République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITE M'HAMED BOUGARA- BOUMERDES-FACULTE DES SCIENCES DE L'INGENIEUR. DEPARTEMENT DE GENIE CIVIL

Projet de Fin d'Etudes

En vue de l'Obtention du Diplôme Master En Génie Civil

Option: structures et constructions

Thème

e d'un bâtiment en R+11 avec auatre so

Etude d'un bâtiment en R+11 avec quatre sous sol à usage bureautique contreventé par des voiles et portiques en béton armé

Présenté par :

Encadré par :

M^r:BOUMAHDI SIDALI

M^r:MEZAZIGH.b

M^r:GUERD WALID

REMER CIEMENTS

Tout d'abord nous tenons à remercier DIEU, le clément et le miséricordieux, de nous avoir donné la force et le courage de mener à terme ce modeste travail.

Nous remercions nos chers parents sans qui nous ne serions jamais arrivés jusque-là.

Nous remercions vivement notre encadreur :

Monsieur brahim mezazigh

Pour nous avoir pris sous son aile en nous accordant son précieux temps. Pour sa disponibilité et sa patience. Pour avoir partagé son expérience de ses remarques et conseils avisés et d'avoir toujours été réceptif et enclin à travailler avec nous. Nous avons tout aussi été impressionnés par ses qualités humaines qui poussent au respect et à l'admiration et qui resteront gravés dans nos mémoires.

Nous sommes reconnaissants envers notre département de génie civil et l'ensemble des enseignants qui nous ont formés avec beaucoup dedévouement.

Nous tenons aussi à remercier l'entreprise **l'ENGEOAREGHAIA**, pour son bon accueil durant la période de notre stage.

Nous ne saurons oublier de remercier les honorables membres du jury qui nous ferons l'honneur de présider et d'examiner ce travail.

A tous ceux ou celles qui nous ont apportés leur soutien, trouvent ici, l'expression de nos vives et sincères reconnaissances.

DEDICACES

Je dédie ce modeste travail: A mes très chers parents qui m'ont guidée durant les moments les plus pénibles de ce long chemin, ma mère qui a été à mes côtés et ma soutenu durant toute ma vie, et mon père qui a sacrifié toute sa vie afin de me voir devenir ce que je suis, un grand merci à mes **parents**.

A toute personne qui m'a aidé à poursuivre mes études.

A mes très chèrs frères et sœurs :

brahim ,mohamed ,aissa, hadjira,fahima, sabrina et neila
A toute ma familleet à tous ceux que j'aime.
Et enfin à tous ceux qui m'ont aidée de prêt ou de loin.

SIDALI

DEDICACES

Je dédie ce travail à ceux qui ont eu le mérite après Mon Dieu :

- A mon très cher père Mahfoud, tu as toujours été a mes cotes pour me soutenir et m'encourager durant ces années d'études.
- A la femme qui a souffert sans me laisser souffrir, qui n'a jamais dit non à mes exigences, mon adorable mère Hakima.
- A mes sœurs et frères Khanssa, Amina, Ramzi et Zakaria qui m'ont toujours supporté tout au long de mon parcour, que die les protège et leur offre la chance et le bonheur.
- A mon oncle Cherif je t'aime.
- A ma femme Khaoula qui ma soutenu et qui n'ont pas cessé de me conseiller . Mèrci d'ètre toujours la pour Moi .

WALID

SOMMAIRE

<u>CH</u>	<u>APITR</u>	<u>EI:INTRODUCTION</u>	
I.1	INTRO	DUCTION GENERALE	1
I.2	PRESE	NTAION DE L'OUVRAGE	1
	I.2.1	Caractéristiques géométriques de l'ouvrage	1
	I.2.2	Conception de l'ossature	2
	I.2.3	Description technique de l'ouvrage	2
	I.2.4	Données du site	2
I.3	Concep	tion de la structure	3
	I.3.1	Planchers	3
	I.3.2	Contreventement	3
	I.3.3	Les voiles	3
	I.3.4	Escaliers	3
	I.3.5	Ascenseur	3
	I.3.6	Maçonnerie	3
	I.3.7	Revêtement	4
	I.3.8	Fondations	4
I.4	Caracté	éristiques des matériaux	4
	I.4.1	Introduction	4
CHA	APITR	E II : Pré dimensionnement	
<u>U11.1</u>		DUCION	12
II.2		nensionnement des planchers	12
11.2	II.2.1	Corps creux	12
II.3		nensionnement des escaliers	15
II.4	_	e	16
II.5		nensionnement des poutres	17
11.5	II.5.1	Pré dimensionnement des poutres principales [p.p]	17
	II.5.2	Pré dimensionnement des Poutres secondaire [P.S]	17
II.6		es	18
II.7		cons	19
II.8		nensionnement des poteaux	19
11.0	II.8.1	Introduction	19
	II.8.2	Descente des charges	19
	II.8.3	Pré dimensionnement	23
CU			40
		E III : Calculs des éléments secondaires	27
III.1		ers à corps creux	27
	III.1.1	Étude de la dalle de compression	27
	III.1.2	Étude des poutrelles	28
		III.1.2. méthodes de calcul	28
	III 1 2	III.1.2.2 Calculs de ferraillage de poutrelle	31
	III.1.3	Ancrage des barres	46
	III.1.4	Vérification de la flèche	47
III.2		es plaines	50
	III.2.1	Calculs de moment isostatique	53
	III.2.2	Calcul du ferraillage	53
	III.2.3	Vérification nécessaire	57
III.3	Etude d	les balcons	60

	8	60	
	III.3.2 Calcul des sollicitations et des combinaisons des charges	60	
	III.3.3 Calcul de ferraillage	61	
	III.3.4 Les vérifications	62	
III.4	Escalier	64	
		64	
	III.4.2 Evaluation des charges	67	
	III.4.3 LE FERRAILLAGE	71	
	III.4.4 Poutre palière	74	
III.5	La rampe	79	
	III.5.1 Calcul Des Moments de Flexion	79	
	III.5.2 Calcul du ferraillage	79	
III.6	Calcul de la salle de machine	81	
	III.6.1 Introduction 8	81	
	III.6.2 Dimensionnement 8	81	
	III.6.3 Ferraillage	83	
III.7	Etude de l'acrotère 8	88	
	III.7.1 Calcul des sollicitations et des Combinaisons des charges	88	
	· · · · · · · · · · · · · · · · · · ·	90	
CH	PITRE IV : ETUDE SISMIQUE		
IV.1		97	
IV.1 IV.2		97	
1 7 .2		97	
		97	
IV.3			
IV.3 IV.4	Description de logiciel (ETABS)		
IV.4 IV.5)) 100	
	1		
IV.6		102	
	1	102	
	1 1	103	
	V	104	
IV.7		107	
	1	107	
		108	
	•	109	
	IV.7.4 Justification vis à vis de l'effet $P\Delta$	111	
	IV.7.5 Vérification de l'excentricité	112	
	IV.7.6 Vérification de renversement 1	112	
CHA	PITRE V: FERAILLAGE DES ELEMENT PRINCIPAUX		
$\frac{\overline{V.1}}{V.1}$		116	
V.2		116	
V.3		117	
,	±	117	
		125	
V.4		129	
, , .	1	129	
		129	
	·	130	
		130 130	
	,,,,, Calcul des al manal es mitti ital		

	V.4.5	Vérification	ns	134
V.5	Etude d	les voiles		137
	V.5.1	Introduction	on	137
	V.5.2	Ferraillage	S	140
	V.5.3	Ferraillage	des Linteaux	150
<u>CH</u>	APITR	EVI: E	TUDE DES FONDATIONS	
VI.1	Introdu	ction		158
VI.2	Choix d	e type de for	ndation	158
VI.3				158
	VI.3.1	Semelle iso	lée	159
	VI.3.2	Semelles fil	antes	160
	VI.3.3	Radier géne	érale	164
		VI.3.3.1	Introduction	161
		VI.3.3.2	Surface nécessaire	162
		VI.3.3.3	Pré dimensionnement de radier nervure	162
		VI.3.3.4	Caractéristiques Géométriques Du Radier	165
		VI.3.3.5	Ferraillage du radier	169
VI.4	Etude d	u voile périp	hérique	178
	VI.4.1	Introductio	n	178
	VI.4.2	Pré dimens	ionnement	178
	VI.4.3 Évaluation des Charges			179

LISTE DES FIGURES

	LI: INTRODUCTION	
Figure I.1	Evaluation de la résistance fcj en fonction de l'âge du	_
	béton	5
Figure I.2	Diagramme contrainte-déformation d'acier	7
Chapitre II	: Pré dimensionnement	
Figure II.1	coupe d'un plancher	12
Figure II.2	dimensions de l'escalier	15
Figure II.3	Coupe de l'acrotère	16
Figure II.4	Vue de voile	18
Figure II.5	Coupe de voiles en plan	18
Figure II.6	Section du poteau le plus sollicité	22
Chapitre II	I : Calculs des éléments secondaires	
Figure III.1	Schéma de poutrelle	28
Figure III.2	plan d'étage1 à 11 étages	31
Figure III.3	plan de 1 ^{er} etage	32
Figure III.4	identification des coefficients forfaitaire	34
Figure III.5	Dimensions des poutrelles	42
Figure III.6	ferraillage de poutrelle	50
Figure III.7	Croquis de ferraillage des dalles en appuis	59
Figure III.8	Croquis de ferraillage des dalles en travée	59
Figure III.9	Schéma statique du balcon	60
Figure III.10	ferraillage de balcon	63
Figure III.11	schéma d'un escalier	64
Figure III.12	Diagrammes des (M et T) de la poutre palière	75
Figure III.13	Diagrammes des (M et T) de la poutre palière	76
Figure III.14	Coup de poutre paliére	78
Figure III.15	descriptif d'un ascenseur mécanique	81
Figure III.16	croquis de ferraillage de dalle	87
Figure III.17	statiques de l'acrotère	88
Figure III.18	Section rectangulaire soumise à la flexion composée	90
Figure III.19	Ferraillage	95
CHAPITRE	E IV : ETUDE SISMIQUE	
Figure IV. 1	Spectre de réponse RPA	10
FigureIV. 2	Vu en 3D de la structure modélisée avec le logiciel	10
	ETABS V9.7	
Figure IV. 3	Plans de disposition des voiles en 1 ^{er} jusqu'à 11 ^{eme} étage	10
Figure IV. 4	Plans de disposition des voiles en RDC	10
Figure IV. 2	Mode de déformation 1 (translation suivant l'axe Y-Y	10
Figure IV. 3	Mode de déformation 2 (translation suivant l'axe X-X	10
Figure IV. 4	Mode de déformation 3 (rotation suivant Z-Z)	10
CHAPITRE	E V : FERAILLAGE DES ELEMENT	

PRINCIPAUX

FigureV.1	zone nodale	122	
Figure V.2	ferraillage des poteaux	128	
figure V.3	ferraillage des poutres pour tous les niveaux		
Figure V.4	Schémas des contraintes	140	
Figure V.5	Zone tendue et courante dans les voiles	141	
Figure V.6	Schémas montrant la disposition des voiles	143	
Figure V.7	Position des Linteaux	153	
Figure V.8	Schéma de ferraillage du linteau (S1)	156	
CHAPITRI	E VI : ETUDE DES FONDATION		
Figure VI.1	Semelles isolée sous poteaux	159	
Figure VI.2	Semelles filantes	160	
Figure VI.3	Disposition des nervures par rapport au radier et aux	162	
	poteaux		
Figure VI.4	Schéma statique du batiment	166	
Figure VI.5	Contraintes sous le radier		
Figure VI.6	Vue en plan illustrant les dimensions du panneau de rive	171	
	le plus sollicité		
Figure VI.7	Férraillage de la dalle du radier	172	
Figure VI.8	Férraillage des nervures du sens porteur	175	
Figure VI.9	Férraillage des nervures du sens non porteur	176	
Figure VI.10	Schéma statique du débord	176	
Figure VI.11	Diagramme des moments	176	
Figure VI.12	Ferraillage du débord	178	
Figure VI.13	Vue illustrant les dimensions du panneau le plus sollicité	179	
Figure VI.14	Férraillage du voile périphérique	182	
Figure VI.15	Charge de poussé de terre	183	
Figure VI.16	contraintes δ_{22} (Vp)	184	

LISTE DES TABLEAUX

Chapitre II	: Pré dimensionnement	
Tableau II.1	charges permanentes et d'exploitation du plancher terrasse	13
Tableau II.2	charges permanentes et d'exploitation d'étage courant	13
Tableau II.3	charges permanentes et d'exploitation des consoles en	14
	porte à faux	
Tableau II.4	charges permanentes et d'exploitation des sous-sols	14
Tableau II.5	sections des poutres principales et secondaires	18
Tableau II.6	Dégression des surcharges d'exploitation	20
Tableau II.7	Evaluation des charges	21
Tableau II.8	Calcul de l'effort normal à la base des poteaux	22
Tableau II.9	sections des poteaux des différents étages	24
Tableau II.10	vérification des poteaux au flambement	25
Chapitre III	: Calculs des éléments secondaires	
Tableau III.1	chargement des poutrelles aux étages courants	30
Tableau III.2	chargement des poutrelles à la terrasse	30
Tableau III.3	Les différents types de poutrelles	33
Tableau III.4	Calcul des moments fléchissant à l'ELS	37
Tableau III.5	Calcul de l'effort tranchant à l'ELS	37
Tableau III.6	moment fléchissant a ELU	39
Tableau III.7	l'effort tranchant a ELU	39
Tableau III.8	moment fléchissan a ELS	39
Tableau III.9	l'effort tranchant a ELS	39
Tableau III.10	moment fléchissant et l'effort tranchant de poutrelle type	41
	6 a ELU	
Tableau III.11	moment fléchissant et l'effort tranchant de poutrelle	41
	type 6 a ELS	
Tableau III.12	Caractéristique d'une poutrelle	41
Tableau III.13	Récapitulatif de la vérification des flèches	49
Tableau III.14	moment iso statique dans les planches de sous-sol	53
Tableau III.15	moments de continuité	53
Tableau III.16	choix de type d'armateur dans de le sens x-x	55
Tableau III.17	choix de type d'armateur dans de le sens y-y	56
Tableau III.18	valeurs des contraintes tangentielles dans les deux	58
	directions	
Tableau III.19	Évaluation des charges sur la paillasse	67
Tableau III.20	Évaluation des charges sur palier	68
Tableau III.21	Effort tranchant et moment fléchissant(E.L.U)	69
Tableau III.22	Effort tranchant et moment fléchissant(E.L.S)	7 0
Tableau III.23	moment dans les rampes de sous-sol	7 9
Tableau III.24	choix de type d'armateur	80
Tableau III.25	Les valeurs des contraintes tangentielles dans les deux sens	80

Tableau III.26	caractéristiques géométriques d'une section rectangulaire	90
CHAPITRE	IV : ETUDE SISMIQUE	
Tableau IV.1	Valeurs des pénalités	101
Tableau IV.2	Périodes et taux de participation massique de la structure	103
Tableau IV.3	Vérification de la résultante des forces sismiques à la base	106
Tableau IV.4	Interactions sous charges verticales	107
Tableau IV.5	Interaction sous charges horizontales	108
Tableau IV.6	Vérification de l'effort normal réduit	108
Tableau IV.7	Vérification de l'effort normal réduit après augmentation de	109
	la section des poteaux	
Tableau IV.8	Vérification des déplacements relatifs sens X	110
Tableau IV.9	Vérification des déplacements relatifs sens Y	110
Tableau IV.10	Vérification de l'effet P-Δ	111
Tableau IV.11	Vérification de l'excentricité	112
Tableau IV.12	vérification de la stabilité au renversement (X-X)	113
Tableau IV.13	vérification de la stabilité au renversement (Y-Y)	113
CHAPITRE	V : FERAILLAGE DES ELEMENT	
CIMITIRE		
Tables - 17.1	PRINCIPAUX	117
Tableau V.1	Caractéristiques de calcul en situation durable et	117
T-11 1/2	accidentelle	110
Tableau V.2	Ferraillage maximal et minimal	118
Tableau V.3	Sollicitations et ferraillage dans les poteaux	119
Tableau V.4	Ferraillage transversal	123 125
Tableau V.5 Tableau V.6	Vérification des contraintes de cisaillements	125 126
Tableau V.7		120
Tableau V.7	Vérification des contraintes dans les poteaux Ferraillagelongitudinal des poutres intérieur	132
Tableau V.9	Ferraillage longitudinal des poutres extérieures	132
Tableau V.3	Vérification de contrainte tangentielle	134
Tableau V.10	Vérification de l'adhérence	135
Tableau V.11	Vérification des contraintes à L'ELS	135
Tableau V.12	Ferraillage du voile Vx1, Vx2,Vx3,Vx4,Vx5,Vx6 et Vx7	144
Tableau V.14	Ferraillage du voile Vx8	145
Tableau V.15	Ferraillage du voile Vx9	146
Tableau V.16	Ferraillage du voile Vx10.	147
Tableau V.17	Ferraillage du voile Vy1,Vy2,Vy3,Vy4,Vy6	148
Tableau V.18	Ferraillage du voileVy8 ,Vy9	149
Tableau V.19	vérification de contrainte de cisaillement	154
Tableau V.20	ferraillage des linteaux	155
	V : ETUDE DES FONDATIONS	100
Tableau VI.1	Sections des semelles filantes	161
Tableau VI.1	Choix la hauteur de nervure.	165
Tableau VI.2	Caractéristiques géométriques du radier	165
Tableau VI.3	Contraintes sous le radier à l ELU	168
Tableau VI.5	Contraintes sous le radier à l'ELS	168
Tableau VI.6	Calcul des moments à l ELU.	170
Tableau VI.7	Calcul des moments à l'ELS	171
Tableau VI.7	Férraillage des panneaux du radier	171
LUDICUU TIO	i ciramage ace pamicada ad radior	-/ -

Tableau VI.9	Vérification des contraintes (radier)	172
Tableau VI.10	Féraillage des nervures sens y-y	173
Tableau VI.11	Féraillage des nervures sens x-x	173
Tableau VI.12	Vérification des contraintes (nervure)	174
Tableau VI.13	Féraillage du débord	177
Tableau VI.14	Vérification des contraintes du débord	178
Tableau VI.15	Féraillage du voile périphérique	181
Tableau VI.16	Vérification des contraintes à l ELS	182
Tableau VI.17	Calcul des armatures du voile (VP)	184
Tableau VI.18	Calcul des armatures du voile (VP)	184
Tableau VI.19	Calcul des armatures horizontales du voile (VP)	185
Tableau VI.20	Calcul des armatures verticales du voile (VP)	185

CHAPITRE I

INTRODUCTION

I.1: INTRODUCTION GENERALE:

La construction a toujours été l'une des principales préoccupations de l'homme et l'une de ses occupations favorites. Aujourd'hui, la construction est en plein essor dans la plupart des pays et nombreux sont les professionnels qui se consacrent à l'activité de bâtiment ou des travaux publics.

Cependant, si les métiers de la construction peuvent être considérés parmi les plus anciens exercés par l'homme, force est de reconnaître qu'ils ont dû s'adapter ces dernières décennies pour tenir compte de l'évolution des constructions, mais surtout des nouvelles techniques qui permettent la fiabilité maximale de la structure contre les risques naturels tels que les séismes, le vent etc. ...

Une structure doit être calculée de manière à rester adaptée à l'usage auquel elle est destinée, en tenant compte de sa durée de vie utile et de son coût.

- ➤ Elle ne doit pas être endommagé par des événements, tels que : explosion, choc ou autre phénomène.
- Elle doit résister à toutes les actions et autres influences pouvant s'exercer tant lors de son exécution que lors de son exploitation avec une durabilité adéquate par rapport aux coûts d'entretien.

Afin de respecter les exigences situées ci-dessus, les matériaux doivent être correctement choisis, une conception, un dimensionnement et des détails de construction appropriés doivent être définis et des procédures de contrôle adaptées au projet en question doivent être spécifiées, dans les phases de conception, de construction et d'exploitation. Pour cela, il est indispensable de respecter les réglementations en vigueur propres à chaque pays.

I.2 :PRESENTAION DE L'OUVRAGE

L'ouvrage étudié est un ensemble de bureau(SONATRACH) composé de quatre (04) soussol, d'un rez de chaussée de 11 étages à usage bureautique. La construction située à Bab-Ezzouar wilaya d'Alger.

I .2.1 : Caractéristiques géométriques de l'ouvrage :

La construction présente une décrochement en élévation.

Les caractéristiques de la structure au niveau du RDC, sont :

• Une longueur totale : 56.1m

• Une largeur 44 m

• Hauteur du bâtiment : 48.49 m

CHAPITRE I: INTRODUCTION

• Les sous-sols

Hauteur du 1^{er}sous-sol : 3.40 m
 Hauteur du 2^e sous-sol : 2.89m
 Hauteur du 3^e sous-sol : 2.89 m

o Hauteur du 4^esous-sol : 2.89 m

• Etage courant

o hauteur du rez de chaussée : 4.25 m

O Hauteur de 1^{er} étage : 4.25 m

o Hauteur du 2^e au 11^e étage : 3.74m

o Hauteur de la terrasse accessible : 2.59 m

I.2.2: Conception de l'ossature :

Etant donné que la hauteur de l'ouvrage est de 48.49m, seul deux systèmes de contreventement sont applicables pour celui-ci à savoir :

- > Système de contreventement mixte assuré par des voiles et des portiques avec justification d'interaction portiques-voiles.
- > Système de contreventement constitué par des voiles porteurs en béton armé.

L'ossature en voiles porteurs présente une rigidité importante vis-à-vis des actions sismiques ce qui induit de faible déplacements comparés à ceux d'une structure en portique auto stable.

I.2.3: Description technique de l'ouvrage:

Structure principale:

Notre bâtiment est constitué des poteaux ,poutres et des voiles de contrevetment en béton armé.

Structure secondaire:

Plancher dalle pleine en béton armé.

Plancher corps creux

Escalier en béton armé.

Acrotère en béton armé.

Maconnerie:

Mur de façade en double parois de brique creuses.

Cloisons de répartition en briques creuses de 10cm d'épaisseur.

I.2.4 : Données du site :

- Le bâtiment est implanté à Alger classée par le RPA 99/version 2003 comme zone de forte sismicité (zone III).
- L'ouvrage appartient au groupe d'usage 1b.

- Le site est meuble S3.
- Contrainte admissible du sol $\bar{\sigma}$ =1.5 bar.

1.3 :Conception de la structure

I.3.1: Planchers

Nous avons utilisé un seul type de plancher ; plancher corps creux pour rezde chaussée et de 1^{er} a 11^e étage avec un plancher terrasse d'une forme de pente pour permettre l'écoulement des eaux pluviales vers les conduites d'évacuation.

Et une dalle plaine pour le sous-sol

I.3.2: Contreventement

Le contreventement est assuré par les éléments structuraux qui concourent à la résistance et la stabilité de construction contre les actions horizontales telle que le séisme et le vent.

En utilisant pour cela:

- Des voiles intérieurs et dans les deux directions longitudinal et transversale.
- Des portiques constitués par des poteaux et des poutres.

I.3.3: Les voiles :

Les voiles sont des murs en béton armé conçus pour la reprise des charges verticales et/ou les charges horizontales provenant des séismes. Les voiles peuvent être simples ou composés.

I.3.4: Escaliers:

Sont des éléments qui permettent aux personnes de se déplacer verticalement entre les étages. Ils sont en béton armé.

I.3.5 : Ascenseur :

C'est un appareil automatique élévateur installé, comportant une cabine dont les dimensions et la constitution permettant l'accès des personnes et de matériels. Nous avons deux ascenseurs d'un seul type.

I.3.6: Maçonnerie:

Nous considérans deux types de murs :

• Les murs de façade sont constitués par double parois en briques creuses, dont l'épaisseur est (10+10) cm, séparés par une lame d'air de 5 cm.

CHAPITRE I: INTRODUCTION

• Les murs intérieurs de 10 cm d'épaisseur en briques creuses.

I.3.7: Revêtement

- Enduit en platre pour les murs et les plafonds.
- Carrelage pour les planchers et les escaliers.

I.3.8: Fondations:

L'infrastructure, constitué des éléments structuraux des sous-sol éventuels et le système de fondation doivent former un ensemble résistant et rigide, cet ensemble devra être capable de transmettre les charges sismiques horizontales en plus des charges verticales, de limiter les tassements différentiels .Le système de fondation doit être homogène.

I.4: Caractéristiques des matériaux:

I.4.1:Introduction:

Le béton armé est une combinaison de deux matériaux ayant pratiquement le même coefficient de dilatation thermique, ses deux matériaux sont : Béton et acier. Le béton et l'acier seront choisis selon les règles de conception et de calcul Structures en béton armé (BAEL99)

Béton:

Le béton est un matériau constitué par un mélange de ciment, de granulats et d'eau, respectant des rapports bien définis.

Composition du béton :

Pour 1 mètre cube de béton

	Béton des fondations	Dallage béton	Béton armé
Ciment Granulat	350kg 1050kg	300kg 1100kg	350kg 980kg
Sable	800kg	830kg	720kg
Eau de gâchage	175kg	155kg	195kg

> Résistance du béton à la compression :

Le béton est caractérisé par la valeur de sa résistance à la compression. Elle est évaluée à 28 jours dits valeur caractéristique requise. Celle-ci notée **fc28** est choisie en compte tenu des possibilités locales et des règles de contrôle qui permettent de vérifier qu'elle est atteinte sur chantiers.

Dans notre cas, elle est prise égale à **25MPa**. Lorsque les sollicitations s'exercent sur le béton dont l'age de « J » jours est inférieur à 28, on se réfère à la résistance «fcj ».

Pour J≤28 fcj du béton non traité thermiquement est :

$$f_{cj} = \frac{j}{4.76 + 0.83j}$$
 f_{c28} pour $f_{c28} \le 40$ Mpa $f_{cj} = \frac{j}{0.95j + 1.4}$ f_{c28} pour $f_{c28} \ge 40$ Mpa

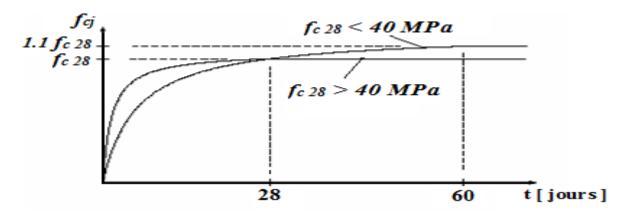


Figure I.1: Evaluation de la résistance fcj en fonction de l'âge du béton.

Pour j>28 jours $f_{cj}=f_{c28}$

Résistance du béton à la traction

La résistance du béton à la traction, est très faible. Elle est définie par :

fti =0.6+0,06fcj MPa pour $f_{ci} \le 60MPa$

Déformation longitudinale du béton :

a)-Module de déformation longitudinale instantané :

Sous des contraintes normales d'une durée d'application inférieure à 24 h, on admet à défaut de mesures, qu'à l'age « j » jours, le module de déformation longitudinale instantané du béton est égal à :

$$E_{ij} = 11000\sqrt[3]{fcj}Mpa$$

b)-Module de déformation longitudinale différé :

Sous des contraintes de longue durée d'application, le module de déformation longitudinale différé qui permet de calculer la déformation finale du béton est donnée par la formule :

$$E_{vj} = 3700 \sqrt[3]{fcj}$$

c)- Module de déformation transversale :

La valeur du module de déformation transversal est donnée par :

$$G = \frac{E}{2(1+V)}$$

E : module de déformation longitudinale instantanée du béton

V : coefficient de poisson.

d)-Coefficient de Poisson :

On appelle coefficient de poisson le rapport de la déformation transversale relative par la déformation longitudinale relative

V = 0.0 dans le cas des états limites ultimes (E.L.U) (section fissurée).

V =0.2 dans le cas des états limites de service (E.L.S) (section non fissurée).

2. L'acier :

L'acier est un alliage métallique constitué principalement de fer et de carbone (faible pourcentage). C'est essentiellement la teneur en carbone qui confère à l'alliage les propriétés de l'acier.

La caractéristique mécanique servant de base aux justifications est l'état limite d'élasticité garantie par le fournisseur désignée par **<fe>**

CHAPITRE I: INTRODUCTION

Le module d'élasticité longitudinal de l'acier est égal à :

Es = 200000 Mpa

Déformation d'acier :

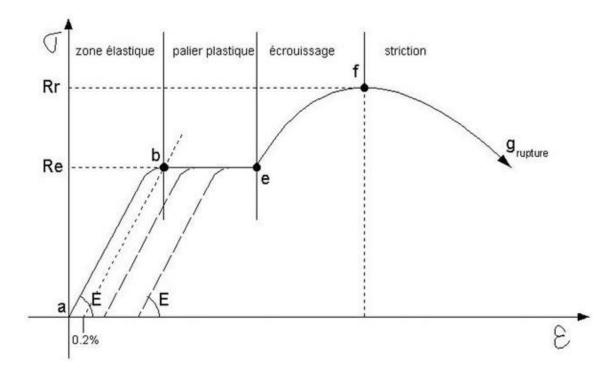


Figure I.2: Diagramme contrainte-déformation d'acier

Partie AB : l'acier retrouve sa forme et sa taille initiales après la contrainte appliqué (zone élastique)

Partie BE : déformation irréversible sous une contrainte constante

(Zone plastique)

Partie EF: la contrainte applique augmente avec déformation jusqu'au point f

Partie FG : l'allongement continue bien que la charge soit décroissante, jusqu'au point **g**, qui correspond à la rupture.

CHAPITRE I: INTRODUCTION

Les états limites :

Etat limite service (ELS):

Borné par des limites de déformation ou de fissuration des éléments.

Hypothèse de calculs :

- Les sections droites restent planes après déformation.
- Il n'y a pas de glissement relatif entre les armatures et le béton.
- La résistance à la traction du béton est négligeable.
- Le retrait et le fluage ne sont pas pris en compte.
- Le comportement des matériaux est linéaire élastique.
- Dans le diagramme des contraintes l'un des matériaux doit travailler au maximum autorisé.

Etat limite ultime (ELU):

Borné par les limites de résistance du béton et des armatures.

Hypothèse de calculs :

- les sections planes avant déformation restent planes après déformation
- il n'y a pas de glissement relatif entre les armatures d'acier et le béton.
- La résistance à la traction du béton est négligeable à cause de la fissuration.
- Les déformations des sections sont limitées à : $\xi bc = 3.5\%$ en flexion et $\xi bc=2\%$ en compression simple.
- L'allongement maximal des aciers est conventionnellement limité à ξbc=10‰
- Le diagramme contraintes déformations du béton est parabole rectangle.
- Le diagramme contraintes déformations de l'acier triangle rectangle.
- On peut supposer concentrée en son centre de gravité la section d'un groupe de plusieurs barres tendues ou comprimées.

Les actions :

Les actions sont des forces et des charges appliquées (permanentes, sismiques, opérationnelles, etc.) et aux déformations imposées (changements de température, tassement des supports, etc.) qui provoquent des déformations structurelles.

Les états limites distinguent principalement 3 types d'actions :

<u>Les actions permanentes</u>: Les actions permanentes [G] sont appliquée sà tout moment ou bien une variation très faible dans le temps

- Poids propre de la structure.
- Revêtements, superstructures, murs.
- Poussée des terres, de l'eau.

<u>Les actions variables</u>: Les actions variables [Q] ont une intensité qui varie souvent et de façon importante dans le temps.

- Charges d'exploitation classées par durée d'application
- Charges climatiques (neige et vent).
- Effets thermiques (retrait).
- Charges appliquées en cours d'exécution.

<u>Les actions accidentelles</u>:Les actions accidentelles sont des actions très rares, mais peuvent causer des dégâts importants :

- Séismes.
- Explosions.
- Erosion de sol.

Combinaisons de calculs :

Pour tenir compte la sécurité de la structure on combine ces actions avec des coefficients des sécurité réglementaire :

> combinaison de BAEL 91 :

$$G_{max} + \ G_{min} + Q_1 + \sum \Psi_{0i} Q_i \qquad \qquad \text{\'etat limite de service}$$

$$1.35G_{max} + G_{min} + \gamma_{O1}Q_1 + \sum 1.3\Psi_{0i}Q_i$$
 état limite ultime

G_{max}: ensemble des actions permanentes défavorables.

G_{min}: ensemble des actions permanentes favorables.

 Q_1 : actions variables de base.

 \mathbf{Q}_i : autres actions variables d'accompagnement avec leur coefficient Ψ_i

> combinaison de RPA :

$$\begin{cases} G + Q \pm E_{xy} \\ 0.8G \pm E_{xy} \end{cases}$$

Pour les structures sans voiles (auto-stables) la combinaison $G+Q\pm E_{xy}$ est remplacée par la combinaison suivante :

$$_{_{\text{\tiny N}}} \quad G+Q\pm 1.2\; E_{x\;y}$$

G: charge permanente.

Q: charge d'exploitation.

E: action sismique représentée sur le plan horizontal (sur l'axe X et Y)

CHAPITRE II PRE OIMENSIONNEMENT

II.1: INTRODUCION

Le pré dimensionnement des éléments porteurs pour déterminer l'effort revenant à chaque élément porteur dû à la charge et surcharge.

II.2 : Pré dimensionnement des planchers :

II.2.1 Corps creux :

Les planchers sont des zones horizontales utilisées pour confiner les étages.Leur fonction principale est de résister et de supporter les charges et les surcharges afin de les transmettre aux éléments porteurs.

- La détermination de la charge d'exploitation se fait suivant l'usage de l'étage :
 - Terrasse non accessible : $Q = 1,00 \text{ KN/m}^2$.
 - Plancher étage bureautique : $Q = 2,50 \text{ KN/m}^2$.
- Dans notre structure, on utilise de types de planchers :
 - Plancher à corps creux Figure II.1

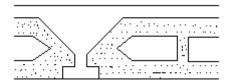


Figure II.1: : coupe d'un plancher

- ht : L'épaisseur totale du plancher.
- h₀: l'épaisseur de dalle de compression

Le choix de la disposition des poutrelles se fait en satisfaisant l'un des deux critères suivants :

- Le critère de la plus petite portée.
- Le critère de continuité (le maximum d'appuis).

Dans notre cas, nous avons opté pour le critère de la plus petite portée. Il permet de réduire les flèches.

Dans notre cas on a:

$$L_{x max} = 6.1m$$

$$L_{y max} = 5.5m$$

$$L=5.50 \Rightarrow h_t \ge \frac{550}{22.5} \ge 24.4 \text{cm}$$

> Condition de résistance ou feu :

- h_{T=}7 cm résiste pour un coupe-feu de 1 heure,
- h_T=11 cm résiste pour un coupe-feu de 2heures,
- h_T=11 cm résiste pour un coupe-feu de 3heurse.

> Condition de confort phonique :

 $h_{T=}13 \ cm$ pour assurer un confort acoustique minimal.

On prend e = 25 cm Disposions des poutrelles :

Avec:
$$\begin{cases} 20 \text{ cm corps creux} \\ \text{cm delle de compression} \end{cases}$$

• Charges et surcharges :

plancher terrasse:

Tableau II.1: charges permanentes et d'exploitation du plancher terrasse

Composant	Poids « G » (KN/m²)
Gravier de protection	1
Multicouche étanchéité	0,12
Isolation thermique	0,16
Plancher en corps creux	3.5
Enduit de plâtre	0,2
Forme de pente	2,20
Total des charges	$G = 7.18 \text{ KN/m}^2$
Sur charges exploitation	$Q = 1 \text{ KN/}m^2$

Etage courant:

Tableau II.2: charges permanentes et d'exploitation d'étage courant

Composants	Poids « G» (KN/m ²)
Cloisons de séparation10 cm	1
Revêtement 2 cm	0,40
Mortier de pose 2 cm	0,40
Lit de sable 2cm	0,36
Enduit en plâtre 2 cm	0,3
Plancher en corps creux 20+5 cm	3.5
Sur charges totales permanentes	$G = 5.96KN/m^2$
Charges d'exploitation	$Q = 2.5 \text{ KN/m}^2$

Consoles en porte à faux :

Tableau II.3: charges permanentes et d'exploitation des consoles en porte à faux

Composant	Poids « G » (KN/m²)
Revêtement 2cm	0,40
Mortier de pose2cm	0,40
Lit de sable2cm	0,36
Balcon avec dalle pleine 15cm	3.75
Enduit en plâtre 2cm	0,2
Charges totales permanentes	$G = 5,11 \text{ KN/m}^2$
Sur charges d'exploitation	$Q = 2.5 \text{ KN/m}^2$

Sous-sols

Tableau II.4: charges permanentes et d'exploitation des sous-sols

Composant	Poids « G » (KN/m²)
Dalles pleine 20cm	5
Chape de protection 5cm	1
Résine anti fissure	0.05
Charges totales permanentes	$G = 6.05 \text{ KN/m}^2$
Sur charges d'exploitation	$Q = 2.5 \text{ KN/m}^2$

II.3 : pré dimensionnement des escaliers :

L'escalier permet de passer à pied d'un niveau à un autre.

Un escalier est déterminé par :

- Cage d'escalier : murs ou voiles entourant l'escalier.
- giron : la partie horizontale des gradins constituant l'escalier.
- Contremarche " h " : la hauteur de marche.
- Paillasse : partie inclinée servant de support aux marches sur toute leur largeur.
- Palier : partie horizontale d'accès ou d'arrivée d'une volée.
- Hauteur de marche : sa valeur est comprise entre 17 cm \geq h \geq 13 cm.
- Largeur de marche : largeur de la marche égale à 30 cm.

Formule de **Blondel** : $0.59 \le g + 2 h \le 0.66$ (en m).

En pratique on prend : g + 2 h = 0.64

On prend h=17cm

Vérification de la relation de blondel :

$$60cm \le 2*17+30 \le 64cm$$
 → $26cm \le g \le 30cm$

On prend g=30cm

❖ Nombres des marches :

$$h_{etg courant}$$
=3.74 m $n=\frac{374}{17}$ =22 marches

$$h_{rdc \ 1er \ etage} = 4.25 \ m$$
 $n = \frac{425}{17} = 25 \ marches$

$$h_{s \text{ sol } 2.3.4} = 2.89 \text{ m}$$
 $n = \frac{289}{17} = 17 \text{ marches}$

$$h_{s \text{ sol } 1} = 3.45 \text{m}$$
 $n = \frac{345}{17} = 20$ marches

\Delta L'inclinaison de la paillasse :

L'angle de paillasse :
$$tg(\alpha) = \frac{102}{150} = 0.68 \rightarrow \alpha = 34.21^{\circ}$$

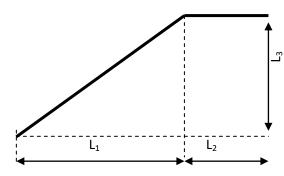


Figure II.2: dimensions de l'escalier

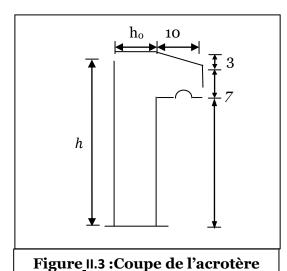
* L'épaisseur de la paillasse :

L'=L1+L2
$$\rightarrow$$
 1.50+1.60=3.10 m

$$\frac{\underline{L'}}{30} \le ep \le \frac{\underline{l'}}{20} \longrightarrow \frac{310}{30} \le ep \le \frac{310}{20} \longleftrightarrow 10.33 \le ep \le 15.5$$

On prende_p=15cm

II.4: Acrotère:


Introduction

Le rôle de l'acrotère est d'assurer la sécurité totale au niveau de la terrasse inaccessible et de protéger le gravie de la poussée du vent

$$S = \frac{3 \times 10}{2} + (100 \times 10) + (7 \times 10)$$

$$S = 1085 \ cm^2$$

Géométrie	
La hauteur h	100cm
L'épaisseur h_o	10 cm
L'enrobage c	2cm
La surface S	0.1085m^2
L'enrobage $C = C'$	2cm
Chargement G	2.71 KN/ml

Matériaux	
Béton de résistance f_{c28}	25MPa
Acier de limite élastique f_e	500MPa

II.5 : Pré dimensionnement des poutres :

II.5.1 : Pré dimensionnement des poutres principales [p.p]

> Critère de rigidité :

$$\begin{cases} \frac{L}{15} \le h \le \frac{L}{10} \\ 0.4h < b \le 0.8h \end{cases}$$

Avec:

h: hauteur de la poutre.

b : largeur de la poutre.

L : portée de la poutre.

Pour
$$L = 610 \, cm$$
 \Rightarrow
$$\begin{cases} 40.66 \le h \le 61 & \rightarrow h = 50 \, cm. \\ 20 < b \le 35 & \rightarrow b = 30 \, cm. \end{cases}$$

> Conditions du R.P.A 99:

$$\begin{cases} h \ge 30 \ cm \\ b \ge 20 \ cm \end{cases} \Rightarrow \begin{cases} h = 40 \ge 30 \ cm \\ b = 35 \ge 20 \ cm \end{cases}$$
 vérifiée
$$(h/b) \le 4 \qquad (50/30) = 1,66 \le 4$$

Donc la section adoptée pour les poutres principales est (30×50) cm².

II.5.2 : Pré dimensionnement des Poutres secondaire [P.S]

> Critère de rigidité :

Pour
$$L = 550cm$$
 \Rightarrow
$$\begin{cases} 37 \le h \le 55 & \to h = 45 cm \\ 18 < b \le 31.5 & \to b = 30cm \end{cases}$$

> Condition du R.P.A 99:

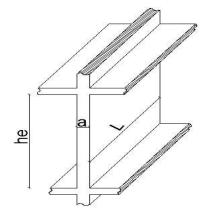
$$\begin{cases} h \ge 30 \ cm \\ b \ge 20 \ cm \end{cases} \Rightarrow \begin{cases} h = 35 \ge 30 \ cm \\ b = 35 \ge 20 \ cm \dots \text{v\'erifi\'ee} \\ (h/b) = 1,5 \le 4 \end{cases}$$

Donc la section adoptée pour les poutres secondaires est (30×45) cm²

Les sections des poutres sont résumées dans le tableau suivant :

Tableau II.5: sections des poutres principales et secondaires

Poutres	Section cm ²
Principales	(30x50)
Secondaires	(30x45)


II.6: les voiles:

Les voiles sont des éléments de contreventement

Le pré dimensionnement des voiles est effectué suivant les règles parasismiques Algériennes (RPA99 version 2003).

- L'épaisseur minimale est de 15cm
- L'épaisseur des voiles doit satisfaire la condition suivante :

$$a \geq \frac{he}{20}$$

Avec:

- a : Épaisseur des voiles.
- L: Portée minimale des voiles.
- he : Hauteur libre de l'étage.

Figure II.4 : Vue de voile

Epaisseur : L'épaisseur a d'un voile dépend de la hauteur d'étage he et des conditions de rigidité aux extrémités.

$$a \ge \max \{\frac{h_e}{25}, \frac{h_e}{22}, \frac{h_e}{20}\}$$

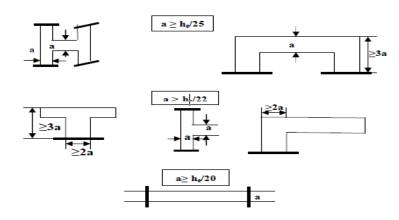


Figure II.5 : Coupe de voiles en plan.

❖ Pour le Sous-sol 1:

he= 2.95 m a
$$\geq \frac{he}{20}$$
 $\frac{295}{20} \geq 14.75$ cm

❖ Pour les Sous-sol 2-3-4:

he= 2.39 m a
$$\geq \frac{he}{20}$$
 $\frac{239}{20} \geq 11.95$ cm

❖ Pour le RDC et le premier étage :

he= 2.39 m a
$$\geq \frac{he}{20}$$
 $\frac{239}{20} \geq 11.95$ cm

***** Pour les étages courants 2 a 11^{eme} étage :

he= 3.74 m a
$$\geq \frac{he}{20}$$
 $\frac{374}{20} \geq 18.7$ cm

D'après le RPA l'épaisseur minimale est de 15 cm donc on prend : a = 20 cm.

