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Abstract 

Neuromuscular diseases are particular impairments that affect the muscle tissue or nervous 

system part connected to  muscles. Electromyography (EMG) signals are valuable biosignals 

for the diagnosis of neuromuscular diseases. However, the classification of EMG signals is a 

challenging task due to the complexity of the signals and the variability of the diseases. In this 

project, we address the problem of EMG signals classification for the detection of 

neuromuscular diseases using deep learning techniques. The main goal of our project is to 

develop a robust deep-learning model that performs well on unseen data, thereby improving 

the reliability of diagnosis in real-life scenarios. To achieve this, we design a model which we 

train and evaluate on a dataset of EMG signals from patients with different neuromuscular 

diseases.  

We assess the performance of our designed model using two different methods : the train-test 

split approach, commonly employed in the existing literature, and the subject-independent 

evaluation method, which ensures that the model is tested on completely unseen data.  

The results show that the model achieves excellent performance on the train-test split approach. 

However, the second method produces varied and uneven scores for different patients, 

suggesting that EMG data of certain individuals may be more challenging to classify 

accurately. Nonetheless, some patients exhibit highly accurate classifications, demonstrating 

the potential performance of our designed model. The obtained results indicate the potential of 

the developed tool for the diagnosis of neuromuscular diseases. 
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General Introduction 

 

Neuromuscular diseases are a group of disorders that affect the nervous system and muscles, 

causing muscle weakness, twitching, and wasting. Early diagnosis and detection of these 

diseases are essential for effective treatment. Electromyogram (EMG) is a medical test that 

measures the electrical activity of muscles. This test can provide valuable information about 

the health of muscles and nerves that control them [1]. 

Diagnosing conditions affecting muscles and nerves can be a complex process that requires a 

comprehensive medical evaluation. The evaluation usually involves a physical examination, a 

review of the patient's medical history, and laboratory tests. In some cases, additional tests such 

as a muscle biopsy, nerve conduction studies, electromyography (EMG) [2], or magnetic 

resonance imaging (MRI) [3] may be necessary to help make a diagnosis. The difficulty of 

diagnosis can vary, and in some cases, further testing or referrals to specialists may be required.  

In recent years, deep learning has become a powerful tool for analyzing medical data, such as 

EMG signals, for disease diagnosis and treatment. With its ability to learn complex patterns 

and relationships from large amounts of data, deep learning has the potential to greatly improve 

the accuracy of neuromuscular disease detection from EMG signals. 

In this final year project, we aim to develop a deep learning-based model for detecting 

neuromuscular diseases from EMG signals [6]. Our system will be trained on a dataset of EMG 

signals, the N2001 EMGlab dataset [5], containing electromyograms from patients with two 

different neuromuscular diseases, myopathy and neuropathy, and healthy individuals [6]. Our 

goal is to improve the accuracy of neuromuscular diseases classification to aid in early 

diagnosis and intervention, by creating a robust system that can accurately distinguish between 

healthy individuals and those with different neuromuscular diseases based on their EMG 

signals. 

This report presents an in-depth exploration of the classification model of electromyography 

(EMG) signals for the detection of neuromuscular disorders. It is organized into several 

chapters, each addressing different aspects of the project. Chapter 1 introduces fundamental 

EMG concepts, while Chapter 2 explores deep learning techniques and related works. Chapter 

3 focuses on the implementation and evaluation of our classification system, presenting the 

tools, technologies, and data preprocessing techniques employed.  



xiv 

 

Finally, the concluding chapter summarizes key findings and offers recommendations for 

further research. This report provides a comprehensive examination of EMG signal 

classification, highlighting its significance in diagnosing neuromuscular disorders. 
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1.1 Introduction 

This chapter provides an overview of the basic concepts and principles of electromyography 

which play a key role in understanding the electrical activity of muscles. The initial sections 

provide an introduction to the different types of muscles, including skeletal, smooth, and 

cardiac muscles, with a particular emphasis on skeletal muscles, which are the primary focus 

of EMG analysis, and their functional units, known as motor units. 

In addition, we will discuss the neuromuscular junction, which plays a critical role in muscle 

activation and is a key target for many neuromuscular disorders. We will also examine the 

process of EMG signal generation and acquisition, including the different methods used to 

acquire EMG signals and the various factors that can affect their accuracy and reliability. 

Finally, we will introduce some of  the clinical applications of EMG signals, including their 

use in the detection and diagnosis of neuromuscular disorders such as myopathy, and 

neuropathy.  

Overall, this chapter provides a foundational understanding of the concepts and principles of 

electromyography, which are essential for interpreting and analyzing EMG signals for 

neuromuscular disease detection and diagnosis. 

