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Abstract

In recent years, the rise in chronic diseases among the elderly has emphasized the
need for innovative healthcare solutions. The COVID-19 pandemic has further high-
lighted the challenges faced by hospitals in accommodating a surge of patients while
ensuring the safety of healthcare providers. To address these challenges, home hos-
pitalization has emerged as a viable alternative. The Artificial Intelligence of Things
(AIoT) based home hospitalization system integrates artificial intelligence, internet
of things (IoT), sensors, and mobile/web applications to enable remote monitoring
and management of patients’ health conditions. The system includes a hardware
device with sensors for accurate data collection, a mobile application for patients to
access health information and communicate with doctors, a web dashboard for doc-
tors to manage patient data and provide personalized recommendations, and an AI
model that analyze patient data and predict health conditions. The system employs
a secure and reliable communication protocol for efficient data transmission. The
primary objective of this system is to provide convenient and accessible healthcare
services, particularly for the elderly and individuals with limited access to hospitals.
By offering remote consultations and monitoring, the system reduces the need for
physical travel and ensures timely medical attention. The integration of AI and IoT
technologies strengthens the system’s ability to support doctors in making informed
decisions.

ii



Acknowledgements

In the name of Allah, the Most Gracious, the Most Merciful.

We humbly praise and thank Allah, the Almighty, for granting us the wisdom, per-
severance, and strength to successfully complete this project. It is through His divine
guidance and blessings that we have been able to overcome challenges and reach this
moment of accomplishment.

We are eternally grateful to our beloved families, whose unwavering love, sup-
port, and financial assistance have been the driving force behind our journey. To our
parents, whose constant encouragement and belief in our abilities have been the foun-
dation of our success, we offer our heartfelt appreciation.

Our sincere gratitude goes to our supervisor, Dr. TOUZOUT Walid, for his in-
valuable guidance, mentorship, and unwavering support throughout this project.

We would like to extend a special thanks to our dear friends, Abdelmadjid and
Charaf Eddine, whose impact and contributions have enriched this endeavor. We are
also grateful to Lotfi, Tarek, Oumnia, Lamine, and Abdenour for their unwavering
support and encouragement along the way.

Lastly, we would like to express our gratitude to the members of the Wameedh
Scientific Club, both past and present, for their collective efforts and collaborative
spirit.

May Allah bless each and every individual who has supported us on this journey,
and may this project be a source of benefit and inspiration for all.

iii



Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables viii

List of Abbreviations x

1 Introduction 11
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Structure of The Report . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 14
2.1 Overview of AIoT in Healthcare . . . . . . . . . . . . . . . . . . . . . 14
2.2 Home Hospitalization Systems . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Relevant Technologies and Concepts . . . . . . . . . . . . . . . . . . 16

2.3.1 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 ESP32 Microcontroller and Sensor Integration . . . . . . . . . 17

2.3.2.1 ESP32 Microcontroller . . . . . . . . . . . . . . . . . 17
2.3.2.2 FreeRTOS . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2.3 ESP32 NVS . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2.4 ESP-NETIF . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2.5 UART Communication . . . . . . . . . . . . . . . . . 18
2.3.2.6 I2C Communication . . . . . . . . . . . . . . . . . . 18
2.3.2.7 One-Wire Protocol . . . . . . . . . . . . . . . . . . . 18
2.3.2.8 Heartbeat Measurement . . . . . . . . . . . . . . . . 18
2.3.2.9 Blood Pressure Measurement . . . . . . . . . . . . . 19
2.3.2.10 Glucose Measurement . . . . . . . . . . . . . . . . . 20
2.3.2.11 Body Temperature Measurement . . . . . . . . . . 20

2.3.3 Protocols for Data Transmission . . . . . . . . . . . . . . . . 20
2.3.3.1 Transmission Control Protocol . . . . . . . . . . . . 20

iv



Contents v

2.3.3.2 User Datagram Protocol . . . . . . . . . . . . . . . . 21
2.3.4 Flutter Framework . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4.1 Asynchronous Programming . . . . . . . . . . . . . 21
2.3.4.2 State management . . . . . . . . . . . . . . . . . . . 21
2.3.4.3 Business Logic Component . . . . . . . . . . . . . . 22
2.3.4.4 Clean Architecture with Bloc . . . . . . . . . . . . 22

2.3.5 Database Integration with Firebase . . . . . . . . . . . . . . 22
2.3.5.1 Firebase Authentication . . . . . . . . . . . . . . . . 23
2.3.5.2 Firebase Firestore . . . . . . . . . . . . . . . . . . . 23

2.3.6 AI Models for Disease Prediction in Healthcare . . . . . . . . 23

3 Design and Implementation 26
3.1 System Architecture and Design . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Communication Setup between Hardware and Mobile Application 28
3.1.1.1 Protocol OpCodes . . . . . . . . . . . . . . . . . . . 28
3.1.1.2 Protocol Workflow . . . . . . . . . . . . . . . . . . 29

3.1.2 Hardware Components and Functionalities . . . . . . . . . . . 30
3.1.2.1 Reverse Engineering Blood Pressure . . . . . . . . . 32

3.1.3 Firmware Design and Implementation . . . . . . . . . . . . . . 33
3.1.3.1 Device Interface Server . . . . . . . . . . . . . . . . . 34
3.1.3.2 Network Configuration Setup Process . . . . . . . . . 35
3.1.3.3 Measurement Process and Task Execution . . . . . . 35
3.1.3.4 Heart Rate Data Acquisition . . . . . . . . . . . . . 37
3.1.3.5 Body Temperature Data Acquisition . . . . . . . . 37

3.1.4 Mobile Application Design and Features . . . . . . . . . . . . 38
3.1.4.1 Authentication and User Management . . . . . . . . 38
3.1.4.2 Connection Setup with Hardware . . . . . . . . . . . 38
3.1.4.3 Sensor Control and Data Visualization . . . . . . . . 39
3.1.4.4 Data Storage with Firebase Firestore . . . . . . . . . 40
3.1.4.5 History Viewing and Graphical Representations . . . 40
3.1.4.6 Appointment Requests and Chat Functionality . . . 41

3.1.5 Web Development for Doctor’s Dashboard . . . . . . . . . . . 41
3.1.5.1 Authentication and User Management . . . . . . . . 41
3.1.5.2 Patient Management and Data Visualization . . . . . 42
3.1.5.3 Appointment Requests and Chat Functionality . . . 42
3.1.5.4 Notifications and Alert System . . . . . . . . . . . . 42

3.2 AI Model Development for Disease Prediction . . . . . . . . . . . . . 43
3.2.1 Dataset Selection and Preprocessing . . . . . . . . . . . . . . 43
3.2.2 AI Model Architecture . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2.1 Transformer-Encoder Layer . . . . . . . . . . . . . . 44
3.2.2.2 Dense Layers . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2.3 Benefits of the Architecture . . . . . . . . . . . . . . 46

3.2.3 AI Model Training and Validation . . . . . . . . . . . . . . . . 47
3.2.3.1 Data Split . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3.2 Training Process . . . . . . . . . . . . . . . . . . . . 47



Contents vi

3.2.3.3 Learning Rates . . . . . . . . . . . . . . . . . . . . . 47
3.2.3.4 Optimizers . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.4 Integration with the System . . . . . . . . . . . . . . . . . . . 48

4 Results and Discussion 50
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Usability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Hardware Functionality Evaluation . . . . . . . . . . . . . . . . . . 52

4.3.1 Power Consumption Testing and Analysis . . . . . . . . . . . 52
4.3.2 Reliability Testing . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Firmware Functionality Testing and Validation . . . . . . . . . . . . . 53
4.4.1 Optimizing Stack Size Allocation for Task Efficiency . . . . . 53
4.4.2 A Comparative Analysis of Our Sensor and Other Established

Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2.1 Heart Rate Sensor Accuracy Evaluation . . . . . . 54

4.4.3 Error Handling Testing . . . . . . . . . . . . . . . . . . . . . 54
4.5 AI Model Evaluation and Disease Prediction Results . . . . . . . . . 55

4.5.1 Training Performance Metrics: Accuracy and Loss Curves . . 55
4.5.2 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.1 Diabetes Prediction Model . . . . . . . . . . . . . . . . . . . 57
4.6.2 Effectiveness of the AIoT System in Home Healthcare . . . . 58
4.6.3 Limitations of the System . . . . . . . . . . . . . . . . . . . 59
4.6.4 Future Enhancements and Potential Exploration Directions . 59

Appendices 66

A Physical Implementation of our System 67

B Mobile Application Screenshots 68

C Web Dashboard Screenshots 71



List of Figures

2.1 Working principle of PPG sensors. . . . . . . . . . . . . . . . . . . . . 19

3.1 System Architecture Diagram . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Protocol Handshake Workflow . . . . . . . . . . . . . . . . . . . . . 30
3.3 Hardware Components Diagram . . . . . . . . . . . . . . . . . . . . 31
3.4 Physical Implementation of the Circuit . . . . . . . . . . . . . . . . . 32
3.5 Blood Pressure Sensor PCB . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 System Initialization Flowchart . . . . . . . . . . . . . . . . . . . . . 34
3.7 Flowchart of the Measurement Opcode Handling Process in the Device

Interface Server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Diagram Illustrating the Interaction between UI, BLoC, and Hardware. 39
3.9 Transformer-Encoder Layer . . . . . . . . . . . . . . . . . . . . . . . 45
3.10 Illustration of the Dense Layers . . . . . . . . . . . . . . . . . . . . . 46

4.1 The System Usability Scale (SUS) . . . . . . . . . . . . . . . . . . . . 51
4.2 Heart Rate Sensor Accuracy Evaluation . . . . . . . . . . . . . . . . . 54
4.3 Training Performance Metrics: Accuracy and Loss Curves . . . . . . 56
4.4 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.1 Physical Implementation of our System . . . . . . . . . . . . . . . . . 67

B.1 Sign up process screens . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.2 Handshake Process Screens . . . . . . . . . . . . . . . . . . . . . . . . 69
B.3 Data History Screens . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.4 Data Measurements Screens . . . . . . . . . . . . . . . . . . . . . . . 70

C.1 Doctor Sign up screen . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C.2 Doctor Dashboard screen . . . . . . . . . . . . . . . . . . . . . . . . 72
C.3 Doctor Patients screen . . . . . . . . . . . . . . . . . . . . . . . . . . 72
C.4 Doctor History screen (Graph) . . . . . . . . . . . . . . . . . . . . . 73
C.5 Doctor History screen (Table) . . . . . . . . . . . . . . . . . . . . . . 73

vii



List of Tables

3.1 Supported OpCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Patients’ SUS score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



List of Abbreviations

ADC Analog-to-Digital Converter.

AI Artificial intelligence.

AIOT Artificial Intelligence of Things.

AP Access Point.

API Application Programming Interface.

BLoC Business Logic Component.

DHCP Dynamic Host Configuration Protocol.

EEPROM Electrically Erasable Programmable Read-Only Memory.

FN False Negative.

FP False Positive.

GeLU Gaussian Error Linear Unit.

I2C Inter-Integrated Circuit.

IDF IoT Development Framework.

IOT Internet of Things.

IR Infrared.

LED Light-Emitting Diode.

MAP Mean Arterial Pressure.

ML Machine Learning.

NETIF Network Interface.

NVS Non Volatile Storage.

ix



List of Abbreviations x

OWB One Wire Bus.

PCB Printed Circuit Board.

PPG Photoplethysmography.

ReLU Rectified Linear Unit.

RTOS Real-Time Operating System.

SCL Serial Clock.

SDA Serial Data.