II.7: Les balcons:

Le balcon est constitué d'une dalle pleine. Il est considéré comme une console encastrée au niveau de la poutre de rive. L'épaisseur de la dalle du balcon est donnée par la formule suivante.

 $e \ge \frac{l}{10}$: Avec L: largeur du balcon.

Dans notre cas, on a trois types de balcons de largeurs différentes :

$$\begin{cases} L = 150 \text{cm} & e \ge \frac{150}{10} \ge 15 \text{ cm} \\ L = 90 \text{ cm} & e \ge \frac{90}{10} \ge 9 \text{ cm} \end{cases}$$

Donc on prend: e = 15cm

II.8 : Pré dimensionnement des poteaux :

II.8.1: Introduction

Les poteaux sont des éléments porteurs chargés de reprendre les charges et surcharges de différents niveaux pour les transmettent au sol par l'intermédiaire des fondations.

Nous allons dans un premier temps déterminer les sections des poteaux selon le CBA 93 ensuite nous les vérifierons s'ils sont compatibles avec les Règles Parasismiques Algériennes (RPA99/version2003).

II.8.2 : Descente des charges :

Selon la lois de dégression

$$Q = Q_0 + \left(\frac{3+n}{2n}\right) \sum_{i=1}^{n} (Q_i - Q_{ri}) + \sum_{i=1}^{n} Q_{ri} \qquad \text{Pour} \qquad n \ge 5$$

Avec:

- Q₀ : charge d'exploitation sur la terrasse ;
- Q_1 : charge d'exploitation du dernier niveau;
- Q_i : charge d'exploitation de l'étage i compté à partir du haut ;
- Q_{ri} : = 1 KN/m² à partir du haut pour les locaux de bureaux, = 0 pour les autres ;

Tableau II.6: Dégression des surcharges d'exploitation

		Q (KN/m²)
La terrasse	Q_0	1
11 ^{éme} étage	$Q_0 + Q_1$	3.5
10 ^{ème} étage	$Q_0 + 1.9Q_1$	5.75
9 ^{ème} étage	$Q_0 + 2.7Q_1$	7.75
8 ^{ème} étage	$Q_0 + 3.4Q_1$	9.5
7 ^{ème} étage	$Q_0 + 4 Q_1$	11
6 ^{ème} étage	$Q_0 + 4.5Q_1$	12.25
5 ^{ème} étage	$Q_0 + 5 Q_1$	13.5
4 ^{ème} étage	$Q_0 + 5.5Q_1$	14.75
3 ^{ème} étage	$Q_0 + 6 Q_1$	16
2 ^{ème} étage	$Q_0 + 6.5Q_1$	17.25
1 ^{er} étage	$Q_0 + 7Q_1$	18.5
RDC	$Q_0 + 7.5Q_1$	19.75
1 ^{er} sous-sol	$Q_0 + 8 Q_1$	21
2 ^{éme} sous-sol	$Q_0 + 8.5Q_1$	22.25
3 ^{éme} sous-sol	$Q_0 + 9 Q_1$	23.5
4 ^{éme} sous-sol	$Q_0 + 9.5Q_1$	24.75
	Q =	24.75 KN/m²

Tableau II.7 : Evaluation des charges

	valeur non cum	ulée des charges	Valeur cumulée des charges		
	et sur c	charges	et sur charges		
	Q(kN/m ²)	$G(kN/m^2)$	Q(kN/m ²)	G(kN/m ²)	
La terrasse	1	7.18	1	7.18	
11 ^{éme} étage	2.5	5.96	3.5	13.14	
10 ^{ème} étage	2.5	5.96	5.75	19.1	
9 ^{ème} étage	2.5	5.96	7.75	25.06	
8 ^{ème} étage	2.5	5.96	9.5	31.02	
7 ^{ème} étage	2.5	5.96	11	36.98	
6 ^{ème} étage	2.5	5.96	12.25	42.94	
5 ^{ème} étage	2.5	5.96	13.5	48.9	
4 ^{ème} étage	2.5	5.96	14.75	54.86	
3 ^{ème} étage	2.5	5.96	16	60.82	
2 ^{ème} étage	2.5	5.96	17.25	66.78	
1 ^{er} étage	2.5	5.96	18.5	72.74	
RDC	2.5	5.96	19.75	78.7	
1 ^{er} sous-sol	2.5	6.05	21	84.75	
2 ^{éme} sous-sol	2.5	6.05	22.25	90.8	
3 ^{éme} sous-sol	2.5	6.05	23.5	96.85	
4 ^{éme} sous-sol	2.5	6.05	24.75	102.9	

* Remarque

Le calcul est basé en premier lieu sur la section du poteau le plus sollicité (central). la section doit être majorée de 15%

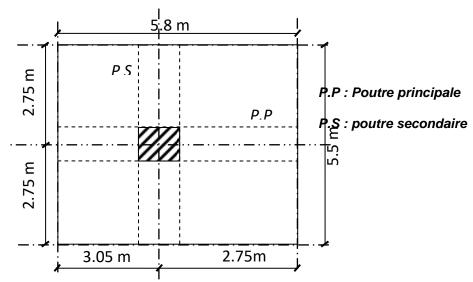


Figure II.6: Section du poteau le plus sollicité.

Calcul de la surface du plancher revenant au poteau:

$$S = (5.5 - 0.3) \times (5.8 - 0.3) = 28.6m^2$$

 S_{maj} =28.6 × 1.15 =32.89 m^2

Tableau II.8: Calcul de l'effort normal à la base des poteaux

étage	Q	G	SURFACE	Poids plancher	Poids ossature	NG	NQ	NU
La terrasse	1	7.18	32.89	236.15	40.2	276.35	32.89	422.41
11 ^{éme} étage	2.5	5.96	32.89	196.02	40.2	236.22	82.23	442.24
10 ^{ème} étage	2.25	5.96	32.89	196.02	40.2	236.22	74.00	429.91
9 ^{ème} étage	2	5.96	32.89	196.02	40.2	236.22	65.78	417.57
8 ^{ème} étage	1.75	5.96	32.89	196.02	40.2	236.22	57.56	405.24
7 ^{ème} étage	1.5	5.96	32.89	196.02	40.2	236.22	49.34	392.91
6 ^{ème} étage	1.5	5.96	32.89	196.02	40.2	236.22	49.34	392.91
5 ^{ème} étage	1.25	5.96	32.89	196.02	40.2	236.22	41.11	380.57
4 ^{ème} étage	1.25	5.96	32.89	196.02	40.2	236.22	41.11	380.57
3 ^{ème} étage	1.25	5.96	32.89	196.02	40.2	236.22	41.11	380.57
2 ^{ème} étage	1.25	5.96	32.89	196.02	40.2	236.22	41.11	380.57
1 ^{er} étage	1.25	5.96	32.89	196.02	40.2	236.22	41.11	380.57
RDC	1.25	6.95	32.89	228.59	40.2	268.79	41.11	424.53
1 ^{er} sous-sol	1.25	6.05	32.89	198.98	40.2	239.18	41.11	384.57
2 ^{éme} sous-sol	1.25	6.05	32.89	198.98	40.2	239.18	41.11	384.57
3 ^{éme} sous-sol	1.25	6.05	32.89	198.98	40.2	239.18	41.11	384.57
4 ^{éme} sous- sol	1.25	6.05	32.89	198.98	40.2	239.18	41.11	384.57
					somme	4100.34	820.25	6768.84

II.8.3: Pré dimensionnement:

On mènera le calcul à L'ELU (BAEL 91) et la vérification d'après (RPA99/V2003). Selon BAEL91 on a:

$$B_r \ge \frac{k \, \beta N_u}{\theta \frac{f_{bu}}{0.9} + \frac{0.85 \, f_{ed}}{100}}$$

k=1.2 Si plus de la moitié des charges est appliquée avant 90 jours k=1.1 Si plus de la majeure partie des charges k=1 pour les autres cas

Br: section réduite du poteau (en cm²)

$$f_{bu} = \frac{0.85 * f_{c28}}{\theta \ \gamma_b} = 14.2MPa$$
 $f_{ed} = \frac{f_e}{\gamma_s} = 434.78 MPa$

f: Résistance à la compression du béton c28 f = 25 MPa

fe : Limite d'élasticité de l'acier utilisé fe = 500 MPa

$$\gamma_{\rm b} = 1.5$$

$$\gamma_{s} = 1,15$$

 θ = est en fonction de la durée T d'application des combinaisons d'action :

$$\begin{cases} \theta = 1 & : T > 24h \\ \theta = 0.9 & : 1h \le T \le 24h \\ \theta = 0.85 & : T < 1h \end{cases}$$
On prend $\theta = 1$

 β : Coefficient dépendant de l'élancement mécanique « λ » des poteaux qui est défini comme suit :

- si
$$\lambda \le 50$$
 : $\beta = 1 + 0.2$. $(\lambda / 35)^2$.

- si
$$50 < \lambda < 70$$
: $\beta = 0.60 (50 / \lambda)^2$.

$$\lambda = \frac{l_f \sqrt{12}}{a}$$
 (a : le plus petite coté)

Comme le calcul se fait en compression centrée, on fixe l'élancement mécanique forfaitairement à $\lambda = 35$

D'où:
$$\beta = 1 + 0.2.1 = 1.2 \Rightarrow B_r \ge \frac{1 \times 1.2 \times N_u \times 10^{-3}}{1 \times \frac{14.2}{0.9} \times \frac{0.85}{100} \times 434.78} \times 10^4 = 0.61 N_u \text{(cm}^2\text{)}$$

Etage	NG	NQ	NU	Nu _{cum}	Br(cm²)	a (cm)	Aadopté
La terrasse	276.35	32.89	422.41	422.41	257.67	20.05	30x30
11 ^{éme} étage	236.22	82.23	442.24	864.65	527.44	26.97	30x30
10 ^{ème} étage	236.22	74.00	429.91	1294.55	789.68	32.10	35x35
9 ^{ème} étage	236.22	65.78	417.57	1712.13	1044.40	36.32	40x40
8 ^{ème} étage	236.22	57.56	405.24	2117.37	1291.59	39.94	40x40
7 ^{ème} étage	236.22	49.34	392.91	2510.27	1531.27	43.13	45x45
6 ^{ème} étage	236.22	49.34	392.91	2903.18	1770.94	46.08	50x50
5 ^{ème} étage	236.22	41.11	380.57	3283.75	2003.09	48.76	50x50
4 ^{ème} étage	236.22	41.11	380.57	3664.32	2235.24	51.28	55x55
3 ^{ème} étage	236.22	41.11	380.57	4044.89	2467.38	53.67	55x55
2 ^{ème} étage	236.22	41.11	380.57	4425.46	2699.53	55.96	60x60
1 ^{er} étage	236.22	41.11	380.57	4806.04	2931.68	58.15	60x60
RDC	268.79	41.11	424.53	5230.57	3190.64	60.49	65x65
1 ^{er} sous-sol	239.18	41.11	384.57	5615.13	3425.23	62.53	65x65
2 ^{éme} sous-sol	239.18	41.11	384.57	5999.70	3659.82	64.50	65x65
3 ^{éme} sous-sol	239.18	41.11	384.57	6384.27	3894.40	66.41	70x70
4 ^{éme} sous-sol	239.18	41.11	384.57	6768.84	4128.99	68.26	70x70

Tableau II.9 : sections des poteaux des différents étages.

Vérification au flambement :

L Le flambement est phénomène d'instabilité de forme qui peut survenir dans les éléments comprimés des structures.

$$\lambda = \frac{Lf}{i}$$

On doit vérifier que : $\lambda \le 35$

- L_f : longueur de flambement (L_f =0,7 l_0)
- l_0 : Hauteur libre du poteau
- $l_0 = H \ poteau H \ planche$
- i : section de giration i= $\sqrt{\frac{I}{S}}$
- S : Section transversale des poteaux bxh
- o I: Moment d'inertie du poteau :

$$I = \frac{h \times b^3}{12} \qquad \lambda = \frac{l_f}{\sqrt{\frac{I}{S}}} \qquad = \frac{0.7 l_0}{\sqrt{\frac{b^2}{12}}} \qquad = 0.7 l_0 \frac{\sqrt{12}}{b}$$

Tableau II.10: vérification des poteaux au flambement

étage	h(m)	$L_0(m)$	b(m)	γ	$\gamma \leq 35$
La terrasse	3.74	3.49	0.3	28.15	Vérifier
11 ^{éme} étage	3.74	3.49	0.3	28.15	Vérifier
10 ^{ème} étage	3.74	3.49	0.35	24.13	Vérifier
9 ^{ème} étage	3.74	3.49	0.4	21.11	Vérifier
8 ^{ème} étage	3.74	3.49	0.4	21.11	Vérifier
7 ^{ème} étage	3.74	3.49	0.45	18.77	Vérifier
6 ^{ème} étage	3.74	3.49	0.5	16.89	Vérifier
5 ^{ème} étage	3.74	3.49	0.5	16.89	Vérifier
4 ^{ème} étage	3.74	3.49	0.55	15.36	Vérifier
3 ^{ème} étage	3.74	3.49	0.55	15.36	Vérifier
2 ^{ème} étage	3.74	3.49	0.6	14.08	Vérifier
1 ^{er} étage	4.25	4	0.6	16.13	vérifier
RDC	4.25	4	0.65	14.89	vérifier
1 ^{er} sous-sol	3.45	3.2	0.65	11.91	vérifier
2 ^{éme} sous-sol	2.89	2.64	0.65	9.83	vérifier
3 ^{éme} sous-sol	2.89	2.64	0.7	9.13	vérifier
4 ^{éme} sous-sol	2.89	2.64	0.7	9.13	vérifier

➤ Vérification des conditions de RPA (Art7.4.1 RPA99 révisé en 2003) :

$$\begin{cases} Min(b;h) \ge 30cm \\ Min(b,h) \ge (h_e)/20 \\ \frac{1}{4} < \frac{b}{h} < 4 \end{cases} \qquad \begin{cases} Min(35;35) \ge 30cm \\ Min(35,35) = 35 \ge \frac{349}{20} = 17.45 \\ \frac{1}{4} < \frac{35}{35} < 4 \end{cases} \qquad 0.25 < 1 < 4$$

Les conditions sont vérifiées

CHAPITRE III

Calculs des éléments secondaires

III.1 :Planchers à corps creux :

Introduction:

Nous avons effectué des calculs pour le plancher le plus sollicité. Le plancher à corps creux est de type (20+5) avec 20 cm pour le corps creux et une dalle de compression de 5 cm. Il est constitué de :

- ➤ Des nervures (poutrelles) de section en T. Elles permettent de tenir les entrevous et de répartir les charges sur les appuis extrêmes; la distance entre les axes des poutrelles est de 65 cm.
- D'un remplissage en corps creux (hourdis), utilisés à la fois, comme coffrage perdu et isolation phonique. Sa hauteur est de 20cm.
- Une dalle de compression en béton de 5 cm d'épaisseur, armée d'un quadrillage en treillis soudé ayant pour but :
 - Limiter les risques de fissuration dus au retrait.
 - Résister aux efforts dus aux charges appliquées sur des surfaces réduites.
 - ➤ Réaliser un effet de répartition des charges entre poutrelles voisines localisées, notamment celles correspondants aux cloisons.

Ferraillage de la dalle de compression :

La dalle de compression est coulée sur place, elle est de 5cm d'épaisseur armée d'un quadrillage de treillis soudé de nuance (TLE 520) dont les dimensions des mailles seront au plus égales aux valeurs indiquées par le règlement (BAEL. B6.8.423) qui sont :

- 20 cm (5.p.m.) pour les armatures perpendiculaires aux nervures (poutrelles).
- 33 cm (3.p.m.) pour les armatures parallèles aux nervures (poutrelles).

III .1.1: Étude de la dalle de compression

-La dalle de compression doit avoir une épaisseur minimale de 5 cm et être armée d'un quadrillage des barres dont les dimensions des mailles ne doivent pas dépasser :

- La section minimale des armatures doit être :

Pour l'écartement des axes des nervures L_n inférieure ou égal à 50 cm, on a :

$$A_{\perp} \ge 200 f_e \; ; \; A_{//} \ge \left(\frac{A_{\perp}}{2}\right)$$

• Pour l'écartement des axes des nervures L_n comprise entre 50 et 80 cm, on a :

$$A_{//} \ge \left(\frac{A_{\perp}}{2}\right)$$

Avec:

 L_n : Distance entre axes des nervures en (cm).

 f_e : La limite d'élasticité.

La limite d'élasticité de treillis soudés pour un treillis de diamètre $\phi \le 6 \, mm \, \text{est} \, f_e = 520 MPa$

Armatures perpendiculaires aux nervures :

 $50 \ cm \le L_n = 60 \ cm \le 80 \ cm$

Donc on a:
$$A_{\perp} \ge 4 \cdot \left(\frac{L_n}{f_e}\right) \Rightarrow A_{\perp} \ge 4 \cdot \left(\frac{65}{520}\right) \Rightarrow A_{\perp} \ge 0.5 \ cm^2/ml$$
.

On prend
$$\frac{5\phi 5}{ml} \Rightarrow A_{\perp} = 0.98 cm^2/ml$$
.

Armatures parallèles aux nervures :

$$A_{//} \ge \frac{A_{\perp}}{2} \implies \frac{0.98}{2} \implies A_{//} \ge 0.49 \, cm^2/ml.$$

On prend
$$5\phi 5/ml \Rightarrow A_{//} = 0.98 cm^2/ml$$
.

Donc on adoptera un treillis soudés de : $\phi 5 (20 \times 20) cm^2$.

III.1.2: Étude des poutrelles :

Dimensions:

les dimensions de poutrelle sont :

h _t	h_0	b	b_0	b_1
25 cm	5 cm	65 cm	12 cm	26.5 cm

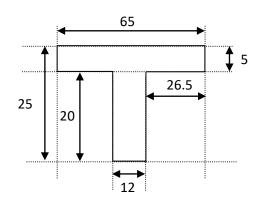


Figure III.1 : Schéma de poutrelle.

III.1.2.1)- méthodes de calcul :

Méthode forfaitaire (Annexe E.1 du BAEL 91) :

La méthode forfaitaire permet de calculer les sollicitations maximales dans les poutrelles. Elle ne s'applique que si les conditions suivantes sont satisfaites :

Il faut que le plancher soit à surcharge modérée : a.

$$Q \le \min (2 G, 5 KN/m^2)$$

- Le rapport entre deux travées successives des poutrelles doit être compris entre b. $0.8 \text{ et } 1.25 \Longrightarrow 0.8 \le \frac{l_i}{l_{i+1}} \le 1.25.$
- Fissuration peu nuisible (F.P.N). c.
- Le moment d'inertie I de la poutrelle est constant sur toutes les travées. d.
- > Si a, b, c et d sont vérifiées, on appliquera la méthode forfaitaire (annexe E1 du BAEL).
- > Si a n'est pas vérifiée (cas des planchers à charge d'exploitation relativement élevée), on appliquera la méthode de Caquot (annexe E2 du BAEL).
- > Si a est vérifiée mais une ou plus des trois conditions b, c et d ne le sont pas, on appliquera la méthode de Caquot minorée (annexe E2 du BAEL), c'est-à-dire on minore G avec un coefficient de 2/3 uniquement pour le calcul des moments en appuis puis on reprend la totalité de G pour le calcul des moments en travées.

Identification des moments

M_a: moment maximal sur un appui donné.

M_t: moment maximal en travée.

 M_0 : moment maximal isostatique.

α : degré de surcharge.

Moments aux appuis :

-0.6 M₀: pour un appui intermédiaire d'une poutrelle à deux travées.

-0.5 M_0 : pour les premiers appuis intermédiaires d'une poutrelle à plus de deux travées. -0.4 M_0 : pour tous les appuis centraux (autres que les appuis voisins de rive),

pour les Poutres ou les poutrelles à plus de trois travées.

Au niveau de l'appui de rive le moment est nul cependant le **BAEL** exige de mettre au niveau de ces appuis des aciers de fissuration équilibrant un moment ($M_{a \text{ rive}} = -0.15 \text{ M}_0$).

Moments en travées :

Le moment M_t est calculé à partir du maximum entre les deux conditions suivantes :

> Première condition :

$$M_t + \frac{M_{w+M_e}}{2} \ge \max(1.05; 1 + 0.3\alpha)M_0$$

N.B: M_w et M_e sont pris avec valeurs absolues.

> Deuxième condition :

$$\left\{ \begin{array}{ll} M_t\!\geq\!\frac{1.2\!+\!0.3\alpha}{2}\,M_0 & \quad \text{trav\'ee de rive.} \\ M_t\!\geq\!\frac{1\!+\!0.3\alpha}{2}\,M_0 & \quad \text{trav\'ee interm\'ediaire.} \end{array} \right.$$

On a:
$$\alpha = \frac{Q}{G+Q}$$

Valeurs des efforts tranchants :

Dans la méthode forfaitaire l'effort tranchant est calculé au niveau des appuis seulement (sur chaque appui).

L'effort tranchant hyperstatique (V) égale l'effort tranchant isostatique (V_0), sauf sur l'appui intermédiaire (appui voisin de rive) où l'effort tranchant isostatique V_0 est majoré de :

{ 15% pour poutre à deux travées. 10% pour poutre à plus de travées.

Combinaison de charge

Le calcul des charges et surcharges revenants aux poutrelles se fait comme suit :

A l'ELU :
$$q_u = 1.35G + 1.5Q$$
 et $q_u = l_0 \times q_u$
A l'ELS : $q_s = G + Q$ et $q_s = l_0 \times q_s$
Avec : $l_0 = 0.65 m$

$$\begin{cases} G = 5.96KN/m^2 \\ Q = 2.5KN/m^2 \end{cases}$$
 étage courant
$$\begin{cases} G = 7.34KN/m^2 \\ Q = 1KN/m^2 \end{cases}$$
 terrasse

Tableau III.1: chargement des poutrelles aux étages courants

Sollicitions	ELU	ELS
Combinaison de charge	(1.35G+1.5)0,65	(G+Q) 0,65
q (KN.m)	7.67	5.5

Tableau III.2 : chargement des poutrelles à la terrasse

Sollicitions	ELU	ELS
Combinaison de charge	(1.35G+1.5)0,65	(G+Q) 0,65
q (KN.m)	7.41	5.42

III.1.2.2 : Calculs de ferraillage de poutrelle :

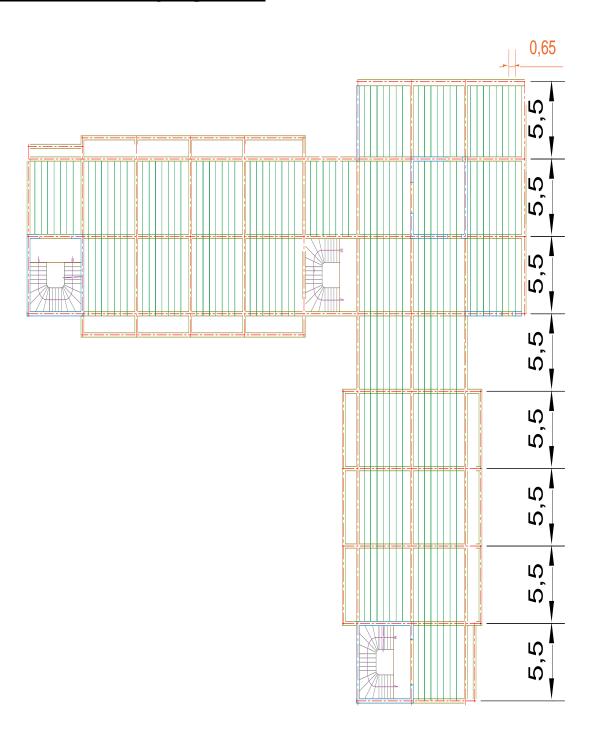


Figure III.2: plan d'étage1 à 11 étages

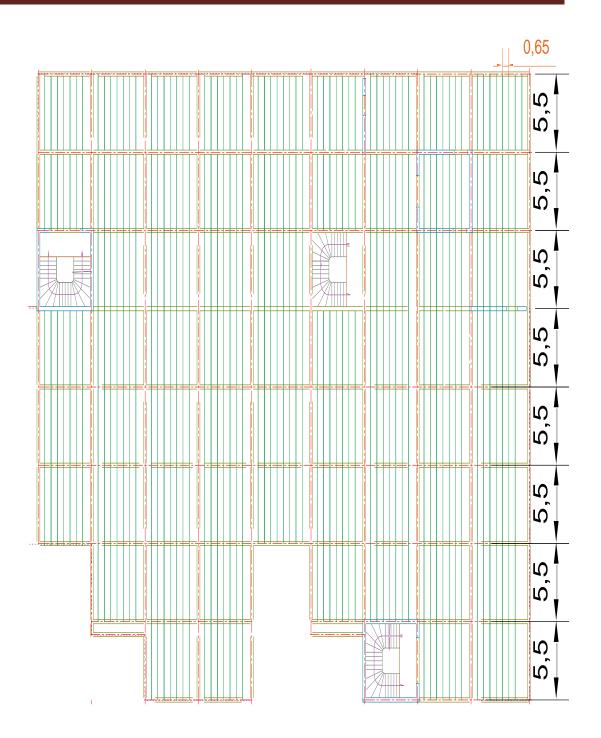
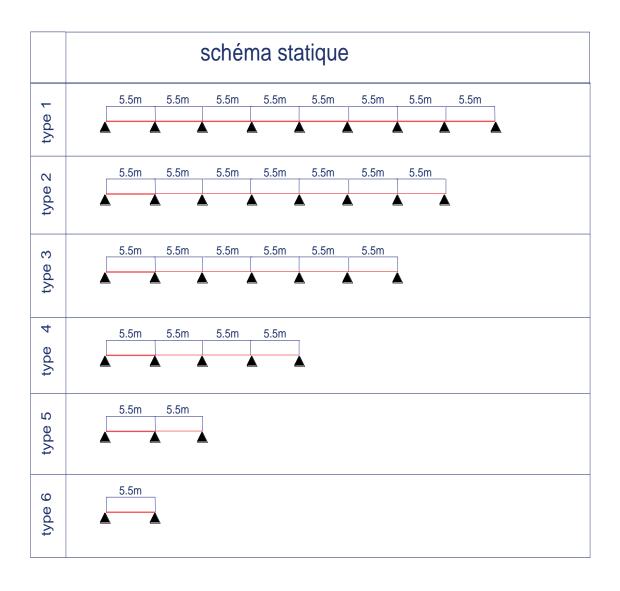


Figure III.3 : plan de 1^{er}etage

Nous avons utilisé la méthode forfaitaire.


Vérification

- 1) $Q \le \min(2G; 5) \to Q = 1.5 \le \min(11.92; 5)$
- 2) $\frac{l_i}{l_i+1} = \left(\frac{5.5}{5.5} = 1 : \frac{5.5}{5.5} = 1\right) \in [0.8 \div 1.25]$
- 3) I= est constant sur toute la poutrelle
- 4) Fissuration peut nuisible

> La méthode forfaitaire est applicable

Les différents types de poutrelles :

Tableau III.3: Les différents types de poutrelles

Type 1

> Calculs de moment isostatique :

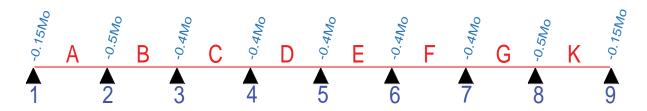


Figure III.4: identification des coefficients forfaitaire.

Calcule à l'ELU:

$$M_0 = \frac{q_{,u}l^2}{8}$$

Travée A:

$$M_{0A} = q_u \times \frac{l^2}{8} \rightarrow M_A = 7.67 \times \frac{(5.50)^2}{8} = 29.00KN.m$$

 $M_{0A} = M_{0B} = M_{0C} = M_{0D} = M_{0E} = M_{0F} = M_{0G} = M_{0K}$

Donc même résultat pour toutes les autres travées.

Moments sur appuis:

$$M_1 = -0,15M_0 = -4.35 \ KN.m$$

 $M_2 = -0,5M_0 = -13 \ KN.m$
 $M_3 = M_4 = M_5 = M_6 = M_7 = --0,4M_0 = -10.4 \ KN.m$
 $M_8 = -0,5M_0 = -13 \ KN.m$
 $M_9 = -0,15M_0 = 1,62 \ KN.m$

Moments en travée :

Calcul du rapport α:

$$\alpha = \frac{Q}{Q+G} = \frac{1.5}{1.5+6.78} = 0.29 \rightarrow \begin{cases} 1+0.3\alpha = 1.087 \\ 1.2+0.3\alpha = 1.287 \end{cases}$$

$$M_{t1} = max \begin{cases} (1+0,3\alpha)M_0 - \frac{M_w + M_e}{2} \\ (1,05M_0 - \frac{M_w + M_e}{2}) \end{cases}$$

• Cas d'une travée de rive :

$$M_{t2} = \frac{(1,2+0,3\,\Omega)}{2} M_0$$

• Cas d'une travée intermédiaire :

$$M_{t2} = \frac{(1+0.3 \,\Omega)}{2} M_0$$

$$M_t = max(M_{t1}, M_{t2})$$

travée	M ₀ (KN.m)	$M_{\rm w}$	M_{e}	Mt ₁	Mt ₂	Mt
A	29.002	4.350	14.501	21.897	18.561	21.897
В	29.002	14.501	11.601	18.271	15.661	18.271
С	29.002	11.601	11.601	19.721	15.661	19.721
D	29.002	11.601	11.601	19.721	15.661	19.721
E	29.002	11.601	11.601	19.721	15.661	19.721
F	29.002	11.601	11.601	19.721	15.661	19.721
G	29.002	11.601	14.501	18.271	15.661	18.271
K	29.002	14.501	4.350	21.897	15.661	21.897

Calcul des efforts tranchants :

$$V_w = -2 \frac{\mathrm{Mw} + \mathrm{Mt}}{a}$$
 , $V_e = 2 \frac{M_e + M_t}{b}$

Les valeurs de «a et b » sont données par :

$$\alpha = l \times \frac{1}{1 + \sqrt{\frac{M_e + M_t}{M_{w + M_t}}}} \text{ et } b = L - a$$

 \boldsymbol{a} est la distance entre l'appui et le point où l'effort tranchant est nul (V = 0)

Travée	L (m)	a(m)	b(m)	$\mathbf{V}_{\mathbf{w}}$	V_{e}
A	5.5	2.53	2.97	-20.784	24.475
В	5.5	2.81	2.69	-23.295	22.240
С	5.5	2.75	2.75	-22.780	22.780
D	5.5	2.75	2.75	-22.780	22.780
E	5.5	2.75	2.75	-22.780	22.780
F	5.5	2.75	2.75	-22.780	22.780
G	5.5	2.69	2.81	-22.240	23.295
K	5.5	2.97	2.53	-24.475	20.784

Calcul à ELS:

Calcul des moments isostatiques :

$$M_A = M_0 = q_u \times \frac{l^2}{8} \rightarrow M_A = 5.5 \times \frac{(5.50)^2}{8} = 20.79 KN.m$$

Moments sur appuis :

$$M_1 = -0, 15M_0 = -3.11 \, KN.m$$

 $M_2 = -0, 5M_0 = -10.39 \, KN.m$
 $M_3 = M_4 = M_5 = M_6 = M_7 = -0, 4M_0 = -8.31 \, KN.m$
 $M_8 = -0, 5M_0 = -10.39 \, KN.m$
 $M_9 = -0, 15M_0 = -3.11 \, KN.m$

Moment en travée :

Les résultats sont récapitulés dans le tableau suivant :

<u>Tableau III.4 : Calcul des moments fléchissant à l'ELS.</u>

travee	\mathbf{M}_0	Mw	Me	Mt_1	Mt_2	Mt
A	20.797	3.120	10.398	15.702	13.310	15.702
В	20.797	10.398	8.319	13.102	11.230	13.102
С	20.797	8.319	8.319	14.142	11.230	14.142
D	20.797	8.319	8.319	14.142	11.230	14.142
E	20.797	8.319	8.319	14.142	11.230	14.142
F	20.797	8.319	8.319	14.142	11.230	14.142
G	20.797	8.319	10.398	13.102	11.230	13.102
K	20.797	10.398	3.120	15.702	11.230	15.702

L'effort tranchant :

<u>Tableau III.5:</u>Calcul de l'effort tranchant à l'ELS.

travée	L(m)	a(m)	b(m)	Vw(kN)	Ve(kN)
A	5.5	2.53	2.97	-14.904	17.551
В	5.5	2.81	2.69	-16.704	15.948
С	5.5	2.75	2.75	-16.335	16.335
D	5.5	2.75	2.75	-16.335	16.335
E	5.5	2.75	2.75	-16.335	16.335
F	5.5	2.75	2.75	-16.335	16.335
G	5.5	2.69	2.81	-15.948	16.704
K	5.5	2.97	2.53	-17.551	14.904

Diagrammes des moments et l'effort tranchant :

A l'ELU

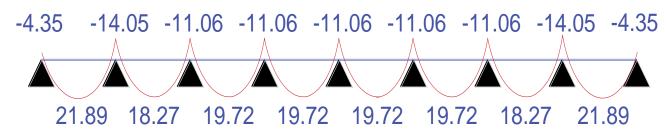


Diagramme des moments fléchissant a l'ELU

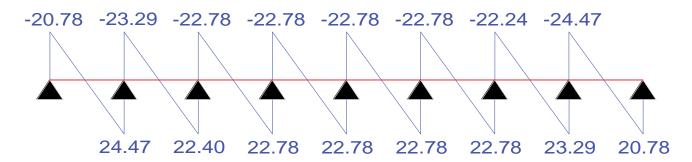
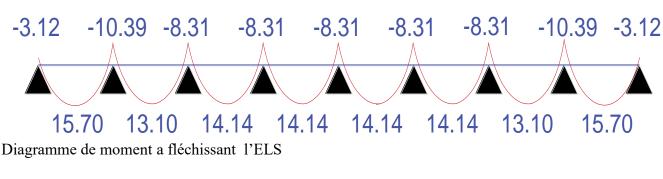



Diagramme de l'effort tranchant a l'ELU

A l'ELS:

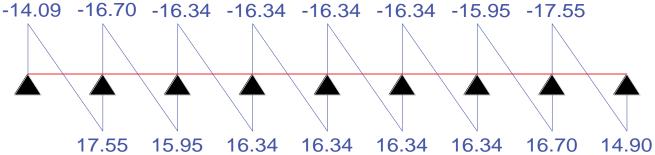
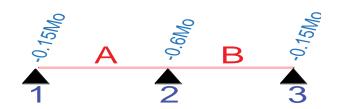



Diagramme de l'effort tranchant a l'ELS

TYPE 5:

ELU

Tableau III.6 ; moment fléchissan a ELU

travée	M_0	Mw	Me	Mt1	Mt2	Mt
A	29.002	4.350	17.401	20.447	18.561	20.447
В	29.002	17.401	4.350	20.447	18.561	20.447

Tableau III.7: l'effort tranchant a ELU

travée	L(m)	a(m)	b(m)	Vw	Ve
A	5.5	2.46	3.04	-20.157	24.903
В	5.5	3.04	2.46	-24.903	20.157

ELS

Tableau III.8: moment fléchissan a ELS

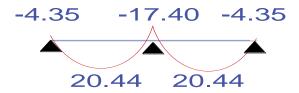
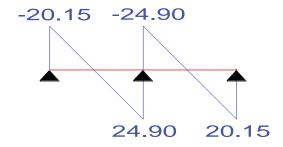

travée	\mathbf{M}_0	Mw	Me	Mt1	Mt2	Mt
A	20.797	3.120	12.478	14.662	13.310	14.662
В	20.797	12.478	3.120	14.662	13.310	14.662

Tableau III.9: l'effort tranchant a ELS


travée	L(m)	a(m)	b(m)	Vw	Ve
A	5.5	2.46	3.04	-14.454	17.857
В	5.5	3.04	2.46	-17.857	14.454

<u>Diagrammes des moments et des efforts tranchants :</u>

<u>ELU</u>

Diagrammes du moment (ELU) de la poutrelle type 5

Diagrammes de l'effort tranchant (ELU) de la poutrelle type 5

ELS

Diagramme du moment (ELS) de la poutrelle type 5

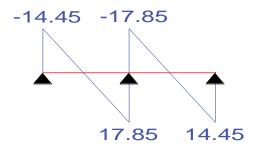


Diagramme de l'effort tranchant (ELS) de la poutrelle type 5

Type 6

Tableau III.10 : moment fléchissant et effort tranchant de la poutrelle type 6 a ELU

travee	M0	Mw	Me	Mt	L	a(m)	b(m)	Vw	Ve
A	29.002	0.000	0.000	29.002	5.5	2.75	2.75	-21.093	21.093

Tableau III.11: moment fléchissant et effort tranchant de la poutrelle type 6 a ELS

travee	M0	Mw	Me	Mt	L	a(m)	b(m)	Vw	Ve
A	20.797	0.000	0.000	20.797	5.5	2.75	2.75	-15.125	15.125

***** Remarque:

Les types 2,3et 4 on les mêmes résultats que type 1

Ferraillage des poutrelles :

ELU:

 M_{appuis}^{max} =-17.40 KN.M $M_{trav\acute{e}e}^{max}$ =29.00 KN.M

 V_e^{max} = -24.09 KN V_w^{max} = 24.90 KN

ELS:

 M_{appuis}^{max} =-12.47 KN.M $M_{trav\acute{e}e}^{max}$ =20.79 KN.M

 $V_e^{max} = -17.85 \text{ KN}$ $V_w^{max} = 17.85 \text{ KN}$

Tableau III.12 : Caractéristiques d'une poutrelle

b	\mathbf{b}_0	h	\mathbf{h}_0	D	f _{c28}	f _e	\mathbf{f}_{bu}	$\mathbf{f_t}$	f _{ed}
[cm]	[cm]	[cm]	[cm]	[cm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
65	12	25	5	22.5	25	500	14.17	2,1	434.78

Calcul du ferraillage

Vérification à E.L.U:

 \mathbf{M}_{tab} : Le moment fléchissant équilibré par la table de compression.

Si $M_{tab} < M^{max}$: la zone comprimée se trouve dans la nervure et la section des calculs sera une section en "T".

Si $M_{tab} > M^{max}$: la zone comprimée se trouve dans la table de compression et la section en "Té" sera calculée comme une section rectangulaire de dimension $(b \times h)$.

> En travée :

• Vérification de l'étendue de la zone comprimée :

Figure III.5: Dimensions des poutrelles

Avec;
$$\begin{cases} \gamma_b = 1.5 \\ \gamma_s = 1.15 \\ feE500 \\ fc28 = 25MPa \\ ft28 = 2.1MPa \\ \sigma_{bc} = 14.2MPa \\ \sigma_s = 434.78MPa \end{cases}$$

$$\sigma_{bc} = 14,20 \, MPa.$$
 ; $b = 60 \, cm$; $h_0 = 5 \, cm$; $d = 0,9h = 22.5 \, cm$
 $M_{tab} = 14,20 \times 65 \times 5 \times \left(22.5 - \frac{5}{2}\right) = 92.30 \, KN.m$
 $M_{tab} = 92.3 \, KN.m > M_{t}^{max} = 29 \, KN.m$

Donc, la zone de compression se trouve dans la table de compression et la section de calcul sera une section rectangulaire de dimension :

Vérification de l'existence des armatures comprimées (A'):

$$\mu_{bu} = \frac{M_t^{\text{max}}}{b \cdot d^2 \cdot \sigma_{bc}} = \frac{29.00}{65 \times (22.5)^2 \times 14,20} = 0,062$$

•
$$\gamma = \frac{M_{tu}}{M_{ts}} = \frac{29.00}{20.79} = 1.39$$

•
$$\mu_{lu} = 3440 \,\gamma + 49 \,f_{c28} - 3050 \Rightarrow \mu_{lu} = (3440 \times 1,39 + 49 \times 25 - 3050) \times 10^{-4} = 0,281$$

 $\mu_{bu} < \mu l = 0.281$ Donc A' n'existe pas

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu}\right) = 0.077$$

$$Z = d(1 - 0.4\alpha) \Rightarrow Z = (1 - 0.40\alpha) \times 20 \rightarrow Z = 21.81cm$$

$$\sigma_s = \frac{f_e}{\gamma_s} = 434.78 \, MPa.$$

$$A = \frac{M_t^{\text{max}}}{Z \cdot \sigma_s} = \frac{29.00}{0.218 \times 434.78} = 3.05 \text{ cm}^2$$

• condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 65 \times 22.5 \times \frac{2.1}{500} = 1.41 \, cm^2$$

$$A_{adoptif} = \max(A_{cal}; A_{min}) = 3.05 cm^2$$

Choix:
$$3T12 \longrightarrow A = 3{,}39 \text{ } cm^2$$

• En appui:

La section sera calculée comme une section rectangulaire de dimension :

$$(b_0 \times h) = (12 \times 25) \text{ cm}^2.$$

• Vérification de l'existence des armatures comprimées (A'):

$$\mu = \frac{M_a^{\text{max}}}{b_0 \cdot d^2 \cdot \sigma_{bc}} = \frac{17.40 \times 10^3}{12 \times (25)^2 \times 14,20} = 0.201 < \mu l = 0.281$$

Donc (A') n'existe pas.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 0,283$$

$$Z = (1 - 0.40\alpha)d = 20.6cm$$

$$A = \frac{M_t^{\text{max}}}{Z \cdot \sigma_s} = \frac{17.4 \times 10^{-3}}{0.206 \times 434.78} = 1.94 \text{ cm}^2$$

• Condition de non fragilité

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.23 \cdot 12 \cdot 22.5 \cdot \frac{2.1}{500} = 0.26 \text{ cm}^2$$

$$A_{adoptif} = \max (A_{\min}, A_{cal}) = 1.94 cm^2$$

Choix:
$$2T12 \longrightarrow A = 2.26cm^2$$

> Vérification à E.L.S

Etat limite de compression du béton

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \frac{-}{\sigma_{bc}} = 0.6 \text{ x f}_{c28} = 15 \text{ MPA}$$

• En travée;

On a:
$$M_t^{max} = 29 \text{ KN.m}$$

Position de l'axe neutre : A'=0 H= $b \times \frac{h_0^2}{2}$ -15×A (d-d₀)

$$\mathrm{H}{=0,65}\times\frac{0,05^{2}}{2}-\ 15\mathrm{x}\ 3.39\times10^{-4}\times(0.225-\ 0,05) \Rightarrow \mathrm{H}{=-7.73}\mathrm{x}10^{-5}m^{3}$$

H> 0 : l'axe neutre passe par la table, vérification des contraintes pour une section rectangulaire (b*h).

