
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronics Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

The requirement for the degree of

Master

In Electrical and Electronics Engineering

Option: Computer Engineering

Title:

Cardiovascular Diseases Detection from Phonocardiograms

Using Deep Learning

Presented by:

Aymen Abderraouf RAHMANI

Supervisor:

Dr. Elhocine BOUTELLAA

Co-supervisor:

Dr. Rachid NAMANE

Registration Number: 2023

I

Dedication

I wholeheartedly dedicate this work to my parents, whose unwavering support and guidance

have been a constant source of strength throughout my entire life. From teaching me as a

child to shaping the person I am today; their love and dedication have been immeasurable.

I also extend my dedication to my brothers, friends, and family members who have stood by

my side, offering encouragement and motivation along this journey.

Lastly, I would like to pay tribute to my aunt, Rahmani Nacera, who played a significant role

in my childhood and education. Though she is no longer with us after her untimely passing in

2022, her teachings and influence will forever be cherished in my heart.

II

Acknowledgment

I would like to extend my heartfelt gratitude to my supervisors, Dr. NAMANE Rachid and Dr.

BOUTELLAA Elhocine, for their invaluable guidance and support throughout the completion

of my final year project titled "Cardiovascular Diseases Detection from Phonocardiograms

using Deep Learning" and for their contributions in enhancing this report.

I would also like to express my appreciation to all my friends and colleagues who generously

shared their time, insights, and assistance, which proved helpful in the successful completion

of this project.

III

Abstract

Cardiovascular diseases are a significant public health concern, responsible for a high number

of global deaths. Manual diagnosis of CVDs using heart sound signals requires extensive

clinical expertise. In recent years, researchers have explored signal processing and machine

learning techniques to automate the early detection of cardiovascular diseases from

Phonocardiograms. However, the majority of these approaches depend on traditional features

and classifiers, which may experience difficulties capturing the complexity of heart sounds.

This study aims to develop a deep learning model capable of accurately classifying heart

sounds as normal or abnormal. Making use of the publicly available PhysioNet 2016 dataset to

train a hybrid CNN-LSTM model, a comprehensive comparison between different sound

segmentation (windowed segments and heart cycle segments) and feature extraction

techniques (Mel Spectrograms and Mel Frequency Cepstrum Coefficients) are conducted. The

goal of this comparative study is to identify the optimal combination of segmentation and

feature extraction methods to effectively represent heart sounds for efficient training of the

adopted deep neural network architecture. We achieved an overall final score of 93% and an

accuracy of 92% using the heart cycle segments and spectrogram features setting.
Performance comparisons with the existing literature indicate the efficiency of this approach.

This research aims to contribute to the advancement of automated CVD detection from

Phonocardiograms, potentially aiding in early diagnosis and intervention.

IV

Contents

Introduction .. 1

Chapter 1: Theoretical Background ... 2

1.1 Introduction .. 3

1.2 Cardiovascular Diseases Overview .. 3

1.2.1 Heart Anatomy ... 3

1.2.2 Cardiovascular Diseases ... 4

1.2.3 Cardiovascular Diseases Statistics ... 5

1.2.4 Cardiovascular Diseases Symptoms .. 5

1.2.5 Types of Cardiovascular Diseases .. 5

1.3 Diagnostic Methods for Cardiovascular Diseases .. 7

1.3.1 Overview of the current procedures ... 7

1.3.2 The Need for Improved Diagnostic tools ... 8

1.4 Heart Sounds ... 8

1.4.1 Overview ... 8

1.4.2 Normal Heart Sounds .. 8

1.4.3 Abnormal Heart Sounds ... 9

1.4.4 Phonocardiogram (PCG) .. 10

1.5 Deep Learning Theory ... 11

1.5.1 Overview .. 11

1.5.2 Artificial Neural Networks .. 11

1.5.3 Convolutional Neural Networks ... 11

1.5.4 Recurrent Neural Networks ... 14

1.5.5 Long Short-Term Memory Networks ... 15

1.5.6 Deep Neural Network Learning Process ... 17

1.5.7 Some Recurrent Problems in Deep Learning .. 23

1.6 Audio Classification Steps ... 24

1.6.1 Overview .. 24

1.6.2 Preprocessing .. 25

1.6.3 Segmentation ... 25

1.6.4 Feature Extraction ... 25

1.7 Summary .. 29

Chapter 2: Related Works ... 30

V

2.1 Introduction ... 31

2.2 Existing PCG Classification Techniques .. 31

2.2.1 Ensemble of Feature-based and Deep learning-based Classifiers for Detection

of Abnormal Heart Sounds ... 31

2.2.2 Heart sound classification based on improved MFCC features and

Convolutional Recurrent Neural Networks .. 34

2.2.3 Classification of Heart Sounds Using Chaogram Transform and Deep

Convolutional Neural Network Transfer Learning .. 35

2.2.4 PCG classification through spectrogram using transfer learning: 37

2.3 Comparison and Analysis of PCG Classification Techniques ... 38

2.3.1 Overview .. 38

2.3.2 Discussion .. 40

2.4 Summary .. 40

Chapter 3: Methodology ... 41

3.1 Introduction ... 42

3.2 Data Collection .. 42

3.3 Proposed Methodology .. 42

3.3.1 Segmentation ... 42

3.3.2 Preprocessing .. 44

3.3.3 Feature Extraction ... 45

3.3.4 Classification and Network Architecture .. 49

3.3.5 Training Procedure .. 50

3.3.6 Experimental Setup ... 50

3.4 Summary .. 51

Chapter 4: Results and Discussion ... 52

4.1 Introduction ... 53

4.2 Performance Metrics .. 53

4.3 Results .. 54

4.3.1 Experiment 1: Windowed Segments with MFCC Features .. 54

4.3.2 Experiment 2: Cycle Segments with MFCC Features ... 57

4.3.3 Experiment 3: Windowed Segments with Spectrogram Features 59

4.3.4 Experiment 4: Cycle Segments with Spectrogram Features 62

4.4 Discussion ... 66

4.4.1 Comparison between Segmentation techniques ... 66

4.4.2 Comparison between Feature Extraction techniques ... 66

VI

4.4.3 Comparison with literature .. 66

4.5 Summary .. 67

General Conclusion ... 68

Bibliography .. 69

VII

List of Figures

Figure 1: Chambers and Vessels of the heart [7]. .. 3

Figure 2: Types of Heart Disease [14]. ... 7

Figure 3: Normal heart sound signal showing S1, S2, systolic and diastolic periods [26]. 9

Figure 4: Chest areas from which sound from each valve is best heard [28]. 9

Figure 5: Heart murmurs time, shape, and location [30].. 10

Figure 6: Artificial Neural Network [34].. 11

Figure 7: Convolution neural network ... 12

Figure 8: Convolutional layer operation. ... 12

Figure 9: Max-pool and Average-pool layer operation [37]. ... 13

Figure 10: Recurrent neural network ... 14

Figure 11: LSTM Architecture .. 15

Figure 12: Forget Gate Operations and Dimensions example [42]... 16

Figure 13: Neural Networks Learning Algorithm [43]. ... 17

Figure 14: Forward Propagation Example [45]. ... 18

Figure 15: Simplified neural network. .. 20

Figure 16: Simple neural network with multiple neurons per layer. .. 21

Figure 17: the difference between a big and a small learning rate. .. 22

Figure 18: An audio sample of a heart sound and its equivalent Mel Spectrogram. 26

Figure 19: Visualization of the STFT process [63]. .. 27

Figure 20: Mel filterbank. ... 28

Figure 21: An audio sample of a heart sound and its equivalent MFCCs. .. 28

Figure 22: Block diagram of the approach of [58] for classification of normal/abnormal heart

sounds. ... 31

Figure 23: CNN architecture for classification of normal/abnormal heart sounds [58]. 33

Figure 24: Classification performance of different network architectures of [3]. 35

Figure 25: Flow diagram of the [67] approach for PCG signal classification. 36

Figure 26: Flow diagram of the proposed CNN-SVM based classifier [60]. 37

Figure 27: Distribution of samples after windowing segmentation. ... 43

Figure 28: Distribution of samples after cycles segmentation. .. 43

Figure 29: PCG sample before and after Denoising. .. 44

Figure 30: Visualization of the Standard, First order, and Second order MFCCs for the

Windowed Signals. .. 46

VIII

Figure 31: Visualization of the Standard, First order, and Second order MFCCs for the Cycle-

Segmented Signals. ... 46

Figure 32: Visualization of the Mel Spectrogram representation for the Windowed Signals. 48

Figure 33: Visualization of the Mel Spectrogram representation for the Cycle-Segmented

Signals. ... 48

Figure 34: Visualization of the proposed Hybrid CNN-LSTM model architecture. 49

Figure 35: Confusion matrix. .. 53

Figure 36: Training and Validation accuracy curves for the first experiment. 55

Figure 37: Training and Validation loss curves for the first experiment. .. 55

Figure 38: Confusion matrix of the first experiment. ... 56

Figure 39: Confusion matrix of the first experiment after the voting scheme. 56

Figure 40: Training and Validation accuracy curves for the second experiment. 57

Figure 41: Training and Validation loss curves for the second experiment. 58

Figure 42: Confusion matrix of the second experiment. ... 58

Figure 43: Confusion matrix of the second experiment after the voting scheme. 59

Figure 44: Training and Validation accuracy curves for the third experiment. 60

Figure 45: Training and Validation loss curves for the third experiment. 60

Figure 46: Confusion matrix of the third experiment. ... 61

Figure 47: Confusion matrix of the third experiment after the voting scheme. 61

Figure 48: Training and Validation accuracy curves for the fourth experiment. 62

Figure 49: Training and Validation loss curves for the fourth experiment. 63

Figure 50: Confusion matrix of the fourth experiment. ... 63

Figure 51: Confusion matrix of the fourth experiment after the voting scheme. 64

IX

List of Tables

Table 1: Results of the Classification of the PCG signals with the method of [67]. 37

Table 2: Summary of Related Works Techniques and Results ... 39

Table 3: Evaluation results of the first experiment. .. 56

Table 4: Evaluation results of the first experiment after the voting scheme. 57

Table 5: Evaluation results of the second experiment. .. 58

Table 6: Evaluation results of the second experiment after the voting scheme. 59

Table 7: Evaluation results of the third experiment. .. 61

Table 8: Evaluation results of the third experiment after the voting scheme. 61

Table 9: Evaluation results of the fourth experiment. ... 63

Table 10: Evaluation results of the fourth experiment after the voting scheme. 64

Table 11: Evaluation and Performance results of the different experiments. 65

Table 12: Comparison of the obtained results with literature. .. 66

X

List of Acronyms

CVD Cardiovascular Disease
WHO World Health Organization
PCG Phonocardiogram
AV Atrioventricular
SL Semilunar
SA Sinoatrial
ECG Electrocardiogram
MRI Magnetic Resonance Imaging
CM Continuous Murmur
MSM Mid-Systolic Murmur
EDM Early-Diastolic Murmur
MDM Mid-Diastolic Murmur
PSM Pre-Systolic Murmur
EDM Early-Diastolic Murmur
LSM Late-Systolic Murmur
ANN Artificial Neural Network
CNN Convolutional Neural Network
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GPU Graphical Processing Unit
GD Gradient Descent
SGD Stochastic Gradient Descent
MGD Minibatch Gradient Descent
ADAM Adaptive Moment Estimation
MFCC Mel Frequency Cepstrum Coefficients
FFT Fast Fourier Transform
STFT Short Time Fourier Transform
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
RR R-R Interval
MLP Multilayer Perceptron
CRNN Convolutional Recurrent Neural Network
PRCNN Parallel Recurrent Convolutional Neural Network
GRU Gated Recurrent Units
BN Batch Normalization
SMOTE Synthetic Minority Oversampling Technique
DCNN Deep Convolutional Neural Network
RPS Reconstructed Phase Space
SVM Support Vector Machine
ECOC Error Correcting Output Codes
TPR True Positive Ratio
CVT Convolutional Vision Transformer
UAR Unweighted Average Recall
API Application Programming Interface
TP True Positive
TN True Negative

XI

FP False Positive
FN False Negative
MAcc Mean Accuracy

1

Introduction

Cardiovascular diseases (CVDs) continue to be the leading cause of global death, tragically

claiming approximately 17.9 million lives annually, as reported by the World Health

Organization (WHO) [1]. Heart attacks and strokes account for over four-fifths of all CVD-

related deaths, with a significant portion occurring prematurely in individuals under the age

of 70 [1]. However, the impact of CVDs extends beyond the loss of life. It also burdens

individuals in low- and middle-income countries with significant financial difficulties.

Therefore, early detection and diagnosis of CVDs are crucial in order to effectively reduce the

mortality rate [2].

Cardiac auscultation, a simple yet essential method, proves to be an efficient approach for

examining cardiovascular diseases [2]. The heart sound signals obtained through this method

carry valuable early pathological information, facilitating early detection of CVDs [3]. These

heart sounds, commonly referred to as Phonocardiograms (PCG), are acquired in a

noninvasive and easily accessible manner [4]. Their noninvasiveness and ability to accurately

reflect the mechanical motion of the heart and cardiovascular system makes them important

in the early diagnosis of CVDs [5].

However, Cardiac auscultation requires significant clinical experience and expertise, besides

it is limited by the human ear's ability to perceive different frequencies in the heart sounds.

This limitation makes it challenging to diagnose certain conditions. Consequently, there is

great potential for computer-based automatic analysis and classification of heart sound signals

to advance the field of human health management [5]. Particularly, with the recent progress

in artificial intelligence algorithms, deep learning algorithms have been investigated for heart

sound classification. Unlike traditional algorithms, deep learning algorithms possess the

capability to automatically extract features from complex heart sound signals [3]. Making them

a preferred choice in enhancing the accuracy and efficiency of heart sound classification.

The primary objective of this research is to develop an effective detection model for

cardiovascular diseases using PCG signals. This will be achieved by conducting a

comprehensive comparative study on heart sound segmentation techniques and audio feature

extraction methods. The structure of this report is as follows: the first chapter provides a

theoretical background, covering topics such as cardiovascular diseases, diagnosis techniques,

deep learning theory, and the PCG classification process. In the second chapter, various related

works are presented, and their findings are discussed. The third chapter outlines the

methodology and the proposed approach employed in this research. The final chapter

presents the results obtained, compares them, and provides a thorough discussion. The report

concludes with a general conclusion and visions for future research works.

2

Chapter 1: Theoretical Background

3

1.1 Introduction

This chapter serves as an introduction to the report, providing an overview of

Cardiovascular Diseases, Phonocardiography, and Deep learning theory. The chapter begins

by briefly introducing the physiology of the heart and proceeds to discuss the different types

of cardiovascular diseases along with their symptoms and statistics. The chapter also gives a

brief overview of Phonocardiography techniques used in the diagnosis of heart diseases.

Lastly, the chapter provides a brief introduction to the principles underlying deep learning,

including the concepts of neural networks, their learning process, and the steps of audio

classification.

1.2 Cardiovascular Diseases Overview

1.2.1 Heart Anatomy

The heart is the primary organ of the human cardiovascular system, a network of blood

vessels that pumps blood throughout the body. It works with other body systems to control

the heart rate and blood pressure [6]. The heart contains Walls, Chambers, Valves, Blood

Vessels, and an Electrical Conduction System as can be seen in Fig.1.

Figure 1: Chambers and Vessels of the heart [7].

The Heart Walls: The heart's function of regulating blood flow is carried out by the

contraction and relaxation of its walls. The septum, a layer of muscular tissue, divides the heart

walls into left and right sides. The walls of the heart are composed of three layers: the

innermost layer called the Endocardium, the middle muscular layer called the Myocardium,

and the outermost layer known as the Epicardium. The Epicardium is part of the Pericardium,

a protective sac that encases the heart, and serves to prevent friction with surrounding organs

by producing lubricating fluids.

