el

)t o

People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University M’ Hamed BOUGARA - Boumerdes

Université de Boumerdes
University of Bounerdes
T—_———

Institute of Electrical and Electronic Engineering
Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of
the Requirements for the Degree of

MASTER

In Control

Option: Control

Title:

Robust Feedback Linearization of a
Quadrotor

Presented by:
- SAIDI Lakhdar

Supervisor:
DR. Kessal

Registration Number:......../2017




Abstract

Classical feedback linearization which transforms the original nonlinear system into a
Brunovsky form has poor robustness properties and cannot be easily combined with Hoo
type control law. We propose here to transform by feedback the original nonlinear
system into its tangent linearized system around an operating point, and prove that this
allows to preserve the good robustness properties obtained by a linear control law which
it is associated with. This method constitutes a way of robustly controlling an uncertain

nonlinear system around an operating point.
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Introduction

Almost all of the controller design techniques used for various processes are based on
well-established results in linear control theory. For nonlinear systems (NLS), in
particular, the predominant approach is linearization around an operating point
followed by one of the controller design techniques developed for linear systems. For a
certain class of nonlinear systems, the particular nature of nonlinearity can create
difficult stability and performance problems and therefore renders the linear controllers

unacceptable (Ray, 1981).

Several authors proposed the method of feedback linearization (Chou & Wu, 1995), to
design a nonlinear controller. The main idea with feedback linearization is based on
the fact that the system is not entirely nonlinear, which allows to transform a nonlinear
system into an equivalent linear system by effectively canceling out the nonlinear
terms (Seo et al., 2007). It provides a way of addressing the nonlinearities in the
system while allowing one to use the power of linear control design techniques to

address nonlinear closed loop performance specifications.

Nevertheless, the classical feedback linearization technique has certain disadvantages
regarding robustness. A robust linear controller designed for the linearized system may
not guarantee robustness when applied to the initial nonlinear system, mainly because
the linearized system obtained by feedback linearization is in the Brunovsky form, a
non robust form whose dynamics is completely different from that of the original
system and which is highly vulnerable to uncertainties (Franco, et al., 2006). To
eliminate the drawbacks of classical feedback linearization, a robust feedback
linearization method has been developed for uncertain nonlinear systems (Franco, et
al., 2006; Guillard & Bourles, 2000; Franco et al., 2005) and its efficiency proved
theoretically by W-stability (Guillard & Bourles, 2000). The method proposed ensures
that a robust linear controller, designed for the linearized system obtained using robust
feedback linearization, will maintain the robustness properties when applied to the

initial nonlinear system.



In this project, the robust feedback linearization method is presented after a brief
discussion about the classical feedback linearization approach. The mathematical steps
are given in both approaches. It is shown how the classical approach can be altered in
order to obtain a linearized system that coincides with the tangent linearized system
around the chosen operating point, rather than the classical chain of integrators.
Further, a robust linear controller is designed for the feedback linearized system using
loop-shaping techniques and then applied to the original nonlinear system. To test the
robustness of the method, a flight dynamic model is given, concerning the control of
an Unmanned Aerial Vehicle (UAV), a quad rotor.

The project is organized as follows. In chapter 1, the mathematical concepts of
feedback linearization are presented both in the classical and robust approach. The
authors propose a technique for disturbance rejection in the case of robust feed- back
linearization, based on a feed-forward controller. Section 3 presents the Hoo robust
stabilization problem. To exemplify the robustness of the method described, the
nonlinear robust control of a quadcopter is given in Section 4. Simulations results for
reference tracking, as well as disturbance rejection are given, considering uncertainties

in the process parameters.



CHAPTER 1: FEEDBACK LINEARIZATION

Classical versus robust approach

Feedback linearization implies the exact cancelling of nonlinearities in a nonlinear
system, being a widely used technique in various domains such as robot control
(Robenack, 2005), power system control (Dabo et al., 2009), and also in chemical
process control (Barkhordari Yazdi & Jahed-Motlagh, 2009; Pop & Dulf, 2010; Pop et
al, 2010), etc. The majority of nonlinear control techniques using feedback
linearization also use a strategy to enhance robustness. This section describes the
mathematical steps required to obtain the final closed-loop control structure, to be later

used with robust linear control.

1.1 Classical feedback linearization

1.1.1 Feedback linearization for SISO systems

In the classical approach of feedback linearization as introduced by Isidori (Isidori,
1995), the Lie derivative and relative degree of the nonlinear system plays an

important role. For a single input single output system, given by:

x=fx)+g()u
y = h(x) (1.1)

with x € R™ is the state, u is the control input, y is the output, f and g are smooth
vector fields on R™ and h is a smooth nonlinear function. Differentiating y with

respect to time, we obtain:

. 0h oh

y=——f(x)+--g)

y = Leh(x) + Lygh(x)u (1.2)
with Leh(x):R™ — R and Lyh(x): R™ — R, defined as the Lie derivatives of h with

respect to f and g, respectively. Let U be an open set containing the equilibrium point