H< 0 : vérification des contraintes pour une section en "T"

Calcul de Y:

$$\frac{b}{2}y^2+15A_T$$
 y-15A_T.d=0 Section carrée

$$\frac{b}{2}.Y^2 + \left(\frac{b-b_0}{2}\right).(Y-h_0) + n.A_s'.(Y-c') - n.A_s.(d-Y) = 0$$
 Section T

$$32.5y^2 + 128.2y - 1378.32 = 0 \rightarrow y = 4.83 \text{ cm}$$

Calcul de moment d'inertie :

Si:Y > h₀
$$\Rightarrow I = \frac{b}{3} \cdot Y^3 + n \cdot A_S \cdot (d - Y)^2$$

Si:
$$Y < h_0 \Rightarrow I = \frac{b}{3} \cdot Y^3 + \left(\frac{b - b_0}{2}\right) \cdot (Y - h_0)^3 + n \cdot A_S' \cdot (Y - c')^2 - n \cdot A_S \cdot (d - Y)^2$$

$$\rightarrow I = 18318.20 \text{cm}^4$$

Les contraintes

$$\sigma_{bc} = \frac{20.79 \times 4.83 \times 10^{-5}}{18318.20 \times 10^{-8}} = 5.48 \text{Mpa}$$
; $\sigma_{bc} = 2$, 96Mpa< 15 MPa....condition vérifiée

- En appui intermédiaire :

Le même travail à faire au niveau de l'appui, la section à calculer est ($b_{0} \times h$) $M_{aser} = -12.47~{\rm KN}~{\rm .m}$

Calcul de y et I:

$$\frac{b}{2}.Y^{2} + \left(\frac{b - b_{0}}{2}\right).(Y - h_{0}) + n.A'_{S}.(Y - c') - n.A_{S}.(d - Y) = 0 \Longrightarrow 32,5 \text{ Y}^{2} + 94.3Y - 963.05$$

$$\Rightarrow$$
 Y = 4,18cm

$$I = \frac{by^3}{3} + 15 A(d - Y)^2 d'ouI = 12960.01cm^4$$

Calcul des contraintes :

$$\sigma_{bc} = \frac{12.47 \times 4,15 \times 10^{-5}}{12960.01 \times 10^{-8}} = 3.99 \text{Mpa} \qquad ; \quad \sigma_{bc} = 3.99 \text{Mpa} < \overline{\sigma}_{bc} = 15 \text{ Mpa} \rightarrow v\acute{e}rifier$$

Etat limite d'ouverture des fissures :

La fissuration est peu nuisible, donc la vérification n'est pas nécessaire.

- **Etat limite de déformation** (la vérification de la flèche) :

Le calcul des déformations est effectué pour évaluer les flèches dans l'intention de fixer les contre flèches à la construction ou de limiter les déformations de service.

Vérification l'effort tranchant

D'après le B.A.E.L 91, la condition suivante doit être vérifiée :

$$T_{max} = 24.90 \text{ KN}$$

$$\tau_u \leq \overline{\tau}_{ad} = \min\left(0.2 \frac{f_{c28}}{\gamma_b}; 4 MPa\right)$$

$$\bar{\tau}_{ad} = \min (3,33; 4 \text{ MPa}) = 3,33 \text{ MPa}$$

$$\tau_u = \frac{T_{\text{max}}}{b_0 \cdot d} = \frac{24.90 \times 10^{-3}}{0.12 \times 0.225} = 0,92 \, MPa$$

$$\tau_u = 0.92\,MPa \le \overline{\tau}_{ad} = 3.33\,MPa \quad \rightarrow \quad condition wrifter$$

Diamètre des armatures transversales

Le diamètre ϕ_t des armatures d'âme doit être inférieur ou égal à la plus petite des trois quantités suivantes :

$$\phi_{t} \leq \min\left(\frac{h}{35}; \phi_{L}; \frac{b_{0}}{10}\right)$$

Avec:

- h: Hauteur totale de la poutrelle.

- ϕ_L : Diamètre maximal des armatures longitudinales.

- b₀: Largeur de l'âme de la nervure.

 $- \phi_t \le \min(0.71; 1.2; 1.2)$

On prend 2HA8 \longrightarrow $A_t = 0.57 \text{ cm}^2$

Influence de l'effort tranchant sur le béton (aux appuis) [BAEL 91 /A.5.1, 313] :

On doit vérifier que :

$$T_{max} \le 0.4 \left(\frac{f_{c28}}{\gamma_h}\right) a \times b_0 = 0.4 \left(\frac{25}{1.5}\right) 20.25 \times 12 \times 10^{-1} = 162.20 \text{KN}.$$

Avec : $a = 0.9d = 0.9 \times 22.5 = 20.25cm$.

$$T_{max} = 24.90 \text{kN} \le 162.2 \text{kN} \rightarrow \text{condition vérifiée}$$

III.1.3: Ancrage des barres:

Contrainte d'adhérence limite :

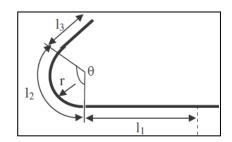
Pour assurer un ancrage correct d'empêcher le glissement de l'armature dans la gaine du béton, il faut limiter la contrainte d'adhérence à la valeur suivante :

$$\tau_{su} = 0.6.\psi^2.f_{t28}$$

$$\tau_{su} = 0.6.1.5^2.2.1 = 2.83MPa.$$

Longueur de scellement droit :

La longueur de scellement droit, notée L_s , est la longueur sur laquelle il faut associer l'acier et le béton pour qu'à la sortie de l'ancrage $L_s = \phi \cdot \frac{f_e}{4.\tau_m} = 1.2 \times \frac{500}{4.2,83} = 53.00cm$


Ancrage par courbure des barres tendues :

- l_1 = portion d'ancrage rectiligne
- l_2 = portion d'ancrage courbe, de rayon r
- l_3 = portion d'ancrage rectiligne

$$l_1 = b_{poutre} - [C + \phi/2 + r]$$

Pour les barres HA FeE 400 et 500 : $r = 5.5 \emptyset$

$$L_2 = \phi \times r$$

Le BAEL à indique également les valeurs de l₃ en fonction de la courbure de l'acier :

- > 5 Ø à la suite d'un arc de cercle de 180°,
- > 10 Ø à la suite d'un arc de cercle de 135°,
- > 15 Ø à la suite d'un arc de cercle de 90°.

NB: on a utilisé l'ancrage droit pour faciliter le travaille

• Espacement minimal et section minimale d'armatures transversales At :

S_t de plans successifs d'armatures transversaux doit vérifier la condition suivante:

$$S_t \leq [0.9d; 40 \ cm]$$

$$S_t \leq [20.25; 40 \ cm]$$

• Section minimale d'armature transversale :

La section minimale d'armatures transversaux doit être prévue de manière que la quantité

$$\frac{A_s x f_e}{b x S_t} \ge 0.4 MPa \rightarrow S_t \ge \frac{A_t x f_e}{b x 0.4} = \frac{0.57x215}{12x 0.4} = 25.53cm$$

$$S_t \leq min \ [20.25; 40; 25.53] \rightarrow S_{t \ adopt\acute{e}} = 15cm$$

III.1.4 : Vérification de la flèche :

On doit vérifier que :

a)
$$\frac{h}{L} \ge \frac{1}{16} \Rightarrow \frac{25}{550} \ge \frac{1}{16} \Rightarrow 0.04 \ge 0.06$$

non vérifier

b)
$$\frac{h}{L} > \frac{1}{10} \cdot \frac{M_{t \text{ service}}}{M_{d \text{ service}}}$$

c)
$$\frac{A}{b_0 \cdot d} \le \frac{4.2}{f_e}$$

La première condition n'est pas vérifier, donc le calcul de la flèche est nécessaire.

> Calcul de la flèche (BAEL91/Art B.6.5.2):

On a :
$$\begin{cases} G = 5.96 \ KN/m^2 \\ P = 5.96 + 2.5 = 8.46 \ KN/m^2 \\ J = 5.96 - 0.9 = 5.06 \ KN/m^2 \end{cases}$$

Pour
$$b = 0.65 m$$

$$\begin{cases} G = 5.96 \times 0.65 = 3.87 \ KN/ml \\ P = 8.46 \times 0.65 = 5.49 \ K \ N/ml \\ J = 5.06 \times 0.65 = 3.28 \ KN/ml \end{cases}$$

> Calcul des moments fléchissant

$$\begin{cases} M_P = \frac{P \cdot L^2}{8} = \frac{5.49 \times (5.5)^2}{8} = 20.75 \text{ KN.m.} \end{cases}$$

$$f = f_{v} - f_{i}$$

Avec:

$$f_i = \frac{M_s \cdot L^2}{10 \cdot E_i \cdot I_i} f_v = \frac{M_s \cdot L^2}{10 \cdot E_v \cdot I_v}$$

Moment d'inertie fictife :

$$I_{f_i}^{g} = \frac{1, 1 \cdot I_0}{\left(1 + \lambda_i \cdot \mu_g\right)} I_{f_v}^{g} = \frac{1, 1 \cdot I_0}{\left(1 + \lambda_v \cdot \mu_g\right)}$$

$$I_0 = \frac{b}{3} \cdot Y_3 + \left(\frac{b - b_0}{2}\right) (Y - h_0)^3 + n \cdot As \cdot (Y - c_1)^2 - n \cdot As \cdot (d - Y)^2$$

$$Y = \frac{b.h_0^2 \cdot \frac{1}{2} + (h - h_0).b_0 \cdot \left(\frac{h - h_0}{2} + h_0\right) + 15.A_s \cdot d}{b.h_0 + (h - h_0).b_0 + 15.A_s}$$

$$\lambda_{i} = \frac{0.02 \times f_{t28}}{\left(2 + 3\frac{b_{0}}{b}\right)\rho} \rho = \frac{A}{b_{0} \cdot d}$$

$$\lambda_{v} = \frac{2}{5} \lambda_{i} \,\mu_{g} = 1 - \left[\frac{1,75 \, f_{t28}}{4 \cdot \rho \cdot \sigma_{sg} + f_{t28}} \right]$$

M _{Ser} (kN.m)	A _S (cm ²)	Y (cm)	ρ	σ _S (MPa)	λ_{i}	$\lambda_{ m V}$	μ	I ₀ (cm ⁴)	I _{Fi} (cm ⁴)	I _{Fv} (cm ⁴)
20.75	3.39	9.02	0.012	197	1.37	0.54	0.71	41734. 1	23271.3	33048.8

> calcul des modules de déformation:

$$E_i = 11000 \sqrt[3]{f_{C28}} = 3.21.10^4 MPa$$

$$Ev = 3700 \sqrt[3]{f_{C28}} = 1,08.10^4 MPa$$

Les résultes de Calcul de la flèche par les défirents cas sont récapitulés dans le tableau suivant

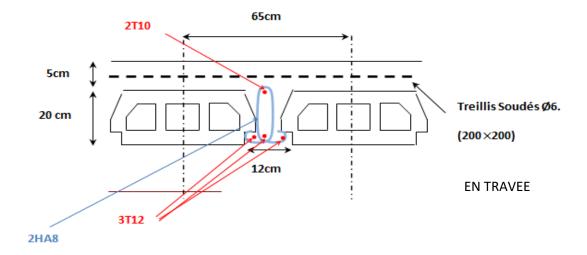
Tableau III.13: Récapitulatif de la vérification des flèches

f _i (cm)	f _V (cm)	Δf (cm)	\overline{f} (cm)
0.83	1.7	0.87	1.05

> La flèche admissible

Pour
$$L = 550 \, cm > 500 \, cm$$
 $\Rightarrow \Delta f_{\text{max}} = \frac{L}{1000} + 0.5 = \frac{550}{1000} + 0.5 = 1.05 \, cm$

Donc $\Delta f_t = 0.87 \text{ cm} < \Delta f_{\text{max}} = 1.05 \text{ cm} \longrightarrow$ condition vérifier


Conclusion

❖ Ferraillage finale des poutrelles est comme suit :

Aux travées : 3T12= 3,39 cm²

Aux appuis intermédiaires $2T12 = 2,26cm^2$

Aciers transversaux : 2T8= 1.01cm²

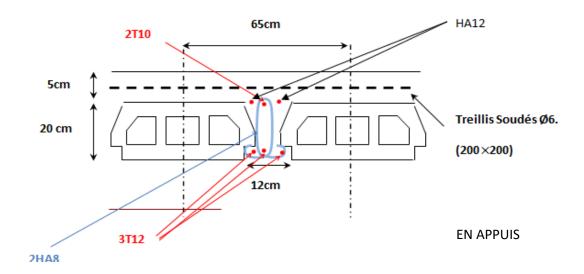


Figure III.6 : ferraillage de poutrelle

III.2: les dalles pleines:

pour sous-sol:

Nous avons opté pour des dalles pleines en béton armé d'épaisseur

$$e = 20cm$$

Il existe deux méthodes de calcules selon le type d'appuis de la dalle.

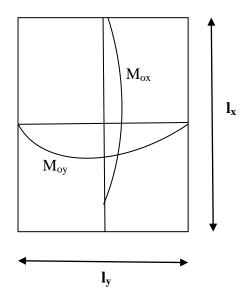
Dalle reposant sur quatre cotés :

On calcule:
$$\rho = \frac{l_x}{l_y} \text{tel que} : l_x \le l_y$$

Remarque : la portée des dalles est prise entre nus.

- Si : $\rho < 0.4 \rightarrow \text{la dalle porte sur un seul sens.}$
- Si : $0.4 \le \rho \le 1 \rightarrow$ la dalle porte sur les deux sens.

On utilise les tables présentées dans le **CBA93** pour déterminer les coefficients μ_x et μ_y en fonction de (ρ) et du coefficient de poisson (ν) qui égal à 0 (ELU).


- $v = 0 \rightarrow \text{calcul des sollicitations (à ELU)}$.
- $v = 0.2 \rightarrow \text{ calcul des déformations (à ELS)}$.

 P_u est la charge répartie sur le panneau calculé à l'ELU.

$$P = P_u \times 1m$$

On calcul les moments fléchissant par les formules Suivantes:

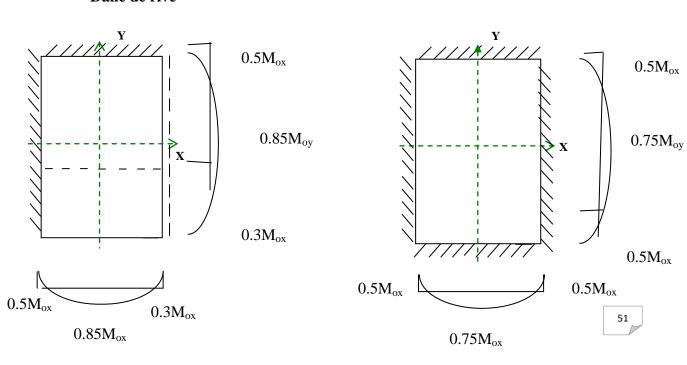
- Sens de la petite portée l_x : $M_{ox} = \mu_x . P. l_x^2$
- Sens de la grande portéel_v: $M_{ov} = \mu_v M_{ox}$

Pour la prise en compte de la continuité des dalles, le CBA93 propose les formules suivantes:

$$M_t + \frac{M_g + M_d}{2} \ge 1,25 M_0$$

M_o: Moment Max isostatique.

M_t: Moment en travée.


 $M_{a,d}$: Moments des appuis à gauche et à droite.

Les moments de continuité ont les valeurs suivantes :

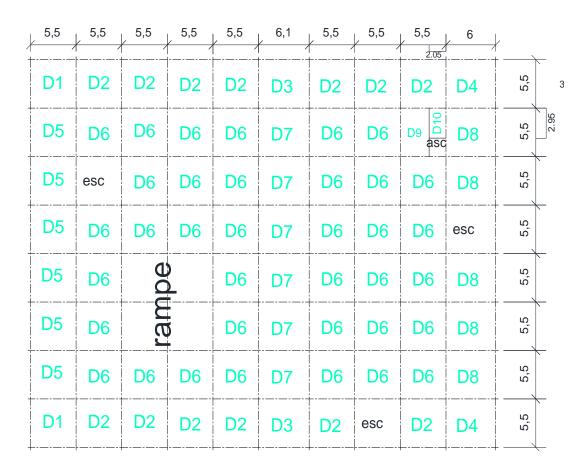
- $\grave{A}\ l'appui: \left\{ \begin{array}{l} 0{,}3M0:\ pour\ appui\ de\ rive. \\ 0{,}5M0:\ pour\ appui\ interm\'ediaire. \end{array} \right.$
- En travée : $\begin{cases} 0.85M0 : pour une dalle de rive. \\ 0.75M : pour une dalle intermédiaire. \end{cases}$

Dalle de rive

Dalle intermédiaire

Dalle reposant sur trois côtés :

On calcul: $\gamma = a / b$


On calcul les moments fléchissant par les formules suivantes :

- En travée:
$$\begin{cases} M_x = M_{xs} \times P \times a^2 \\ M_y = M_{ys} \times P \times b^2 \end{cases}$$

- Sur appuis : $M_{app} = M_{xas} \times P \times b^2$

Remarque:

- 1) Tous les panneaux de notre structure sont appuyés sur quatre côtés
- 2) Puisque ρ >0.4 toutes les dalles portent dans les deux direction.

III.2.1 : Calculs de moment isostatique :

	Tubicuu III.14. momems iso suurques uuns ies punienes ue sous-soi												
Dalles	Lx [m]	L _y [m]	P	μ_{x}	μ_{y}	M _{0X} (KN.m)	M _{0Y} (KN.m)						
D 1	5.50	5.50	1.00	0.04	1.00	13.25	13.25						
D2	5.50	5.50	1.00	0.04	1.00	13.25	13.25						
D3	6.10	5.50	0.90	0.05	0.79	20.08	15.78						
D4	6.00	5.50	0.92	0.04	0.82	18.81	15.43						
D5	5.50	5.50	1.00	0.04	1.00	13.25	13.25						
D6	5.50	5.50	1.00	0.04	1.00	13.25	13.25						
D7	6.10	5.50	0.90	0.05	0.79	20.08	15.78						
D8	6.00	5.50	0.92	0.04	0.82	18.81	15.43						
D9	3.45	5.50	0.63	0.08	0.26	11.13	2.85						
D10	2.05	2 95	0.69	0.07	0.36	3 47	1 25						

Tableau III.14: moments iso statiques dans les planches de sous-sol

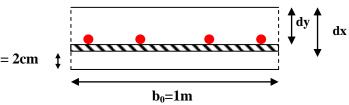
Calcul des moments de continuité :

On calculs les moments de continuité sur chaque panneau tout en s'assurant que la condition $Mt + \frac{Mg + Md}{2} >= 1.25$. M_0 est vérifiée

		SENS X-X	K		SENS Y-Y			
Panneau	Mw	Mt	Me	Vérification	Mw	Mt	Me	vérification
	(KN.m)	(KN.m)	(KN.m)		(KN.m)	(KN.m)	(KN.m)	
D1	3.974	11.259	6.623	Oui	3.974	11.259	6.623	oui
D2	6.623	9.934	6.623	Oui	3.974	11.259	6.623	oui
D3	10.039	15.058	10.039	Oui	4.734	13.412	7.890	oui
D4	9.407	15.992	5.644	Oui	4.628	13.112	7.713	oui
D5	3.974	11.259	6.623	Oui	6.623	9.934	6.623	oui
D6	6.623	9.934	6.623	Oui	6.623	9.934	6.623	oui
D7	10.039	15.058	10.039	Oui	7.890	11.834	7.890	oui
D8	9.407	15.992	5.644	Oui	7.713	11.570	7.713	oui
D9	5.564	8.346	5.564	Oui	1.424	2.136	1.424	oui
D10	1.733	2.599	1.733	Oui	0.624	0.936	0.624	oui

Tableau III.15: moments de continuité

III.2.2 : Calcul du ferraillage :


Le ferraillage des dalles s effectue à **l'ELU**, en flexion simple par une bande de **1m** en fissuration peu préjudiciable **FPP**.

Formulaire:

$$f_{bu} = \frac{0.85.\,f_{c28}}{\theta.\,\gamma_b} \begin{cases} f_{c28} = 25\;\text{MPa} \\ \theta = 1\;\;\text{car}\;\; t > 24\;h \\ \gamma_b = 1.5 & \text{en SDT} \end{cases} \to f_{bu} = 14.17\;\text{MPa}$$

$$\begin{split} \mu_{bu} = & \frac{M}{b_0.\,d^2.\,f_{bu}} \, \mu_{lu} = 3440 \, \gamma + 49 \, f_{c28} - 3050 \\ & \gamma = \frac{M_{tu}}{M_{ts}} = 0.29 \\ \\ \to & \mu_{bu} \leq 0.29 \quad \to \ \text{Pivot A} \qquad \epsilon_s = 10\% \quad A_u' = 0 \end{split}$$

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu_{bu}})$$

$$Z = d(1 - 0,4\alpha)$$

$$\mathbf{c} = 2\mathbf{cm}$$

$$\mathbf{A}_s = \frac{M_u}{z_b \times f_{ed}}$$

Sens X-X:

<u>Tableau III.16</u>: choix du type d'armatures dans de le sens x-x

		M(KN.m)	$\mathbf{U_b}$	α	Z (m)	A _u (cm)	A _{u min}	$\mathbf{A}_{ ext{adopt\'e}}$
	M_{e}	6.623	0.0156	0.0196	0.1716	0.849	1.20	4HA12
D1	$M_{ m w}$	3.974	0.0093	0.0117	0.1722	0.509	1.20	4HA12
	M _t	11.258	0.0265	0.0336	0.1707	1.448	1.20	4HA12
	M_{e}	6.623	0.0156	0.0196	0.1716	0.849	1.20	4HA12
D2	$M_{ m w}$	6.623	0.0156	0.0196	0.1716	0.849	1.20	4HA12
	M _t	9.934	0.0234	0.0296	0.1710	1.276	1.20	4HA12
	M_{e}	10.038	0.0236	0.0299	0.1709	1.290	1.26	4HA12
D3	$M_{ m w}$	10.038	0.0236	0.0299	0.1709	1.290	1.26	4HA12
	M _t	15.057	0.0354	0.0451	0.1699	1.940	1.26	4HA12
	$M_{\rm e}$	5.644	0.0133	0.0167	0.1718	0.723	1.25	4HA12
D4	$M_{ m w}$	9.407	0.0221	0.0280	0.1711	1.208	1.25	4HA12
	M _t	15.992	0.0376	0.0480	0.1697	2.062	1.25	4HA12
	$M_{\rm e}$	6.623	0.0156	0.0196	0.1716	0.849	1.20	4HA12
D5	$M_{ m w}$	3.974	0.0093	0.0117	0.1722	0.509	1.20	4HA12
	M _t	11.258	0.0265	0.0336	0.1707	1.448	1.20	4HA12
	$M_{\rm e}$	6.623	0.0156	0.0196	0.1716	0.849	1.20	4HA12
D6	$M_{ m w}$	6.623	0.0156	0.0196	0.1716	0.849	1.20	4HA12
	M _t	9.934	0.0234	0.0296	0.1710	1.276	1.20	4HA12
	M_{e}	10.038	0.0236	0.0299	0.1709	1.290	1.26	4HA12
D7	$M_{ m w}$	10.038	0.0236	0.0299	0.1709	1.290	1.26	4HA12
	M_{t}	15.057	0.0354	0.0451	0.1699	1.940	1.26	4HA12
	$M_{\rm e}$	5.644	0.0133	0.0167	0.1718	0.723	1.25	4HA12
D8	$M_{ m w}$	9.407	0.0221	0.0280	0.1711	1.208	1.25	4HA12
	M _t	15.992	0.0376	0.0480	0.1697	2.062	1.25	4HA12
	$M_{\rm e}$	5.564	0.0131	0.0165	0.1719	0.713	1.42	4HA12
D9	$M_{ m w}$	5.564	0.0131	0.0165	0.1719	0.713	1.42	4HA12
	M _t	8.346	0.0196	0.0248	0.1713	1.071	1.42	4HA12
	M_{e}	1.733	0.0041	0.0051	0.1726	0.222	1.38	4HA12
D10	$M_{ m w}$	1.733	0.0041	0.0051	0.1726	0.222	1.38	4HA12
	M _t	2.599	0.0061	0.0077	0.1725	0.333	1.38	4HA12

Sens Y-Y:

<u>Tableau III.17:</u> choix du type d'armatures dans de le sens y-y

		M(KN.m)	$\mathbf{U_b}$	α	Z (m)	A_u (cm) ²	A _{u min} cm ²	A _{adopté}
	M_{e}	6.623	0.0184	0.0233	0.158	0.967	1.20	4HA12
D1	$M_{\rm w}$	3.974	0.0111	0.0139	0.158	0.578	1.20	4HA12
	M_t	11.259	0.0314	0.0398	0.156	1.655	1.20	4HA12
	M_{e}	6.623	0.0184	0.0233	0.158	0.967	1.20	4HA12
D2	$M_{\rm w}$	3.974	0.0111	0.0139	0.158	0.578	1.20	4HA12
	M_t	11.259	0.0314	0.0398	0.156	1.655	1.20	4HA12
	M_{e}	7.890	0.0220	0.0278	0.157	1.154	1.20	4HA12
D3	$M_{\rm w}$	4.734	0.0184	0.0166	0.158	0.689	1.20	4HA12
	M_t	13.412	0.0374	0.0476	0.156	1.978	1.20	4HA12
	M_{e}	7.713	0.0215	0.0272	0.157	1.128	1.20	4HA12
D4	$M_{\rm w}$	4.628	0.0129	0.0162	0.158	0.674	1.20	4HA12
	M_{t}	13.112	0.0365	0.0465	0.156	1.933	1.20	4HA12
	M_{e}	6.623	0.0184	0.0233	0.158	0.967	1.20	4HA12
D5	$M_{\rm w}$	6.623	0.0184	0.0233	0.158	0.967	1.20	4HA12
	M_t	9.934	0.0277	0.0351	0.157	1.457	1.20	4HA12
	M_{e}	6.623	0.0184	0.0233	0.158	0.967	1.20	4HA12
D6	M_{w}	6.623	0.0184	0.0233	0.158	0.967	1.20	4HA12
	M_t	9.934	0.0277	0.0351	0.157	1.457	1.20	4HA12
	M_{e}	7.890	0.0220	0.0278	0.157	1.154	1.20	4HA12
D7	$M_{\rm w}$	7.890	0.0220	0.0278	0.157	1.154	1.20	4HA12
	M_t	11.834	0.0330	0.0419	0.156	1.741	1.20	4HA12
	M_{e}	7.713	0.0215	0.0272	0.157	1.128	1.20	4HA12
D8	M_{w}	7.713	0.0215	0.0272	0.157	1.128	1.20	4HA12
	M_t	11.570	0.0322	0.0410	0.156	1.701	1.20	4HA12
	M_{e}	1.424	0.0040	0.0050	0.159	0.206	1.20	4HA12
D9	$M_{ m w}$	1.424	0.0040	0.0050	0.159	0.206	1.20	4HA12
	M_t	2.136	0.0060	0.0075	0.159	0.310	1.20	4HA12
	M _e	0.624	0.0017	0.0022	0.159	0.090	1.20	4HA12
D10	M_{w}	0.624	0.0017	0.0022	0.159	0.090	1.20	4HA12
	M _t	0.936	0.0026	0.0033	0.159	0.136	1.20	4HA12

III.2.3 : Vérifications nécessaires :

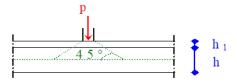
- Ferraillage longitudinal :
- Ferraillage minimal:

Selon le BEAL91 (Art B-7-4) les sections d'armatures des dalles doivent être **supérieures** aux sections minimales calculées comme suit :

$$Ay = \begin{cases} 8h & FeE400 \\ 6h & FeE500 \end{cases}$$

$$Ax = Ay\left(\frac{3-\alpha}{2}\right)$$

• Espacement maximal (art 7.2.4.2 CBA93) :


$$\begin{cases} S_{tx} \leq \min(3h_0; 33cm) = 33cm ; & Armatures \ dans \ le \ sens \ l_x \\ S_{ty} \leq \min(4h_o; 45cm) = 45cm ; & Armatures \ dans \ le \ sens \ l_y \end{cases}$$

 $S_{t \text{ adopt\'e}} = 25 \text{ cm}$

• Vérification du non poinçonnement :

Dans le cas d'une charge localisée éloignée des bords de la dalle, on.

Admet qu'aucune armature d'effort tranchant n'est requise, si la condition suivante est satisfaite :

Qu≤0,045uc h fci/yb

Expression dans laquelle on désigne par :

Qu - la charge de calcul vis-à-vis de l'état limite ultime,

h - l'épaisseur totale de la dalle,

uc- le périmètre du contour au niveau du feuillet moyen.

P - une charge concentrée sur un carré de (10x10) cm², représentant le pied d'un meuble ou d'équipement égal à 2 KN. (Art IV.4.DTR B.C 2.2)

$$Q_u = 1.5 P \Rightarrow Q_u = 3 KN$$

$$U_c = h1 + \frac{h}{2} + 0.1x2 \Rightarrow U_c = 0.4 \text{ m}$$

$$Q_u \le 0.045 \times 0.4 \times 0.2 \times \frac{25}{1.5} = 60 \text{ KN}$$

 $Q_u \le 60KN \Rightarrow$ La condition et vérifiée

• Ferraillage transversal : (Art A.5.2.2. BAEL91)

$$\tau_u \leq \bar{\tau}_u$$

Avec:
$$\bar{\tau}_u = 0.07 \times \frac{f_{c28}}{\gamma_b} = 1.167 \, MPa$$
 et $\tau_u = \frac{V_u}{b_0.d}$

$$\begin{cases} V_{ux} = \frac{q_u \times l_{x/2}}{1 + \alpha/2} \\ V_{uy} = \frac{q_u}{3} \end{cases}$$

$$\begin{cases} d_{\mathbf{x}} & d_{\mathbf{y}} \\ d_{\mathbf{y}} = e_{dalle} - e_{erobage} - \frac{\phi}{2} = 20 - 2 - \frac{1.4}{2} = 17.3cm \\ d_{\mathbf{y}} = d_{x-}\phi = 17.3 - 1.4 = 15.9cm \end{cases}$$

Tableau III.18: Les valeurs des contraintes tangentielles dans les deux directions

Panneau	Ly(m)	Lx(m)	Vux(KN)	Vuy(KN)	τ _x (MPa)	τ _y (MPa)
D1	5.5	5.5	21.835	21.835	0.126213873	0.137327044
D2	5.5	5.5	21.835	21.835	0.126213873	0.137327044
D3	5.5	6.1	22.57516949	21.835	0.130492309	0.137327044
D4	5.5	6	22.45885714	21.835	0.129819983	0.137327044
D5	5.5	5.5	21.835	21.835	0.126213873	0.137327044
D6	5.5	5.5	21.835	21.835	0.126213873	0.137327044
D7	5.5	6.1	22.57516949	21.835	0.130492309	0.137327044
D8	5.5	6	22.45885714	21.835	0.129819983	0.137327044
D9	5.5	3.45	24.93269896	21.835	0.144119647	0.137327044
D10	2.95	2.05	13.03733019	11.7115	0.07536029	0.073657233

Dans les deux direction : $\tau_u \le \bar{\tau}_u = 1,167 \, MPa$

Conclusion: Les armatures transversales ne sont pas nécessaires.

Croquait de ferraillage :

• En appuis

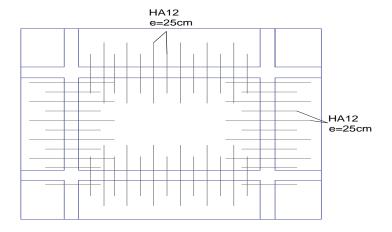


Figure III.7 : Croquis de ferraillage des dalles en appuis

• En travée :

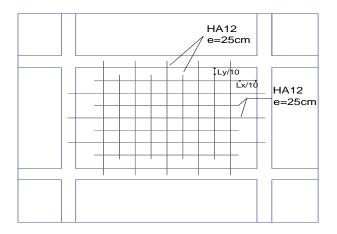


Figure III.8 : Croquis de ferraillage des dalles en travée

III.3: Etude des balcons:

On a fait l'étude sur le cas le plus défavorable et on va adopter le même ferraillage pour tous les autres types

La dalle est considérer comme une console

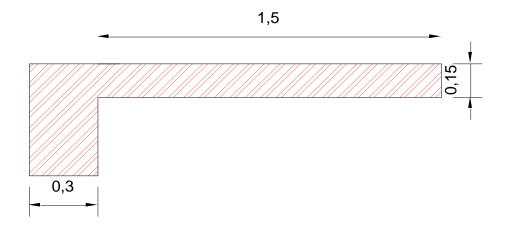


Figure III.9: Schéma du balcon

III.3.1: Evaluation des charges:

Soit:
$$\begin{cases} G = 5.21 \ KN/m^2 \\ Q = 2.5 \ KN/m^2 \\ p = 0.9 KN \end{cases} .$$

III.3.2 : Calcul des sollicitations et des combinaisons des charges :

* A l'ELU:

$$\begin{aligned} q_u &= 1.35 \times G + 1.5 \times Q \Rightarrow q_u = 10.78 \, KN/ml \\ p_u &= 1.35 \times p \Rightarrow p_u = 1.21 KN \end{aligned}$$

* A l'ELS:

$$q_s = G + Q \Rightarrow q_s = 7.71 \, KN/ml$$

 $p_s = p \Rightarrow p_s = 0.9 \, KN$

Calcul du moment et de l'effort tranchant

• <u>ELU</u>:

$$M_{u} = \left(\frac{qu \times l^{2}}{2} + pu \times l\right)$$

$$V_{u} = qu \times l + pu$$

$$\begin{cases} M_u = \left(\frac{10.78 \times (1.5)^2}{2} + 1.21 \times 1.5\right) = 13.94 \text{ KN. m} \\ V_u = 10.78 \times 1.5 + 1.21 = 12.46 \text{ KN.} \end{cases}$$

$$M_s = \left(\frac{7.71 \times (1.5)^2}{2} + 0.9 \times 1.5\right) = 10.02KN.m$$
$$Vs = 7.71 \times 1.5 + 0.9 = 12.46 KN$$

III.3.3 : Calcul de ferraillage :

Le calcul se fait à la flexion simple pour une bande d'un mètre linéaire.

$$\mu_{bu} = \frac{M_t^{\text{max}}}{b \cdot d^2 \cdot f_{ub}} = \frac{13.94 \times 10^{-3}}{1 \times (0.12)^2 \times 14{,}20} = 0.068$$

$$\mu_{lu} = 3440 \ \gamma + 49 \ f_{c28} - 3050$$

$$\gamma = \frac{M_{tu}}{M_{tr}} = \frac{13.94}{10.02} = 1.39$$

$$\Rightarrow \mu_{\text{lu}} = (3440 \times 1,39 + 49 \times 25 - 3050) \times 10^{-4} = 0,295$$

 $\mu_{bu} \le 0.295 \Rightarrow A' = 0$ (Pas d'armatures comprimées)

$$A_t = \frac{M_u}{z_h \times f_{ed}}$$

$$\alpha = 1, 25(1 - \sqrt{1 - 2\mu_{bu}}) \Rightarrow =1.25 \times (1 - \sqrt{(1 - 2 \times 0.068)}) \Rightarrow \alpha = 0.088$$

$$Z = d (1 - 0.4\alpha) \gg Z = 0.11 m$$

$$A_s = \frac{13.94 \times 10^{-3}}{434.78 \times 0.11} \Rightarrow A_s = 2.91 \text{ cm}^2$$

On prend $A_s = 5HA12 = 5.65 \text{ } cm^2/\text{ml}$

• L'espacement :

Armatures longitudinales : St<min {3h;33cm}=33cm

$$S_{t \text{ adopte}} = 20 \text{ cm}$$

• Armatures de répartition :

$$A_y = \frac{A_s}{4} = \frac{5.65}{4} = 1.42 \ cm^2$$

On a prend $A_y = 5HA10 = 3.93 \ cm^2$

L'espacement:

$$S_t \le min\{4h; 45cm\} = 45cm$$

S_{t adopte}=20 cm

III.3.4 : Les vérifications :

Vérification à l'ELU:

Condition de non fragilité : (BAEL91.Art A4.2)

$$A_{min} = \frac{0.23 \ b_0 \ d \ f_{t28}}{f_e} = \frac{0.23 \times 100 \times 12 \times 2.1}{500} = 1.159 cm^2$$

$$A_{l>}A_{min} = 5.65cm^2 > 1.159cm^2 \rightarrow Condition \ v\'erifi\'e$$

$$A_y > A_{min} = 3.93 cm^2 > 1{,}159 cm^2 \rightarrow Condition\ v\'erifi\'ee$$

Vérification au cisaillement :(BAEL91.ArtA5.1.2)

Verification de l'effort tranchant

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau}_u = 0.07 \times \frac{f_{c28}}{\gamma_b} = 1.167 \, MPa$$

$$\tau_u = \frac{17.38 \times 10^{-3}}{1 \times 0.12} = 0.144 MPa \le \bar{\tau}_u = 1.167 \, MPa$$

Condition vérifiée (Les armatures transversales ne sont pas nécessaires.)

Vérification à ELS:

Vérification des contraintes :

$$Y = \frac{b}{2}y^2 + 15 A_s y - 15 A_s d \Rightarrow 50 y^2 + 169.5 y - 2034 = 0 \Rightarrow Y = 4.9 cm$$

$$I = \frac{b}{3}y^3 + 15 A_s (d - y)^2 \Rightarrow I = \frac{100}{3} (4.9)^3 + 15 \times 5.65 (12 - 4.9)^2 \Rightarrow I = 8193.88 cm^4$$

La contrainte dans le béton :

$$\begin{split} \sigma_{bc} &= \frac{M_{ser} \times Y}{I} & \Rightarrow \sigma_{bc} = \frac{10.02 \times 10^{-3} \times 0.049}{8193.88 \times 10^{-8}} = 6.12 MPa \\ \sigma_{bc} &= 6.28 \ MPa \ \leq \ \overline{\sigma_{bc}} = 0.6 \ fc28 = 15 \ MPa \ ... \ ... \ ... \ condition \ verefiee \end{split}$$

La contrainte dans l'acier :

Vérification de la flèche :

La vérification de la flèche est nécessaire si l'une des conditions suivantes n'est pas vérifiée :

$$\begin{cases} \frac{h}{l_x} \geq \max\left[\frac{1}{16}, \frac{M_t}{10M_0}\right] \\ \frac{A_s}{b \times d} \leq \frac{4.2}{f_e} \end{cases}$$

$$\Rightarrow \begin{cases} \frac{0.15}{1.45} = 0.10 > 0.1 \dots condition \ verefiée \\ \frac{5.65 \times 10^{-4}}{0.12 \times 1} = 4.71 \times 10^{-3} < 0.084 \dots condition \ verefiée \end{cases}$$

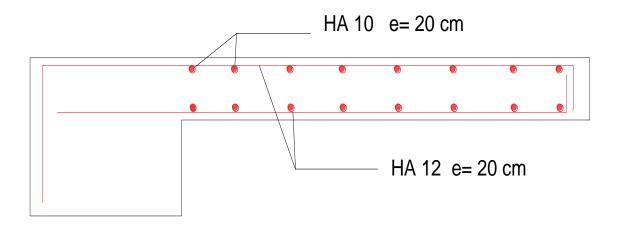
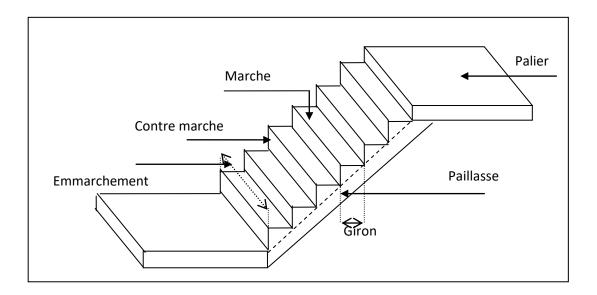
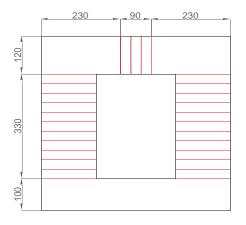
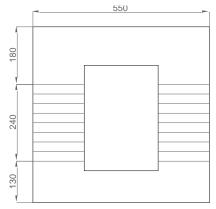


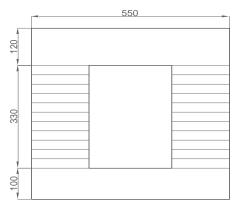
Figure III.10: ferraillage du balcon

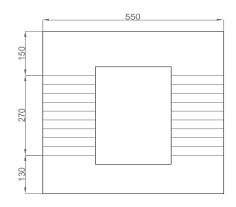
III.4: Escalier:

III.4.1: Introduction:

Un escalier se compose d'un certain nombre de marches dont la longueur est l'emmarchement, la largeur est le giron, la partie vertical est la contre marche, le support des marches s'appelle la paillasse. Une suite ininterrompue de marches qu'on appelle une volée, qui peut être droite ou courbe. La partie horizontale d'un escalier entre deux volées est le palier. Du côté du vide les volées et les paliers sont munis d'un garde-corps ou rampe deux volées parallèles ou en biais sont réunis par un ou plusieurs paliers ou un cartier tournant, cette dernière disposition de construction plus délicate, permet de gagner un peu de place sur le développement de l'escalier.

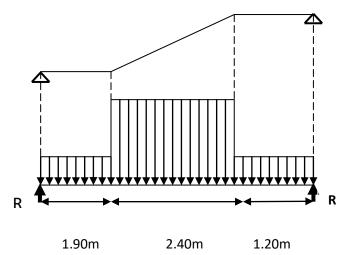





Figure III.11 : schéma d'un escalier


	Hauteur	Nombre de marche	
Type1	4.25	25	

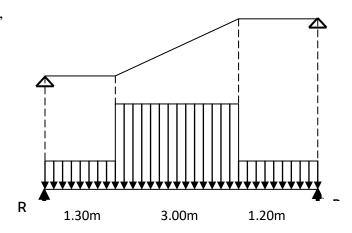
	Hauteur	Nombre de marche	
Type2	3.74	22	

	Hauteur	Nombre de marche	
Type3	3.45	20	

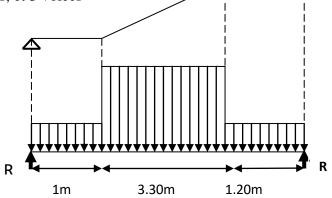

	Hauteur	Nombre de marche		
Type4	2.89	17		

Détermination des sollicitations

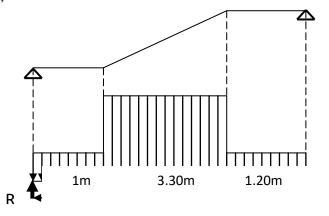
On distingue 4 types d'escaliers


a) Escalier (1), comporte un palier de repos,

De hauteur H = 2.89, Pour le sous-sol


b) Escalier (2), comporte un palier de repos,

De hauteur H =3.45 Pour 1^{er} sous-sol


c) Escalier (3), comporte deux paliers de repos, et 3 volées

De hauteur H =4.25, Pour RDC et 1^{er} étage

d) Escalier (4), comporte un palier de repos,

De hauteur H = 3.74, Pour 2^{eme} à 11^{eme}

III.4.2 : Evaluation des charges :

Nous considérons notre escalier comme une poutre sur deux appuis soumise aux charges et surcharges qui lui sont propres, les charges sont déterminées à partir du **DTR B.C.2.2** « Charges permanentes et charges d'exploitation »

Tableau III.19: Évaluation des charges sur la paillasse

Paillasse									
Matériaux	Poids volumique (KN/m3)	Epaisseur (m)	Poids surfacique (KN/m²)						
Poids propre Paillasse	25	0,15/cos α	4.30						
Poids propre Marches	22	1	1.87						
Chape en ciment	20	0,03/cos α	0.68						
Carrelage	22	0,02	0.44						
Enduit ciment	18	0,02/cos α	0.41						
	Totale		7.7						

Poids garde-corps en maçonnerie : 1 KN/m²
 Pour la charge d'exploitation : Q = 2.5 KN/m²

Tableau III.20: Évaluation des charges sur palier

	Palier									
Matériaux	Poids volumique (KN/m3)	Poids surfacique (KN/m²)								
Poids propre Palier	25	0,15	3.75							
Lit de sable	17	0,03	0.51							
Chape en ciment	22	0,03	0.66							
Carrelage	22	0,02	0.44							
Enduit ciment	18	0,02	0.36							
	Totale		5.72							

Tableau III.21 : Effort tranchant et moment fléchissant(E.L.U)

ESCALIER	x (m)	Réaction (KN)	Effort tranchant (KN)	Moment fléchissant (KN.m)	T _{max} (KN)	M _{max} (KN.m)	$\begin{aligned} & \textbf{Moment sur} \\ & \textbf{appuis} \\ & (\mathbf{M_a} \!\!=\!\! \mathbf{0.3M_0}) \end{aligned}$	Moment en travée $(\mathbf{M}_t = \mathbf{0.8M}_0)$
	0	36.12	36.12	0				
TYPE 1	1.00	/	24.65	30.38				
	2.737	/	0	51.85	36.12	51.85	15.55	41.48
	4.30	/	-22.03	34.70				
	5.50	35.80	-35.80	0				
	0	36.12	36.12	0				
TYPE 2	1.00	/	24.65	30.38				
	2.737	/	0	51.85	36.12	51.85	15.55	41.48
	4.30	/	-22.03	34.70				
	5.50	35.80	-35.80	0				
	0	35.48	35.48	0				
TYPE 3	1. 30	/	20.57	36.44				
	2.755	/	0	51.39	35.63	51.39	15.41	41.24
	4.30	/	-21.86	34.50				
	5.50	35.63	-35.63	0				
	0	34.35	34.35	0				
TYPE 4	1.90	/	12.55	44.55				
	2.782	/	0	50.11	35.16	50.11	15.03	40.08
	4.30	/	-21.40	33.94				
	5.50	35.16	-35.16	0				

Tableau III.22 : Effort tranchant et moment fléchissant(E.L.S)

ESCALIE R	x (m)	Réacti on (KN)	Effort tranchant (KN)	Moment fléchissant (KN.m)	T _{max} (KN)	M _{max} (KN.m)	$\begin{aligned} & \textbf{Moment sur} \\ & \textbf{appuis} \\ & (\mathbf{M_a} = \mathbf{0.3M_0}) \end{aligned}$	Moment en travée (M _t =0.8M ₀)	
TYPE 1	1.00	25.99	25.99 17.77	0 21.88					
	2.737 4.30 5.50	25.75	0 -15.89 -25.75	37.36 24.99 0	25.99	37.36	11.20	29.88	
TYPE 2	0 1.00 2.737	/	25.99 17.77 0	0 21.88 37.36	25.99	37.36	11.20	29.88	
	4.30 5.50	25.75	-15.89 -25.75	24.99	23.77	37.30	11,20	27.00	
TYPE 3	0 1.30 2.755 4.30 5.50	/ /	25.52 14.84 0 -15.77 -25.63	0 26.23 37.02 24.84 0	25.63	37.02	11.10	29.61	
TYPE 4	0 1.90 2.782 4.30 5.50	24.63 / / / 25.28	24.63 9.06 0 -15.42 -25.28	0 32.05 36.07 24.42 0	25.28	36.07	10.82	28.85	

III.4.3: LE FERRAILLAGE:

- Le ferraillage de l'escalier se fera en flexion simple à l'ELU pour une bande d'1m de largeur.
- Le ferraillage se fait en flexion simple.
- La fissuration est peu nuisible.
- Le ferraillage en appuie est identique à celui en travée.

