

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieure et de la Recherche Scientifique Université M'HAMED BOUGARA BOUMERDES Faculté des Hydrocarbures et de Chimie

Mémoire de fin d'études

En vue de l'obtention du diplôme:

MASTER

Présenté par:

KROUMBA Abdelmalek

Filière: Hydrocarbure et chimie.

Spécialité : Génie pétrolier: Production des hydrocarbures.

Thème: Impact de l'arrêt de la réinjection de gaz sur la performance des puits d'Alrar

Soutenu le: 04/07/2023

Devant le jury:

M. NAIT AMAR DOCTEUR SH DLAB Boumerdes Président
 N.ZERZIBI Professeur UMBB Boumerdes Encadreur
 S.ZIOUANI DOCTEUR SH DLAB Boumerdes Examinateur
 R.SAIF Maitre-assistant UMBB Boumerdes Examinatrice

Promotion: 2018

Année Universitaire: 2022/2023

Dédicaces

J'ai le grand plaisir de dédier ce modeste travail :

A ma très chère mère, qui me donne toujours l'espoir de vivre et qui n'a jamais cessé de prier pour moi.

A ma femme et mes enfants « Anes, Yasser, Rima et Yakoub »

A tous mes frères et sœurs.

A tous mes amis.

A Tous ceux que j'aime et je respecte.

KROUMBA ABDELMALEK

Remerciements

Mes sincères remerciements s'adressent premièrement et avant tout au Dieu, notre créateur qui nous a donné la force pour accomplir ce travail.

A monsieur le professeur Noureddine ZERAIBI mon promoteur de m'avoir dirigé lors de la réalisation de ce travail.

A monsieur le professeur KEDOUR Omar qui m'a beaucoup aidé.

Je dresse mes sincères remerciements à l'ensemble des enseignants du département gisement à son tête monsieur GUARECHE et à tous les responsables de la faculté qui ont contribué à notre formation.

Je dresse aussi tous mes sincères remerciements à Monsieur le professeur Boudjema HAMADA le doyen de la faculté des Hydrocarbures et de la chimie.

ملخص

لأسباب فنية وتجارية، تقرر تقليل إعادة حقن الغازفي المكمن التابع لحقل الغار ناحية سطح اعتبارًا من عام 2001 وتم الإغلاق التام في عام 2008وكانت النتائج المترتبة على إيقاف إعادة الحقن كما يلي:

- •انخفاض كبير في ضغط المكمن في الجزء الشرقي و الجزء الغربي للحقل ، والتي قدرت بحوالي 7 بار في السنة.
 - •انخفاض في إنتاج الغاز السائل مما ترتب عنه انخفاض في إنتاج المكثفات.
 - •انخفاض في انتاج الزيت البترول على مستوى حلقة الزيت.

در استنا هذه كانت تنصب في البحث إنطلاقا من إنشاء ملاحظات للحقائق من أصل المشكلة، وانعكاساتها على المكمن ومعايير الإنتاج، وإنشاء نماذج انخفاض الإنتاج التي سيتم من خلالها معرفة منحى التوقع للإنتاج في المستقبل، اقتراح حلول قصيرة والمتوسطة المدى لتحسين الإنتاج،وفي الأخير نقوم بدراسة الاقتصادية لهذه المقترحات.

Résumé

Pour des raisons technico-commerciales, il a été décidé de réduire à partir de 2001 la réinjection de gaz et un arrêt total a été effectué en 2008 et cet arrêt avait pour conséquences :

- Une chute considérable de la pression de gisement dans les parties Est et Ouest du gisement qui s'estime aux environ de 7 bars par année.
- Une baisse de la production de gaz et de la richesse qui se traduit par une diminution de la production de condensat.
- Une chute important de production du brut de l'anneau d'huile

Notre étude s'inscrit dans ce contexte et essaye d'établir un constat des faits depuis l'origine du problème, ses répercussions sur les paramètres de réservoir et de production, établissement des modèles de déclin de production à partir desquels les profils prévisionnels seront élaborés, proposition des solutions à court et à moyen terme pour l'amélioration de production, enfin voir l'efficacité économique de ces propositions.

Abstract

For technical and commercial reasons, it was decided to reduce gas re-injection into the reservoir of the Alrar field at Stah region, starting in 2001, and it was completely stopped in 2008. The consequences of stopping re-injection were as follows:

- Significant decrease in reservoir pressure in the east and west parts of the field, which is estimated at about 7bars per year.
- Significant decrease in wet gas production, which translates into a decrease in the production of condensate.
 - Significant decrease in oil production of the oil rim.

This study was focused on the research based on the creation of observations of the facts of the origin of the problem, and its reflections on the reservoir and production, and the establishment of production decline models through which the expectation trend for future production will be known, proposing short and medium-term solutions

Mots Clés:

Alrar, Influx, Réinjection, Déclin

Table des matières

LISTE DE	S ABREVIATIONS	
	S TABLEAUX	
LISTE DE	S FIGURES	
LISTE DE	S ANNEXES	
	JCTION GENERALE	
CHAPITRE :	1 : GEOLOGIE	2
Introi	DUCTION	2
2.1 Di	ESCRIPTION GEOLOGIQUE	3
2.1.1	Structure	3
2.1.2	Stratigraphie	3
2.2 CA	NRACTERISTIQUES PETROPHYSIQUES	
	VELOPPEMENT DU CHAMP	
2.3.1	Alrar Est	
2.3.2	Alrar Ouest	
2.3.3	Anneau d'huile d'Alrar	
	2 : ETUDE PVT	
	iction	
	DMPORTEMENT DES FLUIDES ENTRE LE GISEMENT ET LA SURFACE	
	ENERALITES SUR LES GISEMENTS DE GAZ	
3.2.1	Gisement de gaz humide	
3.2.2	Gisement de gaz sec	
3.2.2	· · · · · · · · · · · · · · · · · · ·	
	Gisement de gaz à condensat	
	ECOULEMENT DU CONDENSAT	
3.3.1	Les trois régions d'écoulement	
3.3.2	La coexistence des trois régions d'écoulement	
3.3.3	Chronologie d'apparition des trois régions	
	NALYSE ET PERFORMANCE D'UN METRE CUBE DE GAZ	
3.4.1	Échantillonnage	
3.4.2	Étude différentielle à volume constant (CVD)	
	3 : ESTIMATION DES RESERVES EN PLACE ET ANALYSE DE DECLIN	
3.1 CALC	CUL VOLUMETRIQUE DES QUANTITES EN PLACE	
4.1.1	Principe des méthodes volumétriques	
4.1.2	Calcul du volume de roche imprégné V _R	
4.1.3	Calcul du volume des fluides à partir des isopaques	26
4.2 Pr	RINCIPE DE LA METHODE BILAN MATIERE	
4.2.1	Réserves de gaz	31
4.2.2	Réserves d'huile	32
4.3 Ar	NALYSE DE DECLIN	34
4.3.1	Flux Alrar:	34
4.3.2	Cyclage de gaz au champ d'Alrar	37
4.3.3	Analyse de déclin	39
4.3.4	Déclin des puits de l'anneau d'huile	
4.3.5	Déclin des puits de gaz	
	4 : APPORT DE GAS LIFT POUR LES PUITS D'HUILE ET L'APPORT DU BOOSTING POUR LES PUITS DE	
	PPORT DE GAS LIFT POUR LES PUITS D'HUILE	
5.1.1	Principe de Gas Lift	
5.1.2	Types de Gas Lift	
5.1.3	Les principaux paramètres du Gas-Lift	
5.1.4	Aperçu sur le logiciel d'optimisation (Pipesim)	
5.1.5	Modélisation des puits	
5.1.6	Reproduction des performances actuelles des puits par PIPESIM	
5.1.7	Optimisation de la production	
5.1.7 5.1.8	Calcul économique	55 68

5.2 APPORT DE BOOSTING POUR LES PUITS DE GAZ	76
5.2.1 Présentation de l'étude pratique du Boosting	77
Le choix de la corrélation de l'écoulement vertical	
5.2.2 Résultats	81
CONCLUSION GENERALE	89
BIBLIOGRAPHIE	90
ANNEXE A : RESULTATS DU CALCUL PVT ET BILAN MATIERE	91
ANNEXE B : EVOLUTION DE LA PRODUCTION DES PUITS D'HUILE AVEC ET SANS GAS-LIFT	94
ANNEXE C : EVOLUTION DE LA PRODUCTION DES PUITS DE GAZ AVEC ET SANS BOOSTING	97

Liste des abréviations

FVF (Bo): Facteur volumétrique de fond de l'huile

Bg: Facteur volumétrique de fond de gaz

Z : Facteur de compressibilité Tr : Température du réservoir

Pr: Pression du réservoir

Tpc : Température pseudo critique Tpr : Température Pseudo résuite Ppc : Pression pseudo critique Ppr : Pression pseudo réduite

Pwf: Pression de fond dynamique

Pws : Pression statique T : Température de fond

GPS : Gradient statique de pression
 GT : Gradient statique de température
 GPD : Gradient dynamique de pression
 H_{perfos} : La profondeur des perforations

H_{gage}: La profondeur des gages OOIP : Original Oil In Place OGIP : Original Gas In Place

GOC: Gas Oil Contact WOC: Water Oil Contact

Liste des tableaux

Tableau 1.1: Caractéristiques moyennes du F3 d'Alrar	5
Tableau 1.2:Caractéristiques moyennes de l'anneau d'huile	5
Tableau 1.3: État des puits de l'anneau d'huile	
Tableau 2.1: Régions d'écoulement	15
Tableau 2.2: Composition du fluide de réservoir	
Tableau 2.3: Résultats de CVD	
Tableau 3.1: Les surfaces des différentes hauteurs	28
Tableau 3.2: Les paramètres des puits	29
Tableau 3.3: Données PVT	
Tableau 3.4: Historique de production de l'anneau d'huile	33
Tableau 3.5: événements entre 1965-1997	35
Tableau 3.6: événements entre 1998-2004	36
Tableau 3.7: événements entre 2005-2008	36
Tableau3.8: Prévision de production de gaz	44
Tableau 4.1: Données de DST	51
Tableau 4.2 AOFP des puits HP	
Tableau 4.3: Données PVT	
Tableau 4.4: Données de complétions.	
Tableau 4.5: Exemples de corrélations d'écoulement vertical	
Tableau 4.6: Erreur relative des différentes corrélations des pertes de charges verticales	
Tableau 4.7: Points de fonctionnement des puits	
Tableau 4.8: Comparaison entre les données mesurées et celles calculées par PIPESIM	
Tableau 4.9: Impacte de déclin de pression sur la production pour le puits AL72	
Tableau 4.10: Paramètres du Gas lift	
Tableau 4.11: Profondeur d'injection des différents puits	
Tableau 4.12: Débits d'injection optimaux et maximaux du puits AL57	64
Tableau 4.13: Apport de Gas lift pour le puits AL63	
Tableau 4.14: Production avec et sans gaz lift pour les puits	
Tableau 4.15: Production avec et sans gaz lift pour les puits	
Tableau 4.16: Production avec et sans gaz lift pour les puits	
Tableau 4.17: Production avec et sans gaz lift pour les puits	
Tableau 4.18: Hypothèses économiques	
Tableau 4.19: Estimation économique du cas de base	
Tableau 4.20: Estimation économique du projet GL	
Tableau 4.21: Choix des puits	
Tableau 4.22: Données des puits	
Tableau 4.23: Données de flow correlation matching du puits AL50	
Tableau 4.24: Résultats des corrélations pour l'ensemble des puits étudiés	
Tableau 4.25: Comparaison entre les données mesurées et celles calculées par PIPESIM	
Tableau 4.26: L'impact de déclin de pression sur la production du puits AL50	
Tableau 4.27: L'impact de déclin de pression sur la production du puits AL50 dans le	
Boosting	
Tableau 4.28: Production de gaz des puits avec et sans Boosting	
Tableau 4.29: Production de condensat des puits avec et sans Boosting	
Tableau 4.30: Production des groupes avec et sans Boosting	8′/

Liste des figures

Figure 1.1: Situation géographique du champ d'Alrar	2
Figure 1.2: Carte stratigraphique du gisement d'Alrar	
Figure 1.3:Corrélation perméabilité-porosité	5
Figure 1.4:Champ d'Alrar Est	
Figure 1.5:Champ d'Alrar Ouest	7
Figure 2.1: Diagramme de phase (pression-température) d'un gaz humide	9
Figure 2.2: Diagramme de phase (pression-température) d'un gaz sec	. 10
Figure 2.3: Diagramme P-T d'un gaz à condensat	
Figure 2.4: Perméabilité relative Gaz-Huile en présence d'eau	
Figure 2.5:Régions d'écoulement dans un gisement de gaz à condensat	
Figure 2.6:Écoulement d'un gaz à condensat	
Figure 2.7:Evolution de la saturation et de la pression en fonction du temps	
Figure 2.8: Schéma du procédé CVD	. 18
Figure 2.9: Facteur de compressibilité Z	. 22
Figure 2.10: Dépôt de condensat dans le réservoir	. 22
Figure 2.11:Évolution de Bg en fonction de la pression	. 23
Figure 3.1:Carte isobathe au toit de F3 ALRAR	. 27
Figure 3.2: Carte isobathe au mur de F3 ALRAR	
Figure 3.3:Graphe profondeurs en fonction des surfaces H=f(S)	
Figure 3.4: Graphe $P/Z = f(Gp-Gi)$. 31
Figure 3.5:principe du bilan matière	
Figure 3.6: Détermination des réserves d'huile N	
Figure 3.7: Mouvement des influx 1965-1997	. 35
Figure 3.8: événements entre 2005-2008	. 36
Figure 3.9: Mouvement des influx 2005-2008	
Figure 3.10: Carte des puits d'Alrar	. 38
Figure 3.11: Evolution de la pression du champ d'Alrar	. 39
Figure 3.12: Modèles de déclin d'Aprs	
Figure 3.13: modèle prévisionnel de production en huile	
Figure 3.14: Modèle de déclin des puits de gaz	
Figure 3.15: modèle prévisionnel de production en gaz	
Figure 4.1: AOFP des puits.	
Figure 4.2: Courbes inflow (IPR) et outflow (VLP) du puits AL72	
Figure 4.3: Déclin de la production du puits AL72	
Figure 4.4: Courbe de performance du Gas-lift du puits AL63	
Figure 4.5: Courbe de performance du Gas-lift du puits AL57	
Figure 4.6: Courbe de performance d'AL57 en 2016	
Figure 4.7: Apport de gaz lift pour le puits AL63	
Figure 4.8:Schéma représentant la boucle Gaz Lift	
Figure 4.9: Source de gaz pour les puits de l'anneau d'huile	
Figure 4.10:Manifold Gas-Lift.	
Figure 4.11: Installation de surface d'un puits équipé en Gas-Lift	
Figure 4.12: Side Pocket Mandrels et vannes gaslift	
Figure 4.13: Schéma simplifié du Boosting	
Figure 4.14: Flow correlation matching pour AL50	. 78

Figure 4.15: Analyse nodale du puits AL50	80
Figure 4.16: Evolution de la production du gaz sous l'effet de déclin de pression	82
Figure 4.17: Evolution de la production de condensat sous l'effet de déclin de pression	82
Figure 4.18:Impact de déclin de pression sur la production de gaz du puits AL50 dans le cas du E	Boosting84
Figure 4.19: Impact de déclin de pression sur la production de condensat du puits AL50 dans	s le cas du
Boosting84	

Liste des annexes

Annexe A: Résultats du calcul PVT et bilan matière

Annexe B: Evolution de la production des puits d'huile avec et sans Gas-Lift

Annexe C: Evolution de la production des puits de gaz avec et sans Boosting

Introduction générale

Le champ d'Alrar se constitue de deux gisements de gaz et un anneau d'huile. Le gisement a été mis en exploitation dans sa partie Est en 1961 et le gaz produit étant utilisé pour le maintien de pression et l'alimentation en gaz lift des puits du champ de Zarzaitin, et en 1984 a commencé le démarrage du CTG (centre de traitement de gaz) d'Alrar avec cyclage périphérique. La mise en exploitation de Alrar Ouest a été en 1997 mais sans cyclage.

A partir de 2001, la réduction de la réinjection de gaz a été prise en tenant compte de la quantité de gaz de vente jusqu'à 2008 où un arrêt de la réinjection de gaz a été envisagé sous les contraintes de la quantité de gaz de vente et surtout de l'augmentation des influx vers le champ voisin, l'arrêt de la réinjection avait pour conséquences :

- Une chute considérable de la pression de gisement dans les parties Est et Ouest du gisement qui s'estime au environ de 7 bars par année.
- Une baisse de la production de gaz et de la richesse qui se traduit par la diminution de la production de condensat.
- L'exploitation de l'anneau d'huile sans assistance d'une injection de gaz avait des répercussions sur la pression de gisement et sur la production.

Donc la déplétion du réservoir constitue le problème majeur de l'exploitation du gisement.

La question qui se pose c'est quelles sont les solutions qui peuvent être envisagées pour faire face au déclin de la production dans le champ d'Alrar ?

Notre étude vient pour apporter quelques éléments de réponses à ce problématique, l'étude se portera sur l'estimation des réserves de gaz et d'huile du champ d'Alrar,une analyse PVT, l'analyse du déclin de production et une évaluation technico-économique des procédés Gaz lift et Boosting dans le champ d'Alrar.

1 Chapitre 1 : Géologie

Introduction

Le champ d'Alrar est situé dans le bassin d'Illizi à la frontière Algéro-Libyenne, à 100Km environ au Nord d'In-amenas. Il a été découvert en août 1961 par le forage du puits AL525 (ex-ALE-1) révélait l'existence d'un important gisement de gaz humide.

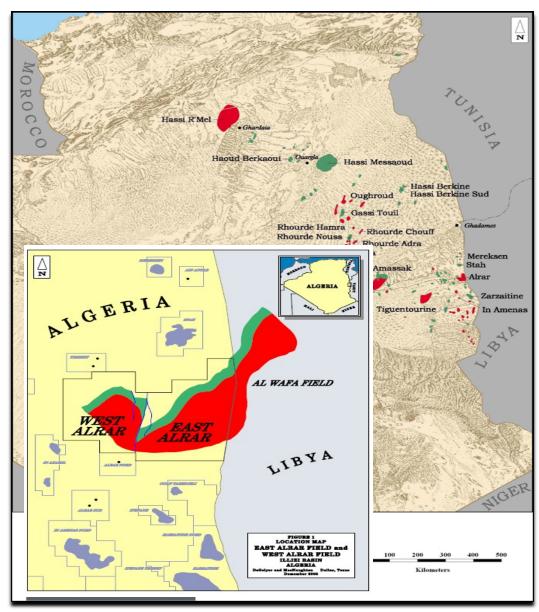


Figure 1.1: Situation géographique du champ d'Alrar

1.1 Description géologique

1.1.1 Structure

Le réservoir dévonien F3 d'ALRAR Est et Ouest est un piège du type mixte (stratigraphique et structural), il se présente sous la forme d'un monoclinal faillé à pendage Nord-Nord Est, Sud-Sud-Ouest allongé dans la direction Nord -Nord Est, Sud-Sud Est. La structure est limitée :

A l'Est par la frontière libyenne

Au Nord par l'aquifère

Au Sud et à l'Ouest par la disparition des grès du F3

La structure du F3 est compartimentée par plusieurs accidents Nord-Sud. Les deux gisements Est et Ouest sont séparés par une faille moyenne non étanche de rejet 100m, passant entre ALB-1 et AL-510 (ex AL-2). Le compartiment d'ALRAR Ouest et DAIA ZARET est la suite du gisement d'ALRAR vers l'Ouest. Le pendage du réservoir F3 est faible, la profondeur au toit du réservoir varie entre 2500m et 2650m. L'altitude de la surface varie assez peu, la valeur moyenne est de 700m au-dessus du niveau de la mer.

1.1.2 Stratigraphie

Le réservoir F3 est bien défini en diagraphie, la limite supérieure est nette sur l'ensemble des logs. La limite inférieure, bien marquée par le Neutron et le Sonique est parfois moins tranchée sur le Gamma Ray et la PS du fait des développements argileux se produisant à la base du réservoir. Les analyses des sondages du réservoir F3 ont révélé l'existence de cinq niveaux superposés qui sont de haut en bas :

- 1- Grès hétérométriques brun foncé, moyens à grossiers, peu consolidés à ciment argilosiliceux peu développé : l'épaisseur moyenne est de 25m.
- 2- Grès brun foncés, fins à moyens, plus consolidés que les précédents à inclusion carbonatées. fréquents, formant par endroit le ciment prédominant : l'épaisseur moyenne est de 4m.
- 3- Grès quartzitiques blancs, fins à moyens, compacts à joints argilo-carboneux stylolitiques.
- 4- Grès calcaires fins et calcaires argileux très finement gréseux à petites lentilles irrégulières de calcaire fossilifère : l'épaisseur est de 0,5 m.
- 5- Argiles noires compactes à ptéropodes, petites lamellibranches et brachiopodes, l'épaisseur est de 10m environ.

AGE	PROF. ETAGE LITHOLOGIE					
	0		Sènorien			
-		Turanien et				Dobaie Calc
<u>-</u>			Cénomarien			et Angile
⋖	53		Argile à		22222	Angle et
—		Gypse			Gypse	
	158,5		In Akamil			Angle et Gr
œ	239		\$2000000000000000000000000000000000000			
O			Taouratine			Argile Gréset
						Sable
JURASS.	462,5	Zarzitine	Sup.			Altenance
		Za	Moy.			Dargile
TRAS			Inf.			De sable
	941		Tiguertourine			Argile Calca
	4447			1,1,1,1,1,1		elSable
	1113		Westphalien			Calcaire
			et			Angle, Mar
<u> </u>	Al Ph		Namurien			etGrés
NO F	1570					Angile, Gré
8		Viseen				bancs de dolonie e
Œ						Calcaire
Š	2045					=
	ZIFIC	Tournaisien			Angle are intercalation	
			i oumaisien			de Grés
	2345		F2		2000000000	-
	2377	Supérieur	Série			Grés argite
DEVONIEN	2311	Disp. Freen.	Sense Angleus	X E		Argile
Š	2587	Moyen	F3		12121212	Grés+quatz
<u> </u>	2632,5	· , —-	F4	***************************************	000000000000000000000000000000000000000	Grés, ang
8	3 -	Inférieur	<u>c</u>	2		
z			9 <u>C</u>	1		Grés et an
SILURIEN		Lludlow			7/4	Argile à grap

Figure 1.2: Carte stratigraphique du gisement d'Alrar

1.2 Caractéristiques pétrophysiques

Caractéristiques moyennes d'Alrar

Une partie supérieure représentant le sommet et une partie inférieure la base.