Xo , that is a point where f(x) becomes null — f(x, = 0. Thus, if in equation (1.2), the
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Lie derivative of h with respect to g - L,h(x) - is bounded away from zero for all

x € U (Sastry, 1999), then the state feedback law

1
Lgh(x)

u= (—Lsh(x) + v) (1.3)

yields a linear first order system from the supplementary input v to the initial output of
the system, y. Thus, there exists a state feedback law, similar to (1.3), that makes the
nonlinear system in (1.2) linear. The relative degree of system (1.2) is defined as the
number of times the output has to be differentiated before the input appears in its
expression. This is equivalent to the denominator in (1.3) being bounded away from
zero, for all x € U. In general, the relative degree of a nonlinear system at x, € U is

defined as an integer r satisfying:

LyLih(x) = 0,¥x €U,i =0, ......,7 — 2
LyLi h(xp) # 0 (1.4)

Thus, if the nonlinear system in (1.1) has relative degree equal to r, then the

differentiation of y in (1.2) is continued until:
y® = Lih(x) + LyL " h(x)u (1.5)

with the control input equal to:

1
u= W (—L}h(x) + v) (1.6)

The final (new) input — output relation becomes
y(r) =7 (1.7)
which is linear and can be written as a chain of integrators (Brunovsky form). The

control law in (6) yields (n-r) states of the nonlinear system in (1.1) unobservable
through state feedback.
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The problem of measurable disturbances has been tackled also in the framework of
feedback linearization. In general, for a nonlinear system affected by a measurable

disturbance d:
x=f(x)+ g +pl)d
y = h(x) (1.8)

with p(x) a smooth vector field.
Similar to the relative degree of the nonlinear system, a disturbance relative degree is

defined as a value k for which the following relation holds:

L,Lih(x) = 0,¥x €U,i = 0,.......k — 2
Ly Lf " h(xp) # 0 (1.9)

Thus, a comparison between the input relative degree and the disturbance relative
degree gives a measure of the effect that each external signal has on the output
(Daoutidis and Kravaris, 1989). If k < r, , the disturbance will have a more direct
effect upon the output, as compared to the input signal, and therefore a simple control
law as given in (1.6) cannot ensure the disturbance rejection (Henson and Seborg,
1997). In this case complex feedforward structures are required and effective control
must involve anticipatory action for the disturbance. The control law in (1.6) is
modified to include a dynamic feedforward/ state feedback component which
differentiates a state- and disturbance-dependent signal up to » — k times, in addition
to the pure static state feedback component. In the particular case that r = k, both the
disturbance and the manipulated input affect the output in the same way. Therefore, a
feed-forward/state feedback element which is static in the disturbance is necessary in
the control law in addition to the pure state feedback element (Daoutidis and Kravaris,
1989):

Y LT (—Lph(x) + v — L, Ly p(x)d) (1.10)
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1.1.2 Feedback linearization for MIMO systems

The feedback linearization method can be extended to multiple input multiple output
nonlinear square systems (Sastry, 1999). For a MIMO nonlinear system having n

states and m inputs/outputs the following representation is used:

x=f(x)+gxu
y = h(x) (1.11)

where x € R™ is the state, u € R™ is the control input vector and y € R™ is the
output vector.

Similar to the SISO case, a vector relative degree is defined for the MIMO system in
(2.11). The problem of finding the vector relative degree implies differentiation of
each output signal until one of the input signals appears explicitly in the

differentiation. For each output signal, we define 7; as the smallest integer such that at

least one of the inputs appears in yjrf :

T T ri—1
v/ =L b+ N Ly (L hw (L12)

and at least one term Lgi(L;j_lhj)ui # 0 for some x (Sastry, 1999). In what follows

we assume that the sum of the relative degrees of each output is equal to the number of
states of the nonlinear system. Such an assumption implies that the feedback
linearization method is exact. Thus, neither of the state variables of the original
nonlinear system is rendered unobservable through feedback linearization. The

matrixM (x), defined as the decoupling matrix of the system, is given as:

-1 -1
Ly, (Lf"hy) =+ Ly, (L7 hy)
M= : : (1.13)
m_1 m_1
Ly, (L7 “hy) + Ly (L7 hy)
The nonlinear system in (11) has a defined vector relative degree 14,75, ...... , T, at the

pollint xo if Ly, (L’]ihj(x)> =0, 0<k<nr—2fori=1,...,m and the matrix

4
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M (x,) is nonsingular, If the vector relative degree 7,13, ......, 13, IS well defined, then

(1.12) can be written as:

yl( 1) (Lf hi (x)) [u1 ]
Pl = : +M@)| ¢ | (1.14)
yg’”) (A NE9) Um

Since M (x,) is nonsingular, then M(x) € R™*™ is nonsingular for each x € U. As a

consequence, the control signal vector can be written as:

L hy
u=-M"1(x) +M10)v = a,(x) + B, (xX)v (1.15)

L™ o

yielding the linearized system as:

(r1)

)’1 ¢!
_ ﬁ s m (1.16)
yrglrm) VUm

The states x undergo a change of coordinates given by:

1 =1 T
x. = [y - LTy o Ve L; V| (1.17)
The nonlinear MIMO system in (1.11) is linearized to give:

x. =Acx. + B.v (1.18)
with:
A Orl X1 ee Orlxrm-l BCl 07"1 X1 et OT1 XTm-l

01"2 X1 BC2 e OTZ XTm |

Or2 X7y AC2 . 0ryxm | B

[ : »Be = l : :
OTm X1r1 T‘m X1 OT‘m XT3 AC OTm XTr1 OTm X1 OTm XT3 BCm

m
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where each term individually is given by:

o - O OC

In the classical approach, the feedback linearization is achieved through a feedback
control law and a state transformation, leading to a linearized system in the form of a
chain of integrators (Isidori, 1995). Thus the design of the linear controller is difficult,
since the linearized system obtained bears no physical meaning similar to the initial
nonlinear system (Pop et al., 2009). In fact, two nonlinear systems having the same

degree will lead to the same feedback linearized system.

