input-output decoupling problem is solvable for the system (2.24) by 

means of a dynamic feedback control law of the form: 

u
―

= 𝛼 x
―
 + 𝛽 x

―
 ⋅ v                                                    (2.39) 

where 𝛼(𝑥 ) and 𝛽(𝑥 ) are computed using (2.31) Recall the relation between u and 𝑢 

(2.33) and (2.34), we get the structure in Figure 2.4 for the control law of the original 

system (2.24). 

 

Figure 2.4: Block diagram of the control law. 

 

Moreover, since the extended system (2.35) has dimension n = 14, the condition is 

fulfilled and, therefore, the system can be transformed via a dynamic feedback into a 

system which, in suitable coordinates, is fully linear and controllable. The change of 

coordinates 𝑧 = Ф(𝑥 ) is given by:  
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𝑧1 = 𝑕1(x) = 𝑥

𝑧2 = 𝐿𝑓𝑕1(x) = 𝑥
˙

𝑧3 = 𝐿𝑓
2𝑕1(x) = 𝑥

¨

𝑧4 = 𝐿𝑓
3𝑕1(x) = 𝑥(3)

𝑧5 = 𝑕2(x) = 𝑦

𝑧6 = 𝐿𝑓𝑕2(x) = 𝑦
˙

𝑧7 = 𝐿𝑓
2𝑕2(x) = 𝑦

¨

𝑧8 = 𝐿𝑓
3𝑕2(x) = 𝑦(3)

𝑧9 = 𝑕3(x) = 𝑧

𝑧10 = 𝐿𝑓𝑕3(x) = 𝑧
˙

𝑧11 = 𝐿𝑓
2𝑕3(x) = 𝑧

¨

𝑧12 = 𝐿𝑓
3𝑕3(x) = 𝑧(3)

𝑧13 = 𝑕4(x) = 𝜓

𝑧14 = 𝐿𝑓𝑕4(x) = 𝜓
˙

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

                                   (2.40)                          

In the new coordinates, the system appears as 

 𝑧
˙

= 𝐴𝑧 + 𝐵𝑣
𝑦 = 𝐶𝑧

                                                                                (2.41) 

 

where  

 

𝐙 = [𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 𝑧8 𝑧9 𝑧10 𝑧11 𝑧12 𝑧13 𝑧14]𝑇  

𝐕 = [𝑣1 𝑣2 𝑣3 𝑣4]𝑇 ∈ ℝ4 

A =  

A1 0 0 0
0  A1 0 0
0 0  A1 0
0 0 0  A2

 ∈ ℝ14×14 

B =  

B1

 B2

 B3

 B4

 ∈ ℝ14×4 
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C =

 
 
 
 
 
𝐜1
𝑇 0 0 0

0 𝐜1
𝑇 0 0

0 0 𝐜1
𝑇 0

0 0 0 𝐜2
𝑇 
 
 
 
 

∈ ℝ4×14 

 

where 

    𝐀1 =  

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ∈ ℝ4×4                𝐀2 =  
0 1
0 0

 ∈ ℝ2×2  

    𝐁1 =  

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 ∈ ℝ4                    𝐁2 =  

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 ∈ ℝ4×4 

    𝐁3 =  

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 ∈ ℝ4×4                𝐁4 =  
0 0 0 0
0 0 0 0

 ∈ ℝ2×4  

    𝐜1 = [1 0 0 0]𝑇 ∈ ℝ4                    𝐜2 = [1 0]𝑇 ∈ ℝ2 
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In the following figure, the scheme of the linear system is shown. 

 

 

Figure 2.5: Block diagram of the closed loop system. 