Donnée:

b=100 cm; d=0.9h; c=2cm

f _{bu} [MPa]	γь	$\gamma_{\rm s}$	fe(MPa)	Es (MPa)	
14,17	1,5	1,15	500	$2,1x10^5$	

Moments maximums obtenus $M_u = 41.48$ KN. m

$$\mu_{bu} = \frac{M_u}{b_0 \cdot d^2 \cdot f_{bu}} = \frac{41.48 * 10^{-3}}{1 \times 0.135^2 \times 14,17} = 0.161$$

$$\mu_{lu} = 3440 \gamma + 49 f_{c28} - 3050$$

$$\gamma = \frac{M_{tu}}{M_{ts}} = \frac{41.48}{29.88} = 1.40$$

$$\Rightarrow \mu_{lu} = (3440 \times 1,40 + 49 \times 25 - 3050) \times 10^{-4} = 0,295$$

$$\mu_{bu} < \mu_{lu} \Longrightarrow \text{ Pivot A } \implies A'_s = 0$$

$$\Rightarrow \varepsilon_{\rm S} = 10 \%_0 \Rightarrow \sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = 434.78 MPa$$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu_{bu}}\right) = 0.21$$

$$Z = d(1 - 0.4 \alpha) = 0.127 m$$

$$A_{\rm u} = \frac{M_{\rm U}}{Z \times \sigma_{\rm s}} = \frac{41.48 * 10^{-3}}{0.127 \times 435} * 10^4 \Longrightarrow A_{\rm u} = 7.51 cm^2$$

Condition de non fragilité :

$$A_{\min} = 0.23 b_0 d \frac{f_{t28}}{f_e} = 0.23 \times 1 \times 0.135 \times \frac{2.1}{500} = 1.304 cm^2$$

Conclusion : On adopte des 5T16 espacée de 20 cm A_s=10.05 cm²

 $5T16 \rightarrow e = 20cm \le min [3h; 33cm] = min [45; 33] cm = 33 cm \rightarrow condition vérifiée$

• ARMATURE DE REPARTITION :

$$\frac{A_s}{4} \le A_{rep} \le \frac{A_s}{2} \ 2.51 \le A_{rep} \le 5.02 \ \text{(cm}^2\text{)}$$

<u>Le choix</u>: 4T12=4,53 cm

L'espacement pour une bande de 1 m

$$St = \frac{100}{4} = 25 \text{ cm}$$

$$e = 25cm \le min [3h; 33cm] = min [45; 33] cm = 33 cm \rightarrow condition vérifiée$$

➤ VERIFICATION DE L'EFFORT TRANCHANT :

Pour l'effort tranchant, la vérification du cisaillement suffira le cas le plus défavorable

 $(T_U^{max} = 36.12KN)$.donc il faut vérifier que :

$$\tau_u = \frac{T_u}{bd} = 0.267 Mpa \le \frac{1}{\tau_u}$$
 Avec

 $\bar{\tau}_u = \min(0.13 f_{c28}; 4MPa) = 3.25MPa$ Fissuration peu nuisible

$$\tau_u < \overline{\tau_u} = 3.25 \text{Mpa}....\text{vérifié}$$

- ➤ Influence de l'effort tranchant au niveau des appuis (BAEL99 Art5-1-3):
- Influence sur le béton (BAEL 91/Art A, 5, 4,321) :

$$T_{max} \leq 0.4 \times \frac{f_{c28}}{\gamma_b} \times 0.9 \times d \times b \quad T_{max} \leq 0.4 \times \frac{25}{1.5} \times 0.9 \times 0.135 \times 1 = 810 \text{KN}$$

$$T_{max} = 36.12 \text{ KN } \le 810 \text{KN}$$

Condition vérifiée.

• Influence sur les aciers (BAEL 91/Art A. 5. 4.321) :

On doit vérifier que :
$$\left(T_{max} + \frac{M_{max}}{0.9d}\right) \frac{\gamma_s}{f_e} < A_a$$

Avec :
$$T_{max} = 36.12 \text{ KN et } M_{max} = 41.48 \text{ KN. m}$$

$$\left(36.12 + \frac{41.48}{0.9 \times 0.135}\right) \times 10^3 \frac{1.15}{500} = 8.68 \text{cm}^2 < A_a = 10.05 \text{cm}^2$$
. Condition vérifiée

• Vérification de l'adhérence et d'entrainement des barres (ART A.6.1,3 BAEL 91) :

Vérification de :

$$\tau_{su} < \overline{\tau}_{se}$$
 Avec: $\overline{\tau}_{se} = \Psi_s$. f_{t28}

Avec : Ψ_s : coefficient de scellement droit. ; Ψ_s = 1.5 (HA)

$$\bar{\tau}_{se} = 1.5 \times 2.1 = 3.15 \text{Mpa}$$

$$\tau_{su} = \frac{T_{max}}{0.9d \sum U_i}$$

 $\sum U_i$: Somme des périmètres utiles des barres.

$$\sum U_i = n \times \pi \times \emptyset = 5 \times \pi \times 0.16 = 0.251 cm$$

$$\tau_{su} = \frac{36.12 \times 10^3}{0.9 \times 0.135 \times 0.251} = 1.23 \text{Mpa} < \bar{\tau}_{se} = 3.15 \text{MPa}$$
 vérifiée

→ Pas de risque d'entraînement des barres.

> VERIFICATION DE LA FLECHE :

Si les trois (03) conditions suivantes sont vérifiées simultanément, il n'est pas nécessaire de faire la vérification de la flèche.

•
$$\frac{h}{L} \ge \frac{1}{16} \Rightarrow \frac{15}{550} = 0.02 > 0.0625$$
....non vérifiés

$$\bullet \quad \frac{A_S}{bd} \le \frac{4,2}{f_a}$$

$$\frac{h}{L} \ge \frac{1}{10} \left(\frac{M_t}{M_0} \right)$$

La première équation n'est pas vérifiée donc il faut vérifier la flèche

• Calcul de la fleche :

$$f = f_v - f_i$$

Avec:

$$f_i = \frac{M_s \cdot L^2}{10 \cdot E_i \cdot I_i} \qquad f_v = \frac{M_s \cdot L^2}{10 \cdot E_v \cdot I_v}$$

• Moment d'inertie fictife :

$$I_{f_i}^g = \frac{1,1 \cdot I_0}{\left(1 + \lambda_i \cdot \mu_g\right)} \qquad I_{f_v}^g = \frac{1,1 \cdot I_0}{\left(1 + \lambda_v \cdot \mu_g\right)}$$

$$I_0 = \frac{bh^3}{12} + 15 \left[A_s \left(\frac{h}{2} - d \right)^{-2} \right]$$

$$\lambda_{i} = \frac{0.02 \times f_{t28}}{\left(2 + 3\frac{b_{0}}{b}\right)\rho} \qquad \rho = \frac{A}{b_{0} \cdot d}$$

$$\lambda_{v} = \frac{2}{5}\lambda_{i} \,\mu_{g} = 1 - \left[\frac{1.75 \,f_{t28}}{4 \cdot \rho \cdot \sigma_{sg} + f_{t28}}\right]$$

	ρ	I ₀ (cm ⁴)	λ_{i}	λ_{v}	u	$ m I_{fi}$	I _{fv} (cm ⁴)	fi(mm)	f _v (mm)	f(mm)
Escalier	0.0055	76314.66	1.52	0.61	0,64	42551.76	59553.15	6.60	14.02	7.42

$$\Delta f = f_V - f_i \le \bar{f}$$

Pour
$$L = 550 \, cm > 500 \, cm$$
 $\Rightarrow \Delta f_{\text{max}} = \frac{L}{1000} + 0.5 = \frac{550}{1000} + 0.5 = 10.5 \, cm$

Donc
$$\Delta f_t = 7.42 \text{ mm} < \Delta f_{\text{max}} = 10.5 \text{ mm}$$
 condition vérifiée

III.4.4 : Poutre palière :

• Dimensionnement :

Selon le BAEL91, le critère de rigidité est :

$$\begin{cases} \frac{L}{15} \le h_t \le \frac{L}{10} \Rightarrow \frac{550}{15} \le h \le \frac{550}{10} \text{ on prend } h_t = 45\text{cm} \\ 0.3 h_t \le b \le 0.8 h_t \Rightarrow 13.5 \le b \le 36\text{ on prend } b = 30\text{cm} \end{cases}$$

• Vérification des conditions RPA99 (version 2003) :

Suivant R.P.A: min(h, b) > 25 cm

• Charge supportée par la poutre :

Poids propre de la poutre palier : $0.3 \times 0.45 \times 25 = 3.37 \text{ KN/m}$

Réaction du palier sur la poutre : R_{BU} = 36.12 KN/m.

 $R_{BS} = 25.99 \text{ KN/m}.$

Q = 2.5 KN/m

On a:
$$q_u = 1.35 \times (3.37) + 1.5 \times 2.5 + 36.12 = 44.41 \text{ KN/m}$$

$$q_{ser} = 3.73 + 2.5 + 15.44 = 32.22KN/m$$

• Calcul des sollicitations a. E.L.U

$$M_0 = \frac{q_u I^2}{8} = 167.88 \text{KN.m}$$

$$M_t = 0.8 M_0 = 134.30 KN.m$$

$$M_a = 0.3.M_0 = 50.36KN.m.$$

$$Tx=q1/2=121 KN$$

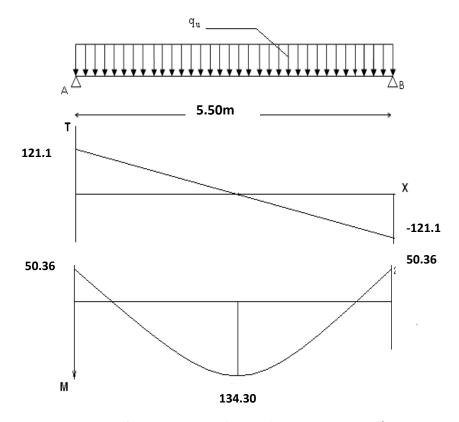


Figure III.12 : Diagrammes des (M et T) de la poutre palière

• E.L.S

$$M_0 = \frac{q_s l^2}{8} = 121.83 \text{ KN.m}$$

$$M_t = 0.8 M_0 = 97.46 KN.m$$

$$M_a = 0.3.M_0 = 36.54KN.m.$$

$$Tx = q_s 1 / 2 = 88.60 \text{ KN}$$

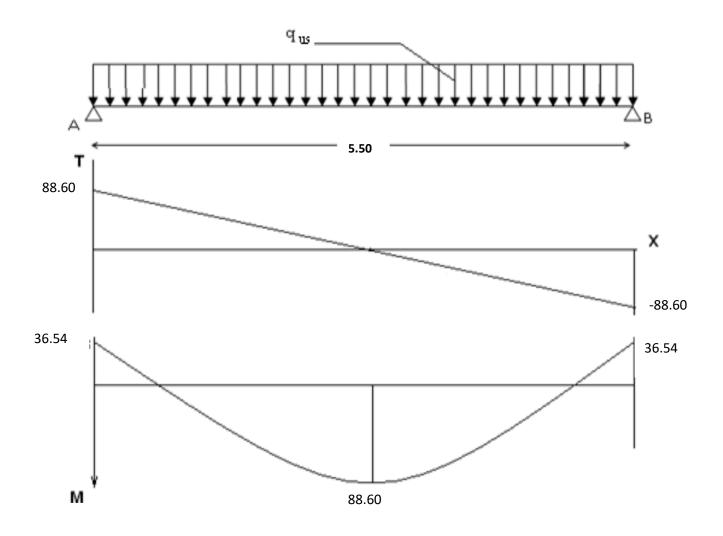


Figure III.13 : Diagrammes des (M et T) de la poutre palière

- > Calcul du ferraillage :
- **&** E.L.U:
- En travée

$$\mu_{bu} = \frac{_{M_u}}{_{b \times d^2 \times f_{bu}}} = 0.058 < \mu l$$

Donc (A') n'existe pas.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 0.074$$

$$z_b = d(1 - 0.4\alpha) = 39.07 \text{ cm}$$

$$\sigma_s = \frac{f_e}{\gamma_s} = 434.78 MPa.$$

$$A = \frac{M_t^{\text{max}}}{Z \cdot \sigma_s} = \frac{134.30}{0.39 \times 434.78} \times 10^{-1} = 7.93 \text{ cm}^2$$

$$A_{\min} = 0.23 \cdot b \cdot d \cdot \frac{f_{t28}}{f_e} = 1.159 \text{ cm}^2$$

$$A_{\text{max}}(A_{cal}; A_{\text{min}}) = 7.93 \, \text{cm}^2$$

Choix: 5T16=10.05cm²

- En appui:

$$\mu_{bu} = \frac{M_u}{b \times d^2 \times f_{bu}} = 0.022 < \mu l$$

Donc (A') n'existe pas.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 0,027$$

$$z_b = d(1 - 0.4 \alpha) = 39.56 \text{ cm}$$

$$A = \frac{M^{\text{max}}}{\beta \cdot d \cdot \sigma_s} = \frac{50.36}{0.395 \times 434.78} \times 10^{-1} = 2,93 \text{ cm}^2$$

$$A_{\min} = 0.23 \cdot b \cdot d \cdot \frac{f_{t28}}{f_e} = 1.159 \, cm^2$$

$$A_{\text{max}}(A_{cal}; A_{\text{min}}) = 2.93 \, \text{cm}^2$$

Choix: 3T12= 3.39cm²

***** Armatures transversales :

$$\phi = \min \begin{cases} \frac{h}{35} = 1.28 \text{ cm} \\ \frac{b}{10} = 3 \text{ cm} \\ \phi_{\ell} = 1.6 \text{ cm} \end{cases}$$

Soit $\phi = 8 \, mm$

Choix: $2T8 \rightarrow 1.01 \, cm^2$

Calcul de l'espacement :

$$St \le min (0.9d; 40cm) = 40cm$$

• D'après L'Art (7, 5,2,2de RPA99/version2003) :

zone courante : St $\leq \frac{h}{2} = 22.5 \text{ cm}$

zone nodale : St $\leq \min\left(\frac{h}{4}, 12\emptyset l\right) = 11.25$ cm

On adopte les espacements suivants :

Zone courante : st = 15cmZone nodale : st = 10 cm

Vérification l'effort tranchant:

$$\tau_{u} = \frac{T_{\text{max}}}{b_{o} \cdot d} = 1.003 \, MPa$$

$$\tau_{\ell} = \min\left(\frac{0.2 \cdot f_{c28}}{\gamma_b}; 5 MPa\right) = 3.33 MPa.$$

$$\tau_{u} = 1,.003 MPa < 3,33 MPa$$
. Condition vérifiée.

Vérification des contraintes dans le béton :

On doit vérifier que : $\sigma_{bc} \leq \overline{\sigma}_{bc}$

Avec:
$$\sigma = \frac{M_{SER}}{I} y$$

$$\overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$$

Les résultats sont regroupés dans le tableau suivant :

	Mser (kn.m)	As(cm ²)	Y (cm)	I (cm ⁴)	K (MPA)	σ _{bc} (MPA)	$\sigma_{bc} < \overline{\sigma}_{bc}$
En travée	88.6	10.05	16.2	213296.9	41.53	6.72	oui
En appui	36.54	3.39	19.5	200854.1	18.19	3.54	oui

Vérification de la flèche :

$$h/L \ge 1/16 \leftrightarrow 0.082 > 0.062$$

condition vérifiée.

$$A_s / bd \le 4.2 / fe \Leftrightarrow \frac{1.54}{30 \times 32} = 0.0083 < 0.0084$$

condition vérifiée.

$$h/L \ge 1/10 \ (M_t/M_o) \iff 0.082 > 0.080$$

condition vérifiée.

Le calcul de la flèche n'est pas nécessaire.

Schéma du ferraillage de la poutre palière :

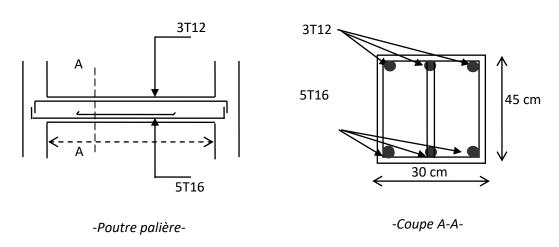
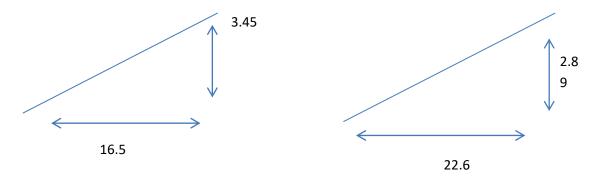



Figure III.14 : Coup de poutre paliére

III.5: La rampe:

C'est une dalle inclinée avec une épaisseur de 25 cm permet la circulation des voitures dans le parking des sous-sols

Rampe 1^{er} sous-sol

Rampe 2^e à 4^e sous-sol

Le rapport α entre lx et ly $\alpha = lx / ly = \frac{5.5}{16.7} = 0.32$

 α < 0,4 \rightarrow la dalle porte sur un seul sens.

III.5.1: Calcul Des Moments de Flexion:

$$M_{0x} = q \frac{l^2}{8} \quad M_{0y} = 0$$

$$M_t = \frac{1 + 0.3\alpha}{2} M_0 M_a = 0.5 M_0$$

<u>Tableau III.23</u>: moments dans les rampes de sous-sol

	Lx [m]	L _y [m]	A	M _{0X} (KN.m)	M _{0Y} (KN.m)		M _{appuis} (KN.m)
Rampe1	5.50	16.5	0.33	359.37	0	233.41	179.68
Rampe2	5.50	22.6	0.24	671.64	0	359.65	335.82

III.5.2 : Calcul du ferraillage :

Le ferraillage des dalles se fait à **l'ELU**, en flexion simple sur une bande de **1m** en fissuration peu préjudiciable **FPP**.

$$\mu_{bu} = \frac{M}{b_0 \cdot d^2 \cdot f_{bu}}$$

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu_{bu}})$$

$$Z = d(1 - 0,4\alpha)A_s = \frac{M_u}{z_b \times f_{ed}}$$

Tableau III.24: choix du type d'armatures

		M(KN.m)	$\mathbf{U_b}$	α	Z (m)	A _u (cm) ²	A _{u min} cm ²	A _{adopté}
Rampe1	Ma	179.68	0.008	0.010	0.2241	18.50	2.24	10HA20
	M_t	233.41	0.010	0.012	0.2239	23.97	2.24	10HA20
Rampe2	M_a	335.82	0.015	0.018	0.2233	34.48	2.23	10HA25
	M _t	359.65	0.016	0.020	0.2232	36.79	2.23	10HA25

• Espacement maximal (art 7.2.4.2 CBA93):

$$\begin{cases} S_{tx} \leq \min(3h_0; 33cm) = 33cm ; & Armatures \ dans \ le \ sens \ l_x \\ S_{ty} \leq \min(4h_o; 45cm) = 45cm ; & Armatures \ dans \ le \ sens \ l_y \end{cases}$$

 $S_{t\;adopt\acute{e}}=10\;cm$

• Ferraillage transversal : (Art A.5.2.2. BAEL91)

Tableau III.25: Les valeurs des contraintes tangentielles dans les deux sens

Panneau	Ly(m)	Lx(m)	Vux(KN)	Vuy(KN)	$\tau_x(MPa)$	τ _y (MPa)
Rampe1	16.5	5.5	24.99	3.53	0.113	0.016
Rampe2	22.6	5.5	26.00	3.53	0.118	0.016

Dans les deux sens : $\tau_u \le \bar{\tau}_u = 1,167 MPa$

Conclusion : Les armatures transversales ne sont pas nécessaires.

• Vérification du non poinçonnement (Art IV.4.DTR B.C 2.2)

Qu≤0,045uc h fci/yb

$$Q_u = 1.5 P \Rightarrow Q_u = 3 KN$$

$$U_c = h1 + \frac{h}{2} + 0.1x2 \Rightarrow U_c = 0.12 \text{ m}$$

$$Q_u \le 0.045 \times 0.4 \times 0.2 \times \frac{25}{1.5} = 60 \text{ KN}$$

 $Q_u \le 60KN \Rightarrow$ La condition et vérifiée

III.6 : Calcul de la salle de machine :

III.6.1: Introduction:

Les ascenseurs sont des appareils élévateurs installés dans les immeubles afin d'assurer le transport des personnes ou des marchandises pour accéder au différents niveaux d'un bâtiment.

Les ascenseurs sont placés à l'intérieur ou à l'extérieur du bâtiment dans un volume dont les parois sont en béton armé ou en structure métallique.

Figure III.15 : descriptif d'un ascenseur mécanique

III.6.2: Dimensionnement:

L'épaisseur h₀ doit être au moins égale à 12cm (RPA version 2003), soit h₀ = 15cm.

La dalle repose sur quatre appuis, elle est soumise à une charge localisée, son calcul se fait à l'aide des abaques de « PIGEAUD », qui permettent d'évaluer les moments dans les deux sens en plaçant la charge centrée au milieu du panneau.

On a Lx / Ly = 1,85/1,85 = $1 > 0.4 \Leftrightarrow$ la dalle porte sur les deux sens :

$$U = a + 2 h_t + h_0 = 80 + 2 \times 5 + 15 = 105 m$$

$$V = b + 2 h_t + h_0 = 80 + 2 \times 5 + 15 = 105 m$$

Avec:

 h_0 : épaisseur de la dalle ($h_0 = 15$ cm).

 h_t : épaisseur du revêtement ($h_t = 5cm$)

a et b : cotes de rectangle dont la quelle.

\triangleright Les moments M_{x1} , M_{v1} du système de levage :

$$M_{x1} = (M_1 + \nu M_2) q$$

$$M_{v1} = (M_2 + \nu M_1) q$$

Avec:

v : Coefficient de Poisson :

- v = 0.2 béton non fissuré à L'E.L.S.
- v = 0 béton fissuré à L' E.L.U.

 $M_{1},\ M_{2}$: coefficients donnés en fonction de (p , U / L $_{x},\ V$ / L $_{y})$ à partir des abaques de PIGEAUD

On a:

$$\begin{cases} \rho = L \text{ x } / \text{ L y} = 1,85 / 1,85 = 1 \\ U / I \text{ x} = 105 / 185 = 0,56 \\ V / I \text{ y} = 105 / 285 = 0,56 \end{cases} \Rightarrow \begin{cases} M_1 = 0,082 \text{ KN.m} \\ M_2 = 0,085 \text{ KN.m} \end{cases}$$

$$\left\{ \begin{array}{l} M_{x1}=q.M_1 \\ \\ M_{y1}=q.M_2 \end{array} \right.$$

Avec:

$$q = 1,35G + 1, 5 Q = 1, 35 . 60 = 81KN$$

$$M_{x1} = 81 \times 0,082 = 6,642 \text{ kn.m}$$

$$M_{y1} = 81 \times 0.082 = 6.642 \text{ kn.m}$$

\triangleright Les moments dus au poids propre de la dalle M_{x1} , M_{y1} :

$$\rho = L_x / L_y = 1 \Rightarrow \qquad \begin{cases} \mu_x = 0.0432 \\ \mu_y = 1 \end{cases}$$

$$M_{x2} = \mu_{x.} q l_x^2$$

$$M_{y2} = \mu_y M_{x2}$$

$$q = 1,35G + 1,5Q = 1,35 (25.0,15+22.0,05) + 1,5.1 = 8,04 N.m$$

$$M_{x2} = 0.0432 \cdot 8.04 \cdot (1, 85)^2 = 0.19 \text{KN.m}$$

$$M_{y2} = \mu_y. \\ M_{x2} = 1 \;.\; 1,19 = \; 1,19 \\ KN.m.$$

> Superposition des moments :

$$M_x = M_{x1} + M_{x2} = 6,642 + 1,19 = 7,832$$
kn.m.

$$M_v = M_{v1} + M_{v2} = 6,642 + 1,19 = 7,832$$
kn.m.

III.6.3 :Ferraillage:

> Armatures longitudinales :

$$\gamma = M_u / M_{ser}$$

$$10^4 \mu_{1u} = 3440 \gamma + 49 f_{c28} - 3050$$

$$\mu_{bu} = M_a / bd^2 F_{bu}$$

si $\mu_{bu} < 0.275...$ Méthode simplifiée.

$$A_a = M_a / Z_b f_{ed}$$

• En appuis:

	Mu	$\mu_{ m bu}$	μ_{lu}	Z _b cm	A cm ²	A _{adoptè} cm ²
sens xx	0,3×7,832=2,3496	0,009	0,21	0,15	3,14	4T10=3,14
sens yy	0,3×7,832=2,3496	0,009	0,21	0,15	3,14	4T10=3,14

• En travées :

_	Mu	$\mu_{ m bu}$	$\mu_{ m lu}$	Z _b cm	A cm ²	A _{adoptè} cm ²
sens xx	2,34	0,009	0,21	0,15	3,14	4T10=3,14
sens yy	2,34	0,009	0,21	0,15	3,14	4T10=3,14

Vérification de la condition de non fragilité :

$$A_{min} = \delta_0.b.h (3 - \rho) / 2 \text{ avec}$$
:

$$\delta_0$$
 = 0,0008 pour FeE500 et ρ = L $_x$ / L $_y$ = 1.

$$A_{min} = 0.0008.100.16. (3 - 1 / 2).$$

$$A_{min} = 1.31 cm^2$$

Aux appuis : $A_{ua} = 3,14 \text{cm}^2 > A \text{ min} = 1,31 \text{cm}^2 \Rightarrow \text{condition est vérifiée.}$

En travées : A $_{ut} = 2,01 \text{ cm}^2 > \text{A min} = 1,31 \text{cm}^2 \Rightarrow \text{condition est vérifiée}.$

Cette condition est vérifiée pour les deux sens (x - x) et (y - y).

A L'E.L.S:

• Les moment Mx1 ; My1 du système de levage :

$$M_{x1} = (M_1 + \nu M_2).q$$

$$M_{v1} = (M_2 + \nu M_1).q$$

Avec:

$$v = 0.2 \text{ à L'E.L.S}$$

$$q = G + Q = 60KN$$

$$M_{x1} = (0, 082 + 0, 2.0,082).60 = 5,90KN.m.$$

$$M_{v1} = (0, 082 + 0, 2.0, 082) .60=5,90KN.m.$$

• Les moments dans au poids de la dalle M_{x1} , M_{y2} :

$$q = G + Q = 4.85 + 1 = 5.85KN.$$

$$M_{x2} = \mu_{x}.q.L_{x}^{2} = 0.0423.5,85.(1,85)^{2} = 0.84KN.m.$$

$$M_{v2} = \mu_v.M_{x2} = 1.0,84 = 0,84 \text{KN.m.}$$

Superposition des moments :

$$M_x = M_{x1} + M_{x2} = 5,90 + 0,84 = 6,74KN.m.$$

$$M_y = M_{y1} + M_{y2} = 5,90 + 0,84 = 6,74 \text{KN.m.}$$

Ferraillage:

En appuis:

_	Mu	$\mu_{ m bu}$	$\mu_{ m lu}$	Z _b cm	A cm ²	A _{adoptè} cm ²
sens xx	2.02	0,009	0,21	0,15	3,14	5T10=3,93
sens yy	2,02	0,009	0,21	0,15	3,14	5T10=3,93

$$M_a = 0.3 \cdot 6.74 = 2.02 \text{KN.m}$$

$$A_a = M_a / Z_b . f_{ed}$$
 avec $Z_b = d (1 - 0.6. \mu_{bu})$.

$$\mu_{bu} = M_a / b \cdot d^2 \cdot F_{bu}$$
.

> En travée :

	Mu	$\mu_{ m bu}$	μ_{lu}	Z _b cm	A cm ²	A _{adoptè} cm ²
sens xx	2.02	0,009	0,21	0,15	3,14	5T10=3,93
sens yy	2,02	0,009	0,21	0,15	3,14	5T10=3,93

Remarque:

Sens (y-y) les résultats sont les même que dans le sens (x - x)

***** Conclusion:

Les armatures adoptées à « 1'E. L. U » sont largement suffisantes.

Les armatures tranversales : ne sont pas nécessaires.

• Vérification à L'ELS:

- Contrainte de compression dans le béton :

La fissuration est peu nuisible, on doit vérifier que :

$$\sigma_{bc} \le \overline{\sigma}_{bc} = 0.6.f_{c28} = 15 \text{ Mpa}$$

Contrainte maximale dans le béton comprimé ($\sigma_{bc} = ky$)

$$k = M_{ser} / I$$

$$I = by^3/3 + 15 [A_s (d - y)^2 + A'_s (y-d')^2]$$

$$y = 15 (A_s + A'_s) / b [(1 + b (d.A_s + d.A'_s) / 7, 5 (A_s + A'_s)^2)^{1/2} -1]$$
 avec $A'_s = 0$.

Le tableau suivant récapitulé les résultats trouvées :

Mser(kn.m)	As(cm2)	I(cm4)	y (cm)	k	$\bar{\sigma}$	$\overline{\sigma}$ bc	observation
5 ,72	3 ,14	6428.03	4,06	89,12	3,61	15	vérifiée

- Espacement des barres :

• Armatures A x // à L x :

 $S_t \le \min \{3h; 33cm\} = \min (40, 5; 33) = 33cm \Rightarrow S_t = 20cm \Rightarrow \text{condition vérifiée.}$

• Armatures Ay // à Ly:

 $S_t \le min (4 \text{ h}; 45 \text{cm}) = min (54; 45 \text{cm}) = 45 \text{cm} \implies S_t = 20 \text{cm} \implies \text{condition vérifiée.}$

Vérification de contrainte tangentielle:

Les efforts sont max au voisinage de la charge centrée

Au niveau de U : T $_{max} = P / 2a + b = 60.10^{-3}/(2.0,8+0,8) = 0,025$ Mpa

Au niveau de V : T $_{max} = P/3a = 60.10^{-3} / 3.0,8 = 0,025 Mpa$

 $\tau_u = \left[\begin{array}{c} Tu \: / \: (b.d) \end{array} \right] \le \: \overline{\tau} \: u$

 $\bar{\tau}_{\rm u} = {\rm min} \ (0.13 \ {\rm f}_{\rm c28} \ ; 5 \ {\rm Mpa}) = 3.33 \ {\rm Mpa} \ ({\rm fissuration \ peu \ nuisible}).$

 $\tau_u = T_u / b.d = 0,025 / 1.0,135 = 0,185 Mpa.$

 $\tau_u = 0.185 \text{Mpa} \le \overline{\tau}_u = 3.33 \text{ Mpa}....$ «condition vérifiée».

❖ Vérification de l'état limite de déformation (la flèche) :

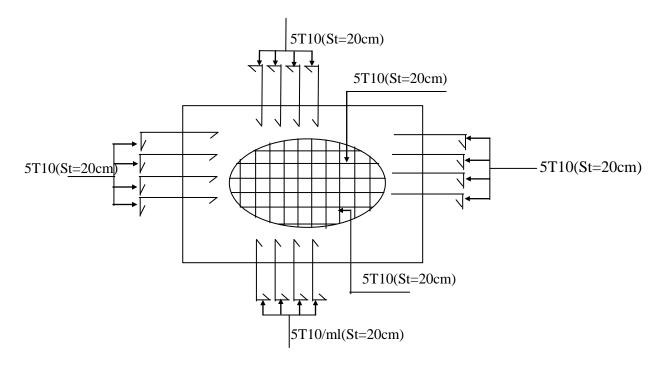
On doit vérifier que :

- $h/l \ge 1/16$
- $h/l \ge 1/10 (M_t/M_0)$

A / b.d \leq 4,2 / fe

La vérification de la flèche est inutile sauf si l'une des trois conditions n'est pas vérifié avec :

L : la portée entre nus d'appuis (L= 1,85m).


M: moment maximum en travée.

M₀: moment isostatique.

A s: section d'armature tendue correspondante.

\Lambda L'application:

- $h/1 \ge 1/16 \Leftrightarrow 15/185 \ge 1/16 \Leftrightarrow 0.08 \ge 0.063$ condition vérifiée
- $h/1 \ge Mt/15 M_0 \Leftrightarrow 15/185 \ge 5$,72/10.13,87 \Leftrightarrow 0,08 \ge 0,02 condition vérifiée
- $h/l > A / b.d \Leftrightarrow 0.08 > 3.14 / 100 .13.5 = 0.002....$ condition vérifiée.

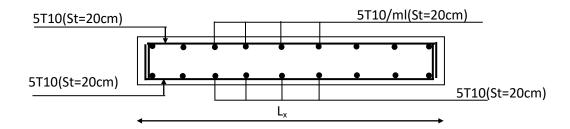


Figure III.16 : croquis de ferraillage de la dalle

III.7 : Etude de l'acrotère :

L'acrotère est considéré comme une console encastrée dans le plancher soumis à son poids propre(G), à une force latérale due à l'effet sismique et une surcharge horizontale (Q) due à la main courante.

Le calcul se fera en flexion composée pour une bande de 1m de longueur.

La fissuration est considérée comme nuisible.

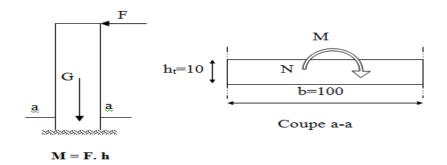


Figure III.17 : statique de l'acrotère.

III.7.1 : Calcul des sollicitations et des Combinaisons des charges :

- > Evaluation de charge :
- Poids propre

$$S = 100 \times 10 + \frac{3 \times 10}{2} + 7 \times 10 = 1085 \ cm^2$$

$$G_1 = 25 \times 0.1085 \times 1 = 2.7125 \, KN$$

• Poids des enduits :

$$G_2 = 0.03 \times 10 \times 0.6 \times 1 = 0.18 \, KN$$

• Le poids total:

$$W_p = G_1 + G_2 = 2.7125 + 0.18 = 2.8925 KN$$

Q=1 KN

 \triangleright La force sismique horizontale F_p est donnée par la formule :

$$F_p = 4 \times A \times C_p \times W_p$$
 (RPA ART. 6.2.3)

A: Coefficient d'accélération de zone. (A = 0,25 en zone III, groupe d'usage 1B)

 C_p : Facteur de force horizontal ($C_p = 0.8$). (**RPA ART. 6.2.3, Tableau 6.1**).

 W_n : Poids de l'acrotère.

Donc: $F_p = 4 \times 0.25 \times 0.8 \times 2.8925 = 2.314 \, KN$

Fp > Q = 1 KN/ml

Pour ces valeurs on prend la surcharge Q = 1,51KN/ml

Poids propre de l'acrotère : G = 2.8925 KN/ml

Surcharge d'exploitation : Q = 1,51 KN/ml

Effort normal dû au poids propre $G : N = G \times 1 = 2.8925$ KN.

Effort tranchant : $T = Q \times 1 = 1,51 \text{ KN}$

Moment fléchissant max dû à la surcharge Q:

$$M = Q \times H \times 1 = 1,51 \times 1 \times 1 = 1.51 \text{ KN. m}$$

Combinaisons de charges :

- \clubsuit ELU:La combinaison est 1,35 G + 1,50 Q
- Effort normal de compression dû à G : Nu = $1,35 \times G = 1,35 \times 2.8925 = 3.9$ KN
- Effort tranchant : $Tu = 1.5 \times T = 1.5 \times 1.51 = 2.27$ KN.
- Moment de renversement dû à Q : $Mu = 1,50 \times MQ = 1,5 \times 1.51 = 2.27$ KN. m
- \clubsuit **ELS**: La combinaison est G + Q
- Effort normal de compression : Ns = G = 2.8925KN
- Effort tranchant : Ts = 1,51KN
- Moment de renversement : Ms = 1.51KN.m

III.7.2: Ferraillage:

Le calcul se fait pour une section rectangulaire :

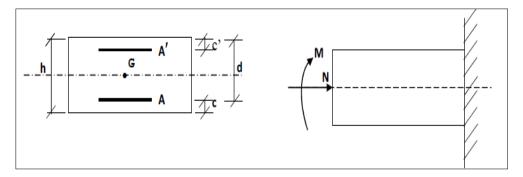


Figure III.18 : Section rectangulaire soumise à la flexion composée.

Combinaisons d'action sur l'acrotère.

Sollicitions	ELU	ELS
Combinaison de charge	1.35G+1.5Q	G+Q
N(KN)	3.9	2.8925
M (KN.m)	2.27	1.51

Tableau III.26: caractéristiques géométriques d'une section rectangulaire.

b [cm]	h [cm]	c [cm]	d [cm]	$f_{c28}[MPa]$	$f_e[MPa]$
100	10	3	8	25	500

h: Épaisseur de la section soumise à la flexion composée.

c', c: L'enrobage.

d = h - c: Hauteur utile.

e: Excentricité

M_f: Moment fictif calculé par rapport au C.D.G des armatures tendues.

• Calcul de l'excentricité :

$$M_u = N_u$$
. $e_u \Rightarrow e_u = \frac{Mu}{Nu} = \frac{2.77}{3.9} = 0,71 \text{ m}$
 $M_{ser} = N_{ser}$. $e_{ser} \Rightarrow e_{ser} = \frac{Mser}{Nser} = \frac{1.51}{2.8925} = 0,522 \text{ m}$
 $\frac{h}{6} = 0.16 \text{ m}$

 $eu > \frac{h}{6} \Longrightarrow$ Le centre de pression se trouve à l'extérieur du noyau central donc la section est partiellement comprimée, le ferraillage se fait par assimilation à la flexion simple, sous l'effet d'un moment fictif M_F puis on se ramène à la flexion composée.

• Calcul en flexion simple :

ea = eu +
$$\frac{h}{2}$$
 - c = 0.71 + $\frac{0.10}{2}$ - 0.03 = 0.73 m

✓ Moment fictif :

$$Mf = Nu \times ea = 3.9 \times 0.73 = 2.847 \text{ KN. m}$$

✓ Moment réduit :

Mf =
$$f_{bu} \times b \times d^2 \times \mu_{bu}$$

 $\mu_{bu} = \frac{Mf}{f_{bu \times b \times d^2}} \times$

Avec:

$$f_{bu} = \frac{0.85 \times f_{c28}}{\gamma_b} = \frac{0.85 \times 25}{1.5} = 14.2 \text{MPa}$$

$$\mu_{bu} = \frac{2.846 \times 10^{-3}}{14.2 \times 1 \times 0.12^2} = 0.014$$

$$\mu_{lu} = (3440\gamma + 49 \times f_{c28} - 3050) \times 10^{-4}$$

$$\gamma = \frac{Mf}{Ms} = \frac{2.846}{1.51} = 1.88$$

$$\mu_{lu} = (3440 \times 1,88 + 49 \times 25 - 3050) \times 10^{-4} = 0,464$$

$$\mu_{\text{bu}} = 0.014 < \mu_{\text{lu}} = 0.464 \text{ A'} = 0$$
 (Pas d'armatures comprimées)

$$\mu_{bu} = 0.014 < 0.275$$
 (On utilise la méthode simplifiée)

$$Zb = d (1 - 0.6 \mu b) = 0.08(1 - 0.6 \times 0.014) = 0.0733 \text{ m}$$

✓ Armatures fictives :

$$A_f = \frac{M_F}{Z_{b \, fod}}$$
 avec $f_{ed} = \frac{fe}{\gamma s} = \frac{500}{1,15} = 434.78 MPa$

$$A_f = \frac{2.846 \times 10^3}{0.0733 \times 434.78} \times 10^{-4} = 0.89 \text{cm}^2$$

- Calcul en flexion composée :
- La section réelle des armatures :

$$A_{A} = A_{f} - \frac{N_{u}}{f_{ed}}$$

$$A_A = 0.89 - \frac{3.9 \times 10^{-3}}{434.78 \times 10^{-4}} = 0.8 \text{cm}^2$$

- Condition de non fragilité :(BEAL91/Art A, 4, 2,1)

Le ferraillage de l'acrotère doit satisfaire la CNF : $A_A \ge A_{min}$

$$Amin = 0.23 \times \frac{f_{t28}}{fe} \times b \times d$$

$$f_{t28} = 0.06f_{c28} + 0.6 = 0.06 \times 25 + 0.6 = 2.1MPa$$

$$A_{min} = 0.23 \times 1 \times 0.08 \times \frac{2.1}{500} \times 10^{-4} = 0.78 \text{cm}^2$$

Condition non vérifiée.

On prend
$$A_s = 4HA8 = 2.01 \, cm^2/ml$$
.

* Armatures de répartition :

$$A_r = \frac{A_s}{4}$$
; $A_s = 2.01 \text{ cm}^2 \implies A_r = 0.5025 \text{ cm}^2 \implies A_r = 4HA8 = 2.01 \text{ cm}^2/\text{ml}$

Service Espacement:

Armatures principales : $S_t \leq \frac{100}{4} = 25$ cm, $OnadopteS_t = 25$ cm.

Armatures de répartitions : $S_t \leq \frac{100}{4} = 25 \ cm$; $OnadopteS_t = 25 \ cm$.