Heart Chambers: The heart is comprised of four chambers, two on top and two on the

bottom, divided into two sides. These chambers function to both receive and pump blood out

of the heart. Initially, deoxygenated blood travels from the Superior and Inferior vena cava and

accumulates in the right atrium. It is then transmitted to the right ventricle, which pumps it

4

through the Pulmonary artery directly to the lungs where the blood is oxygenated. Following

this, oxygenated blood returns to the heart from the Pulmonary vein, entering the Left atrium.

The Left atrium then propels the blood to the Left ventricle, which subsequently pumps the

oxygenated blood throughout the body via the aorta.

Heart Valves: The heart has valves located between its chambers (as shown in Fig.1) that

regulate the flow of blood. There are two main types of valves: the Atrioventricular (AV) valves

and the Semilunar (SL) valves. The AV valves are positioned between the upper and lower
chambers of the heart and consist of the Tricuspid and Mitral valves. The SL valves open when

blood flows out of the ventricles and consist of the Aortic valve located between the Left

Ventricle and Aorta, and the Pulmonary valve located between the pulmonary artery and the

right ventricle.

Blood Vessels: The great vessels of the heart are the aorta, pulmonary artery, pulmonary

veins, and the superior and inferior vena cava, which are directly connected to the heart. These

arteries and veins play a vital role in the circulatory system, they send blood between the heart

and the lungs (Pulmonary circuit) and between the heart and the body (Systemic circuit) [8].

Heart’s Electrical Conduction System: The heart’s pumping action is regulated by a

network of nodes, cells and signals that coordinate the contraction of the various chambers of

the heart [9]. The Electrical Conduction System also known as the Cardiac Conduction System

consists of:

• Sinoatrial node: the SA node acts as a natural pacemaker of the heart; it creates an

excitation signal which travels to the atria causing it to contract.

• Atrioventricular node: the AV node delays the signal until the atria is fully contracted

and empty of blood before the impulse is transmitted to the ventricles.

• Bundle of His: It carries the impulse signal from the AV node to the Purkinje fibers. It also

divides into right and left pathways to stimulate the right and left ventricles [9].

• Purkinje fibers: A network of fibers that distribute the impulse to the muscle cells of the

ventricles, causing them to contract and pump blood out of the heart [10].

1.2.2 Cardiovascular Diseases

Cardiovascular diseases commonly referred to as heart disease and stroke are a group of

disorders that impact the heart and blood vessels, leading to a range of complications. These

diseases are a significant public health concern and are responsible for a large number of

deaths globally each year. There are various forms of cardiovascular diseases, including

coronary heart disease, stroke, heart failure, and arrhythmias. Many of these diseases are

linked to lifestyle factors such as poor diet, physical inactivity, and smoking. Certain conditions

are also associated to high blood pressure, elevated cholesterol levels, diabetes, or chronic

kidney disease [11]. There is also a possibility that a person may develop CVDs due to a family

history of heart disease. It is important to detect cardiovascular disease as early as possible so

that management with counselling and medicines can begin [1].

5

1.2.3 Cardiovascular Diseases Statistics

Cardiovascular diseases (CVDs) are the leading cause of death globally, taking an

estimated 17.9 million lives each year according to the World Health Organization (WHO).

More than four out of five CVD deaths are due to heart attacks and strokes, and one third of

these deaths occur prematurely in people under 70 years of age [1]. The Centers for Disease

Control and Prevention says that one person dies every 34 seconds in the United States from

Cardiovascular disease. About 697,000 people in the US died from heart disease in 2020 which
is 1 in every 5 deaths [12]. The most recent WHO data released in 2020 reveals that in Algeria,

there were 54,547 deaths caused by coronary heart disease, which accounts for 29.46% of all

deaths, and 23,393 deaths caused by stroke, which accounts for 12.63% of all deaths.

1.2.4 Cardiovascular Diseases Symptoms

Cardiovascular disease symptoms can vary depending on the type of the disease and its

severity. These symptoms can be chest pain (angina), pressure, heaviness, or discomfort,

sometimes described as a ‘belt around the chest’. Many people with cardiovascular diseases

also experience [13]:

• Shortness of breath.

• Dizziness or fainting.

• Fatigue or exhaustion.

• Pain in the back or left arm.

• A fast heartbeat.

• Vomiting.

Women often have different symptoms like [14]:

• Nausea

• Stomach aches after eating.

• Sweating.

• Feeling weak.

However, it is important to note that some people do not feel any symptoms until they

have a heart attack or a stroke [14]. That is what makes cardiovascular diseases challenging.

Therefore, Regular health checkups are essential in order to identify them at an early stage.

1.2.5 Types of Cardiovascular Diseases

There are many heart diseases with different causes. Atherosclerosis is often involved in

the development of these diseases, where a buildup of a fatty substance called plaque occurs

on the inner walls of arteries. This can make it difficult for blood to flow through these tubes

that transport blood from the heart to different parts of the body. As a result, symptoms such

6

as chest pain or heart attacks may occur [9]. There are many different types of cardiovascular

diseases including:

• Coronary Artery Disease (CAD): It is a condition that results from the buildup of plaque

in the coronary arteries due to atherosclerosis as can be seen in Fig.2, causing the arteries

to narrow over time. This narrowing can result in partial or complete blockage of blood

flow through the arteries [15].

• Heart Valve Disease: occurs when one or more of the heart valves fail to open or close

properly, disrupting blood flow through the heart. The three types of heart valve disease

are regurgitation, stenosis, and atresia. Regurgitation occurs when the valve flaps fail to

close properly, allowing blood to leak backward in the heart. Stenosis occurs when the

valve flaps become thick or stiff and fuse together, reducing blood flow through the valve.

Atresia occurs when the valve is not formed, and a solid sheet of tissue blocks the blood
flow between heart chambers [16].

• Congestive Heart Failure: happens when the heart muscle does not pump blood

efficiently. Blood can accumulate and cause fluid buildup in the lungs, leading to shortness

of breath. The heart becomes weaker and stiffer over time due to certain heart conditions

like high blood pressure or narrowed arteries in the heart [17].

• Cardiomyopathy: a form of heart disease that weakens the heart muscles and makes it

difficult to pump blood properly. This can result in heart valve problems or heart failure.

The three main types of cardiomyopathies are dilated, hypertrophic, and restrictive [18].

• Heart Arrhythmia: it is when the heart beats irregularly, either too fast or too slow. This

can be a harmless fluttering or racing sensation, but in some cases, it can cause life-

threatening symptoms. It can be congenital or develop over time, and untreated

arrhythmia can lead to cardiac arrest and stroke [19].

• Pericarditis: it is the swelling and irritation of the Pericardium as depicted in Fig.2. It can

cause sharp chest pain when the layers of the pericardium rub against each other. In some

cases, pericarditis can be severe and may require medication or surgery. Early diagnosis

and treatment can reduce the risk of long-term complications and potential heart failure

[20].

7

Figure 2: Types of Heart Disease [14].

1.3 Diagnostic Methods for Cardiovascular Diseases

1.3.1 Overview of the current procedures

There are many different tests and diagnostic methods that can be used to diagnose heart

diseases, these methods can be classified as invasive and non-invasive techniques.

Non-invasive procedures are those that do not require inserting an instrument through

the skin or into a body opening [21]. They include [22]:

• Physical Examination: The process of physical examination involves a thorough

evaluation of the patient's cardiovascular system, which includes examining and feeling

the heart and blood vessels, as well as listening to their sounds.

• Electrocardiogram (ECG or EKG): a non-invasive test that records electrical signals in

the heart.

• Echocardiogram: Medical imaging technique that uses sound waves to create detailed

images of the heart in motion.

• Stress tests: A diagnostic method that monitors the heart's response to physical activity,

which can reveal the presence of heart disease and associated symptoms.

• Heart CT scan: A diagnostic imaging test that uses X-rays and computer technology to

generate detailed images of the heart and chest.

• Heart MRI scan: Cardiac Magnetic Resonance Imaging, a diagnostic imaging technique

that uses magnetic fields and radio waves to create detailed images of the heart and its

structures.

8

Invasive procedures are those that invade the body, usually by cutting or puncturing the

skin or by inserting instruments into the body [23]. They include:

• Cardiac Catheterization: A diagnostic method that involves inserting a tube through a

blood vessel and guiding it to the heart to measure pressures and identify blockages in the

heart arteries or irregular heartbeats.

• Coronary Angiogram: A procedure where a special dye visible by X-ray is injected into

the blood vessels of the heart to produce a series of images (angiograms), which can reveal

any blockages or abnormalities in the blood vessels.

These procedures are more invasive and carry higher risks of complications than non-

invasive diagnostic methods. In some cases, they may be necessary for a definitive diagnosis

or to guide treatment decisions. However, non-invasive methods are generally preferred

whenever possible due to their lower risk and greater convenience for patients.

1.3.2 The Need for Improved Diagnostic tools

While there are available diagnostic methods for cardiovascular diseases, developing

more sensitive and specific diagnostic tools is necessary. Current methods requiring

specialized equipment and personnel may not be available in some settings and unable to

detect early stages of the disease, limiting the effectiveness of treatments. Hence, improved

diagnostic techniques that are more accessible and accurate are needed for early detection

and better management of cardiovascular diseases.

1.4 Heart Sounds

1.4.1 Overview

Many pathologic cardiac conditions can be diagnosed by auscultation of the heart sounds

[24]. Heart sounds are the noises generated by the beating heart and the resultant flow of

blood through it [25]. These sounds reflect the turbulence created when the heart valves close

during the cardiac cycle.

1.4.2 Normal Heart Sounds

The normal heart sounds usually consist of two main sounds S1 and S2 as can be seen in

Fig.3. They are produced by the closing of atrioventricular valves (AV) and semilunar valves

(SL), respectively [25]. The first heart sound S1 is followed by a short silence called Systole

while the ventricles contract. Diastole is the second time interval between S2 and S1 while the

ventricles relax and fill with blood which is usually longer than the Systole.

9

Figure 3: Normal heart sound signal showing S1, S2, systolic and diastolic periods [26].

Examiners utilize a stethoscope to listen to heart sounds, which are auscultated at four

different sites on the chest wall that are illustrated in Fig.4. These sites correspond to the

locations of blood flow passing through the aortic, pulmonic, tricuspid, and mitral valves,

respectively. This makes it possible to differentiate similar defects associated with different

valves [27].

Figure 4: Chest areas from which sound from each valve is best heard [28].

1.4.3 Abnormal Heart Sounds

Heart sounds can have extra sounds which are referred to as Gallop Rhythms. A 3rd heart

sound S3 can be normal sometimes but may be pathologic. However, a fourth sound S4 is

almost always pathologic [24]. Heart sounds can also include heart murmurs which are unique

whooshing sounds produced when blood flows across a heart valve or blood vessel [29]. These

murmurs may be physiological or pathological. The causes of abnormal murmurs include

stenosis restricting the opening of a heart valve or valvular regurgitation allowing backflow of

blood.

Heart murmurs are diagnosed based on the time they occur in the cardiac cycle (Systolic

or Diastolic), their changes in intensity (Shape), and the auscultation site where they are best

heard (location). We can classify murmurs into Systolic and Diastolic murmurs. For example,

systolic murmurs include:

• Mitral and Tricuspid regurgitation: The murmurs of both mitral and Tricuspid

regurgitation start at S1 and have a consistent intensity throughout the systole period

10

which can be seen in Fig.5. While Mitral regurgitation is best heard at the mitral region,

Tricuspid regurgitation is best heard at the tricuspid area.

• Aortic and Pulmonic stenosis: When the aortic or pulmonic valves fail to open properly,

they create pressure on the blood through a narrow opening. The blood flow starts out

small, rises to a maximum in mid-systole, and then decreases towards the end of systole

as illustrated in Fig.5. The opening of the stenotic valve often precedes an ejection click.

Aortic stenosis is most audible in the aortic area, while Pulmonic stenosis is best heard in

the pulmonic area.

Other systolic murmurs include ventricular septal defect and mitral valve prolapse.
Meanwhile, diastolic murmurs consist of aortic regurgitation, pulmonic regurgitation, mitral

stenosis, and tricuspid stenosis.

• Aortic regurgitation: when the aortic valve does not close properly, the blood flows back

to the left ventricle during diastole (the filling phase). This type of murmur is best heard

in the left sternal border between the aortic and tricuspid areas and has a triangular shape,

with a peak at the beginning of diastole and a rapid decrease thereafter as depicted in Fig.5.

Figure 5: Heart murmurs time, shape, and location [30].

1.4.4 Phonocardiogram (PCG)

A phonocardiogram (PCG) is a precise record of the heart's sounds and their duration over

a period of time. It is a valuable tool for evaluating heart health by detecting inaudible
murmurs and sounds. PCGs provide quantifiable data on the characteristics of heart sounds,

such as intensity, timing, and duration, and are a useful way to monitor disease progression

[31]. The acoustical stethoscope is the primary device used to auscultate heart sounds.

However, an enhanced alternative to the acoustical stethoscope is the electronic stethoscope,

which consists of a microphone, amplifier, and headset [32].

11

1.5 Deep Learning Theory

1.5.1 Overview

Deep learning is a subset of machine learning that employs artificial neural networks to

learn and make decisions based on given data, similar to how the human brain works. These

networks consist of multiple layers of interconnected nodes, which enable the algorithm to

learn complex patterns and relationships in the data. Deep learning has achieved remarkable

success in diverse applications such as image and speech recognition, natural language

processing, and predictive analytics. Unlike other machine learning methods, deep learning

can automatically learn and extract features from raw data, making it particularly suitable for

image and speech recognition tasks.

1.5.2 Artificial Neural Networks

Artificial neural networks (ANNs) are computational systems modeled after the biological

neural networks present in animal brains. These networks consist of interconnected artificial

neurons that receive and process signals. The connections between neurons (edges) are

assigned weights and biases that adjust during the learning process. These weights modify the
strength of the signal transmitted between neurons. Typically, neurons are organized into

layers, with each layer performing specific transformations on the inputs it receives [33].

By stacking multiple layers of artificial neurons, a deep neural network can be formed. This

process allows signals to propagate through the layers, starting with the input layer and

passing through intermediate hidden layers before ultimately reaching the output layer. A

visual representation of this process is shown in the Fig.6 below:

Figure 6: Artificial Neural Network [34]

1.5.3 Convolutional Neural Networks

Convolutional neural networks commonly referred to as CNNs or ConvNets is a class of

Artificial Neural Networks that is commonly used for image and video processing tasks [35].

It works by automatically and adaptively learning to assign importance to various aspects and

12

objects in the input image [36], making them highly effective at tasks such as image

classification, object detection, and segmentation.

Figure 7: Convolution neural network

In CNNs, a variety of layers are utilized, including Convolutional Layers, Pooling Layers,

Non-Linear Layers, Flatten Layers, and Fully Connected Layers as depicted in Fig.7.

Convolutional Layer: The Convolutional Layer is a crucial element of Convolutional

Neural Networks (CNNs) that plays a significant role in processing images. This layer operates

by applying a set of learnable filters to the input image. These filters, also referred to as kernels,

are small matrices that are convolved with the input data to produce corresponding feature

maps. The number of filters can be adjusted based on the complexity of the input image to

extract more features. During the training phase of the CNN, the weights in each filter are

optimized to improve the accuracy of the network.

The Convolutional Layer offers adjustable parameters such as kernel size, stride, and

padding. The kernel size determines the size of the matrix used for the convolution and can

significantly impact the feature extraction capabilities of the CNN. Stride, on the other hand,

defines the step size of the kernel during convolution, while padding adds additional border

pixels around the input image to maintain spatial dimensions.