SDK Software Development Kit.

SSID Service Set Iidentifie.

SUS System Usability Scale.

TCP Transmission Control Protocol.

TN True Negative.

TP True Positive.

UART Universal Asynchronous Receiver / Transmitter.

UDP User Datagram Protocol.

UI User Interface.



Chapter 1

Introduction

The healthcare industry is experiencing a rapid transformation due to technological
advancements, and one of the most promising innovations is the integration of Artifi-
cial Intelligence of Things (AIoT) systems. AIoT combines Artificial Intelligence (AI)
and the Internet of Things (IoT) to create intelligent and interconnected healthcare
solutions.
In the context of home hospitalization, AIoT systems have the potential to revolu-
tionize healthcare delivery, allowing patients to receive personalized and efficient care
from their homes. The AIoT home hospitalization system is designed to overcome
the limitations of traditional healthcare models, which often involve frequent hospital
visits, limited accessibility, and delayed interventions.
By leveraging IoT technologies such as sensors and wearable devices, the system
enables continuous monitoring of patients’ vital signs and health parameters. This
real-time data is collected and transmitted to healthcare providers, allowing for timely
interventions and proactive healthcare management. The integration of AI algorithms
within the AIoT home hospitalization system further enhances its capabilities.
AI models can analyze the collected data, detect patterns, and make predictions re-
garding the patient’s health status. The benefits of the AIoT home hospitalization
system include enabling patients to receive high-quality healthcare services while stay-
ing in the familiar and comfortable environment of their homes, providing healthcare
providers with access to real-time patient data, allowing for remote monitoring and
timely interventions, and enhancing the accuracy of disease detection and prediction,
enabling early interventions and better health outcomes.

1.1 Background and Motivation

The COVID-19 pandemic has affected many countries worldwide, causing thousands
of infected cases and deaths. The virus spreads through direct contact, respiratory
droplets, and touching surfaces contaminated with the virus[1]. The elderly and peo-
ple with chronic diseases are at a higher risk of contracting the virus[2]. Hospitals
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worldwide have struggled to accommodate the large number of infected people, and
the virus has started to spread among medical and paramedical teams, posing a risk
to patients staying in hospitals. The world has additionally witnessed a significant
increase in the number of elderly people, with the World Health Organization project-
ing that the number of people aged 60 and over will rise from 900 million to around
2 billion between 2015 and 2050, increasing patient dependency, chronic diseases and
disability[3], as well as the large financial burdens borne by the economies of the
countries involved.

Given the significant increase in the number of elderly people who often suffer
from chronic diseases and require hospitalization, and the rapid spread of the coro-
navirus, we believe that home hospitalization must be adopted by governments to
limit the spread of any new virus of this kind and maintain the health of patients
who require a hospital stay.

Home hospitalization is a smart and pioneering model of health care that aims
to alleviate the suffering of patients, particularly the elderly, by avoiding the inconve-
nience of moving to hospital institutions for treatment and allowing them to receive
continuous care in the comfort of their homes.

1.2 Problem Statement

The project aims to address the challenges faced by healthcare systems, particu-
larly in the context of home hospitalization, which have become more evident in the
wake of the COVID-19 pandemic. The spread of the virus has placed an immense
strain on hospitals and medical facilities, leading to overcrowding, limited resources,
and compromised patient care. Additionally, the growing elderly population and
the increasing prevalence of chronic diseases have further intensified the demand for
healthcare services. These factors have highlighted the need for innovative solutions
that can provide efficient and effective healthcare delivery, particularly in home set-
tings. Therefore, the problem statement for this project is to develop an AIoT home
hospitalization system that leverages advanced technologies, including AI, IoT, and
mobile applications, to enable remote patient monitoring, real-time data collection,
and AI-driven analysis. The system aims to enhance patient care, alleviate the bur-
den on healthcare facilities, and improve the overall quality of healthcare services
provided to individuals in their homes.
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1.3 Objectives

The objectives of the work are the following:

• Create a dependable and user-friendly mobile application that allows patients
to monitor their health metrics at the comfort of their own homes.

• Create a hardware system comprised of sensors, microcontroller, and commu-
nication modules to allow for seamless data transmission between the sensors
and the mobile application.

• Establish a secured and efficient UDP based communication protocol to allow for
real-time data transmission between the mobile app and the hardware system,
providing accurate and timely monitoring of patients’ health status.

• Create a web-based dashboard for doctors that allows them to remotely monitor,
analyze, and make decisions about their patients’ data, measures, and historical
trends.

• Develop an AI model capable of analyzing the collected health data and making
accurate predictions of cardiac problems for early diagnosis, allowing for timely
intervention and proactive healthcare management.

• Evaluate the AIoT home hospitalization system’s performance and usability, in-
cluding the mobile application, hardware integration, communication reliability,
doctor’s dashboard, AI model accuracy, and user satisfaction.

1.4 Structure of The Report

The structure of our report is designed to provide a comprehensive understanding of
our home hospitalization system. It is organized into several key sections. The Intro-
duction chapter provides an overview of the objectives and the significance of remote
patient monitoring. The Background section delves into the theoretical foundations,
covering topics such as AI and machine learning, hardware components utilized in
our system, and communication protocols. The Design and Implementation chapter
explores the detailed design and development process of our home hospitalization sys-
tem, including the integration of commercial sensors and the creation of the mobile
application and web dashboard. In the Tests and Results chapter, the evaluation pro-
cess is described, highlighting the conducted tests on hardware functionality, firmware
performance, and disease prediction accuracy. The Discussion section critically ana-
lyzes the obtained results, considering the limitations and potential for improvement.
Finally, the Conclusion chapter summarizes our main findings, addresses the objec-
tives, and proposes future directions. The report concludes with a list of references
and any relevant appendices containing supporting materials.



Chapter 2

Background

2.1 Overview of AIoT in Healthcare

The AIoT, which is a combination of artificial intelligence technologies and the Inter-
net of Things infrastructure, is making healthcare smarter and smarter intending to
improve human-machine interaction and enhance data management practices. The
AIoT has the potential to revolutionize healthcare by enabling personalized medicine,
improving the methods of treatment, doing predictive analysis of disease, monitoring
patients, and providing timely detection of health issues. With AIoT, physicians can
access near real-time dashboards that give a complete picture of a patient’s health
metrics, such as heart rate, oxygen saturation, and body temperature, and receive
intelligent health analysis reports. These reports are generated using AI that analyzes
patient data acquired[4].

The AIoT can also be used to develop smart healthcare systems that can im-
prove healthcare services for the elderly. AIoT-based healthcare services utilized in
the medical industry can be classified as electronic health and telecare networks, di-
agnosis, prevention, rehabilitation, and monitoring devices[5]. AIoT applications can
potentially turn a smartphone into a health detection device to assist patients. The
AIoT can also be used to identify asymptomatic Covid patients. The AIoT has the
potential to improve healthcare outcomes and reduce healthcare costs by leveraging
digital technology and machine learning as tools to deliver personalized medicine[6].

2.2 Home Hospitalization Systems

Hospital-at-home programs, commonly referred to as home hospitalization systems,
allow some patients who require acute care to receive treatment in their homes.
This form of care delivery completely replaces acute hospital treatment by providing
hospital-level care in the patient’s home. Programs for home hospitalization give pa-
tients greater convenience because they can get hospital-quality care while relaxing

14
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in their own homes. When compared to conventional hospital stays, this can be very
advantageous for the delivery of healthcare. According to research, patients who re-
ceive home care had a lower risk of contracting hospital-acquired infections and being
readmitted to the hospital.

Programs for home hospitalization have been found to enhance patient outcomes
and lower healthcare costs by 30% or more[7] in addition to offering patients conve-
nience.

2.2.1 Existing Solutions

Home hospitalization programs are gaining popularity as a cutting-edge method of
healthcare. By offering patients medical care and monitoring in the comfort of their
own homes, these initiatives aim to lessen the need for protracted hospital visits. A
project that is comparable to ours is illustrated by the paper ”A Home Hospitalization
System Based on the Internet of Things, Fog Computing, and Cloud Computing”[8].
However, it is crucial to take into account and deal with some restrictions that come
with this kind of system.

• The possibility of complexity brought on by the existence of several mobile
applications is one restriction of the system discussed in the study. These apps
may need additional time and work to design and maintain, which might present
problems with coordination and user experience.

• The demand for an equipped environment is another restriction to consider.
The installation and integration of numerous devices and sensors in the patient’s
house may be necessary in order to implement an IoT-based home hospitaliza-
tion system. This could result in logistical difficulties, such as making sure that
there is compatible infrastructure available and taking care of any technological
requirements.

• The study also emphasizes the involvement of nurses in the home hospitalization
system. The investigation of AI models that can offer advice and support in
place of or in addition to human nurses represents a potential area for improve-
ment. Integrating AI models can increase the system’s scalability and possibly
lessen reliance on a small pool of medical specialists.

We can better comprehend the scope of difficulties and potential areas for develop-
ment in our own AIoT home healthcare system project by being aware of these limits.
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2.3 Relevant Technologies and Concepts

In this section, we will explore the relevant technologies and concepts that under-
pin the development of the embedded AIoT-based home healthcare system. These
technologies and concepts encompass a wide range of disciplines, including embedded
systems, artificial intelligence (AI), internet of things (IoT), mobile and web devel-
opment. By understanding these fundamental components, we can gain insights into
how they synergistically come together to create an innovative solution that revolu-
tionizes remote healthcare monitoring and management.

2.3.1 Internet of Things

The Internet of Things (IoT) is a technology that facilitates interaction between real
and virtual objects. It is rapidly developing and transforming traditional systems
into scalable, adaptable, and more efficient E-learning systems[9]. IoT is a network of
physical devices, vehicles, home appliances, and other items embedded with electron-
ics, software, sensors, and connectivity which enables these objects to connect and
exchange data[10].

The history of IoT can be traced back to the early days of radio and televi-
sion, where the concept of connected devices first emerged. In 1999, Kevin Ashton,
a British entrepreneur, coined the term ”Internet of Things” during his tenure at
Procter and Gamble[11], envisioning a future of interconnected objects. Over time,
significant milestones have shaped the development of IoT. The introduction of the
Arduino board in 2003 simplified IoT device creation, as it has become a popular
choice for IoT projects due to its low cost, ease of use, and flexibility[12]. By 2008,
the number of connected devices had already surpassed the global population. As
we fast forward to 2021, connected devices have now surpassed unconnected ones
on a global scale. This trend is expected to continue at an accelerated pace, with
an estimated 70 billion connected devices projected by 2025[13]. Notably, Google’s
acquisition of Nest for $3.2 billion highlighted IoT’s growing importance in the tech
industry. In 2022, the World Economic Forum recognized IoT as one of the most
impactful technological advancements[14]. These achievements underscore the con-
tinuous evolution and profound impact of IoT on our interconnected world.

IoT has several applications in healthcare, and its adoption is increasing in this
field. IoT is being used in healthcare to improve the quality of service, energy effi-
ciency, and security of healthcare systems. It is expected that IoT will continue to
play a significant role in healthcare in the future.
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2.3.2 ESP32 Microcontroller and Sensor Integration

2.3.2.1 ESP32 Microcontroller

The ESP32[15] is a system-on-a-chip microcontroller with integrated Wi-Fi and Blue-
tooth capabilities. The ESP32 offers wireless connectivity, and high-speed dual-core
processing, and is known for its affordability and low power consumption, making it
a highly suitable choice for IoT applications. The official development framework for
the ESP32 platform, or ESP-IDF, offers a selection of libraries and tools for creating
programs on the hardware.