 

1.2 Generalities on the Muscles 

1.2.1 Definition and Types of Muscles  

Muscles are specialized tissues that enable movement in the body by generating force through 

contraction. When a muscle contracts, it pulls on the bones and joints, causing movement in 

the body. As depicted in Figure 1.1 there are three main types of muscles: 
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Figure 1.1: Types of muscles [7]. 

a. Skeletal muscle 

Also known as striated or voluntary muscle, skeletal muscle is attached to bones and 

responsible for voluntary movements of the body. These muscles are under conscious control 

and can generate high force [8]. Regarding our project, we are particularly interested in this 

type of muscle. 

b. Smooth muscle 

Also known as involuntary muscle, smooth muscle is found in the walls of internal organs and 

blood vessels. These muscles are not under conscious control and generate low force. 

c. Cardiac muscle 

Found only in the heart, cardiac muscle is responsible for the involuntary contraction of the 

heart to pump blood. These muscles have properties of both skeletal and smooth muscle and 

generate moderate force [9]. 

Each muscle type has unique characteristics in terms of structure, function, and control. 

Skeletal and cardiac muscles are striated, meaning that they have a banded appearance under a 

microscope, while smooth muscle does not have visible striations. Skeletal and cardiac muscles 

also have a highly organized structure of sarcomeres, the basic contractile unit of muscle fibers, 

while smooth muscle has a more disorganized structure. The types of muscle fibers and energy 

metabolism also differ between muscle types, reflecting their specialized functions in the body. 
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1.2.2 Skeletal muscles 

The primary function of this type of muscles is to generate movement and maintain posture in 

the body, comprising 30 to 40% of the total body mass. Skeletal muscles are composed of long 

cylindrical cells called muscle fibers, each one of them is innervated by a single motor neuron 

[10] which is responsible for transmitting the signals from the central nervous system to skeletal 

muscle fibers [11]. When the motor neuron is activated, it generates an electrical impulse that 

travels down the length of the neuron and is transmitted to the muscle fiber at the 

neuromuscular junction, Electromyography (EMG) is an approach that is used to detect these 

electrical signals produced by motor neurons in the muscle. 

1.2.3 Motor Unit 

A motor unit as shown in Figure 1.2, consists of a single motor neuron and all the skeletal 

muscle fibers that it innervates [12]. It is responsible for controlling muscle contractions, when 

activated by an electrical signal, all the muscle fibers in the motor unit contract together [13]. 

The force of a muscle contraction is dependent on the number of activated motor units, and 

since the number of motor units varies by muscle type, the force of a contraction also varies 

accordingly. Muscles that require force have large motor units with more muscle fibers. In 

contrast, muscles that require fine control have smaller motor units with fewer muscle fibers. 

 

Figure 1.2: Structure of the Motor Unit [14]. 

1.2.4 Neuromuscular Junction 

The neuromuscular junction (NMJ) establishes a connection between a motor neuron and a 

muscle fiber. It is responsible for initiating muscle contraction in response to the electrical 

signals generated by the motor neuron. The NMJ plays a crucial role in voluntary and 
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involuntary muscle movement, any disorder that affects it can cause neuromuscular problems 

such as paralysis and muscle weakness. 

1.3 Electromyogram 

Electromyogram (EMG) [15] is a common clinical test used to assess the function of muscles 

and the nerve cells that control them by measuring the electrical activity of a muscle. EMG 

studies are used to help in the diagnosis and management of disorders such as muscular 

myopathy, muscular dystrophy, and neuropathy. 

1.3.1 EMG Generation in the Muscle 

EMG signal is a bioelectric signal captured through the process of electromyography, it is a 

record of the electrical currents generated in skeletal muscles during their contraction. 

Specifically, it is generated by the depolarizing and repolarizing zones of the muscle fibers 

which generate action potentials that are spread along the muscle fibers [16]. By examining the 

features of EMG signals, such as the frequency, amplitude, and duration it is possible to obtain 

information about the neuromuscular activity. For instance, the amplitude and frequency of the 

EMG signal can be used to determine the level of muscle activity, the presence of any 

pathological changes, and the effectiveness of treatments [17]. 

1.3.2 EMG Signal Acquisition  

An EMG (electromyography) signal is typically acquired using surface or needle electrodes 

that are placed on or inserted into the skin overlying or within a muscle, respectively [18]. 

There are two main types of EMG signal acquisition methods: surface EMG (sEMG) and 

intramuscular EMG (iEMG) [18]. 

For sEMG, the electrodes are placed on the skin surface overlying the muscle of interest [19]. 