1.2 Robust feedback linearization

Contrarily to the classical feedback linearization which transforms the original
nonlinear system (1.11) into a Brunovsky form, the present method consists in
transforming it into its tangent linearized system around an operating point.

Consider the multivariable nonlinear system with disturbance vector d given in the

following equation:

x = f(x) + gx)u+plx)d
y = h(x) (1.19)

with x € R™ is the state, u € R™ is the control input vector, y € R™ is the output

vector, f and g are smooth vector fields on R™ and h is a smooth nonlinear function.

Choosing the operating point as x = 0.

7= Az + Bw (1.20)
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with A= i and B =

ox x=0 o a x=0

In what follows, we assume that the feedback linearization conditions (Isidori, 1995)
are satisfied and that the output of the nonlinear system given in (1.19) can be chosen
as:

y(x) = A(x), where A(x) = [A1(x) A;(x) ...... An(x)] is a vector formed by real-
valued functions A;(x) defined on a neighborhood U of x = 0 satisfying, for numbers

71,72, e , T SUCh thatry + 1, + ... +1r, =n
i) foralli € [1,m],allje [1,m]andall x € u
ri—2
LgAi(x) = Lo Ledi(x) = -+ = LgiLfJ 4(x) =0

i) the m X m matrix :

Ly L7 A o Ly LA
M = s :
rm—1 m—1
Ly, L7" A o Ly L Ay

is nonsingular at x = 0, we will denote M = M(0).

Consider on this basis the associated classical linearizing stete feedback

u(x,v) = a.(x) + f.(x)v (1.21)
with
a.(x) £ —-M1(x)N(x), B.(x) £-M"'(x)

NGO 2 (L2 L2 () o L A (0]

and change of coordinates
xe = a.(x) (1.22)
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given by
a.(x) = [ac1 (x) ag,(x) ... a, (x)]

r. T
a,(x) = [Ai(x) Lg2;(x) - lll(x)]
Then under state feedback
ul,w) = alx) + f(x)w

and change of coordinate

z= B(x)

defined by
a(x) £ a,(x) + B (LT ' (x)
B(x) = B.(x)R™ (1.23)
B(x) 2T '8 (x)

where

A aac A 6(2)6' A -
L& — .axxz()’ Tz—mgx_o andR:Ml,

system (1.11) is transformed into system (1.20).
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1.1 Preliminar notions

The quadrotor, an aircraft made up of four engines, holds the electronic board in the
middle and the engines at four extremities. Before describing the mathematical model
of a quadrotor, it is necessary to introduce the reference coordinates in which we
describe the structure and the position. For the quadrotor, it is possible to use two
reference systems. The first is fixed and the second is mobile.

The fixed coordinate system, called also inertial, is a system where the first Newton’s
law is considered valid. As fixed coordinate system, we use the OygpSystems, where
NED is for North-East-Down. As we can observe from the following Figure (), its

vectors are directed to Nord, East and to the center of the Earth.

Figure 2.1: Oygp fixed reference system.

The mobile reference system that we have previously mentioned is united with the
barycenter of the quadrotor. In the scientific literature it is called OABC system, where
ABC is for Aircraft Body Center. Figure 2.2 illustrates underlines the two coordinate

systems.
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Figure 2.2: Mobile reference system and fixed reference system.

The quadrotor helicopter is shown in figure (). Two diagonal motors (1) and (3) are
running in the same direction (counter-clockwise) whereas the two others (2) and (4) in
the clockwise direction to eliminate the anti-torque. On varying the rotor speeds
altogether with the same quantity the lift forces will change affecting in this case the
altitude z of the system and enabling vertical take-Off/On landing. Yaw angle is
obtained by speeding up the clockwise motors or slowing down depending on the
desired angle direction. Tilting around x (roll angle) axis allows the quadrotor to move
toward y direction. The sense of direction depends on the sense of angle whether it is
positive or negative. Tilting around y (pitch angle) axis allows the quadrotor to move

toward x direction.

Figure 2.3: A quadcopter model

10
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11.2 Euler angles:

The Euler angles are three angles introduced by Leonhard Euler to describe the
orientation of a rigid body. To describe such an orientation in the 3-dimensional

Euclidean space, three parameters are required. They are also used to describe the
orientation of a frame of reference relative to another and they transform the
coordinates of a point in a reference frame in the coordinates of the same point in

another reference frame. The Euler angles are typically denoted as@ € [—m, ],
0 € [_2—”%] and ¢ € [—m, ]. Euler angles represent a sequence of three elemental

rotations, i.e. rotations about the axes of a coordinate system, since any orientation can
be achieved by composing three elemental rotations. These rotations start from a
known standard orientation. This combination used is described by the following

rotation matrices:

10 0

R, () =10 c(®) —S(qb)], (2.1)
0 s(¢p) c(¢)
rc(@) 0 s(0)

R,()=| 0 1 0 ] (2.2)
—s(@) 0 c¢(0)
c(y) —-s@) 0

R,(Y) =[s(¥) c@) 0], (2.3)
L 0 0 1

where c( ) =cos( ) and s( ) =sin( ). So, the inertial position coordinates and

the body reference coordinates are related by the rotation matrix R, (9, 6,).