ESP-IDF[16] is the official development framework for the ESP32 microcon-
troller, offering comprehensive support and a rich development environment. It pro-
vides low-level control over the ESP32 chip, enabling fine-grained manipulation of
hardware features. With its extensive libraries and tools, ESP-IDF simplifies the de-
velopment process for Wi-Fi, Bluetooth, and networking protocols. It is an excellent
choice for IoT applications, combining strong support, documentation, and low-level
control.

2.3.2.2 FreeRTOS

FreeRTOS[17] is an open-source, real-time operating system kernel designed for em-
bedded devices. The Internet of Things (IoT) and embedded systems both make
substantial use of the FreeRTOS for its adaptability, dependability, and capacity for
effectively managing real-time tasks.

2.3.2.3 ESP32 NVS

The ESP32 NVS[18] (Non-Volatile Storage) is a feature of the ESP32 microcontroller
that provides a persistent storage solution. It allows you to store and retrieve data
that needs to be retained even when the power is turned off or the device is reset.
The NVS in ESP32 is implemented using the flash memory of the microcontroller.
It provides a key-value pair storage mechanism, where data is stored and accessed
using unique keys. The NVS is organized into namespaces, which allow for logical
separation of different sets of data.[16]

2.3.2.4 ESP-NETIF

ESP-NETIF[19] is a networking interface library provided by Espressif Systems,
specifically designed for their ESP32 and ESP8266 platforms. It serves as an abstrac-
tion layer that simplifies the process of connecting and configuring various network
interfaces, such as Wi-Fi, Ethernet, or Bluetooth, on these devices.
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ESP-NETIF provides a consistent API (Application Programming Interface) for
managing network interfaces, allowing developers to easily switch between different
connectivity options without changing their application code. The library provides
additional features such as network event handling and DHCP (Dynamic Host Con-
figuration Protocol) client and server functionalities.

2.3.2.5 UART Communication

Universal Asynchronous Receiver-Transmitter (UART)[20] is a hardware communi-
cation interface commonly used for point-to-point serial communication between de-
vices. UART is a standard protocol used to transmit and receive data between two
devices, typically a microcontroller or computer, and another device such as a sensor,
peripheral, or another microcontroller.

UART data is transmitted in individual bits without a clock signal governing the
timing. It uses two communication lines: one for transmitting data (TX) and one for
receiving data (RX). The data is sent in packets or frames, where each frame consists
of a start bit, data bits (usually 7 or 8 bits), optional parity bit for error detection,
and stop bits to indicate the end of a frame.

2.3.2.6 I2C Communication

Inter-Integrated Circuit (I2C)[21], is a widely utilized protocol for connecting proces-
sors and microcontrollers with peripheral ICs that operate at lower speeds over short
distances. The I2C interface employs a two-wire connection, consisting of the Serial
Data Line (SDA) and the Serial Clock Line (SCL).

2.3.2.7 One-Wire Protocol

The One-Wire protocol is a serial communication protocol developed by Dallas Semi-
conductor (now Maxim Integrated) that enables devices to communicate using a single
data line. This protocol, widely used in applications requiring simplicity and low pin
count, allows for data transfer, device enumeration, and power delivery over a sin-
gle wire. One-Wire devices, such as temperature sensors, EEPROMs, and real-time
clocks, are designed with minimal hardware requirements, making them cost-effective
and efficient solutions.[22]

2.3.2.8 Heartbeat Measurement

Heart rate measurement is critical in monitoring and assessing a person’s cardiovas-
cular health. It provides valuable insights into the general functioning of the heart
and can aid in detecting anomalies or irregularities. One common technique used for



Chapter 2. Background 19

heart rate measurement is the utilization of photoplethysmography (PPG) sensors.
PPG sensors pass low-intensity infrared (IR) light through biological tissues, which
is then absorbed by venous and arterial blood, skin pigments, bones, and other bio-
logical tissues. PPG sensors can detect variations in blood flow as changes in light
intensity because blood more strongly absorbs light than the surrounding tissues.
PPG sensors capture the peaks of volumetric changes in arterial blood associated
with cardiac activity and calculate the frequency of these peaks to determine the
heart rate. Figure2.1 shows the Working principle of a PPG sensors

The MAX30100 sensor is a PPG module. It combines two LEDs, a photodetec-
tor, optimized optics, and low-noise analog signal processing to detect pulse oximetry
and heart-rate signals. It utilizes the I2C interface for communication with micro-
controllers or processors.[23]

Figure 2.1: Working principle of PPG sensors.

2.3.2.9 Blood Pressure Measurement

A popular technique for non-invasively monitoring blood pressure is oscillometric
measurement. To begin the procedure, a cuff frequently worn around the upper arm
is inflated to a pressure higher than the anticipated systolic pressure. This inflation
temporarily interrupts blood flow in the brachial artery. After that, the cuff gradually
deflates, allowing blood flow to continue. As the cuff pressure drops, the artery mo-
mentarily opens and closes, causing the cuff pressure to fluctuate. An inbuilt pressure
sensor in the cuff keeps track of these oscillations. The resulting raw pressure signal
is subjected to algorithmic processing to ascertain significant properties, such as the
size and timing of the oscillations. The formulas determine the mean arterial pressure
(MAP), systolic pressure, and diastolic pressure. In our project, we undertook the
reverse engineering of a commercial blood pressure meter as part of our research and
development process.
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2.3.2.10 Glucose Measurement

Glucose measurement involves the use of a glucose meter. A small blood sample, or-
dinarily obtained from a finger prick, is applied to a disposable test strip inserted into
the meter. The test strip contains chemicals and electrodes that react with glucose
in the blood, generating an electrical signal. The electrodes detect this signal, which
is then converted into a numerical value representing the blood glucose level.

2.3.2.11 Body Temperature Measurement

Skin temperature measurement is the process of quantifying the temperature of the
skin surface. It is a valuable physiological parameter that provides insights into the
thermal regulation of the body and can serve as an indicator of various health condi-
tions.

In our project, we employed the DS18B20[24], a digital thermometer that pro-
vides 9-bit to 12-bit Celsius temperature measurements. The sensor communicates
using the one-wire protocol, making it easy to interface with microcontrollers and
other devices. It has a temperature measurement range of -55°C to +125°C with a
typical accuracy of ±0.5°C within the range of -10°C to +85°C.[24]

2.3.3 Protocols for Data Transmission

The effective transmission of data is a fundamental part of computer networking,
necessitating the use of trustworthy and strong protocols that control how data is
transmitted between devices. TCP (Transmission Control Protocol) and UDP (User
Datagram Protocol) are two often used protocols in this area.
TCP and UDP are part of the internet protocol suite and facilitate data transmission
over IP networks. While both protocols share similarities in their basic function,
they possess distinct characteristics and functionalities that make them suitable for
specific applications.

2.3.3.1 Transmission Control Protocol

Transmission Control Protocol (TCP) is a widely-used connection-oriented commu-
nication protocol, renowned for its reliability and acknowledgment capabilities. It
ensures secure and ordered data transmission between devices in computer networks.
With features like error checking, flow control, and congestion control, TCP provides
a robust and dependable method for transmitting data.
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2.3.3.2 User Datagram Protocol

UDP is a connectionless communication protocol, meaning it does not establish a ded-
icated connection before transmitting data. UDP is particularly suitable for initial
handshakes and quick exchanges of data where immediate responsiveness is crucial.
However, it does not provide the reliability and error correction mechanisms of TCP,
making it more susceptible to packet loss or corruption. Therefore, UDP should be
carefully chosen based on the specific requirements of the application.

2.3.4 Flutter Framework

Flutter is an open-source, event-driven UI software development kit (SDK) created
by Google. It is used to develop cross-platform applications including Android, iOS,
Linux, macOS, Windows, and the web from a single codebase.
Flutter apps are written in the Dart language and make use of many of the lan-
guage’s more advanced features. Flutter extends Dart’s Pub package manager and
software repository, which allows users to publish and use custom packages as well
as Flutter-specific plugins. Flutter’s engine, written primarily in C++, provides low-
level rendering support.

2.3.4.1 Asynchronous Programming

Asynchronous programming is a type of programming that allows a unit of work to
run independently from the primary application thread. This means that the pro-
gram will run independently of this function, even if it takes a long time to complete,
and notifies the main thread when the work is complete.[25]

Flutter, being a reactive framework, fully supports asynchronous programming.
It provides built-in features and tools to handle asynchronous operations effectively.
Flutter utilizes Dart as its programming language, which has native support for asyn-
chronous programming through its async/await syntax.

2.3.4.2 State management

State management is a crucial aspect of building robust and efficient Flutter applica-
tions as it involves handling and updating the data that drives the user interface[26].
Flutter offers a diverse range of state management solutions, each tailored to specific
needs and preferences. By employing suitable state management techniques, develop-
ers can build applications that are scalable, maintainable, and performant. Mastery
of state management fundamentals is essential for creating robust and responsive
Flutter applications. Some of the popular state management solutions in Flutter in-
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clude BLoC, Provider, Riverpod, setState, GetIt, MobX, and States Rebuilder[27].

2.3.4.3 Business Logic Component

Business Logic Component (BLoC) is a design pattern used in Flutter applications
to separate the business logic from the UI layer, making it easier to maintain and test
the application[28]. BLoC follows the concept of streams and events, where the UI
components emit events to the BLoC, and the BLoC processes these events, updates
the state, and notifies the UI to reflect the changes.

This pattern promotes code reusability, testability, and maintainability by keep-
ing the UI components focused on rendering the views while the BLoC handles the
data flow and business logic.The BLoC pattern is suitable for larger apps with com-
plex state management needs, but may not be necessary for smaller projects

2.3.4.4 Clean Architecture with Bloc

Flutter Clean Architecture is a software architectural pattern that combines the prin-
ciples of Clean Architecture with the Flutter framework to create scalable and main-
tainable Flutter applications.

Clean Architecture is a concept introduced by Robert C. Martin that promotes
a clear separation of concerns and independence between layers of an application. It
consists of three main layers:

• Presentation Layer: This layer contains the UI components and is responsible
for handling user interactions and displaying data. this layer typically consists
of widgets and screens.

• Domain Layer: Also known as the business logic layer, this layer contains the
core business rules and logic of the application. It should be independent of any
specific framework or platform and can be reused across different platforms.
this layer often includes use cases, entities, and interfaces (abstract classes).

• Data Layer: This layer deals with data retrieval and storage. It can include
repositories, data sources, and external services. The data layer is responsible
for abstracting the details of data access, allowing the domain layer to remain
decoupled from specific data sources.

2.3.5 Database Integration with Firebase

In the context of our AIoT healthcare system, the integration of a reliable and effi-
cient data storage solution is of paramount importance.
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Databases can be used to store patient information, such as their medical history,
current medications, and vital signs, which can be accessed by healthcare providers
remotely. It can also be used to monitor patient conditions in real-time, allowing
healthcare providers to intervene quickly if necessary[29]. However, databases in an
AIoT home hospitalization system must be secure and protect patient privacy, as
they may contain sensitive information[30].

To address this need, we have incorporated Firebase, a cloud-based platform
that provides various services for building web and mobile applications. Some of
the services provided by Firebase include a real-time database, authentication, and
Firestore, a NoSQL document database for mobile and web apps.

2.3.5.1 Firebase Authentication

Firebase Authentication is a service that provides a comprehensive set of features and
capabilities to streamline the authentication process. It supports a variety of authen-
tication methods, including email/password, phone number, social media platforms
(such as Google, Facebook, and Twitter), and more. By employing Firebase’s au-
thentication mechanisms, we can ensure that only authorized users can access and
interact with the system.