Tableau 1.1: Caractéristiques moyennes du F3 d'Alrar

Caractéristique	ES	ST	OUEST		
	Supérieure Inférieure		Supérieure	Inférieure	
Porosité %	13,1	5,6	10,7	6,4	
Swi %	11,2	26,5	13,4	27,2	
Hauteur utile (m)	15,6	7,9	12,1	5,9	

Caractéristique moyenne de l'anneau d'huile :

Tableau 1.2: Caractéristiques moyennes de l'anneau d'huile

Epaisseur totale (m)	10	
Epaisseur utile (m)	4,95	
Surface 10^6 (m²)	84,29	
Porosité moyenne (%)	10	
Swi moyenne (%)	25	
<i>Volume de réservoir 10⁶ m³</i>	417,23	

NB: Le Cut-Off de porosité et de perméabilité ont été fixés respectivement à 5% et 1md

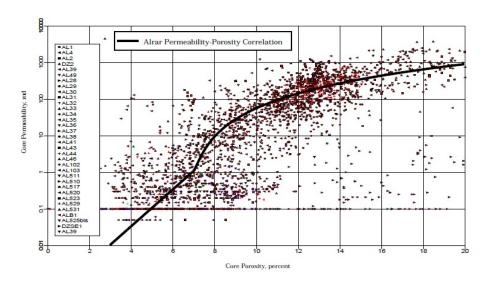


Figure 1.3: Corrélation perméabilité-porosité

1.3 Développement du champ

1.3.1 Alrar Est

Le champ d'ALRAR Est a été exploité d'Août 1965 jusqu'à Décembre 1984, par cinq (05) puits, le gaz produit était utilisé pour le maintien de pression de l'aquifère (MPZR) et l'alimentation en Gas-lift des puits de ZARZAITINE.

Depuis Décembre 1984, la production de gaz est assurée par 22 puits producteurs.

L'opération de cyclage partiel a commencé en Décembre 1984. Le cyclage est périphérique et est assuré par 26 puits injecteurs de gaz formant ainsi 3 dorsales nord-est, Nord-Ouest et Sud.

En 1994, deux puits producteurs de gaz ont été forés. Dans la même année, 3 puits injecteurs ont été reconvertis en producteur de gaz.

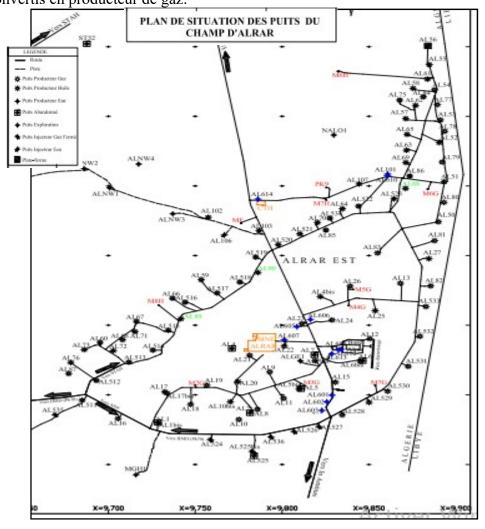


Figure 1.4: Champ d'Alrar Est

1.3.2 Alrar Ouest

Alrar Ouest a été mis en exploitation en juillet 1997 avec 13 puits et une production moyenne journalière de $11x10^6$ m³. En trois ans d'exploitation le réservoir a perdu 19 bars ce qui nous a poussé à réfléchir sur la stratégie d'exploitation.

La pression moyenne du réservoir d'Alrar Ouest en 2012 est de 150.5 bars.

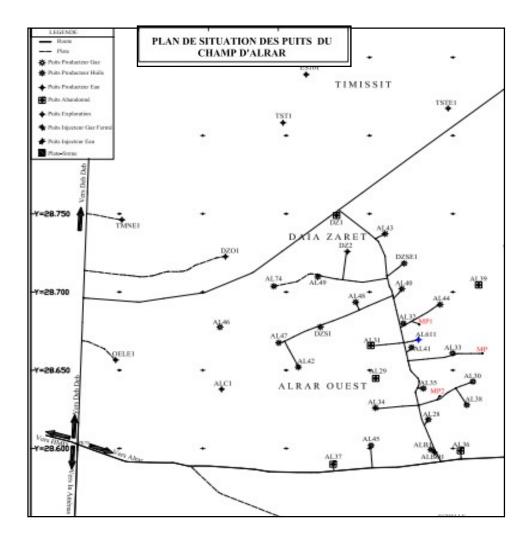


Figure 1.1: Champ d'Alrar Ouest

1.3.3 Anneau d'huile d'Alrar

Présentation

L'anneau d'huile d'Alrar a été mis en évidence en 1969 par le forage du 1^{er}puits dans le réservoir Dévonien F3 de la partie Nord du champ, ce puits a rencontré le contact Gaz/Huile à -1948 m/Nmer. En 1970, le forage du puits NAL 106 a permis de localiser le contact Huile/Eau à 1958 m/Nmer. Et limité ainsi l'anneau d'huile à une hauteur de 10m.

Tableau1.3: État des puits de l'anneau d'huile

Caractéristique	ES	ST	OUEST		
	Supérieure	Inférieure	Supérieure	Inférieure	
Porosité %	13,1	5,6	10,7	6,4	
Swi %	11,2	26,5	13,4	27,2	
Hauteur utile (m)	15,6	7,9	12,1	5,9	

2 Chapitre 2 : Etude PVT

Introduction

L'étude du comportement des fluides du réservoir est primordiale dans chaque étude développement. Elle devient indispensable lorsqu'il s'agit des réservoirs à gaz et en particulier les réservoirs à gaz à condensat.

2.1 Comportement des fluides entre le gisement et la surface

Les huiles et les gaz sont contenus dans les réservoirs vont donner des fluides qui, en volume et en quantité, seront assez différents lorsqu'ils arriveront en surface.

Ainsi, les huiles légères (plus riches en éléments légers et intermédiaires C₁ à C₄) vont donner beaucoup de gaz en surface. À l'inverse, les huiles lourdes ne produisent que très peu de gaz ou pas du tout (huiles mortes).

Les gaz secs ne donnent que des gaz en surface et, à l'inverse, les gaz à condensat pourront donner beaucoup de condensat (ou gazoline).

2.2 Généralités sur les gisements de gaz

Il existe trois types de gisements de gaz qui diffèrent suivant leurs compositions en surface et dans le réservoir :

2.2.1 Gisement de gaz humide

Un gisement à gaz humide est un effluent qui est associé à une production de liquide en surface sans donner lieu à une condensation rétrograde dans le réservoir.

L'isotherme du réservoir ne coupe pas la couche de saturation (Tr >Tcc), et que le point représentatif des conditions de production en surface est situé à l'intérieur de la courbe de saturation.

Souvent un gaz humide contient moins d'hydrocarbures lourds qu'un gaz à condensat.

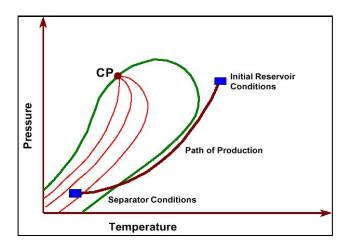


Figure 2.2: Diagramme de phase (pression-température) d'un gaz humide

2.2.2 Gisement de gaz sec

Un gisement de gaz sec, c'est un gisement ne donnant pas lieu à la condensation rétrograde dans le réservoir (formation de liquide), ni dans les installations de production, l'isotherme correspond à la température du réservoir et le point représentatif des conditions de production en surface sont situés à l'extérieur de la courbe de saturation. Le constituant prépondérant des gaz secs est le méthane (94 % à 98%).

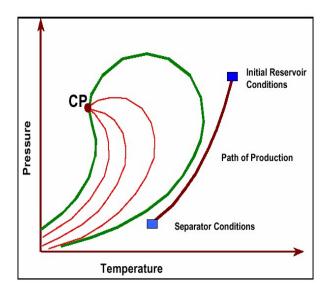


Figure 2.3:Diagramme de phase (pression-température) d'un gaz sec

2.2.3 Gisement de gaz à condensat

Un gaz à condensat est un fluide pour lequel la température aux conditions réservoir est supérieure à la valeur de la température critique et inférieure à la température cricondentherme.

Dans un diagramme pression-température, les conditions réservoir initiales sont situées au-dessus ou sur la courbe de rosée de l'enveloppe de phase.

Figure 2.4: Diagramme P-T d'un gaz à condensat

Au cours de la déplétion, le point représentatif de ces conditions réservoir se déplace parallèlement à l'ordonné dans le sens des pressions décroissantes, lorsque la pression du gaz dans le gisement devient inférieure à la pression de rosée une phase liquide apparaît.

La saturation de ce liquide augmente et atteint son maximum au point D et ensuite diminue « phénomène de ré-vaporisation ».

Le point C: représente le point critique, il est défini comme étant l'état pour lequel toutes les propriétés du liquide et de la vapeur deviennent égales ou encore comme le point de raccordement des courbes de bulle et de rosée qu'on appelle courbe de saturation.

(Tc,Pc): le couple température pression qui représente le point critique

R: le point de rosée ou le point où disparaît la dernière goutte de liquide.

Tcc: température maximale de condensation « cricondentherme », ou la température maximale d'équilibre 2 phases.

Pcc: la pression maximale d'équilibre-2phases (circondenbar).

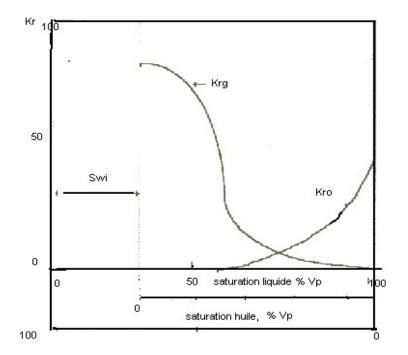
La forme de cette courbe de saturation, l'extension de la zone diphasique, les coordonnées critiques et les pressions, températures maximales d'équilibre-2 phases dépendent de la composition du mélange.

La phase liquide résultante reste généralement piégée dans les pores de la roche réservoir, il en résulte qu'une partie des hydrocarbures en place dans le réservoir à haute valeur commerciale ne peut pas être produite. C'est pour cela qu'il est nécessaire d'exploiter les réservoirs contenant de tel fluide en utilisant le maintien de pression qui consiste à réinjecter du gaz sec dans le réservoir après extraction des liquides (condensat et GPL;), dont le but de conserver la pression initiale audessus de la pression de rosée pour empêcher la condensation rétrograde au niveau du réservoir.

Le phénomène rétrograde peut être observé expérimentalement en cellule, en procédant à la décompression à température constante et égale à celle du réservoir, d'un gaz provenant d'un gisement non déplétif, dans un premier temps il y'aura formation de liquide et son volume augmente lorsque la pression chute, puis en continuant à chuter la pression, du liquide commence à s'évaporer et le volume du gaz augmente et celui du liquide diminue.

Un tel phénomène est appelé phénomène rétrograde et le domaine intérieur de l'enveloppe de phase où se produit ce phénomène est appelé zone rétrograde (partie hachurée). Ces gisements sont généralement assez profonds (>2000m), le bilan matière s'effectue à partir d'une analyse PVT très soigneuse.

L'exploitation d'un tel gisement est caractérisée par deux phénomènes:


- Le dépôt du liquide qui suit le déclin isotherme de la pression c'est le phénomène rétrograde.
- La production du liquide en surface par suite de la détente avec abaissement de la température entre le réservoir et les installations de production.

Il est important de retenir que dans la plupart des gisements de gaz à condensat c'est seulement la phase vapeur en équilibre avec le liquide déposé que l'on produit, c'est à dire tant que la saturation du liquide est inférieure à la saturation critique, le liquide reste immobile (Scr varie entre 20% et 35%).

2.3 L'écoulement du condensat

2.3.1 Les trois régions d'écoulement

- Le dépôt liquide résultant de la condensation rétrograde en raison de la chute de pression fond dynamique au-dessous de la pression de rosée traduise une :
 - 1. Perte considérable du condensat.
 - 2. Réduction de la perméabilité relative du gaz et sa mobilité.
 - 3. Diminution de la délivrabilité d'un puits à gaz à condensat.
- Dans le cas où la saturation du condensat ne dépasse pas une certaine saturation appelée **saturation critique** (Scr) le liquide restera piégé dans les pores de la roche et ne deviendra jamais mobile. Dans le cas contraire, il se produira un écoulement simultané des deux phases liquide-vapeur.
- En effet, examinons le tracé de la courbe de perméabilité relative du gaz et de l'huile pour une roche réservoir quelconque. On remarquera que la phase huile commence à s'écouler (k_{ro}> 0) lorsque sa saturation ou fraction du volume des pores qu'elle occupe a une valeur minimale proche de 30% dans l'exemple donné.

Perméabilité relative Gaz-Huile en présence d'eau

Figure 2.5: Perméabilité relative Gaz-Huile en présence d'eau

- La situation indiquée par la figure ci-dessus est assez représentative de la moyenne des roches magazines pour lesquelles la saturation minimale entrainant la mobilité du liquide est de l'ordre de 25 à 35% du volume des pores.
- Le dépôt liquide rétrograde formé par condensation des gaz n'excédant pas pour la plupart des systèmes 15 à20% en volume il est clair que ce liquide restera piégé dans les pores de la roche et ne pourra pas être exploité.
- comme conséquence de ce qui précède on notera que l'exploitation d'un gaz à condensat se traduit par la production en surface d'un fluide qui n'est autre que la phase vapeur se trouvant en équilibre dans le réservoir avec la phase liquide.
- En effet, celui-ciétant immobile c'est seulement le gaz qui circule dans la roche, au moins dans les zones du réservoir éloignées du puits où le gradient de pression et le flux sont faibles.
- Aux abords du puits, on peut avoir une accumulation de liquide telle que la saturation excède la saturation critique et provoque l'écoulement de liquide.

L'écoulement d'un fluide dans un réservoir de gaz à condensât lors de sa production conduit à avoir 3 régions (Fevang et Whitson, 1995):

- **Région 1 :** c'est la région existante aux abords du puits où un écoulement simultané des deux phases liquide-gaz se produit avec des vitesses différentes.
- **Région 2:** pour cette région la saturation du condensât est inférieure à la saturation critique d'où l'immobilité du liquide donc l'écoulement produit dans cette région est monophasique.
- Région 3 : c'est la région qui contient une seule phase (gaz), elle représente la zone lointaine du réservoir. L'écoulement produit dans cette région est monophasique.

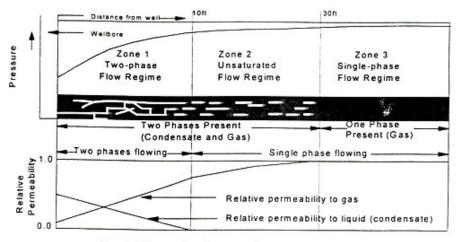


Figure 2. Flow regions in gas condensate reservoirs

Figure 2: Régions d'écoulement dans un gisement de gaz à condensat

> Région 1 (aux abords du puits)

- Dans cette région la saturation du condensât est au-dessus de la saturation critique (Scc) les deux phases existantes liquide-gaz sont soumises à la loi d'écoulement polyphasique.
- Cette région est la source de la détérioration de la délivrabilité d'un puits de gaz à condensât. La perméabilité relative du gaz est réduite, cela est dû essentiellement à la déposition du liquide dans les pores de cette région.
- La quantité du liquide déposé dans cette région dépend principalement des propriétés PVT du mélange original et le débit de production.

➤ Région 2 (condensât Buildup)

Le liquide commence à se déposer dans cette région mais avec une faible mobilité.

La saturation du condensât dans cette région est inférieure à la saturation critique, l'écoulement du gaz seulement se produit. La quantité du liquide déposée dépend essentiellement des propriétés PVT du mélange original et le débit de production.

En premier temps la taille de cette région est importante.

> Région 3 (monophasique)

C'est la région lointaine du centre du puits où la pression de réservoir est supérieure à la pression de rosée du fluide de réservoir. Le réservoir est à l'état monophasique la présence que du gaz et c'est le seul qui se déplace.

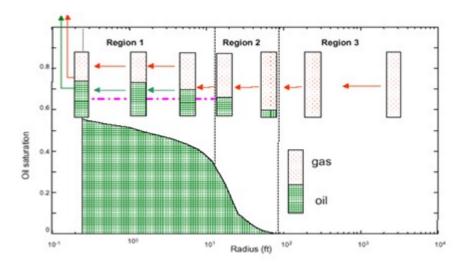


Figure 2.7: Écoulement d'un gaz à condensat

2.3.2 La coexistence des trois régions d'écoulement

Initialement, la pression de réservoir est supérieure à la pression de rosée, c'est seul la région 3qui existe dans le réservoir puis avec la déplétion les régions 1 et 2 apparaissent.

Lorsque la pression fond (Bottom Hole Flowing Pressure (BHFP)) est inférieure à la pression de rosée la région 1 existera toujours.

Lorsque la pression de réservoir chute au-dessous de la pression de rosée la région 2 existera avec la région 1 avec absence de la région 3.

Pour un gisement très riche en condensat la région 1 peut exister le long de réservoir (avec absence des régions 2 et 3 si la pression de réservoir chute au-dessous de la pression de rosée)

Tableau 2.1: Régions d'écoulement

	Région 1	Région 2	Région 3
$P_r > P_{\text{dew}}$	1	-	1
$P_r < P_{dew}$	1	1	1
$P_{wf} < P_{dew} < P_r$	1	0	1
1 : exis	ste 0 : peut	exister -: n'exi	ste pas

2.3.3 Chronologie d'apparition des trois régions

Dans la partie précédente on a discuté les trois régions dans le réservoir. Cependant, les trois régions peuvent être observées a n'importe quel point du réservoir en fonction du temps. La figure 2.8 montre l'historique de la pression et de la saturation et comment les régions apparaissent avec la déplétion.

- Initialement lorsque la pression de réservoir est supérieure à la pression de rosée il y'a une région monophasique. (Région 3)
- La chute de pression au-dessous de la pression de rosé entraine l'apparition de la région 2. Le temps que prends cette région aux alentours de puits est limitée entre l'apparition de la phase liquide et le moment ou cette phase atteint sa saturation critique. Après c'est seul la région 1 qui existe aux abords de puits.les 2 et 3 sont très courts (en termes de temps) dans cette région à l'inverse de la région lointaine du réservoir.
- La région 1 se développe rapidement aux abords de puits à cause de la chute importante de pression alors que la zone 3 existe encore dans d'autres régions du réservoir

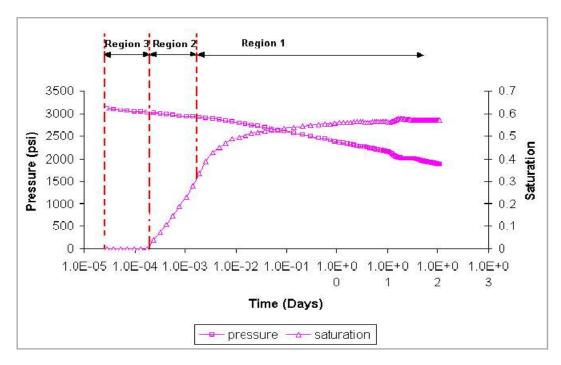


Figure 2.8: Evolution de la saturation et de la pression en fonction du temps

2.4 Analyse et performance d'un mètre cube de gaz

Outre les propriétés propres à la roche réservoir, celle des fluides en place sont primordiales pour le développement du gisement compte tenu de la nature de plus en plus critique des fluides exploités.

L'étude PVT nous donne une suite d'opérations et d'analyses qui définissent les grandeurs thermodynamiques caractérisant le fluide.

Le but de telle étude est de :

- ✓ Déterminer les caractéristiques, volumétriques et le changement d'état du fluide de gisement.
- ✓ Simuler les transformations qui affectent ce fluide au cours de son mouvement dans le réservoir et dans les installations de surface.

Pour cela on doit calculer en fonction de la pression de gisement :

- La production de gaz sec en surface et les caractéristiques de ce gaz.
- La production de gazoline et les caractéristiques de ce liquide
- Le GOR de production
- La récupération du gaz sec, gaz humide, GPL et gazoline.
- La saturation en condensat dans le réservoir

Dans la méthode de calcul suivante nous utiliserons directement les résultats des expériences PVT. Avant de définir quel type d'expérience PVT doit être utilisée, il convient de faire une hypothèse sur la mobilité du condensat dans le réservoir. Deux cas sont possibles :

a. Le condensat n'est pas mobile

On ne produit que la phase gazeuse (vapeur), On fait alors appel à une libération différentielle à volume constant. La pression de rosée est estimée égale à la pression initiale de gisement (234kg/cm²).

La production cumulée augmente moyennement avec la chute de pression. Cette augmentation pourrait être profitable si cette chute n'aura pas lieu dans le réservoir.

b. Le condensat est mobile : (S_{condensat}>S_{critique})

Dans ce cas, on utilise une libération éclaire à masse constante ainsi qu'un jeu des perméabilités relatives.

2.4.1 Échantillonnage

Dans le cas d'un gaz à condensat ou d'un gaz humide conduisant à la production d'un effluent diphasique, l'échantillonnage est réalisé au niveau d'un séparateur à haute pression.

Un échantillonnage est effectué de préférence sur les puits les plus récemment mis en exploitation de manière à opérer à une pression aussi proche que possible de la pression initiale. La première phase de préparation du puits consiste à renouveler la colonne de fluide contenu dans le tube de production de manière à éliminer toute source de contamination.

L'échantillonnage d'un gaz à condensat doit être effectué en réduisant le débit de manière à minimiser l'écart de pression entre le fond et la surface et à limiter autant que possible l'effet de condensation rétrograde, tout en assurant une vitesse suffisante pour faire remonter les gouttelettes de liquide.

Il existe certaines conditions à satisfaire concernant le conditionnement du puits :

- Un régime d'écoulement permanent.
- La pression en tête n'excède pas 1% de sa valeur initiale pendant 24 heures.
- Au niveau de séparateur, la variation du débit et de la pression ne doit pas dépasser les 5%.

2.4.2 Étude différentielle à volume constant (CVD)

Elle sert à simuler l'évolution des conditions dans un gisement en production.

2.4.2.1. Équipement utilise pour l'étude du gaz à condensat

L'équipement utilisé comprend :

- Une cellule d'équilibre entourée d'une enceinte thermostat par fluide caloporteur ; pour obtenir l'équilibre, la cellule est agitée par retournement :
 - Une mesure de pression aussi précise que possible ;
 - Une pompe à mercure motorisée double cylindre ;
 - Un gazomètre.

Cet équipement opère dans les conditions suivantes :

- Température : -20 °C à 180°C ;

- Pression: 0 à 70Mpa;

- Volume de la cellule ; 950 cm³.

Le principe de fonctionnement de cette cellule comporte :

- Un piston mécanique dont la position peut être modifié par déplacement, à la pompe d'un volume de mercure ; le déplacement de ce piston permet de faire varier le volume de la cellule.
- Un piston de mercure qui est utilisé conjointement avec le piston mécanique de manière à faire subir au mélange des déplacements à pression constante.
- Deux hublots de saphir permettant de voir les interfaces dans la cellule. Des déplacements à pression constante sont effectués de manière à faire apparaître les deux interfaces au niveau des hublots (gaz/ condensat et condensat/mercure).

Au passage des ménisques, la lecture des volumes de mercure à la pompe permet, après correction, d'accéder aux valeurs des volumes des deux phases et en particulier du volume liquide déposé.