Rzyx (@,0,9) = R,(¥). Ry (0). R (D)

c(@)c®) s(@)s(@)c(®) —c(P)s@) c()s(O)c() +s(P)s)
= [c@)s@) s(@)s(@)s@) +c(P)c(¥) c(P)sO)s() —s(P)c(¥)
—s(6) s(¢)c(6) c(¢p)c(®)

(2.4)

11
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11.3 Quadrotor mathematical model

We provide here a mathematical model of the quadrotor, exploiting Newton and Euler
equations for the 3D motion of a rigid body. The goal of this section is to obtain a
deeper understanding of the dynamics of the quadrotor and to provide a model that is
sufficiently reliable for simulating and controlling its behavior.

Let us call [X,Y,Z,®,0,%]" the vector containing the linear and angular position of
the quadrotor in the earth frame and [u, v, w,p, q,7]” the vector containing the linear
and angular velocities in the body frame. From 3D body dynamics, it follows that the

two reference frames are linked by the following relations:

V=R.Vy (2.5)
W =T.W; (2.6)

where =[xy 2]” € R, W=[pdvy] € R®, Vy=[uvw]” € R® and W, =
[pqr]" € R3and T isamatrix for angular transformations

[1 s()t(6) c(qb)t(e)]

[0 c(e) —s(¢)

T—|O @ @ | (2.7)
1 @ c(0)

where t(8) = tani{8). So, the kinematic model of the quadrotor is:

(x = Ws(@)s() + c(§)cW)s )] — v[e()sW) — c)s(@)s©)] +ulc@)c®)])
y = v[e($)c) + 5(@)s@)s©O)] — wlc@Is(@) — c(@)sW)s(@)] + ulc(@)sW)]
2 = wle(@)e(8)] - uls(®)] + v[c(0)s()]

& = p +Tlc(@)EO)] +als(@)EO)]

6 = alc(9)] ~ rls(@)]

(@) s(d)
\ Y=r2m T e )

(2.8)

12



CHAPTER 2: CASE STUDY: QUADROTOR

Newton’s law states the following matrix relation for the total force acting on the
quadrotor:

m(WB TAN VB + VB) = fB (29)

. . T
where m is the mass of the quadrotor, A is the cross productand f = [f; f, f,] € R®
is the total force.

Euler’s equation gives the total torque applied to the quadrotor:

T . . . . .
Where mp = [m, m, m,]" € R® is the total torque and I is the diagonal inertia

matrix:

I
I=10
0

o< o

So, the dynamic model of the quadrotor in the body frame is:

(ﬁczm(u+qw—rv)\
fy =m@ —pw + ru)
. =m(w +pv —qu
fo =m(w +pv — qu) 2.11)
mxzplx—quy+quz

m, = ql, +prl, —prl,

\m, =1l —pql, +pql,)
The equations stand as long as we assume that the origin and the axes of the body
frame coincide with the barycenter of the quadrotor and the principal axes.

13



CHAPTER 2: CASE STUDY: QUADROTOR

I11.4 Forces and moments

The external forces in the body frame, Fzgiven by
fB = ngT.éZ _ﬂég + fW (212)

Where é; is the unit vector in the inertial Z axis, é3 is the unit vector in the body

z axis, g is the gravitational acceleration, f; is the total thrust generated by rotors and

fow = [fwx fwy fWZ]T € R? are the forces produced by wind on the quadrotors. The

external moments in the body frame, mg are given by
mp =1 + Ty

T . .
where 15 = [Tx Ty TZ] € R3 are the control torques generated by differences in the

rotor speeds and t,, = [wa Tuwy rWZ]T € R3 are the torques produced by wind on the

quadrotors. So, the complete dynamic model of the quadrotor in the body frame is

obteined substituting the force expression in (2.11):

—mg[s(8)] + fux = m(u+ qw — 1)
mg[c(0)s(@)] + fuy = m(w — pw +120)

Jmgle@c@)] + fur = fi = mw +pv = qu) |
Ty + Tux =0, —qrl, +qri,

(2.15)

T, + Ty, =ql, +prl, —pri,

\ T, + Ty, =11, —pqly + pqu /

14
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11.5 Actuator dynamics

Here we consider the inputs that can be applied to the system in order to control the
behavior of the quadrotor. The rotors are four and the degrees of freedom we control
are as many: commonly, the control inputs that are considered are one for the vertical
thrust and one for each of the angular motions. Let us consider the values of the input
forces and torques proportional to the squared speeds of the rotors; their values are the

following:

fi = Ky (QF + Q5 + 0F + QF)

T, = K1 (Q5 — Q)

T, = K1 (Q — Q3) (2.16)
1, = K;1 (Q5 4+ 03 — 02 — 0))

where [ is the distance between any rotor and the center of the drone, K, is the thrust
factor and K, is the drag factor. Substituting (2.16) in (2.15), we have: the dynamic

model of the quadrotor in the body frame is:

( -mg[s(@)] + fux = m(ﬁ +qw —1v) )
myg[c(8)s(P)] + fuy = m(v —pw + 1u)

| male(@)e(@)] + i, ~b(@F +0F + 0% + ) = m(w + pv — qu)
bl(Q5 — Q) + Ty =pL — qrl, +qrl,

>

bl(QF — Q3) + 1y = ql, + prl, —prl,

L d(Q5 + Qf — Q% + 03) + 1, =71, —pql, +pql, )

15

(2.17)
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11.6 State-space model

x=[¢p 06 v p q r u v w x y z]l e R?

space from (2.8) and (2.15):

b = p +rlc@@)] + qls()e(6)]
6 = qle(@)] — rls(¢)]

o= rC(cb) s(¢)
FORREIO
: L, —1 T, +71
y z x wx
p = rq +
I, I,
L= Ty + Ty
q= pr + ——
Iy Iy
Ix - Iy T, + Twz
= +
rET P I,
fWX

u=rv—qw—g[s(@)] + —

1; =pw —ru+ g[s(¢)c()] + %

fwz _ft

m

W =qu—pv+ glc(@)c(p)] +

;:c = w[s(@)s@) + c(Pp)c(W)s(0)] — vlc(P)s() — c(W)s(¢d)s(@)] + ulc(¥)c(6)]
y = vle(@)e@) + s(@)s@)s(0)] = wlc@)s(p) — c(p)s(P)s(O)] + ulc(@)s()]

z =wlc(@)c(@)] —uls(@)] + v[c(8)s(¢)]

Below we obtain two alternative forms of the dynamical model useful for studying the

control. From Newton’s law we can write:

Therefore:

(2.18)

It is possible to rewrite the equations of the dynamics of the quadrotor in the state

(2.20)

16

. (2.19)
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(- fi

X =—=
m

fe

m

\ é=g—%w@an

[5($)s@W) + c(d)c)s(®)]
Yy = —L1e@)s@)se) - capys@)]

~"

(2.21)

Now a simplification is made by setting [(2) 0 z/)]T = [p qr]".This assumption holds

true for small angles of movement. So, the dynamic model of the quadrotor in the

inertial frame is:

Redefining the state’s vector as:

(= ~ L (s@sw) + c@recseo))
y =L le@)s)s(©) — cpys@))
2= g~ (@)

9 "_Iy—IZé' Ty
¢ = I Y+ I
é L-L T
B
L= 0 T,

\ V= I, PO + I, )

(2.22)

x=[x y 2z p 6 ¢ x y z p q rI'€R?  (223)

It is possible to rewrite the equations of the quadrotor in the spate-space:

4
x = f(x) + Z g (),
i=1

Where:

(2.24)

17
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Z
s(¢) N c(¢)
L OR0)
qlc(P)] —rls(¢p)]
p+qls(¢)t(@)] + rlc(¢)t(6)]

£(x) = 8 (2.25)

g

(Iy B IZ)
.

(IZ - Ix)
r

Iy

(L, —1,)
I,

pPq

And
g1(x)=[0 0 0 0 0 0 g/ g7 g7 0 0 0]" eR"

1 T - 12
g2(0=[0 0 0 0 0 0000 — 0 0€eR

X

1
g:(x)=[0 0 0 0 0 0 00 0 0 — 0]"TeR™?

I

1
gsx)=[0 0 0 0O OO O O OO O I—]TE]RU

Z

With
gl =——[s(@)s@) + c($)c(¥)s(0)]
g =——[c@)s(@) — c(@)s)s(O)]
97 = ——[c(¢)c(®)]

18
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11.7 Control strategies

In this section we discuss two control strategies, both of them are nonlinear, the first is
the classical feedback linearization method, whereas the second one is the robust
feedback linearization approach. Some comparisons about these control strategies are

done.

11.7.1 Feedback linearization control

The quadrotor has six outputs y = [x y z® 8 y]” and the vehicle has four inputs.
There are two degrees of freedom that are left uncontrollable. A solution to this
problem is to use dynamic feedback control (Exact linearization and non-interacting
control via dynamic feedback). Such control structures are based on the input-output
linearization described earlier.
First, it is necessary to define the control objective by choosing an output function for
the system (2.24). To avoid unnecessary complications, we set the number of input
channels equal to the number of output channels. We would like to control the absolute
position of the quadrotor [x y z]” and the angle 1. Therefore, the output function is
chosen as:

y=h® =[x y z 9] (2.26)
We assume the state x of the system being fully available for measurements and we
seek a static state feedback control law of the form:

u=ax)+px) v (2.27)

Where V is an external reference input to be defined later,

a(x) = [ay (x) a, (%) as () ay(x) 7 and B(x) € R**

Let [ryrr3m]’ be the relative degree vector of the system (2.24).