 

On the linear system (2.41), it is possible to impose a further control, using for 

example PD controller. 
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II.8 Robust Feedback Linearization :  

Consider the multivariable nonlinear system with disturbance vector 𝑑 given in (1.19): 

                                                𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢 + 𝑝 𝑥 d 

                                                𝑦 = 𝑕(𝑥)                             

where d ∈ 𝑅𝑛  is the noise and unknown perturbation vector, and d = [d𝐵   d𝑃]𝑇, and 

where d𝐵  is the noise vector of size 14. d𝑃  is composed of aerodynamic forces 

disturbances [𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧] 𝑇 and aerodynamic moment disturbances [𝐴𝑝 , 𝐴𝑞 , 𝐴𝑟 ]𝑇. They 

act on the UAV and are computed from the aerodynamic coefficients 𝐶𝑖  as                     

𝐴𝑖 = 𝜌𝑎𝑖𝑟  𝐶𝑖  Ω
2    ( 𝜌𝑎𝑖𝑟   the air density, Ω  is the velocity of the UAV with respect to 

the air), (𝐶𝑖  depends on several parameters like the angle between airspeed and the 

body fixed reference system, the aerodynamic and geometric form of the wing).                          

The robust feedback linearization method used in this context is based on Sobolev 

norm defined as: 

∥ 𝑕 ∥𝑊= [ 𝑕𝑇(𝑡)𝑕(𝑡)𝑑𝑡
∞

0
+  𝑕

˙
𝑇(𝑡)𝑕

˙

(𝑡)𝑑𝑡
∞

0

]
1

2                (2.42) 

It transforms a nonlinear system into its tangent linearized system around an operating 

point. Then, under state feedback 

           𝑢 𝑥, 𝑤 = 𝛼 𝑥 + 𝛽 𝑥 𝑤                                                         (2.43) 

 

and change of coordinates 

                              𝑧 = 𝜙(𝑥)                                                                (2.44) 

defined by 

 

𝛼(𝑥) = 𝛼𝑐(𝑥) + 𝛽𝑐(𝑥)𝐿𝑇𝜙𝑐(𝑥)

𝛽(𝑥) = 𝛽𝑐(𝑥)𝑅−1

𝜙(𝑥) = 𝑇−1𝜙𝑐(𝑥)

                                  (2.45) 

where 

𝐿 = −Δ.
𝜕𝛼𝑐

𝜕𝑥
|𝑥=0, 𝑇 =

𝜕𝜙𝑐

𝜕𝑥
|𝑥=0, 𝑅 = Δ−1 

𝛼𝑐(𝑥) = −Δ−1(𝑥)𝑏(𝑥), 𝛽𝑐(𝑥) = Δ−1(𝑥) 

 

then the nonlinear system is transformed into a following one 
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𝑧 = 𝐴𝑧 + 𝐵2𝑤 + [
𝜕∅

𝜕𝑥
𝑝 𝑥 ]𝑥=∅−1(𝑧)                                        (2.46) 

 

with   

𝐴 =  𝜕𝑓(𝑥)

𝜕𝑥
 
𝑥=0

,    𝐵2 = 𝑔(0) 

 

 

For the quadrotor helicopter the input-output decoupling problem is solvable for the 

nonlinear system by means of static feedback. The vector relative degree {𝑟1, 𝑟2, 𝑟3,

𝑟4} is given by: 

𝑟1 = 𝑟2 = 𝑟3 = 4; 𝑟4 = 2 

and we have 

𝑏(𝑥) = [𝐿𝑓
𝑟1𝑕1(𝑥) 𝐿𝑓

𝑟2𝑕2(𝑥) 𝐿𝑓
𝑟3𝑕3(𝑥) 𝐿𝑓

𝑟4𝑕4(𝑥)]𝑇

𝜙𝑐(𝑥) = [𝜙𝑐1(𝑥), 𝜙𝑐2(𝑥), 𝜙𝑐3(𝑥), 𝜙𝑐4(𝑥)]𝑇
 

 

𝜙𝑐1(𝑥) =

 
 
 
 
 
 

𝑕1(𝑥) = 𝑥0

𝐿𝑓𝑕1(𝑥) = 𝑥7 = 𝑥
˙

0

𝐿𝑓
2𝑕1(𝑥) =

𝐴𝑥

𝑚
+ 𝑔1

7𝑥10 = 𝑥
¨

0

𝐿𝑓
3𝑕1(𝑥) = 𝑥

⃛

0  
 
 
 
 
 

 

 

𝜙𝑐2(𝑥) =

 
 