2.4.2.2 Principe de l'étude

Dans ce cas, le volume occupé par le gaz à condensat étudié est maintenu constant et une évolution de la pression est provoquée par purge du gaz. Cette procédure reproduit ainsi approximativement ce qui se passe dans un gisement au cours de la production.

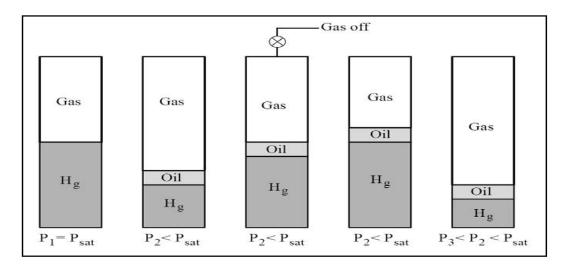


Figure 2.9: Schéma du procédé CVD

L'échantillon est mis dans la cellule et amené à la pression de rosée et à la température du réservoir, la pression est ensuite réduite par augmentation du volume de la cellule (diminution du volume de mercure) le fluide est ainsi amené à des états diphasiques successifs par expansion de volume. Une partie du gaz est soutirée de la cellule jusqu'à ce que le volume de cette dernière devienne égal au volume initial tout en conservant la pression constante (soutirage isobare). Le procédé est répété pour plusieurs étapes de pression. La pression est réduite progressivement jusqu'à dépasser le maximum de volume déposé.

Le gaz est soutiré à la partie supérieure, par palier de 20 à 30 bars. À chaque étape, on mesure :

- la quantité de gaz soutiré, son facteur de compressibilité, sa composition moléculaire, éventuellement sa teneur en gazoline après séparation.
- Le volume de condensat déposé au fond de la cellule.

2.4.2.3 Hypothèses de calcul

- La phase condensat déposée reste immobile dans le réservoir.
- On ne peut produire que la phase vapeur, c'est le cas le plus général car la saturation en condensat ne dépasse pas ou dépasse peu la saturation critique d'écoulement.
- La gazoline récupérée en surface sera composée de:

```
100% de C<sub>5</sub>
100% de C<sub>6</sub>
100% de C<sub>7+</sub>
```

• Le GPL récupéré en surface sera composé de:

```
80% de C<sub>3</sub>
90% de C<sub>4</sub>
```

- On suppose que la masse moléculaire et la densité des heptanes plus (C₇₊) restent constantes tout au long de la déplétion
- Conditions standards : Pstd = 1,013 bar et T = 288 °K.
- Pour plus de commodités, on résonnera sur 1 m³ de gaz dans les conditions initiales du réservoir :

Température du réservoir $Tr = 127^{\circ} C$; Pression initiale du gisement $Pr = 234 \text{ Kg/cm}^2$.

Les données nécessaires à cette étude sont fournies par les résultats de l'analyse PVT effectuée au niveau du centre de recherche et de développement (CRD Boumerdes).

La pression initiale et la pression de rosée sont fixées à 324 Kg/cm², tandis que la pression d'abondant est fixé à 30 Kg/cm².

On raisonne sur 1m³ de gaz dans les conditions initiales du réservoir ensuite les résultats sont extrapolables à l'ensemble du gisement.

> Composition du fluide de réservoir (d'après les expériences PVT) :

Tableau 2.2: Composition du fluide de réservoir

	Fraction molaire (%)	Masse molaire (g/mole)	Densité apparente (g/cm³)
N ₂	1,18	28,016	0,808
CO_2	3,92	44,01	0,827
C_1	76,87	16,042	0,3
C_2	8,53	30,068	0,377
C ₃	3,84	44,074	0,508
iC ₄	0,7	58,12	0,563
nC ₄	1,27	58,12	0,584
iC ₅	0,59	72,146	0,625
nC ₅	0,52	72,146	0,631
C ₆	1,1	86,172	0,664
C ₇₊	1,48	133	0,688

> Libération différentielle du gaz à volume constant :

Tableau 2.3: Résultats de CVD

1	2	3	4	5	6	7	8
(kg/cm ²)	C_1	C ₂	C ₃	C4	C5	C ₆	C ₇₊
211,1	80,51	8,79	3,16	1,7	0,59	0,09	0,02
178,8	80,09	8,55	3,82	1,66	0,6	0,08	0,02
147,6	80,6	8,76	3,83	1,68	0,59	0,08	0,02
116,55	80,56	8,78	3,85	1,69	0,57	0,11	0,03
84,85	80,22	8,71	3,81	1,71	0,63	0,14	0,03
69,85	50,24	8,77	3,88	1,72	0,69	0,16	0,05
62,9	80,05	8,76	3,88	1,76	0,68	0,14	0,04
Pa	79,83	8,89	3,97	1,83	0,7	0,17	0,06

2.4.2.4 Méthodologie

Le calcul s'effectue colonne par colonne :

- La colonne 1 représente le palier de pression
- ➤ Les colonnes de 2 à 8 représentent les pourcentages molaires de chaque composant à chaque palier de pression
- Colonne 9 : facteur de compressibilité du gaz produit (Tab.1 annexe A)

Facteur de compressibilité

Pour décrire le comportement du mélange de gaz, l'industrie de pétrole a introduit dans l'équation du gaz parfait un coefficient sans dimension « Z » appelé facteur de compressibilité et qui exprime la déviation des gaz réels par rapport aux gaz parfaits.

Avec les notations habituelles, l'équation d'état des gaz naturels s'écrit sous la forme suivante :

Où Z est une fonction de la pression, de la température, et de la compressibilité de gaz.

Étant donné que les gaz réels se conduisent comme s'ils étaient parfaits aux très basses pressions, la valeur de Z est égale à l'unité, quelle que soit la température.

Calcul de Z

Calcul des paramètres pseudo-critiques : il existe deux méthodes :

1. Formules mathématiques

Lorsque les fractions de chaque constituant de gaz étant données, on utilise les formules :

$$PPC = \sum Yi \ PCi \ [\circ R]...$$
 (2)
 $T_{PC} = \sum Y_i \ T_{Ci} \ [psi]...$ (3)

avec:

Y_i: la fraction moléculaire d'ieme constituant.

 P_{Ci} : la pression critique d' i^{eme} constituant

 T_{Ci} : la température critique d' i^{eme} constituant

2. Formules empiriques

Calcul des paramètres pseudo-réduits

$$T_{P_r} = \frac{T}{T_{P_c}}$$
 $p_{P_r} = \frac{p}{p_{P_c}}$ (6)

T: température du gisement

P: pression du gisement.

T_{Pr}et P_{Pr} température et pression pseudo-réduites.

Alors Z est déterminé par deux méthodes :

- -soit par le graphe de l'abaque qui nous donne Z en fonction de P_{Pr} et T_{Pr}.
- -soit par des formules empiriques qui nous donne Z en fonction de P_{Pr} et T_{Pr} .

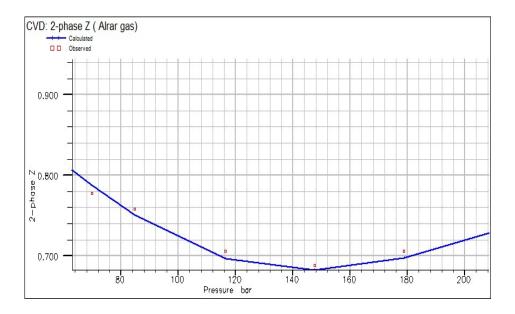


Figure 2.10: Facteur de compressibilité Z

 \triangleright Colonne 11 : volume de gaz humide produit au cours de chaque palier, est exprimé dans les conditions de fond $\triangle Vg$ (m³), se déduit directement des résultats du laboratoire.(Tab.1 annexe A)

$$\Delta V_g = 1 \text{m}^3 \text{ *(colonne 11)/950}$$
 avec Volume de la cellule = 950 cm 3 .

Colonne 10 : fraction du volume déposé en (%) ; (Tab.1 annexe A)

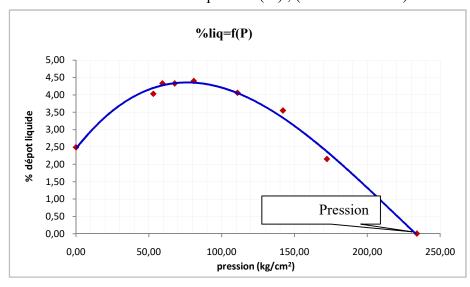


Figure 2.11:Dépôt de condensat dans le réservoir

Colonne 12 : le facteur volumétrique de fond (Bg); (Tab.1 annexe A)

Bg = (volume du gaz aux conditions de fond)/ (volume du gaz aux conditions de surface)

$$Bg = \frac{Zr . Tr . Ps}{Zs . Ts . Pr}$$

$$Z_{std} = 1$$

$$T_{std} = 15 °C = 288 °K$$

$$T_{r} = 400 °K donc: Bg = 1, x (Zr / Pr)$$

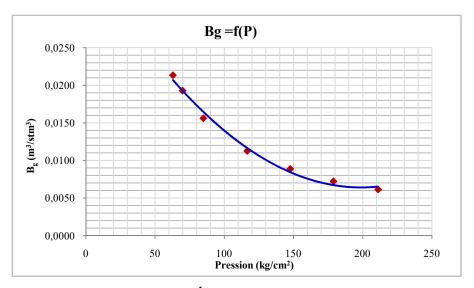


Figure 2.12: Évolution de Bg en fonction de la pression

Conclusion

La connaissance de l'évolution de certains paramètres PVT est indispensable pour estimer les réserves en place par un simple calcul de bilan matière.

3 Chapitre 3 : Estimation des réserves en place

et Analyse de déclin

Introduction

La connaissance du volume d'hydrocarbure dans un gisement est fondamentale, et a une importance majeure, car toute exploitation d'un champ est liée directement à la quantité d'huile ou de gaz contenue dans le réservoir.

Lorsqu'un gisement est découvert et qu'un bon nombre de puits a été foré, l'estimation des réserves en place a pour base l'interprétation fine des diagraphies, des mesures petrophysiques, analyse PVT, la réinterprétation géophysique et éventuellement géologique.

Aussi dès qu'un nouveau puits est foré, la nouvelle estimation des quantités en place sera beaucoup moins grossière que la précédente c'est-à-dire des résultats plus exactes.

Les réserves en place sont symbolisées que ce soit huile ou gaz par :

OOIP: original oil in place OGIP: original gas in place

Les quantités en place sont classées selon plusieurs critères qui varient dans le temps et qui sont en fonction de la connaissance graduelle du gisement obtenue a partir des puits déjà forés, ainsi que des études géophysiques et géologiques complémentaires

3.1 Calcul volumétrique des quantités en place

Il existe deux méthodes différentes pour évaluer les quantités d'hydrocarbures dans les réservoirs et chaque méthode a ces propres bases et intérêts :

- ❖ La méthode volumétrique (cubature) isobathe : l'évolution des accumulations est rendue délicate par la complicité des milieux poreux, elle ne tient en compte que la géologie, elle permet de donner les réserves en place statique (n'est pas toucher par la différence de pression), elle est utilisée dans la plupart des cas dans la phase de développement de gisement, cette évaluation se fait à partir des données provenant de deux sources différentes.
- ✓ La sismique : elle fournit la géométrie externe du réservoir sous la forme de cartes isobathes, ce qui permet de calculer le volume de la roche imprégné.
- ✓ Les forages : qui permettent d'atteindre le réservoir et évaluer les caractéristiques moyennes soit à partir des digraphies qui sont enregistrées, soit à partir des mesures réalisées au laboratoire sur carottes.

❖ La méthode dynamique (Bilan Matière): elle s'intéresse seulement aux déplacements de fluides donc où il y'a une différence de pression, elle permet de donner les quantités dynamiques, cette dernière méthode n'est plus applicable que lorsque le gisement a déjà produit depuis un certain temps (1 à 2 ans minimum) et elle sert à contrôler les valeurs obtenues par les méthodes volumétriques.

3.1.1 Principe des méthodes volumétriques

L'évaluation des accumulations est rendue délicate par la complexité du milieu poreux, incertitude sur la forme exacte du gisement et en général faible échantillonnage pour les données petrophysiques (porosité, saturation) généralement, quelques forages pour des surfaces de dizaines de kilomètres carrés.

La difficulté réside donc dans la détermination des paramètres caractérisant le volume d'hydrocarbures en place plutôt que dans le calcul de ce volume, lequel se réduit aux opérations simples ci-après :

$$Volume(CF) = V_R \cdot \frac{h_u}{h_t} \cdot \phi (1 - S_{wi})$$
(1)

V(CF): volume de fluide dans les conditions de fond

V_R: volume de roche imprégnée

h_u: la hauteur utile

h_t: la hauteur totale

φ : la porosité

Swi: saturation en eau initiale

$$Volume(CS) = \frac{volume \ condition \ fond}{FVF}$$

V(CS): volume de fluide dans les conditions standards

3.1.2 Calcul du volume de roche imprégné V_R

Il existe deux méthodes pour calculer le volume de roche imprégnée V_R:

a) Calcul du volume de roche à partir des isobathes : (méthode par cubature ou surface-profondeur)

Les études géologiques et géophysiques fournissent des cartes isobathes, en général au toit et au mur de réservoir. Le planimétrage de ces deux cartes va permettre le calcul du volume de roche.

En effet, si l'on porte sur un diagramme profondeur-surface les surfaces planimétries des isobathes du toit et du mur, ainsi que l'interface H/E par exemple, un deuxième planimétrage de l'aire sous-tendue entre les deux courbes va représenter le volume de roche imprégnée.

$$V_{R} = \int_{Z_{E}}^{Z_{t}} S(toit).dz - \int_{Z_{E}}^{Z_{m}} S(mur).dz$$
(2)

b) Méthode de calcul rapide :

Lorsque la structure est mal connue à l'époque du puits de découverte, il est parfois suffisant de faire une estimation rapide pour obtenir un ordre de grandeur. Dans ce cas, on n'utilisera pas la méthode par cubature et l'on se contentera d'assimiler la structure à une calotte sphérique ou à une forme trapézoïdale.

3.1.3 Calcul du volume des fluides à partir des isopaques

Ce calcul s'effectue plus tardivement, lorsqu'un nombre minimal de puits a été foré.

Le jeu de deux cartes isobathes au toit et au mur du réservoir nous fournit une carte isopaque de celui-ci. Connaissant les porosités pour chaque puits, nous dressons une carte des porosités. En combinant les deux cartes, on obtient une carte des « iso-h ϕ ».

Le planimétrage des surfaces S situe entre chaque courbe permet le calcul du volume poreux :

$$V_p = S.h_u.\phi$$
 (3)
 $V_p = \sum_{i=1}^n V_{pi}$ (4)
hode est plus fine dans le cas où les variations latérales

Cette méthode est plus fine dans le cas où les variations latérales d'épaisseur et de porosité sont importantes.

Pour évaluer les réserves de notre gisement on a opté pour la méthode par cubature, les étapes suivies sont :

- On trace les cartes des isobathes au toit et au mur du réservoir.

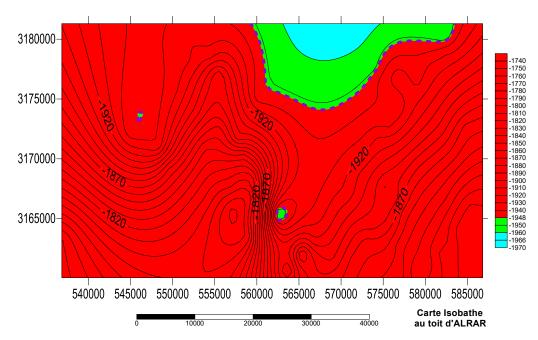


Figure 3.1: Carte isobathe au toit de F3 ALRAR

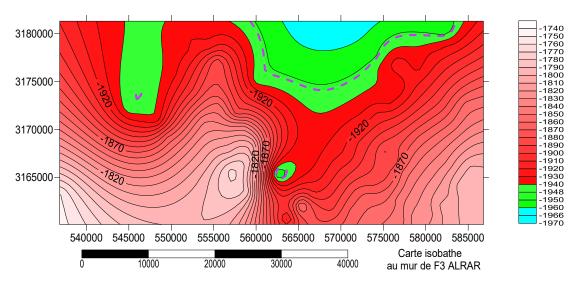


Figure 3.2: Carte isobathe au mur de F3 ALRAR

On fait le planémétrage des isobathes du toit et du mur, les surfaces sont calculées à l'aide de logiciel « Scripter » muni de code « Calculatarea2.bas », les résultats obtenus sont dans le tableau suivant :

Tableau 3.1: Les surfaces des dif	férentes	hauteurs
-----------------------------------	----------	----------

Hauteur	Surface	Surface
(isobathe)	(toit)	(mur)
(m)	(m^2)	(m^2)
1765	9949802,79	
1795	88890998,3	9536722,46
1825	205575110	80586331,8
1855	317524967	182592393
1885	452724822	282272600
1915	627258332	392341757
1945	930406482	545904300
1985		872121547

- On rapporte les résultats du tableau sur un graphique des profondeurs en fonctions des surfaces H=f(S), on obtient deux courbes dont l'aire limitée par ces deux courbes représente le volume global de la roche.
- En situant les contacts WOC et GOC sur le même graphique, on délimite la zone à l'huile de la zone à gaz, et par la suite on calculera le volume de roche imprégnée par l'huile et le volume de roche imprégnée par le gaz.

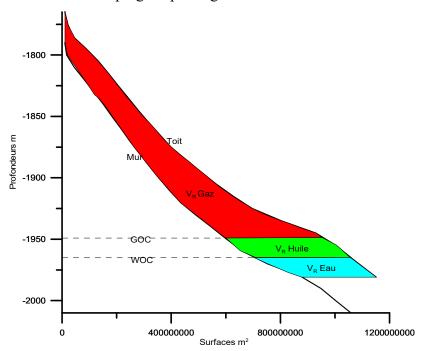


Figure 3.3: Graphe profondeurs en fonction des surfaces H=f (S)

Connaissant les équations des deux courbes S (toit) et S (mur) et les cotes des contacts WOC et GOC, on peut déterminer le volume de la roche :

$$V_{R} = \int_{Z_{E}}^{Z_{t}} S(toit).dz - \int_{Z_{E}}^{Z_{m}} S(mur).dz$$
volume de roche on a utilisé la fonction « Calculate a:

Pour évaluer ce volume de roche on a utilisé la fonction « Calculate area » du logiciel « Grapher »

$$V_{RHuile} = 1,21 \cdot 10^9 \text{ m}^3. V_{RGaz} = 24,54 \cdot 10^9 \text{ m}^3.$$

Pour estimer les volumes des effluents du réservoir on aura besoin de déterminer les caractéristiques pétro-physiques moyennes du réservoir.

Le tableau suivant contient les caractéristiques moyennes pour chaque puits.

Tableau 3.2:Les paramètres des puits

PUITS	1	Ep, utile (Hu)		sw	Kmoy
AL16	40,5	31,3	16	28	270,37
AL17	40,5	20	12,6	5	253,92
AL18	39	15,5	13	7	196,22
AL19	41	19,5	13,8	7	139,69
AL20	40	23,6	11,8	8	82,8
AL26	36,5	24,9	13,6	9	229,11
AL515	44	27,5	12,7	7	170,5
AL511	40,5	21	11,9	20	222
AL529	34,5	18,2	12,24	12	96
AL530	39,5	33,5	16,4	4	200
AL532	31	22,2	12	4	130
AL28	-7,5	17	10,51	12	216
AL29	62	14,6	10,5	19	244
AL30	2,5	25,8	11,2	10	140,5
AL31	42	18,5	10,5	6,1	127,2
AL32	48	42,5	12,4	5,2	236,7
AL33	43	22	13,1	12,7	346,8
AL34	36	18	12,6	9	70,2
AL35	43,5	26,5	6,5	6	461,7
AL36	34,5	16	9,3	7	113
AL38	40,5	15	5,04	5,7	29,2
AL40	41,5	25	10,69	14	171
AL41	43	20	10,66	8,1	300
AL42	31	20,3	9,41	12	90
AL43	41,5	14	11	15,2	45
AL44	47,5	39	11,54	9,15	175
AL45	20	9,5	11	14,8	269
AL46	28,5	11	8	25	25
AL49	37	21	10	14,4	120

A partir du tableau précédent on détermine les valeurs moyennes (Hu,Ht,\phi, Sw) pour le réservoir. Ces valeurs sont calculées comme suit :

$$Hu_{moy} = \frac{\sum_{i=1}^{n} hu_{i}.Ht_{i}}{\sum_{i=1}^{n} Ht_{i}} = 22,34m$$

$$(6)$$

$$(n=30 ; nombre des puits)$$

$$Ht_{moy} = \frac{\sum_{i=1}^{n} Ht_{i}}{n} = 36,35m$$

$$\frac{Hu}{Ht} = \frac{22,34}{36,35} = 0,61$$

$$Alors$$

$$\frac{1}{\varphi} = \frac{\sum_{i=1}^{n} hu_{i}\varphi_{i}}{\sum_{i=1}^{n} hu_{i}} = 11,80\%$$

$$\frac{1}{Sw} = \frac{\sum_{i=1}^{15} hu_{i}\varphi_{i}.Sw_{i}}{\sum_{i=1}^{15} hu_{i}\varphi_{i}.Sw_{i}} = 10,54\%$$
Donc le volume d'huile dans les conditions de réservoir sera : (10)

$$Volume(CF)=V_{R}.\frac{h_{u}}{h_{t}}.\phi(1-S_{wi})$$

$$Volume(CF)=1,21.10^{9}.0,61.0,118.(1-0,105)$$
(11)

Volume (CF) =
$$7,7950741.10^7$$
 (m³)

En divisant le volume (CF) par le facteur volumétrique de fond de l'huile Boi on obtient les réserves en place dans les conditions de surface :

$$N = \frac{V(CF)}{B_{Oi}} = \frac{7,7950741 \cdot 10^7}{1,449}$$
 (12)
$$N = 53,79.10^6 \text{ sm}^3$$

Et le volume de gaz dans les conditions de réservoir sera :

$$Volum(CF)=V_{R}.\frac{h_{u}}{h_{t}}.\phi(1-S_{wi})$$
(13)

$$Volume(CF) = 24,54.10^{9}.0,61.0,118.(1-0,105)$$

Volume (CF) =
$$1,5809183 \cdot 10^9 \text{ (m}^3)$$

En divisant le volume (CF) par le facteur volumétrique de fond de gaz Bg on obtient les réserves en place dans les conditions de surface :

$$G = \frac{V(CF)}{Bg} = \frac{1,5809183 \cdot 10^9}{0,0055}$$

$$G = 287,43.10^9 \text{ sm}^3$$
(14)

3.2 Principe de la méthode bilan matière

Réserves de gaz 3.2.1

Le volume occupé par le gaz ne change pas de p_i à p(t), donc on peut écrire avec les notations courantes:

L'équation générale de bilan matière :

$$G B_{gi} = (G-G_p) B_g + G_{inj}B_{ginj} + W_e - W_P B_w$$
 (15)

Puisqu'on n'a pas d'entrée d'eau et le cyclage de gaz est arrêté l'équation devient :

$$G_P \ B_g = G \ (B_g - B_{gi}) + \ G_{inj} B_{ginj} \dots (16)$$
 Z et B_g du gaz en place sont calculés d'après l'étude PVT (chapitre 2).