2.3.5.2 Firebase Firestore

Firebase Firestore is a cloud-hosted NoSQL document-based database solution for
mobile and web applications. It is a well-known solution that offers a safe, personal-
ized, and dynamic computing environment with guaranteed service quality. Firestore
is organized into collections that can be linked to other subcollections. Its queries are
noticeably faster and more efficient than those of Firebase Realtime Database. Fire-
store can be used to optimize data read cost, response size, and time regarding the
cloud Firestore database

2.3.6 AI Models for Disease Prediction in Healthcare

Artificial Intelligence (AI) and Machine Learning (ML) are two related fields that are
rapidly evolving and have the potential to revolutionize the healthcare industry.

AI refers to the capability of machines to perform tasks that traditionally re-
quire human intelligence, such as understanding speech, making decisions, and learn-
ing from experience. AI systems can be trained to analyze data, identify patterns,
and make predictions based on that data. This technology has applications in var-
ious fields, including virtual assistants and autonomous vehicles. AI is a rapidly
evolving field in medicine, especially cardiology and brain science, and is revolution-
izing risk prediction and stratification, diagnostics, precision medicine, workflows, and
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efficiency[31].

ML is a subset of AI that involves training algorithms to make predictions or
decisions based on data. ML algorithms can learn from data and improve their per-
formance over time. There are several types of ML algorithms, including supervised
learning, unsupervised learning, and reinforcement learning. In the field of health-
care, machine learning techniques have advanced. Through the analysis of medical
data, the way healthcare is delivered has changed as an outcome concerning AI and
machine learning[32].
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Deep Learning (DL) is a subset of ML that solves problems that ML alone can-
not. DL use neural networks to boost computing labor while delivering accurate
results. NLP, speech recognition, and facial recognition are just a few of the fantastic
uses of DL.

AI and ML has shown potential in predicting diseases through the use of AI
models. These models leverage advanced algorithms and machine learning techniques
to analyze large datasets and identify patterns, risk factors, and early indicators of
various diseases. Here are some specific things that AI and ML can do in healthcare:

• Improve diagnostic accuracy in a variety of medical fields such as ra-
diology, pathology, and dermatology. DL algorithms have been used to analyze
medical images, such as CT scans and mammograms, with a level of accuracy
that is comparable to that of human radiologists. AI algorithms have also been
used to analyze medical images, such as biopsy slides, with a level of accuracy
that is comparable to that of human pathologists[33].

• Predict heart disease using machine learning models. Machine learning
models can be used to target early detection and accurate prediction of heart
disease, which is indispensable to bring down the mortality rates and to treat
the cardiac patients with best clinical decision support[34].

• transform the approach to medicine and improve the efficiency and
effectiveness of clinical trials. AI and big data are revolutionizing the health-
care industry, particularly in the field of clinical trials. The application of AI,
specifically deep learning (DL), has shown promising results in ophthalmic imag-
ing research. As a result, the use of AI in randomized controlled trials (RCTs)
is expected to become a reality in the near future[35].

While there is growing interest and acceptance of AI models for disease pre-
diction, there are still challenges and limitations to their application. The accuracy
of these models is highly dependent on the quality and quantities of the data used
for training, and there is an ongoing need to improve data accessibility and quality.
Additionally, there are ethical considerations, including privacy, evolving regulatory
issues, and data security concerns.

In conclusion, the use of AI models for disease prediction in healthcare offers
great promise for the future. With a committed focus on the quality and accessibility
of data, and an understanding of the ethical implications of AI, these models have
the potential to improve the accuracy and efficiency of disease prediction and overall
quality of patient care.
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Design and Implementation

3.1 System Architecture and Design

Our system, as shown in Figure 3.1, is designed to enable remote healthcare mon-
itoring and facilitate efficient communication between the patient’s home and the
healthcare providers.

The hardware device, powered by an ESP32 microcontroller, serves as the central
hub for data collection. It integrates the MAX30100 sensor for heart rate measure-
ment and the TMP36 sensor for body temperature monitoring, as well as commer-
cially available blood pressure and glucose sensors. These sensors enable precise and
accurate measurements, providing valuable health data for monitoring and analysis.

The mobile application offers patients convenient access to their historical data
and enables them to initiate measurements directly from the app. With the mobile
application, patients can effortlessly review their previous measurements, track their
health progress over time, and gain insights into their health trends. Additionally,
the app provides a user-friendly interface that allows patients to easily start mea-
surements, such as checking their heart rate, recording their body temperature, or
monitoring their blood pressure. The application also enables direct communication
between patients and doctors. Through the app’s messaging feature, patients can
conveniently send messages to their healthcare providers, allowing for seamless com-
munication and timely exchange of information.

We have also designed a UDP-based custom communication protocol that facili-
tates seamless interaction between the ESP32 device and the mobile application. This
protocol ensures efficient and reliable data exchange, allowing the ESP32 to transmit
sensor readings and other relevant information to the mobile application. The pro-
tocol establishes a standardized format for data transmission, ensuring compatibility
and smooth integration between the ESP32 and the mobile application.

26
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After the data is collected, it is securely transmitted to the Firestore database.
The Firestore database serves as the centralized storage system for the collected pa-
tient data, ensuring its persistence and accessibility. By leveraging Firestore, we
ensure the scalability, reliability, and real-time synchronization of the data, enabling
seamless retrieval and analysis by healthcare professionals. The data stored in Fire-
store is then processed, and utilized for generating insights, facilitating personalized
healthcare management, and supporting doctors’ decision-making.

Additionally, we have designed a web dashboard specifically tailored for doctors,
providing convenient access to their patient’s data and the insights generated by the
AI model. Each doctor is granted secure access to their respective patients’ data,
allowing them to view and analyze the collected measurements, historical trends, and
AI-generated insights.

Figure 3.1: System Architecture Diagram
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3.1.1 Communication Setup between Hardware and Mobile
Application

Establishing a robust and efficient communication protocol is of paramount impor-
tance in our AIoT-based home hospitalization system. Recognizing this, we developed
a custom communication protocol to facilitate data exchange between the ESP32 mi-
crocontroller and the mobile application. This protocol was specifically designed to
ensure reliable and efficient transmission of patient data. By implementing this pro-
tocol, we achieved a lightweight and efficient communication mechanism, optimized
for the limited resources of the ESP32 and the mobile application.

The protocol operates over UDP and utilizes a fixed port number, 2409, for
communication. The protocol packet begins with a unique protocol ID, ’E-Health\0’,
which serves as an identifier for our system. Following the protocol ID, two bytes
are allocated for the opcode, indicating the type of message being transmitted. The
remaining portion of the packet can accommodate up to 244 bytes of data.

We have designed our communication protocol with a focus on simplicity and
scalability. We have ensured that the protocol is easy to develop and extend by
adopting a modular approach. This allows for the seamless addition of new opcodes
to accommodate future functionalities or system requirements. The protocol’s flexible
structure enables straightforward opcode definition and integration, facilitating the
incorporation of new message types without compromising the integrity of the existing
communication framework. By making our protocol adaptable and easy to expand, we
have future-proofed our system, providing the foundation for potential enhancements
and advancements in the future.

3.1.1.1 Protocol OpCodes

In order to enhance the scalability of our protocol, we have implemented opcode cat-
egorization by assigning specific opcode ranges to different types of commands. This
approach allows for better organization and management of the protocol functionali-
ties. We have defined three main categories for the opcodes:

• 0x1XXX for system commands

• 0x2XXX for handshake requests and replies

• 0x3XXX for measurements and sensors, this range is divided into 4 sub-ranges:

– 0x31XX: Blood pressure

– 0x32XX: Blood glucose level

– 0x33XX: Body temperature

– 0x34XX: Heartbeat
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Table 3.1 provides an overview of the currently supported opcodes in our proto-
col along with a brief definition of each opcode. The table serves as a reference
for understanding the purpose and functionality of each opcode within the com-
munication framework of our AIoT-based home hospitalization system.

Opcode Brief definition

0x1001 Network configuration (SSID and password)

0x1999 Reset save network configuration

0x2000 Send handshake request

0x2001 Handshake reply

0x3X00 Send measurement request

0x3X01 Update in the measurement state

0x3X02 Measurement result packet

0x3X02 Measurement failed

Table 3.1: Supported OpCodes

3.1.1.2 Protocol Workflow

In the protocol workflow, the mobile application initiates communication by broad-
casting a handshake request. The hardware device responds with a handshake reply,
establishing a connection and determining the IP address of the Device Interface
Server. This enables secure bidirectional data transmission, allowing the mobile ap-
plication to send commands and the hardware device to transmit real-time health
measurements. The protocol ensures efficient and reliable communication, facilitat-
ing remote monitoring and timely healthcare interventions.

After the establishment of the connection, the device interface server actively
listens to packets sent by the mobile application.

Figure 3.2 provides an example workflow for handshake process.
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Figure 3.2: Protocol Handshake Workflow

3.1.2 Hardware Components and Functionalities

The hardware components of our AIoT-based home hospitalization system play a crit-
ical role in capturing and processing patient data for remote monitoring. At the core
of our system is the ESP32 microcontroller, which serves as the central processing
unit. With its dual-core architecture and built-in Wi-Fi and Bluetooth capabilities,
the ESP32 provides the necessary computational power and connectivity for data
transmission.

The MAX30100 heartbeat sensor, responsible for heart rate monitoring, is con-
nected to the ESP32 microcontroller through the I2C interface, specifically using I2C
port 0. This allows for reliable and high-speed data exchange between the sensor and
the microcontroller.

The DS18B20 sensor, integrated for temperature measurement, is connected to
the ESP32’s GPIO pin. This sensor provides temperature readings directly in digital
format, utilizing a single wire for communication and power. The ESP32 interfaces
with the DS18B20 sensor using the one-wire protocol, enabling accurate temperature
measurements for monitoring the patient’s body temperature.

Additionally, we have integrated a commercially available blood pressure sensor
into our system, specifically connecting it to UART 1 of the ESP32 microcontroller.

In the case of glucose measurement in our system, we encountered a challenge
as we couldn’t find a suitable prototyping sensor. As a solution, we designed the sys-
tem to allow the user to perform the glucose measurement using an external glucose
monitoring device. The user then manually inputs the glucose measurement results
into the mobile application.



Chapter 3. Design and Implementation 31

In addition to the essential hardware components and sensors, we have included
additional features to enhance the functionality and usability of our system. These in-
clude a reset button and power LED, which provide convenient control and indication
for powering on or resetting the hardware device. Furthermore, we have incorporated
an additional LED that serves as an indicator for various system states or notifica-
tions, providing visual cues to the user. These additional components contribute to a
user-friendly experience and facilitate easy interaction with the home hospitalization
system.

Figure 3.3 provides a detailed diagram illustrating the interconnections and ar-
rangements of the hardware components in our AIoT-based home hospitalization
system, showcasing the ESP32 microcontroller, MAX30100 heartbeat sensor, TMP36
temperature sensor, blood pressure sensor, power and indicator LEDs, and reset but-
ton. Additionally, Figure 3.4 demonstrates the physical implementation of our circuit.

Figure 3.3: Hardware Components Diagram
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(a) Top View of the Physical Implementation of
the Circuit, showcasing the Pinout.

(b) Back View of the Physical Imple-
mentation of the Circuit.

Figure 3.4: Physical Implementation of the Circuit

3.1.2.1 Reverse Engineering Blood Pressure

Prototyping healthcare sensors can be a costly and time-consuming process, often
resulting in less precise measurements. Recognizing these challenges, we made a
strategic decision to leverage commercially available sensors for our AIoT-based home
hospitalization system. This approach ensures the reliability and accuracy of the mea-
surements while saving time and resources. Additionally, The accessibility of these
sensors in the market makes procurement and replacement easier when needed.