• Vérification de l'effort tranchant :

Vérifications à ELU:

$$V_u = 1.5 \times Q = 1.5 \times 1.51 = 2.265 \, KN$$

$$\tau_u = \frac{V_u}{h \times d} = \frac{2.265 \times 10^{-3}}{1 \times 0.08} = 0.028 \text{ MPa}$$

Comme la fissuration est considérée comme étant préjudiciable, il est nécessaire de vérifier la condition suivante [article A.5.3, 21du BAEL91] :

$$\overline{\tau} = \min(\frac{0.15 f_{c28}}{\gamma_b}; 4 MPa) = 2.5 MPa$$

 $\tau_u < \overline{\tau} \dots \dots \dots \dots v$ érifiée (Pas de risque de cisaillement et les armatures transversales ne sont pas nécessaires).

Vérification de l'adhérence dans les barres:(Art, A, 6,1, 3 / BAEL) :

Le béton armé est composé de béton et d'acier, donc il est nécessaire de connaître le comportement à l'interface entre ces deux matériaux.

Pour cela on doit vérifier l'inégalité suivante $: \tau_{se} \leq \overline{\tau_{se}}$

$$\overline{\mathbf{\tau_{se}}} = \psi_s \times \mathbf{f}_{t28}$$

 ψ_s : Coefficient de scellement égal à 1,5 pour les barres HA.

$$\overline{\tau_{se}} = 1.5 \times 2.1 = 2.5 \text{MPa}$$

$$\tau_{se} = \frac{V_u}{0.9 \text{ d } \sum U_i}$$

 $\sum U_i$: Somme des périmètres utiles des barres.

n : Nombre de barre.

$$\sum U_i = n\pi d = 4 \times 3,14 \times 0,08 = 1.005 \text{ cm}$$

$$\tau_{se} = \frac{2,265 \times 10^{-3}}{0.9 \times 0.08 \times 1.005} = 0,0313 \text{ MPa}$$

$$\tau_{se} = 0.0313 \; \text{MPa} \; < \overline{\tau_{se}} = 3.26 \text{MPa}..... \text{V\'erifi\'ee}$$

• Calcul de l'ancrage des barres verticales :(BAEL91/Art, A, 6,1, 22) :

Les barres rectilignes de diamètre Φ et de limite d'élasticité Fe sont ancrées sur une longueur Ls dite longueur de scellement droit donnée par l'expression :

$$L_S = \frac{\Phi \times Fe}{4 \times \tau_{SU}}$$

$$\tau_{su} = 0.6 \, \Psi 2 \, \text{ft} 28 = 0.6 \times (1.5)2 \times 2.1 = 2.84 \text{MPa}$$

$$L_S = \frac{0.8 \times 500}{4 \times 2.84} = 35.21 \text{ cm}$$
 On adopte : L_S =40cm.

• Vérification des espacements des barres : (BAEL91/art 8.2.42) :

Armatures principales :

$$es \le min(3 \times h, 33cm) \rightarrow es \le min(3 \times 10; 33cm) = 30cm$$

Armatures de montage :

$$es \le min (4 \times h, 45cm) \rightarrow es \le min (40,45cm) = 40cm$$

es =
$$25$$
cm < 40 cm..... Condition vérifiée

Vérifications à l'ELS:

Vérifications des contraintes :

Dans le béton :

$$M_{ser} = 1.51 \, KN. m$$
 , $N_{ser} = 2.8925 \, KN; d = 0.08 \, m$

On doit vérifier que : $\sigma_{bc} \le \overline{\sigma_{bc}} = 0.6 \times 25 = 15$ MPa

 σ_{bc} : Contrainte dans le béton comprimé.

 $\overline{\sigma_{bc}}$: Contrainte limite dans le béton comprimé.

Contrainte maximale dans le béton comprimé.

Avec:
$$k = \frac{Mser}{I}$$

$$b\frac{y^2}{2} + \eta(A_s + A_s') y - \eta(A_s d + A_s' d) = 0$$

$$I = \frac{b.y^3}{3} + \eta A(d-y)^2 + \eta A'(y-d')^2$$

Avec :
$$n = 15$$
 et $A'_s = AS$

Y : position de l'axe neutre.

I: moment d'inertie.

$$50y^2 + 15 \times (2 \times 2,01) y - 15 \times (2,01 \times 2 \times 8) = 0$$

$$y = 2,56cm$$

$$I = 150 \times \frac{(2,56)^3}{3} + 15 \times 2 \times 2,01(8 - 2,73)^2 \rightarrow I = 2343.73 \text{cm}^4$$

$$K = \frac{1.51 \times 10^{-3}}{2343.73 \times 10^{-8}} = 64,42 \text{ MN/m}^3$$

$$\sigma_{bc} = 64,42 \times 2,56 \times 10^{-2} = 1,64 \text{ MPa}$$

$$\sigma_{bc} = 1,64 \text{ MPa} \le \overline{\sigma_{bc}} = 15 \text{ MPa}$$
 Condition vérifiée

- Dans l'acier :

L'acrotèreest expose aux intempéries donc la fissuration est prise comme préjudiciable, on doit vérifier :

$$\sigma_{\rm S} \leq \overline{\sigma_{\rm S}} = \min\left(\frac{2}{3}f_e, max(0.5 fe; 110\sqrt{\eta f_{t28}})\right) = 250 \,\mathrm{MPa}$$
 $\eta = 1.6 \,\mathrm{pour \, HA}$

$$\sigma_s = n \text{ k (d-y) } = 15 \times 64,42 \times (0.08 - 0.0256) = 52,56 \text{ Mpa}$$

Alors : $\sigma_s = 52,56 Mpa \le \overline{\sigma_s} = 250 Mpa...$ condition vérifiée.

HA8 ST=25 HA8 ST=25

Figure III.19: ferraillage d'acrotère

Conclusion:

L'acrotère ferraillé comme suit :

Armateurs principaux : 4HA8 avec St=25cm.

Armateurs de répartition : 4HA8 St=25cm.

CHAPITRE IV

ETUDE SISMIQUE

IV.1: Introduction:

Le séisme correspond à une vibration du sol provoquée par une libération de l'énergie de déformation accumulée dans la croûte terrestre.

C'est un phénomène imprévisible, qui provoque plusieurs catastrophes (destruction des ouvrages, nombreuse perte des vies humaine). De ce fait, le comportement des constructions sous action dynamique est devenu un chapitre indispensable dans l'étude de n'importe quelle structure.

Le calcul sismique dans notre étude sera effectué dans le cadre du règlement parasismique algérien (RPA99) version 2003.

IV.2 Méthode de calcul:

Selon l'article 4.1.1 de RPA99, les forces sismiques peuvent être déterminées par deux méthodes :

- méthode statique équivalente;
- méthode dynamique modale spectrale.

IV.2.1 méthode statique équivalente :

Principe de la méthode : [RPA99/4.2.1]

Selon cette méthode les forces réelles dynamiques développées dans la structure sont remplacées par un système de forces statiques fictives appliquées successivement suivant deux directions orthogonales et ayant des effets équivalents à ceux des forces réelles.

> conditions d'application : [RPA99/4.1.2]

- Régularité en plan : [RPA99/3.5.1.a]
- Régularité en élévation : [RPA99/3.5.1.b]

> vérification des conditions d'application

Dans notre cas la méthode statique équivalente n'est pas applicable, puisque notre bâtiment ne vérifie pas toutes les conditions de l'article 4.1.2 ; d'où la méthode utilisable c'est la méthode d'analyse modale spectrale.

IV.2.2: Méthode dynamique modale spectrale:

Peut être utilisée dans tous les cas, et en particulier, dans le cas où la méthode statique équivalente n'est pas permise .On utilise directement les spectres de dimensionnement puisque ce sont surtout les extremums des réponses qui intéressent le concepteur et non la variation temporelle. Elle permet de simplifier les calculs. On procède alors à une analyse modale en étudiant un certain nombre de modes propres de la structure.

> Modélisation :

Nous utiliserons les étapes suivantes dans la modélisation de notre structure :

- -Détermination des propriétés des matériaux utilisés :
- Les propriétés du béton.
- -Détermination des caractéristiques géométriques utilisées:(voir chapitre II).
- -Détermination les conditions aux limites :

Notre structure sera représentée par un modèle tridimensionnel encastré à la base, où les masses sont concentrées au niveau des centres de gravité des planchers avec trois degrés de liberté (deux translations horizontales et, une rotation d'axe verticale). [RPA99/4.3.2]

- -Détermination de la descente des charges :
- -Détermination des forces sismiques E :

Ils sont distribués horizontalement verticalement sur les éléments proportionnels à leurs rigidités par l'introduction d'un spectre de réponse dans deux directions orthogonales (XetY) -Détermination des combinaisons des charges :

- 1.35G + 1.5Q
- G + Q
- 0.8G + E
- 0.8G E
- G + Q + E
- G + Q E

IV.3 :Description de logiciel (ETABS):

L'ETABS est un logiciel de calcul et de conception des structures d'ingénieries, particulièrement adaptée aux bâtiments, et ouvrages de génie civil. Il permet dans un même environnement la saisie graphique des ouvrages avec une bibliothèque d'éléments autorisant l'approche du comportement de des structures.

L'ETABS offre de nombreuses possibilités d'analyse des effets statiques et dynamiques avec des compléments de conception et de vérification des structures en béton armé et charpentes métalliques. Le post-processeur graphique facilite l'interprétation des résultats, en offrant notamment la possibilité de visualiser la déformée du système, les diagrammes des efforts et courbes enveloppés, les champs de contraintes, les modes propres de vibration etc.

Aussi pour la modélisation de notre bâtiment au logiciel ETABS pour déterminer :

- ✓ Les périodes propres.
- ✓ Les coefficients de participation.
- ✓ Les déplacements du plancher.
- ✓ Les forces sismiques.

Modélisation :

• Modélisation de la structure :

Une structure est composée de membrures flexibles reliées par des nœuds et supportée par une fondation rigide. Cette définition implique que le modèle choisi n'est qu'une idéalisation mathématique de la structure réelle. L'étude de la réponse dynamique d'une structure (période et mode propre) nécessite le choix d'un modèle dynamique adéquat traduisant le plus concrètement possible la nature du système réel.

Le modèle dynamique que nous avons adopté pour le calcul de notre ouvrage est une console verticale encastrée à sa base. Les masses seront considérées concentrées au niveau du centre de gravité de chaque niveau et qui travaille en trois (3) DDL deux translation suivant (x,y) et une rotation suivant (z).

• Modélisation mathématique par la méthode des éléments finis :

La modélisation revient à représenter un problème physique possédant un nombre infini de degré de liberté (DDL) par un modèle ayant un nombre fini de DDL, et qui reflète avec une bonne précision les paramètres du système d'origine à savoir : la masse, la rigidité et l'amortissement.

En d'autres termes ; La modélisation est la recherche d'un mécanisme simplifié qui nous rapproche le plus possible du comportement réel de la structure, en tenant compte le plus correctement possible de la masse et de la rigidité de tous les éléments de la structure.

• Etapes de modélisation :

Pour modéliser notre bâtiment nous avons considéré les étapes suivantes :

- ✓ Introduction de la géométrie du modèle (position des nœuds, connectivité des éléments).
- ✓ Spécification et assignement des caractéristiques mécaniques et géométriques aux différents éléments.
- ✓ Définition des différents cas de charges (statique et dynamique). Assignement de ces charges aux nœuds et aux éléments.
- ✓ Spécification des conditions aux limites (appuis, diaphragmes,).
- ✓ Lancement de l'exécution du problème, apporter des corrections au modèle s'il y a lieu.
- ✓ Visualisation des résultats (à l'écran, sur fichier, etc....).
- ✓ Interprétation des résultats.

IV.4 : Calcul de la force sismique V statique :

La force sismique totale V, appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$V_{st} = \frac{A.D.Q}{R}W....(RPA99/2003Art (4.2.3))$$

Tel que:

A: coefficientd accélération de la zone; (RPA99/2003 tableau (4.1))

D: facteur d'amplification dynamique moyen; (RPA99/2003 (4.2))

R: coefficient de comportement global de la structure; (RPA tableau (4.3))

Q: facteur de qualité; (RPA (4 – 4))

W: poid stotal de la structure (RPA (4 – 5))

Détermination des paramètres cités au-dessus selon notre structure :

✓ Coefficient d'accélération de la zone : (Grouped'usage 1R

$$\begin{cases} Grouped'usage\ 1B \\ Zone III \end{cases} \Rightarrow A = 0.3$$

✓ Coefficient de comportement global de la structure :

Dans notre cas, on adopte un système de contreventement mixte portiques/voiles avec justification de l'interaction \Rightarrow R = 3.5

✓ Facteur d'amplification dynamique moyen :

Le calcul de ce facteur dépend, de la catégorie de site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T).

$$D = \begin{cases} 2.5 & \eta & 0 \le T \le T_2 \\ 2.5 & \eta (T_2/T)^{2/3} T_2 \le T \le 3.0s & \text{RPA}99/2003 \text{ (Formule 4.2)} \\ 2.5 & \eta (T_2/3.0)^{2/3} (3.0/T)^{5/3} T \ge 3.0 \text{ s} \end{cases}$$

Facteur de correction d'amortissement η donné par la formule :

$$\eta = \sqrt{7/(2+\xi)} \ge 0.7 \text{ RPA} 99/2003 \text{ (Formule 4.3)}$$

Avec : ξ est le pourcentage d'amortissement critique en fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

Pour notre cas, on a un remplissage dense et un système mixte :

$$\xi = 7\%$$

D'où $\eta = 0.882$

On a un site meuble
$$S_1$$
 \Rightarrow $\begin{cases} T_1 = 0.15 \text{ s} \\ T_2 = 0.30 \text{ s} \end{cases}$ RPA99/2003 (Tableau 4.7)

Avec:

T₁, T₂ périodes caractéristiques associées à la catégorie de site.

IV.5 : Calcul de la période fondamentale de la structure :

Le contreventement de notre structure est assuré par un système mixte (voiles/portiques), donc :

$$T = C_T H^{3/4} \text{RPA99/2003 (Formule 4 - 6)}$$

Tel que:

C_{T =} **0.05 : coefficient qui dépend du système de contreventement utilisé.** RPA99/2003 (Tableau 4.6)

H = 48.49 m : hauteur totale du bâtiment.

Ce qui donne :

$$D = 2.5 \, \eta \left(\frac{T_2}{T}\right)^{2/3} \Rightarrow \qquad \qquad D = 2.5 \times 0.882 \times (0.3/0.93)^{2/3} = 1.037$$

✓ Facteur de qualité :

La valeur de Q est déterminée par la formule : $Q = 1 + \sum_{1}^{5} P_q$

RPA99/2003 (Formule (4-4)) page39.

Avec:

 P_{α} : est la pénalité à retenir selon que le critère de qualité (q) est satisfait ou non.

Les valeurs à retenir sont données dans le tableau suivant :

N°	Critère (q)	Observée	P.q./xx	Observée	P.q./yy
1	Conditions minimales sur les files de	non	0.05	non	0.05
	contreventement				
2	Redondance en plan	non	0.05	non	0.05
3	Régularité en plan	oui	0	oui	0
4	Régularité en élévation	oui	0	oui	0
5	Contrôle de la qualité des matériaux	oui	0	oui	0
6	Contrôle de la qualité de l'exécution	oui	0	oui	0

Tableau IV- 1. Valeurs des pénalités.

Donc:
$$\begin{cases} Q_{x} = 1.10 \\ Q_{y} = 1.10 \end{cases}$$

✓ Poids total de la structure :

W est égal à la somme des poids W_i, calculés à chaque niveau (i) :

$$W = \sum_{i=1}^{n} W_i avec W_i = W_{Gi} + \beta W_{Qi} RPA99/2003 (Formule(4-5))$$

Avec:

 W_{Gi} : poids dû aux charges permanentes et à celles des équipements fixes éventuelles, solidaires de la structure.

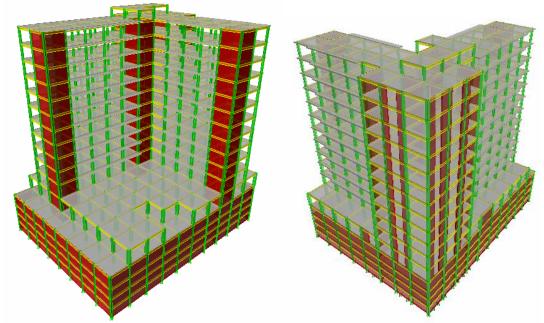
W_{Qi}: charge d'exploitation.

β : coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation. Il est donné par le tableau du (RPA tableau 4.5)

Dans notre cas : $\beta = 0.2$ et

\rightarrow *W*=270403.12 *KN*

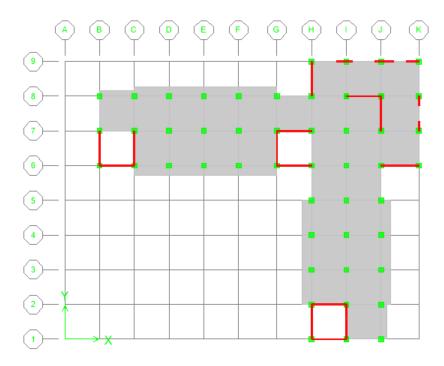
Spectre de réponse de calcul (RPA99/2003 art 4.3.3)


L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases} 1.25A \left(1 + \frac{T}{T_1} \left(2.5\eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\ 2.5\eta (1.25A) \left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \\ 2.5\eta (1.25A) \left(\frac{Q}{R}\right) \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0s \\ 2.5\eta (1.25A) \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} \left(\frac{Q}{R}\right) & T > 3.0s \end{cases}$$

Figure IV. 1 . Spectre de réponse RPA

IV.6 : Modélisation et résultats :


Le logiciel utilisé pour modéliser notre structure estETABS V9.7.

FigureIV. 2. Vu en 3D de la structure modélisée avec le logiciel ETABS V9.7.

IV.6.1 : Disposition des voiles de contreventement :

La disposition des voiles est représentée sur la figure qui suit :

Figure IV. 3. Plans de disposition des voiles en 1^{er} jusqu'à 11^{eme} étage

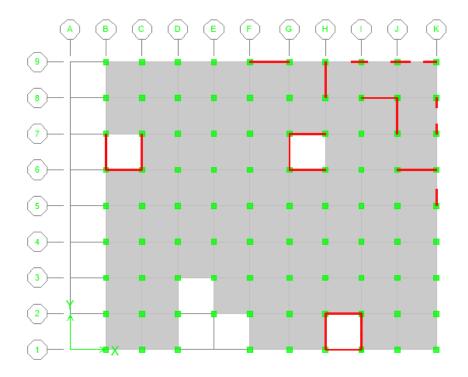


Figure IV. 4. Plan de disposition des voiles en RDC

IV.6.2: Mode de vibration et taux de participation des masses:

Les différents modes de vibration ainsi que la période et le taux de participation massique qui leur revient sont résumés dans le tableau suivant :

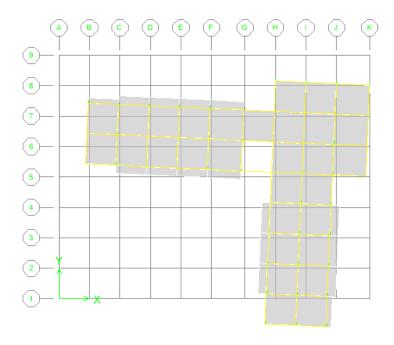
 ${\it Tableau IV-2.} \textit{ P\'eriodes et taux de participation massique de la structure: } \\$

Mode	Période	UX	UY	SumUX	SumUY	RZ
1	0.958566	1.4094	57.6675	1.4094	57.6675	2.7867
2	0.890024	57.3672	0.7516	58.7767	58.4191	4.4832
3	0.743878	2.4843	2.5736	61.261	60.9928	51.6702
4	0.233227	0.9621	15.8601	62.2231	76.8529	2.941
5	0.223627	15.7308	2.3983	77.9539	79.2511	1.081
6	0.174948	2.9946	1.8856	80.9485	81.1368	15.8397
7	0.140344	0.0031	1.3295	80.9516	82.4663	0.0273
8	0.130836	1.2231	0.0015	82.1747	82.4678	0.3208
9	0.120115	0.1097	0.0239	82.2845	82.4917	0.149
10	0.10234	0.374	5.3914	82.6584	87.8831	1.153
11	0.097647	5.7664	1.4006	88.4248	89.2837	0.3721
12	0.079482	1.7666	1.3929	90.1914	90.6766	8.2062

IV.6.2.1 : analyse des résultats :

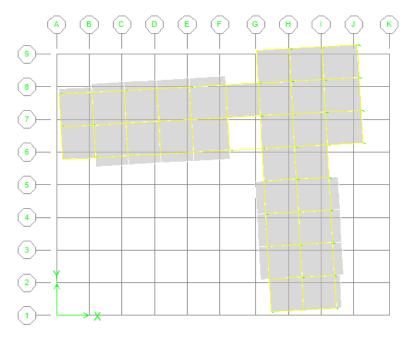
D'après les résultats obtenus dans le tableau ci-dessus, on voit que le taux de participation massique selon l'axe X et Y atteint les 90% au bout du 12^{éme} mode.

Les périodes numériques obtenues par le logiciel **ETABS.V9.7** dans les deux premiers modes sont inférieures à celles calculées après majoration de 30%. (RPA99/2003 Art 4.2.4)


Les périodes majorées de 30% \Rightarrow T_{RPA} =0.918*1.3=1.19

 $T_{analytique}$ =0.958 s < T_{RPA} =1.19 s

• Les modes de vibrations :


Selon le RPA pour les structures irrégulières en plan, sujettes à la torsion et comportant des planchers rigides, elles sont représentées par un modèle tridimensionnel, encastré à la base et ou les masses sont concentrées au niveau des centres de gravité des planchers avec trois (03) DDL (2 translations horizontales et une rotation d'axe vertical).

Le premier mode est un mode de translation suivant l'axe Y-Y:

Figure IV. 2. *Mode de déformation 1 (translation suivant l'axe Y-Y)*

Le deuxième mode est un mode de translation suivant l'axe X-X:

Figure IV. 3. *Mode de déformation 2 (translation suivant l'axe X-X).*

Le troisième mode est une rotation autour de l'axe Z-Z.

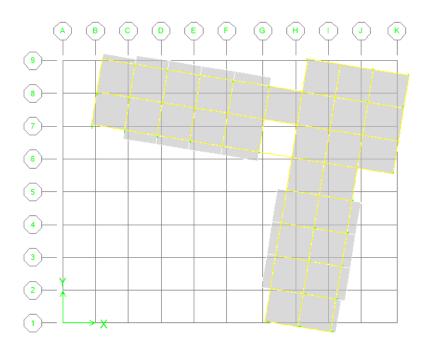


Figure IV. 4. Mode de déformation 3 (rotation suivant Z-Z).

IV.7: Vérification des résultats vis-à-vis du RPA 99/Version2003:

IV.7.1 : Vérification de la résultante des forces sismiques :

• Après avoir calculé l'effort statique à la base et l'effort dynamique, le RPA(Art4.3.6)il est nécessaire de faire la vérification suivante :

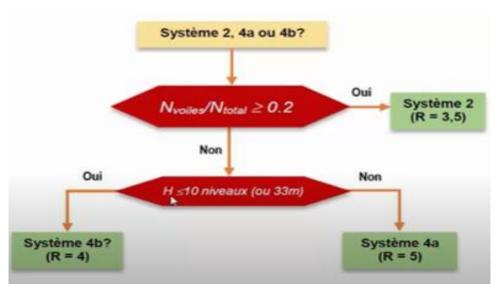
$$V_{dyn} \geq 0.8V_{st}$$

V_{dvn} : L'effort tranchant dynamique (calculé par la méthode spectrale modale).

• Si V_{dyn} < 0.8 V_{st} il faudra augmenter tous les paramètres de la réponse dans le rapport 0.8 V_{st}/V_{dyn} .

Les résultats sont résumés dans le tableau suivant :

Tableau IV- 3. Vérification de la résultante des forces sismiques à la base.


Direction	V statique (KN)	0.8 V _{statique} (KN)	V _{dynamique} (KN)	Observation
X-X	12715.81	10172.65	11674.37	Vérifiée
Y-Y	12715.81	10172.65	11134.10	Vérifiée

Système de contreventement :(Art3.4/RPA 99V2003)

L'objet du choix du system de contreventement se traduit dans les règles et méthodes de calcul, par l'attribution pour chacun des systèmes de contreventement d'une valeur numérique du coefficient de comportement R (voir tableau 4.3.RPA).

Dans cette étude 3 types de system de contreventement, il s'agit :

- 2. Système de contreventement constitué par des voiles porteurs en béton armé
- 4.aSystème de contreventement mixte assuré par des voiles et des portiques avec justification d'interaction portiques –voiles
- 4. b Système de contreventement de structures en portiques par des voiles en béton armé.

Justification du système de contreventement :

Les charges verticales revenantes aux portiques et aux voiles sont tirées du logiciel..

Les résultats de l'interaction sous charges verticales sont présentés dans le tableau suivant :

Charges verticales (KN)		(%) des charge verticales				
portiques	Voiles	Portiques	Voiles			
82202.98	80832.07	50.42	49.58			

Tableau IV- 4. Interactions sous charges verticales.

Chargement horizontal (KN) (%) du chargement horizontal Direction X-X **Direction Y-Y Direction X-X Direction Y-Y Portiques** Voiles **Portiques** Voiles **Portiques Portiques** Voiles Voiles **% % % %** 1844.05 7522.36 1907.17 8625.62 19.69 80.31 18.11 81.89

Tableau IV- 5. *Interaction sous charges horizontales.*

Conclusion:

Les voiles reprennent plus de 20% des sollicitations dus aux charges verticales et la pratiquement totalité des charges sismiques.

Donc on est sur 2 Système de contreventement constitué par des voiles porteurs en béton armé

Avec coefficient de comportement R=3.5

IV.7.2 : Vérification de l'effort normal réduit :

Il est exigé de faire la vérification à l'effort normal réduit pour éviter le risque de rupture fragile sous sollicitations d'ensemble dues au séisme, l'effort normal de compression de calcul est limité par la condition suivante :

$$v = \frac{N_d}{B_c \times f_{c28}} \le 0.30$$
 (Art 7.4.3.1)

Tel que:

N_d: l'effort normal maximal de calcul s'exerçant sur une section de béton.

B : section du béton.

f_{c28}: résistance caractéristique du béton à la compression.

Les résultats sont résumés dans le tableau ci- après :

Tableau IV- 6. Vérification de l'effort normal réduit.

Niveau	a(m)	Section (m)	N _d (KN)	ν	Observation
Sous-sol4	0.7	0.490	5990.66	0.489	Non vérifiée
Sous-sol2	0.65	0.423	5077.92	0.481	Non vérifiée
RDC	RDC 0.65 0.42		4496.22	0.426	Non vérifiée
étage 2	étage 2 0.6 0.3		3709.31	0.412	Non vérifiée
étage 4	0.55	0.303	2952.8	0.390	Non vérifiée
étage 6	0.5	0.250	2212.6	0.354	Non vérifiée
étage 8	étage 8 0.4 0.160		1481.6	0.370	Non vérifiée
étage 10	0.35	0.123	747.4	0.244	vérifiée

NB: on a pris une zone pour chaque 2 étages

On voit bien dans ce tableau que la condition de l'effort normal réduit, n'est pas vérifiée donc on doit augmenter la section des poteaux. Le résultat est résumé dans ce tableau :

Tableau IV- 7.Vérification de l'effort normal réduit après augmentation de la section des poteaux

Niveau	N _d (KN)	$f_{c28}(MPA)$	$B_c(m^2)$	a(m)	ν	Observation
Sous-sol4	5990.66	25	0.799	90*90	0.268	vérifiée
Sous-sol2	5077.92	25	0.677	85*85	0.247	vérifiée
RDC	4496.22	25	0.599	80*80	0.232	vérifiée
étage 2	3709.31	25	0.495	75*75	0.211	vérifiée
étage 4	2952.8	25	0.394	65*65	0.188	vérifiée
étage 6	2212.6	25	0.295	55*55	0.163	vérifiée
étage 8	1481.6	25	0.198	45*45	0.133	vérifiée
étage 10	747.4	25	0.100	35*35	0.095	vérifiée

Avec:

$$B_c = \frac{N_d}{0.3 \times f_{c28}}$$

IV.7.3 : Vérification vis-à-vis des déplacements de niveaux :

Les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1.0 % de la hauteur de l'étage. Le déplacement relatif au niveau "k" par rapport au niveau "k-1" est égale à (Art 5.10)

$$\Delta_k = \delta_k - \delta_{k-1}$$

Avec: $\delta_k = R\delta_{ek}$

Tel que:

 δ_k : Déplacement horizontal à chaque niveau "k" de la structure donné par le (Art4.43).

 δ_{ek} : Déplacement dû aux forces sismiques Fi (y compris l'effet de torsion).

R : Coefficient de comportement.

Tableau IV- 8. Vérification des déplacements relatifs direction X.

Niveau	Load	h _{étage} (m)	$\delta_{ek}(m)$	R	$\delta_k(\mathbf{m})$	δ_{k-1} (m)	$\Delta_k(\mathbf{m})$	$\Delta_{kadm}(\mathbf{m})$	Observation
TERASSE	SPECTX	2.59	0.0401	3.5	0.14035	0.12005	0.02030	0.0259	vérifier
ET11	SPECTX	3.74	0.0343	3.5	0.12005	0.10885	0.01120	0.0374	vérifier
ET10	SPECTX	3.74	0.0311	3.5	0.10885	0.09625	0.01260	0.0374	vérifier
ЕТ9	SPECTX	3.74	0.0275	3.5	0.09625	0.08365	0.01260	0.0374	vérifier
ET8	SPECTX	3.74	0.0239	3.5	0.08365	0.07105	0.01260	0.0374	vérifier
ET7	SPECTX	3.74	0.0203	3.5	0.07105	0.05880	0.01225	0.0374	vérifier
ET6	SPECTX	3.74	0.0168	3.5	0.0588	0.04690	0.01190	0.0374	vérifier
ET5	SPECTX	3.74	0.0134	3.5	0.0469	0.03570	0.01120	0.0374	vérifier
ET4	SPECTX	3.74	0.0102	3.5	0.0357	0.02555	0.01015	0.0374	vérifier
ET3	SPECTX	3.74	0.0073	3.5	0.02555	0.01645	0.00910	0.0374	vérifier
ET2	SPECTX	3.74	0.0047	3.5	0.01645	0.00910	0.00735	0.0374	vérifier
ET1	SPECTX	4.25	0.0026	3.5	0.0091	0.00245	0.00665	0.0425	vérifier
RDC	SPECTX	4.25	0.0007	3.5	0.00245	0.0	0.00245	0.0425	vérifier

Tableau IV- 9. Vérification des déplacements relatifs direction Y

Niveau	Load	h _{étage} (m)	$\delta_{ek}(m)$	R	$\delta_k(\mathbf{m})$	$\delta_{k-1}(m)$	$\Delta_k(\mathbf{m})$	$\Delta_{kadm}(\mathbf{m})$	Observation
TERASSE	SPECTY	2.59	0.0438	3.5	0.1533	0.1358	0.0175	0.0259	vérifier
ET11	SPECTY	3.74	0.0388	3.5	0.1358	0.12285	0.01295	0.0374	vérifier
ET10	SPECTY	3.74	0.0351	3.5	0.12285	0.1078	0.01505	0.0374	vérifier
ET9	SPECTY	3.74	0.0308	3.5	0.1078	0.0931	0.0147	0.0374	vérifier
ET8	SPECTY	3.74	0.0266	3.5	0.0931	0.07875	0.01435	0.0374	vérifier
ET7	SPECTY	3.74	0.0225	3.5	0.07875	0.06475	0.014	0.0374	vérifier
ET6	SPECTY	3.74	0.0185	3.5	0.06475	0.05145	0.0133	0.0374	vérifier
ET5	SPECTY	3.74	0.0147	3.5	0.05145	0.03885	0.0126	0.0374	vérifier
ET4	SPECTY	3.74	0.0111	3.5	0.03885	0.02765	0.0112	0.0374	vérifier
ET3	SPECTY	3.74	0.0079	3.5	0.02765	0.01785	0.0098	0.0374	vérifier
ET2	SPECTY	3.74	0.0051	3.5	0.01785	0.0098	0.00805	0.0374	vérifier
ET1	SPECTY	4.25	0.0028	3.5	0.0098	0.0028	0.007	0.0425	vérifier
RDC	SPECTY	4.25	0.0008	3.5	0.0028	0.0	0.0028	0.0425	vérifier

IV.7.4 : Justification vis à vis de l'effet $P\Delta$:

L'excentricité des charges verticales résultant des déplacements relatifs des étages provoque dans les murs et les poteaux des efforts axiaux additionnels. Ce Phénomène est appelé \ll effet $P\Delta\gg$.

D'après l'article du RPA (5.9) les effets du 2° ordre (ou effet P Δ .) Peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous Les niveaux :

$$\theta$$
= P_k . Δ_k / V_k . h_k . < 0,10

Pk : poids total de la structure et des charges d'exploitation associées au-dessus du niveau«k»

Vk : effort tranchant d'étage au niveau "k"

Δk : déplacement relatif du niveau « k » par rapport au niveau «k-1»

Tableau IV- 10. *Vérification de l'effet P-∆*.

Niveau	h (m)	D (VN)		Direction	X-X		Direction	у- у
Miveau	$h_k(m)$	$P_{K}(KN)$	$\Delta_k(m)$	V _k (KN)	θ	$\Delta_k(m)$	V _k (KN)	θ
TERASSE	2.59	1195.66046	0.0203	507.28	0.01847381	0.0175	501.59	0.01610636
ET11	3.74	11591.2252	0.0112	2699.87	0.0128568	0.01295	2630.27	0.01525904
ET10	3.74	21640.3636	0.0126	4368.04	0.01669079	0.01505	4197.88	0.02074433
ET9	3.74	31768.2439	0.0126	5468.96	0.01956985	0.0147	5163.12	0.02418392
ET8	3.74	41990.1452	0.0126	6255.54	0.02261421	0.01435	5796.6	0.02779421
ET7	3.74	52404.7247	0.01225	6972.82	0.02461651	0.014	6376.67	0.0307633
ET6	3.74	63039.1041	0.0119	7709.91	0.02601573	0.0133	7019.12	0.03193798
ET5	3.74	73892.5634	0.0112	8441.48	0.02621371	0.0126	7702.59	0.03231937
ET4	3.74	85021.5326	0.01015	9161.14	0.02518685	0.0112	8414.02	0.0302602
ET3	3.74	96436.2338	0.0091	9894.1	0.02371558	0.0098	9172.92	0.02754781
ET2	3.74	108158.655	0.00735	10615.28	0.02002376	0.00805	9944.77	0.02340943
ET1	3.74	120323.243	0.00665	11205.82	0.0190922	0.0070	10596.74	0.02125219
RDC	4.25	143059.026	0.00245	11674.37	0.00706413	0.0028	11134.07	0.00846507

Remarque:

D'après les résultats obtenus dans le tableau ci- dessus, les efforts P-Δ peuvent être négligés.

IV.7.5 : Vérification de l'excentricité

A chaque niveau et pour chaque direction de calcul, la distance entre le centre degravité des masses et le centre des rigidités ne dépasse pas 15% de la dimension du bâtiment mesurée perpendiculairement à la direction de l'action sismique considérée.

Excentricité théorique:

 E_X =XCM-XCR E_Y =YCM-YCR L_x =56.1 m L_y = 44 m

Tableau IV .4 : Vérification de l'excentricité

		DIRECTI	ON X-X			DIRECTI	ON Y-Y	
Niveau	XCCM	XCR	Excentricité	%	YCCM	YCR	Excentricité	%
TERASSE	40.513	39.737	0.776	1.38	34.345	32.997	1.348	3.06
ET11	36.81	34.819	1.991	3.55	27.957	26.569	1.388	3.15
ET10	36.974	34.725	2.249	4.01	27.914	26.451	1.463	3.33
ET9	37.033	34.614	2.419	4.31	27.898	26.286	1.612	3.66
ET8	37.063	34.481	2.582	4.60	27.89	26.079	1.811	4.12
ET7	37.081	34.328	2.753	4.91	27.884	25.845	2.039	4.63
ET6	37.092	34.149	2.943	5.25	27.879	25.591	2.288	5.20
ET5	37.097	33.946	3.151	5.62	27.878	25.33	2.548	5.79
ET4	37.101	33.716	3.385	6.03	27.875	25.079	2.796	6.35
ET3	37.104	33.462	3.642	6.49	27.871	24.872	2.999	6.82
ET2	37.106	33.203	3.903	6.96	27.869	24.787	3.082	7.00
ET1	37.108	33.02	4.088	7.29	27.865	25.063	2.802	6.37
RDC	36.301	33.138	3.163	5.64	27.146	26.395	0.751	1.71

IV.7.6 : Vérification de renversement :

Cette condition d'équilibre se réfère à la stabilité d'ensemble du bâtiment ou de l'ouvrage, soumis à des effets de renversement. Pour que le bâtiment soit stable au renversement il doit vérifier la relation suivante :

$$\frac{M_S}{M_R} > 1.5$$

Elle se traduit par la vérification dans les deux direction (longitudinal et transversal)

$$\sum_{i}^{n} = F_{i} \times h_{i}$$

Suivant x \mathbf{M}_{sx} = $\mathbf{W} \times \mathbf{X}_0$ Suivant y \mathbf{M}_{sy} = $\mathbf{w} \times \mathbf{Y}_0$

• (X₀, Y₀) coordonnées du centre de gravité (la valeur la plus petite)

• . W : Poids du bâtiment

• Fi : Force sismique au niveau i

• hi : hauteur du niveau 1

Tableau IV .5: vérification de la stabilité au renversement (X-X)

Niveau	Vx (KN)	Fx (KN)	h (m)	W (KN)	Xg (m)	Mr (KN)	Ms (KN)	Vérification
TERASSE	507.28	507.28	48.49	270403.12	18.9	24598.01	5353981.7	vérifier
ET11	2699.87	2192.59	45.9	270403.12	18.9	100639.88	5353981.7	vérifier
ET10	4368.04	1668.17	42.16	270403.12	18.9	70330.05	5353981.7	vérifier
ЕТ9	5468.96	1100.92	38.42	270403.12	18.9	42297.35	5353981.7	vérifier
ET8	6255.54	786.58	34.68	270403.12	18.9	27278.59	5353981.7	vérifier
ET7	6972.82	717.28	30.94	270403.12	18.9	22192.64	5353981.7	vérifier
ET6	7709.91	737.09	27.2	270403.12	18.9	20048.85	5353981.7	vérifier
ET5	8441.48	731.57	23.46	270403.12	18.9	17162.63	5353981.7	vérifier
ET4	9161.14	719.66	19.72	270403.12	18.9	14191.70	5353981.7	vérifier
ET3	9894.1	732.96	15.98	270403.12	18.9	11712.70	5353981.7	vérifier
ET2	10615.28	721.18	12.24	270403.12	18.9	8827.24	5353981.7	vérifier
ET1	11205.82	590.54	8.5	270403.12	18.9	5019.59	5353981.7	vérifier
RDC	11674.37	468.55	4.25	270403.12	18.9	1991.34	5353981.7	vérifier

Tableau IV .6: vérification de la stabilité au renversement (Y-Y)

Niveau	Vy (KN)	Fy (KN)	h (m)	W (KN)	Yg (m)	Mr (KN)	Ms (KN)	Vérification
TERASSE	501.59	501.59	48.49	270403.12	16.1	24322.10	4353490.23	vérifier
ET11	2630.27	2128.68	45.9	270403.12	16.1	97706.41	4353490.23	vérifier
ET10	4197.88	1567.61	42.16	270403.12	16.1	66090.44	4353490.23	vérifier
ET9	5163.12	965.24	38.42	270403.12	16.1	37084.52	4353490.23	vérifier
ET8	5796.6	633.48	34.68	270403.12	16.1	21969.09	4353490.23	vérifier
ET7	6376.67	580.07	30.94	270403.12	16.1	17947.37	4353490.23	vérifier
ET6	7019.12	642.45	27.2	270403.12	16.1	17474.64	4353490.23	vérifier
ET5	7702.59	683.47	23.46	270403.12	16.1	16034.21	4353490.23	vérifier
ET4	8414.02	711.43	19.72	270403.12	16.1	14029.40	4353490.23	vérifier
ET3	9172.92	758.9	15.98	270403.12	16.1	12127.22	4353490.23	vérifier
ET2	9944.77	771.85	12.24	270403.12	16.1	9447.44	4353490.23	vérifier
ET1	10596.74	651.97	8.5	270403.12	16.1	5541.74	4353490.23	vérifier
RDC	11134.07	537.33	4.25	270403.12	16.1	2283.65	4353490.23	vérifier

Conclusion:

Plusieurs dispositions ont été considerées afin d'arriver à satisfaire toutes les exigences du RPA, car l'aspect architectural a été un véritable obstacle pour la disposition des voiles.

Mais finalement, nous avons obtenu une disposition qui nous a donné un bon comportement dynamique de la structure

CHAPITRE V FERAILLAGE DES ELEMENT PRINCIPAUX

V.1.Introduction:

Ce Chapitre qui est à venir est l'objectif principal de toute notre étude et dans lequel nous allons déterminé les sections d'armatures nécessaires dans chaque élément sous la sollicitation la plus défavorable issue du chapitre précédant.

Une construction en béton armé demeure résistante avant et après séisme grâce à ces éléments principaux. En conséquence ces derniers doivent être bien armés (ferrailler) et bien disposés pour qu'ils puissent reprendre tous genres de sollicitations.

Les sollicitations à prendre en considération pour le calcul du ferraillage sont imposées par le **BAEL 91**,et le **RPA 99V2003** et le **CBA93** de façon à prévoir les efforts les plus défavorables contre lesquels la structure sera amenée à résister.

Notre structure dans sa globalité est constituée de trois types d'éléments structuraux qui sont, les poutres soumises à la flexion simple dans un plan, les poteaux soumis à la flexioncomposée dans les deux plans et les voiles soumis à la flexion composée dans un seul plan.

V.2 : Etude de la température :

D'après l'article A.3.1.3.3 du C.BA 93, en ce qui concerne les constructions courantes on doit tenir compte des effets du retrait et des variations de température pour les constructions qui dépassent les 30m dans les wilayas côtières.

- En ce qui concerne notre bâtiment, une étude de température est obligatoire, et pour cela une modélisation a été faite sous les combinaisons suivantes :

ELU: 1.35 G + 1.35 Q + 0.8 T

ELS: G + O + 0.6 T

D'après l'article A.3.1.3.3 du C.BA 93, à défaut de justifications plus précises, on adopte, pour les constructions situées à l'air libre, des variations uniformes de température suivantes :

- Algérie du Nord :

Température extrême : +35oC et -15oC

Les déformations linéaires à considérer, entre les températures initiales moyennes au moment de la réalisation de l'ouvrage (généralement comprises entre $+10^{\circ}$ C et $+25^{\circ}$ C) et les températures extrêmes peuvent être évaluées en admettant un coefficient de dilatation du béton égal à 1×10^{-5} par °C.

$$TP = +25^{\circ}C \ TN = -35^{\circ}C$$

V.3 : Etude des poteaux :

Les poteaux sont des éléments structuraux assurant la transmission des efforts des poutres vers les fondations, est soumis à un effort normal "N" et à un moment de flexion "M" dans les deux sens longitudinal, transversal. Donc ils sont calculés en flexion composée.