Figure 8: Convolutional layer operation.

13

In the case of images with multiple channels, the kernel has the same depth as that of the

input image. After the matrix multiplication is performed, the output of each channel is

summed with the bias to give us a squashed one-depth channel convoluted feature output [36].

Pooling Layer: In Convolutional Neural Networks (CNNs), the pooling layer is a critical

component used to reduce the dimensionality of feature maps generated by the convolutional

layer. The pooling layer works by aggregating neighboring pixel values within a small region

of the feature map. This helps to reduce the size of the feature map while preserving the

essential features, thereby reducing computational complexity.

There are several types of pooling layers available, but max pooling and average pooling

are two commonly used ones. Max pooling is used to highlight the most significant features in

the input data by selecting the maximum value within the pooling window as the output. On

the other hand, average pooling computes the average of the values in the pooling window and

is often used to reduce the effect of noise in the input.

Figure 9: Max-pool and Average-pool layer operation [37].

Non-Linear Layer: A non-linear layer is an important component of neural networks that

introduces non-linearity to the output of the layer. This is achieved by applying a non-linear

activation function to the layer's input, allowing the network to learn complex non-linear

patterns in the input data.

Two commonly used non-linear activation functions are the Rectified Linear Unit (ReLU)

and the sigmoid function. ReLU returns the input if it is positive and zero otherwise, which

makes it simple and efficient, and it has been shown to be effective in deep learning models.

On the other hand, sigmoid maps any input to a value between 0 and 1, making it useful for

binary classification problems where the output is interpreted as the probability of the input

belonging to a certain class. However, sigmoid can suffer from vanishing gradients, which can

make it challenging to train deep networks.

Flatten Layer: The flatten layer is used to convert the output of the previous layers from

a multidimensional format into a one-dimensional vector. This allows the output to be

processed by a fully connected layer.

Fully Connected Layer: in CNNs a fully connected layer also called a dense layer, is a layer

where every neuron in the input is connected to all the neurons in the output.

14

The fully connected layer generates a vector of fixed size, which is usually determined by

the number of classes. It is usually the last layer of the CNN architecture, taking the flattened

output of the previous layers to produce the final output. The fully connected layer is necessary

for the CNN to learn complex non-linear relationships between the input data and the final

output.

Processing large images with traditional neural networks can be computationally

expensive due to the high number of neurons and weights needed to handle the image size.
For instance, an 8k image of size 7680 by 4320 would require 33,177,600 neurons. However,

Convolutional Neural Networks can efficiently process images with a small number of neurons

and weights. This is achieved by using small kernel sizes, such as 3 by 3, resulting in only 9

neurons per layer. As a result, CNNs are more suitable for image processing tasks and provide

better efficiency compared to traditional neural networks.

1.5.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) is another class of Artificial Neural Networks where

connections between nodes can create a cycle [38]. They are commonly used to analyze

sequential data, such as time series and natural language. RNNs are able to maintain an

internal state or memory which allows them to capture information from previous inputs that

affects the subsequent inputs. This makes RNNs well-suited for tasks where the meaning of a

sequence depends on the context of preceding elements. Another distinguishing characteristic

of recurrent networks is that they share parameters across each layer of the network, while

feedforward networks have different weights across each node [39].

Figure 10: Recurrent neural network

The architecture of Recurrent Neural Networks involves a feedback mechanism, as
depicted in Fig.10 such that:

 ℎ𝑡 = 𝑓(𝑊2. ℎ𝑡−1 + 𝑊1. 𝑥𝑡) where ℎ0 = 0

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊3. ℎ𝑡)
(1.5.1)

This feedback mechanism utilizes the information from the previous input ht-1 to calculate

that of the current input ht which is then passed through a non-linear activation function f

(usually tanh or sigmoid). The output of this activation function is then used to calculate the

predicted output yt for the current input using a Softmax function.

15

Despite the success of training, using the simplest RNN model for predicting outputs can

yield disappointing results due to the vanishing gradient and exploding gradient problems1,

which significantly reduce its accuracy [40]. To address these issues, a better alternative is the

Long Short-Term Memory (LSTM) Networks.

1.5.5 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) Networks are built on the same principles as RNNs, but

with a more complex architecture that is able to address the issues of vanishing and exploding

gradients. LSTMs are designed to maintain information over longer periods of time by using a

memory cell (cell state) that remembers values over arbitrary time intervals and three gates:

a forget gate, an input gate, and an output gate. These gates are responsible for controlling the

flow of information into and out of the memory cell, which allows LSTMs to selectively

remember or forget information as needed.

Figure 11: LSTM Architecture

Fig.11 illustrates the architecture of an LSTM network. The input data is processed
through the three stages: the forget gate, input gate, and output gate.

Forget gate: The forget gate produces an output between 0 and 1 for each memory cell,
indicating how much of the previous memory cell state should be retained based on the
previous hidden state and the current input. A value of 1 means to keep all the information,
and a value of 0 means to discard it [41]. This gate formula is given by:

𝐹𝑡 = 𝜎(ℎ𝑡−1. 𝑈𝑓 + 𝑋𝑡 . 𝑊𝑓 + 𝑏𝑓) 0 ≤ 𝐹𝑡 ≤ 1 (1.5.2)

where U and W are the learnable weights corresponding to the hidden state ht and the input

Xt, respectively.

Input gate: The input gate determines which parts of the new input should be used to

update the memory cell state. It uses the current input and the previous hidden state to

1 Gradients becoming extremely small or large during backpropagation

16

produce two outputs, one for which parts of the memory cell state should be updated and

another for the potential new values known as the candidate memory. They are given by:

𝐼𝑡 = 𝜎(ℎ𝑡−1. 𝑈𝑖 + 𝑋𝑡 . 𝑊𝑖 + 𝑏𝑖) 0 ≤ 𝐼𝑡 ≤ 1

�̃�𝑡 = 𝑡𝑎𝑛ℎ(ℎ𝑡−1. 𝑈𝑐 + 𝑋𝑡 . 𝑊𝑐 + 𝑏𝑐) −1 ≤ �̃�𝑡 ≤ 1

(1.5.3)

The new memory cell state can now be computed as follows:

𝐶𝑡 = 𝐶𝑡−1. 𝐹𝑡 + 𝐼𝑡. �̃�𝑡 (1.5.4)

 Output gate: The output gate determines how much of the memory cell state should be

exposed to the output. It uses the current input and the previous hidden state as well as the

new memory cell state to produce an output vector which is also the hidden state of the current
time step t. It is given by:

 𝑂𝑡 = 𝜎(ℎ𝑡−1. 𝑈𝑜 + 𝑋𝑡 . 𝑊𝑜 + 𝑏𝑜)

ℎ𝑡 = tanh(𝐶𝑡) . 𝑂𝑡
(1.5.5)

In an LSTM layer, the size of the hidden state matrix ht is determined by the hidden size,
which represents the number of features within an LSTM cell.

The weight matrices U and W have specific shapes, with U having a matrix of dimensions
hidden_size x hidden_size, and W having a matrix of dimensions hidden_size x input_variables,
where input_variables is the shape of the input at the current time step [42].

The hidden size is a critical hyperparameter that significantly impacts the LSTM model's
capacity to learn complex patterns in the data. Selecting an appropriate hidden size is essential
to ensure optimal performance of the model, considering the dataset's size, complexity, and
available computational resources.

Figure 12: Forget Gate Operations and Dimensions example [42].

The depicted example in Fig.12 illustrates a forget gate operation on time series data with
5 variables (Longitude, Latitude, Altitude, Heading, Speed) and a hidden size of 4. This results
in the weights having shapes of 4×4 and 4×5 for U and W, respectively, And an output of 4×1.

17

1.5.6 Deep Neural Network Learning Process

Training a deep neural network involves determining the optimal weights for each neuron
to produce the most accurate results and minimize the error between the predicted output
and the actual output based on the provided training data as demonstrated in Fig.13. The
process comprises several interrelated steps, including:

Figure 13: Neural Networks Learning Algorithm [43].

1. Data Preparation

In most cases, the input data must be suitably preprocessed to fit the desired sizes and
shapes before it can be fed into the neural network. This preprocessing step may include
operations such as tensor2 reshaping, trimming, or padding, and ensuring that the data resides
on the same computing device as the model.

The first step of preparing the data involves collecting and organizing the training data
that will be used to train the neural network. Typically, this data is partitioned into distinct
subsets for training, validation, and testing purposes. The training set is used to optimize the
model's parameters, while the validation set is used to monitor the model's performance and
prevent overfitting3. Finally, the testing set is used to evaluate the model's ability to generalize
to new, unseen data.

Once the data is split into training, validation, and testing sets, a DataLoader can be used
to load the data into the memory. The DataLoader samples the dataset into minibatches based
on the specified batch size and also provides the option to shuffle the data [44], which can help
mitigate the effects of data order on the model's training. Additionally, the DataLoader can be
used to resample the data to address any class imbalance issues.

Training the model using minibatches typically leads to faster convergence and better
results compared to training on the entire dataset at once. This is because training on a
minibatch allows the model to update its parameters more frequently, which can lead to
quicker convergence. Moreover, using minibatches enables the model to handle larger

2 A tensor is a multidimensional array or matrix.
3 The model performs well on the training data but poorly on unseen data.

18

datasets that may not fit into memory, as only a subset of the data is processed at each
iteration.

2. Model Definition and Hyperparameters

Defining the neural network architecture involves determining the type and number of
layers, the number of neurons and the activation functions applied in each layer. In addition,
to accelerate the training process, deep learning models are often prepared at this level to be
processed on GPUs, for faster performance.

Once the architecture is set, the parameters of the neural network are initialized randomly.
In addition to defining the architecture, training hyperparameters such as the number of
epochs, loss functions, optimizers, learning rates, and schedulers need to be specified. These
hyperparameters can have a significant impact on the final performance of the model and must
be carefully selected based on the specific task at hand.

3. Forward propagation

During the training process, the neural network receives the training data as input and
computes its output based on the current parameter values. This involves passing the input
through each layer of the network, where each neuron applies its transformation to the
information it receives from the neurons in the previous layer before passing it on to the
neurons in the next layer. This process continues until the output of the last layer, which
represents the final prediction of the network.

Figure 14: Forward Propagation Example [45].

Neurons in a neural network process information in two steps: Preactivation and
activation. In the Preactivation step, the neuron computes the weighted sum of its input. In the
activation step, the result of the Preactivation is passed through an activation function [45].
Fig.14 shows an example of a neural network with 2 inputs, 1 hidden layer of 2 neurons, and
1 output. During forward propagation, preactivation and activation occur at each node of the
hidden and output layers. The preactivation output of the first hidden neuron is denoted as
a11, and its corresponding activation output is denoted as h11, such that:

 𝑎11 = 𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑏1
ℎ11 = 𝜎(𝑎11)

(1.5.6)

19

Similarly, they are denoted for the second hidden neuron as:

 𝑎12 = 𝑤3 ∗ 𝑥1 + 𝑤4 ∗ 𝑥2 + 𝑏2
ℎ12 = 𝜎(𝑎12)

(1.5.7)

Finally, the final result which is the output neuron activation can be calculated by:

 𝑎21 = 𝑤5 ∗ ℎ11 + 𝑤6 ∗ ℎ12 + 𝑏3
ℎ21 = 𝜎(𝑎21)

(1.5.8)

4. Loss Computation

The loss computation step involves evaluating how well the deep learning algorithm

models the dataset by calculating the difference (error) between the predicted and actual

output using a loss function. The lower is the loss, the better will be the model performance

[46]. There are various loss functions designed for specific tasks, with Binary Cross Entropy

and Categorical Cross Entropy being the most commonly used for classification tasks.

Binary Cross Entropy measures the distance between predicted probabilities and actual

labels in binary classification problems. Its formula is given by:

𝐶𝑜𝑠𝑡 = −

1

𝑁
∑[𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) ∗ log(1 − �̂�𝑖)]

𝑁

𝑖=1

 ,

(1.5.9)

where �̂�𝑖 is the neural network predicted value and 𝑦𝑖 is the actual value. N is the number of

samples.

 Categorical Cross Entropy is similar, but it is used for multiclass classification tasks. It is

given by:

𝐶𝑜𝑠𝑡 = −

1

𝑁
∑ ∑[𝑦𝑖𝑗 log(�̂�𝑖𝑗)]

𝑘

𝑗=1

𝑁

𝑖=1

 ,

(1.5.10)

where k is the number of classes.

5. Backward Propagation

Back-propagation is a widely used algorithm in deep learning that calculates the gradient

of the loss function with respect to the weights for a single input-output example. It is based

on the chain rule in calculus and computes the gradient one layer at a time while iterating

backwards [47]. This allows the information from the cost to flow backwards through the

network, enabling fine-tuning of the weights [48].

20

Assume we have the following simplified neural network:

Figure 15: Simplified neural network.

Here y is the actual output and aL is the predicted output. We have:

 𝑧𝐿 = 𝑤𝐿 ∗ 𝑎𝐿−1 + 𝑏𝐿,

(1.5.11)

where wL is the weight between aL-1 and aL, and bL is the bias.

𝑎𝐿 = 𝜎(𝑧𝐿) =

1

1 − 𝑒−𝑧

(1.5.12)

As we can see in the Equation 1.5.10 the cost for one sample is related to aL or �̂�𝑖𝑗 which

is affected by wL and bL. Our first goal is to understand how sensitive the cost function is to

small changes in our weight wL. meaning, what is the derivative of the cost C0 with respect to

wL [49].

Using the chain rule, we find that [50]:

 𝜕𝐶0

𝜕𝑤𝐿
=

𝜕𝐶0

𝜕𝑎𝐿

𝜕𝑎𝐿

𝜕𝑧𝐿

𝜕𝑧𝐿

𝜕𝑤𝐿

(1.5.13)

However, all these calculations are for one training sample only since the actual cost

function is the average of all the costs in a minibatch, the actual gradient is the average of all

the derivatives for each sample:

 𝜕𝐶

𝜕𝑤𝐿
=

1

𝑁
∑

𝜕𝐶𝑖

𝜕𝑤𝐿

𝑁

𝑖=1

(1.5.14)

Also, the gradient for the bias term is similar and can be given by:

 𝜕𝐶0

𝜕𝑏𝐿
=

𝜕𝐶0

𝜕𝑎𝐿

𝜕𝑎𝐿

𝜕𝑧𝐿

(1.5.15)

Since

 𝜕𝑧𝐿

𝜕𝑏𝐿
= 1 (1.5.16)

Now that we know how to calculate the gradient for the last layer, we can propagate

backwards by calculating the derivative of the cost with respect to the activation of the

21

previous layer aL-1 which allows us to find the derivates of its weights and biases. And we can

repeat the same process until we reach the input layer.

 𝜕𝐶0

𝜕𝑎𝐿−1
=

𝜕𝐶0

𝜕𝑎𝐿

𝜕𝑎𝐿

𝜕𝑧𝐿

𝜕𝑧𝐿

𝜕𝑎𝐿−1

(1.5.17)

The given example is oversimplified since it has one neuron per layer, in the case of

multiple neurons, we add subscripts to each neuron as follows:

Figure 16: Simple neural network with multiple neurons per layer.

We index the neurons in the L-1’th layer as k and those in the L’th layer as j, now we get:

 𝑧𝑗
𝐿 = 𝑤𝑗1

𝐿 ∗ 𝑎1
𝐿−1 + 𝑤𝑗2

𝐿 ∗ 𝑎2
𝐿−1 + 𝑤𝑗3

𝐿 ∗ 𝑎3
𝐿−1 + 𝑏𝑗

𝐿

𝑎𝑗
𝐿 = 𝜎(𝑧𝑗

𝐿)

𝜕𝐶0

𝜕𝑤𝑗𝑘
𝐿 =

𝜕𝐶0

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿

𝜕𝑧𝑗
𝐿

𝜕𝑤𝑗𝑘
𝐿 ,

(1.5.18)

where C0 is the Cost for one training sample, wjkL is the weight between the j’th and k’th

neurons in the layer L and L -1 respectively, and ajL is the activation of the j’th neuron.