We have:

[yl(rl) yz(Tz) yg(rg) yéfm)]T =bx) + A(X) - u (2.28)
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Where
_LglL;l_lhl(X) ngL;l_lhl(X) Lg3L;1_1h1(X) Lg4L;1_1h1(X)_
. Lot 'y (0)  LpL? ' hy(0) LgsLP Thy(x)  LyaLi ' hy(x)
X) =

LglL;3_1h3(X) ngL;g_lhg(X) ngL;g_lhg(X) Lg4L;3_1h3(X)
L1 L7 T ha(®) Lol ha(®) LgsLi 'Ry LgaLlft ™ Ry ()
(2.29)

_L]rrl hi(X)]
L;Z h, (x)
L? hy(x)
_L? hy (%)

b(x) = (2.30)

The input-output decoupling problem is solvable if and only if the matrix A(x) is

nonsingular. In this case, the static state feedback with:

{a(x) = -A"1(x) ~b(X)}

B = A1 (x) (2:31)

renders the closed loop system linear and decoupled from an input-output point of

view. More precisely, we have
yl.(ri) =vy; foralli,1<i<4 (2.32)
However, for the nonlinear system (2.24), we have

T1=T'2=T3=T4=2

and
[61’1 0 0 0]
621 0 0 0
A(X)‘l(s&1 o 0 0|
Lo 0 645 6,4l
with

20



CHAPTER 2: CASE STUDY: QUADROTOR

81,1 = g1

821 = g1

831 = g1
_ @)
37 Le(d)
044 = ﬂ
" Le(0)

Obviously A(x) is singular for all x and therefore the input-output decoupling problem
is not solvable for the system (2.24) by means of a static state feedback control law.

Setting u; equal to the output of a double integrator driven by u; , i.e

(=)
{ {=¢ (2.33)
kf = U

For consistency of notation we also set, for the other input channels which have been
left unchanged, the following

(uz = UZ\
s = Us (2.34)
Uy = Uy

Note that u; is not anymore an input for the system (2.24) but becomes the internal

state ¢ for the new dynamical system (2.33). The extended system obtained is

described by equations of the form:

. 4
x=f(x)+ ) gi(®)u, (2335)
2
In which

x=[x y z v 6 ¢ x y z { § p q rITER*  (236)
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X
Y
Z

@) @)
T ™ "o

qle(@)] — r[s($)]
p + qls(@)LO)] + rlc($)t(6)]
. g1, 0,6)

f(x) = gE W, 0,$) (2.37)
92, 0,6)¢
¢
0
(Iy_Iz)

Iy
(IZI Iy) pr

y
(Ix_l )

And

g1(x)=[0 0 0

g2(x) = [0

o
(en)

g3(x)=[0 0 0

g.()=[0 0 0

0

(en)
o
o
o

0 0 0 O

0

=

0

S

)

0

lel—\O

)

0

0 0]" e R!*
0 0]" e R™
1
- O]T € RM
Iy

1
0 TFER“

Now, the input-output decoupling problem is solvable for the nonlinear system (2.24)
by means of a dynamic feedback control law if it is solvable via a static feedback for
the extended system (2.35). For the nonlinear system, the relative degree vector

[r1 mp 13 73] IS given by

T'1=T'2=T3=4, T4=2
And we have
b oy y y " = b(x) + Ax)u (2.38)

where A(x) and b(x) are computed using equations (2.29) and (2.30).

The matrix A(x) is nonsingular.
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Therefore, the input-output decoupling problem is solvable for the system (2.24) by
means of a dynamic feedback control law of the form:

u= a(g) + ,8&) -V (2.39)
where a(x) and B (x) are computed using (2.31) Recall the relation between u and u
(2.33) and (2.34), we get the structure in Figure 2.4 for the control law of the original
system (2.24).

r Y
.Lrl4.- Uy f f . ][ ¢=w
U2 _
s =)+ B(x) v 2 2, quadrotor
'L-‘4.- g Uy
R U g

Figure 2.4: Block diagram of the control law.

Moreover, since the extended system (2.35) has dimension n = 14, the condition is
fulfilled and, therefore, the system can be transformed via a dynamic feedback into a
system which, in suitable coordinates, is fully linear and controllable. The change of

coordinates z = @(x) is given by:

23



CHAPTER 2: CASE STUDY: QUADROTOR

(1 =hx)=x
Zy = thl(X) =X
Z3 = szchl(X) =X

Zy = L]%hl (X) = x(3)

75 = ho(x) =y
Ze = Lehy(x) = y
77 = L2h,(X) =
T 2(%) 3(]3) , (2.40)
zg=Lih,(x) =y
z9 = h3(x) =z
Z10 = th3 (X) =7
Z11 = szch3(X) =7
z1p = Lhs (x) = 20
z13 = hy(x) = 1/{
\ Z14 = Lehy(X) =Y
In the new coordinates, the system appears as

{z=A2+Bv }
y=C(Cz

where

L=1[z21 2z 23 Zy Zs Z¢ Z7 Zg Z9 Zi90 Z11 Z12 Z13

V=[v1 v, v3 n]’ eR*

A, 0 0 0
— 0 A]. 0 0 14x14
A=1o o a, ofER
0 0 0 A,
B4
_ B 14x4
B=|p’|eRr
By

(2.41)

z14]7
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In the following figure, the scheme of the linear system is shown.

e el e i
V2 —m [ |78 | T | %, [ /5=l
Vs _pl [ “12 [ <11 [ 210 I - 20 =2
Uy - 214 13 =1

Figure 2.5: Block diagram of the closed loop system.