This type of EMG is non-invasive and easier to apply compared to iEMG. However, the signal 

detected by sEMG electrodes is typically weaker and more susceptible to interference from 

other sources, such as electrical noise from nearby devices or movement artifacts. 

For iEMG, a needle electrode is inserted directly into the muscle. This type of EMG provides 

a more detailed and accurate signal because it is able to capture the electrical activity of 

individual motor units within the muscle. However, it is also more invasive and requires 

specialized training to be applied safely and correctly. 
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The electromyogram (EMG) sensor detects electrical activity from a muscle using conductive 

pads placed on the skin [20]. Every time the muscle is activated, individual fibers within it 

receive electrical impulses, causing them to contract. The electrodes detect the electrical 

activity of the muscle fibers and generate a voltage signal that can be recorded and analyzed.  

The excitation and contraction of muscle fibers cause the electrical activity in a muscle that 

generates EMG signals. The EMG signal provides information about the timing and intensity 

of muscle activation, which can be used to assess muscle function and diagnose neuromuscular 

disorders [19]. 

 

 
(a) 

 
(b) 

Figure 1.3: (a) Surface EMG [21]. (b) Intramuscular EMG [22]. 

1.2.3 Factors Affecting EMG Signals 

Several factors can affect the acquisition of EMG signals [23], including: 

● Electrode Placement: it is a critical factor in obtaining accurate signals as poor 

placement of the electrodes can result in a weak or noisy signal. 

● Skin Resistance: skin should be cleaned and prepared for electrode placement to 

remove any oils or dirt that could affect the electrode-skin interface. Otherwise, skin 

resistance can create a barrier between the electrode and the skin, leading to a weak or 

no signal. 

● Electrical Interference: It denotes the unwanted electrical signals that can interfere with 

the recording of EMG signals. They can be introduced by various sources such as 

electronic equipment. 

● Movement Artifacts: It refers to the unwanted noise that can occur due to the movement 

of the subject being recorded or the recording electrodes. 
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1.2.4 Clinical Applications of EMG 

EMG signals have a wide range of clinical applications, some of them are: 

● Neuromuscular Disorders Diagnosis: EMG signals are commonly used in the diagnosis 

of disorders such as myopathy, and neuropathy. They help in distinguishing between 

disorders affecting muscles and those affecting nerves, while also providing insights 

into the severity of the condition. 

● Physical Therapy [24]:  EMG can be used to monitor real-time muscle activity and 

provide biofeedback during physical therapy sessions. This can assist patients to learn 

how to effectively control and enhance the strength of targeted muscles. 

● Localization of Nerve Damage: when there is suspicion of a nerve injury or 

compression, EMG can be employed to help identify the specific location and extent of 

the damage. 

Overall, EMG is a valuable tool in clinical applications that plays a crucial role in diagnosing 

and managing a wide range of neuromuscular conditions in addition to helping patients regain 

functional abilities. 

1.4 Neuromuscular Disorders 

Neuromuscular disorders are caused by pathologies affecting the nerves and muscles in the 

human body. As a consequence, these diseases interfere with the proper functioning of muscles 

and commonly manifest as muscle weakness, which constitutes the most prevalent clinical 

sign. 

a. Myopathy 

It is a general term that refers to a broad group of diseases that affect muscles, particularly, 

muscles connected to bones. It can have various causes, including genetic factors, infections, 

and metabolic disorders. The specific cause may vary depending on the individual and the type 

of myopathy being considered. Additionally, myopathies can be autoimmune, where the body's 

immune system attacks itself, leading to muscle function problems [25]. They can also be either 

inherited within families or acquired later in life [26]. Classification of myopathies is often 

based on their underlying cause. 

In myopathy, there may be abnormal patterns of the electrical activity of the muscles being 

examined, such as increased or decreased muscle activity, which can be detected during EMG 

tests. 
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Typical symptoms of myopathy include muscle weakness, stiffness, and cramps. Some 

myopathies can affect muscles in the hands, feet, face, and eyes. In some cases, the problem 

can affect the heart and breathing muscles. As a consequence, people living with myopathy 

may have difficulty performing activities of daily living [27]. 

b. Neuropathy 

It refers to the many conditions that involve damage to the peripheral nerves, which are the 

nerves outside the brain and spinal cord that are responsible for transmitting signals between 

the central nervous system and all other parts of the body [28]. It can occur due to various 

factors such as diabetes, nutritional or vitamin imbalances, alcoholism, exposure to toxins, and 

hereditary factors [29]. Depending on the type and location of the affected nerves, symptoms 

of the neuropathy can vary including pain or discomfort, numbness,  muscle weakness, and 

loss of coordination or balance. 