 
 
 
 

𝑕2(𝑥) = 𝑦0

𝐿𝑓𝑕2(𝑥) = 𝑥8 = 𝑦
˙

0

𝐿𝑓
2𝑕2(𝑥) =

𝐴𝑦

𝑚
+ 𝑔1

8(𝑥4 , 𝑥5, 𝑥6)𝑥10 = 𝑦
¨

0

𝐿𝑓
3𝑕2(𝑥) = 𝑦

⃛

0  
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𝜙𝑐3(𝑥) =

 
 
 
 
 
 

𝑕3(𝑥) = 𝑧0

𝐿𝑓𝑕3(𝑥) = 𝑥9 = 𝑧
˙

0

𝐿𝑓
2𝑕3(𝑥) =

𝐴𝑧

𝑚
+ 𝑔 + 𝑔1

9𝑥10 = 𝑧
¨

0

𝐿𝑓
3𝑕3(𝑥) = 𝑧

⃛

0  
 
 
 
 
 

 

 

 

𝜙𝑐4(𝑥) =  
𝑕4(𝑥) = 𝑥4

𝐿𝑓𝑕4(𝑥) = 𝑥
˙

4

  

 

Δ(𝑥) =  

Δ11 Δ12 Δ13 Δ14

Δ21 Δ22 Δ23 Δ24

Δ31 Δ32 Δ33 Δ34

Δ41 Δ42 Δ43 Δ44

  

 

with  

 

Δ11 = 𝐿𝑔11𝐿𝑓
𝑟1−1

𝑕1 𝑥  

= −
1

𝑚
 𝐶𝑥6𝐶𝑥4𝑆𝑥5 + 𝑆𝑥6𝑆𝑥4  

Δ12 = 𝐿𝑔2𝐿𝑓
𝑟1−1

𝑕1 𝑥  

=
𝑑

𝑚𝐼𝑥
 𝑥10𝑆𝑥6𝐶𝑥4𝑆𝑥5 − 𝑥10𝐶𝑥6𝑆𝑥4  

Δ13 = 𝐿𝑔3𝐿𝑓
𝑟1−1

𝑕1 𝑥 =
𝑑

𝑚𝐼𝑦
 −𝑥10𝐶𝑥4𝐶𝑥5  

Δ14 = 0 

Δ21 = 𝐿𝑔1𝐿𝑓
𝑟2−1

𝑕2 𝑥  

= −
1

𝑚
 𝐶𝑥6𝑆𝑥5𝑆𝑥4 − 𝐶𝑥4𝑆𝑥6  

Δ22 = 𝐿𝑔2𝐿𝑓
𝑟2−1

𝑕2 𝑥  
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=
𝑑

𝑚𝐼𝑥
 𝑥10𝑆𝑥6𝑆𝑥4𝑆𝑥5 + 𝑥10𝐶𝑥6𝐶𝑥4  

Δ23 = 𝐿𝑔3𝐿𝑓
𝑟2−1

𝑕2 𝑥 =
𝑑

𝑚𝐼𝑦
 −𝑥10𝑆𝑥4𝐶𝑥5  

Δ24 = 𝐿𝑔4𝐿𝑓
𝑟2−1

𝑕2 𝑥 = 0 

Δ31 = 𝐿𝑔1𝐿𝑓
𝑟3−1

𝑕3 𝑥 = −
1

𝑚
 𝐶𝑥5𝐶𝑥6  

Δ32 = 𝐿𝑔2𝐿𝑓
𝑟3−1

𝑕3 𝑥 =
𝑑

𝑚𝐼𝑥
 𝑥10𝑆𝑥6𝐶𝑥5  

Δ33 = 𝐿𝑔3𝐿𝑓
𝑟3−1

𝑕3 𝑥 =
𝑑

𝑚𝐼𝑦
 𝑥10𝑆𝑥5  

Δ34 = 𝐿𝑔4𝐿𝑓
𝑟3−1

𝑕3 𝑥 = 0 

Δ41 = 𝐿𝑔1𝐿𝑓
𝑟4−1

𝑕4 𝑥 = 0 

Δ42 = 𝐿𝑔2𝐿𝑓
𝑟4−1

𝑕4 𝑥 = 0 

Δ43 = 𝐿𝑔3𝐿𝑓
𝑟4−1

𝑕4 𝑥 =
𝑑

𝐼𝑦
 𝑆𝑥6𝑆𝑒𝑥5  

Δ44 = 𝐿𝑔4𝐿𝑓
𝑟4−1

𝑕4(𝑥) =
1

𝐼𝑧
(𝐶𝑥6𝑆𝑒𝑥5) 