On the linear system (2.41), it is possible to impose a further control, using for

example PD controller.
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11.8 Robust Feedback Linearization :

Consider the multivariable nonlinear system with disturbance vector d given in (1.19):

x = f(x) + glu+plx)d
y = h(x)

where d € R™ is the noise and unknown perturbation vector, and d = [dg dp]”, and
where dg is the noise vector of size 14. dp is composed of aerodynamic forces
disturbances [A,, Ay, A,] T and aerodynamic moment disturbances [Ap,Aq,Ar]T. They
act on the UAV and are computed from the aerodynamic coefficients C; as
A; = pair C; Q% (pg, the air density, Q is the velocity of the UAV with respect to
the air), (C; depends on several parameters like the angle between airspeed and the
body fixed reference system, the aerodynamic and geometric form of the wing).

The robust feedback linearization method used in this context is based on Sobolev

norm defined as:
Il hlly= [fooo hT (H)h(t)dt +f ﬁT(t)ﬁ(t)dt]% (2.42)
0

It transforms a nonlinear system into its tangent linearized system around an operating

point. Then, under state feedback
ule,w) = alx) + p)w (2.43)

and change of coordinates

z = ¢p(x) (2.44)
defined by
a(x) =a.(x)+ Bc(x)LT . (x)
B(x) =B ()R (2.45)
¢(x) =T "¢ (x)
where
oa, 0, _
L= A= e T = %M:O;R = a1

ac(x) = A1 (0)b(x), B (x) = A7 (x)

then the nonlinear system is transformed into a following one
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. 0Q
z=Az+ B,w + [ap(x)]xz(a—l(z) (2.46)
with
of (x)
A= , B, =g(0
ox |._q 2 =9(0)

For the quadrotor helicopter the input-output decoupling problem is solvable for the
nonlinear system by means of static feedback. The vector relative degree {ry, r;, 13,
1.} is given by:
n=n=r=4nrn=>2
and we have
b(x) = [Lihi(x) LPha(x) Lihs(x)  Lihy ()]
Pc (%) = [Be1 (%), P2 (%), Pe3 (), Pea(X)]”

hy (%) = xo _
thl (X) = X7 = Xy

x) = A "
Per() Lfhy (x) = Ex + 9{x10 = %0
L} hy (x) = xg
hy(x) = ¥o _
Lehy(x) = xg =y
(PcZ(x) =

Zh _A_y . -
Liha(x) = —tai (X4, X5, X6)X10 = Yo

L}hy (x) = yo
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hs(x) = 2 _
th3(X) = X9 = Zj

¢ x) = AZ .
c3(%) L]%hg(x)=z+g+gfx10 = 2
Lhs3(x) = z,
boa(2) [h4(x)=x4]
x) = '

T Lpha(x) = x4

Ajr Dz Az Ay

AQx) = Do1 By Dyz Doy

with

Ay = LgllL;l_lhl(x)
1
= —E(Cx6Cx4Sx5 + Sx6Sx4)

Aqp = ngL;1_1h1 (x)

= SxcCx,Sxc — Cx:S
- (x10Sx6Cx4Sx5 — x19Cx6SX4)

d

-1

Ays = Lyl ™ hy(x) = m—ly(—x1oCX4CX5)
A4 =0

A21 = LglL;z_th(x)
1

Agp = ngL]rrZ_lhz (x)
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= (X105X6SX4SX5 + xlOCx6Cx4)
ml,

d
-1
Azz = Lg3L]rc2 ha (%) = m—ly(—x105x4cx5)

A24 = Lg4L;2_1h2(x) =0

1
Az = Lo L ha(x) = ——(CxsC
31 g1hf 3(x) m( x5CX)

d
Agy = L, L7 Tha(x) =
32 g2bs 3(x%) ml

X

(x19Sx6Cxs)

_ d
Az = LyslLy "hy(x) = — (x10Sxs)

mly

1
Azq = Lg4L;3 h3(x) =0
A41 = LglL;4_1h4(x) =0

Ay = ngL;4_1h4(x) =0

_ d
Agz = Ly thy(x) = I_(Sx6Sex5)
y

1
-1
Dyy = Lg4L;4 hy(x) = I—(stsexs)

In fact the system in equation (2.45) is still nonlinear because of w vector. One seeks a

controller which ensures the compensated system to be internally asymptotically stable

and its output to tend asymptotically toward a desired trajectory even in the presence

of external disturbance.

In this context the linear H,, is proposed.
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Robust Heo controller design

To ensure stability and performance against modelling errors, we have chosen the
method of McFarlane-Glover to design a robust linear controller for the feedback
linearized system. The method of loop-shaping is chosen due to its ability to address
robust performance and robust stability in two different stages of controller design
(McFarlane and Glover, 1990).

The method of loopshaping consists of three steps:

Step 1. Open loop shaping

Using a pre-weighting matrix W, and/or a post-weighting matrix W, , the minimum
and maxiumum singular values are modified to shape the response. This step results in

an augmented matrix of the process transfer function:Ps = W,PW,
Ps
~— W, W e—

Figure 2.6 : Augmented matrix of the process transfer function

The stability margin is computed as

1 . I 1
T 0] = R (2.47)
max K stabilizator
Where
P, = M7 'N,

which is the normalized left coprime factorization of the process transfer function
matrix. If £,,,, < 1, the pre and post weighting matrices have to be modified by
relaxing the constraints imposed on the open loop shaping. If the value of &,,,, IS
acceptable, for a value max € <&,,,, the resulting controller - Ka - is computed in

order to satilsfy the following relation:
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I 10— Pk M| < & (2.48)

Figure 2.7: Robust closed loop control scheme

Step 3. Final robust controller

The final resulting controller is given by the sub-optimal controller Ka weighted with
the matrices W; and/or W, : K = WIKaWo .