Les sollicitations sont obtenues à l'aide du logiciel ETABS. Les efforts que nous avons pris pour le calcul sont les suivants :

$$\begin{cases} N_{max} \longrightarrow M_{corr} \\ M_{max} \longrightarrow N_{corr} \\ N_{min} \longrightarrow M_{corr} \end{cases}$$

Les combinaisons de RPA 99:

 $G + Q \pm E$

 $0.8G \pm E$

Les combinaisons de BAEL 91:

L'ELU: 1,35G +1.5 Q

L'ELS: G + Q

Les armatures seront calculées sous l'effet des sollicitations les plus défavorables suivant les deux sens et dans les situations suivantes :

- o Situation durable (BAEL).
- o Situation accidentelle (RPA).

V.3.1 : Caractéristiques des matériaux :

Tableau V.1 : Caractéristiques de calcul en situation durable et accidentelle

Matériaux	Caractéristiques	Situation durable	Situation accidentelle	
	f _{c28} Mpa	25	25	
béton	γь	1,5	1,15	
	σ_{b} Mpa	14,17	18,48	
	f _e Mpa	500	500	
acier	$\gamma_{ m s}$	1,15	1	
	σ_{s} Mpa	435	500	

> Armatures longitudinales :

• Recommandation du RPA (V2003.art7.4.2):

Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets, leur pourcentage **minimal** sera de :

0,9% de la section du béton en zone III qui veux dire Amin= 0.009(bxh).

Leur pourcentage maximal sera de

4% de la section de béton en zone courante.

- 6% de la section du béton en zone de recouvrement.

Le diamètre minimum est de 12mm.

La longueur minimale des recouvrements est de 50φ en zone III

La distance entre les barres verticales dans une face du poteau ne doit pas dépasser :

20 cm en zone II Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales (zones critiques).

• Recommandation du BAEL99 :

$$\begin{cases} A_{\min} = \max\left(4cm^2/ml, \frac{2B}{1000}\right) \\ A_{\max} = \frac{5B}{100} \end{cases}$$
 Avec: B est la section du poteau.

Recommandation du CBA :

$$A_{CNF} \ge \frac{0.23 b_0.d.f_{t28}}{f_e}$$
 Avec : d= 0.9h

Tableau.V.2: Ferraillage maximal et minimal.

	BAE	L 91	CBA 93	RPA99/V2003				
Section	Amin (cm²)	Amax (cm ²)	ACNF (cm ²)	Amin (cm²)	Amax(cm²) Zone courante	Amax(cm²) zone recouvrement		
90*90	16.2	405	7.04	72.90	324	486		
85*85	14.45	361.25	6.28	65.03	289	433.5		
80*80	12.8	320	5.56	57.60	256	384		
75*75	11.25	281.25	4.89	50.63	225	337.5		
65*65	8.45	211.25	3.67	38.03	169	253.5		
55*55	6.05	151.25	2.63	27.23	121	181.5		
45*45	4.11	102.75	1.76	18.50	82.2	123.3		
35*35	2.45	61.25	1.07	11.03	49	73.5		

Les résultats des efforts et ferraillage des poteaux sont représentés dans le tableau suivant :

Tableau V.3. Sollicitations et ferraillage dans les poteaux :

zone	N(KN.m)	M (KN.m)	Section (cm ²)	A _{cal} (cm ²)	A _{RPA} (cm ²)	choix	A _{adp} (cm ²)
	N _{min} = -46.41	$M_{cor} = 37.532$		1.58			78.56
1	N _{max} = 7171.94	$M_{cor} = -8.206$	90 X 90	0	72.9	16HA25	
	$N_{cor} = 130.41$	$M_{max} = 42.623$		0			
	N _{min} = -42.84	$M_{cor} = 195.687$	v.	5.5			
2	N _{max} = 6281.76	$\mathbf{M_{cor}} = \ 0.642$	8 × 85	0	65.025	16HA25	78.56
	$N_{cor} = 2723.47$	$M_{max} = 233.644$	88	0			
	N _{min} = 38.88	$M_{cor} = -21.455$	0	0.15			
3	N _{max} = 5401.76	$M_{cor} = 11.565$	80 X 80	0	57.6	16НА25	78.56
	$N_{cor} = 246.03$	$M_{max} = 440.714$) %	9.46			
	$N_{min} = 473.84$	$\mathbf{M_{cor}} = 10.34$	75 X 75	0	50.625	16HA25	78.56
4	N _{max} = 4905.05	$M_{cor} = 8.143$		0			
	$N_{cor} = 1930.67$	$M_{max} = -148.752$		0			
	N _{min} = 334.18	$M_{cor} = 21.031$	99	0	38.025	16HA20	50.24
5	$N_{max} = 3937.41$	$\mathbf{M_{cor}} = \ 7.106$	9 X S9	0			
	$N_{cor} = 2772.36$	$M_{max} = -143.318$	99	0			
	N_{min} = 228.01	$\mathbf{M_{cor}} = 30.275$	55	0		4HA20 +8HA16	28.64
6	N _{max} = 3016.17	$M_{cor} = 7.315$	55 X	0	27.225		
	$N_{cor} = 2104.68$	$M_{max} = -150.822$	W)	0			
	N _{min} = 145.08	$M_{cor} = 32.038$	45	0			
7	$N_{max} = 2132.47$	$\mathbf{M_{cor}} = 7.552$	45 X 4:	0	18.495	12HA16	24.12
	$N_{cor} = 1469.01$	$M_{max} = -148.612$	4	0			
	N _{min} = 36.6	$M_{cor} = 45.457$	35	2.62	11.03		
8	N _{max} = 846.64	$M_{cor} = 5.633$	×	0		8HA14	12.32
	$N_{cor} = 307.02$	$M_{\text{max}} = -117.373$	35	5.96			

.Exemple de calcul :

Soit le poteau de (90x90)(cm²):

$$S=90x90(cm^2)$$
.

$$h = 2.89m$$
.

$$f_{\text{bu}}$$
=14,2Mpa.

$$1^{er}$$
 cas : Nmax =7171.94 KN; M_{2corr} =8.206 KN.m

 $\mathbf{e_a}$: excentricité additionnelle traduisant les imperfections géométriques initiales (après exécution).

$$e_a$$
= max (2 cm; 1/250) = max (2 cm; 1,15cm) \Rightarrow e_a = 2cm=0,02m.

e₁: excentricité du premier ordre de la résultante des contraintes normales avant application des excentricités additionnelles.

$$\Rightarrow$$
 e₁=M_{corr} /N_{max} =0,0011m.

 $\mathbf{e_2}$: excentricité due aux effets du second ordre.

On pourra utiliser la méthode forfaitairesi.

$$\frac{l_f}{h} \le Max \left(15, \frac{20 \times e_1}{h}\right)$$

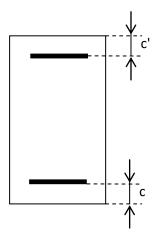
l_f: longueur de flambement du poteau.

$$1f = 0$$
, $7 l_0 = 0$, $7 \times 2,89 = 2,023$ m.

La méthode forfaitaire est applicable.

$$e_2 = \frac{3 \times l_f^2}{10000 \times h} \left(2 + \alpha \phi \right)$$

$$\alpha = 10(1-(M_u/1,5.M_s))=0.61$$


$$e_2 = 0,00072$$
m.

$$e = (e_1 + e_a + e_2) = 0.0011 + 0.02 + 0.0007 = 0.0218 \text{ m}.$$

$$Mu_{corr} = N_u \times e = 7171.94 \times 0,0218 = 156.34 KN.m.$$

Les efforts corrigés seront :

$$M_{ua} = Mu_{corr} + N_u \times (d-(h/2)) = 156.34 + 7171.94 \times (0.81 - 0.45) = 2666.41 \text{KN.m.}$$

$$\mu_{bu} = \frac{M_{ua}}{b \times d^2 \times f_{bu}}$$

$$\mu_{bu} = 0.317$$

$$\mu_{\rm bc} = 0.8 \frac{h}{d} \left(1 - 0.4 \frac{h}{d} \right)$$

$$\mu_{bc} = 0.493$$

 $\mu_{bu} < \mu_{bc} \Rightarrow$: Section partiellement comprimée

Donc on a $\mu_{lu}=0.39 \ge \mu_{bu} \Longrightarrow A'=0$.

$$\alpha = 1,25\left(1 - \sqrt{1 - 2\mu_{bu}}\right)$$

$$\alpha = 0.493$$

$$Z = d(1 - 0, 4\alpha)$$

Z=68.04 cm

$$f_{\rm ed} = \sigma_s = \frac{f_e}{\gamma_s} = 435 \text{ MPa}$$

$$A_u = M_{ua}/Z\sigma_s = 2666.41 \times 10^6/68 \times 10 \times 435 = 0.8755 \text{cm}^2$$
.

$$A^{fc} = A_u - (Nu/f_{ed}) = 0.8755 - ((7171.94 \times 10^4 \times 10^{-3})/435) = -15.61 \text{cm}^2 \Rightarrow A_s = 0 \text{cm}^2$$
.

Les mêmes opérations pour les autres cas.

> Armatures transversales :

Le rôle des armatures transversales consiste à :

- o Empêcher les déformations transversales du béton et le flambement des armatures longitudinales.
- o Reprendre les efforts tranchants et les sollicitations des poteaux au cisaillement.
- o Maintenir les armatures longitudinales.

Recommandation du R.P.A:

Les armatures transversales des poteaux sont calculées à l'aide de la formule suivante :

$$\frac{A_t}{S_t} \ge \frac{\rho_a . V_u}{h. f_e}$$

 V_u : Effort tranchant de calcul.

h: Hauteur totale de la section brute.

 f_e : Contrainte limite élastique d'acier d'armature transversales.

 ρ_a :Coefficient correcteur (tient compte de la rupture).

$$\begin{cases} \boldsymbol{\rho_a} = 2.5 \dots \dots si\lambda_g \geq 5 \\ \boldsymbol{\rho_a} = 3.75 \dots \dots si\lambda_g < 5 \end{cases}$$
 $(\lambda_g: \text{L'\'elancement g\'eom\'etrique du poteau}) = \left[\frac{l_f}{a}ou\frac{l_f}{b}\right]$

Avec : $l_{f=}$ 0.7 h

a et b : sont les dimensions de la section du poteau.

 S_t : est l'espacement des armatures transversales

$$\label{eq:Zone III} \begin{cases} t \leq 10 \text{ cm zone nodale} \\ t \leq \text{Min} \left(\frac{b}{2}; \frac{h}{2}; \ 10 \emptyset \right) ... \ \text{.... zone courante} \end{cases}$$

 \emptyset : Diamètre minimal des armatures longitudinales La zone nodale est définie par l et h tel que :

$$l' = 2h$$
 $h' = \max(\frac{h_e}{6}, b_1, h_1, 60cm)$

A' t h₁ h₁ Coune A-A'

Figure V.1: zone nodale

La quantité d'armatures transversales minimales :

$$\begin{cases} 0.3 \% & \text{Si } \lambda_{g} \ge 5 \\ \frac{A_{t}}{St.b} 0.8 \% & \text{Si } \lambda_{g} \le 3 \end{cases}$$

Par l'interpolation si : $3 < \lambda_g < 5$

Exemple de calcul:

Sois le poteau de section 90x90

On a adopté S_t =10 cm dans la zone nodale et S_t = 15cm dans la zone courante

***** zone nodale :

$$\begin{split} l_f &= 0.7 h_e = 0.7 \times 2.89 = 2.023 m \\ \lambda_g &= \frac{l_f}{a} = \frac{2.023}{0.9} = 2.24 \longrightarrow \lambda_g < 3 \longrightarrow \rho_a = 2.5 \\ A_t &= \frac{2.5 \times 84.45 \times 10^3}{90 \times 500 \times 10^2} \times 10 = 1.168 \text{ cm}^2 \end{split}$$

zone courante :

$$\begin{split} l_f &= 0.7 h_e = 0.7 \times 2.89 = 2.023 m \\ \lambda_g &= \frac{l_f}{a} = \frac{2.023}{0.9} = 2.24 \longrightarrow \lambda_g < 3 \longrightarrow \rho_a = 2.5 \\ A_t &= \frac{2.5 \times 84.45 \times 10^3}{90 \times 500 \times 10^2} \times 15 = 1.752 \text{ cm}^2 \end{split}$$

 ${\bf Tableau~V.4: Ferraillage~transversal}$

	Section (cm²)	l_f (cm)	$\lambda_{ m g}$	$ ho_a$	V _u (KN)	ZONE	<i>S_t</i> (cm)	A _{cal} (cm²)	A _{min} (cm²)	choix	A_{adp} (cm²)
Zone	06x06	1.708	1.89	3.75	84.45	Nodale	9	1.17	- 6.48	6HA12	6.78
1	903		1.03	3.73	04.43	Courante	9	1.13	0.40	OTAL	0.76
	16	1.708	2.01	3.75		Nodale	10	0.34			
Zone	85x85	1.708	2.01		25.19	Courante	10	0.34	6.8	6HA12	6.78
2	853	2.1	2.47	3.75	23.13	Nodale	10	0.29	0.0		
		2.1	2.77			Courante	10	0.29			
Zone	083	2.00	2 22	3.75	120.62	Nodale	10	2.58	C 4	6HA12	6.78
3	80x80	2.66 3.32	3.32		128.62	Courante	10	2.58	6.4		
Zone	75	2.303 3.0	2.07	3.75	72.88	Nodale	10	1.46	- 6	6HA12	6.78
4	75x75		3.07			Courante	10	1.46			
Zone	99	2.303 3.5	3 254	3.75	75 82.59	Nodale	10	1.66	4.55	6HA10	4.74
5	9xe9		3.54			Courante	10	1.66			
Zone	355	2.303	4.18	3.75	02.27	Nodale	10	1.67	2.75	6HA8	3.01
6			4.16		83.37	Courante	10	1.67			
Zone	Zone 4	2.303 5.11	2.5	60 71	Nodale	10	1.38	2.00	61140	3.0.	
7	45x45			68.71	Courante	15	2.07	2.02	6HA8		
	10	a 2.303 6.58 2.5	2.5		Nodale	10	0.75				
Zone	3.	2.303	0.36	3.75	68.75	Courante	10	0.75	1.57	4HA8	2.01
8	35x35	1.49	4.28			Nodale	10	1.08			2.01
	-	2.15	20	3.73		Courante	10	1.08			

Détermination de la zone nodale :

La zone nodale est constituée par le nœud poutre-poteaux proprement dit et les extrémités des barres qui y concourent. Les longueurs à prendre en compte pour chaque barre sont données dans le tableau ci-dessous :

Section	h _e (m)	$h' = Max\left(\frac{h_e}{6}; b_1; h_1; 60cm\right)$
Poteaux (90x90)	2.89	(48.2; 55; 55; 60) = 100cm
Poteaux (85x85)	3.45	(57.5; 50; 50; 60) = 100cm
Poteaux (80x80)	4.25	(70.83; 45; 45; 60) = 100cm
Poteaux (75x75)	3.74	(62.33; 40; 40; 60) = 100cm
Poteaux (65x65)	3.74	(62.33; 40; 40; 60) = 100cm
Poteaux (55x55)	3.74	(62.33; 40; 40; 60) = 100cm
Poteaux (45x45)	3.74	(62.33; 40; 40; 60) = 100cm
Poteaux (35x35)	3.74	(62.33; 40; 40; 60) = 100cm

❖ Longueurs de recouvrement : (Art 7.5.2.1 RPA99 modifié 2003) :

Pour les HA20 : $L_T = 50\emptyset = 50 \times 2 = 100 \text{ cm}$

Pour les HA16 : $L_T = 50\emptyset = 50 \times 1.6 = 80$ cm

Pour les HA14 : $L_T = 50\emptyset = 50 \times 1.4 = 70 \text{ cm}$

❖ La longueur de scellement droit (Art A6.1.23 BAEL 91) :

$$L_s = \frac{\emptyset f_e}{4\tau_{su}} \tau_{su} = 0.6 \Psi_s^2 f_{t28} f_{t28} = 0.6 + 0.06 f_{c28}$$

 $\Psi_s = 1.5$ pour les aciers haute adhérence

Pour les HA20 :
$$L_s = \frac{2 \times 50000}{4(0.6 \times 1.5^2 \times 210)} = 88.18 \text{ cm}$$
 On prend : $Ls = 90 \text{ cm}$

Pour les HA16 :
$$L_s = \frac{1.6 \times 50000}{4(0.6 \times 1.5^2 \times 210)} = 70.54 \text{ cm}$$
 On prend : **Ls = 75 cm**

Pour les HA14 :
$$L_s = \frac{1.4 \times 50000}{4(0.6 \times 1.5^2 \times 210)} = 61.72 \text{ cm}$$
 On prend : **Ls = 65 cm**

V3.2 : Les Vérifications :

> Vérification des contraintes de cisaillements

Selon le RPA99/V2003 (Art 7.4.3.2), la contrainte de cisaillement dans le béton doit être inférieure ou égale à la contrainte de cisaillement ultime :

$$\tau_{bu} = \frac{V}{b \times d} \le \bar{\tau}_{bu} = \rho_d \times f_{c28}$$

Avec:

$$\rho_d = \begin{cases} 0.075 \ si\lambda_g \ge 5 \\ 0.04 \ si\lambda_g < 5 \end{cases}$$

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau V- 5. Vérification des contraintes de cisaillements :

	Section (cm ²)	$\lambda_{ m g}$	$ ho_d$	d (cm)	V (KN)	τ _{bu} (MPa)	τ̄ _{bu} (MPa)	Observation
Zone 1	90x90	2.24	0.04	81	84.45	0.116	1	vérifieé
Zone 2	85x85	2.84	0.04	76.5	25.19	0.039	1	vérifieé
Zone 3	80x80	3.71	0.04	72	128.62	0.223	1	vérifieé
Zone 4	75x75	3.49	0.04	67.5	72.88	0.144	1	vérifieé
Zone 5	65x65	4.02	0.04	58.5	82.59	0.217	1	vérifieé
Zone 6	55x55	4.76	0.04	49.5	83.37	0.306	1	vérifieé
Zone 7	45x45	5.81	0.075	40.5	68.71	0.377	1.875	vérifieé
Zone 8	35x35	7.48	0.075	31.5	68.75	0.624	1.875	vérifieé

> Vérification de l'effort normal ultime :

Selon le CBA93 (art.8.4.1), les éléments soumis à la flexion composée doivent être justifiévis-à-vis de l'état limite ultime de stabilité de forme (flambement). La vérification se fait pour le poteau le plus sollicité :

$$N_d \le N_u = \alpha \times \left[\frac{\text{Br} \times f_{c28}}{0.9 \times \gamma_h} + \frac{A_s \times f_e}{\gamma_s} \right]$$

α : coefficient en fonction de l'élancement

Br: Section réduite du béton.

As: est la section d'acier comprimée prise en compte dans le calcul.

Calcule de α :

$$\begin{cases} \alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \dots \dots pour \ 0 \le \lambda \le 50 \\ \alpha = 0.6 \left(\frac{50}{\lambda}\right)^2 \dots pour \ 50 \le \lambda \le 70 \end{cases}$$

Avec
$$\lambda = \sqrt{\frac{l_f}{i}}$$
 et $i = \sqrt{\frac{I}{A}}$

Les résultats des vérifications des poteaux au flambement sont récapitulés dans le tableau suivant :

 $\mathbf{B_r} (\mathbf{m}^2)$ $N_u(KN)$ Observation $N_d(KN)$ Zone **b** (**m**) **h** (**m**) $l_{\rm f}$ (m) Λ $N_d \leq N_u$ (cm²)2.89 0.9 2.023 8.208 0.812 80.4 0.7569 10526.19 7177.94 1 vérifier 2 2.415 10.675 0.801 80.4 0.6724 9258.04 vérifier 3.45 0.85 6281.76 3 4.25 0.8 2.975 14.403 0.785 61.6 0.5929 7971.04 5401.76 vérifier 2.618 13.963 0.5184 7012.17 4905.05 4 3.74 0.75 0.787 61.6 vérifier 3.74 0.65 2.618 17.306 0.774 48.24 0.3844 5117.84 3937.41 5 vérifier 22.234 3.74 0.55 2.618 0.754 28.64 0.2704 3492.75 3016.17 6 vérifier 7 3.74 0.45 2.618 30.043 0.725 24.12 0.1764 2208.93 2132.47 vérifier

0.724

12.32

0.1024

1275.18

846.64

Tableau.V.6.Vérification de l'effort normal ultime

Vérification des contraintes :

1.813

0.35

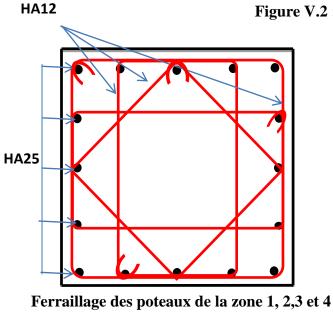
La fissuration est peu préjudiciable on vérifie seulement la contrainte dans le béton.

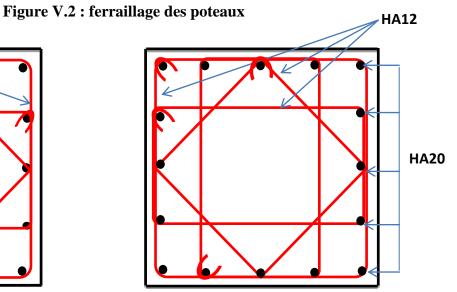
Le calcul se fait pour le cas le plus défavorable. $\sigma_{bc} \le \overline{\sigma_{bc}} = 0,6.f_{c28} = 15 \text{ Mpa}$

30.331

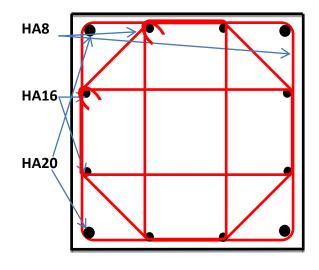
$$\operatorname{avec}\sigma_{bc} = \frac{N_{ser}}{S} + \frac{M_{ser}}{I}$$

2.59

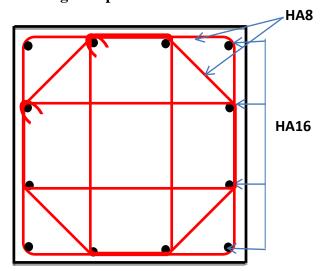

8

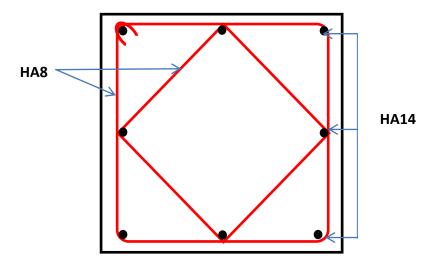

vérifier

Les résultats de calcul sont regroupés dans le tableau ci-après :


Tableau V-7: Vérification des contraintes dans les poteaux.

	Section	Nser(KN)	Mser(KN)	σ _{bc} (MPa)	$\overline{\sigma}_{ extsf{bc}}$ (MPa)	Observation $\sigma_{bc} < \overline{\sigma}_{bc}$
Zone 1	90x90	5185.15	-18.204	5.02	15	oui
Zone 2	85x85	4543.75	44.121	4.94	15	oui
Zone 3	80x80	3908.43	-149.533	5.75	15	oui
Zone 4	75x75	3189.72	64.727	4.76	15	oui
Zone 5	65x65	2508	69.028	5.24	15	oui
Zone 6	55x55	1857.05	70.397	6.29	15	oui
Zone 7	45x45	1229.93	65.226	6.84	15	oui
Zone 8	35x35	615.65	66.671	13.3	15	oui




Ferraillage des poteaux de la zone 5

Ferraillage des poteaux de la zone 6

Ferraillage des poteaux de la zone 7

Ferraillage des poteaux de la zone 8

V.4: Etude des poutres:

V.4.1:Introduction:

Les poutres sont des éléments porteurs horizontaux en béton avec armatures incorporées. Elles transmettent les charges aux poteaux.

Le ferraillage des poutres sera déterminé en flexion simple à l'état limite ultime « E.L.U » puis vérifié à l'état limite de service « E.L.S ».

Les poutres sont sollicitées en flexion simple sous un moment fléchissant et un effort tranchant. Pour le ferraillage on doit respecter le pourcentage minimal d'armatures imposées par le « RPA99 » en zone III.

Les combinaisons à prendre en compte pour les poutres sont :

V.4.2: Recommandation du RPA99 (version 2003):

- **Armatures longitudinales : (RPA99 / version 2003) :**
- Le pourcentage total des aciers longitudinaux sur toute la longueur de la poutre est de 0,5%b.h
- Le pourcentage maximum des aciers longitudinaux est de :

• La longueur minimale de recouvrement est de :

$$\begin{cases} 40\phi & \text{en zone I et II}_a \\ \\ 50\phi & \text{en zone II }_b \text{ et III} \end{cases}$$

• L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué avec des crochets à 90°.

❖ Armatures transversales : (RPA99 / version 2003) :

- La quantité minimale des armatures transversales est donnée par: $A_t = 0,003.S.b.$
- L'espacement maximal entre les armatures transversales est déterminé comme suit: dans la zone nodale et en travée si les armatures comprimées sont nécessaires est :

$$S_t = min (h / 4; 12\phi_l)$$

Avec: ϕ_1 : c'est la valeur du diamètre minimal des armatures longitudinales.

En dehors de la zone nodale : $S_t \le h / 2$

• Les premières armatures transversales doivent être disposées à 5cm au plus du nu de l'appui ou de l'encastrement.

V.4.3: Recommandation du BAEL 91:

Armatures longitudinales:

Les armatures minimales longitudinales sont données par la condition de non fragilité.

$$A = 0.23 b_0 d \frac{f_{t28}}{f_e}$$

Armatures transversales:

La section minimale At doit vérifier :

$$A_t \ge \frac{S_t}{0.9f_e} \times b \times \gamma_s \times (\tau u - k f_{tj})$$

Avec: b: largeur de la poutre.

St: l'espacement des cours d'armatures transversales.

V.4.4 : Calcul les poutres intérieur:

> Armature longitudinales:

Dans le cas d'une flexion simple on a les étapes de calcul suivantes:

A_s: section des aciers tendus ou le moins comprimés selon le cas.

A's: section supérieure la plus comprimée.

On calcule le moment réduit:

$$\mu_{bu} = M_u / b.d^2.F_{bu} \text{ avec } F_{bu} = 0.85.f_{c2.8}/\theta.\gamma_b$$
 $\mu_{bu} < \mu_{lu} = As = 0$

 μ_{bu} < 0.275 => méthode simplifiée

$$Z=d (1-0.4 \mu_{bu})$$

$$A_S = Mu / (Zb. \sigma s)$$
.

Recommandations complémentaires du RPA99/ v 2003 :

Les pourcentages total minimum des aciers longitudinaux est de :

• **Poutres principale :** A min = 0.5% (b.h) = 0.005.30.50 = 7.5cm²

• **Poutres secondaires :** A min = 0.5 % (b.h) = $0.005.30.45 = 6.75 \text{cm}^2$

Le pourcentage maximale des aciers longitudinaux est de :

• Poutres principales :

$$4\%$$
 (b.h) = $0.04.45.35 = 60$ cm² (en zone courante).

$$6\%$$
 (b.h) = $0.06.45.35 = 90$ cm² (en zone de recouvrement).

• Poutres secondaires :

$$4\%$$
 (b.h) = $0.04.35.30 = 54$ cm² (en zone courante).

6 % (b.h) =
$$0.06.35.30 = 81 \text{cm}^2$$
 (en zone de recouvrement).

La longueur minimale de recouvrement:

La longueur minimale de recouvrement en zone III : $L_{r min} = 50\phi$

Pour
$$\emptyset = 20 \text{ mm} \rightarrow lr = 50 \times 2.0 = 100 \text{cm}$$

Pour
$$\emptyset = 16 \text{ mm} \rightarrow lr = 50 \times 1.6 = 80 \text{cm}$$

Pour
$$\emptyset = 14 \text{ mm} \rightarrow lr = 50 \times 1.4 = 40 \text{ cm}$$

Pour
$$\emptyset = 12 \text{ mm} \rightarrow lr = 50 \times 1.2 = 60 \text{ cm}$$

PLAN DE REPIRAGE DES POUTRES:

										_
₄ B242 928 938	881 86 8	B241 B82	## PB83	B122 B84	გ8212 წ	-В213 823 В	914 B87	B154 888	%B214 ₩	B238
₉ В243 95В	_B71 _68	8105 B15	EB73	-B74 -B74	8208 B208	_в 209 8209	8145 B145	B18 B28	-B210 B4 B210	B237
B244 B244	_B61 	B104 B65	5HB 863	0864 864	8204 84 84 84 84 84 84 84 84 84 84 84 84 84	B205 B205	44 B67	B152 B98	_B206 ⊞	B236
B246 B246	B51 S68	8103 B52	E _{B53}	₆ B54 E m	P127 B200	B201 B201	⁶ 857	B151 B28	€B202	B235
₆ B245 828	₽841 B41	20FB B42	₽ ^{B43}	8 ^{B44} ₩	98196 B196	B197 B197	242 B47	05P8 B48	₆ B198 ⊞	B234
В247 В282 В247	В31	E _{B35}	⁸ B33	⊱ _{B34}	8192 B192	₽193 В 193	₽ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	⁸¹⁴ B38	2518 B194	B233
B248 B248	B21 B83	9 _{B55}	[®] B23	9B24 ₩	B188 B188	B224 B189	ò	₽ 828	₉ B190	B232
B249 B38	B11 68	B12 66 8	^{B253}	B14 B14	B184 B184	В185 В23	გ В17 В	P147 P18	B186	B231
B250	X _{B1}	B2	B251	B252	B180	B181	В7	В8	B182	2

Les résultats de calcul sont regroupés dans le tableau suivant:

Tableau V.8 : Ferraillagelongitudinal des poutres intérieur

	Poutres principales non liées aux voiles								
moment		Poutre;	combinaison	pinaison A_{min} (cm ²) A_{s} (cm ²) A_{adopt}		A _{adoptèe}	Choix des barres		
M _a (KN)	-187.10	B48	ELA	7.5	8.71	9.42	3HA20		
M _t (KN)	M _t (KN) 112.10 B190 ELU 7.5 5.87 9.42 3HA20								

	Poutres principales liées aux voiles							
moment		Poutre;	combinaison A_{min} (cm ²) A_{s} (cm ²) A_{adop}		A _{adoptèe}	Choix des barres		
M _a (KN)	-311.54	B58	ELA	7.5	15.56	18.84	6HA20	
M _t (KN)	M _t (KN) 125.68 B210 ELU 7.5 6.61 9.42 3HA20							

	Poutres secondaire non liées aux voiles								
moment		Poutre;	Poutre; combinaison A_{min} (cm ²) A_{min} (cm ²)		A _{adoptèe}	Choix des barres			
M _a (KN)	-119.22	B159	ELA	6.75	6.07	9.42	3HA16+ 3HA12		
M _t (KN)	M _t (KN) 106.46 B159 ELA 6.75 5.37 9.42						3HA16+ 3HA12		

	Poutres secondaire non liées aux voiles								
moment		Poutre; combinaison A _{min} (cm ²)		A _{min} (cm ²)	As (cm ²)	A _{adoptèe}	Choix des barres		
M _a (KN)	-188.02	B148	ELA	6.75	10.08	10.62	3HA16+ 3HA14		
M _t (KN)	156.31	B148	ELA	6.75	8.16	9.42	3HA16+ 3HA12		

Poutres principales Choix des A_{\min} (cm²) As (cm²) moment Poutre; combinaison Aadoptèe barres $M_a(KN)$ -355.68 **B214 ELA** 7.5 17.95 18.84 6HA20 300.68 3HA20+3HA16 $M_t(KN)$ **B214 ELA** 7.5 14.54 15.45

Tableau V.9 : Ferraillage longitudinal des poutres extérieures

	Poutres secondaire								
moment		Poutre;	combinaison	A _{min} (cm ²)	As (cm ²)	A _{adoptèe}	Choix des barres		
M _a (KN)	-252.76	B237	ELA	6.75	11.86	12.06	6НА16		
M _t (KN)	248.81	B237	ELA	6.75	11.64	12.06	6НА16		

> Calcul des armatures transversales :

• Selon le BAEL91:

La section minimale At doit vérifieé:

$$A_t \geq S_t \times b \times \frac{\gamma(\tau u - k f_{tj})}{0.9 fe}$$

b: largeur de la poutre.

St: l'espacement des cours d'armatures transversales

 $S_t \le \min(0.9d; 40cm; 15\boldsymbol{\phi_t}) = \min(40.5; 40; 24)$

Donc

$$A_t \ge \frac{1}{f_e} \times b \times S_t = \frac{1}{500} \times 30 \times 20 = 1.2 \text{cm}^2$$

=>At\ge 1.2 \text{ cm}^2

Diamètre des armatures d'âme :

$$\phi_t \le min\left(\frac{h}{35}; \frac{b}{10}; \phi_l\right) = min(1.28; 3; 1.6)$$

Soit : $\phi_t = 8 \text{ mm}$

• Selon le RPA99/version 2003 :

La section minimale At doit vérifier : At = 0.003 St b.

L'espacement maximal:

En zone nodale:

$$S_t \le min\left(\frac{h}{4}; 12\phi_L, 30cm\right) = 11.25$$
cm.

En zone courante:

$$S_t \le \frac{h}{2} = 22.5 \text{ cm}$$

On adopte les espacements suivants :

En zone nodale :St = 10cm.

En zone courante :St = 20cm.

On aura alors:

 $At = 0.003 \times St \times b = 0.003 \times 0.2 \times 0.3 = 1.8 \text{ cm} \times 2 > 1.2 \text{ cm}^2$

Le choix des barres est : $4HA8....At = 2.01cm^2$

V.4.5: Vérifications:

> Condition de non fragilité:

Les sections d'armatures adoptées doivent satisfaire la condition suivante:

 $A_t > A \min = 0$, 23.b.d.f $_{tj} / f_e = 1.13$ condition verifier

> Contrainte tangentielle:

On doit vérifier la condition ci-après:

$$\tau_u = T~u~/~b.d {\leq} \bar{\tau}_{~u}$$

Avec:

 $\bar{\tau}_{\rm u} = {\rm min} \ (0.2.{\rm fc}_{28}/\gamma \ ; {\rm 5Mpa}) = 3.33{\rm Mpa} \ {\rm ``fissuration peu nuisible'}$

 $T_{u \text{ max}} = 76.11 \text{KN}$ (poutre principale).

 $T_{u \text{ max}} = 237.97 \text{KN}$ (poutre secondaire).

Les résultats sont regroupés dans le tableau suivant:

Tableau V.10 : Vérification de contrainte tangentielle

	$V_{u}(KN)$	$\tau_u\left(Mpa\right)$	$\bar{\tau}_{\mathbf{u}}$ (Mpa)	Observation
Poutre principale	237.97	1.95	3.33	Vérifier
Poutre secondaire	76.11	0.56	3.33	Vérifier

Vérification de l'adhérence:

La contrainte d'adhérence doit être inférieure à la valeur limite ultime:

$$\tau_{se} \le \bar{\tau}_{se}$$
 avec : $\tau_{se} = V_u / 0.9 \sum U_i$

$$\sum U i = n \pi \phi$$

$$\bar{\tau}_{se} = \psi_i f_{ti} \Longrightarrow \bar{\tau} se = 3, 15 \text{ Mpa.}$$

Les résultats sont regroupés dans le tableau suivant:

Tableau V.11: Vérification de l'adhérence.

Sens	V u (KN)	ΣUi (cm)	τ _{se} (Mpa)	$\bar{\tau}_{se}$ (Mpa)	Observation
Principal	237.97	30.14	0.877	3.14	Vérifier
secondaire	76.11	30.14	0.281	3.14	Vérifier

➤ Influence de l'effort tranchant aux appuis:

On doit vérifier que:

$$V_u \le 0$$
, 4 x a x b x f_{c28} / γ_b avec: $a = 0.9$

• Poutre principale:

$$V_{11} = 237.97 \le (0.4 \times 0.9 \times 0.45 \times 0.3 \times 25 / 1, 5).10^3 = 800 \text{KN}$$

$$V_u = 237.97 \text{ KN} \le 800 \text{KN}$$
 « condition vérifiée »

• Poutre secondaire:

$$V_u = 76.11 KN \le (0.4 x 0.9 x 0,405 x 0,3 x 25 / 1,5).10^3 = 720 KN$$

$$V_{\rm u} = 76.11 {\rm KN} \le 720 {\rm KN}$$

« condition vérifiée»

❖ Vérifications des contraintes à L'ELS :

La fissuration est peu nuisible dans les sections des poutres donc la seule vérification à faire est la contrainte de compression du béton, cela pour les cas de sollicitations les plus défavorables.

$$\sigma_{bc} \le \overline{\sigma}_{bc}$$
 avec: $\overline{\sigma}_{bc} = 0.6.f_{c28} = 15Mpa$

La contrainte maximale dans le béton comprimé: $\sigma = \mathbf{k} \cdot \mathbf{y}$

Les résultats de vérification des contraintes sont regroupés dans le tableau suivant:

Tableau V.12: Vérification des contraintes à L'ELS

Poutres	Niveau	M _{ser} (KN.m)	As(cm ²)	σ_{bc} MPa	$\overline{\sigma}_{bc}$ MPa	Observation
Principales	Appuis	188.619	9.42	13.5		Vérifiée
1 imerputes	Travée	91.976	9.42	6.53	15	Vérifiée
Secondaires	Appui	-118.607	9.42	10.1	15	Vérifiée
Secondanes	Travée	80.639	9.42	6.83		Vérifiée

❖ Vérification de l'état limite de déformation

La vérification de la flèche est nécessaire si l'une des conditions suivantes n'est pas vérifiée :

1)
$$\frac{h}{l} \ge \text{Max} \left(\frac{1}{16}; \frac{M_t}{10 \times M_0}\right)$$

2)
$$At \leq \frac{4,2 \times b \times d}{f_e}$$

3)
$$L < 8 \text{ m}$$

• Poutres principales

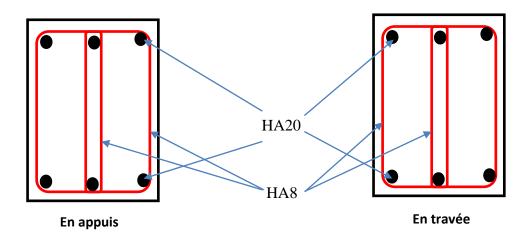
$$\frac{h}{l} = \frac{0.5}{5.5} = 0.09 > 0.06$$

$$A = 9.24 \text{cm}^2 < 11.34 \text{cm}^2$$

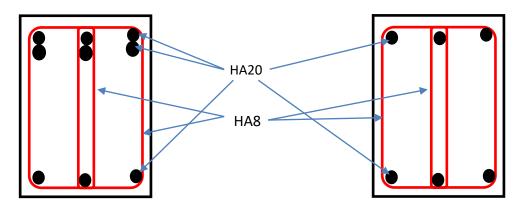
$$L = 5.5 \text{ m} < 8 \text{ m}$$

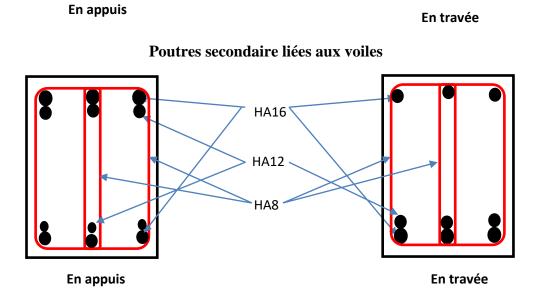
• Poutres secondaires

$$\frac{h}{l} = \frac{0.45}{5.5} = 0.08 > 0.06$$

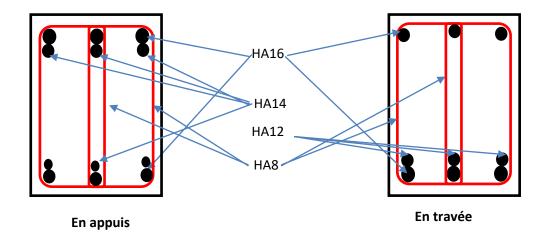

$$A = 9.24 \text{cm}^2 < 11.22 \text{cm}^2$$

$$L = 5.5 \text{ m} < 8 \text{ m}$$


Toutes les conditions sont vérifiées donc le calcul de la fleche n'est pas nécessaire.


figure V.3 : de ferraillage des poutres pour tous les niveaux :

Poutres principales liées aux voiles



Poutres principales non liées aux voiles

Poutres secondaire non liées aux voiles

Poutres secondaire liées aux voiles

V.5: Etude des voile

V.5.1: Introduction:

Les voiles sont des éléments ayant deux dimensions grandes par rapport à la troisième appelée épaisseur. D'après le **RPA99 Version2003** (**Art 7.7.1**) considère comme voiles les éléments satisfaisant à la condition $l \ge 4a$ (**l, a** : respectivement longueur et épaisseur du voile). Dans le cas contraire, ces éléments sont considérés comme des éléments linéaires.

❖ Exigence du RPA

Les voiles sont considérés comme des consoles encastrées à leurs bases, leurs modes de rupture sont:

- Rupture par flexion.
- Rupture en flexion par effort tranchant.
- Rupture par écrasement ou traction du béton.

D'où, Les voiles vont être calculés en flexion composée avec cisaillement en considérant le moment agissant dans la direction de la plus grande inertie.

Le calcul se fera en fonction des combinaisons suivantes :

- 1.35*G* +1.5*Q*.......
- $G + Q \pm E \dots (2)$
- $0.8G \pm E...$ 3

Le ferraillage qu'on va adopter est donné par les sollicitations suivantes :

- $M_{max} \rightarrow N_{corresp}$
- $N_{max} \rightarrow M_{corresp}$
- $N_{min} \rightarrow M_{corresp}$

❖ Recommandations du RPA99 version 2003

• Armatures verticales

La section d'armatures à introduire dans les voiles sera une section répartie comme suit :

- Les armatures verticales sont disposées en deux nappes parallèles aux faces des voiles.
- Les barres verticales des zones extrêmes devraient être ligaturées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile.

Zone tendue : un espacement maximal de 15 cm et un pourcentage minimal de 0.20% de la section du béton, Amin = $0.2\% \times l_t \times e$

Avec:

 l_t : longueur de la zone tendue,

e: épaisseur du voile.

À chaque extrémité du voile, l'espacement des barres doit être réduit de moitié sur L/10 de sa longueur.

• Les barres du dernier niveau doivent être munies de crochets à la partie supérieure. Toutes les autres barres n'ont pas de crochets (jonction par recouvrement).

• Armatures horizontales

Ils sont destinés à reprendre les efforts tranchants, maintenir les aciers verticaux, et les empêcher de flamber. Ils doivent être disposés en deux nappes vers l'extérieur des armatures verticales.

• Armatures Transversales

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement, leur nombre doit être égale au minimum à 4 barres / m².

• Règles communes RPA99 version 2003 (Art.7.7.4.3)

- Le pourcentage minimum d'armatures verticales et horizontales des trumeaux, est donné comme suit :
 - ✓ Globalement dans la section du voile 0,15 %
 - ✓ En zone courante 0,10 %
- L'espacement des nappes d'armatures horizontales et verticales est $St \le min (1.5 e; 30 cm)$
- Les deux nappes d'armatures doivent être reliées avec au moins 4 épingles au mètre carré.
- Le diamètre des barres verticales et horizontales (à l'exception des zones d'about) ne devrait pas dépasser 1/10 de l'épaisseur du voile.
- Les longueurs de recouvrements doivent être égales à :
 - 1) 40Øpour les barres situées dans les zones où le renversement du signe des efforts est possible.
 - 2) 20 pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charges.
- Le long des joints de reprise de coulage, l'effort tranchant doit être repris par les aciers de couture dont la section doit être calculée avec la formule :

$$Aij = 1.1 \frac{V}{fe}$$
 Avec $V = 1.4Vu$

Cette quantité doit s'ajouter à la section d'aciers tendus nécessaires pour équilibrer les efforts de traction dus aux moments de renversement.