Les résultats du calcul bilan matière pour le gaz sont dans le tableau 2 de l'annexe A.

Le graph P/Z = f(Gp-Gi) obtenu est le suivant :

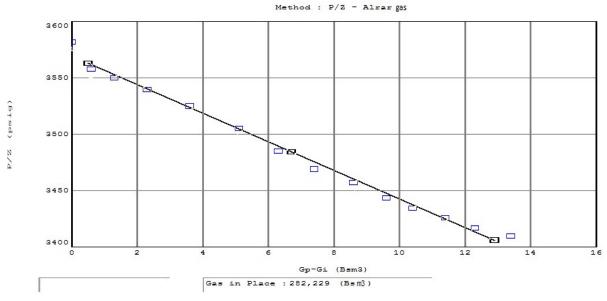


Figure 3.4: Graphe P/Z = f(Gp-Gi)

Les réserves en place de gaz données par MBAL sont de l'ordre de 282 Bsm³.

3.2.2 Réserves d'huile

Bien qu'il ne soit pas nécessaire, l'équation de bilan matière est généralement écrite en bases volumétriques du réservoir. Il s'agit d'une comptabilité exacte de la matière qui rentre, s'accumule dans, ou produite à partir d'un volume défini dans un intervalle de temps de fonctionnement.

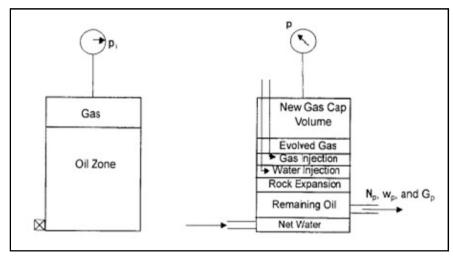


Figure 3.5: principe du bilan matière

L'équation générale du bilan matière pour l'huile s'écrit sous la forme :

$$N \left[B_{oi} - B_{o} + B_{g} (R_{s} - R_{si}) + mB_{oi} (1 - (\frac{B_{g}}{B_{gi}})) - (1 + m)B_{oi} (\frac{C_{w}S_{wi} + C_{f}}{1 - S_{wi}}) \Delta P \right] \\
+ N_{p} \left[B_{o} + B_{g} (R_{p} - R_{s}) \right] = W_{e} - W_{p}B_{w} + W_{inj}B_{w} + Ginj.Bg \\
Avec : F = N_{p} \left[B_{o} + B_{g} (R_{p} - R_{s}) \right] \\
E_{o} = B_{o} - B_{oi} + B_{g} (R_{si} - R_{s}) \\
E_{fw} = \left[\frac{C_{w}S_{wi} + C_{f}}{1 - S_{wi}} \right] \Delta P \\
E_{g} = B_{g} - B_{gi} \\
On aura donc :$$

 $F - N \left[E_o + m \frac{B_{oi}}{B_{gi}} E_g + (1+m)B_{oi} E_{fw} \right] = W_e + W_{inj} B_w + Ginj .Bg - W_p B_w$ (18)

Cette équation est applicable pour un gisement produisant avec tous les régimes de drainage naturels ainsi que l'injection d'eau et de gaz.

Pour notre cas (anneau d'huile d'Alrar), l'équation MBE devient :

$$F = N \left[E_o + m \frac{B_{oi}}{B_o} E_g \right] + W_e - W_p B_w$$

$$\frac{F}{E_0 + m \frac{B_{oi}}{B_o} E_g} = N + \frac{W_e - W_p B_w}{E_0 + m \frac{B_{oi}}{B_o} E_g}$$
D'où:(19)

Application sur l'anneau d'huile :

Le tableau ci-dessous représente les données PVT :

Tableau 3.3:Données PVT

S_{w}	0,25
Bgi (rm ³ / m ³)	0,0055
$P_b (kg/cm^2)$	189
$P_i (kg/cm^2)$	189
T (°C)	127
$B_{oi}(rm^3/m^3)$	1,499
$B_{\rm w} (rm^3/m^3)$	1

> L'historique de production de l'anneau d'huile est donné dans le tableau ci-dessous :

Tableau 3.4: Historique de production de l'anneau d'huile

Date	Pg (kg/cm ²)	$Np (m^3)$	$Wp (m^3)$	We (m ³)	Gp (m ³)
01/01/2006	189	2,89 ^E +05	$0,00^{E}+00$	$0,00^{E}+00$	1,42 ^E +08
01/01/2007	183	7,49 ^E +05	$0,00^{E}+00$	4,50 ^E +03	4,11 ^E +08
01/01/2008	177	1,26 ^E +06	7,58 ^E +03	1,80 ^E +04	7,14 ^E +08
01/01/2009	170	1,73 ^E +06	1,67 ^E +04	4,13 ^E +04	9,65 ^E +08
01/01/2010	163	2,22 ^E +06	2,96 ^E +04	7,50 ^E +04	1,26 ^E +09
01/01/2011	158	3,11 ^E +06	8,23 ^E +04	$1,18^{E}+05$	1,76 ^E +09
01/01/2012	152	3,86 ^E +06	1,17 ^E +05	1,69 ^E +05	2,25 ^E +09

NB: la mise en production de l'anneau d'huile a débuté en 2006. Par conséquent, l'historique de production utilisé n'est pas assez consistant pour avoir un calcul de bilan matière rigoureux.

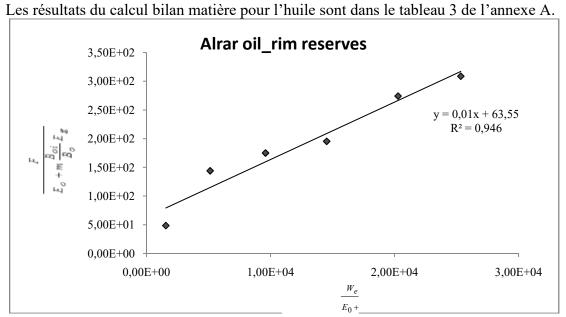


Figure 3.6: Détermination des réserves d'huile N

Conclusion

Le calcul volumétrique et bilan matière pour Alrar gaz est de même ordre. Tandis que pour l'anneau d'huile, l'incertitude est grande vu l'insuffisance de l'historique de production qui s'étale sur 6 années seulement.

3.3 Analyse de déclin

Le potentiel considérable du gisement d'Alrar en gaz a suscité un intérêt particulier pour son exploitation dans les meilleures conditions.

En effet le recyclage de gaz pour maintien de pression s'inscrit dans cette démarche dans le but d'amortir le déclin de pression et maintenir le plus longtemps possible le plateau de production.

3.3.1 Flux Alrar:

Pour ralentir cette migration de flux de gaz humide et d'huile, Sonatrach a entrepris les actions suivantes :

Arrêt du cyclage de gaz sec à Alrar à partir de Juillet 2008 après une période de réduction des quantités injectées à partir de 2001.

- Forage de nouveaux puits producteurs le long de la frontière.
- > Reconversion de quelques puits injecteurs de gaz en puits producteurs de gaz.
- Mise en service du centre de production d'huile (EPF).

L'analyse des données géologiques, géophysiques, pétrophysiques et de production ainsi que la pression du réservoir montrent un hydrodynamisme important entre le champ vois et le champ d'Alrar et cela selon le rythme de production dans chaque partie exploitée.

Les cartes suivantes illustrent le mouvement des fluides depuis l'origine ainsi qu'une vision future et cela dans le cas où le rythme de la production reste constant au niveau de chaque partie du réservoir (Alrar Ouest et Alrar Est).

Tableau 3.5: événements entre 1965-1997

Période	Évènement
1965 - 1997	 1965 – 1984 : début d'exploitation et développement du champ Alrar Est. 1984 : Début cyclage périphérique, assuré par 26 puits injecteurs de gaz formant ainsi trois (03) dorsales Nord-Est, Nord-Ouest et Sud. 1994 : trois (03) puits injecteurs situés à proximité de la frontière (AL 523-532-533) ont été reconvertis en puits producteurs de gaz. En plus, deux puits ont été forés (AL50, 51).

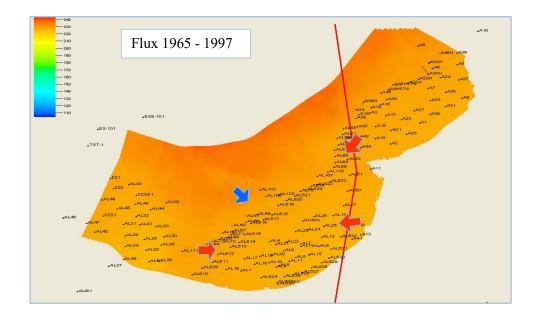


Figure 3.7: Mouvement des influx 1965-1997

Tableau 3.6: événements entre 1998-2004

Période	Évènement
1998 - 2004	 1998 : début d'exploitation et développement du champ Alrar Ouest. 2001 : Réduction de la réinjection de gaz au profit de gaz de vente.

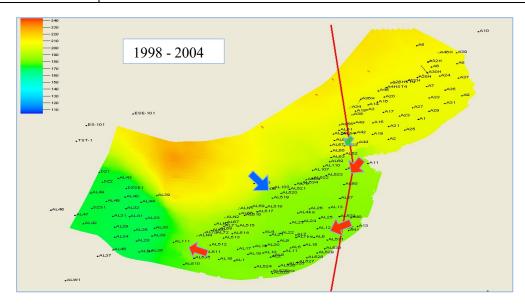


Figure 3.8: événements entre 2005-2008

Tableau 3.7: événements entre 2005-2008

Période	Évènement
2005 - 2008	 2006 : L'anneau d'huile a été mis en exploitation. 2008 : arrêt de la réinjection de gaz. Forage de nouveaux puits.

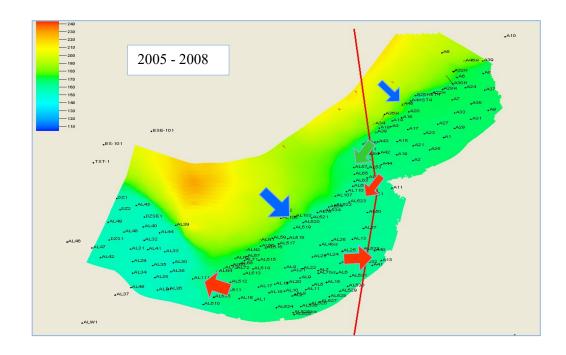


Figure 3.9: Mouvement des influx 2005-2008 Commentaires

- On voit bien que l'hydrodynamisme actif du flux entre Alrar et le champ voisin est très sensible aux différentes actions entreprises de part et d'autre.
- La mise en service du champ voisin a renversé la direction de flux à son profit. Pour faire face à ce nouveau comportement des fluides de réservoir, le maintien de pression ne devient plus profitable alors l'arrêt de cyclage de gaz s'avérait justifiable.

3.3.2 Cyclage de gaz au champ d'Alrar

Le secteur Est d'ALRAR a été exploité à partir d'Août 1965 jusqu'à Décembre 1984, par cinq (05) puits (ALE 3, 5, 6, 7, 8). Le gaz produit était utilisé pour le maintien de pression de l'aquifère (Lias, Série de Zarzaitine) et l'alimentation en gas lift des puits de Zarzaitine.

À partir de Décembre 1984, la production de gaz est assurée par 22 puits producteurs. L'opération de cyclage partiel a commencé en Décembre 1984; le cyclage est périphérique et assuré par 26 puits injecteurs de gaz formant 3 dorsales Nord-Est, Nord-Ouest et Sud En 1994, deux puits producteurs de gaz (AL50, 51) ont été forés est mis en production. Dans la même année, 3 puits injecteurs situés à proximité de la périphérie Est du gisement (AL-523, 530, 533) ont été reconvertis en producteur de gaz.

D'autres puits ont été forés en 2002 (AL 52), 2004 (AL 53) sur la zone Nord-Est du secteur.

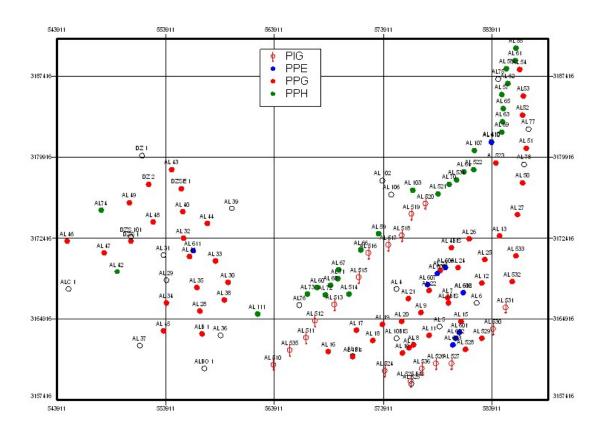


Figure 3.10: Carte des puits d'Alrar

3.3.2.1 Performance du réservoir F3-Alrar

La production du réservoir F3-Alrar a passé de trois (03) phases distinctes :

- I. Production nominale de gaz
- II. Gascycling (cyclage de gaz)
- III. Gasblowdown (purgé de gaz)

Les phases (I) et (II) sont caractérisées par un soutirage de gaz limité non accompagné par une production d'huile (1965-2005).

La phase (III) est caractérisée par l'arrêt de cyclage de gaz et la mise en production progressive de l'anneau d'huile.

La performance du réservoir F3-Alrar durant ces trois phases est illustrée dans les graphs ci-dessous :

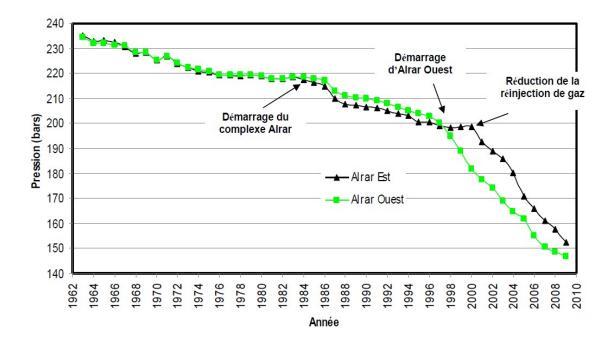


Figure 3.11:Evolution de la pression du champ d'Alrar

On peut voir que:

- La pression de réservoir d'Alrar Ouest est légèrement supérieure qu'Alrar Est vu qu'il est nouvellement exploité.
- L'injection de gaz a maintenu la pression et a ralenti son déclin.
- Le déclin de pression s'accentue à partir de 2001 vu la réduction de l'injection de gaz, et devient aigue après l'arrêt de l'injection allant jusqu'à 8 bars/an.

3.3.3 Analyse de déclin

3.3.3.1 Objectif

L'objectif de l'analyse des courbes de déclin est l'évaluation rapide des prévisions, des débits et la récupération finale d'un gisement; et cela en utilisant l'historique de production.

Le déclin est très utilisé au cours de la vie d'un gisement; c'est un outil de prévision et de diagnostique; il est utilisé pour un gisement, pour un puits ou groupes des puits.

3.3.3.2 Hypothèses

L'analyse des courbes de déclin est basée sur les hypothèses suivantes :

- ✓ Mode d'exploitation inchangé,
- ✓ La disponibilité d'un historique de production suffisant.

3.3.3.3 Types de courbes de déclin

Parmi les courbes de déclins les plus connues on peut citer :

- déclin exponentiel.
- déclin hyperbolique.
- déclin harmonique.

3.3.3.4 Équations de déclin

L'expression mathématique générale de déclin est exprimée comme suit:

$$D = -\frac{dq / dt}{q} = Kq^{n}$$
 (20)

Ou:

q: débit de production, [bbl / D], mois ou année

t: temps, [jour], mois ou année

K: constanteb: exposant.

Le déclin de débit peut être constant ou variable en fonction de temps.

Déclin exponentiel (déclin constant)

Dans ce cas l'exposent n=0.

$$D = -\frac{dq / dt}{q} = K = -\frac{\ln\left(\frac{q_t}{q_i}\right)}{t}$$
 (21)

Avec:

k: constante,

q_i : débit de production initial,

q_t : débit de production au temps t.

Les relations de débit en fonction de temps et la production cumulée sont données par :

$$D = -\frac{1}{q} * \frac{dq}{dt} \Rightarrow \int_{0}^{t} Ddt = -\int_{q_{i}}^{q} \frac{dq}{q} Np = \int_{0}^{t} qdt = \int_{0}^{t} q_{i} * e^{-Dt} = \frac{q_{i} - q_{i}e^{-Dt}}{D}$$

$$\mathbf{D}^{\bullet} \circ \mathbf{u} : \quad q = q_i e^{-Dt} \quad Np = \frac{q_i - q}{D}$$
 (22)

Le débit moyen constant pour un déclin exponentiel est donné par :

$$D' = \frac{\Delta q}{q_i} \qquad \qquad D = -\ln\left(1 - \frac{\Delta q}{q}\right) = -\ln(1 - D')$$
(23)

 Δq : la variation de débit dans la première année.

Déclin hyperbolique

Dans ce cas $(0 \le n \le 1)$

$$D = -\frac{dq/dt}{q} = Kq^n K = \frac{D_I}{q_i^n}$$

Le débit en fonction de temps et de la production cumulée sont données par la relation suivantes :

$$D = D_{I} * \left(\frac{q}{q_{i}}\right)^{n} = -\frac{1}{q} \frac{dq}{dt}$$

$$\Rightarrow \int_{0}^{t} \frac{D_{i}}{q_{i}^{n}} dt = -\int_{q_{i}}^{q} \frac{dq}{q^{n+1}}$$

$$\Rightarrow \frac{D_{i}}{q_{i}^{n}} * t = \frac{1}{n} * \left(q^{-n} - q_{i}^{-n}\right)$$

$$q_{t} = q_{i}(1 + nD) \qquad Npc = \frac{q_{i}^{n} \left(q_{i}^{1-n} - q_{i}^{1-n}\right)}{(1-n)D_{i}}$$
(24)

Avec Di : déclin initial de débit

Déclin harmonique

$$D = -\frac{dq/dt}{q} = Kq \quad K = \frac{D_I}{q_i}$$

$$D = \frac{D_I}{q_i} q = -\frac{1}{q} \frac{dq}{dt}$$

$$\Rightarrow \int_0^t \frac{D_i}{q_i} dt = -\int_{q_i}^q \frac{dq}{q^2}$$

$$\Rightarrow \frac{D_i}{q_i} t = \frac{1}{q} - \frac{1}{q_i}$$

$$q = \frac{q_i}{(1 + D_i t)}$$

$$Npc = \frac{q_i}{D_i} \ln \frac{q_i}{q_t} \dots (25)$$

Le déclin exponentiel et harmonique sont des cas particuliers de déclin hyperbolique.

La figure ci-dessous représente les modèles de déclin selon Arps :

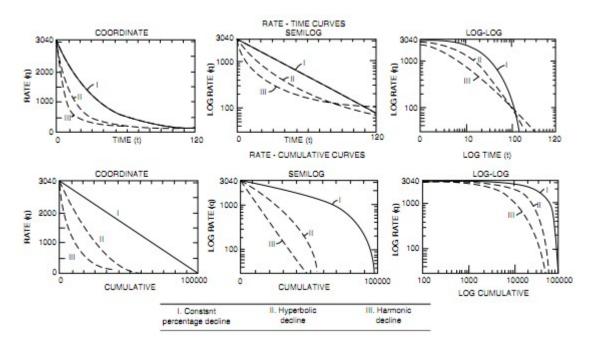


Figure 3.12: Modèles de déclin D'APRS

3.3.4 Déclin des puits de l'anneau d'huile

Dans le but d'attribuer un modèle de déclin pour l'ensemble des puits de l'anneau d'huile, on a considéré une bonne période de production sans interruption.

Le raffinement, l'analyse et l'interprétation des données de production sont effectués par le module d'écrin Topaze.

Les paramètres essentiels dont on a besoin sont :

D_i: taux de déclin
b: modèle de déclin
ta: temps d'abondant

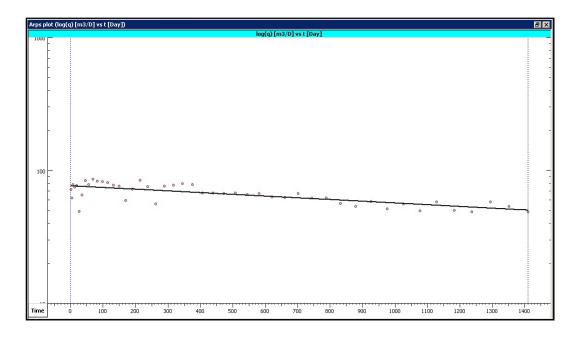


Figure 3.13: Modèle de déclin des puits d'huile

Commentaire

Les résultats obtenus ont permis de tirer les conclusions suivantes :

- Le modèle d'Arps (log (q) vs t) correspond à un déclin **exponentiel** indiqué par la valeur de l'exposant de déclin b=0.
- Le taux de déclin est évalué à 1.30E-03 day⁻¹.
- La durée ultérieure d'exploitation avec le même rythme de production en subissant ce même déclin est de 6.288 années.

Une fois ce modèle de déclin est validé, il sera exploité pour construire un profil prévisionnel de production jusqu'à l'abandon du champ

Les résultats obtenus sont les suivants :

Tableau 3.8: prévision de production d'huile

Année	$q (m^3/d)$	Np (m ³)	R
2013	68,68955	6090	0,1051
2014	61,5960088	1160000	0,1237
2015	55,2350147	1640000	0,1337
2016	49,5309178	2080000	0,1427
2017	44,4158806	2480000	0,1508
2018	39,8290712	2830000	0,158

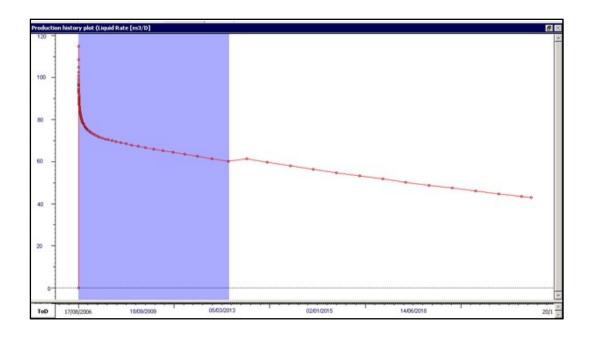
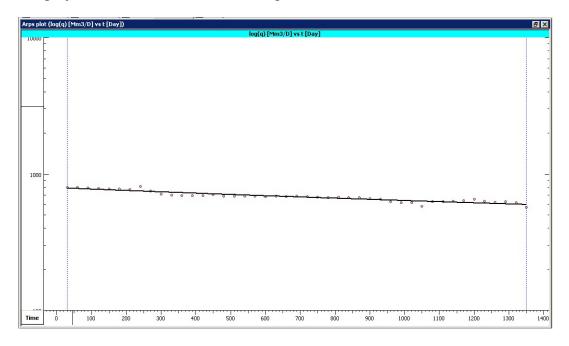



Figure 3.14: modèle prévisionnel de production en huile

3.3.5 Déclin des puits de gaz

Vu que la méthode d'Arps est purement numérique, l'analyse de déclin des puits de gaz ne se diffère pas de celle des puits d'huile.