One thing that changes is the derivative of the cost C0 with respect to the activation of a

neuron in the previous layer akL-1. As depicted in Fig.16 the neurons in the layer L-1 can affect

the final result through 2 different paths (which is the equivalent to the number of neurons in

the layer L), so we have to sum them up as follows:

𝜕𝐶0

𝜕𝑎𝑘
𝐿−1 = ∑

𝜕𝐶0

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿

𝜕𝑧𝑗
𝐿

𝜕𝑎𝑘
𝐿−1

𝑛(𝐿)

𝑗=0

(1.5.19)

where n(L) is the number of neurons in layer L.

22

6. Optimization

In deep learning, once the gradient has been computed, the next step is to update the

parameters of the neural network accordingly. This optimization process involves using

optimization algorithms such as [51]:

• Gradient Descent: It is the most basic optimization algorithm that updates the

parameters using the gradient of the cost and a learning rate α. It is given by:

𝑊𝑗,𝑡 = 𝑊𝑗,𝑡−1 − 𝛼

𝑑𝐶

𝑑𝑊𝑗,𝑡

(1.5.20)

The size of the steps taken towards the local minimum in Gradient Descent is determined

by the learning rate α. A smaller learning rate leads to slower convergence but more accurate

results, while a larger learning rate may cause overshooting as seen in Fig.17 below:

Figure 17: the difference between a big and a small learning rate.

• Stochastic Gradient Descent: Gradient Descent updates the parameters only after

calculating the gradient on the entire dataset, which can be slow for large datasets. In contrast,

Stochastic Gradient Descent updates the parameters after each training example, resulting in

a faster but noisy path, which also may not converge to a minimum.

• Mini-batch Gradient Descent: To achieve the benefits of both GD and SGD, we use Mini-

batch Gradient Descent (MGD), which updates the parameters after each mini-batch instead

of after each individual sample. This reduces time complexity while still resulting in some

noise.

• SGD with Momentum: it is a technique that reduces the convergence time of Stochastic

Gradient Descent. It accomplishes this by denoising the gradient using exponential weighting

averaging, which gives more weight to recent updates compared to previous ones. It is given

by:

𝑉𝑗,𝑡 = 𝛾 ∗ 𝑉𝑗,𝑡−1 + 𝛼

𝑑𝐶

𝑑𝑊𝑗

𝑊𝑗,𝑡 = 𝑊𝑗,𝑡−1 − 𝑉𝑗,𝑡

(1.5.21)

Such that γ is the momentum term and is usually set to 0.9 or similar values.

• Adam: Adaptive Moment Estimation (ADAM) is a popular optimization algorithm that

combines ideas from both SGD with Momentum and RMSprop (Another optimization

algorithm). It employs exponential moving averages to calculate the first and second

23

moment of the gradient, which allows it to adaptively adjust the learning rate for each

weight in the neural network. Its rule is given by [52]:

 𝑚𝑗,𝑡 = 𝛽1𝑚𝑗,𝑡−1 + (1 − 𝛽1)𝑔𝑗,𝑡

𝑣𝑗,𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑗,𝑡
2

�̂�𝑗,𝑡 =
𝑚𝑗,𝑡

1 − 𝛽1
𝑡

𝑣𝑗,𝑡 =
𝑣𝑗,𝑡

1 − 𝛽2
𝑡

𝑊𝑗,𝑡 = 𝑊𝑗,𝑡−1 − 𝛼
�̂�𝑗,𝑡

√𝑣𝑗,𝑡 + 𝜀

(1.5.22)

Where β1 and β2 are hyperparameters that control the decay rates they are mostly set by

default to 0.9 and 0.999 respectively, and g is the gradient. m and v are the moving averages

however they are biased towards zero at the beginning of the training so in order to correct

them we compute the bias-corrected estimates �̂� and 𝑣.

7. Validation

During the neural network learning process, the validation step involves assessing the

network's performance on a separate validation set. This evaluation includes making

predictions on the validation set and computing relevant metrics to monitor the training

progress and prevent overfitting. To make predictions on the validation set, the network

undergoes a forward pass, and the validation loss and other metrics are computed based on

the predicted outputs and the actual values.

8. Testing

After the completion of the training process, the neural network undergoes the evaluation

phase, also known as testing. This step is similar to validation, but instead of using the

validation set, the testing set is used to assess the trained network's generalization capability

and its performance on unseen and independent data.

The main difference between the validation and testing steps is that validation evaluates

the model while tuning hyperparameters which can be biased, as the model configuration is

influenced by the validation dataset, while testing provides an unbiased evaluation of the final

model.

1.5.7 Some Recurrent Problems in Deep Learning

Deep Neural Networks may face several issues during the training process that need to be

addressed to achieve optimal results. These issues include:

• Vanishing Gradient: When backpropagating the error through many layers, the gradients

may become very small, causing the weights to update very slowly or not at all. This can

make the training process slow or even stop it entirely [53].

• Exploding Gradient: When backpropagating the error through many layers, the gradients

may become very large, causing the weights to update too much, and leading to numerical

instability [53].

24

• Overfitting: Overfitting occurs when the model performs well on the training data but

poorly on new data. This happens when the model has too many parameters, and it starts

to memorize the training data instead of learning the underlying patterns [54].

• Underfitting: Underfitting occurs when the model is too simple to capture the complexity

of the data. This happens when the model has too few parameters or when it is not trained

for long enough [54].

• Dataset Bias: The dataset used for training may not be representative of the actual

distribution of data, leading to a biased model [54].

Adjusting hyperparameters and model complexity can alleviate these problems. For

example, adding more parameters and layers can help to prevent underfitting, but it can also

lead to overfitting if the model is too complex. Training the model for too long would increase

the risk of overfitting, while training for too few epochs might result in underfitting. A smaller

learning rate is able to help prevent exploding gradients, but it may also slow down training.

In addition to adjusting these factors, several popular techniques can be used to tackle these

problems, including:

• L1 and L2 Regularization: Also known as weight decay, these techniques add a penalty

term to the loss function to limit the magnitude of the weights. L1 regularization promotes

sparse weight values while L2 regularization promotes small but non-zero weights [55].

• Dropout: it is a layer that randomly drops out a fraction of the neurons in each layer

during training [56], forcing the remaining neurons to learn more robust features to

prevent overfitting.

• Data augmentation: Data augmentation techniques create additional training data by

applying random transformations such as rotations, translations, and scaling to the

existing data. Sequential data can be augmented through time shifts.

• Early Stopping: Early stopping stops the training process when the validation accuracy

stops improving, preventing overfitting to the training data.

• Batch Normalization: it is a technique that normalizes the inputs of each layer by

adjusting the mean and standard deviation of the batch to 0 and 1, respectively. It results

in faster and more stable training.

• Scheduler: it helps to improve the performance of deep learning models by adjusting the

learning rate during training to ensure that the model converges to the optimal solution

more effectively.

1.6 Audio Classification Steps

1.6.1 Overview

Audio classification is the process of automatically assigning audio data into

predetermined categories. This can be a difficult task due to the complexity and high

dimensionality of audio data. In order to build an accurate deep learning model for audio

classification, several key steps must be taken. These steps involve identifying and sourcing

high-quality data, performing thorough data analysis, as well as preprocessing and feature

extraction, to ensure the data is suitable for the model's input. The detail of each step of the

audio classification is disused in the following subsections.

25

1.6.2 Preprocessing

Although deep learning algorithms work well with raw data, it is usually more practical

to apply some pre-processing steps to convert it into a format that the model can handle. In

the case of audio inputs, these pre-processing steps can be performed dynamically at

runtime while reading and loading the audio files. The following pre-processing steps can be

applied to audio inputs [57]:

Resampling: changing the sample rate of the audio files to a standard one.

Rechanneling: Converting the audio to stereo or mono, which can reduce dimensionality

and improve performance.

Resizing: for consistency, all the audio files are resized to the same fixed time length by

trimming or padding.

Time-Shifting: it is a data augmentation technique that shifts the time of the audio data.

Filtering: Filters, such as bandpass and noise reduction filters, are commonly applied to

audio data to remove unwanted noise and artifacts.

1.6.3 Segmentation

Audio segmentation involves dividing an audio signal into smaller subgroups or segments.

For instance, in phonocardiogram (PCG) signals, we can segment the input into individual

heart cycles or even into specific cycle states (such as S1, S2, systole, and diastole) [4] [5]. We

can also use windowing techniques to split the signals into smaller segments of fixed lengths.

1.6.4 Feature Extraction

Feature extraction is a crucial step in preparing input data for deep learning models, as it

involves identifying and extracting key features that can help the model better understand the

data. In the context of audio classification, there are several popular techniques for feature

extraction [4] [5]., including:

Time domain features: These features are based on properties of the waveform in the

time domain, such as the amplitude, duration, and shape of the signal. These features can

include time intervals between events, amplitude measurements, and skewness of the

amplitude distribution.

Frequency domain features: These features are based on properties of the signal in the

frequency domain, such as the power spectrum of the signal.

Time-Frequency domain features: These features are based on properties of the signal

in both the time and frequency domains and can capture information about both the temporal

and spectral characteristics of the signal. Common time-frequency domain features include

mel-frequency cepstral coefficients (MFCCs), spectrograms, and wavelet transforms.

By extracting these key features from the input audio data, we can create a more compact

and meaningful representation of the data that can be used to train and improve the accuracy

of the deep learning model.

26

In our research, we will be using two different Time-Frequency domain features namely

MFCCs, and Spectrograms. These features are widely used in related works [3] [58] [59] [60]

and have been useful in audio applications.

1. Mel Spectrogram

Spectrograms provide a visual representation of audio signals that incorporates both time

and frequency domain features. They are constructed by plotting the spectrum of the sound at

different time intervals. This creates a three-dimensional graph where the X-axis represents

time, the Y-axis represents frequency, and the Z-axis represents the amplitudes of the signal

[61]. For a better visualization of the spectrogram, the amplitudes are represented using

colors. An Example of a Mel Spectrogram of a heart sound is shown in Fig.18.

Figure 18: An audio sample of a heart sound and its equivalent Mel Spectrogram.

Audio spectrograms are generated by decomposing the audio signal into its fundamental

frequencies using Fourier transforms [61]. While the Fast Fourier Transform (FFT) algorithm

is commonly employed, it provides a spectrum of the entire signal without any temporal

information or insight into how frequencies change over time [62]. To address this, the Short

Time Fourier Transform (STFT) algorithm is utilized. The STFT algorithm partitions the audio

into smaller segments using a sliding time window, computes the FFT for each segment, and

subsequently merges the outcomes to construct a spectrogram.

27

Figure 19: Visualization of the STFT process [63].

In Fig.19, we can observe the process of the STFT, which involves several important

parameters:

Window length: it refers to the length of the windows used when computing the STFT. It

determines the time resolution of the resulting spectrogram.

FFT size: This parameter defines the number of points used in the FFT when computing

the STFT. It determines the frequency resolution of the resulting spectrogram.

Hop length: The hop length parameter determines the number of samples the window is

shifted for each subsequent calculation.

Regular spectrograms often lack vibrant colors due to the linear representation of

frequencies. Since human perception of frequencies follows a logarithmic scale, distinguishing

differences in large frequencies becomes challenging compared to smaller frequencies [61].

To address this limitation, the frequencies are converted to the mel scale using the following

equation:

𝑀𝑒𝑙(𝑓) = 2595log (1 +
f

700
) (1.6.1)

Similarly, amplitudes of a sound are also perceived as its loudness which is heard

logarithmically rather than linearly. So, the decibel scale is used for the amplitudes instead.

28

To convert the spectrogram to the mel scale, mel filterbanks are utilized. A Mel filterbank

is a set of triangular filters each corresponding to a specific frequency band on the mel scale

[64]. The output of each filter is the sum of its weighted spectral components, which represent

the energy in that frequency band.

Figure 20: Mel filterbank.

2. Mel Frequency Cepstrum Coefficients:

Mel Frequency Cepstrum Coefficients (MFCCs) provide a concise representation of the

spectrum by capturing information about rate changes in different spectrum bands [65]. The

term "Cepstrum" refers to the spectrum of a spectrum, which is in the time domain.

The extraction of MFCCs involves the computation of the log mel spectrogram, as shown

earlier. However, the coefficients in this spectrogram are highly correlated [65]. To address

this, a Discrete Cosine Transform (DCT) is applied to decorrelate the coefficients, resulting in

the computation of Mel Frequency Cepstrum Coefficients.

DCT is a Fourier-related transform that shares similarities with the Discrete Fourier

Transform (DFT). However, DCT focuses on real-valued signals and employs cosine functions

only [66].

In summary, MFCCs can be viewed as the DCT of the log mel spectrogram, serving as an

effective method to capture essential characteristics of the audio signal while reducing
correlation among the coefficients. An example of an MFCC representation of a heart sound is

given in Fig.21 below:

Figure 21: An audio sample of a heart sound and its equivalent MFCCs.

29

1.7 Summary

In this chapter, we covered various aspects related to cardiovascular diseases and the

diagnosis of heart conditions. We discussed the structure and functioning of the heart, along

with an overview of different cardiovascular diseases and their impact on human health. We

explored the current diagnostic methods and highlighted the need for improved automated

diagnosis techniques. Then, we delved into heart sounds and phonocardiogram (PCG) signals,

emphasizing their relevance in diagnosing heart diseases.

Furthermore, we introduced the deep learning theory, including artificial neural networks

(ANN), convolutional neural networks (CNN), and long short-term memory networks (LSTM).

We then discussed the training process and limitations of deep learning models.

Finally, we outlined the steps involved in PCG classification and introduced two feature

extraction techniques: Mel Frequency Cepstrum Coefficients (MFCCs) and Mel spectrograms.

Overall, this chapter provided a comprehensive foundation for understanding the context,

theoretical background, and key concepts related to the subsequent chapters of the report.

30

Chapter 2: Related Works

31

2.1 Introduction

This chapter provides an overview of existing research on Phonocardiography (PCG)

classification techniques. PCG signals contain important information about the functioning of

the heart and are often used in the diagnosis of various cardiovascular diseases. However,

analyzing PCG signals can be challenging due to their complex nature and variability across

patients. As a result, researchers have developed various classification techniques to

accurately identify different heart sounds and diagnose related conditions.

In this chapter, we will review a few research papers that propose different approaches

for PCG classification. Each paper will be summarized, and its methodology and findings will

be discussed. We will also compare and analyze the different techniques and identify their

respective strengths and limitations.

2.2 Existing PCG Classification Techniques

2.2.1 Ensemble of Feature-based and Deep learning-based Classifiers for Detection

of Abnormal Heart Sounds

1. Overview:

The paper [58] introduces an algorithm to classify normal/abnormal heart sounds in the

2016 PhysioNet/CinC Challenge. The algorithm involves the extraction of 124 time-frequency

features from PCGs, which are then fed into a variant of the AdaBoost Classifier. In addition, a

CNN classifier is trained using PCG cardiac cycles that have been decomposed into four

frequency bands. The final decision is made based on the output of both classifiers, resulting

in an ensemble approach.

Figure 22: Block diagram of the approach of [58] for classification of normal/abnormal heart sounds.

2. Pre-processing:

To prepare the PCGs for analysis, they were resampled to 1000 Hz and bandpass filtered

between 25 Hz and 400 Hz. Next, any spikes were removed from the preprocessed PCGs. The

PCGs were then segmented into four heart sound states (S1, Systole, S2, and Diastole) using

the Springer segmentation method.