Exemple de calcul

V.5.2 : Ferraillages :

Le calcul de ferraillage se fera sous M $_{max}$ et N_{cor} , à la flexion composée pour une section (e×l).

La section trouvée (A) sera comparée avec la section minimale (A_{min}) du **RPA99**et le ferraillage choisi est le plus défavorable entre les deux sections.

Données:

$$N_{\text{cor}}\!\!=$$
 -4093.65 KN ; $M_{\text{max}}\!\!=$ 6649.20KN.m.

$$L = 5.9 \text{ m}$$
; $e = 0.2 \text{ m}$

Donc:

A = L × e =
$$5.9 \times 0.2 = 1.18 \text{ m}^2$$

$$I = \frac{e \times L^3}{12} = \frac{0.2 \times 5.9^3}{12} = 3.42 \text{m}^2$$

$$V = V' = \frac{L}{2} = \frac{5.9}{2} = 2.95 m$$

Détermination des longueurs (tendue et comprimée) :

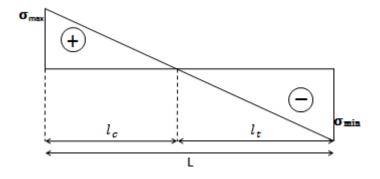


Figure V-4. Schémas des contraintes.

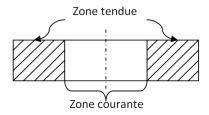
On a:

$$\begin{cases} l_t = \frac{\sigma_1 \times L}{\sigma_1 + \sigma_2} \\ l_c = L - l_t \end{cases}$$

Avec:

 l_t : Longueur de la zone tendue (partie tendue du voile).

 l_c : Longueur de la zone comprimée (partie comprimée du voile).


$$\sigma = \frac{N}{S} \pm \frac{M}{I}V$$

$$\text{Soit}: \begin{cases} \sigma_{max} , \sigma_{min} > 0 \longrightarrow SEC; \\ \sigma_{max} , \sigma_{min} < 0 \longrightarrow SET; \\ \sigma_{max} > 0, \sigma_{min} < 0 \longrightarrow SPC. \end{cases}$$

Dans notre cas:

$$\begin{cases} \sigma_1 = \frac{4093.65 \times 10^{-3}}{5.9 \times 0.2} + \frac{6649.20 \times 10^{-3}}{3.42} \times 2.95 = 9.20 MPa \\ \sigma_2 = \frac{4093.65 \times 10^{-3}}{5.9 \times 0.2} - \frac{6649.20 \times 10^{-3}}{3.42} \times 2.95 = -2.26 MPa \end{cases}$$

Pour éviter tous risques de changement de signe et contraintes sur les différentes combinaisons, la zone tendue calculée aux les extrémités du voile. le voile sera symétrique.

Figure V-5. Zone tendue et courante dans les voiles.

Donc:

$$\begin{cases} l_t = \frac{2.26 \times 5.9}{9.2 + 2.26} = 1.16m \\ l_c = 5.9 - 1.16 = 4.74m \end{cases}$$

$$N_t = \frac{\sigma_2 \times l_t \times e}{2} = \left(\frac{2.26}{2}\right) \times 1,16 \times 0,2 = 236.22KN$$

- **A** Calcul des armatures :
- Armatures verticales :

$$A_s = \frac{N_t}{\sigma_s} = \frac{236.22 \times 10^{-3}}{500} = 1.257 \times 10^{-3} \text{m}^2 = 12.57 \text{cm}^2$$

$$A_{RPA} = 0.2\% \times Lt \times e = 6.31 cm^2$$

$$A_{adopt\acute{e}e} = 31.01 \text{cm}^2 = 4 \text{HA} 14 + 22 \text{HA} 12$$

Armatures horizontales :

$$AH_{BAEL} = \frac{A_V}{4} = \frac{31.01}{4} = 7.75 \text{cm}^2$$

$$AH_{RPA} = 0.15\%$$
. Lt = $0.15\% \times 1.58 = 17.7$ cm²

$$AH = max(AH_{BAEL}; AH_{RPA}) = 17.70cm^2$$

$$AH_{adp} = 22.6cm^2 = 20HA12 \text{ st} = 15cm$$

Armatures transversales :

Les deux nappes d'armatures verticales doivent être reliées au moins par quatre épingles au mètre carré soit : 4HA8.

***** Vérifications :

✓ Selon RPA99 V2003 :

$$V_u = 328.04KN$$

$$\tau_{\rm b} = \frac{V_{\rm u}}{b \times d}$$
 1,4 = $\frac{328.04 \times 1.4 \times 10^{-3}}{0.2 \times 0.9 \times 5.9} = 0.432 \text{MPa}$

 $\tau_b = 1.29 MPa \le \overline{\tau}_b = 0.2 \times f_{c28} = 5 MPa \Longrightarrow$ condition vérifiée.

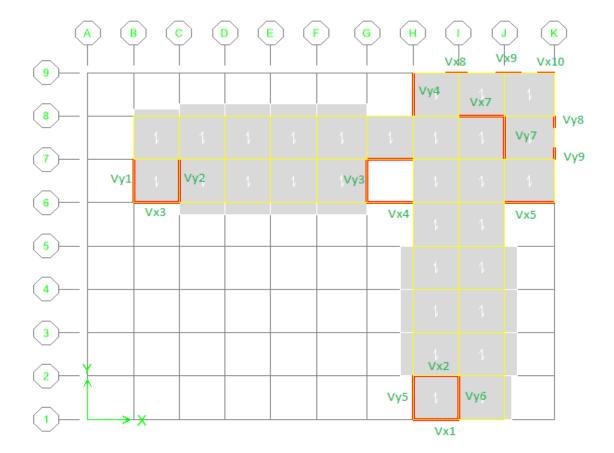


Figure V.6 .Schémas montrant la disposition des voiles

NB: Les efforts et les moments utilisés dans le calcul correspondant au cas le plus défavorable Et on a généralisé pour tous les voiles ayant les mêmes caractéristiques géométriques.

SENS X-X : Ferraillage des voiles (L=5.5 m) :

	Tableau V.13 : Ferr	aillage du voile Vx	1, Vx2,Vx3,Vx4,	Vx5,Vx6 et Vx7.	
1	Niveau	Sous-sol 4,3,2 et 1	RDC étage 1, 2et 3	Etage 4 5 6 7	Etage 8 9 10 11
L(m)		5.9	5.85	5.75	5.65
	e(m)	0.2	0.2	0.2	0.2
1	V(KN)	4093.65	4891.29	3620.24	1617.18
M	(KN.m)	8649.203	16334.674	8443.654	3002.44
1	$\mathbf{A}(\mathbf{m}^2)$	1.18	1.17	1.15	1.13
	V(m)	2.95	2.925	2.875	2.825
1	(cm^4)	3.42	3.34	3.17	3.01
σ	(MPa)	10.92	18.50	10.81	4.25
σ	2 (MPa)	-3.98	-10.14	-4.51	-1.39
	$l_t(m)$	1.58	2.07	1.69	1.39
	$l_{c}\left(m ight)$		3.78	4.06	4.26
Ι	$N_t(KN)$		2099.74	764.45	193.58
	$\Lambda_S(cm^2)$	12.57	41.99	15.29	3.87
	$^{AEL}(cm^2)$	11.40	11.30	11.11	10.92
A^{min}	$n_{RPA}(cm^2)$	6.31	8.28	6.77	5.57
A^{a}	$dopt(cm^2)$	31.01	43.34	31.64	27.12
choix	Zone d'about	2HA14/nappe	6HA14/nappe	3HA12/nappe	3HA12/nappe
Choix	Zone courante	11HA12/nappe	11HA12/nappe	11HA12/nappe	9HA12/nappe
$S_t(cm)$	Zone d'about	10	10	10	10
$S_t(\mathbf{cm})$	Zone courante	15	15	15	15
$A_{h m}$	$_{in}^{RPA}(cm^2)$	17.7	17.55	17.25	16.95
$A_{h m}$	$_{in}^{bael}(cm^2)$	7.7525	10.835	7.91	6.78
	$_{H}(cm^2)$	17.700	17.550	17.250	16.950
$A_H^{adopt\acute{e}}~(cm^2)$		22.6	28.25	24.86	24.86
$S_t(m)$		15	15	15	15
Choix	Choix des barres		25HA12	22HA12	22HA12
			Vérification des	contraintes	,
1	$V_u(kn)$	328.04	202.11	93.34	42.05
$ au_b(M_s)$	pa)<5MPa	0.432	0.269	0.126	0.058
Obs	servation	vérifieé	vérifieé	vérifieé	Vérifieé

Ferraillage du Voile (L=2.6m):

		Tableau V.14 : Ferra	aillage du voile Vx8	
	niveau	RDC étage 1, 2et 3	Etage 4 5 6 7	Etage 8 9 10 11
	L(m)	2.6	2.6	2.6
<i>e</i> (<i>m</i>)		0.2	0.2	0.2
	N(KN)	2339.04	1368.84	257.35
	I(KN.m)	1869.588	756.452	669.175
4	$A (m^2)$	0.52	0.52	0.52
	V(m)	1.3	1.3	1.3
i	I (cm ⁴)	0.29	0.29	0.29
σ	$I_1(MPa)$	12.80	5.99	3.46
σ	$r_2(MPa)$	-3.80	-0.72	-2.47
	$l_t(m)$	0.60	0.28	1.08
	$l_c(m)$	2.00	2.32	1.52
1	$N_t(KN)$	226.11	20.34	268.11
A	$\Lambda_S(cm^2)$	4.52	0.41	5.36
$A_s^{BAEL}(cm^2)$		5.02	5.02	5.02
$A^{min}_{RPA}(cm^2)$		2.38	1.12	4.33
A^a	$dopt(cm^2)$	15.82	9.04	20.34
	Zone d'about	3HA12/nappe	2HA12/nappe	4HA12/nappe
choix	Zone courante	4HA12/nappe	2HA12/nappe	5HA12/nappe
	Zone d'about	10	10	10
$S_t(cm)$	Zone courante	15	10	20
A_{hm}	$_{nin}^{RPA}(cm^2)$	7.8	7.8	7.8
A_{hm}	$_{nin}^{bael}(cm^2)$	3.95	2.26	5.80
A	$A_H(cm^2)$	7.80	7.80	7.80
A_H^{a}	$dopté(cm^2)$	15.01	13.43	13.43
$S_t(m)$		20	20	20
Choix des barres		19HA10	17HA10	17HA10
			Vérification des contrain	ites
	$V_u(kn)$	63.99	32.36	31.35
$\overline{\tau_b(M)}$	(pa)<5MPa	0.191	0.097	0.094
Ob	servation	vérifieé	vérifieé	vérifieé

Ferraillage du Voile (L=3.00m) :

		Tableau V.15 : Ferr	raillage du voile Vx9	
1	niveau	RDC étage 1, 2et 3	Etage 4 5 6 7	Etage 8 9 10 11
	L(m)	3	3	3
<i>e</i> (<i>m</i>)		0.2	0.2	0.2
N(KN)		4362.74	1126.86	193.65
M(KN.m)		2780.511	1135.553	1058.704
	$A(m^2)$	0.6	0.6	0.6
	V(m)	1.5	1.5	1.5
	(cm ⁴)	0.45	0.45	0.45
σ	$_{1}(MPa)$	16.54	5.66	3.85
σ	₂ (MPa)	-2.00	-1.91	-3.21
	$l_t(m)$	0.32	0.76	1.36
	$l_c(m)$	2.68	2.24	1.64
1	$V_t(KN)$	64.55	144.13	436.95
A	$\Lambda_S(cm^2)$	1.29	2.88	8.74
$A_s^{BAEL}(cm^2)$		5.80	5.80	5.80
$A^{min}_{RPA}(cm^2)$		1.29	3.02	5.45
	$dopt(cm^2)$	20.34	15.82	22.6
	Zone d'about	2HA12/nappe	3HA12/nappe	3HA12/nappe
choix	Zone courante	3HA12/nappe	4HA12/nappe	7HA12/nappe
	Zone d'about	10	10	10
$S_t(cm)$	Zone courante	15	20	20
$A_{h m}$		9	9	9
$A_{h m}$	$_{nin}^{bael}(cm^2)$	5.09	3.96	5.65
A	$A_H(cm^2)$	9.00	9.00	9.00
A_H^{a}	dopté (cm²)	15.01	13.43	13.43
$S_t(m)$		20	20	20
Choix des barres		19HA10	17HA10	17HA10
			Vérification des cont	raintes
,	$V_u(kn)$	67.42	57.53	46.93
$ au_b(M)$	(pa)<5MPa	0.175	0.149	0.122
	servation	vérifieé	vérifieé	vérifieé

Ferraillage du Voile (L=2.00m) :

Tableau V.16 : Ferraillage du voile Vx10.							
niveau		RDC étage 1, 2et 3	Etage 4 5 6 7	Etage 8 9 10 11			
L(m)		3.00	3.00	3.00			
	<i>e</i> (<i>m</i>)	0.2	0.2	0.2			
	N(KN)	457.76	368.31	87.56			
	I(KN.m)	2488.581	895.89	590.073			
	$A(m^2)$	0.6	0.6	0.6			
	V(m)	1.5	1.5	1.5			
	I (cm ⁴)	0.45	0.45	0.45			
	1 (MPa)	9.06	3.60	2.11			
σ	₂ (MPa)	-7.53	-2.37	-1.82			
	$l_t(m)$	1.36	1.19	1.39			
	$l_c(m)$	1.64	1.81	1.61			
	$N_t(KN)$	1025.94	282.72	252.88			
	$A_S(cm^2)$	20.52	5.65	5.06			
$A_s^{BAEL}(cm^2)$		5.80	5.80	5.80			
	$_{RPA}^{in}(cm^2)$	5.45	4.77	5.55			
A^a	$adopt(cm^2)$	24.86	20.34	24.86			
	Zone d'about	5HA12/nappe	3HA12/nappe	5HA12/nappe			
choix	Zone courante	6HA12/nappe	6HA12/nappe	6HA12/nappe			
G ()	Zone d'about	10	10	10			
$S_t(cm)$	Zone courante	15	15	15			
	$_{nin}^{RPA}(cm^2)$	9.00	9.00	9.00			
$A_{h n}$	$_{min}^{bael}(cm^2)$	6.22	5.09	6.22			
A	$\Lambda_H(cm^2)$	9.00	9.00	9.00			
$A_H^{adopt\acute{e}} (cm^2)$		15.01	13.43	13.43			
$S_t(m)$		20	20	20			
Choix des barres		19HA10	17HA10	17HA10			
		1	Vérification des contra	intes			
	$V_u(kn)$	63.44	45.37	52.71			
$\tau_b(M)$	(pa)<5MPa	0.164	0.118	0.137			
Ob	servation	vérifieé	vérifieé	vérifieé			

	Tableau	V.17 : Ferraillag	ge du voile Vy1,Vy2,	,Vy3,Vy4,Vy6.	
niveau		Sous-sol 4,3,2 et 1	RDC étage 1, 2et 3	Etage 4 5 6 7	Etage 8 9 10 11
L(m)		5.9	5.85	5.75	5.65
e(m)		0.2	0.2	0.2	0.2
Ì	N(KN)	5266.91	5395.65	3339.76	1919.68
	I(KN.m)	24200.704	28989.901	11503.012	4280.936
1	$A(m^2)$	1.18	1.17	1.15	1.13
	V(m)	2.95	2.925	2.875	2.825
1	$I(cm^4)$	3.42	3.34	3.17	3.01
σ	$_{1}(MPa)$	25.32	30.02	13.34	5.72
σ	$_{2}(MPa)$	-16.39	-20.80	-7.53	-2.32
	$l_t(m)$	2.32	2.39	2.08	1.63
	$l_c(m)$	3.58	3.46	3.67	4.02
1	$V_t(KN)$	3801.06	4980.27	1563.22	379.35
$A_S(cm^2)$		76.02	99.61	31.26	7.59
$A_s^{BAEL}(cm^2)$		11.40	11.30	11.11	10.92
$A^{min}_{RPA}(cm^2)$		9.27	9.58	8.30	6.53
A^a	$dopt(cm^2)$	87.34	100.5	44.78	31.64
	Zone d'about	11HA16	11HA16	5HA14	3HA12
choix	Zone courante	14HA14	14HA16	13HA12	11HA12
	Zone d'about	5	5	10	10
$S_t(cm)$	Zone courante	15	15	15	15
A_{hm}		17.7	17.55	17.25	16.95
$A_{h m}$		21.835	25.13	11.20	7.91
$A_H(cm^2)$		21.835	25.13	17.25	16.95
$A_H^{adopt\acute{e}} (cm^2)$		22.6	29.38	24.86	17.37
$S_t(m)$		15	15	15	15
Choix des barres		20HA12	26HA12	22HA12	22HA10
			Vérification des	contraintes	
-	$V_u(kn)$	3524.71	2032.53	1603.03	1122
$ au_b(M)$	(pa)<5MPa	4.647	2.702	2.168	1.545
Ob.	servation	Vérifieé	vérifieé	Vérifieé	vérifieé

Ferraillage du Voile (L=1.50m) :

	Tableau V.18 : Ferraillage du voileVy8 ,Vy9.							
niveau		RDC étage 1, 2et 3	Etage 4 5 6 7	Etage 8 9 10 11				
L(m)		1.5	1.5	1.5				
	e(m)	0.2	0.2	0.2				
	N(KN)	1524.85	897.64	252				
	I(KN.m)	1883.123	518.758	510.96				
_	$A (m^2)$	0.3	0.3	0.3				
	V(m)	0.75	0.75	0.75				
1	$I(cm^4)$	0.06	0.06	0.06				
σ	$T_1(MPa)$	30.19	9.91	7.65				
σ	$T_2(MPa)$	-20.03	-3.92	-5.97				
	$l_t(m)$	0.60	0.43	0.66				
	$l_c(m)$	0.90	1.07	0.84				
Î	$N_t(KN)$	1197.87	167.02	392.73				
	$A_S(cm^2)$	23.96	3.34	7.85				
	$BAEL(cm^2)$	2.90	2.90	2.90				
$A^{min}_{RPA}(cm^2)$		2.39	1.70	2.63				
$A^{adopt}(cm^2)$		27.46	15.82	15.82				
7 .	Zone d'about	3HA16	82	82				
choix	Zone courante	5HA14	4HA12	4HA13				
$S_t(cm)$	Zone d'about	10	10	10				
$S_t(\mathbf{cm})$	Zone courante	10	10	10				
A_{hm}	$_{nin}^{RPA}(cm^2)$	4.50	4.50	4.50				
A_{hn}	$_{min}^{bael}(cm^2)$	6.87	3.96	3.96				
$A_H(cm^2)$		6.87	4.50	4.50				
$A_H^{}}(cm^2)$		15.8	13.43	13.43				
$S_t(m)$		20	20	20				
Choix des barres		20HA10	17HA10	20HA10				
		V	érification des contra	aintes				
	$V_u(kn)$	407.41	188.44	215.79				
$\tau_b(M)$	(pa)<5MPa	2.112	0.977	1.119				
Ob	servation	vérifieé	vérifieé	vérifieé				

V.5.3: Ferraillage des Linteaux:

Introduction:

Les linteaux sont des poutres courtes parfaitement encastrées à leurs extrémités, leur conception doit être faite de manière à éviter la rupture, ils seront calculés à la flexion simple à l'ELU en situation accidentelle Le calcul se fera à l'encastrement en superposant le moment dû au séisme et le moment dû aux charges verticales :

Vérification de la contrainte de cisaillement :

La contrainte de cisaillement dans le béton est limitée comme suit :

$$\tau_{b} \leq \overline{\tau_{b}} = 0.2.f_{c28}$$
 .

$$\tau_b = \frac{V}{b_0.d} \quad \text{, avec} : V = 1,4 \ V_{u \ calcul} \ . \label{eq:taubell}$$

*b*₀: *épaisseur* du linteau.

d: hauteur utile; d = 0.9.h.

h: hauteur totale de la section brute.

Ferraillage:

Les linteaux seront ferraillés conformément au règlement RPA99.

D'après l'article 7.7.3 du RPA99 ; deux cas peuvent se présenter :

$$rac{1^{\text{er}} \text{ cas}}{1}$$
: $\tau_b \le 0.06.f_{c28}$.

Les linteaux sont calculés en flexion simple avec (T et M) . On doit disposer :

- Des aciers longitudinaux de flexion (A_L) .
- Des aciers transversaux (A_t).
- Des aciers en partie courante (aciers de peau (A_C)).

Aciers longitudinaux:

Les aciers longitudinaux supérieurs et inférieurs sont calculés par la formule :

$$A_L \ge \frac{M}{z.f_a}$$

Avec:

$$Z = h - 2.d$$
'.

Où:

h: hauteur totale du linteau.

d' : distance d'enrobage.

M : moment dû à l'effort tranchant. ($\,V_u^{}=\!1,\!4.V_{u\,calcul}\,$) $\,$.

❖ Aciers transversaux :

 $\underline{\emph{1}^{\textit{er}}\textit{ cas}}$: linteaux longs ($\lambda_g = \frac{L}{h} > 1$).

On a:
$$S \le A_t.f_e.\frac{Z}{V}$$

Où:

S : espacement des cours d'armatures transversales.

 $\boldsymbol{A}_{t}:$ Section d'un cours d'armatures transversales.

$$Z = h - 2.d$$
'.

V : effort tranchant dans la section considérée ($\,V_u^{}=1,\!4.V_{u\,calcul}^{}\,$).

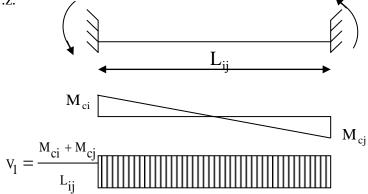
L : portée du linteau.

 $\underline{2^{eme} \ cas}$: linteaux courts ($\lambda_g = \frac{L}{h} \le 1$).

On doit avoir : $S \le \frac{A_t . f_e . L}{V + A_t . f_e}$.

$$V = \min(V_1; V_2).$$

$$V_2 = 2.V_{u \text{ calcul}}$$
.


$$V_1 \leq \frac{M_{ci} + M_{cj}}{L_{ij}} \ .$$

Avec:

M_{ci}; M_{ci}: Moments résistants ultimes des sections d'about à gauche et à droite du linteau de

portée « L_{ij} » et calculés par : $M_c = A_L.f_e.z.$

Avec : z = h - 2.d'.

$$2^{\text{\'eme}} \text{ cas}$$
: $\tau_b > 0.06.f_{c28}$

Dans ce cas, il y a lieu de disposer les ferraillages longitudinaux (supérieurs et inférieurs), transversaux et en zone courante (armature de peau) suivant les minimum réglementaires.

Les efforts (M, V) sont repris suivant des bielles diagonales « A_D » à disposer obligatoirement.

Le calcul des armatures se fait suivant la formule :

$$A_D = \frac{V}{2.f_a.\sin\alpha} .$$

Avec:

$$tg\alpha = \frac{\text{h-2.d'}}{L} \text{ .et } V = V_{calcul} \text{ (sans majoration)}.$$

***** Ferraillage minimale :

- 1. Armatures longitudinales : $A_L, A_L \ge 0.0015 \times b \times h$.
- 2. Armatures transversales:

$$\begin{cases} A_{_t} \geq 0.0015 \times b \times s & \text{si } \tau_{_b} \leq 0.025.f_{_{c28}} \\ A_{_t} \geq 0.0025 \times b \times s & \text{si } \tau_{_b} > 0.025.f_{_{c28}} \end{cases}.$$

• Armatures en section courante :

Les armatures longitudinales intermédiaires ou de peau « A_C » (2 nappes) doivent être au total d'un minimum de 0,20 %.

 $A_{C} \ge 0,002b.h$.

• Armatures diagonales :

$$\begin{cases} A_D \ge 0.0015xbxh & si: \tau_b > 0.06 f_{c28} \\ A_D = 0si: \tau_b \le 0.06 f_{c28} \end{cases}$$

Exemple de calcul : « linteauS1 de voile Vy6»

- l = 1.00 m.
- b = 0.20 m.
- h = 0.69 m.
- V=181.64 KN.

Vérification de la contrainte de cisaillement :

$$au_b = \frac{1.4 \times 181.64}{0.9 \times 0.69 \times 0.2} = 2.04 \, MPa < 0.2 f_{c28}$$

$$= 5 \, MPa \, \dots \dots condition \, v\'{e}rifier$$

• Ferraillage:

$$0.06f_{c28} = 1.5 \text{ MPa}$$

On a: $\tau_b{>}\,0.06F_{c28}$ selon le RPA99/2003 on est dans le 2^{eme} cas

• Aciers longitudinaux :

$$A_L = A_L' = 0.0015b \ x \ h = 0.0015 \ x \ 20 \ x \ 0.69 = 2.07cm^2$$

• Armatures diagonales :

$$A_{D} = \frac{V}{2f_{e} \sin \alpha} tg\alpha = \frac{h - 2d'}{L} = 0.63 \qquad \alpha = 32.21^{\circ}$$

$$A_{d} = \frac{181.64}{2 \times 500 \times sin(32.21)} = 3.32 cm^{2}$$

$$A_{Dmin} = 0.0015 \ b \ x \ h = 2.07 cm^2.$$

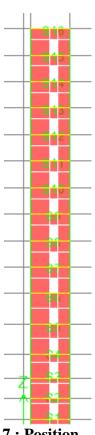


Figure V.7 : Position des Linteaux

• Armatures transversales :

$$\tau_{\scriptscriptstyle b} = 2.75 MPa \ > \ 0.025 f_{\scriptscriptstyle \rm c28} = 0.625 MPa \Longrightarrow A_{\scriptscriptstyle \rm t} = 0.0025 \times bS$$

Soit:
$$S = 15cm \rightarrow A_t = 0.75 cm^2$$
.

• Armatures de peau :

$$A_c = 0.002 \times b \times h = 2.76$$

> Choix des barres :

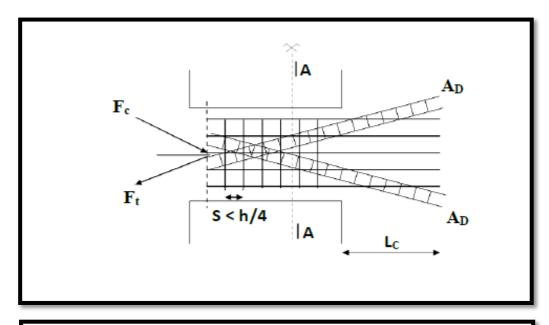
Le ferraillage final des linteaux se résume comme suit :

- $Al = 2.07 \text{ cm}^2 \text{soit} 4HA12(4.25\text{cm}^2)$
- At= $0.75 \text{ cm}^2 \text{soit 2HA 8 } (1.01 \text{cm}^2)$
- Ac= 2.76 cm² soit6HA 10 (6.78 cm²) AD = 3.32 cm² soit 4HA 14(6.16 cm²)

Vérification des contraintes de cisaillement :

Tableau V.19 : vérification de contrainte de cisaillement

Linteaux	V (kn)	\overline{V} (Kn)	τ _b (Mpa)	≤ τ (Mpa)
S1	181.64	254.296	2.047	oui
S2	291.39	407.946	3.285	oui
S3	354.86	496.804	4.000	oui
S4	567.14	793.996	3.529	oui
S5	1296.72	1815.408	4.920	oui
S6	1100.69	1540.966	4.176	oui
S7	906.69	1269.366	4.579	oui
S8	851.13	1191.582	4.299	oui
S9	802.73	1123.822	4.054	oui
S10	768.53	1075.942	3.881	oui
S11	743.42	1040.788	3.755	oui
S12	702.28	983.192	3.547	oui
S13	683.6	957.04	3.453	oui
S14	659.16	922.824	3.329	oui
S15	586.61	821.254	2.963	oui
S16	330.08	462.112	1.667	oui


> Ferraillage des linteaux :

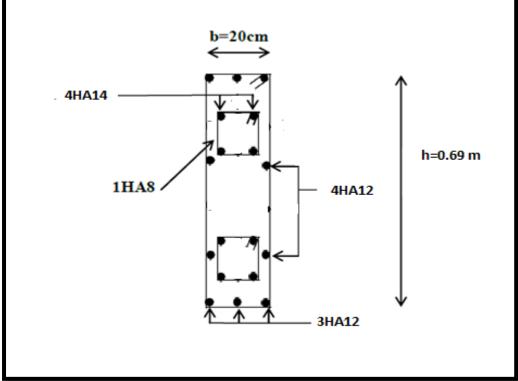

Les résultats de ferraillage de tous les linteaux sont récapitulés dans le tableau suivant :

Tableau V.20 : ferraillage des linteaux

Linteaux	V _{cal} (KN)	A _D (cm ²)	Choix	At (cm ²)	choix	$A_1(cm^2)$	choix	Ac (cm ²)	choix	
	Cas où: $\tau_b > 0.06 f_{c28}$									
S 1	181.64	3.427	4HA14	0.75	2HA8	2.07	3HA12	2.76	4HA12 St=15cm	
S2	291.39	5.498	4HA16	0.75	2HA8	2.07	3HA12	2.76	4HA12 St=15cm	
S3	354.86	6.695	4HA16	0.75	2HA8	2.07	3HA12	2.76	4HA12 St=15cm	
S4	567.14	4.766	4HA16	0.75	2HA8	3.75	4HA12	5	7HA12 St=20cm	
S5	1296.72	6.616	4HA16	0.75	2HA8	6.15	4HA16	8.2	11HA12 St=20cm	
S6	1100.69	5.616	4HA16	0.75	2HA8	6.15	4HA16	8.2	11HA12 St=20cm	
S7	906.69	6.126	4HA16	0.75	2HA8	4.62	4HA16	6.16	8HA12 St=20cm	
S8	851.13	5.751	4HA16	0.75	2HA8	4.62	4HA16	6.16	8HA12 St=20cm	
S9	802.73	5.424	4HA16	0.75	2HA8	4.62	4HA16	6.16	8HA12 St=20cm	
S10	768.53	5.193	4HA16	0.75	2HA8	4.62	4HA16	6.16	8HA12 St=20cm	
S11	743.42	5.023	4HA16	0.75	2HA8	4.62	4HA16	6.16	8HA12 St=20cm	
S12	702.28	4.745	4HA16	0.75	2HA8	4.62	4HA16	6.16	8HA12 St=20cm	
S13	683.6	4.619	4HA16	0.75	2HA8	4.62	4HA16	6.16	8HA12 St=20cm	
S14	659.16	4.454	4HA16	0.75	2HA8	4.62	4HA16	6.16	8HA12 St=20cm	
S15	586.61	3.964	4HA16	0.75	2HA8	4.62	4HA16	6.16	8HA12 St=20cm	
S16	330.08	2.230	4HA14	0.75	2HA8	4.62	4HA16	6.16	8HA12 St=20cm	

Figure V-8- Schéma de ferraillage du linteau (S1).

CHAPITRE VI ETUDE DES FONDATIONS

VI.1. Introduction:

On appelle fondation la partie inférieure d'un ouvrage reposant sur un terrain d'assise au quels sont transmise toutes les charges et surcharges supportées par l'ouvrage. Donc elles constituent la partie essentielle de l'ouvrage.

Il existe plusieurs types de fondations :

Fondation superficielle:

- Semelle isolée
- Semelle filante sous mur
- Semelle filante sous poteaux
- Semelle filante croisées
- Radier général
- Fondation profonde : (semelles sur pieux)

VI.2 Choix de type de fondation :

Choix de type de fondation se fait suivent trois paramètres.

- Les efforts transmis à la base.
- La contrainte du sol σ_{sol}
- La classification du sol

L'étude géotechnique du site d'implantation de notre ouvrage, a donné une contrainte admissible égale à 1.5 bars. A une profondeur de 12.12m (**Selon le rapport de sol**)

VI.3. Calcul des fondations :

Afin de satisfaite la sécurité et l'économie, tout en respectant les caractéristiques de l'ouvrage ; la charge que comporte l'ouvrage – la portance du sol – l'ancrage et les différentes données du rapport du sol.

On commence le choix de fondation par les semelles isolées puis filantes enfin un radier, chaque étape fera l'objet de vérification.

On suppose que l'effort normal provenant de la superstructure vers les fondations est appliqué au centre de gravité (C.D.G) des fondations.

On doit vérifier la condition suivante :
$$\frac{N}{S} \le \sigma_{sol} \Rightarrow S \ge \frac{N}{\sigma_{sol}}$$

Avec:

 σ_{sol} : Contrainte du sol.

N : Effort normal appliqué sur la fondation.

S: Surface de la fondation.

VI.3.1. Semelle isolée:

On adoptera une semelle homothétique, c'est-à-dire le rapport de A sur B est égal au rapport a

$$\operatorname{sur} b: \frac{a}{b} = \frac{A}{B}$$

Pour les poteaux carrés : a=b donc $A=B \Rightarrow S=A^2$

Les surfaces est déterminé par :

$$S \ge \frac{N}{\sigma_{sol}}$$
 d'où $S = \left[\frac{N}{\sigma_{sol}}\right]$

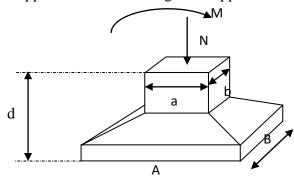


Figure VI.1: semelles isolée sous poteaux

Avec:

 σ_{sol} : Contrainte du sol.

N_{ser}: Effort normal appliqué sur la fondation.

S : Surface de la fondation.

N=N₁(revenant de la structure) calculé par la combinaison [G+Q].

Pour assurer la validité de la semelle isolée, on choisit le poteau le plus sollicité de telle façon à vérifier que :

$$\sigma_{ser} = \frac{N_{ser}}{S_{Ssemll}} \le \sigma_{sol}$$

L'effort normal total revenant aux fondations égal à :

N = 5253,9575kN

TABLE: Element Forces - Columns													
Story	Column	Unique Name	Output Case	Case Type	Station	P	V2	V3	T	M2	M3	Element	Elem Station
SSOL4	C43	2147	ELS	Combination	0	-5253,9575	0,9605	-0,1799	0	-0,1491	0,796	2147	0
D'où $S \ge \frac{5253,9575}{150} \Rightarrow S=35,03\text{m}^2$													
$A = \sqrt{S} \implies A = \sqrt{35,03} = 5,91 \text{ m} \implies B = 6,0\text{m}$													

• Vérification de la mécanique des sols (vérification de chevauchement entre deux semelles):

Il faut vérifie que : $L_{\min} \ge 1.5xB$

Tel que L min est l'entre axe minimum entre deux poteaux

On a : $L_{min} = 5.5 \text{ m} < 1.5 \text{ x} 6.0 = 9.0 \text{ m} \dots \text{non vérifiée}$

- Conclusion:

On remarque qu'il y a chevauchement des semelles, on passe alors à l'étude des semelles filantes.

VI.3.2. Semelles filantes

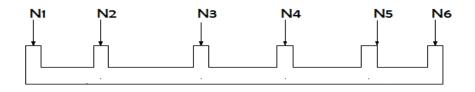


Figure VI.2: Semelles filantes

• L'effort normal supporté par la semelle filante est la somme des efforts normaux de tous les poteaux et les voiles qui se trouvent dans la même ligne.

On doit vérifier que: $\sigma_{sol} \ge \frac{N}{S}$

Tel que:

 $N=\sum N_i$ de chaque file de poteaux.

 $S=B \times L$

B: Largeur de la semelle.

L: Longueur de la file considérée.

$$\Rightarrow B \ge \frac{N}{L\sigma_{sol}}$$

Les résultats sont résumés dans le tableau qui suit:

Files	N(KN)	L(m)	B(m)	$B^{choisie}(m)$	$S_{smll}(m^2)$
1-1	7499,1110	56,1	0,89	1,7	95,37
2-2	18769,8544	56,1	2,23	2,5	140,25
3-3	25419,9444	56,1	3,01	3,2	179,52
4-4	26043,5338	56,1	3,09	3,2	179,52
5-5	25569,3209	56,1	3,04	3,2	179,52
6-6	32264,6753	56,1	3,83	4,0	224,4
7-7	36102,9102	56,1	4,29	4,5	252,45
8-8	36044,4499	56,1	4,28	4,5	252,45
9-9	9711,3884	56,1	1,15	1,7	95,37

Tableau VI.1: Sections des semelles filantes

• Vérification de chevauchement entre deux semelles :

Il faut vérifiée que :
$$\frac{s(semelles filantes)}{s(surface total)} \leq 50\%$$

$$\frac{1598,85}{2468,4} = 64,77\% > 50\% \dots \dots non vérifier$$

Conclusion:

Les largeurs des semelles occupent plus de la moitié de l'assise c'est-à-dire une faible bande de sol entre chaque deux files, ce qui engendre un risque de rupture de la bande du sol situé entre les deux semelles à cause du chevauchement des lignes de rupture.

Ceci nous oblige d'opter pour un choix du radier générale.

VI.3.3.Radier général

VI.3.3.1. Introduction:

Un radier est une dalle pleine réalisée sous toute la surface de la construction.

Cette dalle peut être massive (de forte épaisseur) ou nervurée; dans ce cas la dalle est mince mais elle est raidie par des nervures croisées de grande hauteur.

Dans notre cas, on optera pour un radier nervuré (plus économique que pratique).

L'effort normal supporté par le radier est la somme des efforts normaux de tous les poteaux.

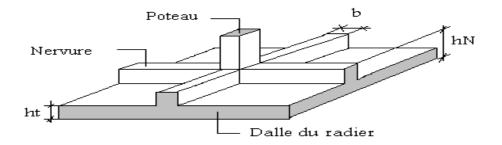


Figure VI.3: Disposition des nervures par rapport au radier et aux poteaux

VI.3.3.2. Surface nécessaire :

Pour déterminer la surface du radier in faut que: $\sigma_{max} \leq \sigma_{sol}$

$$\sigma_{\max} = \frac{N}{S_{nec}} \le \sigma_{sol} \Rightarrow S_{nec} \ge \frac{N}{\sigma_{sol}}$$

Pour:
$$\begin{cases} N = 270403,122kN \\ \sigma_{sol} = 1.5bars \end{cases}$$

$$S_{nec} \ge 1802,69 \text{ m}^2$$

D'où la surface nécessaire est inférieure à occupée celle du bâtiment qui est S_b =2468.4 La surface occupée par l'ouvrage Sb=2468,4 m^2 > S_{nec} (la surface a calculé par AUTOCAD). Si on considère un Débord de 50cm pour chaque côté, dans ce cas la section totale du radier est de : S_{rad} =2569,5 m^2

VI.3.3.3. Pré dimensionnement de radier nervure :

1. Dalle:

L'épaisseur de la dalle du radier doit satisfaire aux conditions suivantes:

• Condition forfaitaire:

$$h_1 \ge \frac{L_{\text{max}}}{20}$$

Avec:

 L_{max} : La longueur maximale entre les axes des poteaux.

Lmax=610cm alors h> 30,5 cm

On prend: h=50 cm.

Condition de cisaillement:

On doit vérifier que: $\tau_u = \frac{T_u}{bd} \le \bar{\tau}_u = Min(0.1f_{c28}; 4MPa) = 2.5 MPa$

Avec:
$$T_u = \frac{qL}{2}$$
 ; $q = \frac{N_u \, 1ml}{S_{rad}}$

$$N_u = 433720,19 \text{ KN}$$

$$L=6.1 \text{ m}; b=1 \text{ m}$$

$$\tau_{u} = \frac{qL}{2bd} = \frac{N_{u}L. \, 1ml}{2S_{rad}. \, b. \, d} = \frac{N_{u}L}{2S_{rad}. \, b. \, (0.9h)} \le \bar{\tau}$$

$$h \ge \frac{N_{u}L. \, 1ml}{2S_{rad}b(0.9\bar{\tau})} = 20.59cm$$

$$\Rightarrow h_{2} = 30cm$$

• Conclusion: $h \ge Max (h_1; h_2) = 50cm$

Pour des raisons constructives on adopte h = 50cm.

2. Nervure:

- a. La largeur des nervures :
- Condition de coffrage:

b>Lmax/10 = 61 cm

on a prends

b = 100cm dans les deux sens (x-x et y-y). A Cause du poteau 90x90 cm²

b. La hauteur de nervure :

• Condition de laflèche :

La hauteur des nervures est calculée par la formule de la flèche suivante :

$$\frac{L_{\text{max}}}{15} \le h_{N1} \le \frac{L_{\text{max}}}{10}$$

On a
$$L_{max} = 6.1 \text{ m}$$

 \Rightarrow 40,67cm < h_{N1} < 61 cm On prend : $\mathbf{h_{N1}}$ =60 cm.

• Condition de non poinçonnement :

$$N_u \le 0.045 U_c.h_3.f_{c28}$$

Avec:

 N_u = Effort normal du poteau le plus sollicité (N_u = 7264,1kN)

 U_c = Périmètre de contour au niveau du feuillet moyen (U_c = 2 [(a + b) + 2h])

a,b = Dimensions du poteau du sous-sol (90x90).

$$N_u \le 0.045 (2a + 2b + 4h).h.f_{c28}$$

• Condition de rigidité :

Pour étudier la raideur de la dalle du radier, on utilise la notion de la longueur élastique définie par l'expression suivante : $L_{\max} \leq \frac{\pi}{2} L_e$ Avec: $L_e = \sqrt[4]{\frac{4EI}{bK}}$

I: Inertie de la section transversale du radier $\left(I = \frac{bh^3}{12}\right)$

E: Module d'élasticité du béton (prendre en moyenne E=11496.76MPa).

b: Largeur de la semelle (b=100 cm).

K: Coefficient de raideur du sol (0,5kg/cm³≤K≤12kg/cm³).

On pourra par exemple adopter pour K les valeurs suivantes :

- $K=0.5[kg/cm^3]$ \rightarrow pour un très mauvais sol.
- K=4 [kg/cm³] →pour un sol de densité moyenne.
- $K=12[kg/cm^3] \rightarrow pour un très bon sol.$

On aura:

Nous avons un sol de densité moyenne \rightarrow K=5 [kg/cm³].

$$h_n \ge \sqrt[3]{\frac{3 \times 0.04 \left(\frac{2 \times 6100}{\pi}\right)^4}{20000}} \Rightarrow h_n \ge 110.9cm \Rightarrow h_2 = 120 cm$$

Tableau VI.2: Choix la hauteur de nervure.

H nervure	I nervure (m ⁴)	Le (m)	(π/2)(Le+a) (m)	Vérification	Observation
1,7	0.409	3	6,13	>6,1	Vérifier

On prend: $h_n=1.7m$

Résumé :

- -Epaisseur de la dalle du radier h = 50cm
- Les dimensions de la nervure $\begin{cases} h_N = 170cm \\ b = 100cm \ sens \ xx \ \ b = 100 \ c \ sens \ yy \end{cases}$

VI.3.3.4. Caractéristiques Géométriques Du Radier :

Tableau VI.3 : caractéristiques géométriques du radier

Position de cer	ntre de gravité	Moments d'inerties		
$\mathbf{x}_{\mathrm{G}}(\mathbf{m})$ $\mathbf{y}_{\mathrm{G}}(\mathbf{m})$		$I_{xx}(m^4)$	$I_{yy}(m^4)$	
30,3	25,64	433603,1250	698135,2912	

a. Vérification de la stabilité du radier:

Il est très important d'assurer la stabilité au renversement de cet ouvrage vis-à-vis des efforts horizontaux.

Le rapport
$$\frac{M_s}{M_R}$$
 doit être supérieur au coefficient de sécurité $1,5\left(\frac{M_s}{M_R}>1,5\right)$

Avec:

M_s: Moment stabilisateur sous l'effet du poids propre, et éventuellement des terres.