Figure 3.5: Blood Pressure Sensor PCB
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During the inspection of the blood pressure sensor’s PCB, we discovered famil-
iar UART interface traces labeled RX, TX, and GND as shown in figure 3.5. By
analyzing the data communication using a logic analyzer, we determined the UART
interface configuration, which included a baud rate of 9600, 1 start bit, no stop bit,
and no parity.

The sensor provided updates during the measurement process, including ini-
tialization readiness (”CHK”), waiting for input (”WAI”), inflation (”INF”), and
deflation (”DEF”). After the measurement, the sensor transmitted ”EXH” followed
by 13 bytes of data. We found that the first three bytes contained crucial informa-
tion, indicating measurement success or error. An error is indicated by a result that
starts with ”f15” and a successful measurement result starts with ”f00” and contains
encoded data in subsequent, allowing us to decode and extract systolic and diastolic
blood pressure values and heart rate.

A successful data reading example was represented by the format ”f00420026804E,”
corresponding to a systolic blood pressure of 132 mmHg, diastolic blood pressure of
77 mmHg, and a heart rate of 78 beats per minute. In this case, the systolic blood
pressure was encoded as ”4200,” which was obtained by converting it to decimal. By
multiplying this value by 2, we derived the systolic blood pressure of 132 mmHg.
Similarly, the diastolic blood pressure was encoded as ”2680.” The presence of the
digit ”8” in the encoding indicated that the diastolic blood pressure is an odd number,
so we added 1 to it, resulting in a diastolic blood pressure of 77 mmHg. The heart
rate value was directly converted to decimal without further manipulation.

3.1.3 Firmware Design and Implementation

In the firmware development, we utilized the FreeRTOS (Real-Time Operating Sys-
tem) framework in conjunction with the ESP-IDF, which allowed us to leverage the
powerful features and capabilities of both frameworks. FreeRTOS provided real-
time multitasking capabilities and scheduling functionalities, while ESP-IDF offered
hardware abstraction, networking support, and system-level features tailored for the
ESP32. This combination allowed us to develop robust and efficient firmware that
effectively utilized the resources of the ESP32, ensured reliable data processing, and
enabled communication with the hardware components and external systems.

As shown in Figure 3.6, first, the firmware checks if there are valid network cre-
dentials stored in the Non-Volatile Storage (NVS). If valid credentials are found, the
firmware enters the NORMAL MODE. the ESP32 initializes the Wi-Fi module as a
station (STA) and attempts to connect to the network using the retrieved creden-
tials. However, if no valid network credentials are available, the firmware enters the
FIRST BOOT state. In FIRST BOOT, the ESP32 operates as an access point (AP),
allowing clients to connect and configure the network settings.



Chapter 3. Design and Implementation 34

Figure 3.6: System Initialization Flowchart

3.1.3.1 Device Interface Server

After booting and initializing the Wi-Fi interface in the correct mode, the firmware
enters the device interface server module. This module operates as a closed-loop
function, continuously listening for incoming packets. When a packet is received, the
firmware first checks the protocol ID to ensure it matches the expected value. If the
protocol ID is valid, the firmware proceeds to examine the opcode within the packet.
Based on the opcode, the firmware executes the corresponding action or process as-
sociated with that opcode. This allows for seamless handling and interpretation of
incoming packets, ensuring efficient communication and appropriate responses within
the system.

If a measurement opcode is received, the firmware creates a separate task specif-
ically dedicated to the measurement function. As part of the initialization process,
two queues are established. The first queue allows for the transmission of the received
command from the mobile phone to the measurement task, ensuring that the task is
aware of the desired measurement operation. The second queue facilitates the com-
munication of updates about the measurement state from the task back to the mobile
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phone. This bidirectional communication enables the patient to actively track and
monitor the progress and status of their measurement in real-time, providing valuable
feedback and enhancing the overall user experience.

3.1.3.2 Network Configuration Setup Process

When the device initially boots up, the user has to connect to the access point of
the ESP32 microcontroller. The user can then send the network SSID and password
from the mobile app to configure the device’s network settings.

When the network configuration opcode is received, the hardware device switches
from the access point mode to the station mode and begins the process of connecting
to the specified Wi-Fi network. If the connection to the network fails, the firmware
reverts back to AP mode, allowing the user to retry the network configuration process.

However, if the connection is successful, the firmware stores the received network
information in the NVS of the ESP32 and operates in station mode. In the next
reboots, the system reads the network configuration from the NVS, allowing the
device to directly enter station mode and connect to the configured Wi-Fi network
without requiring user intervention.

3.1.3.3 Measurement Process and Task Execution

Each measurement task within the firmware follows a similar structure. It consists of
a loop that continues until the measurement process is completed. Within this loop, a
Finite State Machine (FSM) is implemented to manage the different states and tran-
sitions of the measurement process. Whenever a state change occurs, the updated
state information is sent to the device interface server via a queue. Subsequently, the
device interface server relays this information to the mobile app, ensuring that the
patient is kept informed about the current state of their measurement. This continu-
ous feedback loop enables real-time tracking and communication of the measurement
progress, enhancing the patient’s engagement and understanding of the ongoing pro-
cess.

Figure 3.7 presents a flowchart illustrating the process by which the device in-
terface server handles measurement opcodes.
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Figure 3.7: Flowchart of the Measurement Opcode Handling Process in the Device
Interface Server.
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3.1.3.4 Heart Rate Data Acquisition

To ensure optimal performance and accurate measurements, we carefully configure
the sensor according to our requirements. The configuration includes:

• Sampling rate: 1000Hz

• LED pulse width: 1600us

• ADC range: 16bit

• LED current level: 11mA

The parameters of the MAX30100 sensor play a crucial role in the accuracy and
reliability of the measurements as well as the comfort of the patient. The sampling
rate determines how frequently the sensor captures data points, affecting the tempo-
ral resolution of the measurements. Higher sampling rates can provide more detailed
information but may consume more power. LED brightness affects the intensity of
the emitted light, which can influence the sensor’s ability to capture accurate signals.
Pulse width determines the duration of the LED pulse, impacting the depth of tissue
penetration.

During the heart rate data acquisition process, we begin by waiting for the
patient to place their finger on the sensor. Once a heart pulse is detected, we initiate
the recording process. To ensure accurate and reliable data, we employ a rolling
average with an outlier rejection filter with a window size of 5 on data recorded over
15 seconds. This filter helps us handle any outliers or irregularities in the collected
data, ensuring that we obtain accurate and reliable heart rate measurements.

3.1.3.5 Body Temperature Data Acquisition

For body temperature measurement in our system, we have employed the oral tem-
perature method. This approach involves utilizing a sensor that is placed in the
mouth to capture temperature readings. The process begins by allowing the sensor
to calibrate to the mouth temperature for approximately 10 seconds, ensuring accu-
rate measurements. Following the calibration, we capture the maximum temperature
reading within the next 5 seconds, providing a reliable indication of the oral body
temperature.
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3.1.4 Mobile Application Design and Features

The mobile application, built using the Flutter framework, serves as a fundamental
element of the system. It enables users to monitor and manage their health conditions.
This chapter provides an in-depth explanation of the mobile application’s design and
key features, with a particular emphasis on various elements such as authentication,
connection setup, sensor control, data visualization, data storage, history viewing,
appointment requests, chat functionality, and notifications.

3.1.4.1 Authentication and User Management

To provide secure access, the mobile application includes powerful authentication and
user management features. Firebase Authentication is used to handle user authenti-
cation after registration where the user is required to register and create an account
using their email address, and enter their personal information, including their name,
height, weight, sex, blood pressure, phone number, and their corresponding doctor
information. This last information allows for better communication between the user
and their healthcare provider. The personal information allow the mobile application
to calculate relevant health metrics, such as BMI (Body Mass Index), and offer ap-
propriate health objectives and guidelines.

The user profile management feature allows users to update and modify their
personal information as needed, ensuring that the mobile application keeps up-to-
date records of the user’s health-related details. Additionally, users have the option
to configure their privacy settings, specifying the level of data sharing and visibility
to healthcare providers or other authorized individuals.

The inclusion of sophisticated authentication and user management functions in
the mobile application enables safe access and individualized user experiences, which
are critical for maintaining user confidence and engagement.

The FigureB.1 in the Apendix section Shows a screenshot for this feature.

3.1.4.2 Connection Setup with Hardware

To establish a connection with the hardware device, the mobile application initiates
the handshake by broadcasting a handshake request to the network. Upon receiving
a handshake request, the device interface server responds by sending a handshake
reply to the IP address of the requesting device. This handshake is necessary to
retrieve the IP address of the device interface server and establish a connection. Ad-
ditionally, it serves as a means to send the initialization state of the sensors, including
information about whether each sensor has successfully initialized or encountered any
failures during the initialization process. Once the handshake is completed, the IP
address is stored for future reference, eliminating the need for repeated handshakes
in subsequent sessions.
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To ensure seamless tracking of received packets from the hardware device with-
out impacting the user interface rendering, we have implemented the Flutter BLoC
architecture. which separates the business logic and the user interface, providing an
efficient and organized approach to handling data flow.

When a measurement event is received by the BLoC, it triggers a handler func-
tion that contains a loop. This loop continuously listens to the hardware device for
updates and emits corresponding states based on the received data. The BLoC ef-
fectively manages the state of the application, allowing for real-time updates and
rendering of relevant information to the user interface.

The FigureB.2 in the Apendix section Shows a screenshot for this feature.
By utilizing the Flutter BLoC pattern, we ensure efficient communication and

synchronization between the mobile application and the hardware device. This ar-
chitecture enables seamless tracking of measurements and provides a responsive user
experience, as the UI remains unaffected by the continuous data processing happening
in the background. To provide a visual representation of the interaction between the
user interface, the BLoC, and the hardware, Figure 3.8 illustrates the flow of events
and asynchronous communication within the system.

Figure 3.8: Diagram Illustrating the Interaction between UI, BLoC, and Hardware.

3.1.4.3 Sensor Control and Data Visualization

The mobile application provides users with comprehensive control over the sensors
integrated into the hardware devices. It interacts with the sensors through the estab-
lished connection, enabling users to initiate sensor measurements.

The mobile application provides users with a dedicated screen for sensor control
and data visualization. This screen allows users to select the desired sensor they want
to utilize and provides control options such as turning the sensor on or off.
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For instance, if the user wants to utilize a heart rate sensor, they can choose it from
the available options on the screen. Once selected, the application provides interac-
tive hints and instructions to guide the user through the sensor usage process. These
hints may include prompts such as ”Please place your finger on the sensor” or ”The
sensor is currently measuring your heart rate.”.
Once the sensor has captured the necessary readings, the application displays the
collected data on the screen in a clear and understandable format for the user.

The FigureB.4 in the Apendix section Shows a screenshot for this feature.

3.1.4.4 Data Storage with Firebase Firestore

Data storage in the mobile application relies on the Firebase Firestore database, which
provides a structured and scalable solution. The process begins with user registra-
tion, where Firebase creates an account and assigns a unique user ID. This user ID
serves as the basis for creating a collection within the Firestore database, specifically
under the ”Patients” document. In this collection, the user’s personal information,
including their entered details during registration, password, and email, are stored.

Additionally, another collection is created using the same user ID, but this time
under the ”Measurement” document. Within this collection, four empty arrays are
generated: glucose, temperature, blood pressure, and heart rate. These arrays serve
as placeholders to store the user’s vital sign measurements.