In fact the system in equation (2.45) is still nonlinear because of 𝑤 vector. One seeks a 

controller which ensures the compensated system to be internally asymptotically stable 

and its output to tend asymptotically toward a desired trajectory even in the presence 

of external disturbance. 

In this context the linear 𝐻∞ is proposed. 
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Robust H∞ controller design 

To ensure stability and performance against modelling errors, we have chosen the 

method of McFarlane-Glover to design a robust linear controller for the feedback 

linearized system. The method of loop-shaping is chosen due to its ability to address 

robust performance and robust stability in two different stages of controller design 

(McFarlane and Glover, 1990). 

The method of loopshaping consists of three steps: 

Step 1. Open loop shaping 

Using a pre-weighting matrix  𝑊𝐼 and/or a post-weighting matrix 𝑊0  , the minimum 

and maxiumum singular values are modified to shape the response. This step results in 

an augmented matrix of the process transfer function:𝑃𝑆 = 𝑊0𝑃𝑊𝐼  

Figure 2.6 : Augmented matrix of the process transfer function 

The stability margin is computed as  

1

𝜀max
= inf

K      stabilizator  
‖[

𝐼
𝐾

](𝐼 − 𝑃𝑠𝐾)−1𝑀
~

𝑠
−1‖∞                                     (2.47) 

Where 

𝑃𝑠 = 𝑀
~

𝑠
−1𝑁

~

𝑠     

which is the normalized left coprime factorization of the process transfer function 

matrix. If ℰ𝑚𝑎𝑥 ≪ 1, the pre and post weighting matrices have to be modified by 

relaxing the constraints imposed on the open loop shaping. If the value of ℰ𝑚𝑎𝑥  is 

acceptable, for a value max ℰ < ℰ𝑚𝑎𝑥  the resulting controller - Ka - is computed in 

order to sati1sfy the following relation: 
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‖[
𝐼
𝐾𝑎

](𝐼 − 𝑃𝑠𝐾𝑎)−1𝑀
~

𝑠
−1‖∞ ≤ 𝜀            (2.48)

Figure 2.7: Robust closed loop control scheme 

Step 3. Final robust controller 

The final resulting controller is given by the sub-optimal controller Ka weighted with 

the matrices 𝑊𝐼 and/or 𝑊𝐼 : K = WIKaWo . 

Using the McFarlane-Glover method, the loop shaping is done without considering the 

problem of robust stability, which is explcitily taken into account at the second design 

step, by imposing a stability margin for the closed loop system. This stability margin 

max ε is an indicator of the efficiency of the loopshaping technique. 

Figure2.8: Optimal controller obtained with the pre and post weighting matrices 
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Results and discussion 

In order to verify the effectiveness of the proposed control law, the overall system is 

tested in numerical simulations. The physical parameters for quadrotor are:  

Ix = 0.62 N m 𝑠2,     Iy = 0.62 N m 𝑠2,    Iz = 1.24 N m 𝑠2,     m = 1 kg,     

g = 9.81 m/𝑠2. 

The reference trajectory chosen for 𝑥𝑑 𝑡 , 𝑦𝑑 𝑡 , 𝑧𝑑 𝑡 𝑎𝑛𝑑 𝜓𝑑(𝑡)  is 

 

𝑥𝑑 𝑡 = cos 0.5𝑡  

𝑦𝑑 𝑡 = sin 0.5𝑡  

                                              𝑧𝑑 𝑡 = 0.5𝑡 

                                               𝜓𝑑 𝑡 = 0 

 

The initial conditions are: 𝑥𝑑 0 = 0.5𝑚 . 