32

3. Feature Extraction:

Different features were extracted from the PCG signals including time domain features,

frequency domain features, and time-frequency domain features. For the time domain

features, 36 were extracted such that the mean and standard deviation of each parameter was

used:

PCG Intervals: RR, S1, S2, Systolic, Diastolic, Ratio of Systolic to RR during each heartbeat.

Ratio of Diastolic to RR during each heartbeat, Ratio of Systolic to Diastolic during each

heartbeat.

PCG Amplitudes: mean absolute amplitude during Systole to S1 in each heartbeat, mean

absolute amplitude during Diastole to S2 in each heartbeat, Skewness of amplitude during (S1,

S2, Systole, Diastole) in each heartbeat. Kurtosis of amplitude in (S1, Systole, S2, and Diastole)

in each heartbeat

The authors extracted frequency domain features by computing the power spectrum of

each heart sound state (S1, Systole, S2, and Diastole) using a hamming window and DTFT. They

calculated the median power of 9 frequency bands ranging from 25 Hz to 400 Hz that

corresponded to the different states. Then, they took the mean of the median power of the 9

frequency bands across all cycles.

As time-frequency features, the authors utilized 13 Mel-frequency cepstral coefficients

(MFCCs) from each cardiac cycle and state, as well as the average of the MFCCs across various

cardiac cycles.

4. Classification:

The authors used a boosted classifier, denoted by H(x), which is defined as:

𝐻(𝑥) = 𝑏 + ∑ 𝛼𝑡ℎ(𝑥; 𝜃𝑡)

𝑡

 (2.2.1)

In this equation, b is a constant bias, h(x; θt) is a base classifier with a vector of parameters

θt, and αt is the weight assigned to each base classifier. The function H(x) produces a

classification output (+1 or -1) based on the input x. Each base classifier is a simple decision

stump over one of the features mentioned earlier, and the modified version of AdaBoost

(AdaBoost-abstain) allows each base classifier to abstain from voting by outputting 0. The final

decision is made by taking the sign of H(x), which represents a weighted majority vote.

For the CNN approach, each PCG was decomposed into 4 frequency bands from 25 Hz to

400 Hz and segmented into S1, S2, Systole and Diastole then input to the CNN as shown in

Fig.23. The input tensor for the CNN corresponds to a specific frequency band of the cardiac

cycle, with a length of 2500 samples (1000 Hz * 2.5s). The convolution layers involve a

convolution operation, a non-linear transformation, and a max-pooling operation. The first

convolution layer consists of 8 filters of length 5, followed by a ReLU and a max-pooling of 2.

The second convolution layer consists of 4 filters of length 5, followed by a ReLU and a max-

pooling of 2.

The output of the four CNNs is flattened into a single long continuous linear vector and

input to a multilayer perceptron (MLP) with an input layer of 4 neurons, a hidden layer with

33

20 neurons, and an output layer with 1 node. ReLU is used for the hidden layer and Sigmoid

for the output layer. Dropout of 25% is applied after the second convolution layer, and dropout

of 50% and L2 regularization are applied at the hidden layer of the MLP. Adam optimizer is

used for stochastic optimization. Finally, a decision rule is used to combine the two classifiers

such that if one of them outputs abnormal then the final decision is abnormal.

Figure 23: CNN architecture for classification of normal/abnormal heart sounds [58].

5. Hyperparameters:

The authors used the in-house training set to tune the hyperparameters. Resulting in a

batch size of 1024, a learning rate of 0.0007 and training over 200 epochs. Training is stopped

when the loss function stops decreasing.

6. Results:

The standalone AdaBoost-Abstain classifier obtained an overall score of 0.85, while the

CNN approach achieved an overall score of 0.84. However, the classifier ensemble algorithm

outperformed both approaches and obtained the highest score in the PhysioNet 2016

challenge. It achieved a sensitivity, specificity, and overall score of 0.94, 0.78, and 0.86,

respectively. The results demonstrate the effectiveness of the proposed method in detecting

abnormal heart sounds, and it provides a strong foundation for further development in this

field.

34

2.2.2 Heart sound classification based on improved MFCC features and Convolutional

Recurrent Neural Networks

1. Overview:

The objective of this study [3] was to develop a more accurate heart condition

identification algorithm using an improved version of Mel-frequency cepstral coefficients

(MFCCs) features and a Convolutional Recurrent Neural Networks (CRNN) based classifier.

The algorithm utilized standard, 1st, and 2nd order MFCCs. Various combinations of CNN and

RNN models were tested to compare their performance in classifying heart sounds.

2. Pre-processing:

To prepare the heart sound for analysis, a 5th order Butterworth bandpass filter is applied,

which limits the frequency range to 25-400 Hz; and each sample is intercepted at 5 seconds.

While pre-processing plays a crucial role, the focus of the paper is primarily on the feature

extraction and pattern recognition techniques.

3. Feature Extraction:

The authors improved the Mel-frequency cepstral coefficients (MFCC) by applying pre-
emphasis at the beginning to amplify high-frequency components. They also extracted first
and second-order MFCCs to incorporate dynamic features.

4. Classification:

In this research paper, the authors compared the performance of two classification

architectures, namely CRNN (Convolutional Recurrent Neural Network) and PRCNN (Parallel

RCNN). The CRNN architecture consisted of three convolutional blocks, each comprising a

Conv layer, a ReLU activation function, and a Max-pool layer, with Batchnorm and Dropout

layers included. This was followed by an LSTM (or GRU which is another RNN variant) layer

and a Fully Connected Layer with 64 neurons, and finally a Softmax function. The PRCNN

architecture, on the other hand, used three convolutional blocks for the CNN part and a Max-

pool layer followed by an LSTM (or GRU) layer for the RNN part. The outputs of the two blocks

were concatenated into one feature vector and input to a Fully Connected layer with 32

neurons, followed by a Softmax layer.

5. Hyperparameters:

The authors partitioned the dataset into three subsets, with 75% used for training, 15%

for validation, and 10% for testing. To address oversampling, they employed the k-means

SMOTE algorithm to resample the training set. A dropout rate of 0.5 was found to achieve the

highest accuracy, with a value of 0.97. The Adam optimizer was utilized with an initial learning

rate of 0.01 and exponential decay rates of 0.9 and 0.999 for the first and second moment

estimates, respectively.

6. Results:

The performance of the model is evaluated using four metrics: accuracy, recall, precision,

and F1 score. According to the experimental results presented in Fig.24, the model that

includes three convolutional layers and one LSTM layer yields the best results. Among the
tested architectures, CRNN-a and PRCNN-a achieve the highest accuracy and F1 scores. These

35

findings suggest that combining CNNs with LSTMs is an effective approach for audio

classification, and that the MFCC features used in this study are efficient.

Figure 24: Classification performance of different network architectures of [3].

2.2.3 Classification of Heart Sounds Using Chaogram Transform and Deep

Convolutional Neural Network Transfer Learning

1. Overview:

This study [67] aims to accurately classify PCG signals as normal or abnormal. The

proposed approach involves applying a Chaogram transformation to the original PCG signal

and using a pretrained DCNN (Deep CNN) model for classification.

2. Pre-processing:

The authors of this paper proposed a two-stage noise cancellation technique for improving
PCG signal quality. In the first stage, a third-order Butterworth bandpass filter with a

frequency range of 15 to 800 Hz is applied. In the second stage, a Spectral Subtraction

denoising scheme with adaptive filters is used based on the noise power outside the expected

range of the heart sound spectrum. This approach results in a final denoised PCG signal,

obtained by subtracting the predicted noise power from the PCG spectrum.

3. Feature Extraction:

In this research, the authors focused on extracting a Chaogram image from the PCG signals

using a Reconstructed Phase Space (RPS) which can be given by:

 𝑆𝑛
̅̅ ̅ = [𝑆𝑛, 𝑆𝑛+𝜏, 𝑆𝑛+2𝜏, … , 𝑆𝑛+(𝑑−1)𝜏], (2.2.2

)
where Sn is the signal, n is the sample index, d is the embedding dimension, and τ is the time

delay. The authors determined that the optimal values for τ and d are 18 and 3, respectively.

36

The observations confirmed that the patterns formed in the RPS of a PCG are strongly

correlated with the heart's functioning condition. The space of RPS was partitioned into

224×224×224 dimensions, and the frequency of points inside each cell was calculated to form

a 3D tensor T. To obtain a more intuitive representation, three images (224×224) were then

extracted by projecting T on the XY, XZ, and YZ planes.

Finally, these images act as the color channels of an RGB image to build the Chaogram. The

Chaogram image is then enhanced to emphasize the weak details and provide a more

comprehensive representation of the PCG signals.

Figure 25: Flow diagram of the [67] approach for PCG signal classification.

To further improve the accuracy, the authors enriched the training set by transforming

and deforming existing samples. The Chaogram image was rotated by 5 to 30 degrees, scaled

with a factor of 1.05 to 1.15, and width and height shifted by 5 to 20 pixels. This process

generated 20 new versions of each sample, increasing the size of the training set from 2,868

to 60,228 samples.

4. Classification:

To avoid overfitting on the small PhysioNet dataset, the authors suggest using pretrained

networks with transfer learning as it can enhance the generalization of the model and

accelerate the learning process. Four pretrained models (AlexNet, VGG16, InceptionV3, and

ResNet50) were tested by fine-tuning only the last two layers on the dataset while keeping the

weights of the other layers unchanged from their pretraining on the large-scale ImageNet

dataset. To prevent overfitting, a dropout layer of 0.5 was also used in the model.

5. Hyperparameters:

The authors used different optimizer functions such as Adam, SGD, RMSprop, Adadelta,

Adagrad, Adamax, Nadam, and Ftrl, and varied the learning rate from 1 × 10-5 to 1 × 10-1 with

steps of 1 × 10-5. The batch size was varied from 50 to 500 with steps of 2 and the number of

epochs varied from 50 to 400 with steps of 20. The optimal values for these hyperparameters

were determined using the Bayesian optimization algorithm. The training process was

stopped when there was no improvement in 20 consecutive epochs.

6. Results:

The algorithm's performance was evaluated using multiple metrics, including sensitivity,

specificity, accuracy, and a score value that represents the sum of sensitivity and specificity

divided by the total number of samples.

37

Network Sensitivity Specificity Accuracy Score
AlexNet 82.55 91.21 89.68 86.88
VGG16 83.36 91.49 90.05 87.43
InceptionV3 84.49 91.63 90.36 88.06
ResNet50 83.68 91.39 90.02 87.54

Table 1: Results of the Classification of the PCG signals with the method of [67].

The proposed approach demonstrated good performance in classifying PCG signals with

the InceptionV3 model achieving a sensitivity of 84.49, specificity of 91.63, accuracy of 90.36,

and a score of 88.06.

2.2.4 PCG classification through spectrogram using transfer learning:

1. Overview:

This study [60] proposes an approach for classifying PCG signals that combines signal

processing and deep learning techniques. It involves several key processing steps and can

perform binary or multiclass classification. The study highlights that multi-class PCG signal

classification is possible with only 2-3 seconds of data and a hybrid classifier composed of a

pretrained CNN and an SVM can significantly reduce training time. Finally, the hybrid classifier

is complemented with a voting-based system for final classification.

Figure 26: Flow diagram of the proposed CNN-SVM based classifier [60].

2. Pre-processing:

To prepare PCG signals for classification, a low-pass filter is used to decimate the signals

by a factor of 21, resulting in a spectral range of 0-800 Hz. The signals are then segmented into

fixed-duration cycles with an overlapping factor of 0.1×𝑓𝑠. To classify the signals effectively,

at least 2-3 seconds of data are required to observe multiple heartbeats. However, to cover

two or more cycles without knowledge of the person's age, at least 1 second of data is needed.

Hence, Signals in the dataset with lengths less than 1 second are not considered. So, the

authors decided to experiment with 4 different durations (1s, 2s, 3s, and 4s).

38

3. Feature Extraction:

The authors extracted the spectrogram representation from each cycle. The cycles are

smoothed using a Kaiser window of length 256 samples with parameter β = 5. Overlapping

samples of 220 and 1024 frequency points are used during spectrogram generation. The

frequency used for the spectrogram is also decimated, resulting in spectrogram resolutions of

52×513, 110×513, 168×513, and 227×513 for durations of 1-4 seconds respectively.

4. Classification:

The researchers used the AlexNet CNN network for feature extraction for its deep

architecture. However, as it requires a 227×227 input shape, the spectrograms are resized to

that, but some details may be lost. The output of AlexNet is a 4096-dimensional feature vector,

which is then used for classification.

The features are fed into an Error Correcting Output Codes (ECOC) model that relies on

Support Vector Machines (SVM) which is a type of supervised machine learning algorithms.

The authors used a majority voting scheme to classify the signals based on the labels of

their segments. The threshold for classification is set at 𝑁c ≥ 0.5×𝑁t, except for extra systole

which has a lower threshold (0.3) due to its rarity compared to other cyclo-stationary heart

sounds like S1 and S2.

5. Results:

The authors evaluated the dataset using different protocols for binary and multi-class

classification. Binary classification included grouping all pathological classes as abnormal. The

Performance was measured using Sensitivity. Average Sensitivity for multiclass classification

was 96.32% for 2-second segments, while binary classification achieved 91.04% for 1-second

segments. For signal classification (after the voting scheme), normal signals achieved 99.9%

Sensitivity for 3-second segments, artifact signals got 100% across all segments, and extra

heart sounds received 100% for 2 and 4-second segments. Murmurs achieved 99.9%

Sensitivity for the 3-second segments. Results were averaged over 5-fold cross-validation.

2.3 Comparison and Analysis of PCG Classification Techniques

2.3.1 Overview

The field of PCG classification has gained significant attention due to the availability of

good datasets through challenges like PhysioNet2016 and PASCAL. As a result, numerous

research papers have been published proposing novel techniques and methods for various

stages of the classification pipeline including preprocessing, segmentation, feature extraction,

and classification. While there may be differences in parameter settings or model

architectures, many of these papers share similarities such as denoising techniques,

Segmentation methods, time-frequency features, and the use of CNNs and RNNs for

classification. Table 2 provides a summary of the related works along with their performance

results.

39

Year Authors Model Segmentation Features Dataset Results

2016
Potes et
al. [58]

AdaBoost
& CNN

Springer
Time and

Frequency
Features, MFCC

PhysioNet
Sensitivity Specificity MAcc

94.24% 77.81% 86.02%

2020
Deng et al.

[3]
CRNN - MFCCs PhysioNet

Sensitivity Specificity MAcc

98.66% 98.01% 98.34%

2022
Harimi et

al. [67]
DCNN - Chaogram PhysioNet

Sensitivity Specificity MAcc

84.49% 91.63% 88.06%

2022
Abbas et
al. [68]

CVT - CWTS
the

phonocardiogram
database

Sensitivity Specificity Acc

99% 99.5% 100%

2021
Ren et al.

[59]
CNN -

Log Mel
Spectrogram

HSS
UAR

51.2%

2022
S. Ismail

et al. [60]
CNN-SVM

Fixed-duration
cycles

Spectrogram PASCAL
Sensitivity

99.9%

Table 2: Summary of Related Works Techniques and Results

40

2.3.2 Discussion

Upon analyzing the results, it can be seen that Paper 2 by Deng et al. [3] achieved

impressive accuracy results compared to Papers 1 and 3 despite not utilizing segmentation,

indicating the effectiveness of MFCC features and RNN models in audio classification. In

contrast, Paper 3 utilized a novel feature extraction technique with pre-trained CNN models

to accelerate training, resulting in promising results.

Although Paper 4 used a distinct dataset, it demonstrated the effectiveness of

spectrograms in audio data analysis as they provide time and frequency features. The study

produced a remarkable average sensitivity of 0.999.