The diagnosis of neuropathy typically involves a comprehensive assessment of symptoms. 

Tests like electromyography (EMG) may be used to evaluate nerve function and determine the 

underlying cause. 

1.5 Conclusion 

In conclusion, this chapter has provided a general exploration of electromyography (EMG) 

concepts. We have discussed the critical role of the neuromuscular junction in muscle 

activation and highlighted factors that can affect the quality of EMG signals. Finally, we have 

examined some of the clinical applications of EMG signals in the detection and monitoring of 

neuromuscular disorders in addition to exploring different conditions such as myopathy and 

neuropathy. By exploiting the power of EMG, researchers, and practitioners can continue to 

improve the interpretation and treatment of these conditions, ultimately benefiting patients.
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2.1 Introduction 

This chapter aims to explore the fundamental concepts of deep learning which our project relies 

on to tackle the problem of neuromuscular disorder detection. We will discuss the structure and 

functioning of artificial neural networks, which form the basis of deep learning models. To 

gain a comprehensive understanding of deep learning models, we will explore the different 

types of layers that make up these networks. These layers include convolutional layers, 

recurrent layers, pooling layers, fully connected layers, batch normalization layers, and dropout 

layers. Each layer plays a critical role in processing the input data and learning relevant 

representations. Finally, we will review some related works in the field of using deep learning 

for neuromuscular disease detection. This review will cover the different approaches taken in 

these works, as well as their strengths and limitations. By examining the dataset and related 

works in detail, we aim to provide a comprehensive understanding of the research landscape in 

this area and identify potential avenues for our research.      

2.2 Deep Learning  

It is a subfield of machine learning, based on artificial neural networks, which is concerned 

with algorithms inspired by the structure and function of the human brain, allowing it to “learn” 

from large amounts of data. It enables brand-new products, businesses, and ways of helping 

people to be created. These include better healthcare, personalized education, self-driving cars, 

and many others [30]. Figure 2.1 below represents the relationship between deep learning, 

machine learning, and artificial intelligence. 

 

 

https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
https://en.wikipedia.org/wiki/Artificial_neural_network
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Figure 2.1: Relationship between deep learning, machine learning, and artificial 

intelligence[31]. 

 

In recent years, deep learning has started to gain popularity in medical image analysis and 

bioelectric signal processing. With the availability of large amounts of data, deep learning 

approaches outperform traditional feature extraction and machine learning methods in pattern 

detection and image recognition in terms of classification accuracy [32]. Early studies of deep 

learning applied to disease detection or classification have reported superior performance 

compared to conventional techniques or even better than medical experts in some tasks [33]. 

The idea of deep learning has been present for decades, and the key reasons that make it more 

powerful lately are, the availability of huge amounts of data, the ability to train very large 

neural networks either on a CPU,  GPU, TPU, or any other acceleration hardware platform,  

and the algorithmic innovations, especially in the last several years where the main focus was 

about making the neural network run much faster. The effect of training data size on the 

performance of deep learning vs. conventional machine learning is graphed in Figure 2.2. 

 

Figure 2.2: Effect of training data size on the performance of DL vs.. conventional ML [34]. 
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2.3 Artificial Neural Networks 

Artificial Neural Networks (ANNs), also called neural networks (NNs) or neural nets, are a 

type of machine learning algorithm that attempts to simulate the network of neurons that make 

up a human brain so that the computer will be able to learn things and make decisions in a 

human-like manner. 

Cognitive neuroscientists have learned a tremendous amount about the intricacies of neural 

networks, brain functions, and cognitive processes in the human brain since computer scientists 

first attempted the original artificial neural network. One of the things they learned is that 

different parts of the brain are responsible for processing different aspects of information and 

these parts are arranged hierarchically [35]. So, input comes into the brain and each level of 

neurons provides insight, and then the information gets passed on to the next, more senior level. 

That’s precisely the mechanism that ANNs are trying to replicate [36]. ANNs use different 

layers of mathematical processing to draw on the information it is fed. It consists of 

interconnected nodes -called artificial neurons- arranged in a series of layers that process 

information by weighing inputs and determining outputs based on set weights and biases. 

Neural networks need to be trained on a large amount of data called a training set, to recognize 

patterns and make predictions or decisions. Training a neural network involves using an 

optimization algorithm to find a set of parameters to best map inputs to outputs. Once the 

training is done, the neural net will try to classify future data based on what it thinks it is seeing 

(or hearing, depending on the task) throughout the different units. 

Neural Networks have been successfully deployed in many fields such as computer vision, 

natural language processing, and robotics.     