In scenarios where the mobile application operates in offline mode, such as when
the user measures their vital signs without an internet connection, the data is tem-
porarily stored locally. Firebase provides seamless offline support through its package,
automatically pushing the locally stored data to the database once a connection is
reestablished. This ensures that vital sign measurements are reliably synchronized
and stored in the Firestore database for future access and analysis.

Furthermore, authorized doctors have access to the database, allowing them to
securely analyze user data. This functionality empowers doctors to review the data,
perform analyses, and provide personalized recommendations based on the user’s
health information.

3.1.4.5 History Viewing and Graphical Representations

The mobile application provides users with a history viewing feature, enabling them
to access and review their previous sensor readings and health data. By retrieving
historical data from the Firestore database, users can conveniently access and analyze
their health information in chronological order.
To enhance data analysis and interpretation, the application offers customizable
graphs and tables. Users have the flexibility to select specific time intervals, health
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parameters, and visualization formats, allowing them to generate graphical represen-
tations of their historical health data.

The FigureB.3 in the Apendix section Shows a screenshot for this feature.

3.1.4.6 Appointment Requests and Chat Functionality

The mobile application enables users to request and manage appointments with the
doctor. Users can schedule appointments, view upcoming appointments, and receive
notifications regarding appointment confirmations and reminders. Additionally, the
mobile application facilitates communication between users and healthcare providers
through a chat functionality. Users can engage in real-time messaging, seek clarifica-
tions, and receive guidance from healthcare providers conveniently within the mobile
application.

The chat functionality enhances the overall user experience and promotes effec-
tive communication and collaboration in the home healthcare setting.

3.1.5 Web Development for Doctor’s Dashboard

The web development aspect of the AIoT-based home healthcare system includes the
creation of a comprehensive doctor’s dashboard. This section focuses on the key fea-
tures and functionalities implemented in the web dashboard, providing doctors with
efficient management and analysis tools.

One notable advantage of the web development process is the utilization of the
Flutter framework, which allows for code sharing between different platforms. By
leveraging Flutter’s cross-platform capabilities, we can maximize code reusability and
reduce development efforts. In this case, we were able to use the same codebase as
the mobile application to build the web dashboard. This approach not only ensures
consistency in functionality and user experience but also streamlines the development
process by eliminating the need to write separate code for the web platform.

3.1.5.1 Authentication and User Management

Similar to the mobile application, the web dashboard incorporates a robust authen-
tication and user management system.

During registration, doctors create an account using their email address and
provide their personal information including their name, hospital name and address,
specialty, mobile number, and gender. This ensures secure identification within the
system. Upon successful registration, doctors are assigned a unique identifier gener-
ated by Firebase Authentication. This identifier is used to create a collection in the
Firestore database, storing the doctor’s personal information. In this collection an
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”IDs” list is created to store patient IDs associated with the doctor. This allows the
doctor to access patient information, data measurements, and history.
By utilizing patient IDs, doctors can efficiently retrieve and analyze patient data,
gaining insights into health conditions and providing personalized recommendations.
This structured organization of data ensures secure and scalable access to patient
information.

The FigureC.1 in the Apendix section Shows a screenshot for this feature.

3.1.5.2 Patient Management and Data Visualization

The web dashboard provides doctors with a comprehensive patient management in-
terface. Doctors can view a list of their registered patients and access individual
patient profiles. Within the patient profiles, doctors can review personal data, medi-
cal history, and vital sign measurements.

The measurements are presented in various visual formats, such as charts and
tables, enabling doctors to analyze trends and patterns in the patient’s health data.

The FiguresC.3, C.4 and C.5 in the Apendix section Shows a screenshots for this
features.

3.1.5.3 Appointment Requests and Chat Functionality

The web dashboard facilitates appointment management between doctors and pa-
tients. Doctors can request appointments with patients when they identify potential
issues in the patient’s data.

Additionally, doctors can engage in real-time communication with patients through
a chat functionality. This enables doctors to seek clarifications, provide guidance, and
establish effective communication channels with patients.

3.1.5.4 Notifications and Alert System

The web dashboard incorporates a notification system to keep doctors informed about
important events and updates. Doctors receive notifications when patients send mes-
sages, new patients are added to their supervision, or when appointment requests are
made by patients. This ensures timely communication and allows doctors to respond
promptly to patient needs.

An alert system is also integrated into the web dashboard. When the AI model
detects anomalies or potential health issues in the patient’s data, doctors receive
immediate alerts. This helps doctors identify critical situations and take appropriate
actions to ensure patient well-being.
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3.2 AI Model Development for Disease Prediction

In our system, we have developed an AI model specifically for diabetes predic-
tion. This section focuses on the development process and key features of the AI
model.

The objective of the AI model is to accurately predict the likelihood of an in-
dividual developing diabetes based on various input parameters such as age, gender,
body mass index (BMI), blood pressure, and glucose levels. The model utilizes ma-
chine learning algorithms to analyze and identify patterns within the data, enabling
it to make accurate predictions.

3.2.1 Dataset Selection and Preprocessing

For the development of the AI model for diabetes prediction, we utilized the Pima
Indians Diabetes Dataset. This dataset is originally from the National Institute of
Diabetes and Digestive and Kidney Diseases. This dataset contains valuable infor-
mation about a group of Pima Indian people, including their medical attributes and
whether they have been diagnosed with diabetes or not. Here are the details of the
Pima Indians dataset:

• Number of Instances: 768

• Number of Attributes: 8 plus the class variable

Each instance in the dataset represents a unique individual and is associated with
the following attributes:

• Pregnancies: Number of times pregnant

• Glucose: Plasma glucose concentration

• BloodPressure: Diastolic blood pressure (mm Hg)

• SkinThickness: Triceps skin fold thickness (mm)

• Insulin: 2-hour serum insulin (mu U/ml)

• BMI: Body mass index (weight in kg/(height in m)2)

• Diabetes Pedigree Function: Diabetes pedigree function

• Age: Age in years

Additionally, the dataset includes a class variable:
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• Outcome: This binary variable indicates whether an individual has been diag-
nosed with diabetes or not. A value of 0 represents no diabetes, while a value
of 1 indicates the presence of diabetes.

The Pima Indians dataset provides a diverse set of attributes that can potentially
contribute to diabetes prediction. For our model development, we excluded three
attributes (Diabetes Pedigree Function, Insulin, and SkinThickness) due to the un-
availability of data. These attributes were omitted from the input features during
training and prediction phases.

3.2.2 AI Model Architecture

The architecture of our AI model for diabetes prediction is designed to effectively
process the input features and make accurate predictions based on the available data.
This section provides an overview of the architectural components and their function-
alities.

3.2.2.1 Transformer-Encoder Layer

The core component of our model is the Transformer-Encoder layer. This layer is
responsible for processing the input features, capturing the underlying patterns and
relationships in the data, and inferring relatioships between different data attrivutes
during the forward pass. The Transformer-Encoder architecture has been widely used
in natural language processing tasks, but it can also be adapted for numerical data
processing[36].

The Transformer-Encoder layer consists of multiple self-attention heads and feed-
forward neural networks. Each self-attention head attends to different parts of the
input features, enabling the model to capture both local and global dependencies.
This allows the model to extract meaningful representations from the input data[36].

Additionally, the Transformer-Encoder layer uses layer normalization, which is
a technique for normalizing the activities of the neurons in a layer. Layer normal-
ization significantly reduces the training time in feed-forward neural networks and is
very effective at stabilizing the hidden state dynamics in recurrent networks[36].

In our model, we used a Transformer-Encoder layer with a model size of 20 and
a single head. The smaller model size helps to reduce the computational complexity
while still maintaining sufficient capacity to capture relevant information from the
input features.

Figure 3.9 shows the Transformer-Encoder Layer.
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Figure 3.9: Transformer-Encoder Layer

3.2.2.2 Dense Layers

Following the Transformer-Encoder layer, we incorporated two dense layers. These
layers serve to further process the output of the Transformer-Encoder and reduce it
to a single float item, which represents the predicted outcome.

The inclusion of dense layers serves as a means of controlling the dimensionality
of the system. It allows us to provide the Transformer-Encoder with a sufficiently
long sequence and then reduce the output back to a classification unit specific to
our use case, which involves binary classification. To prevent overfitting to the small
dataset, dropout regularization is applied after each layer.

The GeLU (Gaussian Error Linear Unit)[37] activation function is applied at the
end of the Transformer-Encoder, while ReLU (Rectified Linear Unit)[38] activation
is applied after each dense layer. These activation functions introduce non-linearities
into the model, enabling it to capture intricate relationships between the input fea-
tures and the target variable. This capability enhances the model’s predictive abilities
and improves its accuracy in making diabetes predictions.

The first dense layer expands the input into the Transformer-Encoder layer model
size of 20, enabling the model to learn more complex representations. The second
dense layer then reduces the output of the Transformer-Encoder dimension to a sin-
gle float item, which represents the predicted outcome of the diabetes diagnosis. The
raw output float is then normalized into a float ranging from 0 to 1 using a Sigmoid
function.
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Figure 3.10 shows the two dense Layers.

(a) Input dense layer (b) Output dense layer

Figure 3.10: Illustration of the Dense Layers

3.2.2.3 Benefits of the Architecture

The chosen architecture offers several benefits for our diabetes prediction model:

• Capturing Complex Patterns: The Transformer-Encoder layer effectively
captures complex patterns and dependencies in the input features. Its self-
attention mechanism allows the model to focus on relevant information and
learn meaningful representations.

• Non-linearity and Feature Extraction: The dense layers introduce non-
linearities and enable the model to extract higher-level features from the en-
coded representations. This helps the model learn more abstract representations
and improves its ability to make accurate predictions.

• Scalability and Efficiency: The selected architecture strikes a balance be-
tween model complexity and computational efficiency. The smaller model size
reduces computational requirements while still maintaining sufficient capacity
for effective prediction.

Overall, the architecture of our AI model for diabetes prediction combines the
power of the Transformer-Encoder layer and dense layers to capture complex patterns
and make accurate predictions. The combination of these components enhances the
model’s ability to analyze the input features and provide valuable insights for diabetes
diagnosis.



Chapter 3. Design and Implementation 47

3.2.3 AI Model Training and Validation

In the development of our AI model for diabetes prediction, a crucial step involves
training and validation. This section outlines the process and methodologies employed
during the training phase to optimize the model’s performance and ensure its ability
to generalize well on unseen data.

3.2.3.1 Data Split

To facilitate training and validation, we initially divided the Pima Indians dataset
into two portions: a training set and a validation set. The training set comprised
80% of the dataset, and the remaining 20% constituted the validation set. The small
dataset size, doesn’t allow for larger splits, so we were very careful with regularization
and optimizer choice.

3.2.3.2 Training Process

During the training phase, we employed specific techniques to iteratively update the
model’s parameters and optimize its predictive capabilities. The following steps were
taken:

• Epochs: We conducted training over 5 epochs. An epoch represents a complete
pass through the training data, allowing the model to learn from the dataset
multiple times. Training over multiple epochs enables the model to refine its
internal representations and capture complex patterns present in the data.

• Batch Size: A batch size of 1 was utilized, meaning the model updates its
parameters after processing each individual instance in the training set. This
approach ensures that each data point contributes to the training process and
allows for efficient parameter updates.

3.2.3.3 Learning Rates

The learning rate is a crucial hyperparameter that determines the step size during
parameter updates. Optimal learning rates are essential for effective convergence and
model performance. In our AI model, we used different learning rates for different
components:

• Transformer-Encoder Layer: A learning rate of 3.5e-5 was applied for the
Transformer-Encoder layer. Additionally, a warmup phase was incorporated for
the learning rate schedule. The warmup phase gradually increases the learn-
ing rate during the initial training steps, allowing the model to stabilize and
converge more effectively.