Based on the analysis, CNN models are the most common techniques employed for PCG

classification, with RNN models used in certain cases. Bandpass filtering is frequently applied

in the preprocessing stage to denoise the PCG signals. The Springer method is also a popular

segmentation algorithm utilized in multiple papers (even in those not discussed here). MFCCs

and Spectrograms are the most popular feature extraction techniques in audio classification.

However, determining the most effective techniques is challenging as each paper employs

various approaches and datasets. Nonetheless, pre-trained CNN models and hybrid CNN-RNN

models have shown potential in achieving high accuracy for PCG classification. Future research

can explore more advanced deep learning techniques and larger datasets to improve the

accuracy of PCG classification.

2.4 Summary

Chapter 2 provides an overview of previous works in the field of heart sound classification

and the prediction of cardiovascular diseases using PCG signals. The chapter summarizes each

paper, highlighting the techniques employed and the corresponding results obtained. By

examining these works, we gain valuable insights into different approaches and

methodologies used by researchers in addressing this problem. This chapter serves as a

foundation for understanding the existing methods and identifying the most promising

techniques, thus guiding us in choosing the techniques to implement for our project.

41

Chapter 3: Methodology

42

3.1 Introduction

In this chapter, we will present the various methodologies adopted for classifying

phonocardiogram (PCG) signals in this project, including the preprocessing steps applied to

the PCG signals, the design and implementation of the models, and the dataset used for training

and testing these models. Specifically, we experiment with different feature extraction

techniques and segmentation methods of the heart sounds data and discuss the different

parameters and the decisions taken in detail.

3.2 Data Collection

To obtain a stable and generalized deep learning model for this research, a substantial

amount of data samples is necessary. Fortunately, various publicly available heart sounds
datasets exist, each with its advantages and disadvantages. Notably, the PASCAL dataset [69]

and the PhysioNet 2016 dataset are the most widely used in related works. The PCG data is

collected by multiple researchers, and challenges are organized with the aim of finding the

most effective approach for detecting CVDs.

The PASCAL dataset [69] includes two sets: A which includes 176 files in .wav format and

are categorized into four categories (Normal, Murmur, Extra Heart Sound, Artifact), and B

which includes 656 files in wav format which are categorized into (Normal, Murmur, and

Extrasystole).

The PhysioNet 2016 dataset [70] consisted of eight heart sound databases collected

independently over a period of more than a decade. It contains a total of 3,126 heart sound

recordings, lasting from 5 seconds to just over 120 seconds. The heart sounds are categorized

into Normal and Abnormal sounds, the abnormal samples included cases of heart valve defects

and coronary artery diseases.

In this study, the PhysioNet dataset was selected for model training due to its larger

number of samples. However, it is highly unbalanced since it includes 2,575 samples labeled

as normal and only 665 abnormal samples.

3.3 Proposed Methodology

3.3.1 Segmentation

Segmentation is a significant aspect in this project, primarily due to the periodic nature of

heart sounds and the variations in recording lengths within the utilized dataset. As a result,

we decided to experiment with two different techniques for segmentation.

Windowing: The first segmentation technique employed in this study is windowing,

which involves dividing each audio file into multiple 5-second-long sound signals with a 0.5-

second overlap. By adopting this approach, we aimed to increase the number of data samples

and reduce the input size, ultimately enhancing the overall performance of the classification

model. Fig.27 below illustrates the distribution of samples after performing the windowing

segmentation.

43

Figure 27: Distribution of samples after windowing segmentation.

Cycles: The second segmentation method employed in this study is based on heart cycle

segmentation. We utilized the Springer Segmentation Method [71], which leverages machine

learning techniques that employ Logistic Regression and Hidden Semi-Markov Model (HSMM)

to accurately extract each individual heart cycle from the audio signals. This method identifies

the different states of each cycle, including S1, Systole, S2, and Diastole. By precisely extracting

heart cycles, we enable the model to analyze each cycle independently, which can provide

meaningful insights for classification. Notably, in the PhysioNet Dataset, the longest heart cycle

duration is approximately 2.5 seconds. Consequently, this segmentation approach generates

more samples compared to the windowing segmentation method as can be seen in Fig.28. To

ensure consistency in the dataset, cycles shorter than 2.5 seconds are zero-padded.

Figure 28: Distribution of samples after cycles segmentation.

44

3.3.2 Preprocessing

Data preprocessing is an important part of the PCG Classification task. It involves

denoising the signal and performing different operations to the raw input data.

To begin, the input audio is converted into mono by merging the two channels of the audio

into a single channel to ensure consistency in the data representation.

As the next step of the preprocessing, we address the sampling rate of the signals. For the

windowed signals, we resampled the data to a sampling rate of 2000 Hz. This resampling helps

to standardize the data and ensures compatibility with subsequent processing steps. However,

for the cycle-segmented signals, the sampling rate is set to 1000 Hz. This adjustment is made

to align with the Springer segmentation algorithm, which operates on signals sampled at 1000

Hz. By maintaining a consistent sampling rate, we facilitate the accurate analysis and

classification of the segmented heart cycles.

For denoising purposes, we employed a third-order Butterworth bandpass filter with a

low cut-off frequency of 15 Hz and a high cut-off frequency of 400 Hz. This configuration

effectively removes low and high-frequency artifacts from the PCG signals, enabling the

preservation of the fundamental sounds of the heart. Although this denoising process does not

entirely eliminate noise, it ensures that the essential heart sounds remain intact for precise

analysis as can be seen in Fig.29 which illustrates a PCG signal before and after denoising.

Figure 29: PCG sample before and after Denoising.

After the denoising process, the audio signals undergo pitch shifting. Pitch shifting is

achieved by multiplying the amplitudes of the signal with a random value between 0 and 1.

This step is implemented to enhance the generalization of the model to the data, allowing the

model to better adapt to and handle varying amplitudes of the PCG signals.

45

3.3.3 Feature Extraction

Feature extraction is a crucial step in analyzing raw audio signals as it enhances the

model's ability to understand the data and improves overall performance. In this project, we

evaluated two popular feature extraction techniques commonly used in heart sound signal

analysis: MFCCs (Mel-frequency cepstral coefficients) and Spectrogram features.

1. Mel-Frequency cepstral coefficients:

The first feature extraction technique employed in this project is the Mel-Frequency

Cepstral Coefficients (MFCCs) inspired from [3]. MFCCs are chosen due to their ability to

capture essential characteristics of the sound signal, which have proven valuable in various

audio analysis tasks.

In our implementation, we derived standard MFCCs along with the delta and delta-delta

MFCCs (1st and 2nd order derivatives). The inclusion of these derivatives allows us to

highlight the changes in amplitudes over time within the signal.

To accommodate the different segmentation methods, we used different configurations for

feature extraction. For the windowed signals, we employed a hop length of 64 samples, an FFT

size of 256, 64 Mel filterbanks, and extracted 14 MFCCs. For the cycle-segmented signals, we

utilized a hop length of 32 samples, an FFT size of 128, the same 64 Mel filterbanks, and

extracted 14 MFCCs.

The three sets of features (standard MFCCs, delta MFCCs, and delta-delta MFCCs) are

concatenated into a single tensor, with each set represented as a separate channel.

Consequently, the resulting tensor has a shape of [3, 14, 157] for the windowed signals and [3,

14, 79] for the cycle-segmented signals. The Figures 30 and 31 visualize the extracted MFCC

features for the windowed and cycle segments, respectively.

46

Figure 30: Visualization of the Standard, First order, and Second order MFCCs for the Windowed Signals.

q

Figure 31: Visualization of the Standard, First order, and Second order MFCCs for the Cycle-Segmented Signals.

47

2. Mel Spectrogram:

The second feature extraction method employed in this project is the Mel Spectrogram.

Mel Spectrograms provide detailed information about the time-frequency relationship in the

heart sounds, offering insights into the distribution of frequencies over time. To better

represent the human perception of frequencies and amplitudes, the Mel frequency scale and

Decibel scale are utilized.

Similar to the MFCC features, we also extracted the first and second-order derivatives of

the spectrograms to capture the variations in the spectrogram features over time.

Different parameters were used for the spectrograms based on the segmentation methods.

For the windowed signals, the parameters were set to a hop length of 64, an FFT size of 256,

and 128 Mel filterbanks. Similarly, for the cycle-segmented signals, the parameters were

adjusted to a hop length of 32, an FFT size of 256, and 128 Mel filterbanks.

In addition, we incorporated an effective augmentation technique specifically designed for

spectrograms, known as Spectro-augment. This technique works by applying masking to a

range of frequencies and time samples, adding horizontal and vertical bars to the spectrogram

image. By introducing these masked regions, the model is encouraged to generalize well and

avoid overfitting to specific frequencies and time stamps.

Following a similar approach to the previous method, the three sets of features derived

from the Spectrogram, namely the Spectrogram, 1st order Spectrogram, and 2nd order

Spectrogram, are combined into a single tensor. Each set is treated as a separate channel

within the tensor, resulting in a tensor shape of [3, 128, 157] for the windowed signals and [3,

128, 79] for the cycle-segmented signals. The Figures 32 and 33 visualize the extracted Mel

Spectrogram features for the windowed and cycle segments, respectively.

48

Figure 32: Visualization of the Mel Spectrogram representation for the Windowed Signals.

Figure 33: Visualization of the Mel Spectrogram representation for the Cycle-Segmented Signals.

49

3.3.4 Classification and Network Architecture

In this research, we adopted a hybrid CNN and LSTM model for classification, drawing

inspiration from relevant works in the field [3]. The decision to combine these two

architectures originated from the nature of the extracted features, which possess both

sequential and image-like characteristics.

According to [5], a CNN is highly effective at extracting deep features from MFCCs or

Spectrograms by performing convolutions in the time and frequency domains of heart sound

signals. Meanwhile, an LSTM is proficient at learning temporal patterns across various

frequencies in the PCG signals. Combining CNN and LSTM models creates a mutually beneficial

fusion, complementing each other's strengths [5].

The proposed hybrid model integrates the CNN and LSTM networks in a parallel manner.

Both networks receive the same input, and their outputs are concatenated. Subsequently, the

concatenated output is processed through another feed-forward network for final

classification.

To ensure a comprehensive analysis, the model takes the segmented windows or cycles

from the main signal as input. Each segment is classified individually during training, and a

voting scheme similar to the approach in [60] is employed. The majority vote, with a

predetermined weighted threshold, is used to make the final decision regarding whether the

signal should be classified as normal or abnormal. Fig.34 demonstrates the network

architecture of the adopted model.

Figure 34: Visualization of the proposed Hybrid CNN-LSTM model architecture.

The model architecture varies based on the segmentation method and input features to

ensure compatibility. In general, the model employs a CNN network with 3 convolutional

blocks and a flatten layer. The first block includes a 3-channel conv layer with a 3x3 kernel

50

size, followed by ReLU activation, a 2x2 MaxPool2d layer, and batch normalization. The other

two blocks follow a similar structure, with the second block outputting 32 features and

utilizing a 4x4 max pooling, and the third block outputting 64 features. For MFCC features, the

last two conv blocks omit max pooling since the dimensions are already small. The CNN output

is flattened and concatenated with the LSTM output, which is obtained from a 64-layer LSTM

network. Before inputting to the LSTM layers, the input is reshaped and permuted to

[batch_size, seq_length, n_features × in_channels] by concatenating the different channels

hence the LSTM requires an input size of (n_features × in_channels). The LSTM network's

hidden states and cell states are initialized with zeros, and the output is taken from the last

state of the LSTM layers.

The fully connected network includes a layer with a number of neurons based on the

segmentation and features used (9,408 for windowed MFCCs, 3,136 for windowed

spectrograms, 4,416 for cycle-segmented MFCCs, 1,216 for cycle-segmented spectrograms).

This layer outputs 32 neurons, followed by a ReLU activation function and a dropout layer

with a rate of 0.5. Finally, a final fully connected layer is present, which outputs 2 classes for

classification. The predicted class is determined by taking the index of the maximum value

from the output (0 for normal, 1 for abnormal).

3.3.5 Training Procedure

Before proceeding to the model training, the dataset is preprocessed by reading the

original audio data from the PhysioNet dataset, segmenting them, and converting them into

the corresponding feature representations. These processed datasets are then stored as

tensors for efficient and faster training, eliminating the need to process each sample

individually during training. This results in the creation of four new datasets, each

representing a different segmentation and feature extraction technique.

After that, a DataLoader with a batch size of 64 is utilized to divide the dataset into mini-

batches. To address the issue of class imbalance, a WeightedRandomSampler is employed,

which oversamples the minority class and undersamples the majority class. Each mini-batch

tensor is normalized before being used for training. Additionally, both the model and input

tensors are transferred to the GPU device to enhance the training performance.

During training, a CrossEntropyLoss function is utilized in combination with an Adam

optimizer and a learning rate of 0.001. To optimize the learning rate, a OneCycleLR scheduler

is employed, increasing the rate linearly until it reaches a maximum value of 0.01, after which

it starts decreasing. The number of training epochs is set to 500, with early stopping

implemented if the validation accuracy fails to improve for 30 consecutive epochs.

3.3.6 Experimental Setup

The experimental environment was set up on a local machine equipped with an 11th Gen

Intel(R) Core(TM) i7-11800H CPU with 8 cores, an NVIDIA RTX 3070 GPU, and 16GB of RAM.

The software environment relied on Python as the main programming language, chosen for its

popularity in the field of artificial intelligence and the availability of the various libraries:

51

a. PyTorch:

PyTorch, an open-source machine learning framework, was utilized for its flexibility in

expressing deep learning models using Python. It is commonly used in natural language

processing and computer vision tasks, known for its debugging capabilities and ease of use.

b. TorchAudio:

TorchAudio, a PyTorch library for audio and signal processing, offered essential

functionalities for the project. It facilitated tasks such as audio file loading, resampling, and

transformations like MelSpectrogram, AmplitudeToDB, and MFCCs. Additionally, it aided in

computing deltas and implementing time and frequency masking.

c. TorchMetrics:

TorchMetrics is another library for PyTorch that provides a collection of metrics

implementations and an easy-to-use API.

d. SciPy:

SciPy is a free and open-source Python library used for scientific computing and technical

computing. It was mainly used in our project for its Butterworth filter function.

e. Pandas:

Pandas, a Python library for data manipulation and analysis, proved useful in efficiently

handling and manipulating datasets. It offered data structures and operations designed for

numerical tables and time series.

f. NumPy:

NumPy is a library for the Python programming language, adding support for large, multi-

dimensional arrays and matrices, along with a large collection of high-level mathematical

functions to operate on these arrays.

g. Matplotlib:

Matplotlib is a plotting library for the Python programming language. It is used to visualize

the different inputs and plot the training performance.

Additionally, the Springer Segmentation algorithm was executed using MATLAB, while the

project implementation was carried out using Jupyter Notebook and Visual Studio Code.

3.4 Summary

In this methodology chapter, we presented our approach for classifying PCG signals using

a CNN-LSTM hybrid model. We discussed the data collection process and the dataset utilized

in our research. Additionally, we described the two segmentation techniques and feature

extraction methods employed. We outlined the training procedure, including the various

hyperparameters involved. Lastly, we provided an overview of the experimental setup and the

tools utilized throughout the study.

52

Chapter 4: Results and Discussion

53

4.1 Introduction

In Chapter 4, we present the results and discussion of our PCG Classification, focusing on

the performance evaluation and comparisons of different experiments. Firstly, we introduce

the performance metrics employed to assess the effectiveness of our methodologies.

Subsequently, we discuss the outcomes of each experiment, examining the performance of

windowed segments, cycle segments, MFCCs representation, and Spectrogram representation

individually. Additionally, we thoroughly compare the results obtained from the two

segmentation techniques and the two feature extraction techniques, highlighting their relative

strengths and weaknesses. Through this in-depth analysis, we aim to gain insights into the

optimal approaches for PCG classification.