2.4 Layers in a Neural Network 

For the sake of understanding the overall architecture of a NN, we define its basic building 

blocks which are different types of layers.  

2.4.1 Convolutional layers  

It is the key component of Convolutional Neural Networks (CNN). It defines a set of filters (or 

kernels), parameters that are to be learned throughout the training. Each filter convolves with 

the input and creates an activation map (feature map) [37], which in turn contributes to the 

https://gizmodo.com/youre-using-neural-networks-every-day-online-heres-h-1711616296/amp
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input of the next layer. Convolutional layers are followed by other layers such as pooling layers, 

fully connected layers, and normalization layers. 

For the convolution operation, the filter is slid across the height and width of the input and the 

dot product between every element of the filter and the input is calculated at every spatial 

position. Figure 2.3 shows an example of the convolution operation where the filter is 

convolved with an input matrix starting from the upper-left corner. It starts sliding according 

to the stride value of that layer, performing a dot product at each step.  

One problem when applying a convolutional layer is that the input tends to shrink which causes 

a lot of information to be lost near the edges of the input. A solution to this issue is by padding 

the input. This is achieved by adding zeros to the input sequence to create a new padded 

sequence before applying the filters. This effectively increases the size of the input tensor and 

helps to maintain the spatial dimensions of the output volume. 

Padding is often used in combination with a stride, which defines the step size of the 

convolutional filter as it moves through the input of the layer. When performing convolution 

on an input matrix of size (nH, nw, nc) with a filter size of (f , f , nc), using a stride value 's' and 

a padding value 'p', the resulting feature map will have dimensions(
𝑛𝐻 +2𝑝 −𝑓

𝑠
+ 1, 

𝑛𝑊 +2𝑝 −𝑓

𝑠
+ 1) 

Where, 'nH' represents the height of the input matrix, 'nw' represents the width, 'nc' represents 

the number of channels, and 'p' represents the padding value. 

In a convolutional layer, a neuron is only connected to a local area of input neurons instead of 

a full connection. In other words, the receptive field size, which is the restricted area of the 

previous layer from which the neuron receives input of each neuron is small and is equal to the 

filter size. 
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Figure 2.3:  Example of the convolution process in a convolutional layer [38]. 

2.4.2 Pooling layers 

Pooling layers are a critical component of deep learning neural networks. These layers are 

usually applied after one or more convolutional layers and before one or more fully connected 

layers. They work by reducing the spatial dimensions, length, or the number of elements in the 

input data while preserving important features, such as edges and color information [30]. 

Depending on its type, the pooling operation is achieved by taking the maximum or average 

value within a defined window or filter size across each channel of the input tensor. The 

resulting output from the pooling layer is then fed into the next layer of the neural network for 

further processing.  

Pooling layers are important for improving the computational efficiency of neural networks 

and reducing overfitting. However, it is essential to choose the right type and size of pooling 

layer based on the specific task at hand [39]. 

2.4.3 Fully connected layers 

Also known as Dense Layers, are a type of layer commonly used in ANNs, where each neuron 

is connected to every neuron in the previous layer [40] with each connection having an 

associated weight. The output of a fully connected layer is obtained by applying a linear 

transformation, followed by an activation function, which can be mathematically expressed as 

𝑌 =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑊𝑥 +  𝑏 ) (1) 
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where ‘activation ’is an activation function that controls how well the network model learns 

the training dataset, it is applied element-wise to the linear transformation ‘𝑊𝑥 +  𝑏’. ‘W’ is 

the weight matrix, ‘x’ is the input features vector, and ‘b’ is the bias vector. 

The aim of using fully connected layers is to learn non-linear mappings from the input features 

to output labels by iteratively adjusting the weights and biases using backpropagation to 

minimize the difference between the predicted output and the actual output. 

These layers are typically placed at the end of a neural network architecture, where features 

have been extracted earlier using convolutional or pooling operations after that flattened into a 

1D vector and passed through one or more fully connected layers. The number of neurons in 

the final fully connected layer is equal to the number of output classes of the network [30]. 

 

2.4.4 Recurrent layers 

Recurrent Layers are a type of layer in a neural network that processes sequential data, such as 

time series or text, by maintaining a memory of previous inputs. They allow the network to 

capture long-term dependencies in the input sequence [41]. Recurrent Layers can be Simple 

Recurrent Layers (SRL), Long Short-Term Memory (LSTM) Layers, or Gated Recurrent Unit 

(GRU) Layers. They are commonly used in language modeling, machine translation, and 

speech recognition. 

 

2.4.5 Batch normalization layer 

Batch normalization is a method used to improve the training stability and speed of a NN by 

normalizing (re-centering and re-scaling) the activations of a neural network's intermediate 

layers[42]. 