Alors, on procède d'une manière à déterminer les paramètres décrivant un déclin pour enfin projeter ce modèle dans les années qui viennent.

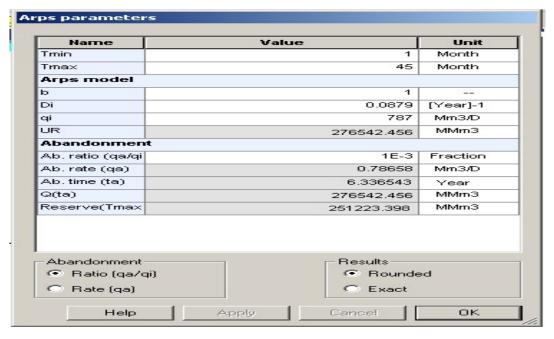


Figure 3.15: Modèle de déclin des puits de gaz

Commentaires

Les résultats obtenus ont permis de tirer les conclusions suivantes :

- Le modèle d'Arps (log (q) vs t) correspond à un déclin **harmonique** indiqué par la valeur de l'exposant de déclin b=1.
- Le taux de déclin est évalué à 0.0879 day⁻¹.
- La durée ultérieure d'exploitation avec le même rythme de production en subissant ce même déclin est de 6.366 années.

Une fois ce modèle de déclin est validé, il sera exploité pour construire un profil prévisionnel de production jusqu'à l'abandon du champ.

R	$Gp (10^9 \text{ sm}^3)$	$q (Ksm^3/D)$	Année
79,07%	229,3	24383,5616	2013
81,86%	237,4	22191,7808	2014
84,14%	244	18082,1918	2015
86,03%	249,5	15068,4932	2016
87,41%	253,5	10958,9041	2017
88,52%	256,7	8767,12329	2018
89,34%	259,1	6575,34247	2019
89,93%	260,8	4657,53425	2020
90,48%	262,4	4383,56164	2021
90,86%	263,5	3013,69863	2022

Tableau3.9: Prévision de production de gaz

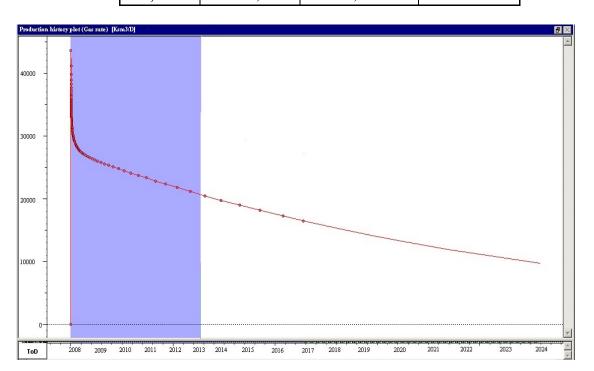


Figure 3.16:modèle prévisionnel de production en gaz

Remarques

❖ Pour voir l'impact du déclin sur l'éruptivité des puits de l'anneau d'huile, on a effectué la même analyse sur quelques puits.

Les résultats obtenus ont permis de constater que la plupart de ces puits perdront leurs éruptivité au plus tard dans 5 ans.

- AL521, AL63, AL65 à partir de 2014
- AL61 à partir de 2015
- AL72 et AL67 à partir de 2016
- AL69 et AL57 à partir de 2017
- AL523 à partir de 2018
- ❖ Un déclin de pression (impliquant un déclin de production) de cette ampleur peut être le résultat d'une combinaison de plusieurs phénomènes au cours de l'exploitation de gisement en question. Il peut être dû au :
 - Rythme de production.
 - Pertes de charges supplémentaires dans le réservoir dues à l'endommagement.
 - Absence d'un support d'énergie.

Conclusion

La réduction puis l'arrêt complet de la réinjection de gaz dans la région d'Alrar a largement contribué dans le déclin spectaculaire de la pression (8 bars/an), et la limitation des quantités de gaz à condensat et d'huile produites. Et ceci malgré la réduction du flux interréservoirs entre Alrar et le champ voisin.

Vu l'impossibilité de recourir une autre fois à la réinjection de gaz dans la région, l'option de porter un support d'énergie au réservoir n'est pas envisageable.

La dégradation continue des paramètres de production de tous les puits de l'anneau d'huile nécessite l'urgence d'accélérer la mise en place de gaz lift, en priorité les puits en perte d'érruptivité et ceux qui ne traversent pas la zone à gaz.

Pour le gisement de gaz, la réduction de la pression de réservoir entraine des difficultés d'acheminement du gaz vers l'usine. Pour cela, la mise en place d'un dispositif de compression de gaz tel le boosting s'avère nécessaire.

4 Chapitre4 : Apport de Gas lift pour les puits d'huile et l'apport du boosting pour les puits de gaz

4.1 Apport de Gas lift pour les puits d'huile Introduction

Pour qu'un puits soit éruptif, il faut que l'énergie naturelle de la couche productrice soit suffisante pour vaincre toutes les résistances qui s'opposent à l'écoulement du fluide du gisement vers le fond du puits, du fond vers la tête du puits et de la tête de puits vers le séparateur (installation de traitement).

4.1.1 Principe de Gas Lift

L'objectif d'une activation par le Gas-Lift est de réduire la pression de fond en écoulement (bottom hole flowing pressure) et permettre au réservoir de débiter.

Le principe est d'injecter du gaz aussi profondément que possible pour alléger la colonne du fluide contenu dans le tubing. Ceci est similaire à une ajoute de puissance en fond de trou pour aider le réservoir à produire l'effluent qu'il contient et le déplacer jusqu'au séparateur.

Cette technique agit:

Soit sur la densité "d", en allégeant le poids volumique du fluide(le gaz étant plus léger que l'huile) et permettant ainsi au mélange constitué de monter en surface (**Gas-Lift continu**).

Soit sur la hauteur "H", en remontant la colonne de fluide se trouvant au-dessus du point d'injection du gaz (Gas-Lift intermittent).

4.1.2 Types de Gas Lift

Le Gas-Lift est réalisé par injection de gaz soit continue, soit intermittente.

Gas- lift continu : une injection continue de gaz naturel, à pression et débit déterminés à la base de la colonne de production pour alléger le poids volumique du fluide, ce qui augmente la pression de fond dynamique et génère la pression différentielle requise pour pouvoir produire au débit désiré. Le mélange ainsi constitué peut remonter en surface, le puits étant ainsi redevenu éruptif.

Gas- lift intermittent: Injection intermittente consiste à injecter, cycliquement et instantanément, des forts débits d'un volume déterminé de gaz sous pression dans la partie basse de la colonne de production dans le but de chasser vers le haut le volume de liquide audessus du point d'injection. Soulagée, la couche se met à débiter de nouveau

jusqu'à ce que le liquide s'accumule au-dessus du point d'injection, il sera chassé de la même façon et ainsi de suite.

4.1.3 Les principaux paramètres du Gas-Lift

4.1.3.1 Pression en tête de puits (wellhead pressure)

Plus la pression en tête est basse moins il faudra du gaz pour produire la même quantité de fluide. En outre, un faible volume de gaz injecté permet d'avoir des installations de surface peu encombrées, faisant ainsi décroître la pression des collectes. Une pression en tête basse améliore donc l'efficacité du puits et celle des puits voisins.

4.1.3.2 Pression d'injection

La formule la plus utilisée pour la détermination de pression d'injection en surface est celle de R.V.SMITH, elle consiste à calculer les pertes de charges dans la colonne verticale, connaissant plusieurs paramètres, tels que le débit de gaz injecté, pression d'injection au fondetc.

Formule de R.V.SMITH

$$P_{1}^{2}-P_{2}^{2}=\frac{Q^{2}*g*\gamma_{g}*\overline{T}*X*F*(e^{s}-1)}{d^{5}*S}*0.925*10^{-2}.....(1)$$

Q :débit de gaz injecté en m3/j

X: la profondeur d'injection en m

S =
$$0.0685 * \frac{\gamma_g * X}{\overline{T} * Z}$$
 (2)

T: Température moyenne en °K.

P2: pression d'injection au fond, en bar.

P1: pression d'injection en surface, en bar.

F : coefficient de frottement, il est en fonction de Re et (ε/d) .

Z : facteur de compressibilité.

4.1.4 Aperçu sur le logiciel d'optimisation (Pipesim)

Notre objectif dans ce chapitre est de modéliser et d'optimiser le système de production des puits de l'anneau d'huile d'Alrar. Pour cela nous avons utilisé le logiciel PIPESIM[©].

Le PIPESIM (Pipeline Simulator) est un simulateur conçu par Schlumberger afin d'effectuer les tâches suivantes :

- L'optimisation de l'équipement des puits.
- L'analyse des performances des puits.
- L'analyse des réseaux de puits.
- L'optimisation de la production.
- L'analyse des puits multilatéraux.

Le PIPESIM est un logiciel d'analyse de performance des systèmes de production. Il peut aider les ingénieurs de production ou de réservoir à prédire l'écoulement et la température dans les tubings et les pipelines avec exactitude. Les calculs de sensibilité à l'aide du PIPESIM permettent d'optimiser les designs existants et de prédire l'influence des futurs changements sur les paramètres du système considéré.

En séparant la modélisation de chaque composant du système de production, PIPESIM permet ainsi à l'utilisateur de vérifier chaque modèle de sous-système. Par le biais de la fonction matching, PIPESIM s'assure que les calculs sont aussi exacts que possible. Une fois un modèle du système a été réglé aux vraies données de champ, PIPESIM peut être utilisé avec confiance pour modeler le système de production, simuler son comportement, et étudier sa sensibilité aux différents paramètres.

4.1.5 Modélisation des puits

A l'aide du logiciel Pipesim®, nous modéliserons d'abord les puits de l'anneau d'huile. La modélisation comporte plusieurs aspects :

- 1. Le modèle réservoir.
- 2. Les données PVT.
- 3. La complétion.
- 4. Le choix de la corrélation de l'écoulement vertical.
- 5. Le tracé des courbes inflow et outflow.

4.1.5.1 Le modèle réservoir

Le réservoir de l'anneau d'huile est caractérisé par une pression de réservoir initiale égale à la pression de bulle (Pr_i = Pb = 189 bar). Donc, l'écoulement dans le réservoir est un écoulement diphasique. De ce fait, l'équation qui doit être utilisée pour calculer les pertes de charges dans le réservoir est l'équation de Vogel:

$$Q_o = Q_{o \max} \left[1 - 0.2 \frac{P_{wf}}{P_r} - 0.8 \left(\frac{P_{wf}}{P_r} \right)^2 \right]$$
(3)

Pour qu'on puisse tracer les courbes IPR de nos puits, nous devons calculer les débits maxima (AOFP) que ses puits peuvent délivrer. Pour cela nous devons utiliser les données des tests qui ont été effectués sur eux.

4.1.5.2 Les données des essais de puits

Les mesures de pression et de température dont on dispose étaient réalisées au niveau des sièges X, XNet non pas au niveau des perforations. Donc les valeurs de pression et de température de fond statique doivent être corrigées et cela en tenant en compte du gradient

statique de pression et de température. Quant à la pression de fond dynamique, on est obligé de corriger ses mesures en utilisant le gradient statique en raison de l'indisponibilité de mesures du gradient dynamique.

Pour corriger ces mesures, nous procédons comme suit :

$$Pwf = Pwf_{perfo} = Pwf_{gage} + GPd*(H_{perfo} - H_{gage})$$
 (4)

$$Pws = Pws_{perfo} = Pws_{gage} + GPS*(H_{perfo} - H_{gage})$$
 (5)

$$T^{\circ} = T^{\circ}_{perfo} = T^{\circ}_{gage} + GT * (H_{perfo} - H_{gage})$$
(6)

Où:

Pwf: pression de fond dynamique corrigée

 Pwf_{ogoe} : Pression de fond dynamique mesuré

Pws: Pression statique corrigée Pws_{gage} : Pression statique mesurée

 T° : Température corrigée T°_{gage} : Température mesurée

GPS : Gradient statique de pression entre les perforations et le gage
 GT : Gradient statique de température entre les perforations et le gage
 GPD : Gradient dynamique de pression entre les perforations et le gage

 H_{perfo} : La profondeur des perforations

 H_{gage} : La profondeur des gages

Les résultats obtenus sont représentés dans le tableau suivant :

Tableau 4.1:Données de DST

	Puits	AL57	AL61	AL67	AL69	AL523	AL63	AL65	AL521	AL72
	Cote de mesure(m)	2620	2571	2615	2620	2550	2565	2620	2490	2610
	Pression de fond statique (psia)	1908.5	1874.9	1889.7	1809.8	1780	1790.2	1936	1725	1925
Valeurs mesurées	Pression de fond dynamique (psia)	1711	1763	1694.8	1716.6	1631	1657.5	1788	1627	1620
	Température de fond(°c)	121	120	126	123	118	120	121	109	120
	Pression(psia/m)	0.66	0.90	0.98	0.80	0.62	0.38	0.75	0.91	0.85
Gradient statique	Température (°c /100m)	6.11	5.68	6.01	5.12	6.70	5.23	6.13	6.89	5.86
Gradient	Pression(psia/m)	0.37	0.33	0.30	0.20	0.19	0.32	0.39	0.39	0.28
dynamique	Température (°c /100m)	4.83	3.67	3.40	3.35	4.22	3.22	4.19	5.67	3.33
	Pression de fond statique	1928	1919	1907	1831	1828	1824	1960	1844	1940
Valeurs	Pression de fond dynamique	1722	1779,2	1700	1721	1646	1686	1800	1679	1625
corrigées	Température de réservoir (°c)	123	122.8	127	128	127	124.6	123	118	121
	Débit de test (Sm3/J)	147.84	151	174.96	47.04	25.92	131.1	184.8	139.5	145.68
	Diamètre de la duse (in)	0.562	0.562	0.562	0.5	0.562	0.5	0.562	0.562	0.562

A partir de ces résultats, et notamment Pr, Pwf et Qo, nous pourrons tracer les courbes de performances de réservoir (IPR) pour chaque puits, et cela en se basant sur l'équation de Vogel, ce qui nous permet de déterminer les débits maxima des puits (AOFP).

Ces débits sont représentés dans le tableau suivant :

Tableau 4.2:AOFP des puits HP

puits	AL57	AL61	AL67	AL63	AL65	AL69	AL521	AL523	AL72
AOFP(m ³ /j)	806.1	1188.17	938.1	994.8	1302.4	421.6	902.4	151.5	536.6

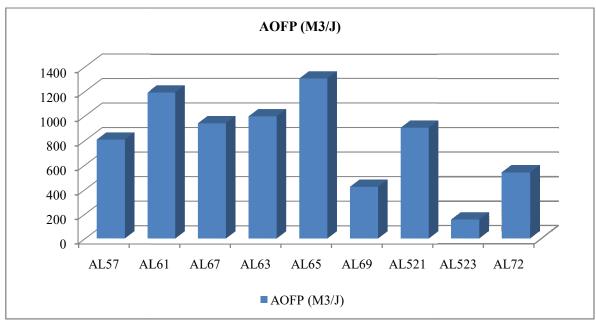


Figure 4.1: AOFP des puits

A partir de ces résultats nous pouvons constater que :

Les puits AL65 et AL61 ont très bon potentiel.

Les puits AL57, AL67, AL63 et AL521 ont un bon potentiel.

Les puits AL69 et AL72 ont un potentiel moyen.

Le puits AL523 a un faible potentiel.

4.1.5.3 Les données PVT

Pour avoir un modèle fiable représentant avec le maximum d'exactitude l'écoulement dans nos puits, nous devons intégrer les données PVT des effluents de ces puits. Le modèle utilisé le modèle *black oil*. Les données nécessaires pour créer ce modèle sont résumées dans le tableau suivant :

Tableau 4.3:Données PVT

PUITS	AL57	AL61	AL67	AL69	AL523	AL63	AL65	AL521	AL72
Ptête dynamique(psi)	1029.5	971.5	877,47	1232.5	1247	730	812,2	855,7	915
$Q_L (m^3/j)$	170.64	151	174.96	48.48	30.24	131.1	184.8	139.5	145.68
Q_g (m^3/h)	4983.88	5783	3569	6038	6406	1357	2075	2411	2581
GOR	809	919	489	3080	5931	248	270	414	425.21
Wcut °/°	13.36	0	0	2.97	14.28	0	0	0	0
d ₀ (g/cm ³)	0.7781	0.7945	0.8090	0.7792	0.8008	0.7980	0.8160	0.7998	0.7978
Pression de bulle (bar)	189	189	189	189	189	189	189	189	189

4.1.5.4 La complétion des puits

Le modèle de puits à concevoir avec PIPESIM comporte une partie représentant le tubing. Le tableau ci-dessous résume les données de complétion nécessaires pour créer les modèles de nos puits.

Tableau 4.4: Données de complétions

Puits	Côte des midperfos (m)	Longueur du tubing (m)	Diamètre nominal du tubing (in)	Diamètre intérieur du tubing (in)
AL57	2647	2592	3"1/2	2,992
AL61	2635,5	2571	3"1/2	2,992
AL67	2641	2580	3"1/2	2,992
AL523	2637	2566	3"1/2	2,992
AL63	2656	2600	3"1/2	2,992
AL65	2654	2608	3"1/2	2,992
AL521	2632	2579	3"1/2	2,992
AL72	2635	2586	3"1/2	2,992

4.1.5.5 Le choix de la corrélation de l'écoulement vertical

Afin de construire un modèle du puits fiable, nous devons choisir une corrélation d'écoulement verticale adéquate. Cette corrélation doit être celle qui donne la plus petite erreur relative par rapport aux données mesurées. PIPESIM nous offre une multitude de corrélations, parmi lesquelles nous citons :

Tableau4.5: Exemples de corrélations d'écoulement vertical

Corrélation	Abréviation
Ansari	ANS
Beggs and Brill original	BBO
Beggs and Brillrevised	BBR
Duns and Ros	DR
Hagedorn and Brown	HBR
Mukherjee and Brill	MB
Orkiszewski	ORK

Pour choisir la corrélation qui donne les meilleures prédictions des pertes de charge pour nos puits, nous procéderont comme suit :

- 1. On fixe le débit du liquide du test et la pression en tête correspondante.
- 2. On choisit la pression de réservoir (inlet pressure) comme variable à calculer.
- 3. On sélectionne les corrélations précitées comme corrélations d'écoulement vertical.
- 4. A partir des courbes générées par ces corrélations on extrait les valeurs des pressions de fond dynamiques à la côte de mesure.
- 5. On calcule les pertes de charge dans le tubing :

$$\Delta P = P_{wf} - P_{wh}$$

6. On compare ces valeurs aux pressions de fond dynamiques mesurées et cela en calculant l'erreur relative :

$$E_{relative} = \left| \frac{\Delta P_m - \Delta P_c}{\Delta P_m} \right| \dots (7)$$

 ΔP_m : perte de charge mesurée, ΔP_c : perte de charge calculée.

7. On calcule l'erreur relative moyenne de l'ensemble des puits.

$$\overline{E_{relative}} = \sum_{i=1}^{N} \frac{E_{relative_i}}{N}$$
abre de puits, dans ce cas, N = 7.

N: le nombre de puits, dans ce cas, N = 7.

8. La corrélation à choisir sera celle qui donnera la plus petite valeur de l'erreur relative.

Le tableau suivant rassemble les résultats des erreurs relatives obtenus :

N.B: les erreurs relatives sont données en pourcentage (%).

Tableau 4.6: Erreur relative des différentes corrélations des pertes de charges verticales

puits	ANS	BBO	BBR	DR	GA	HBR	MB	ORK
AL57	10,06	9,56	11,68	4,20	0,79	0,66	7,84	11,37
AL61	19,98	11,08	14,35	14,31	28,13	1,85	12,37	100,00
AL63	1,51	46,94	39,30	34,30	23,43	1,34	58,04	33,54
AL65	14,09	2,29	9,94	17,53	34,26	41,13	4,74	20,36
AL67	13,12	15,87	14,23	4,40	1,89	0,26	17,66	17,57
AL69	3,26	3,78	5,75	1,54	0,67	1,39	3,54	17,23
AL72	18,16	19,83	16,90	10,51	5,71	0,16	23,15	20,80
AL521	46,70	1,63	9,12	21,77	67,12	27,89	8,16	2,05
AL523	26,24	37,76	34,98	40,09	28,86	0,23	17,63	61,60
total	153,12	148,73	156,24	148,65	190,87	74,905	153,112	284,52
E relative	17,01	16,53	17,36	16,52	21,21	8,32	17,01	31,61

D'après l'histogramme ci-dessus, nous constatons que la corrélation de **Hagedorn and Brown** donne les estimations des pertes de charges verticales les plus proches des valeurs mesurées. De ce fait, cette corrélation sera utilisée pour les calculs des pertes de charge dans le tubing de nos puits.

4.1.6 Reproduction des performances actuelles des puits par PIPESIM

En utilisant l'analyse nodale, nous allons étudier les performances actuelles des puits de l'anneau d'huile et cela dans le but d'identifier les puits qui ont un bon potentiel et aussi de déterminer le point de fonctionnement de chaque puits (Pwf, Qo). Pour cela nous allons tracer les courbes inflow (IPR) et outflow (VLP) pour chaque puits. A partir de ces courbes nous déterminerons les valeurs de l'AOFP (Absolute open flow potential) et des points de fonctionnement des puits.

Résultats du travail

Prenons l'exemple du puits AL72. La figure suivante représente les courbes inflow (IPR) et outflow (VLP) de ce puits.

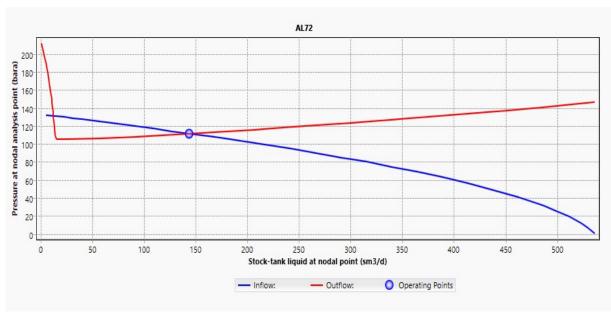


Figure 4.2: Courbes inflow (IPR) et outflow (VLP) du puits AL72

Dans le tableau suivant sont représentés les débits et les pressions de fond dynamique correspondant aux points de fonctionnement de nos puits.