𝑦𝑑 0 = 0 m , z d(0) = 0 m and  𝜓𝑑 (0) = 0 rad. All other initial conditions are zero. 

To test the robustness of the controller, disturbances have been introduced. The most 

likely disturbance acting on the quadrotor is wind in horizontal plane, which can be 

modeled by forces 𝑑𝑚𝑥 , 𝑑𝑚𝑦  chosen as 

 

                                              𝑑𝑚𝑥  𝑡 = 1.5 + 2.5𝑠𝑖𝑛(4𝑡) 

                                              𝑑𝑚𝑦 = 2.5 +  1.5 sin 3𝑡         

All other external disturbances are set to zero. 
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Figure 3,1: The position and attitude of quadrotor in the closed-loop with Feedback     

Linearization control (the case without external disturbances) 

 

 

 
 

Figure 3.2: The position errors of quadrotor in the closed-loop with feedback 

Linearization (the case without external disturbances). 
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Figure 3.3: Trajectories 𝑥, 𝑦, 𝑧 𝑎𝑛𝑑 𝜓 with the robust feedback linearization  

control. 

 

We can see that tracking simulation results for both classical and robust feedback 

linearization approach for the case without external disturbances show convergence 

toward reference trajectory.  

Choosing another trajectory for 𝑥0 that has initial point 0.55, and see how much our 
system is sensitive to parameter variation in both classical and robust feedback 

linearization approach. 

 
Figure 3.4: Position 𝑥0 for the classical feedback linearization. 
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Figure 3.5: Position 𝑥 for the robust feedback linearization. 

 

 

 

 
Figure 3.6: The quadrotor and reference trajectory for case with Robust Feedback 

Linearization, with external disturbances 

It is clear that with robust feedback linearization our system is more robust to external 

disturbances. 

 

 
Figure3.7: The force and torques of quadrotor in the closed-loop without external 

disturbances. 
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Figure3.8: The force and torques of quadrotor in the closed-loop with external 

disturbances. 

The last two figures show the force as well as the torques of quadcopter with both no 

and with external disturbances.  

 

 

Discussion: 

 

As shown theoretically in this thesis and illustrated by the simulations in 

the last chapter about Simulation and Results, a robust nonlinear controller 

for the nonlinear system is obtained by using the robust feedback 

linearization associated with a McFarlane–Glover 𝐻∞ controller. This does 

not hold when the classical feedback linearization is used due to the fact 

the linearized system obtained by feedback linearization is in the 

Brunovsky form, a non robust form whose dynamics is completely 

different from that of the original system and which is highly vulnerable to 

uncertainties 
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Conclusion 

 

 
 
 

As it has been previously demonstrated theoretically through 

mathematical computations (Guillard, et al., 2000), the results in this 

project prove that by combining the robust method of feedback 

linearization with a robust linear controller, the robustness properties are 

kept when simulating the closed loop nonlinear uncertain system. 

Additionally, the design of the loop-shaping controller is significantly 

simplified as compared to the classical linearization technique, since the 

final linearized model bears significant information regarding the initial 

nonlinear model. Finally, it is shown that robust nonlinear controller - 

designed by combining this new method for feedback linearization 

(Guillard & Bourles, 2000) with a linear H∞ controller - offers a simple 

and efficient solution, both in terms of reference tracking and input 

disturbance rejection. 

The dynamics of a quadrotor is a simplified form of helicopter dynamics 

that exhibits the basic problems including underactuation, strong coupling, 

multi-input/multi-output. The derived controller is capable of dealing with 

such problems simultaneously and satisfactorily. As the quadrotor model 

discussed in this thesis is similar to a full-scale, unmanned helicopter 

model, the same control configuration derived for a quadrotor is also 

applicable for a helicopter model. The simulation results with and without 

input disturbances are shown in this project. Some aspects still remain 

untouched. The controller shows high sensitivity to state disturbances, 

which may be in the interest of future research that may be considered as 

an enhancement to what is discussed in this project. 
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