Using the McFarlane-Glover method, the loop shaping is done without considering the
problem of robust stability, which is explcitily taken into account at the second design
step, by imposing a stability margin for the closed loop system. This stability margin

max ¢ is an indicator of the efficiency of the loopshaping technique.

K
(Ao (o

Figure2.8: Optimal controller obtained with the pre and post weighting matrices
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Results and discussion

In order to verify the effectiveness of the proposed control law, the overall system is

tested in numerical simulations. The physical parameters for quadrotor are:
Ix=0.62 N m s?, ly=0.62 N ms?, 1z=1.24Nms?, m =1 Kg,
g = 9.81 m/s?.

The reference trajectory chosen for x; (t), y;(t), z4 (t)and Y4 (t) is

x4 (t) = cos(0.5t)

yq(t) = sin(0.5¢t)
z4(t) = 0.5¢t
Pa(t) =0

The initial conditions are: x;(0) = 0.5m .

v4(0) =0m,zd(0)=0mand ,(0) = 0rad. All other initial conditions are zero.
To test the robustness of the controller, disturbances have been introduced. The most
likely disturbance acting on the quadrotor is wind in horizontal plane, which can be

modeled by forces d,, , dny, chosen as

d,,, (t) = 1.5 + 2.5sin(4t)
dpy = 2.5 + 1.5sin(3t)

All other external disturbances are set to zero.
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Figure 3,1: The position and attitude of quadrotor in the closed-loop with Feedback
Linearization control (the case without external disturbances)
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Figure 3.2: The position errors of quadrotor in the closed-loop with feedback

Linearization (the case without external disturbances).
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Figure 3.3: Trajectories x, y, z and y with the robust feedback linearization
control.

We can see that tracking simulation results for both classical and robust feedback
linearization approach for the case without external disturbances show convergence
toward reference trajectory.

Choosing another trajectory for x, that has initial point 0.55, and see how much our
system is sensitive to parameter variation in both classical and robust feedback
linearization approach.

Classical Feedback Linearization

T T I I I
0.8} L el P B o L . - MNominal
: : : : : Parameter Variation

| | | | I | I |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Figure 3.4: Position x for the classical feedback linearization.
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Robust Feedback Linearization
I 1 I I I I I . |
: . —— Nominal H
Parameter Variation

| 1 1 I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 3.5: Position x for the robust feedback linearization.

\
x

x {m) v ()
Figure 3.6: The quadrotor and reference trajectory for case with Robust Feedback
Linearization, with external disturbances

It is clear that with robust feedback linearization our system is more robust to external
disturbances.

13 2
E I_'K E 1
\__:-II 1L z 4]
hal 10 E -1
. " time(s) ’ : time (s)
~ -
= a
= =
B e
: : 3 ; % ' : 5 5
time (s) time (s)

Figure3.7: The force and torques of quadrotor in the closed-loop without external
disturbances.
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Figure3.8: The force and torques of quadrotor in the closed-loop with external
disturbances.

The last two figures show the force as well as the torques of quadcopter with both no
and with external disturbances.

Discussion:

As shown theoretically in this thesis and illustrated by the simulations in
the last chapter about Simulation and Results, a robust nonlinear controller
for the nonlinear system is obtained by using the robust feedback
linearization associated with a McFarlane-Glover H,, controller. This does
not hold when the classical feedback linearization is used due to the fact
the linearized system obtained by feedback linearization is in the
Brunovsky form, a non robust form whose dynamics is completely
different from that of the original system and which is highly vulnerable to

uncertainties
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Conclusion

As it has been previously demonstrated theoretically through
mathematical computations (Guillard, et al., 2000), the results in this
project prove that by combining the robust method of feedback
linearization with a robust linear controller, the robustness properties are
kept when simulating the closed loop nonlinear uncertain system.
Additionally, the design of the loop-shaping controller is significantly
simplified as compared to the classical linearization technique, since the
final linearized model bears significant information regarding the initial
nonlinear model. Finally, it is shown that robust nonlinear controller -
designed by combining this new method for feedback linearization
(Guillard & Bourles, 2000) with a linear Hoo controller - offers a simple
and efficient solution, both in terms of reference tracking and input
disturbance rejection.

The dynamics of a quadrotor is a simplified form of helicopter dynamics
that exhibits the basic problems including underactuation, strong coupling,
multi-input/multi-output. The derived controller is capable of dealing with
such problems simultaneously and satisfactorily. As the quadrotor model
discussed in this thesis is similar to a full-scale, unmanned helicopter
model, the same control configuration derived for a quadrotor is also
applicable for a helicopter model. The simulation results with and without
input disturbances are shown in this project. Some aspects still remain
untouched. The controller shows high sensitivity to state disturbances,
which may be in the interest of future research that may be considered as

an enhancement to what is discussed in this project.
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