• Dense Layers: The Dense layers used a learning rate of 0.001, also with a
warmup stage. This learning rate was selected to facilitate efficient parameter
updates in the Dense layers and ensure convergence.
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3.2.3.4 Optimizers

The different layers require different optimizers with different optimization processes.
We employed specific optimizers for each component:

• Transformer-Encoder Layer: is a post-LN design, which is proben to be
unstable during training. To solve this problem, a warmup stage is applied
during training, the learning rate is increased linearly as the model becomes
more of extracting the necessary features and their inferred relationships (fits the
data more). We utilized the AdamW optimizer, which combines the advantages
of the Adam optimizer and weight decay techniques. AdamW provides more
stable and reliable optimization, ensuring that the Transformer-Encoder layer
learns the underlying patterns and relationships in the data effectively.

• Dense Layers: The Dense layers were optimized using the Adam optimizer,
a widely used and efficient optimization algorithm for deep neural networks.
The Adam optimizer adapts the learning rate for each parameter individually,
enabling effective convergence and training of the Dense layers.

3.2.3.5 Validation

After each epoch during training, we evaluated the model’s performance on the val-
idation set to assess its generalization capabilities. By using a separate dataset, we
could measure the model’s ability to make accurate predictions on unseen data and
detect any potential overfitting.

The training and validation phase of our AI model development played a crucial
role in optimizing the model’s performance and ensuring its ability to generalize well.
Through careful selection of hyperparameters, including epochs, batch size, learning
rates, and optimizers, we facilitated effective training and convergence. The validation
process allowed us to assess the model’s predictive capabilities on unseen data and
make any necessary adjustments to enhance its performance.

3.2.4 Integration with the System

To deploy the AI model, we set up a server that would host the model and handle in-
coming requests. This was done with Google Cloud Platform (GCP). For the backend
itself, we used FastAPI. a high-performance backend framework for quickly building
RESTful APIs with Python. Since the model implementation was also in Python, it
was pretty straightforward to integrate with the backend.

The entirety of the bakend is a single REST route that serves as the interface
for the AI model. This route is responsible for receiving input parameters in form
of JSON (JavaScript Object Notation), parsing them and starting a forward pass
of the AI model with the input parameters. In our case, when a patient takes a
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measurement, our mobile application initiate a POST HTTP request with a JSON
body that contains blood pressure, glucose, BMI, age and number of pregnancies of
any patient. The AI model processes it and generates a prediction. The prediction
is then relayed back to the mobile app, which stores it in the database for future
reference. Additionally, the app notifies the attending doctor of the new prediction,
ensuring timely access to the patient’s health status.



Chapter 4

Results and Discussion

4.1 Overview

To evaluate the home hospitalization system proposed in this report, We conducted
a series of rigorous tests to evaluate the performance and functionality of our AIoT-
based home hospitalization system. The tests encompassed multiple aspects to ensure
a comprehensive assessment of the system’s capabilities.

4.2 Usability Evaluation

To evaluate the proposed home hospitalization system, we have used the System Us-
ability Scale (SUS), as this scale provides a fast and reliable tool for measuring ease of
use and allows the evaluation of a variety of services and products, including mobile
devices, mobile applications, and websites [39]. To detect most usability problems, it
is acceptable to evaluate with five users[40]; in our case, ten doctors were selected to
conduct usability testing.

To evaluate the proposed home hospitalization system, the system model was
explained and a screenshots from the mobile application and the web dashboard was
giving for the doctors, after which they were asked to complete the SUS questionnaire.

The questionnaire is composed of 10 questions to assess system usability, where
each of the questions is classified based on the amount of agreement, from one
(Strongly Disagree) to five (Strongly Agree), as shown in Figure4.1 . After patients
and doctors have finished answering questions, the SUS scores are calculated as shown
in Figure4.1.

50
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Figure 4.1: The System Usability Scale (SUS)

Doctors 1 2 3 4 5 6 7 8 9 10
Question 1 5 5 5 4 5 5 5 5 5 5
Question 2 2 3 2 1 1 1 1 1 1 1
Question 3 4 2 4 5 5 5 5 5 4 5
Question 4 3 2 3 1 1 5 3 2 1 1
Question 5 3 5 5 4 5 5 5 5 5 5
Question 6 2 3 1 2 1 1 2 1 1 1
Question 7 4 1 3 4 5 5 2 5 3 5
Question 8 2 3 1 1 2 1 2 1 2 2
Question 9 3 2 5 3 4 5 4 4 4 5
Question 10 4 2 3 1 1 1 4 2 1 1
SUS score 65 55 80 85 95 90 72.5 92,5 87,5 97,5
Average SUS score 82

Table 4.1: Patients’ SUS score

Table4.1 displays the values of the SUS questionnaires provided by each Doctor,
the SUS value per Doctor, and the average SUS calculated for all Doctors.

The System Usability Scale evaluation was conducted for doctors, and the ob-
tained evaluation score was 82. According to the established criteria, a score above
80.8 is required to achieve a degree A, which represents excellent usability. Therefore,
based on the SUS evaluation results, it can be concluded that our system was highly
accepted and well-received by doctors.
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4.3 Hardware Functionality Evaluation

Ensuring the hardware functionality of our system is of paramount importance as it
directly impacts the overall performance and reliability of the system. Conducting
a comprehensive evaluation of the hardware functionality is crucial to identify and
address any potential issues or shortcomings. By conducting thorough testing, we
aim to achieve an error-free hardware system, as rectifying hardware failures can be
both time-consuming and costly. This section presents the evaluation process and
results of the hardware functionality, focusing on power consumption, performance,
and error-handling aspects.

4.3.1 Power Consumption Testing and Analysis

In Power Consumption Testing and Analysis, our system was primarily designed to
operate using a stable power supply rather than relying on batteries. However, under-
standing the power consumption details is still important for assessing the system’s
efficiency. To measure power consumption, we utilized a power measurement unit
to monitor the current drawn during various system functionalities. The results re-
vealed that the system exhibited a peak current of less than 1A at 5V, corresponding
to approximately 5W of power. This power requirement can be easily fulfilled by
commonly available power supplies, ensuring reliable and consistent operation of the
system.

4.3.2 Reliability Testing

Reliability testing is a crucial aspect of the Hardware Functionality Evaluation, as
it aims to assess the robustness and durability of the hardware components under
various conditions. This testing ensures that the system can consistently perform its
intended functions without failures or malfunctions.

We subjected our system to extended periods of operation and performed fre-
quent measurements to assess its reliability. This involved running the system con-
tinuously for extended durations, simulating real-world usage scenarios where the
system is expected to operate without interruptions.

During this time, we closely monitored the performance of the hardware com-
ponents, including sensors, microcontrollers, and communication modules, to ensure
they functioned reliably and consistently.
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4.4 Firmware Functionality Testing and Validation

In the Firmware Functionality Testing and Validation, we focused on assessing the
performance, functionality, and reliability of the firmware that drives our system.
This involved various tests and validations to ensure that the firmware operates as
intended and meets the desired functional requirements.

4.4.1 Optimizing Stack Size Allocation for Task Efficiency

During the Firmware Functionality Testing and Validation phase, we conducted a
specialized test to determine the optimal stack size for each task in our application.
This test involved running each task individually with a larger-than-usual stack size
while monitoring the stack usage.

By running the tasks individually, we isolated the specific task and executed it
with a generous stack size to ensure that it had ample memory space for its opera-
tions. Throughout the execution, we continuously measured the stack usage, keeping
track of the maximum stack space utilized by the task.

Analyzing the maximum stack usage provided us with valuable insights into the
peak memory requirements of each task. We then adjusted the stack size accordingly
to strike a balance between memory allocation and efficiency. The goal was to assign
a stack size that was neither too small, risking stack overflow, nor unnecessarily large,
wasting memory resources.
By fine-tuning the stack sizes based on the results of this test, we optimized the mem-
ory utilization within our firmware. Each task was allocated an appropriate stack size
that accommodated its specific needs without compromising the overall system’s sta-
bility or performance.

4.4.2 A Comparative Analysis of Our Sensor and Other Es-
tablished Sensors

While our system incorporates commercially available blood pressure and glucose
sensors, the accuracy and reliability of our heart rate sensor and temperature sen-
sors require thorough evaluation. In this section, we aim to assess the data accuracy
of these sensors by comparing their readings to established sensors commonly used
in the healthcare industry. By conducting these comparative analyses, we can gain
insights into the performance of our sensors and ensure the delivery of reliable and
precise measurements for comprehensive patient monitoring.
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4.4.2.1 Heart Rate Sensor Accuracy Evaluation

After conducting a comparison between the readings of our heart rate sensor and a
commercially available one, we observed that our sensor consistently provided higher
readings as shown in Figure4.2a. Further analysis revealed that this discrepancy was
attributed to the initial high values caused by finger vibrations on the sensor. To
mitigate this issue, we implemented a rolling average with an outlier rejection filter,
utilizing a window size of 5, on the recorded data collected over a 15-second interval.
The results of this refinement approach yielded heart rate measurements that closely
aligned with the commercial sensor readings, with a maximum difference of 1 bpm.
These improved results are presented in Figure4.2b.

(a) Initial Results (b) Improved Results

Figure 4.2: Heart Rate Sensor Accuracy Evaluation

4.4.3 Error Handling Testing

In our firmware evaluation, one of our primary goals was to design an error-free sys-
tem capable of recovering from potential errors. To achieve this, we implemented
several strategies to handle different scenarios. First, we utilized the error handling
capabilities provided by the espidf lwlip framework. This framework includes a han-
dler for network events, such as disconnecting from Wi-Fi, allowing our system to
gracefully recover from a loss of Wi-Fi connection.

Furthermore, since our hardware components are encapsulated as black boxes, we
devised a mechanism to communicate the state of each sensor during the handshake
process. By transmitting the sensor states, we can notify the user about the avail-
ability and readiness of the sensors, ensuring a more reliable and informed experience.
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Additionally, to address the possibility of connection loss during the measurement
process, we implemented customized timeouts for each measurement task. These
timeouts provide a means to handle interruptions or failures gracefully and ensure
that the system can recover or prompt the user to take appropriate actions.

By incorporating these error-handling strategies into our firmware design, we
aimed to enhance the overall robustness and reliability of our system, enabling smooth
operation even in challenging situations.

4.5 AI Model Evaluation and Disease Prediction

Results

In this section, we present the evaluation results of our AI model for disease prediction.
We assess the performance of the model using various metrics, including accuracy,
loss, confusion matrix, F1 score, and recall.

4.5.1 Training Performance Metrics: Accuracy and Loss Curves

In evaluating the AI model for disease prediction, we analyzed two key performance
metrics: the accuracy per iterations curve and the loss per iterations curve. These
curves provide valuable insights into the model’s training progress and its ability to
make accurate predictions.

The accuracy per iterations curve depicts how the model’s accuracy evolves as
it iteratively learns from the training data, showcasing improvements or plateaus in
prediction accuracy over time. A rising accuracy curve indicates that the model is
learning and making better predictions as it receives more training.

On the other hand, the loss per iterations curve represents the model’s training
progress by illustrating the decrease in loss function values, indicating how effectively
the model minimizes the discrepancy between predicted and actual outcomes. A de-
creasing loss curve indicates that the model is learning and adjusting its parameters
to make more accurate predictions.