The batch normalization layer involves two primary operations: first, it centers the input 

activations to have zero mean (µ) by subtracting the batch mean. After that, it normalizes the 

activations by dividing by the batch standard deviation (σ), these operations can be expressed 

mathematically as follows: 

● Given a mini-batch of activations denoted ‘t’, the batch mean ‘µ’ and the variance σ2 

are calculated as follows: 
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µ𝑡  =  
1

𝑚
∗ ∑ 𝑥𝑖

𝑚

𝑖=1

 
(2) 

𝛿𝑡
2  =  

1

𝑚
∗ ∑ (𝑥𝑖  − µ𝑡  )2𝑚

𝑖=1    (3) 

where ‘m’ is the mini-batch size, and ‘xi’ is the activations of the ith neuron in the mini-batch. 

● The normalized activations ‘𝑍’ can then be found by applying the following 

transformation: 

𝑍𝑖 =
𝑥𝑖  − µ𝑡

√𝛿𝑡
2  +  𝜀

 (4) 

where ‘𝜀’ is a small constant added for numerical stability. 

This technique efficiently facilitates learning and can also serve as a regularization method to 

prevent overfitting of the model. It is added to the sequential model to standardize the input or 

output and can be applied at multiple points between the model layers [43]. 

2.4.6 Dropout layer 

Dropouts are the regularization technique that is used to prevent overfitting in the model. By 

randomly deactivating a percentage of neurons in the network, dropouts interrupt the 

connections between incoming and outgoing from those neurons. Typically, dropouts are 

recommended after dense layers rather than convolutional layers [44]. To ensure optimal 

results, it is advisable to limit the dropout rate to 50% or lower [45]. Higher rates may lead to 

poor learning and compromised predictions. 

2.5 Activation functions  

Activation functions are an essential component of neural networks. They introduce non-

linearity to the output of a neuron, which is essential for modeling complex patterns and 

relationships in data. 

Activation functions are applied to the weighted sum of inputs to a neuron and transform the 

output into a non-linear form. The choice of the activation function is crucial since it affects 

the network's ability to learn and its performance [30]. 

There are several activation functions commonly used in neural networks, including: 
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● Sigmoid Function: The sigmoid function takes any real-valued number and maps it to 

a value between 0 and 1. It is often used in binary classification problems [46]. 

● ReLU Function: The Rectified Linear Unit (ReLU) function takes any real-valued input 

and returns the maximum between the input and 0. It is a simple and effective activation 

function that is often used in deep learning models [47]. 

● Tanh Function: The hyperbolic tangent (Tanh) function maps any real-valued number 

to a value between -1 and 1. It is often used in classification tasks and is similar to the 

sigmoid function [48]. 

● Softmax Function: The softmax function is often used as the output activation function 

in a neural network. It takes a vector of real numbers and normalizes them to yield a 

probability distribution [49]. 

Softmax function doesn't have a single graph that can be plotted as it depends on the 

input values. Assuming we have an input vector Z = [ 𝑧1, 𝑧2, . . . , 𝑧𝑛], then applying the 

softmax function to each element of Z will be as follows 

 

 

(5) 

● Leaky ReLU Function: The Leaky ReLU function is a variant of the ReLU function 

that allows for a small gradient when the input is negative. It is often used in deep 

learning models to prevent the "dying ReLU" problem [50]. 

The choice of activation function is an important consideration in designing and training neural 

networks for various applications. 
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Table 2.1: Formulas and graphic representation of the activation functions. 

Function Graph 

 

 

Sigmoid Function 

 

𝑓(𝑥) = 
1

1+ 𝑒 −𝑥
 Є (0,1) 

 

 

 

ReLU Function 

 

𝑓(𝑥) = max(0, 𝑥) 

 

 

 

Tanh Function 

 

𝑓(𝑥) = tanh(𝑥) 
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Leaky ReLU Function 

 

𝑓(𝑥) = max(0.1* 𝑥, 𝑥) 

 

 

 

 

2.6 Training a neural network 

As a neural network is being trained, its parameters are iteratively adjusted through a sequence 

of forward and backward propagations, while the aim of these parameters updates is to reduce 

the discrepancy between the expected output and the actual output. 

The training of a neural network involves multiple stages, starting with the initialization of the 

network's parameters. Throughout the training process, several steps are undertaken to optimize 

the network's performance. The output is then determined using the current parameters once 

the input data has been sent through the network. A loss function, such as mean squared error 

or cross-entropy, is then used to determine the discrepancy between the predicted and actual 

output [30]. 