4.2 Performance Metrics

During the evaluation phase, a useful measure that can be employed is the confusion

matrix. This matrix provides a clear overview of the network's performance by displaying the

actual and predicted output classes in a table format. The matrix contains information on the

number of correctly and incorrectly predicted samples for each class. The confusion matrix

labels correctly predicted samples as "True" and incorrectly predicted samples as "False".

While the predicted values are labeled either "Positive" or "Negative," which correspond to

"Abnormal" and "Normal" respectively.

Figure 35: Confusion matrix.

There are various metrics available, and the choice of a particular metric depends on the

specific task. Accuracy is one of the most commonly used metrics, which measures the

proportion of correctly classified samples in the set. However, depending on the problem,

other metrics such as precision, recall, F1-score, or mean squared error (MSE) may be more

relevant.

• Accuracy: It is a metric that provides an overall measure of how well a model performs

across all classes, and it is particularly useful when all classes are equally important. It is

given by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛_𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑛_𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

54

• Precision: measures the accuracy of a model in correctly classifying a sample as positive

in binary classification [72].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

• Sensitivity: it is also known as Recall; it measures the model's ability to correctly identify

positive samples. A higher recall indicates that the model is able to detect more positive

samples correctly.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

• Specificity: measures the proportion of true negatives that are correctly identified by the

model.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

• F1 Score: The F1 score combines precision and recall such that maximizing the F1 score

implies simultaneously maximizing both precision and recall.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

One additional metric used in this research is the MAcc introduced in [70] which is used as the

overall score in the challenge. It involves the Sensitivity and Specificity metrics as follows:

𝑀𝐴𝑐𝑐 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2

4.3 Results

4.3.1 Experiment 1: Windowed Segments with MFCC Features

In the first experiment, we applied the windowing segmentation technique combined with

the MFCC feature extraction method. The implemented model consisted of a total of 2,449,250

parameters. The training process was monitored, and the model stopped training at epoch 151

due to a consecutive decrease in the validation accuracy. The full training process took well

above 43 minutes. Fig.36 illustrates the training and validation accuracy curves for this

experiment.

55

Figure 36: Training and Validation accuracy curves for the first experiment.

From the Fig.36 we can see that the model was doing well on the training data and descent

on the validation data. It took approximately 15 to 20 epochs for the model to converge and

gradually improve over time, eventually stabilizing and experiencing a slight decrease around

epoch 130. The highest achieved validation accuracy was recorded at 89.44%.

Figure 37: Training and Validation loss curves for the first experiment.

The loss curves depicted in Figure 37 demonstrate similar trends to the accuracy curves.

The training loss revealed a steady increase after epoch 120. As for the validation loss, it

showed higher values compared to the training loss with a great noise, making it less

informative for our analysis.

56

After evaluating the trained model, the confusion matrix is displayed in Fig.38:

Figure 38: Confusion matrix of the first experiment.

The evaluation results are given in Table 3:

Accuracy Precision Specificity Sensitivity F1-Score MAcc
92.54% 82.38% 93.69% 89.08% 85.60% 91.38%

Table 3: Evaluation results of the first experiment.

The previously presented results were obtained before implementing the voting scheme. After

applying the voting scheme, the confusion matrix of the first experiment can be seen in Fig.39

below:

Figure 39: Confusion matrix of the first experiment after the voting scheme.

Multiple threshold values were tested, and the optimal threshold value was determined to be

tr=1.25×n_cycles/2. The evaluation results following the implementation of the voting scheme

are presented in Table.4 .

57

Accuracy Specificity Sensitivity MAcc
91.67% 92.91% 87.14% 90.03%

Table 4: Evaluation results of the first experiment after the voting scheme.

In the first experiment, the evaluation results indicate a good performance of the model.

The confusion matrix demonstrates a well-balanced prediction, with only 68 normal samples

incorrectly classified as abnormal and 39 abnormal samples incorrectly classified as normal.

The achieved accuracy of 93% and a score of 92% highlight the effectiveness of the approach

in identifying abnormalities. The model reveals a specificity of 94%, indicating accurate

predictions of normal samples, while the sensitivity of 89% shows relatively lower accuracy

in predicting abnormal samples, but still reasonable.

After applying the voting scheme, the accuracy slightly decreased due to the reduced

number of samples. However, the confusion matrix continues to show favorable results, with

only 27 signals being wrongly predicted. This solidifies the effectiveness of the voting scheme.

It is worth noting that the absence of abnormalities in certain parts of the signals, where an

abnormality can only be observed in one cycle, may have contributed to these results.

Although the accuracy did not reach the desired level, the voting scheme remains a robust

method for combining predictions and improving overall classification performance.

4.3.2 Experiment 2: Cycle Segments with MFCC Features

In the second experiment, we employed the cycles segmentation technique along with the

utilization of MFCC features. The CNN-LSTM model utilized in this experiment consisted of a

total of 2,289,506 parameters. The model was trained for 129 epochs which took around 215

minutes. Figures 40 and 41 depict the accuracy and loss curves for this experiment.

Figure 40: Training and Validation accuracy curves for the second experiment.

58

Figure 41: Training and Validation loss curves for the second experiment.

The accuracy and loss curves demonstrate favorable outcomes, with the model reaching

its highest point at around epoch 100, achieving a validation accuracy of 89.96%. Following

this peak, the training accuracy notably decreased, possibly indicating a higher learning rate

due to the scheduler employed in the training process.

The trained model is evaluated on the testing set and the confusion matrix of the second

experiment is given in Fig.42 by:

Figure 42: Confusion matrix of the second experiment.

The evaluation results are given in Table 5:

Accuracy Precision Specificity Sensitivity F1-Score MAcc
90.23% 74.41% 92.14% 83.26% 78.58% 87.70%

Table 5: Evaluation results of the second experiment.

After applying the voting system, we found that the default threshold of n_cycles/2 provides

the highest accuracy during evaluation. The confusion matrix and metrics results are

presented in the Fig.43 and table 6, respectively.

59

Figure 43: Confusion matrix of the second experiment after the voting scheme.

Accuracy Specificity Sensitivity MAcc
91.36% 91.47% 90.91% 91.19%

Table 6: Evaluation results of the second experiment after the voting scheme.

In the second experiment, the use of cycle segmentation resulted in a larger number of

samples compared to the first experiment, leading to a slower training process. The evaluation

results indicate a decent performance of the model. The confusion matrix demonstrates a

nearly balanced prediction, where 549 normal cycles were incorrectly classified as abnormal

out of 6,986, and 321 abnormal samples were incorrectly classified as normal out of 1,917.

However, the performance metrics in this experiment are slightly less promising

compared to the first experiment. The accuracy achieved is 90%, with a score of 88%,

indicating that the MFCC features extracted from cycle segments may be less representative

compared to windowed segments. The specificity of 92% suggests that the model performs

better at accurately predicting normal samples, while the sensitivity of 83% indicates poorer

accuracy in predicting abnormal samples.

After applying the voting scheme, the accuracy improved to 91%, and both specificity and
sensitivity reached balanced values of 91% each. This shows that the model achieves a more

balanced performance in predicting both classes after the voting scheme is applied.

4.3.3 Experiment 3: Windowed Segments with Spectrogram Features

In the third experiment, we employed the windowed segmentation technique along with

the mel spectrogram features. The model included a total of 2,336,098 parameters and was

60

trained for 113 epochs which took around 34 minutes. The accuracy and loss curves and given

in the Figures 44 and 45.

Figure 44: Training and Validation accuracy curves for the third experiment.

Figure 45: Training and Validation loss curves for the third experiment.

In this particular experiment, the model demonstrated better performance on the training

set, as there was no decline in accuracy over time. However, a decrease in validation accuracy

was observed, which could potentially indicate overfitting. Fortunately, the training process

was stopped early, and we saved the model's state at epoch 100 to use it for further evaluation.

The model peaked at the epoch 82 with a validation accuracy of 89.25%.

61

The confusion matrix of this experiment is shown in Fig.46:

Figure 46: Confusion matrix of the third experiment.

The evaluation results are given in Table 7:

Accuracy Precision Specificity Sensitivity F1-Score MAcc
91.49% 79.75% 92.57% 88.24% 83.78% 90.40%

Table 7: Evaluation results of the third experiment.

Using a threshold tr=0.8×n_cycles/2 we achieved an accuracy of 89.20% after the voting

system. Fig.47 and Table 8 present the confusion matrix and the metrics results of the

evaluation.

Figure 47: Confusion matrix of the third experiment after the voting scheme.

Accuracy Specificity Sensitivity MAcc
89.20% 94.09% 82.86% 90.01%

Table 8: Evaluation results of the third experiment after the voting scheme.

In the third experiment, we utilized windowed segments with spectrogram features. The

performance metrics achieved in this experiment are somewhat less favorable when

62

compared to the results of the first experiment. The accuracy achieved is 91%, with a score of

90%, indicating that spectrograms serve as good representations of heart sound signals.

However, it is worth noting that MFCC features are more effective for windowed segments.

The specificity of 93% indicates that the model excels at accurately predicting normal

samples, while the sensitivity of 88% suggests that it is somewhat less accurate in predicting

abnormal samples. Although the model demonstrates good performance in identifying normal

samples, it faces challenges in effectively detecting abnormalities.

After applying the voting scheme, there was a decrease in accuracy to 89%, and the

specificity and sensitivity values became unbalanced, with 94% and 83%, respectively. This

implies that the model performs relatively well in predicting abnormal samples but struggles

with accurately identifying abnormalities. These findings suggest that spectrogram features,

while informative, may not capture all the distinctive characteristics necessary for precise

abnormality prediction in this context.

4.3.4 Experiment 4: Cycle Segments with Spectrogram Features

For the final experiment, we employed the cycles segmentation technique along with the

spectrogram feature extraction method. The utilized model consisted of a total of 2,274,658

parameters. The training process extended for 200 epochs, but it was stopped early due to

slow convergence and excessive time consumption. The training process took approximately

450 minutes to complete.

Figure 48: Training and Validation accuracy curves for the fourth experiment.

63

Figure 49: Training and Validation loss curves for the fourth experiment.

The depicted Figures 48 and 49 illustrate promising training results for the last
experiment. The validation accuracy consistently increased throughout the training process,

while the training accuracy displayed minor fluctuations around epoch 150 before resuming

its climb. This trend is also reflected in the loss curves, where the loss steadily decreased. The

experiment achieved a maximum validation accuracy of 88.00%.

Upon completing the training of the model, we proceeded to evaluate its performance

using the saved states at epochs 50, 100, 150, and 200. Interestingly, the evaluation results

revealed that the model's state at epoch 50 exhibited the highest performance in terms of

overall accuracy and MAcc. Fig.50 below shows the confusion matrix of the evaluation before

the voting scheme.

Figure 50: Confusion matrix of the fourth experiment.

The evaluation results are given in Table 10:

Accuracy Precision Specificity Sensitivity F1-Score MAcc
90.55% 72.84% 90.84% 89.51% 80.32% 90.18%

Table 9: Evaluation results of the fourth experiment.

64

A threshold value of 0.67×n_cycles/2 was found to give the best results in terms of accuracy

for the voting system. Fig.51 and Table 10 present the confusion matrix and evaluation results.

Figure 51: Confusion matrix of the fourth experiment after the voting scheme.

Accuracy Specificity Sensitivity MAcc
91.67% 90.70% 95.45% 93.08%

Table 10: Evaluation results of the fourth experiment after the voting scheme.

In the final experiment, which involved cycle segments with spectrogram features, we

observed favorable evaluation results compared to the second experiment even though the

training process was relatively slower. Only 201 abnormal samples were incorrectly predicted

as normal, while 640 normal samples were wrongly classified as abnormal. The performance

metrics achieved a balanced outcome, with an accuracy of 91% and a score of 90%. Both the

specificity and sensitivity values reached 91% and 90%, respectively, indicating that the

model excels in predicting both classes in a balanced manner.

Upon implementing the voting scheme, the accuracy further improved to 92%.

Additionally, the specificity and sensitivity values demonstrated a reasonable balance, with

90% and 95%, respectively. This indicates that the model performs significantly better in
predicting abnormal samples while still maintaining good performance in detecting normal

samples. This is particularly important as it signifies the model's enhanced ability to identify

abnormalities accurately.

Overall, the final score of 93% highlights the effectiveness of using cycle spectrograms as

representations of heart sounds. This experiment demonstrates that cycle spectrograms

capture the acoustic characteristics of the heart more effectively, leading to improved

performance in the classification of heart sound abnormalities.

Table 11 provides a summary of the evaluation and performance results for the four

conducted experiments.

65

Model details Before Voting After Voting

Model Segmentation Features Complexity Epoch
Speed

(epoch/min)
Accuracy Sensitivity Specificity MAcc Accuracy Sensitivity Specificity MAcc

CNN-LSTM
(No Pooling)

Windowing MFCCs 2,449,250 100 3.5 92.54 89.08 93.69 91.38 91.67 87.14 92.91 90.03

CNN-LSTM
(No Pooling)

Cycles MFCCs 2,289,506 100 0.6 90.23 83.26 92.14 87.70 91.36 90.91 91.47 91.19

CNN-LSTM Windowing
Mel

Spectrogram
2,336,098 100 3.3 91.49 88.24 92.57 90.40 89.20 82.86 94.09 90.01

CNN-LSTM Cycles
Mel

Spectrogram
2,274,658 50 0.4 90.55 89.51 90.84 90.18 91.67 95.45 90.70 93.08

Table 11: Evaluation and Performance results of the different experiments.

66

4.4 Discussion

4.4.1 Comparison between Segmentation techniques

By analyzing Table 12 and interpreting the results of the experiments, it becomes clear

that windowing techniques offer a significant advantage in terms of training speed. This is

because windowed segments have fewer samples and contain more informative inputs since

they don’t include zero padding. Comparatively, both experiments with windowed segments

were nearly seven times faster than those with cycle segmentation.

In terms of evaluation results and metrics, windowed segments demonstrate better

accuracy and score before the application of the voting system. On the other hand, cycle

segmentation leads to a higher score after implementing the voting scheme. These findings

highlight the trade-off between training speed and performance, where windowing techniques

excel in speed and initial accuracy, while cycle segmentation combined with voting enhances

the overall classification score.

4.4.2 Comparison between Feature Extraction techniques

In comparing the feature extraction techniques, it can be concluded from the

aforementioned results that MFCCs offer a slightly faster training process. This can be

attributed to their lower dimensionality and the absence of pooling layers in the model.

Overall, when considering accuracy and score, MFCCs outperformed spectrogram features

when applied to windowed inputs. However, spectrogram features yielded the best results

when used with cycle segments, surpassing the performance of all other experiments. These

findings indicate that MFCCs are more suitable for windowed segments, while spectrograms

are more effective for cycle segments.

4.4.3 Comparison with literature

When examining our results in comparison to previous works that employed similar

settings and dataset, it appears that our approach using cycle segments and dynamic mel

spectrogram features demonstrated promising performance, surpassing the average results.

This can be observed in Table 12, where our approach achieved notable sensitivity and

specificity values, resulting in a relatively reasonable score (MAcc) when compared to other

approaches.

Model Segmentation Features Results

CNN-LSTM
(ours)

Springer Dynamic Mel Spectrogram
Sensitivity Specificity MAcc

95.45% 90.70% 93.08%

AdaBoost &
CNN

Springer
Time and Frequency

Features, MFCCs

Sensitivity Specificity MAcc

94.24% 77.81% 86.02%

DCNN - Chaogram
Sensitivity Specificity MAcc

84.49% 91.63% 88.06%

CRNN - Dynamic MFCCs
Sensitivity Specificity MAcc

98.66% 98.01% 98.34%

Table 12: Comparison of the obtained results with literature.