Tableau 4.7: Points de fonctionnement des puits

Puits	AL57	AL61	AL67	AL63	AL65	AL69	AL521	AL523	AL72
Qo (m ³ /J)	148.1	151.52	171.95	135.85	188.25	49.184	139.3	25.25	144.6
Pwf (psi)	1721.5	1778.5	1704	1681	1798	1708.2	1678	1652	1627.5

4.1.6.1 Comparaison entre les données des tests et celles obtenues par PIPESIM

Pour s'assurer que les modèles construits représentent les puits avec suffisamment de précision, nous avons fait une comparaison entre les données des tests et celles obtenues par simulation. Les résultats sont représentés dans le tableau suivant :

Tableau 4.8: Comparaison entre les données mesurées et celles calculées par PIPESIM

	Puits	AL57	AL61	AL67	AL63	AL65	AL69	AL521	AL523	AL72
Données	$Q_o (sm^3/j)$	147.84	151	174.96	131.1	184.8	47.04	139.5	25.92	145.68
du test	Pwf (psi)	1722	1779.2	1700	1686	1800	1721	1679	1646	1625
Données du	$Q_o (sm^3/j)$	148.1	151.52	171.95	135.85	188.25	49.184	139.3	25.25	144.6
PIPESIM	Pwf (psi)	1721.5	1778.5	1704	1681	1798	1708.2	1678	1652	1627.5
Ecart	$Q_o (sm^3/j)$	0.176	0,52	1.721	3.623	1.867	4.558	0.143	2.585	0.741
(en %)	Pwf (psi)	0.029	0.7	0.235	0.297	0.111	0.747	0.059	0.365	0.154

Nous constatons que, à quelques exceptions près, l'écart entre les données mesurées et les données obtenues par simulation est inférieur à 5%. Donc, nous en déduisons que les modèles que nous avons construits représentent les puits de l'anneau d'huile avec une précision satisfaisante.

4.1.7 Optimisation de la production

4.1.7.1 Étude du déclin de la production

Pour évaluer l'impact de ce déclin de pression sur les débits de production des puits, on a utilisé les résultats de l'étude du déclin. Cette étude qui nous donne les prévisions de l'évolution de la pression de réservoir, le GOR et le Water Cut en fonction du temps, nous avons fait une simulation a l'aide du logiciel PIPESIM qui nous a permis de prédire l'évolution de la production de ces puits pour les années à venir.

Nous prenons l'exemple du puits AL72. Les résultats sont représentés dans le tableau suivant :

Tableau4.9: Impacte de déclin de pression sur la production pour le puits AL72

Temps	Ps (psi)	GOR	Wcut (%)	Q ₀ sans Gaz Lift
2013	1940	425	0	144,6
2014	1835	385	15	120,1
2015	1730	290	30	53,5
2016	1625	220	45	0
2017	1520	150	55	0
2018	1415	110	65	0
2019	1310	85	70	0
2020	1205	75	75	0
2021	1100	70	80	0

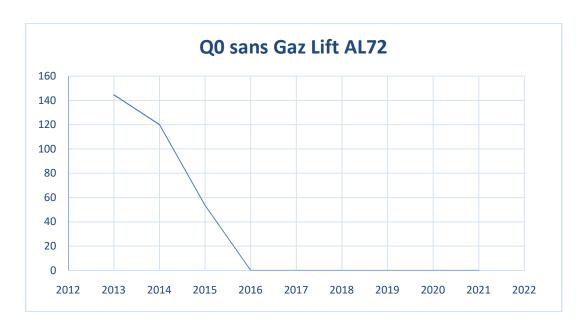


Figure 4.3: Déclin de la production du puits AL72

A partir de ces résultats nous pouvons constater que :

- la production des puits de l'anneau d'huile décroitra très rapidement dans les années qui viennent.
- elle deviendra nulle pour la plupart de ces puits au bout de 4 à 6 ans :
 - ➤ AL521, AL63, AL65 à partir de 2014
 - > AL61 à partir de 2015
 - > AL72 et AL67 à partir de 2016
 - > AL69 et AL57 à partir de 2017
 - > AL523 à partir de 2018

Donc, il faut envisager de mettre en place un système d'activation qui fournira de l'énergie à ces puits et leurs permettra de produire le plus longtemps possible.

Le système d'activation qui s'impose dans notre cas est le gas lift et cela grâce à la disponibilité du gaz dans le gisement d'Alrar. Le gas lift contribuera à l'amélioration de la production des puits de l'anneau d'huile tant qu'ils sont éruptifs et les aidera à produire quand l'énergie du gisement ne devient plus suffisante pour les faire débiter.

4.1.7.2 Optimisation du Gas lift

A l'aide de la fonction gas lift performance du logiciel PIPESIM, nous avons optimisé le débit d'injection du gaz pour les neufs puits concernés par l'optimisation du gas lift.

Paramètres du Gas lift

Tableau 4.10:Paramètres du Gas lift

Pression de démarrage (bar)	110
Pression de fonctionnement (bar)	110
Température d'injection en surface (°C)	27
Densité du gaz injecté	0,64

Tableau 4.11: Profondeur d'injection des différents puits

	AL523	AL69	AL72	AL57	AL521	AL63	AL67	AL61	AL65
Profondeur d'injection maximale possible (m)	2554	2583	2561	2568	2555	2575	2555	2548	2584

Remarque

En raison de la disponibilité du gaz dans le gisement d'Alrar et cela en quantité et en pression, l'injection se fait dans le point le plus bas possible

Détermination des débits optima de gaz injecté

D'après l'étude faite sur les courbes des performances de gaz lift sur tous les puits entre janvier 2012 à janvier 2020, on a constaté deux types des puits :

> Les puits qui ont besoin de gaz lift durant toute cette période :

Ce type est caractérisé par une courbe de performance de la forme présentée dans la figure cidessous :

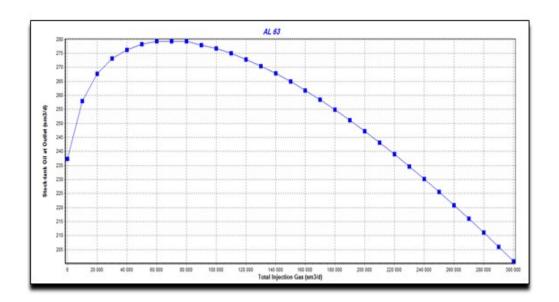


Figure 4.4: Courbe de performance du Gas-lift du puits AL63

- La courbe ne passe pas par le zéro. Cela revient au fait que le puits est éruptif à l'état actuel.
- •L'augmentation du débit d'injection du gaz génère une augmentation du débit d'huile jusqu'à ce que celui-ci atteigne une valeur maximale pour un débit de gaz égal à 280.000 sm³/j. Toute augmentation du débit de gaz au-delà de cette valeur provoquera une diminution du débit d'huile.
- La courbe prend une forme aplatie à partir d'une certaine valeur du débit de gaz. Donc, il sera plus judicieux de choisir un débit de gaz inférieur au débit optimum mais qui donne un débit d'huile légèrement inférieur au débit maximum.
- Le débit de liquide diminue avec l'augmentation de débit d'injection de gaz à cause de l'augmentation des pertes de charge dans le tubing.

Les puits de ce type sont : AL63, AL65, AL521

Les puits qui ont besoin de gas lift pour une période limitée :

On prend comme exemple le puits AL 57.

Entre 2012 et 2014 le puits n'a pas besoin de gas lift et sa courbe de performance a la forme suivante :

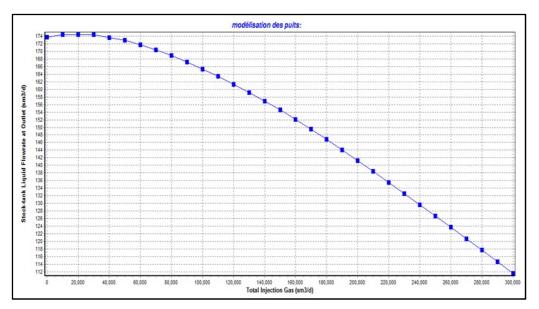


Figure 4.5: Courbe de performance du Gas-lift du puits AL57

- On voit clairement que le puits débite à son maximum sans gaz lift et il est inutile d'injecter le gaz dans cette période.
- A partir du 2015 le puits AL 57 aura besoin de gaz lift pour améliorer sa production et sa courbe de performance prend la forme suivante :

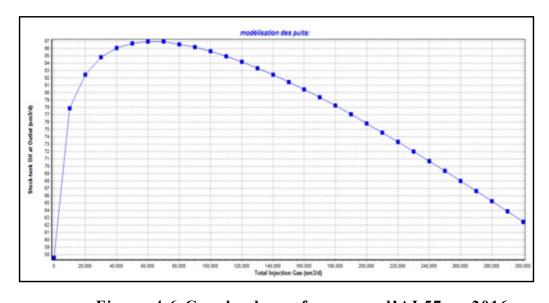


Figure 4.6: Courbe de performance d'AL57 en 2016

- Une injection de gaz entre 0 m³/j à 50000 m³/j améliore la production du puits.
- Une injection plus de 50000 m³/j fait augmenter les pertes de charge et par conséquence diminue la production de puits.

L'injection de 50000 m3/j génère un débit d'huile de 83,5 m3/j.

L'injection de 20000 m3/j génère un débit d'huile de 80,3 m3/j. c'est à dire 30000 m3/j servent à ajouter que 3,2 m3/j d'huile. Donc en préfèrent travailler avec ce dernier débit qu'en appelle le **débit économique**.

Les puits de ce type sont AL57, AL61, AL67, AL69, AL72, AL523.

Le tableau ci-dessous rassemble les débits d'injection de gaz et de production d'huile maximaux et optimaux pour le puits AL57.

Tableau 4.12: Débits d'injection optimaux et maximaux du puits AL57

Année	Qo max	Qging max	Qo optim	Qginj optim
2013	290,66	80,07	284,07	40,03
2014	214,31	100,08	210,26	69,54
2015	171,46	119,89	165,68	79,96
2016	129,42	129,82	124,62	92,11
2017	74,2	117,91	72,07	89,14
2018	42,75	198,04	39,02	121,88
2019	28,47	188,61	25,51	120,14
2020	17,59	178,19	16,2	122,63
2021	12,87	149,99	12,42	125,48

Apport du gas lift à la production des puits de l'anneau d'huile

A partir des courbes de performance des puits on peut observer l'effet de gaz lift sur la production des puits. Un effet positif qui consiste à améliorer la production de ces puits ou un effet négatif par l'augmentation des pertes de charges dans les puits ce qui diminue la production.

Tableau 4.13: Apport de Gas lift pour le puits AL63

Temps	Q ₀ sans Gaz Lift (m ³ /j)	Q ₀ avec Gaz Lift (m ³ /j)
2013	131,1	284,07
2014	0	210,26
2015	0	165,68
2016	0	124,62
2017	0	72,07
2018	0	39,02
2019	0	25,51
2020	0	16,2
2021	0	12,42
Total	131,1	949,85

Il est clair que pour ce puits le Gas- lift est une solution pour l'amélioration de sa production du fait qu'on bonifiera de plus de 800 m³/j dans 7 ans.

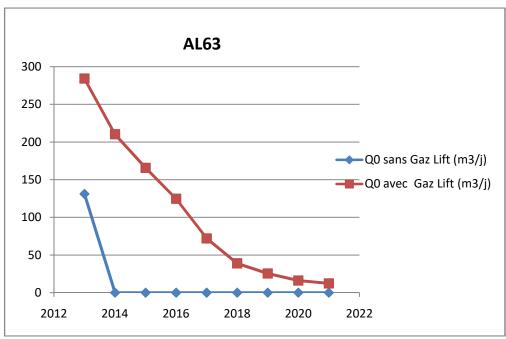


Figure 4.7: Apport de gaz lift pour le puits AL63

Tableau 4.14: Production avec et sans gaz lift pour les puits

Année	Puits	AL57	AL61	AL65	AL69	AL72	AL523	AL521	AL63	AL67	Total
2013	Sans gas- lift	146,6	151	184,8	49,2	144,6	24,9	139,2	131,1	175	1146,4
2013	Avec gas- lift	146,6	151	340,6	49,2	144,6	24,9	240	284,1	175	1556
2014	Sans gas- lift	125,5	137,7	0	41,9	120,1	21,9	106,6	0	147	599,2
2014	Avec gas- lift	125,5	142,9	303,1	41,9	238	21,9	155	210,3	147	1385,5
2015	Sans gas- lift	52,3	84,6	0	39,5	53,5	16,8	41,7	0	120	282,1
2013	Avec gas- lift	52,3	180,6	259,8	39,5	174,2	16,8	102	165,7	323	1313,3
2016	Sans gas- lift	40,9	14,1	0	37	0	9,7	0	0	0	87,6
2010	Avec gas- lift	126	129,3	184,8	37	118	50	70	124,6	170	1009,9
2017	Sans gas- lift	0	0	0	0	0	8,5	0	0	0	8,5
2017	Avec gas- lift	80,3	68,1	144,7	71,9	82,4	39,6	50,8	72,1	125	734,8
2018	Sans gas- lift	0	0	0	0	0	0	0	0	0	0
2016	Avec gas- lift	56	44,4	84	56,2	51,2	27	43,3	39,1	89,3	490,5
2019	Sans gas- lift	0	0	0	0	0	0	0	0	0	0
2019	Avec gas- lift	37,4	26,3	48,5	39	33,2	19	21	25,5	48,2	298,1
2020	Sans gas- lift	0	0	0	0	0	0	0	0	0	0
2020	Avec gas- lift	20,4	10	33,6	28	20,2	12,6	13	16,2	33,3	187,3
	Sans gas- lift	0	0	0	0	0	0	0	0	0	0
2021	Avec gas lift	10,3	7,7	13,3	16	11,3	6,1	5,6	12,4	11,2	93,9

[•] À partir du tableau, nous pouvons constater que le gas lift permet d'améliorer considérablement la production des puits de l'anneau d'huile et cela même lorsque ces puits sont éruptifs. Il permet aussi à ces puits de produire quand ils deviendront non éruptifs, ce qui arrivera dans un avenir très proche (de 4 à 8 ans d'exploitation).

Les résultats de tous les puits sont mentionnés dans l'annexe B.

Approche globale

durée de production (an)	Nombre de puits	Production sans Gaz Lift (MMm ³)	Production avec Gaz Lift (MMm ³)	Apport (gain) en production (%)
9	9	0,7751	2,0125	159,6

Conclusion

- Le gas lift est indispensable pour les puits qui perdent en éruptivité.
- Le gas lift est un moyen pour améliorer la production même pour les puits qui restent éruptifs.
- Techniquement, le gaz lift est une solution adéquate pour les 9 puits et le gain de 159,6 % en production le justifie.

4.1.8 Calcul économique

L'étude économique est la phase finale de chaque étude technique. Son objectif essentiel est de faire une évaluation financière objective et rigoureuse afin d'aboutir à un schéma d'exploitation le plus optimal du projet.

L'exploration et le développement d'un champ pétrolier font face à de nombreuses inconnues: les incertitudes liées aux rendements et aux coûts tout au long du cycle de vie du projet, aux coûts d'investissement (Capex), aux coûts opératoires (Opex), au taux de production, au prix du pétrole (et du gaz), au taux de succès géologique, et au train des dépenses.

Avec toutes ces incertitudes, il est extraordinairement difficile de prévoir les bénéfices et les cash-flows, même pour les prospects les plus simples.

Présentation du projet

En effet, les projets en questions sont :

➤ La mise en Gaz Lift de l'ensemble des puits de l'anneau d'huile. Alors, on s'est contenté d'évaluer le projet « Gaz Lift » du fait qu'il est en cours de réalisation.

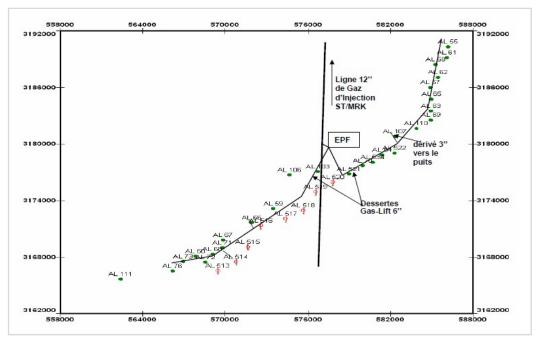


Figure 4.8: Schéma représentant la boucle Gaz Lift

4.1.8.1 Besoins techniques du projet

➤ Une source d'énergie qui arrive en tête de puits avec 110 bars et un débit de gaz de 350 x 103Stm3/J . il s'agit de réaliser un piquage sur la ligne de Gaz d'injection STAH/MRK et installer deux détendeurs (le 1er de 240 à82 bars au niveau de la zone 15, le deuxième de 240 à130 bars à proximité de l'EPF).

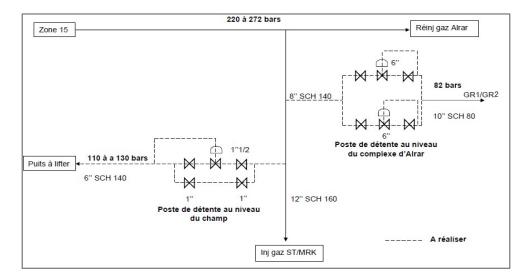


Figure 4.9: Source de gaz pour les puits de l'anneau d'huile

- Réseau de collecte : il comporte :
 - Manifold
 - Deux dessertes de piping $\emptyset6$ ''sur une longueur de 40 Km pour alimenter les puits en Gas-Lift.
 - Des dérivées de tubes Ø3''reliant les puits à la boucle de tubes 6''d'une longueur totale de 10Km.

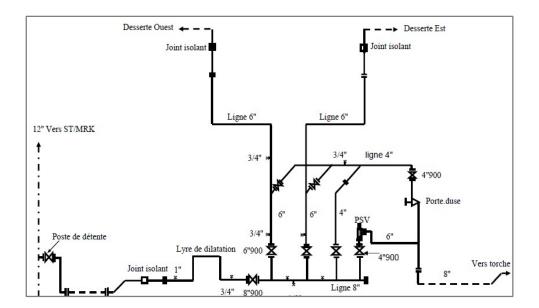


Figure 4.10: Manifold Gas-Lift

> Équipements de surface :

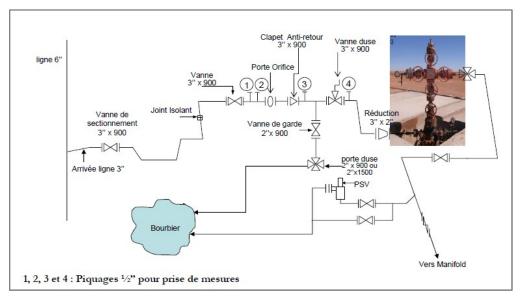


Figure 4.11:Installation de surface d'un puits équipé en Gas-Lift

> Équipements de fond:

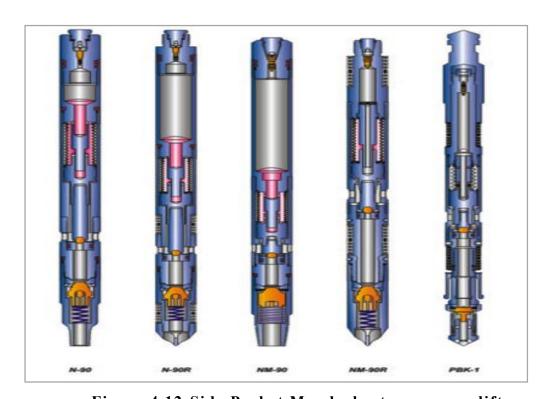


Figure 4.12:Side Pocket Mandrels et vannes gaslift

Coûts d'investissement du projet (CAPEX)

Elles englobent toutes les charges dépensées pour la mise en œuvre du projet :

Tableau 4.15: Couts d'investissement du projet (CAPEX)

Investissement	M\$
Études	4914.130
Piquage sur la ligne de gaz d'injection de ST/MRK	5463.120
Réseau de collecte	11377.250
Installations de surface	3493.070
Installations de fond	100.640
Reprise des puits pour changement de complétion en gas-lift	20000.000
CAPEX	45348.210

Coûts opératoires (Opex)

Elles comportent toutes les dépenses surgissant au cours de la production :

Tableau 4.16: Couts opératoires (Opex)

Charges d'exploitations	MM\$/an
Énergie dépensée	5
Charges diverses (interventions)	10
OPEX	15

Calcul économique

> Données techniques

Tableau 4.17: Données techniques du calcul économique

Projet	Sans Gaz Lift	Gaz Lift
CAPEX (M\$)	0	45348.210
OPEX (MM\$/an)	10	15
Durée d'exploitation (ans)	9	9

> Hypothèses économiques

Tableau 4.18: Hypothèses économiques

Prix du brut (\$/bbl)	80
Taux d'actualisation (%)	12
Taux de redevance (%)	20
Impôt (%)	25
Taux d'inflation (%)	8
Amortissement (ans)	5

> Calcul & résultats

a. Sans Gaz Lift

Tableau 4.19:Estimation économique du cas de base

Tableau 4.19: Estimation économique du cas de base

	Données techniques en monnaie constante										
Année	Total	0	1	2	3	4	5	6	7	8	9
Production annuelle (MMbbl/an)	4,208	0,000	1,830	0,956	0,450	0,299	0,189	0,166	0,158	0,105	0,0546
Investissement MM\$	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
OPEX MM\$/an	63,250		15,000	12,000	9,000	7,500	6,750	5,350	4,650	2,000	1,000
					Hypothèses	economiqu	es				
Année	Total	0	1	2	3	4	5	6	7	8	9
prix MM\$		0,000	146,400	76,480	36,000	23,920	15,120	13,280	12,640	8,400	4,368
Taux d'actualisation et inflation	27,220	1,000	1,210	1,463	1,770	2,141	2,589	3,132	3,789	4,583	5,543
Taux d'actualisation	17,549	1,000	1,120	1,254	1,405	1,574	1,762	1,974	2,211	2,476	2,773
			Ec	cheancier flu	x de tresorio	e en monnai	e courante N	1M\$			
Année	Total	0	1	2	3	4	5	6	7	8	9
Recettes(MM\$)	405,093	0,000	158,112	89,206	36,000	32,543	22,216	21,074	21,663	15,548	8,732
Après redevance	324,075	0,000	126,490	71,365	28,800	26,034	17,773	16,859	17,330	12,438	6,985
Investissement	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Amortissement sur (5 année)	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
OPEX	63,250	0,000	16,200	13,997	11,337	10,204	9,918	8,490	7,969	3,702	1,999
Bénéfice imposable	240,259	0,000	110	57	17,463	15,831	7,855	8,369	9,361	8,736	4,986
Impot	60,065	0,000	28	14	4,366	3,958	1,964	2,092	2,340	2,184	1,247
Cash-flow	180,194	0,000	82,717	43,026	13,097	11,873	5,891	6,277	7,021	6,552	3,740
Cash-flow actualisé	118,974	0,000	68,384	29,407	7,400	5,546	2,275	2,004	1,853	1,430	0,675
Cash-flow actualisé cumulé		0,000	68,384	97,791	105,191	110,737	113,012	115,016	116,869	118,299	118,974
VAN MM\$	118,974										

b. Avec Gaz Lift:

Tableau 4.20: Estimation économique du projet GL

Comparaison des VAN (Valeur Actuelle Nette)

	Données techniques en monnaie constante										
Année	Total	0	1	2	3	4	5	6	7	8	9
Production annuelle (MMbbl/an)	11,278	0,000	2,480	2,210	2,100	1,610	1,170	0,783	0,476	0,299	0,150
Investissement MM\$	45,348	45,348	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
OPEX MM\$/an	86,200		17,000	15,000	12,000	10,500	8,600	7,800	6,100	5,000	4,200
					Hypothèses	economiqu	es				
Année	Total	0	1	2	3	4	5	6	7	8	9
prix MM\$		0,000	198,400	176,800	168,000	128,800	93,600	62,640	38,080	23,920	12,000
Taux d'actualisation et inflation	27,220	1,000	1,210	1,463	1,770	2,141	2,589	3,132	3,789	4,583	5,543
Taux d'actualisation	17,549	1,000	1,120	1,254	1,405	1,574	1,762	1,974	2,211	2,476	2,773
			Ec	cheancier flu	x de tresorio	e en monnai	e courante N	IM\$			
Année	Total	0	1	2	3	4	5	6	7	8	9
Recettes(MM\$)	1134,178	0,000	214,272	206,220	168,000	175,231	137,529	99,402	65,262	44,274	23,988
Après redevance	907,343	0,000	171,418	164,976	134,400	140,185	110,023	79,521	52,210	35,419	19,190
Investissement	45,348	45,348	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Amortissement sur (5 année)	45,348	0,000	15,116	15,116	15,116	15,116	15,116	0,000	0,000	0,000	0,000
OPEX	86,200	0,000	18,360	17,496	15,117	14,285	12,636	12,378	10,454	9,255	8,396
Bénéfice imposable	713,386	0,000	138	132	104,167	110,784	82,271	67,144	41,756	26,165	10,795
Impot	178,346	0,000	34	33	26,042	27,696	20,568	16,786	10,439	6,541	2,699
Cash-flow	565,272	-45,348	118,572	114,389	93,242	98,204	76,819	50,358	31,317	19,624	8,096
Cash-flow actualisé	289,168	-45,348	98,026	78,181	52,685	45,873	29,666	16,077	8,266	4,282	1,460
Cash-flow actualisé cumulé		-45,348	52,678	130,858	183,543	229,417	259,083	275,160	283,426	287,708	289,168
VAN M\$	289,168										

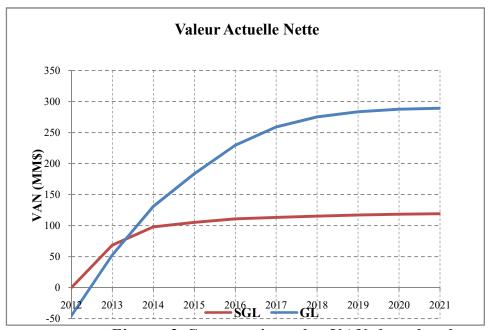


Figure 3: Comparaison des VAN dans les deux cas

Conclusion

- L'apport du projet de Gaz Lift en terme économique est très significatif, vu que l'investissement a été récupéré dès la première année d'exploitation.
- On observe dans les deux cas des valeurs actuelles nettes positives, c'est-à-dire que les deux cas sont économiquement rentables.
- Mais dans ce domaine d'investissement, on parle plus de rentabilité des projets, mais plus tôt d'enrichissement relatif de ces derniers.