The error is then spread back through the network in the backward propagation step. With the 

chain rule of calculus, the gradient of the loss function with respect to each parameter is 

determined. The parameters are then updated using an optimization algorithm. This process is 

repeated for a specified number of epochs, or until the error minimization stabilizes.  

The success of training a neural network depends on various factors, such as the choice of the 

loss function, the optimization algorithm, the learning rate, the number of learnable parameters, 

and the activation functions. To avoid underfitting or overfitting the data, careful tuning of 

these training parameters is necessary.  

The main concepts and techniques required for training a neural network are presented in the 

following: 
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2.6.1 Backpropagation 

Backpropagation is a fundamental algorithm used in training neural networks. The algorithm 

calculates the gradient of the loss function with respect to the network's parameters, enabling 

the network to learn from the data by adjusting its parameters in the direction of the steepest 

descent of the loss function. 

The backpropagation algorithm involves two main steps: a forward pass and a backward pass. 

During the forward pass, the output is computed using the current parameters for a given input. 

Then, during the backward pass, the error is propagated back through the network, allowing 

for the update of the parameters. This process of forward and backward passes is repeated until 

the network reaches convergence. 

Backpropagation has proven to be an effective algorithm for training deep neural networks, 

enabling them to learn complex and non-linear representations of data. The algorithm has been 

widely used in many applications, including image classification, speech recognition, and 

natural language processing [47]. 

2.6.2 Optimiser/gradient descent 

In deep learning, optimizing the neural network's parameters is a critical task, and gradient 

descent is the most commonly used optimization algorithm.  

Gradient descent works by iteratively adjusting the parameters in the direction of the negative 

gradient of the loss function. However, there are various challenges associated with using 

gradient descent, such as choosing an appropriate learning rate, dealing with vanishing or 

exploding gradients, and getting stuck in local minima. To address these challenges, 

researchers have developed various optimization algorithms, such as Momentum, Adagrad, 

Adam, and RMSprop, that aim to improve convergence speed and robustness. Additionally, 

regularization techniques such as L1 and L2 regularization, dropout, and early stopping can 

improve generalization performance. Recent advancements in optimizers, such as second-order 

optimization methods and meta-learning-based optimizers, have also shown promising results 

in improving optimization performance [51].  

Choosing the appropriate optimizer is an essential aspect of deep learning model training, and 

it should be chosen based on the specific task, dataset, and model architecture. 
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2.6.3 Loss function 

An algorithm's loss function measures the distance between its current output and its expected 

output. It evaluates how the algorithm models data. It can be categorized into two groups. One 

for classification (discrete values, 0,1,2…) and the other for regression (continuous values) 

[52]. More detail on some common loss functions is provided in the following: 

● Mean Squared Error (MSE): is a commonly used loss function in regression problems. 

It measures the average squared difference between the predicted and actual values of 

the target variable. 

MSE = 1/n * ∑(y_pred - y_actual)2      (6) 

● L1 Loss: is a commonly used loss function in regression problems. It measures the 

absolute difference between the predicted and actual values of the target variable. 

                         L1_Loss = 1/n * ∑|y_pred - y_actual|   (7) 

● Binary Cross-Entropy: is a commonly used loss function for binary classification 

problems. 

BCE = -[y_actual * log(y_pred) + (1 - y_actual) * log(1 - y_pred)]  (8) 

● Categorical Cross-Entropy: is a commonly used loss function for multi-class 

classification problems. 

                               CCE = - ∑ y_actual_i * log(y_pred_i) (9) 

Both categorical and binary cross-entropy measure the difference between the predicted and 

actual class probabilities. 
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2.6.4 Epoch, batch, and iteration 

When training deep learning models, epochs, batches, and iterations play an important role. 

Epochs refer to the number of times the entire training dataset is passed through the model 

during training, while batches are subsets of the training data that are used to perform one 

update of the model's parameters. Iterations refer to the number of batches processed to 

complete one epoch during the training of a neural network. The choice of batch size, number 

of epochs, and iterations can have a significant impact on the performance of deep learning 

models. In order to optimize these hyperparameters, it is important to monitor validation loss 

and use techniques like early stopping [30]. By carefully selecting and tuning these 

hyperparameters, it is possible to achieve the best possible performance for a given deep-

learning task. 

2.6.5 Train, validation, and test subsets 

The training subset is used to optimize the model's parameters, while the validation subset is 

used to estimate the performances of each epoch, which allows to tune hyperparameters and to 

prevent overfitting by checking how the model acts on unseen data during training. The test 

subset is used to evaluate the performance of the model on unseen data. It is important to ensure 

that the data is split randomly and that the subsets are representative of the overall dataset. 