67

4.5 Summary

In the final chapter, we provided an overview of the performance metrics used to assess

the model's performance. Subsequently, we analyzed and discussed the learning curves,

confusion matrices, and evaluation results for each experiment separately. To consolidate the

important findings, we presented a comprehensive summary table.

Furthermore, we delved into a comprehensive discussion of the outcomes of each

experiment, comparing the two segmentation techniques and the two feature extraction

techniques. This analysis allowed us to draw insightful conclusions regarding the effectiveness

of different approaches.

In this project, our main objective was to conduct a comparative study between two audio

segmentation techniques and two feature extraction techniques in classifying heart sound

signals. Overall, all the experiments yielded satisfactory results in terms of evaluation metrics,

although some approaches outperformed others in certain aspects.

The windowing techniques for segmentation demonstrated faster training and produced

favorable outcomes. On the other hand, cycle segmentation exhibited slower training but still

achieved good results, depending on the specific features used.

Regarding feature extraction, the utilization of the first and second order Mel Frequency

Cepstrum Coefficients (MFCCs) showed superior performance when applied to windowed

segments. Conversely, the Mel Spectrogram, along with its first and second order differences,

proved to be more suitable for cycle segments.

Furthermore, the results indicated that Convolutional Neural Networks (CNNs) combined

with Long Short-Term Memory (LSTM) networks are well-suited for audio classification tasks,

supporting their effectiveness in capturing relevant patterns and features from the heart

sound signals.

68

General Conclusion

In conclusion, this thesis aimed to detect cardiovascular diseases by classifying heart sounds
using a combined CNN and LSTM model. Through a comparative study of two segmentation

techniques (Windowed segments and Cycle segments) and two feature extraction techniques

(MFCCs and Mel Spectrogram), valuable insights were gained regarding heart sound

classification.

Our findings indicate that windowed segments offer faster training times and satisfactory

results, while cycle segments, despite slower training, demonstrate exceptional evaluation

metrics when combined with Mel Spectrogram feature extraction. This highlights the

importance of selecting the appropriate segmentation technique based on the chosen features.

The implications of this research can be significant, as it aims to contribute to the development

of advanced tools for predicting cardiovascular diseases. Future researchers can leverage

these insights to enhance their work, improve efficiency, and ultimately create a final product

with accurate predictions of cardiovascular diseases.

Several perspectives for future research in the field of heart sound classification can be

considered; Exploring the application of new models, such as Transformers, holds promise for

improving classification accuracy. Additionally, implementing robust data augmentation

techniques, such as incorporating ambient background sounds or noise, can enhance

generalization and adaptability of the model to real-world environments.

In summary, this thesis advances our understanding of detecting cardiovascular diseases

through heart sound analysis. By evaluating segmentation techniques and feature extraction

methods, effective approaches for heart sound classification have been identified. These

research findings can potentially lay the groundwork for future advancements, leading to

improved accuracy and efficiency in predicting cardiovascular diseases.

69

Bibliography

[1] World Health Organization, "Cardiovascular diseases (CVDs)," [Online]. Available:

www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

[2] Chengyu Liu et al, "An open access database for the evaluation of heart sound

algorithms," 2016. [Online]. Available: www.dx.doi.org/10.1088/0967-

3334/37/12/2181.

[3] Deng M et al, "Heart sound classification based on improved MFCC features and

convolutional recurrent neural networks.," 2020. [Online]. Available:

www.doi.org/10.1016/j.neunet.2020.06.015.

[4] Suyi Li et al, "A Review of Computer-Aided Heart Sound Detection Techniques," 2020.

[Online]. Available: www.doi.org/10.1155/2020/5846191.

[5] Chen et al, "Deep Learning Methods for Heart Sounds Classification: A Systematic

Review," 2021. [Online]. Available: www.doi.org/10.3390/e23060667.

[6] Cleveland Clinic, "Heart: Anatomy and Function," [Online]. Available:

www.my.clevelandclinic.org/health/body/21704-heart.

[7] Shalom Education, "The Heart," [Online]. Available: www.shalom-

education.com/courses/gcse-biology/lessons/transport-systems/topic/the-heart/.

[8] Cleveland Clinic, "Great Vessels of the Heart," [Online]. Available:

www.my.clevelandclinic.org/health/articles/17057-your-heart--blood-vessels.

[9] Johns Hopkins Medicine, "Anatomy and Function of the Heart's Electrical System,"

[Online]. Available: www.hopkinsmedicine.org/health/conditions-and-

diseases/anatomy-and-function-of-the-hearts-electrical-system.

[10] Cleveland Clinic, "Heart Conduction System (Cardiac Conduction)," [Online]. Available:

www.my.clevelandclinic.org/health/body/21648-heart-conduction-system.

[11] World Health Organization, "Cardiovascular diseases," [Online]. Available:

www.who.int/health-topics/cardiovascular-diseases.

[12] Centers for Disease Control and Prevention, "Heart Disease Facts," [Online]. Available:

www.cdc.gov/heartdisease/facts.htm.

[13] Cleveland Clinic, "Cardiovascular Disease," [Online]. Available:

www.my.clevelandclinic.org/health/diseases/21493-cardiovascular-disease.

[14] University Diagnostic Medical Imaging, P.C., "Cardiovascular Disease Risk," [Online].

Available: www.udmi.net/cardiovascular-disease-risk/.

70

[15] Centers for Disease Control and Prevention, "Coronary Artery Disease (CAD)," [Online].

Available: www.cdc.gov/heartdisease/coronary_ad.htm.

[16] Mayo Clinic, "Heart valve disease," [Online]. Available: www.mayoclinic.org/diseases-

conditions/heart-valve-disease/symptoms-causes/syc-20353727.

[17] Mayo Clinic, "Heart failure," [Online]. Available: www.mayoclinic.org/diseases-

conditions/heart-failure/symptoms-causes/syc-20373142.

[18] Mayo Clinic, "Cardiomyopathy," [Online]. Available: www.mayoclinic.org/diseases-

conditions/cardiomyopathy/symptoms-causes/syc-20370709.

[19] Mayo Clinic, "Heart arrhythmia," [Online]. Available: www.mayoclinic.org/diseases-

conditions/heart-arrhythmia/symptoms-causes/syc-20350668.

[20] Mayo Clinic, "Pericarditis," [Online]. Available: www.mayoclinic.org/diseases-

conditions/pericarditis/symptoms-causes/syc-20352510.

[21] National Cancer Intitute, "noninvasive," [Online]. Available:

www.cancer.gov/publications/dictionaries/cancer-terms/def/noninvasive.

[22] Mayo Clinic, "Heart disease Diagnosis," [Online]. Available:

www.mayoclinic.org/diseases-conditions/heart-disease/diagnosis-treatment/drc-

20353124.

[23] National Cancer Institute, "invasive procedure," [Online]. Available:

www.cancer.gov/publications/dictionaries/cancer-terms/def/invasive-procedure.

[24] Healio, "Heart Sounds Topic Review," [Online]. Available:

www.healio.com/cardiology/learn-the-heart/cardiology-review/topic-reviews/heart-

sounds.

[25] Wikipedia, "Heart sounds," [Online]. Available:

www.en.wikipedia.org/wiki/Heart_sounds.

[26] Samit Kumar Ghosh, Ponnalagu R N, "A Novel Algorithm based on Stockwell

Transform," 2019. [Online]. Available:

www.dx.doi.org/10.1109/INDICON47234.2019.9030299.

[27] Alila Medical Media, "Heart Sounds and Heart Murmurs, Animation.," [Online].

Available: www.youtube.com/watch?v=dBwr2GZCmQM.

[28] Sami Alrabie et al, "An Efficient Framework to Build Up Heart Sounds and Murmurs

Datasets Used for Automatic Cardiovascular Diseases Classifications," 2021. [Online].

Available: www.doi.org/10.1007/978-981-33-6129-4_2.

[29] Wikipedia, "Heart murmur," [Online]. Available:

www.en.wikipedia.org/wiki/Heart_murmur.

71

[30] Swash, Michael Glynn Michael, Hutchison's Clinical Methods 22e, 2007.

[31] Eko, "What Is a Phonocardiogram (PCG)," [Online]. Available:

www.ekohealth.com/blogs/education/phonocardiogram-v1.

[32] R. S. Khandpur, Compendium of Biomedical Instrumentation, Volume 2, 2019.

[33] Wikipedia, "Artificial neural network," [Online]. Available:

www.en.wikipedia.org/wiki/Artificial_neural_network.

[34] Jianwen Gan et al, "Underground Garage Patrol Based on Road Marking Recognition by

Keras and Tensorflow," 2023. [Online]. Available:

www.doi.org/10.3390/app13042385.

[35] Wikipedia, "Convolutional neural network," [Online]. Available:

www.en.wikipedia.org/wiki/Convolutional_neural_network.

[36] S. Sumit, "A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way,"

2018. [Online]. Available: www.towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[37] Y. Muhamad, "Application of Transfer Learning Using Convolutional Neural Network

Method for Early Detection of Terry’s Nail," 2019. [Online]. Available:

www.dx.doi.org/10.1088/1742-6596/1201/1/012052.

[38] Wikipedia, "Recurrent neural network," [Online]. Available:

www.en.wikipedia.org/wiki/Recurrent_neural_network.

[39] IBM, "What are recurrent neural networks?," [Online]. Available:

www.ibm.com/topics/recurrent-neural-networks.

[40] K. Simeon, "How Recurrent Neural Networks work," 2017. [Online]. Available:

www.towardsdatascience.com/learn-how-recurrent-neural-networks-work-

84e975feaaf7.

[41] Wikipedia, "Long short-term memory," [Online]. Available:

www.en.wikipedia.org/wiki/Long_short-term_memory.

[42] Ryan T. J. J, "LSTMs Explained: A Complete, Technically Accurate, Conceptual Guide

with Keras," [Online]. Available: www.medium.com/analytics-vidhya/lstms-explained-

a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2.

[43] [Online]. Available: www.towardsdatascience.com/how-do-artificial-neural-networks-

learn-773e46399fc7.

[44] T. Adrian, "Training a PyTorch Model with DataLoader and Dataset," 2023. [Online].

Available: www.machinelearningmastery.com/training-a-pytorch-model-with-

dataloader-and-dataset/.

72

[45] l. vikashraj, "Forward propagation in neural networks — Simplified math and code
version," [Online]. Available: www.towardsdatascience.com/forward-propagation-in-

neural-networks-simplified-math-and-code-version-bbcfef6f9250.

[46] Shankar297, "Understanding Loss Function in Deep Learning," 2022. [Online].

Available: www.analyticsvidhya.com/blog/2022/06/understanding-loss-function-in-

deep-learning/#.

[47] Wikipedia, "Backpropagation," [Online]. Available:

www.en.wikipedia.org/wiki/Backpropagation.

[48] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, DEEP LEARNING, 2016.

[49] G. Sanderson, "Backpropagation calculus | Chapter 4, Deep learning," [Online].

Available: www.youtu.be/tIeHLnjs5U8.

[50] T. Gianluca, "Derivation of the Binary Cross Entropy Loss Gradient," 2021. [Online].

Available: www.python-unleashed.com/post/derivation-of-the-binary-cross-entropy-

loss-gradient.

[51] Chauhan, Nagesh Singh, "Silver BlogOptimization Algorithms in Neural Networks,"

2020. [Online]. Available: www.kdnuggets.com/2020/12/optimization-algorithms-

neural-networks.html.

[52] V. Bushaev, "Adam — latest trends in deep learning optimization.," 2018. [Online].

Available: www.towardsdatascience.com/adam-latest-trends-in-deep-learning-

optimization-6be9a291375c.

[53] Kurtis Pykes, "The Vanishing/Exploding Gradient Problem in Deep Neural Networks,"

[Online]. Available: www.towardsdatascience.com/the-vanishing-exploding-gradient-

problem-in-deep-neural-networks-191358470c11.

[54] javaTpoint, "Issues in Machine Learning," [Online]. Available:

www.javatpoint.com/issues-in-machine-learning.

[55] Ujwal Tewari, "Regularization — Understanding L1 and L2 regularization for Deep

Learning," [Online]. Available: www.medium.com/analytics-vidhya/regularization-

understanding-l1-and-l2-regularization-for-deep-learning-a7b9e4a409bf.

[56] Nitish Srivastava et al, "Dropout: A Simple Way to Prevent Neural Networks from,"

2014. [Online]. Available: www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

[57] Ketan Doshi, "Audio Deep Learning Made Simple: Sound Classification, Step-by-Step,"

[Online]. Available: www.towardsdatascience.com/audio-deep-learning-made-simple-

sound-classification-step-by-step-cebc936bbe5.

[58] C. Potes et al, "Ensemble of feature-based and deep learning-based classifiers for

detection of abnormal heart sounds," 2016. [Online].

73

[59] Ren et al, "Deep Attention-based Representation Learning," 2021. [Online]. Available:

www.arxiv.org/abs/2101.04979.

[60] Shahid Ismail et al, "PCG classification through spectrogram using transfer learning,"

2023. [Online]. Available: www.doi.org/10.1016/j.bspc.2022.104075.

[61] Ketan Doshi, "Audio Deep Learning Made Simple (Part 2): Why Mel Spectrograms

perform better," [Online]. Available: www.towardsdatascience.com/audio-deep-

learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505.

[62] Leland Roberts, "Understanding the Mel Spectrogram," [Online]. Available:

www.medium.com/analytics-vidhya/understanding-the-mel-spectrogram-

fca2afa2ce53.

[63] Mathworks, [Online]. Available: www.mathworks.com/help/dsp/ref/dsp.stft.html.

[64] Haytham Fayek, "Speech Processing for Machine Learning: Filter banks, Mel-Frequency

Cepstral Coefficients (MFCCs) and What's In-Between," [Online]. Available:

www.haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html.

[65] S. Tanveer, "MFCC’s Made Easy," [Online]. Available:

www.medium.com/@tanveer9812/mfccs-made-easy-7ef383006040.

[66] Wikipedia, "Discrete cosine transform," [Online]. Available:

www.en.wikipedia.org/wiki/Discrete_cosine_transform.

[67] Harimi et al, "Classification of Heart Sounds Using Chaogram Transform and Deep

Convolutional Neural Network Transfer Learning," 2022. [Online]. Available:

www.doi.org/10.3390/s22249569.

[68] Abbas et al, "Automatic Detection and Classification of Cardiovascular Disorders Using

Phonocardiogram and Convolutional Vision Transformers," 2022. [Online]. Available:

www.doi.org/10.3390/diagnostics12123109.

[69] Peter Bentley et al, "Classifying Heart Sounds Challenge," 2011. [Online]. Available:

www.peterjbentley.com/heartchallenge/.

[70] G. D. Clifford et al, "Classification of normal/abnormal heart sound recordings: The

PhysioNet/Computing in Cardiology Challenge 2016," 2016. [Online].

[71] Springer et al, "Logistic Regression-HSMM-based Heart Sound Segmentation," 2016.

[Online].

[72] G. A. Fawzy, "Evaluating Deep Learning Models: The Confusion Matrix, Accuracy,

Precision, and Recall," [Online]. Available: www.blog.paperspace.com/deep-learning-

metrics-precision-recall-accuracy/.

[73] S. Narkhede, "Understanding Confusion Matrix," 2018. [Online]. Available:

www.towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62.

74

[74] Simon Fraser University, [Online]. Available: www.sfu.ca/sonic-studio-

webdav/handbook/Mel.html.

[75] Dive into deep learning, [Online]. Available: www.d2l.ai/chapter_convolutional-neural-

networks/conv-layer.html.

75