Figure4.3 shows the accuracy and the loss per iterations curves.
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(a) Accuracy per Iterations Curve (b) Loss per Iterations Curve

Figure 4.3: Training Performance Metrics: Accuracy and Loss Curves

4.5.2 Confusion Matrix

The confusion matrix provides a detailed breakdown of the model’s performance by
showing the number of true positive, true negative, false positive, and false negative
predictions. It enables us to assess the model’s ability to correctly classify instances
into different disease categories. From the confusion matrix, we can calculate various
performance metrics such as precision, recall, and F1 score, which provide a compre-
hensive evaluation of the model’s predictive capabilities.

Figure4.4 depicts the confusion matrix obtained from our model’s predictions.

Figure 4.4: Confusion Matrix
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• Precision is the proportion of true positive predictions (TP) out of the total
predicted positives (TP + FP). It measures the accuracy of positive predictions.
The formula for precision is as follows: Precision = TP / (TP + FP) which gives
us a value of 0.7480. This indicates that out of all the positive predictions made
by the model, 74.80% were accurate.

• Recall, also known as sensitivity or true positive rate, is the proportion of
true positive predictions (TP) out of the total actual positives (TP + FN).
It measures the model’s ability to correctly identify positive instances. The
formula for the recall is as follows: Recall = TP / (TP + FN). Which gives us
a value of 0.7759 = 77.59%

• The F1 Score is the harmonic mean of precision and recall. It provides a
balanced measure between precision and recall. It takes into account both the
true positive rate and the false positive rate, making it a robust metric for
assessing the model’s predictive power. In our case, we got a value of 0.7620 =
76.20%

4.6 Discussion

4.6.1 Diabetes Prediction Model

The accuracy metric with a value of 70%, suggests that our model is able to accu-
rately classify diabetes cases around 70% of the time. However, it’s important to
note that accuracy alone may not be sufficient for assessing the model’s performance,
especially in cases of imbalanced datasets.

The precision metric, at 74.80%, signifies the percentage of correctly identified
diabetic cases out of all the predicted positive instances. A higher precision indicates
a lower rate of false positives, which is desirable for ensuring accurate predictions for
individuals who are actually diabetic.

The recall metric stands at 77.59%. This metric represents the percentage of
actual positive instances (diabetic cases) that our model correctly identifies. It high-
lights the ability of our model to capture and correctly classify individuals who have
diabetes, reducing the rate of false negatives.

The F1 score is calculated as 76.20% in our case. It provides a balanced evalu-
ation of both precision and recall, taking into account both false positives and false
negatives. It is a useful metric for assessing the overall effectiveness of our model’s
predictions.
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The achieved results can be attributed to several factors. Firstly, the relatively
small size of our dataset may limit the model’s ability to capture the full complex-
ity and variability of diabetes patterns. Additionally, the imbalanced nature of the
dataset, with a greater number of non-diabetic individuals, may affect the model’s
performance. These factors can impact the model’s ability to generalize well to new
and unseen data.

4.6.2 Effectiveness of the AIoT System in Home Healthcare

We have conducted comprehensive evaluations and obtained notable results that shed
light on the system’s performance and impact. Specifically, we have examined various
aspects such as disease prediction accuracy, remote patient monitoring capabilities,
and user experience. By analyzing these findings, we can gain valuable insights into
the effectiveness of our system and its potential to revolutionize home healthcare de-
livery.

Initially, the reliable connectivity and real-time monitoring capabilities of our
system have proven instrumental in remote patient monitoring. By taking advantage
of IoT devices and sensors, we were able to collect vital health data such as blood
pressure, heart rate, and body temperature. This data was transmitted securely to
the healthcare providers, enabling them to monitor patients’ health conditions re-
motely and make informed decisions regarding their care.

The user-friendly interface of our mobile application and web dashboard provides
easy access to health data, allowing patients to have a comprehensive understanding
of their health status.

Additionally, the integration of AI and IoT technologies in our system has sig-
nificantly improved the accuracy and efficiency of disease prediction. By employing
a transformer neural network model, we achieved an accuracy of 70% in predicting
diabetes indicating that our model can effectively identify individuals at risk of dia-
betes, enabling early intervention and timely medical support.

However, it is important to be aware of the limitations of our study. The small
size and imbalanced nature of our dataset, particularly in the case of non-sick indi-
viduals, may have influenced the performance of our AI models. Future studies with
larger and more diverse datasets would be beneficial to further validate and enhance
the accuracy of our disease prediction models.

Overall, our AIoT system has demonstrated its effectiveness in home healthcare
by improving disease prediction accuracy, enabling remote patient monitoring, and
promoting patient engagement. These findings highlight the potential of AI and IoT
technologies in transforming traditional healthcare delivery, providing more person-
alized and proactive care to individuals in the comfort of their homes.
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4.6.3 Limitations of the System

Despite the promising capabilities of our AIoT-based home healthcare system,
it is essential to acknowledge and address its inherent limitations. These limitations
encompass various aspects of the system, including hardware components, mobile ap-
plication functionality, the doctor’s dashboard interface, and the underlying AI model.

First, one notable limitation in our system’s hardware is the time required for
body temperature measurement using the DS18B20 sensor. While the measurement
process takes approximately 15 seconds, which may be considered lengthy for the
patient, it is within the acceptable operating range for the DS18B20 sensor to obtain
accurate oral temperature readings. However, this duration can be perceived as a
drawback in terms of patient comfort and convenience during the measurement pro-
cess.

In addition, the impact of crowded network environments on UDP-based data
transmission. In networks with high traffic and congestion, UDP packets may be
more susceptible to loss or interference. This can result in increased latency and the
possibility of incomplete or inconsistent data transfer. Consideration should be given
to the limitations of UDP in crowded networks and the exploration of alternative
protocols or additional measures to ensure reliable data transmission.

The predictive models used in our system are based on available data and algo-
rithms. Their accuracy is limited by the quality and representativeness of the training
data. The AI model may have limitations in predicting rare or complex cases due to
imbalances or biases in the training data.

Overall, while our AIoT-based home hospitalization system demonstrates promis-
ing capabilities, it is important to recognize and address these limitations in the hard-
ware, mobile application, doctors’ dashboard, and AI model to enhance the system’s
performance, accuracy, and reliability in real-world scenarios.

4.6.4 Future Enhancements and Potential Exploration Di-
rections

In our pursuit of continuous improvement and innovation, we have identified sev-
eral key areas for future enhancements in our AIoT home healthcare system. In the
hardware domain, one of our primary objectives is to transition from consumer-grade
sensors to industrial-grade and reliable sensors. This upgrade will ensure more accu-
rate and robust data collection, contributing to higher precision in disease detection
and monitoring. Additionally, we plan to expand the range of sensors integrated
into our system, allowing for comprehensive health monitoring that encompasses a
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broader spectrum of vital signs and physiological parameters.

To enhance the communication aspect of our system, we recognize the advan-
tages of utilizing TCP (Transmission Control Protocol) over UDP (User Datagram
Protocol) in terms of reliability and data integrity. Consequently, we have designed
our firmware and application to be adaptable, making it straightforward to switch
from UDP to TCP communication protocols as necessary. This flexibility ensures a
more stable and resilient communication framework, enabling seamless data trans-
mission between the IoT devices and the central monitoring system.

We plan to transition from Firebase services to our custom backend infrastruc-
ture, enabling greater control over data handling, scalability, and security. The clean
architecture of our mobile app and web dashboard facilitates easy integration with
alternative backend solutions, ensuring flexibility and adaptability to future advance-
ments and industry standards. Additionally, we aim to incorporate industrial-grade
and reliable sensors, expand sensor capabilities, and consolidate all components into
a single-block PCB design. To enhance communication reliability, we have designed
our firmware and application to smoothly switch from UDP to TCP. Furthermore,
our future plans include implementing additional AI predictions for various diseases,
and expanding the system’s diagnostic capabilities.

Furthermore, expanding the scope of our AI predictions beyond diabetes is a
crucial future objective. By leveraging advanced machine learning algorithms and
datasets, we can develop prediction models for a wider range of diseases. This ex-
pansion will empower our system to provide comprehensive health insights and early
detection capabilities for various medical conditions, thereby improving patient care
and enabling timely interventions.

Through these targeted improvements and ambitious future directions, we aim
to continually enhance the performance, reliability, and versatility of our AIoT home
healthcare system, ultimately fostering better patient outcomes and empowering in-
dividuals to proactively manage their health.



Conclusion

In conclusion, our AIoT-based home hospitalization system presents a promising so-
lution for remote healthcare monitoring and disease prediction. By taking advantage
of IoT devices, sensors, and advanced machine learning techniques, we have developed
a comprehensive system that smoothly integrates data collection, analysis, and visu-
alization. The system’s user-friendly interface and real-time monitoring capabilities
enable patients to actively engage in their healthcare journey and make informed deci-
sions. Our evaluation and testing results have demonstrated the system’s effectiveness
and reliability, with high accuracy in disease prediction and robust error-handling ca-
pabilities.

Moving forward, we envision further enhancements and potential research direc-
tions. These include the adoption of industrial-grade and reliable sensors, the addition
of new sensor modalities, the consolidation of components into a single-block PCB
design, and the development of a custom backend infrastructure for improved data
management and scalability. Furthermore, the flexibility of our clean architecture
enables easy integration of alternative communication protocols, such as TCP, for
enhanced reliability. Expanding the AI prediction capabilities to encompass a wider
range of diseases will unlock new possibilities in proactive healthcare management.

Overall, our AIoT-based home hospitalization system lays the foundation for
providing individuals with personalized, remote healthcare solutions. It bridges the
gap between medical professionals and patients, enabling efficient monitoring, early
intervention, and improved overall well-being. With continued research and develop-
ment, this system has the potential to revolutionize the way healthcare is delivered,
making it more accessible, efficient, and patient-centered.

61



Bibliography

[1] W. Guan, Z. Ni, Y. Hu, W. Liang, and et al. Clinical characteristics of coron-
avirus disease 2019 in china. New England Journal of Medicine, 2020.

[2] L. Wang, W. He, X. Yu, D. Hu, and et al. Coronavirus disease 2019 in elderly pa-
tients: characteristics and prognostic factors based on 4-week follow-up. Journal
of Infection, 2020.
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Appendix A

Physical Implementation of our
System

Figure A.1: Physical Implementation of our System
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Appendix B

Mobile Application Screenshots

(a) Email and Password (b) Informations screen (c) Doctor selection screen

Figure B.1: Sign up process screens
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(a) Search for Devices in the
Network

(b) Hardware Device was
Found

(c) Hardware Device not
Found

Figure B.2: Handshake Process Screens

(a) Blood Pressure Week
History Screen

(b) Blood Pressure Day
History Screen

(c) Body Temperature
Month History Screen

Figure B.3: Data History Screens

Note: In the Month and Week History screens, the data is presented in a graphical
form, allowing users to visualize trends and patterns over time. In the Day View, the
data is displayed as dots, providing a concise overview of the recorded measurements
throughout the day.
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(a) Heartbeat Measure-
ment Screen

(b) Body Temperature
Measurement Screen

(c) Blood Pressure Mea-
surement Screen

(d) Glucose Manual Input
Screen

Figure B.4: Data Measurements Screens
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Web Dashboard Screenshots

Figure C.1: Doctor Sign up screen
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Figure C.2: Doctor Dashboard screen

Figure C.3: Doctor Patients screen

This is the Patients screen where the doctor can find a list of their patients along
with their information. The doctor can filter and search for a specific patient and can
click on any patient to view more data.
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Figure C.4: Doctor History screen (Graph)

Figure C.5: Doctor History screen (Table)