4.2 Apport de Boosting pour les puits de gaz

Introduction

La baisse considérable de pression dans le réservoir aura une influence négative sur la production du gaz et condensat au niveau de la surface, ces derniers devront arriver à l'entrée d'usine avec une pression de 67 bars (pression design du centre de traitement).

En gardant une pression suffisante en tête de puits, on peut assurer l'acheminement du gaz vers l'usine avec la pression requise à l'entrée tout en contrecarrant les pertes de charges dans le réseau de collecte.

Si on veut maintenant augmenter la production au niveau des puits il faudra faire abaisser la pression à la tête de puits, mais cela empêchera l'arrivée du gaz à l'entrée de l'usine ou du moins avec une pression insuffisante, d'où la nécessité de mettre en place des unités de compression pour assurer l'acheminement du gaz vers l'usine avec la pression requise à l'entrée, ce procédé est connu sous le nom de Boosting, la figure 6.1 montre un schéma simplifié du procédé Boosting.

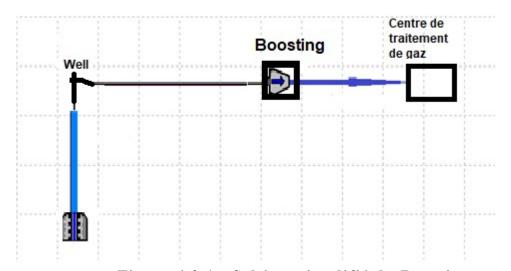


Figure 4.2.1 : Schéma simplifié du Boosting

4.2.1 Présentation de l'étude pratique du Boosting

4.2.1.1 Choix des puits

Vu le grand nombre de puits producteur de gaz qu'on a dans le champ d'Alrar, l'installation des unités de compression au niveau de chaque puits s'avère impossible d'où la nécessité de les mettre en place au niveau des manifolds où plusieurs puits se rencontrent. Il existe deux manifolds à Alrar Ouest et cinq manifolds à Alrar Est, pour l'étude qui suit on prendra de chaque manifold un puits représentant leur groupe de puits qu'il contient, le tableau suivant résume les différents manifolds existants et les puits qu'ils regroupent.

Manifolds **Puits** Puits modèle AL22; AL09; AL23; AL07 bis; AL20 M01 AL23 M02 AL01 bis; AL10; AL16; AL17; AL18; AL19 AL16 M03 AL08; AL15; AL528; AL06 bis; AL05 bis AL528 M04 AL04; AL12; AL13; AL24; AL25; AL27 AL12 M05 AL26; AL50; AL51; AL52; AL53; AL54; AL82; AL83; AL50 AL532; AL533 MPW1 AL41; AL33; ALDZSE1; AL32; AL40; ALDZS1; AL44 AL41 MPW2 AL30; AL38; AL35; AL28; AL34 AL35

Tableau 4.21:Choix des puits

4.2.1.2 Modélisation des puits

Notons que la modélisation des puits à été déjà présentée dans la chapitre précédent (Gas Lift), mais là il s'agit de modéliser des puits de gaz à condensat.

Le modèle PVT le mieux adapté dans ce cas est le modèle compositionnel, mais vu l'indisponibilité des données pour construire ce modèle on optera pour le modèle Black Oil, c'est-à-dire on considère le puits de gaz comme un puits d'huile mais à fort GOR.

Les données nécessaires pour la modélisation des puits concernés par notre étude sont résumées dans le tableau suivant :

Tableau 4.22:Données des puits

Données	Puits	AL23	AL16	AL528	AL12	AL50	AL41	AL35
Completion	Tbgdepth(m)	2483	2564	2514	2509	2562	2191	2456
	ID (inch)	3,958	4,276	4,408	4,276	4,276	4,408	4,276
	Perf depth (m)	2571	2616	2570	2560	2595	2535	2520
Jaugeage	Qg (Ksm3/j)	719,880	571,091	471,892	565,73	502,34	518,859	781,285
	Qcond (sm3/j)	5,04	34,498	55,791	14,907	79,99	61,819	71,934
	Qw (m3/j)	20,67	0,549	0,902	0,193	2,343	9,104	18,38
	Pt (bara)	84	80	80	86	80	85	84
Test fond	Pws (bara)	121,5	125,4	121,88	123	123,4	129,4	129
	Pwf (bara)	119,4	117,5	106,32	114,5	107,4	117	118
	Tres (°C)	121	127	127	127	127	127	127

Le choix de la corrélation de l'écoulement vertical

Afin de construire un modèle du puits fiable, nous devons choisir une corrélation d'écoulement verticale adéquate. Cette corrélation doit être celle qui donne la plus petite erreur relative par rapport aux données mesurées. PIPESIM nous offre une multitude de corrélations qui parmi elles sont déjà présentées dans le chapitre précédent.

Pour choisir la corrélation qui donne les meilleures prédictions des pertes de charge pour un puits vertical, nous procédons comme suit :

- Donner le débit d'écoulement et la pression de réservoir statique (Pws).
- Sélectionner la pression de sortie (Pt) comme une variable à calculer.
- Sélectionner plusieurs corrélations d'écoulement multiphasique.

La figure ci-dessous montre le choix de la corrélation pour le puits AL50

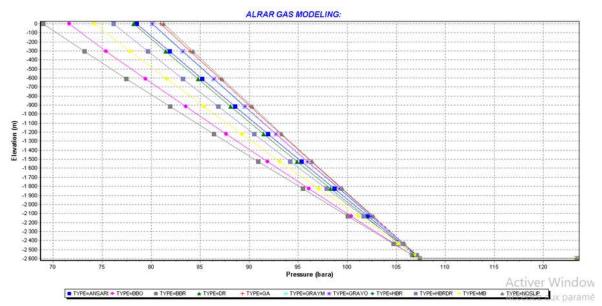


Figure 4.14: Flow correlation matching pour AL50

Et le tableau suivant montre les résultats pour toutes les corrélations de ce puits ainsi que la corrélation qui donne l'erreur la plus petite.

Tableau 4.23:Données de flow correlation matching du puits AL50

Elévation(m)	Pression	Pression						
, ,	(bar)	(bar)						
	HBR	ANSARI	BBO	BBR	DR	GRAYO	GRAYM	MB
-2595	123,40	123,40	123,40	123,40	123,40	123,40	123,40	123,40
-2595	107,40	107,40	107,40	107,40	107,40	107,40	107,40	107,40
-2595	107,40	107,40	107,40	107,40	107,40	107,40	107,40	107,40
-2562	107,08	107,00	106,61	106,65	106,83	107,10	107,10	106,97
-2562	107,08	107,00	106,60	106,64	106,82	107,09	107,09	106,96
-2438,4	105,51	105,59	104,80	104,73	105,36	105,74	105,74	105,27
-2133,6	101,68	102,13	100,42	100,07	101,80	102,44	102,43	101,15
-1828,8	97,91	98,71	96,11	95,47	98,30	99,18	99,17	97,11
-1524	94,18	95,32	91,86	90,91	94,86	95,95	95,93	93,15
-1219,2	90,50	91,94	87,66	86,39	91,47	92,74	92,72	89,24
-914,39	86,86	88,57	83,51	81,92	88,11	89,56	89,53	85,40
-609,59	83,26	85,21	79,42	77,48	84,79	86,39	86,35	81,62
-304,8	79,69	81,86	75,42	73,22	81,49	83,24	83,20	77,88
0	76,14	78,51	71,62	68,97	78,22	80,11	80,06	74,19
0	76,14	78,51	71,62	68,97	78,22	80,11	80,06	74,19
E(relative)	4,82	1,86	10,48	13,78	2,23	0,13	0,07	7,26

Le résumé des différentes corrélations obtenues pour les autres puits sont dans le tableau suivant :

Tableau 4.24: Résultats des corrélations pour l'ensemble des puits étudiés

Corrélation	HBR	ANSARI	BBO	BBR	DR	GRAYO	GRAYM	MB	
Puits		E(relative)							
AL23	0,90	17,46	5,01	17,16	0,78	6,92	6,92	1,81	<mark>DR</mark>
AL16	4,69	7,69	3,56	10,27	5,86	4,48	4,42	3,10	MB
AL528	3,14	1,59	23,55	25,74	9,47	0,14	0,01	5,83	GRAYM
AL12	3,85	0,67	1,24	3,59	3,51	4,83	4,81	4,30	<mark>ANSARI</mark>
AL50	4,82	1,86	10,48	13,78	2,23	0,13	0,07	7,26	GRAYM
AL41	2,08	2,45	8,32	12,25	1,36	0,47	0,42	5,71	GRAYM
AL35	10,16	8,91	16,53	35,46	3,89	9,49	9,58	16,25	<mark>DR</mark>

Traçage des courbes inflow et outflow:

En utilisant l'analyse nodale pour déterminer le point de fonctionnement de chaque puits (Pwf, Qg). La figure ci-dessousre présente l'analyse nodale du puits AL50.

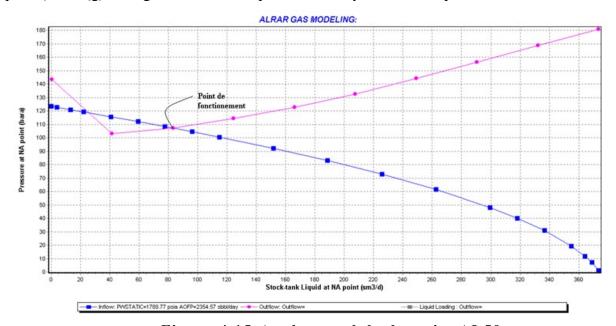


Figure 4.15: Analyse nodale du puits AL50

• On procède ensuite à la vérification des valeurs calculées avec celles mesurées, les résultats sont dans le tableau suivant :

Tableau 4.25: Comparaison entre les données mesurées et celles calculées par PIPESIM

Puits	AL23	AL16	AL528	AL12	AL50	AL41	AL35
Qg mesuré	719,880	571,091	471,892	565,73	502,340	518,859	781,285
Qg calculé	736,175	598,885	463,156	565,799	502,563	514,845	771,415
Pwf mesurée	119,4	117,5	106,32	114,5	107,4	117	118
Pwf calculée	119,818	117,276	106,409	114,617	107,425	117,046	118,155
Ecart Qg (%)	2,26	4,87	1,85	0,01	0,04	0,77	1,26
Ecart Pwf (%)	0,35	0,19	0,08	0,10	0,02	0,04	0,13

L'écart entre les données mesurées et les données obtenues par simulation est inférieur à 5%. Donc, les modèles construits pour les puits étudiés sont validés, et les corrélations utilisées sont bien adaptées pour ces modèles.

4.2.2 Résultats

On veut voir l'impact de la chute de pression de réservoir sur la production future des puits dans l'état actuel et dans le cas Boosting.

4.2.2.1 Impact de la chute de pression sur la production future des puits

Pour voir l'impact de la chute de pression de réservoir sur la production future des puits, on a fait une simulation avec PIPSIM.

En assumant une pression en tête inchangée et un déclin de pression annuel de 7 bars ; les résultats de sensibilité de la pression statique sur la production future (gaz et liquide) du puits AL50 sont représentés sur le tableau ci-dessous :

Tableau 4.26: L'impact de déclin de pression sur la production du puits AL50

Temps	Pws (bar)	Q gaz (Ksm3/j)	Q cond (sm3/j)
(années)			
2014	123,4	502,34	82,78
2015	116,4	332,869	54,93
2016	109,4	0	0
2017	102,4	0	0
2018	95,4	0	0
2019	88,4	0	0
2020	81,4	0	0
2021	74,4	0	0
2022	67,4	0	0
To	otal	835,209	137,71

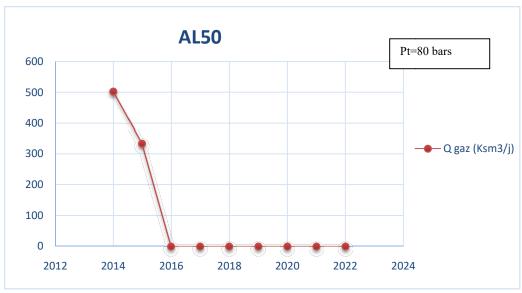


Figure 4.16: Evolution de la production du gaz sous l'effet de déclin de pression

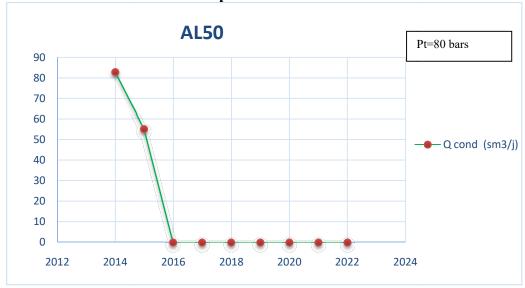


Figure 4.17: Evolution de la production de condensat sous l'effet de déclin de pression

Vu le fort déclin en pression de réservoir, le puits perdra leur éruptivité dans 2 ans, d'où la nécessité de l'assister par le moyen de Boosting.

4.2.2.2 Récupération assistée par le Boosting

L'intérêt principal du Boosting c'est de faire débiter le puits au maximum en abaissant la pression en tête, donc pour voir l'impact du Boosting sur la production des puits, on fait des simulations avec PIPESIM, mais cette fois en changeant la pression de tête.

La pression requise à l'entrée du compresseur étant de 15 bars, en tenant compte des pertes de charges depuis le puits jusqu'au manifold ou le compresseur est installé qui sont assumés à 3 bars, la pression minimale requise en tête de puits est de 18 bars.

Les résultats des tests de sensibilité de la pression statique sur la production future du puits AL50 dans ce cas sont bien résumés dans le tableau suivant :

Tableau 4.27: L'impact de déclin de pression sur la production du puits AL50 dans le cas du Boosting

Temps	Pws (bar)	Q gaz (Ksm3/j)	Q cond (sm3/j)
2014	123,4	567,878	93,33
2015	116,4	337,804	83,2415
2016	109,4	298,523	73,379
2017	102,4	260,442	63,8925
2018	95,4	219,628	53,9545
2019	88,4	180,680	44,4685
2020	81,4	144,397	35,5845
2021	74,4	110,814	27,4505
2022	67,4	0	0
То	otal	2120,166	475,301

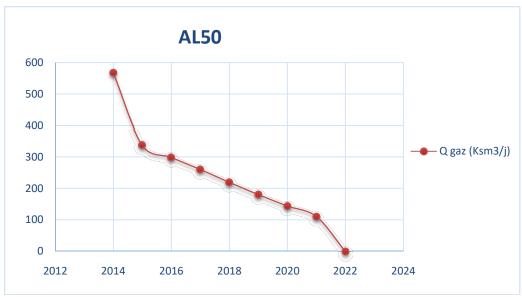


Figure 4.18:Impact de déclin de pression sur la production de gaz du puits AL50 dans le cas du Boosting

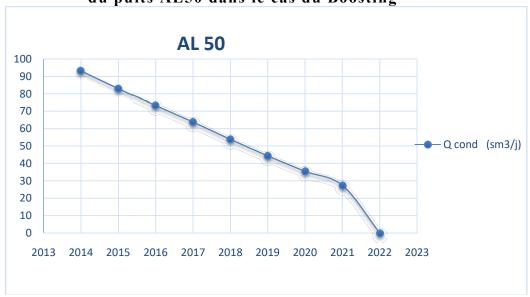


Figure 4.19: Impact de déclin de pression sur la production de condensat du puits AL50 dans le cas du Boosting

Il est clair d'après ces deux graphiques qu'au moyen du Boosting, on peut améliorer considérablement la productivité en gaz et condensat ainsi que son éruptivité sur période bien plus longue.

Apport de Boosting pour les puits

D'après les deux tableaux 6.6 et 6.7 qui représentent les prévisions de la production du puits AL50 dans les deux cas avec et sans Boosting, on constate qu'avec le Boosting on bonifiera de 4957,411 Ksm3/j de gaz et 812,892 sm3/j de condensat dans 8 ans.

Tableau 4.28: Production de gaz des puits avec et sans Boosting

Temps	Puits	AL23	AL16	AL528	AL12	AL50	AL41	AL35
2014	Sans Boosting	733,108	607,971	465,8	566,425	502,34	514,819	771,184
2014	Avec Boosting	790,731	366,365	517,127	612,220	567,878	606,917	909,971
2015	Sans Boosting	414,702	0	311,203	0	332,869	407,028	0
2013	Avec Boosting	727,270	339,253	307,486	374,787	337,804	376,944	423,975
2016	Sans Boosting	101,084	0	0	0	0	0	0
2010	Avec Boosting	663,808	309,817	270,220	340,653	298,523	340,314	380,343
2017	Sans Boosting	0	0	0	0	0	0	0
2017	Avec Boosting	602,362	282,704	233,961	306,523	260,442	303,684	342,842
2018	Sans Boosting	0	0	0	0	0	0	0
2010	Avec Boosting	541,922	255,591	189,645	272,903	219,628	267,444	304,980
2019	Sans Boosting	0	0	0	0	0	0	0
2017	Avec Boosting	480,475	225,381	150,868	239,293	180,680	231,567	294,145
2020	Sans Boosting	0	0	0	0	0	0	0
2020	Avec Boosting	421,043	197,495	122,163	205,410	144,397	190,288	231,059
2021	Sans Boosting	0	0	0	0	0	0	0
2021	Avec Boosting	356,575	162,636	95,976	173,073	110,814	151,709	194,639
2022	Sans Boosting	0	0	0	0	0	0	0
2022	Avec Boosting	294,121	123,904	0	0	0	117,028	0
Total	Sans Boosting	1248,894	607,971	777,003	566,425	835,209	921,847	771,184
Total	Avec Boosting	4878,308	2263,146	1887,444	2524,863	2120,166	2585,895	3081,954

Tableau 4.29: Production de condensat des puits avec et sans Boosting

Temps	Puits	AL23	AL16	AL528	AL12	AL50	AL41	AL35
2014	Sans Boosting	25,047	37,445	56,503	15,1	82,78	70,338	87,942
	Avec Boosting	41,2695	33,6045	63,28	16,32	93,33	82,6015	79,038
2015	Sans Boosting	14,83	0	37,711	0	54,93	55,514	0
	Avec Boosting	38,0865	31,0425	56,425	14,99	83,2415	77,345	73,411
2016	Sans Boosting	3,273	0	0	0	0	0	0
	Avec Boosting	34,804	28,553	49,649	13,655	73,379	69,393	65,858
2017	Sans Boosting	0	0	0	0	0	0	0
	Avec Boosting	31,621	26,064	42,7945	12,295	63,8925	62,2495	59,268
2018	Sans Boosting	0	0	0	0	0	0	0
	Avec Boosting	28,4385	23,3555	34,679	10,91	53,9545	94,8365	52,779
2019	Sans Boosting	0	0	0	0	0	0	0
	Avec Boosting	25,156	20,6465	27,745	9,565	44,4685	47,4235	46,2905
2020	Sans Boosting	0	0	0	0	0	0	0
	Avec Boosting	21,774	18,1575	22,545	8,19	35,5845	38,932	44,0555
2021	Sans Boosting	0	0	0	0	0	0	0
	Avec Boosting	18,482	14,9365	17,5	6,93	27,4505	30,7105	33,8205
2022	Sans Boosting	0	0	0	0	0	0	0
	Avec Boosting	15,4085	11,4955	0	0	0	23,7015	0
Total	Sans Boosting	43,15	37,445	94,214	15,1	137,71	125,852	87,942
	Avec Boosting	255,04	207,855 5	314,617 5	92,855	475,301	527,193	454,520 5

Les résultats concernant la production de tous les puits se trouvent dans l'annexe C.