M_R: Moment de renversement dû aux forces sismique.

$$M_R = \sum M_0 + V_0 h$$

M₀: Moment à la base de la structure.

V₀: L'effort tranchant à la base de la structure.

h: Profondeur de l'ouvrage de la structure.

 M_0 , V_0 sont tirés à partir du fichier **ETABS**.

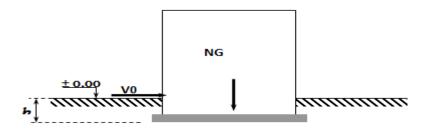


Figure VI.4 : Schéma statique du bâtiment.

• Sens xx :

M₀=253405,9458 KN.m

V₀=7300,7203 KN

N= N₁ (structure) +N₂ (poids propre de radier nervuré)

 $N_{1ser}=315070,4221KN.$

 $N_2 = \rho_b.S.h = 25x 1.7x2569,5 = 109203,75kN$

Donc:

N=424274,1721 KN.

Profondeur de l'ouvrage de la structure: h=12,12m.

$$M_R = \sum M_0 + V_0 h$$

 $M_R = 253405,9458 + (7300,7203x12,12) = 341890,6758 \text{ kN.m}$

 $M_s = N \times x_G = 12855507,41 \text{ KN.m}$

$$\frac{M_s}{M_P} = 37.6 > 1.5....V\acute{e}rifi\acute{e}e$$

• Sens yy:

 M_0 =655999,5247 KN.m V_0 =5076,6436KN

Donc:

M_R=717528,4451 KN.m

 $M_s = N \times y_G = 10878389,77 \text{ KN.m}$

$$\frac{M_s}{M_R} = 15,16 > 1.5....V\acute{e}rifi\acute{e}e$$

• Conclusion:

Le rapport du moment de stabilité et du moment de renversement est supérieur à 1,5 ; Donc notre structure est stable dans les deux sens.

b. Calcul des contraintes :

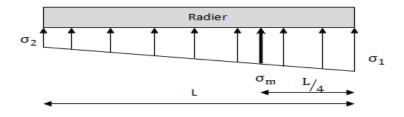
Le rapport du sol nous offre la contrainte de sol déterminé par les différents essais In-situ et au laboratoire : $\sigma_{sol} = 150 \text{kN/m}^2$ a une profondeur de 12.12m Les contraintes du sol sont données par :

1. Sollicitation du premier genre:

On doit vérifier que :
$$\sigma_{ser} = \frac{N_{ser}}{S_{rad}} \le \frac{-}{\sigma_{sol}}$$

$$\sigma_{ser} = \frac{N_{ser}}{S_{rad}} = \frac{315070,422}{2569,5} = 122,62kN/m^2$$

$$\sigma_{ser} = \frac{N_{ser}}{S_{rad}} = 122,62kN/m^2 \le \overline{\sigma}_{sol} = 150kN/m^2 \dots$$
 Condition vérifiée


2. Sollicitation du second genre:

$$\sigma_{1,2} = \frac{N}{S} \pm \frac{M_r \times X_{\text{max}}}{I}$$

Avec:

 σ_1 : Contrainte maximale du sol. σ_2 : Contrainte minimale du sol.

- Si $\sigma_2 > 0$: la Répartition est trapézoïdale; La contrainte au quart de la largeur de la semelle, ne doit pas dépasser la contrainte admissible σ_{sol} ($\sigma_m = \frac{3\sigma_1 + \sigma_2}{4} \le \sigma_{sol}$).
- Si $\sigma_2 = 0$: la Répartition est triangulaire; La contrainte σ_1 ne doit pas dépasser 1,33 fois la contrainte admissible.

Figure VI.5 : Contraintes sous le radier.

Avec:

I_{xx}=433603,1250 m⁴ Iyy=698135,2912 m⁴

• ELU:

N_u=Nu (structure)+1.35xpoids propre de radier nervuré.

 $N_{u=}315070,\!4221\!+\!1.35\!\times\!109203,\!75$

N_u=462495,4846 KN

M : est le moment de renversement.

 $\overline{\sigma}_{sol} = 150 \text{kN/m}^2$

 $(M_{Rx} = 341890,6758 \text{ KN.m}; M_{Ry} = 717528,4451 \text{KN.m}).$

Tableau VI.4: Contraintessousleradieràl'ELU.

	$\sigma_1(kN/m^2)$	$\sigma_2(kN/m^2)$	$\sigma_m \left(\frac{L}{4}\right) (\mathbf{kN/m^2})$
Sens x-x	203,89	156,10	191,94
Sens y-y	206,35	153,64	193,17
Vérification	$\sigma_1^{\text{max}} < 1,5 \sigma_{\text{sol}} = 225$	$\sigma_2^{\min} > 0$	$\sigma\left(\frac{L}{4}\right) < 1,33\sigma_{sol}$ $= 199.5$

Conclusion:

Les contraintes sont vérifiées suivant les deux sens, donc pas de risque de soulèvement.

• ELS:

N_{ser}=315070,4221 KN

Tableau VI.5: Contraintes sous le radier à l'ELS.

	$\sigma_1(kN/m^2)$	$\sigma_2(kN/m^2)$	$\sigma_m \left(\frac{L}{4}\right) (\mathbf{kN/m^2})$
Sens x-x	146,51	98,73	134,57
Sens y-y	148,97	96,28	135,80
Vérification	$\sigma_1^{\text{max}} < 1,5 \ \sigma_{\text{sol}} = 225$	$\sigma_2^{\min} > 0$	$\sigma\left(\frac{L}{4}\right) < 1,33\sigma_{sol}$ $= 199.5$

• Conclusion:

Les contraintes sont vérifiées suivant les deux sens, donc pas de risque de soulèvement.

> Détermination des sollicitations les plus défavorables:

Le radier se calcul sous l'effet des sollicitations suivante:

- **ELU:** $\sigma_u = 193,17 \ kN/m^2$
- **ELS:** $\sigma_{ser} = 135,80 \ kN/m^2$

VI.3.3.5. Ferraillage du radier :

Le radier fonctionne comme un plancher renversé dont les appuis sont constitués par les poteaux et les poutres qui sont soumises à une pression uniforme provenant du poids propre de l'ouvrage et des surcharges.

- La table du radier est considérée comme une dalle pleine d'épaisseur de 50cm.
- Les nervures sont considérées comme des poutres de 150 cm de hauteur.
- Le calcul du radier sera effectué pour le panneau de rive le plus défavorable et le panneau central le plus défavorable.

Ferraillage de la table du Radier :

1. Détermination des efforts:

Si $0.4 < \frac{L_x}{L} < 1.0 \Rightarrow$ La dalle travaille dans les deux sens, et les moments au centre de la dalle,

pour une largeur unitaire, sont définis comme suit:

$$M_x = \mu_x q L_x^2$$
.....sens de la petite portée.

$$M_y = \mu_y M_x$$
.....sens de la grande portée.

Pour le calcul, on suppose que les panneaux sont encastrés aux niveaux des appuis, d'où on déduit les moments en travée et les moments sur appuis.

Panneau de rive :

- Moment en travée:
$$\left\{ \begin{array}{c} M_{tx} = 0.85 M_x \\ \\ M_{ty} = 0.85 M_y \end{array} \right.$$

- Moment sur appuis:
$$\begin{cases} M_{ax} = M_{ay} = 0,3 M_x \text{ (appui de rive)} \\ M_{ax} = M_{ay} = 0,5 M_x \text{ (autre appuis)} \end{cases}$$

Panneau intermédiaire :

- Moment en travée:
$$\begin{cases} M_{tx} = 0.75M_x; M_{ty} = 0.75M_y \\ M_{ax} = M_{ay} = 0.5M_x \end{cases}$$

- Moment sur appuis:
$$\int M_{ax} = M_{ay} = 0.5 M_x$$

Si $\frac{L_x}{L_y} \prec 0.4 \Rightarrow$ La dalle travaille dans un seul sens.

- Moment en travée: M_t=0,85M₀
- Moment sur appuis: $M_a=0.5M_0$

Avec:
$$M_0 = \frac{ql^2}{8}$$

2. Valeur de la pression sous radier :

- **ELU**: $q_u = \sigma_m^u . 1m = 193,17kN/m$
- **ELS**: $q_{ser} = \sigma_m^{ser}$. 1m = 135,8kN/m

3. Calcul des moments :

- Dans le sens de la petite portée : $M_x = \mu_x q_u L_x^2$
- Dans le sens de la grande portée : $M_y = \mu_y M_x$

Les coefficients μ_x et μ_y sont en fonction de $\rho = \frac{L_x}{L_y}$ et de ν .

v: Coefficient de poisson
$$\begin{cases} 0 & \grave{a} \, l' \, ELU \\ 0.2 & \grave{a} \, l' \, ELS \end{cases}$$

 μ_x et μ_y sont donnés par l'abaque de calcul des dalles rectangulaires "BAEL91 modifié 99 "

3.1. Moment en travée et sur appuis à l'ELU (v=0) :

On prend le panneau de rive le plus sollicité avec : $L_x = 6.1m$; $L_y = 5.5m$

Alors: $0.4 < \frac{L_x}{L_y} = \frac{5.5}{6.1} = 0.9 \le 1.0 \Rightarrow \text{la dalle travaille dans les deux sens.}$

Les résultats des moments sont regroupés dans le tableau suivant:

Tableau VI.6: Calcul des moments à l'ELU.

L _x (m)	L _y (m)	L _x /L _y	μ_{x}	μ_{y}	q _u (kN/m)	M _x (kNm)	M _{tx} (kNm)		M _{ty} (kNm)	M _a (kNm)
6,1	5,5	0,9	0,0456	0,7834	193,17	327,77	278,60	256,78	218,26	163,89

L _x (m)	L _y (m)	L _x /L _y	μ_{x}	μ_{y}	q _s (kN/m)	M _x (kNm)	M _{tx} (kNm)	M _y (kNm)		M _a (kNm)
6,1	5,5	0,9	0,0528	0,8502	135,8	266,80	226,78	226,83	192,81	133,4

Tableau VI.7: Calcul des moments à l'ELS.

4. Calcul de ferraillage :

Le ferraillage se fait avec le moment maximum en travée et sur appuis. On applique l'organigramme d'une section rectangulaire soumise à la flexion simple.

Les résultats sont regroupés dans le tableau suivant

 f_{c28} = 25MPa; f_{t28} =2,1MPa; σ_{bc} =14,17MPa;

 $f_e = 500MPa$; $\sigma_s = 435MPa$; b = 100cm; h = 50 cm;

d=0,9h=45 cm, fissuration préjudiciable.

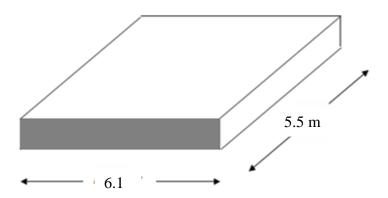


Figure VI.6: Vue en plan illustrant les dimensions du panneau de rive le plus sollicité

Tableau VI.8: Ferraillage des panneaux du radier

	Sens	M _u (KN.m)	μ	α	Z (cm)	$A_s^{cal}(cm^2)$	Choix	A _s ^{adp} (cm ²)	S _t
Travée	X-X	278,60	0,098	0,13	42,66	15,02	28HA12	31.64	20
	у-у	256,78	0,09	0,119	42,86	13,78	31HA12	35.03	20
Appui	X-X	163,89	0,058	0,075	43,65	8,64	28HA12	31.64	20
	V-V	162.72	0.059	0.07	43 55	8 64	31HA12	35.03	20

Ly=5,5m

Lx=6.1m

Espacement:

$$Esp \le Min(3h;33cm) \Rightarrow S_t \le Min(150cm;33cm) = 33cm$$

• **Sens x-x**:

$$S_t = \frac{550}{28} = 19.64cm < 33cm$$

On opte $S_t=20$ cm.

• **Sens y-y:**

$$S_t = \frac{610}{31} = 19,67cm < 33cm$$

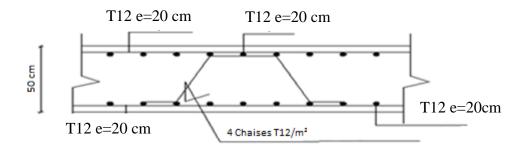
On prend $S_t=20$ cm

5. Vérifications nécessaires :

> Condition de non fragilité :

$$A_s^{min} = 0.23bd \frac{f_{t28}}{f_e} = 4.35 cm \dots$$
 Vérifier

Vérification des contraintes à l'ELS :


Tableau VI.9: Vérification des contraintes (radier).

	Sens	M _{ser} (KN.m)	$A_s (cm^2)$	σ_{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ_s (MPa)	$\overline{\sigma}_s$ (MPa)	Vérification
Travée	х-х	266,80	31.64	6,9	15	234,2	250	vérifiée
	у-у	226,83	35.03	5,87	15	199,10	250	vérifiée
Appui	х-х	133,4	31.64	3,45	15	117,10	250	vérifiée
	у-у	133,64	35.03	3,49	15	117,12	250	vérifiée

Remarque:

La séparation entre les deux nappes est assurée par des armatures de diamètre T12 généralement, appelées CHAISES doncon prévoit : 4 chaises deT12 / m².

Figure VI.7: Ferraillage de la Dalle du Radier.

b. Ferraillage des Nervures :

1. Calcul des efforts :

Pour le calcul des efforts, on utilise la méthode forfaitaire (BAEL91 modifié 99)

On a:
$$M_0 = \frac{qL^2}{8}$$

En travée : $M_t = 0.85M_0$

Sur appuis : $M_a = 0.5M_0$

2. Calcul des armatures longitudinales :

b = 100 cm; h=170 cm; d=153 cm.

Sens porteur (y-y):

L = 5.5m; $q_u=193,17kN/ml$.

Tableau VI.10 :Ferraillage des nervures sens (y-y).

	$M_u(kNm)$	μ	α	Z (cm)	$A_s^{cal}(cm^2)$	Choix	$A_s^{adp}(cm^2)$
Travée	620,86	0,019	0,024	151,54	9,42	14T16	28,15
Appuis	365,21	0,012	0,016	152,03	5,53	7T16+7T14	24,85

• Sens non porteur (x-x):

L = 6.1m; $q_u = 193.17kN/ml$

Tableau VI.11: Ferraillage des nervures sens (x-x)

	M _u (kNm)	μ	α	Z (cm)	$A_s^{cal}(cm^2)$	Choix	$A_s^{adp}(cm^2)$
Travée	763,71	0,024	0,031	151,11	11,62	14T16	28,15
Appuis	449,24	0,014	0,018	151,9	6,8	7T16+7T14	24,85

a. Vérifications nécessaires :

> Condition de non fragilité :

$$A_s^{min} = 0.23bd \frac{f_{t28}}{f_e} = 14,78 cm....$$
 Vérifiée

➤ Vérification des contraintes à l'ELS:

Nous avons: q_{ser}135,8KN/ml

Tableau VI.12: Vérification des contraintes (Nervure).

	Sens	M _{ser} (kNm)	A_s (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	Vérification
Travée	X-X	536,89	28,15	2,34	15	151,5	250	vérifiée
	у-у	436,47	28,15	1,9	15	123,2	250	vérifiée
Appui	X-X	315,82	24,85	1,38	15	89,1	250	vérifiée
	у-у	256,75	24,85	1,12	15	72,4	250	vérifiée

> Vérification de la contrainte tangentielle du béton :

On doit vérifier que : $\tau_u \le \overline{\tau_u} = \text{Min (0,1 } f_{c28}; 4 \text{ MPa)} = 2,5 \text{ MPa}$

$$\begin{split} \tau_u &= \frac{T_u}{bd} \\ T_u &= \frac{q_u L}{2} = \frac{193,17 \times 6,1}{2} = 589,17kN \\ \tau_u &= \frac{589,17 \times 10^3}{1000 \times 1530} = 0,39MPa < \bar{\tau}_u = 2,5MPa.Vérifier \end{split}$$

> Armatures transversales :

• BAEL 91 modifié 99 :

$$*\frac{A_{t}}{b_{0}S_{t}} \ge \frac{\tau_{u} - 0.3f_{tj}K}{0.8f_{e}}$$
 (K = 1 pas de reprise de bétonnage)

$$*S_{t} \le Min(0.9d;40cm) = 40cm$$

$$*\frac{A_t f_e}{b_0 S_t} \ge Max \left(\frac{\tau_u}{2}; 0, 4MPa\right) = 0, 4MPa$$

> RPA99 version 2003 [2]:

$$\begin{split} *\frac{A_t}{S_t} &\geq 0.003b_0 \\ *S_t &\leq Min\left(\frac{h}{4};12\varphi_l\right) = 19.2cm.....Zone \ nodale \\ *S_t &\leq \frac{h}{2} = 85cm....Zone \ courante \end{split}$$

$$\phi_t \leq Min\left(\frac{h}{35};\phi_t;\frac{b}{10}\right) = 1.6cm$$

 $f_e\!\!=\!\!500MPa$; $\tau_u\!\!=\!\!0,\!39$ MPa ; $f_{t28}\!\!=\!\!2.1MPa$; $b\!\!=\!\!100cm$; $d\!\!=\!\!153cm$

On trouve:

- $S_t=15$ cm.....Zone nodale.
- $S_t=30$ cm....Zone courante.

 $A_t \ge 4.5 \text{cm}^2$

On prend: 8T10=6,28cm²

> Armatures de peau :

Pour les poutres de grande hauteur, il y a lieu de prévoir des armatures de peau dont la section dépend du préjudice de la fissuration.

En effet on risquerait en l'absence de ces armatures d'avoir des fissures relativement ouvertes en dehors des zones armées par les armatures longitudinales inférieures et supérieures.

Leur section est au moins 3cm^2 /ml pour mettre de longueur de paroi mesuré perpendiculairement à leur direction (h=150 cm).

 $A_p=3cm^2/m \ x \ 1=3cm^2$

On opte : $4T12 = 4,52 \text{cm}^2$

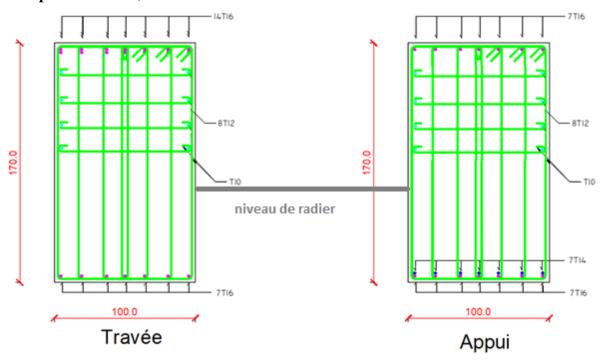


Figure VI.8: Ferraillage des nervures du sens porteur.

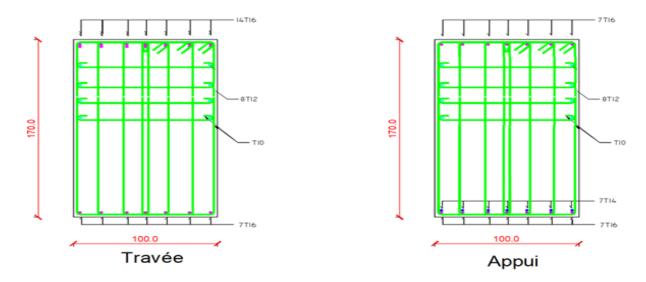


Figure VI.9: Ferraillage des nervures du sens non porteur.

6. Ferraillage du débord :

Le calcul du débord est analogue à celui d'une poutre en console d'un mètre de largeur, on considère que la fissuration est préjudiciable.

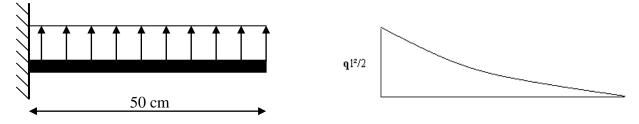


Figure VI.10: Schéma statique du débord

Figure VI.11: Diagramme des Moments.

> Evaluation des charges et surcharges:

E.L.U :
$$q_u = 193,17kN/ml$$
 \longrightarrow Pour une bande de 1m.
E.L.S : $q_{ser} = 135,80kN/ml$ Pour une bande de 1m.

Calcul des efforts :

La section dangereuse est au niveau de l'encastrement

• **E.L.U**: Mu =
$$\frac{q_u \cdot L^2}{2}$$
 = 24,15 KN.m
 $T_u = -q_u \cdot L = -96,59$ KN

• **E.L.S**:
$$M_{ser} = \frac{q_{ser}.L^2}{2} = 16,98 \text{kN.m}$$

$$T_{ser} = -q_{ser} . L = -67.9 \text{ KN}$$

> Calcul de ferraillage :

Le ferraillage se fera pour une bande de 1m, et selon l'organigramme I (voir annexe).

Avec: b = 100cm, h = 50cm, d = 45cm, $f_{c28} = 25MPa$, $f_{bc} = 14,17MPa$.

Tableau. VI.13: Ferraillage du débord

M _u (kNm)	μ	α	Z (cm)	$A_s^{cal}(cm^2)$	Choix	$A_s^{adp}(cm^2)$
24,15	0,007	0,009	49,82	1,12	5T16	10,05

> Condition de non fragilité:

$$A_s^{min} = 0.23bd \frac{f_{t28}}{f_e} = 4.83 \ cm \dots Vérifier$$

esp=25cm.

> Armature de répartition:

$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \Rightarrow 2.51 \, cm^2 \le A_r \le 5.03 \, cm^2$$

On adopte : $4T12=4.52cm^2$, $S_T = 15cm$.

Vérification de la contrainte tangentielle du béton:

On doit vérifier que : $\tau_u < \overline{\tau}_u = Min(0.1f_{c28};4MPa) = 3MPa$

Avec:

$$\begin{split} \tau_u &= \frac{T_u}{bd} \\ T_u &= q_u l = 193,\!17kN \\ \tau_u &= \frac{193,\!17 \times 10^3}{1000 \times 450} = \ 0.43MPa < \bar{\tau}_u = 2,\!5MPa.....V\acute{e}rifi\acute{e}e \end{split}$$

Vérification des contraintes à l'ELS:

$$q_{ser}=135,8 \text{ kN/ml}$$

$$M_{ser} = 16,89kN.m$$

Les résultats sont donnés dans le tableau suivant :

$$\sigma_{bc} = 0.6 f_{c28} = 15 MPa$$

Fissuration préjudiciable...
$$\overline{\sigma}_s = \xi = Min\left(\frac{2}{3}f_e, Max(0.5f_e;110\sqrt{\eta.f_{t28}})\right)$$

Tableau. VI.14: Vérification des contraintes du débord

M _{ser} (kNm)	A _s (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	Vérification
16,89	10.05	0,73	15	40,4	250	ОК

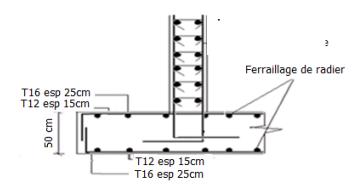


Figure VI.12: Ferraillage du Débord

VI.4. Etude du voile périphérique :

VI.4. 1.Introduction

Notre structure comporte un voile périphérique qui s'élève du niveau de fondation jusqu'au niveau du plancher de RDC.

Il forme par sa grande rigidité qu'il crée à la base un caisson rigide et indéformable avec les planchers du RDC, le sous-sol et les fondations.

VI.4 .2. Pré dimensionnement :

Pour le pré dimensionnement du voile périphérique, on se réfère aux prescriptions du RPA99 version 2003, qui stipule d'après l'article 10.1.2.

Les ossatures au-dessous du niveau de base comportent un voile périphérique continu entre le niveau de fondation et le niveau de base

Ce voile doit avoir les caractéristiques minimales ci-dessous :

Epaisseur e≥15cm

- ♦ Les armatures sont constituées de deux nappes.
- ◆ Le pourcentage minimum des armatures est de 0,1%B dans les deux sens (horizontal et vertical).
- ♦ Les ouvertures dans ce voile ne doivent pas réduire sa rigidité d'une manière importante.
- ◆ La longueur de recouvrement est de 50∅ avec disposition d'équerres de renforcement dans les angles.

Avec: B=25 cm (Section du voile).

VI.4. 3. Évaluation des Charges :

On considère le voile comme une dalle pleine reposant sur 4 appuis et qui supporte les charges horizontales dues aux poussées des terres. On considère le tronçon le plus défavorable.

 $L_x=2,89m$; $L_v=6,1m$; e=25cm

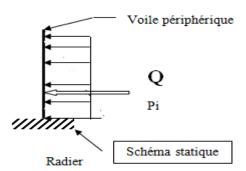


Figure VI.13 : Vue illustrant les dimensions du panneau le plus sollicité.

Les charges et surcharges prise uniformément répartie sur une bande de 1m se situe à la base du voile (cas le plus défavorable).

BAEL91 modifié 99, la charge de poussées des terres est donnée par

 $P_i = k_0 \cdot \gamma_d \cdot H$

Avec:

 P_i = Contrainte à la base sur une bande de 1m.

$$k_0$$
= Coefficient de poussée = tg^2 . [$(\frac{\pi}{4})$ - $(\frac{\varphi}{2})$].

 γ_h = Poids spécifique des terres (γ_h =21,4kN/m³).

 ϕ : Angle de frottement interne du remblai = 45°.

$$\phi = 45^{\circ} \Rightarrow K_0 = f(\phi) = tg^2 \left(\frac{\pi}{4} - \frac{\phi}{2}\right) = 0.1716$$

Donc
$$Pi = K_0$$
. γ_h . $H = 44.51 \ kN/ml \Rightarrow P_u = 1.35 P_i = 60.09 kN/ml$

3.Effort dans la Dalle:

 $\frac{L_x}{L_y}$ = 0,47 > 0,4 \Rightarrow La dalle travaille dans les deux sens.

$$\mu_x$$
=0,1008; μ_y =0,25

$$M_x = \mu_x P_u L_x^2 = 50,59kNm$$

 $M_y = \mu_y M_x = 12,65kNm$

• Moment en travée :

$$M_{tx}=0.75M_x=37.94kNm$$

$$M_{ty}=0.75M_y=9.49kNm$$

• Moment sur appuis :

$$M_{ax} = M_{ay} = 0.5 M_x = 25,295 kNm$$

> Calcul du Ferraillage :

b=100cm; h=25cm; d=22.5cm;
$$\sigma_{bc}$$
=14,17MPa

Les résultats du ferraillage sont regroupés dans le tableau suivant :

Tableau VI.15: Ferraillage du Voile Périphérique.

	Sens	M _u (KN.m)	μ	α	Z (cm)	$A_s^{cal}(cm^2)$	Choix	$A_s^{adp}(cm^2)$	S_{t}
Travée	X-X	37,94	0,053	0,069	21,88	5,06	6T12	6,79	15
	у-у	9,49	0,014	0,018	22,34	1,24	6T12	6,79	15
Appui	X-X	25,295	0,036	0,046	22,09	3,34	4T12	4,52	25
	у-у								

a. Condition de Non Fragilité:

$$A_s^{min} = 0.23bd \frac{f_{t28}}{f_e} = 1.34 \ cm \dots Vérifier$$

b. Condition exigées par le RPA99/version 2003 :

Le RPA99 préconise un pourcentage minimum de 0,1% de la section dans les deux sens et seradisposé en deux nappes.

c. Vérification de l'Effort Tranchant :

On doit vérifier que :
$$\tau_u = \frac{T_u^{\text{max}}}{hd} \le \overline{\tau}_u = 0.05 f_{c28} = 1.5 MPa$$

d. Vérification à l'ELS:

a. Evaluation des sollicitations à l'ELS:

$$\begin{split} \frac{L_x}{L_y} &= 0.47 > 0.4 \Rightarrow Q_{ser} = 44.51 kN/ml \\ \mu_x &= 0.1 \\ \mu_y &= 0.3671 \\ M_x &= \mu_x Q_{ser} L_x^2 = 37.18 kNm \\ M_y &= \mu_y M_x = 13.65 kNm \end{split}$$

• Moment en travée :

$$M_{tx} = 0.75 M_x = 27.88 kNm$$

$$M_{ty}=0.75M_y=10.24kNm$$

• Moment sur appuis :

$$M_{ax} = M_{ay} = 0.5 M_x = 18.59 kN$$

b. Vérification des contraints:

Il faut vérifier que: $\sigma_{bc} \leq \bar{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$

Le tableau suivant récapitule les résultats trouvés :

Tableau VI.16: Vérification des contraintes à l'ELS.

	Sens	M _{ser} (KN.m)	$A_s (cm^2)$	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ_s (MPa)	$\overline{\sigma}_s$ (MPa)	Vérification
Travée	х-х	27,88	6,79	2,5	15	246,1	250	vérifiée
	у-у	10,24	6,79	1,82	15	108,8	250	vérifiée
Appui	х-х	18,59	4,52	3,4	15	197,3	250	vérifiée
	у-у							

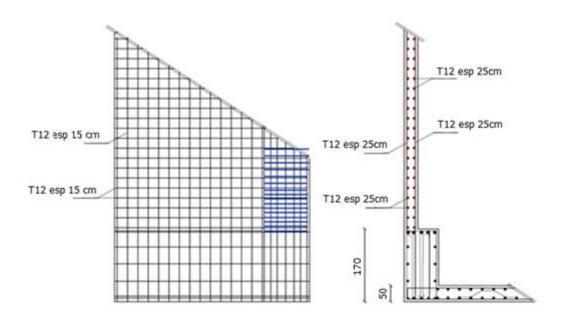


Figure VI.14 : Ferraillage du Voile Périphérique.

Calcul de la force de poussée :

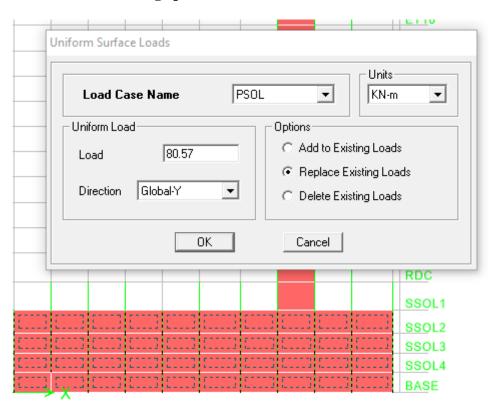
- Détermination du coefficient de poussée :

h=12.12 m
φ= 45°
β=0
γ=21.4 KN/
$$m^3$$

 k_h =0.3
 k_v =0.09
θ= 18.24°

$$P_{ad} = 1/2 \text{ Kad } (1 \text{ kv})$$

 $K_{ad} = coefficient$ de poussée dynamique donné par :


$$\mathbf{K}_{ad} = \frac{\cos^2(\phi - \theta)}{\cos^2\theta} \left[1 + \sqrt{\frac{\sin\phi\sin(\phi - \beta - \theta)}{\cos\theta\cos\beta}} \right]^{-2}$$
$$k_{ad} = 0.570$$

$$p_{ad}$$
=0.5×0.57×(1+0.09) ×21.4×12.12²

$$p_{ad}$$
=976.54 KN

$$\frac{p_{ad}}{h}$$
=80.57 KN/m

• Vérification ferraillage par Etabs:

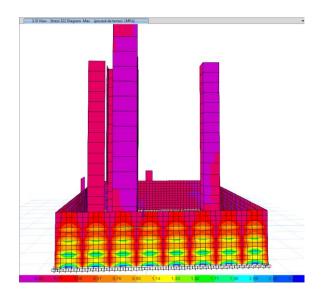


Figure VI.15 : Charge de poussé de terre.

Figure VI.16 : Contraintes δ_{22} . (Vp).

Armature verticale de traction:

Tableau VI.17: Calcul des armatures du voile (VP).

Niveau	H(m)	b(m)	p(kN)	M (KN.m)	$AS(cm^2)$	ASmin (cm ²)	As adp (cm^2)	choix d'armature	ST (cm)
Sous-sols	1	0.2	96.45	4.02	1.54	4	4.52	2T12/nappe	15

Armature horizontale:

Tableau VI.18: Calcul des armatures du voile (VP).

Niveau	H(m)	b(m)	p(kN)	M (KN.m)	$A_{\rm S}(cm^2)$	ASmin (cm ²)	As adp (cm^2)	choix d'armature	ST (cm)
Sous-sols	1	0.2	96.45	20.1	3.52	4	4.52	2T12/nappe	15

Combinaison pousse des sols + sismique :

Armature verticale de traction :

Tableau VI.19: Calcul des armatures horizontales du voile (VP).

Niveau	H(m)	b(m)	p(kN)	M (KN.m)	AS(cm ²)	A_{Smin} (cm^2)	As _{adp} (cm ²)	choix d'armature	ST (cm)
Sous-sols	1	0.2	125.13	5.95	2.1	4	4.52	2T12/nappe	15

Armature horizontale:

Tableau VI.19 : Calcul des armatures verticales du voile (VP).

Niveau	H(m)	b(m)	p(kN)	M (KN.m)	$A_{\rm S}(cm^2)$	A_{Smin} (cm^2)	$A_{s adp}$ (cm^2)	choix d'armature	ST (cm)
Sous-sols	1	0.2	125.13	29.77	5.03	6.78	4.52	3T12/nappe	15

Pour l'élaboration du présent document nous avons utilisé :

Règlements:

- **RPA99V2003**: règlement parasismique algérienne.
- **CBA93**: règles de conception et de calcul des structures en béton arme.
- BAEL91 : béton armé aux états limites.
- **DTR B.C.2.2**: Document technique réglementaire (charges et surcharges).

Livres:

•	Calcul des ouvrages en béton armé	BELAZOUGU .
•	Calcul dynamique des structures en zones sismiques	ALAIN CAPRA.
•	formulaire du béton arme	VICTOR DAVIDOVICI.
•	Conception et calcul des structures de bâtiment	HENRY THONIER.
•	Construction en zone sismique	VICTOR DAVIDOVICI.
•	Pratique de BAEL91	Jean Perchat –Roux
•	Thèses traités.	

Cours:

•	Béton armé	FSI
•	Dynamique des structures	FSI
•	Cours de bâtiment	FSI.
•	Résistance des matériaux	FSI

Logiciels:

•	ETAPS	Analyse des structures
	AUTOCAD	
•	EXCEL	Calcul.
•	WORD	Traitement du texte

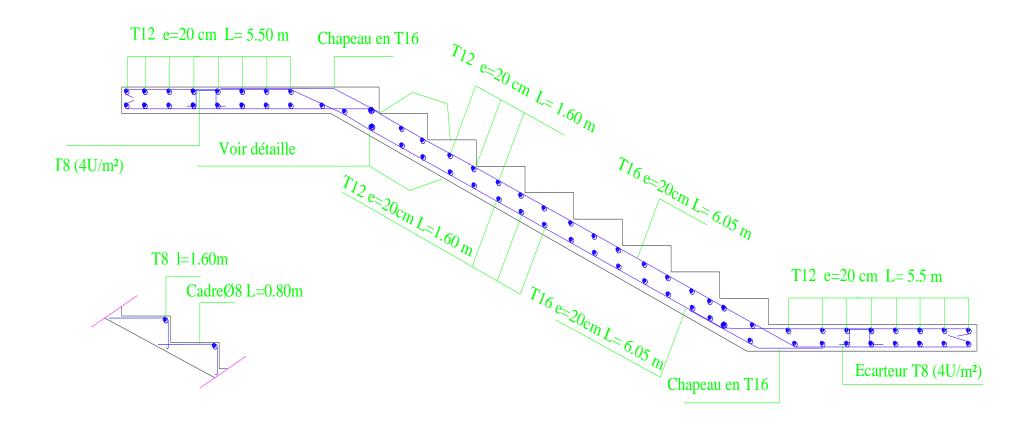
Conclusion générale

Le génie civil est un domaine qui tendra toujours vers la satisfaction des besoins de la vie moderne.

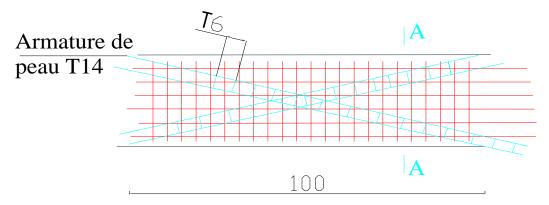
L'étude que nous avons menée, nous a permis de faire le lien entre Les connaissances acquises durant notre promotion et de compléter celle-ci par des nouvelles théories et l'application dans un cas pratique.

De ce fait, de projet nous a permis de mieux apprécier le métier d'ingénieur d'état en génie civil et son rôle dans la réalisation des structure qui ne se limite pas simplement au calcul du ferraillage mais adopte :

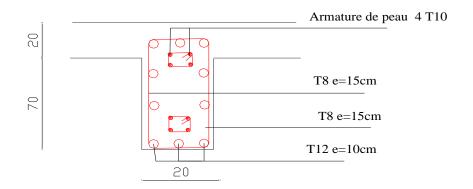
- les solutions des problèmes existants de la meilleure façon possible en tenant compte de l'économie et de la sécurité.
- La conception
- La forme de l'élément et comment travaillé

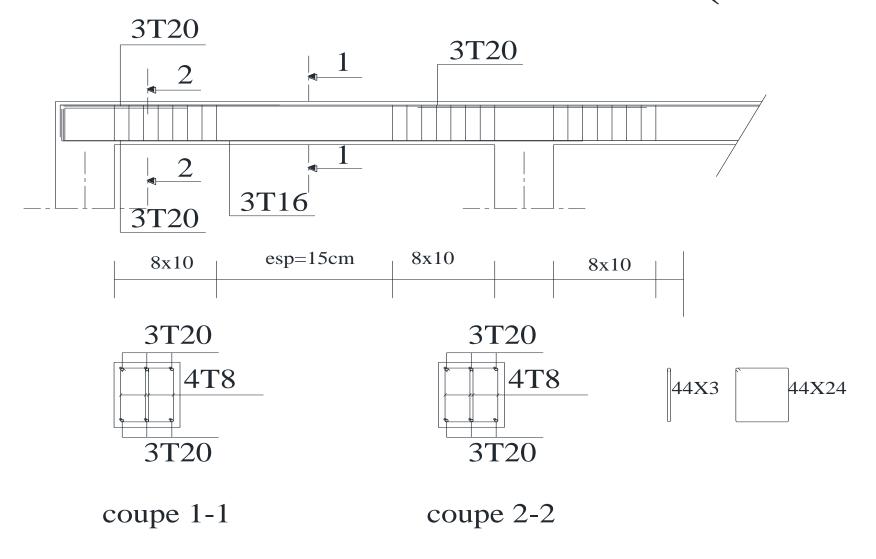

Dans la conception de ce projet on 'a utiliser les logiciels ETABS, AUTOCAD, SOCOTEC ROBOT …etc, Parmi les avantages de ces derniers est la rapidité d'exécution, et l'exactitude des résultats et une vitesse d'exécution assez élevée

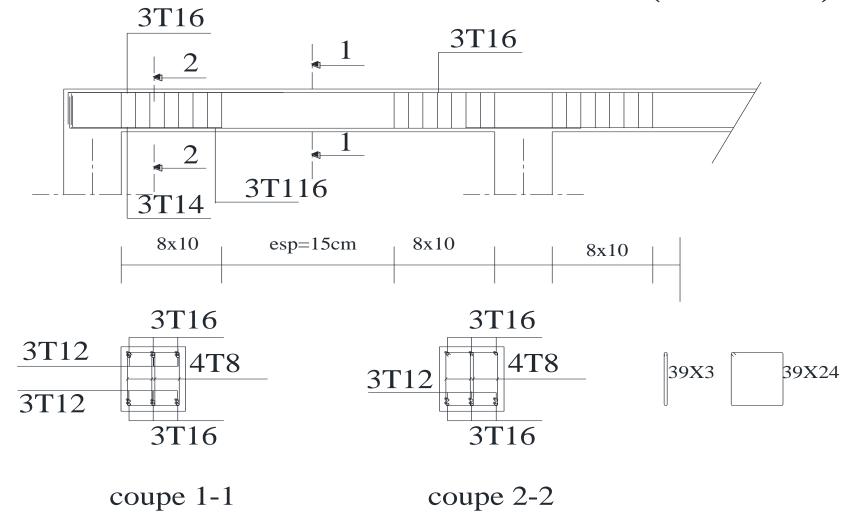
L'ingénieur en génie civil n'est pas un calculateur seulement, mais il faut proposer des solutions raisonnables et efficaces sur le terrain ; d'une manière générale une conception justifier doit prendre en compte premièrement la sécurité pour éviter carrément les dégâts humain et matériel, sans oublier l'économie et le temps d'exécution.

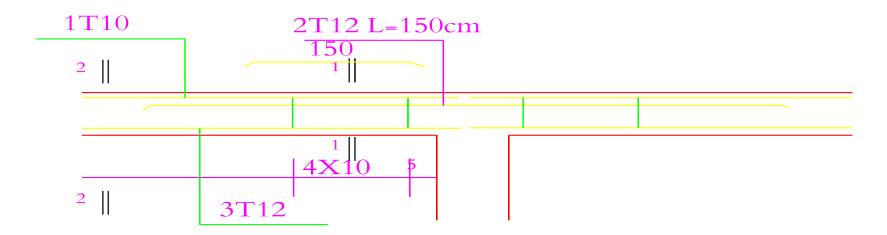

En fin, Nous espérons que cette modeste étude été comme un référence contient un minimum d'information utile pour faciliter les études des futures promotions.

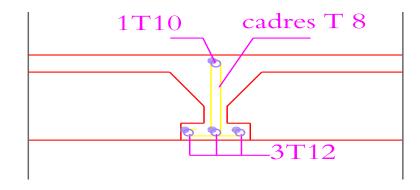
plan d'architecteur et shéma de feraillage

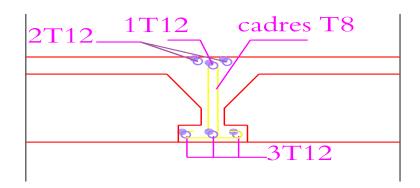

COUPE DE VOLEE ETAGE COURANT


FERRAILLAGE LINTEAU S1

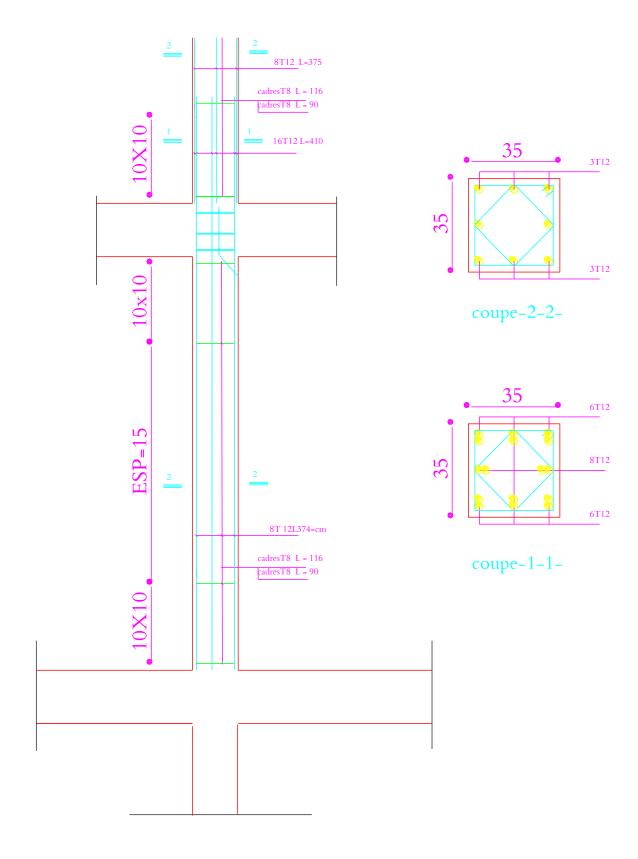

Coupe A-A


POUTRE PRINCIPALE (30x50)




POUTRE SECONDAIRE (30x45)

FERRAILLAGE DES POUTRELLES



COUPE 2-2

COUPE 1-1