Approche globale

Sachant que chaque puits pris dans l'étude représente un groupe de puits, la production totale des groupes est représentée dans le tableau ci-dessous :

Tableau 4.30: Production des groupes avec et sans Boosting

		Sans B	oosting	Avec B	oosting
Groupe	Puits représentatif	Gaz (Ksm3/j)	Condensat (sm3/j)	Gaz (Ksm3/j)	Condensat (sm3/j)
M01	AL23	6244,47	215,75	24391,53	1275,2
M02	AL16	3647,82	224,67	13578,87	1247,13
M03	AL528	3885,01	471,07	9437,22	1573,08
M04	AL12	3398,55	90,6	15149,18	557,13
M05	AL50	8352,09	1377,1	21201,65	4753,01
MPW1	AL41	6452,92	880,96	18101,26	3690,35
MPW2	AL35	3855,92	439,71	15409,77	2272,6

Production totale sans Boosting

• Gaz:

$$\sum Q_{gaz}ij = 35836,8 \text{ Ksm}^3 / j$$

Production totale = 35836,8 * 365 = 13,08. 10⁹ sm³

• Condensat:

$$\sum Q_{Cond}ij = 3699,864 \text{ sm}^3 / j$$

Production totale = 3699,864 * 365 = 1,35. 10⁶ sm³

I : indice de groupe.

J : indice de l'année de production.

Production totale avec Boosting

• Gaz:

$$\sum Q_{gaz}ij = 117269,508 \text{ Ksm}^3 / j$$
Production totale = 117269,508 * 365 = 42,03. 10⁹ sm³

• Condensat:

$$\sum_{Cond} ij = 15368,514 \text{ sm}^3 / j$$
Production totale = 15368,514 * 365 = 5,61. 10⁶ sm³

I : indice de groupe.

J : indice de l'année de production.

Le gain en production

• Gaz:

$$42,03\ 10^9 - 13,08\ 10^9 = 28,95\ 10^9\ sm^3$$

• Condensat:

$$5,61\ 10^6 - 1,35\ 10^6 = 4,26\ 10^6\ sm^3$$

Calcule économique :

L'implantation d'un projet Boosting pour les puits de gaz d'Alrar.

Vu que la mise en place d'un projet Boosting de cette ampleur et complexité nécessite plusieurs années de réflexion, de conception, de réalisation et la non disponibilité des prix des équipements et installations, alors une évaluation économique préliminaire immédiate ne valorisera pas le projet.

Conclusion

Le Boosting permet de garder les puits en éruption sur une longue période et améliore considérablement leurs productions.

Sur la période de prévision prise dans notre étude, le gain en production est d'autant important que ce soit pour le gaz ou pour le condensat.

Basé sur ces résultats, le Boosting s'avère indispensable pour les puits à gaz afin de maintenir leur production le plus longtemps possible.

5 Conclusion générale

- D'après les résultats obtenus de cette étude, on peut en tirer les conclusions suivantes :
- La dégradation des paramètres de réservoir a appauvrit le gaz produit en condensat et a favorisé la condensation rétrograde dans le réservoir.
- L'estimation des réserves en place a confirmé le potentiel de ce gisement en huile et en gaz.
- L'arrêt du processus de maintien de pression (injection de gaz) a réduit les influx vers le réservoir voisin.
- Les puits de l'anneau d'huile ont subi un déclin exponentiel, tandis que pour les puits de gaz,
 le déclin harmonique est le plus approprié.
- Les puits d'Alrar subissent un fort déclin en pression atteignant les 8 bars annuellement.
- La plupart des puits de l'anneau d'huile perdront leurs érruptivité au plus tard dans 5 ans et ceci à partir de 2014. Par conséquent, l'urgence de mise en place de Gaz Lift s'impose.
- Les résultats envisageables en cas d'application de Gaz Lift sont satisfaisants avec une nette amélioration de la production allant jusqu'à 159% de gain par rapport au rythme actuel de production.
- À moyen terme, l'application de Boosting pour les puits de gaz portera la production en gaz et en condensat à un niveau supérieur.
- L'évaluation économique du projet de Gaz Lift a confirmé sa rentabilité financière considérable.
 - En vue de ce qui a été réalisé et conclut de cette étude, on recommande ce qui suit :
- Faire des simulations des scénarios de développement qui peuvent être entrepris de part et d'autre, et voir l'impact de chaque gisement sur l'autre.
- Forer plus de puits afin d'accélérer le soutirage des fluides.
- Pour la mise en place de Gaz Lift, il est impératif de raccorder à priori les puits en perte d'éruptivité et les puits qui ne traversent pas la zone à gaz.
- Envisager de mettre le champ d'Alrar Ouest en injection pour maintenir sa pression.

6 Bibliographie

- [1] Degolyer and Mac Naughton report: "Study of the Devonian F3 reservoir in the East Alrar and West Alrar Fields, Algeria", Texas 2005.
- [2] Degolyer and Mac Naughton report: "Technical study of the cross bordering Fields Alrar (Algeria)", Texas 2008.
- [3] O.Houzé, D.Viturat, Ole S.Fjaere: "Dynamic Data Analysis" v4.12.01-©KAPPA1988-2011.
- [4] A.Danesh: "PVT and phase behavior of petroleum reservoir fluids", 1998.
- [5] H. Dale Beggs: "Production Optimization Using NODALTM Analysis", OGCI and Petroskills publications, Tulsa, Oklahoma, (2003).
- [6] D. Perrin, M. Caron, G. Gaillot: "La production fond, Editions Technip", (1995).
- [7] "PIPESIM Fundamentals, Training and Exercise Guide, Schlumberger", (2006).
- [8] William C. Lyons, "Standard Handbook of Petroleum & Natural Gas Engineering", Gulf Publishing Company, (1996).
- [9] Mémoires FHC.
- [10] Documents internes de Sonatrach, région STAH.
- [11] RESERVOIR ENGINEERING HANDBOOK Ahmed Tarek Third Edition

Annexe A: Résultats du calcul PVT et bilan matière

Tableau.1 : Calcul PVT

1	9	10	11	12
Pression	Z	% Volume déposé	ΔVg	Bg
211,1	0,919	0,301	0,05037368	0,00613722
178,8	0,917	1,99	0,06576632	0,00723014
147,6	0,93	3,328	0,08127895	0,00888262
116,55	0,932	3,885	0,09546105	0,01127323
84,85	0,94	4,253	0,10311053	0,01561783
69,85	0,957	4,228	0,10699789	0,0193148
62,9	0,953	4,166	0,11084316	0,0213593
Pa	1	3,973	0,13980947	

Tableau.2 : Calcul bilan matière pour gaz

Date	Pg	Z	Gp(10^9)	Ginj(10^9)	P/Z	Gp-Ginj
01/01/1965	233,2	0,8605	$1,00^{E}-01$	$0.00^{E} + 00$	$2,71^{E}+02$	$1,00^{E}-01$
01/01/1966	233	0,8603	$6,00^{E}$ -01	$0.00^{E} + 00$	$2,71^{E}+02$	$6,00^{\mathrm{E}}$ -01
01/01/1967	232,4	0,8599	$1,30^{E}+00$	$0,00^{E}+00$	$2,70^{E}+02$	$1,30^{E}+00$
01/01/1968	231,6	0,8592	$2,30^{E}+00$	$0.00^{E} + 00$	$2,70^{E}+02$	$2,30^{E}+00$
01/01/1969	230,5	0,8584	$3,60^{E}+00$	$0.00^{E} + 00$	$2,69^{E}+02$	$3,60^{E}+00$
01/01/1970	229	0,8572	$5,10^{E}+00$	$0.00^{E} + 00$	$2,67^{E}+02$	$5,10^{E}+00$
01/01/1971	227,5	0,8561	$6,30^{E}+00$	$0.00^{E} + 00$	$2,66^{E}+02$	$6,30^{E}+00$
01/01/1972	226,3	0,8553	$7,40^{E}+00$	$0.00^{E} + 00$	$2,65^{E}+02$	$7,40^{E}+00$
01/01/1973	225,4	0,8546	$8,60^{E}+00$	$0.00^{E} + 00$	$2,64^{E}+02$	$8,60^{E}+00$
01/01/1974	224,4	0,8539	$9,60^{E}+00$	$0.00^{E} + 00$	$2,63^{E}+02$	$9,60^{E}+00$
01/01/1975	223,7	0,8535	1,04 ^E +01	$0.00^{E} + 00$	$2,62^{E}+02$	1,04 ^E +01
01/01/1976	223,1	0,8530	1,14 ^E +01	$0.00^{E} + 00$	$2,62^{E}+02$	1,14 ^E +01
01/01/1977	222,4	0,8526	1,23 ^E +01	$0.00^{E} + 00$	2,61 ^E +02	1,23 ^E +01
01/01/1978	221,9	0,8522	1,34 ^E +01	$0,00^{E}+00$	$2,60^{E}+02$	1,34 ^E +01

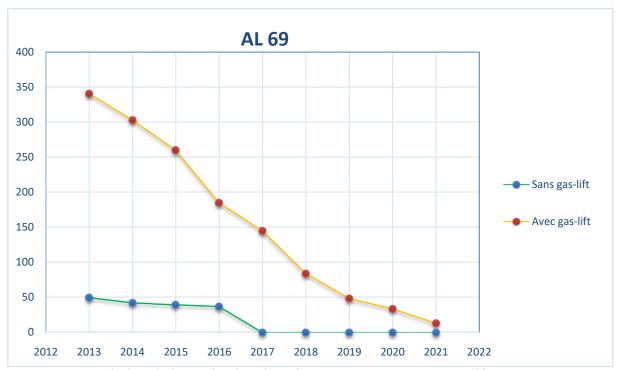
01/01/1979	221,2	0,8518	1,43 ^E +01	$0,00^{E}+00$	$2,60^{E}+02$	1,43 ^E +01
01/01/1980	220,6	0,8514	$1,52^{E}+01$	$0,00^{E}+00$	$2,59^{E}+02$	$1,52^{E}+01$
01/01/1981	220,1	0,8511	$1,60^{E}+01$	$0,00^{E}+00$	$2,59^{E}+02$	$1,60^{E}+01$
01/01/1982	219,7	0,8508	$1,66^{E}+01$	$0,00^{E}+00$	2,58 ^E +02	1,66 ^E +01
01/01/1983	219,5	0,8507	$1,74^{E}+01$	$0,00^{E}+00$	$2,58^{E}+02$	$1,74^{E}+01$
01/01/1984	219,1	0,8504	1,81 ^E +01	1,00 ^E -01	$2,58^{E}+02$	$1,80^{E}+01$
01/01/1985	218,9	0,8503	$2,02^{E}+01$	1,60 ^E +00	$2,57^{E}+02$	1,86 ^E +01
01/01/1986	218,7	0,8502	$2,76^{E}+01$	$3,10^{E}+00$	$2,57^{E}+02$	$2,45^{E}+01$
01/01/1987	218,3	0,8499	3,31 ^E +01	$5,60^{E}+00$	$2,57^{E}+02$	$2,75^{E}+01$
01/01/1988	215,8	0,8484	$3,84^{E}+01$	9,30 ^E +00	2,54 ^E +02	2,91 ^E +01
01/01/1989	214,5	0,8477	4,43 ^E +01	1,29 ^E +01	2,53 ^E +02	$3,14^{E}+01$
01/01/1990	213,4	0,8470	$5,00^{E}+01$	1,75 ^E +01	$2,52^{E}+02$	$3,25^{E}+01$
01/01/1991	212,7	0,8466	$5,62^{E}+01$	2,16 ^E +01	$2,51^{E}+02$	$3,46^{E}+01$
01/01/1992	211,8	0,8462	$6,27^{E}+01$	2,61 ^E +01	$2,50^{E}+02$	$3,66^{E}+01$
01/01/1993	210,8	0,8456	6,94 ^E +01	3,14 ^E +01	$2,49^{E}+02$	$3,80^{E}+01$
01/01/1994	210,4	0,8454	$7,59^{E}+01$	3,70 ^E +01	2,49 ^E +02	3,89 ^E +01
01/01/1995	210,2	0,8453	8,25 ^E +01	4,23 ^E +01	2,49 ^E +02	$4,02^{E}+01$
01/01/1996	210,1	0,8453	$8,89^{E}+01$	4,75 ^E +01	$2,49^{E}+02$	$4,14^{E}+01$
01/01/1997	209,6	0,8450	$9,36^{E}+01$	5,25 ^E +01	$2,48^{E}+02$	4,11 ^E +01
01/01/1998	209,2	0,8448	9,86 ^E +01	5,74 ^E +01	2,48 ^E +02	$4,12^{E}+01$
01/01/1999	210,2	0,8453	$1,04^{E}+02$	$6,27^{E}+01$	$2,49^{E}+02$	$4,14^{E}+01$
01/01/2000	211,1	0,8458	$1,10^{E}+02$	$6,80^{E}+01$	$2,50^{E}+02$	4,22 ^E +01
01/01/2001	211,3	0,8459	$1,16^{E}+02$	$7,11^{E}+01$	$2,50^{E}+02$	$4,48^{E}+01$
01/01/2002	207,8	0,8441	$1,22^{E}+02$	$7,25^{E}+01$	$2,46^{E}+02$	4,92 ^E +01
01/01/2003	202,9	0,8418	$1,27^{E}+02$	7,41 ^E +01	2,41 ^E +02	$5,33^{E}+01$
01/01/2004	198,4	0,8400	$1,33^{E}+02$	7,57 ^E +01	$2,36^{E}+02$	5,73 ^E +01
01/01/2005	194,1	0,8384	1,39 ^E +02	$7,62^{E}+01$	2,31 ^E +02	6,28 ^E +01
01/01/2006	188,4	0,8368	1,41 ^E +02	7,98 ^E +01	2,25 ^E +02	$6,12^{E}+01$
01/01/2007	181,1	0,8352	$1,46^{E}+02$	8,23 ^E +01	$2,17^{E}+02$	6,41 ^E +01
01/01/2008	173,6	0,8342	1,53 ^E +02	8,51 ^E +01	2,08 ^E +02	$6,80^{E}+01$
01/01/2009	166,1	0,8339	$1,60^{E}+02$	$0.00^{E} + 00$	1,99 ^E +02	$1,60^{E}+02$
01/01/2010	158,8	0,8343	1,66 ^E +02	$0.00^{E} + 00$	1,90 ^E +02	1,66 ^E +02
01/01/2011	151,6	0,8353	1,73 ^E +02	$0.00^{E} + 00$	1,81 ^E +02	$1,73^{E}+02$
01/01/2012	144,7	0,8368	$1,80^{E}+02$	$0.00^{E}+00$	$1,73^{E}+02$	$1,80^{E}+02$

Tableau.3 :Calcul bilan matière pour huile

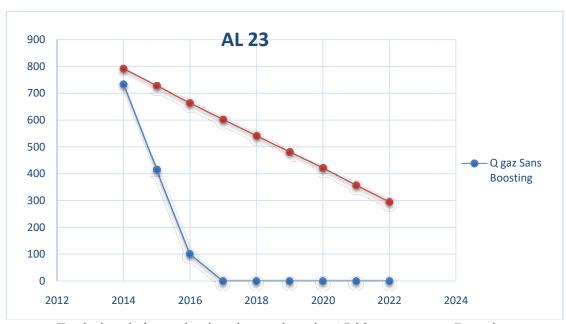
Eo	Eg	F	F/ (Eo+mEg)	(We-WpBw)/ (Eo+mEg)
$0.00^{E}+00$	$0,00^{E}+00$	1,42 ^E +08	-	-
1,22 ^E -02	2,88 ^E -01	4,12 ^E +08	4,86 ^E +01	1,56 ^E +03
4,23 ^E -02	3,47 ^E -01	7,16 ^E +08	1,44 ^E +02	5,13 ^E +03
9,51 ^E -02	4,21 ^E -01	9,68 ^E +08	1,75 ^E +02	9,59 ^E +03
1,57 ^E -01	5,01 ^E -01	1,26 ^E +09	1,95 ^E +02	1,45 ^E +04
1,86 ^E -01	5,62 ^E -01	1,77 ^E +09	2,74 ^E +02	2,03 ^E +04
$2,50^{\mathrm{E}}$ -01	6,41 ^E -01	2,26 ^E +09	3,09 ^E +02	2,53 ^E +04

Annexe B: Evolution de la production des puits d'huile avec et sans Gas-Lift

Evolution de la production du puits AL72 sans et avec Gas-lift


Evolution de la production du puits AL61 sans et avec Gas-lift

Evolution de la production du puits AL67 sans et avec Gas-lift

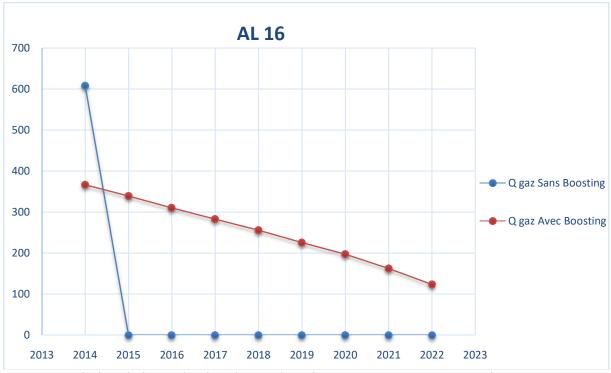


Evolution de la production du puits AL523 sans et avec Gas-lift

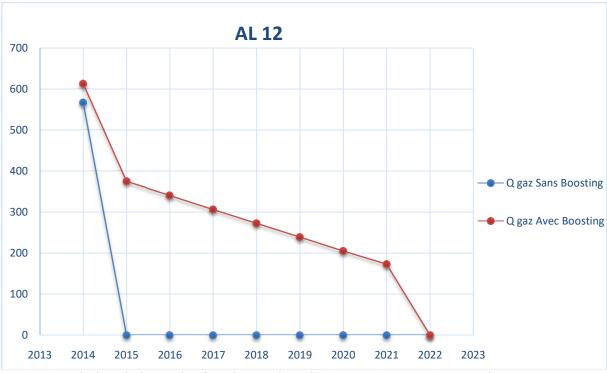
Evolution de la production du puits AL69 sans et avec Gas-lift

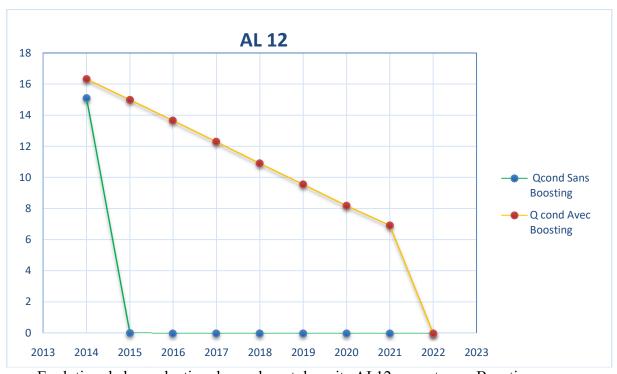
Annexe C: Evolution de la production des puits de gaz avec et sans Boosting

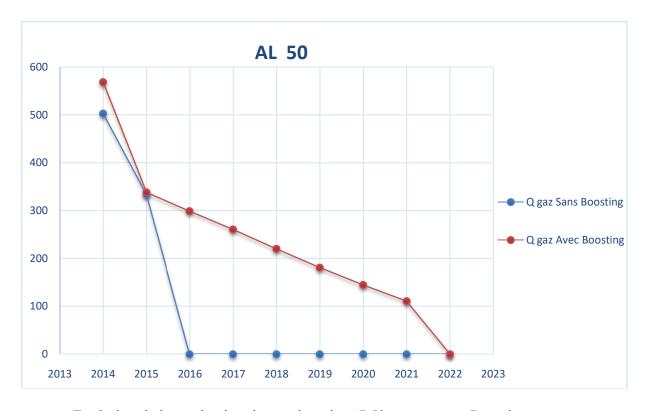

Evolution de la production de gaz du puits AL23 sans et avec Boosting

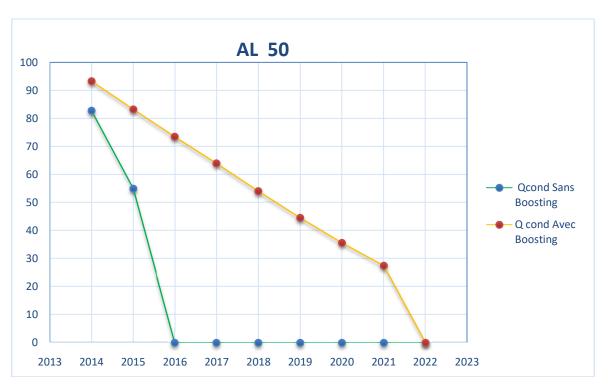

Evolution de la production de condensat du puits AL23 sans et avec Boosting

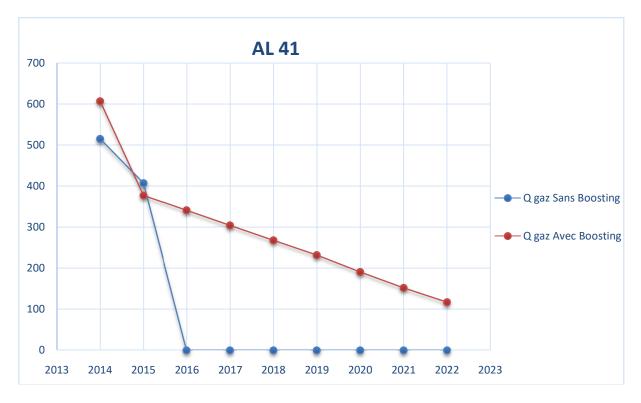
Evolution de la production de gaz du puits AL528 sans et avec Boosting

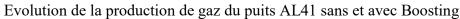

Evolution de la production de condensat du puits AL528 sans et avec Boosting


Evolution de la production de gaz du puits AL16 sans et avec Boosting

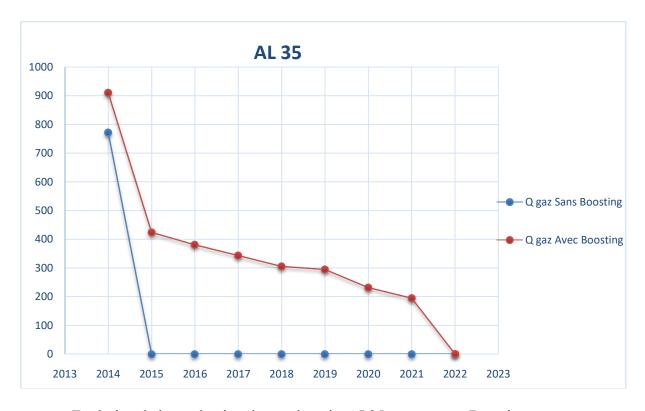

Evolution de la production de condensat du puits AL16 sans et avec Boosting


Evolution de la production de gaz du puits AL12 sans et avec Boosting


Evolution de la production de condensat du puits AL12 sans et avec Boosting



Evolution de la production de gaz du puits AL50 sans et avec Boosting


Evolution de la production de condensat du puits AL50 sans et avec Boosting



Evolution de la production de condensat du puits AL41 sans et avec Boosting

Evolution de la production de gaz du puits AL35 sans et avec Boosting

Evolution de la production de condensat du puits AL35 sans et avec Boosting