Typically, a split of 60-20-20 (train-validation-test) is used, however, this can vary depending 

on the size of the dataset and the specific needs of the task [53].  

Another important consideration is to avoid leaking information from the validation or test 

subsets into the training subset, as this can lead to over-optimistic results. To address this, it is 

important to preprocess the data and split it before performing any feature selection or model 

raining. 

2.7 Performance Metrics 

Performance Metrics are a part of every machine learning pipeline. They tell you if you’re 

making progress, and put a number on it. All machine learning models need a metric to judge 

performance. These metrics are chosen depending on the specific problem and dataset, and it 

is important to interpret them within the context of the problem being solved. 
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2.7.1 Confusion Metrics 

A confusion matrix is a table used to evaluate the performance of a machine learning model 

for classification tasks. It has four possible outcomes for each class: 

● True Positive (TP): The model correctly predicted the positive class. 

● True Negative (TN): The model correctly predicted the negative class. 

● False Positive (FP): The model incorrectly predicted the positive class. 

● False Negative (FN): The model incorrectly predicted the negative class. 

The confusion matrix can be used to calculate a variety of metrics, such as accuracy, precision, 

recall, and F1 score. 

2.7.2 Accuracy 

Accuracy is a performance metric that measures the proportion of correct predictions made by 

a machine learning model on a given dataset. It is calculated by dividing the number of correct 

predictions by the total number of predictions made. The formula for calculating accuracy is 

given in Eq. 10. 

Accuracy = 
(𝑇𝑃 + 𝑇𝑁)

 (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (10) 

2.7.3 Precision 

Precision is a performance metric that measures the proportion of true positives (correctly 

predicted positive instances) among all positive predictions made by a machine learning model. 

It is calculated by dividing the number of true positives by the sum of true positives and false 

positives. 

Precision = 
𝑇𝑃

 (𝑇𝑃 + 𝐹𝑃)
 (11) 

2.7.4  Recall 

Recall is a performance metric that measures the proportion of true positives (correctly 

predicted positive instances) among all actual positive instances in a dataset. It is calculated by 

dividing the number of true positives by the sum of true positives and false negatives. 

Recall = 
𝑇𝑃

 (𝑇𝑃 + 𝐹𝑁)
 (12) 
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2.7.5  F1 score 

The F1 score is a single metric that combines precision and recall, providing a balanced 

measure of a model's performance by considering both the ability to correctly identify positive 

instances (precision) and the ability to capture all positive instances (recall). It is calculated as 

follows 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(13) 

2.8 Related works 

In recent years, deep learning techniques have shown great promise in classifying EMG signals 

for disease detection [54] [55]. This section presents a review of related works in EMG signal 

classification for neuromuscular disease detection using deep learning methods including 

Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and  Multi-Layer 

Perceptron (MLP). We explore the various deep-learning techniques employed in EMG signal 

analysis and discuss their performance in disease detection. The paper selection process was 

based on a defined set of criteria that aimed to identify recent publications that provided 

significant insights into the utilization of deep learning techniques and achieved optimal 

outcomes. Besides, the primary focus was on selecting papers that used similar data to the one 

employed in this study. The set of selected papers is summarized in the following. 

2.8.1 DeepEMGNet: An Application for Efficient Discrimination of ALS and 

Normal EMG Signals 

DeepEMGNet [56] proposes a deep learning application for the classification of amyotrophic 

lateral sclerosis (ALS) and normal electromyogram (EMG) signals. The paper shows the 

importance of EMG signals in analyzing neuromuscular diseases.   

The authors of the paper highlight that current methods for discriminating between ALS and 

normal EMG signals can be time-consuming and require expert interpretation. They argue that 

DeepEMGNet provides a more efficient and accurate approach to this task.  

This study introduces an approach that combines the time-frequency representation of EMG 

signals and convolutional neural networks (CNN). The Short Time Fourier Transform (STFT) 

is employed to achieve the time-frequency representation of the EMG signals. The CNN 

architecture consists of two convolution layers, two pooling layers, and a fully connected layer. 
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The softmax function is used to calculate the probability of each class label. The dataset used 

for evaluation was released from the University of Copenhagen in 2001 [5] and it contains 89 

ALS signals and 133 Normal signals, for data augmentation, a random sampling mechanism 

was adopted. The paper also compares the proposed method with other state-of-the-art methods 

and shows that the proposed method outperforms them in terms of accuracy, sensitivity, and 

specificity. The accuracy of the proposed method was 96.69%, the sensitivity was 94.24%, and 

the specificity was 97.59%. 

The authors suggest that the model could be used as a diagnostic tool to assist healthcare 

professionals in the early detection of these illnesses. 

2.8.2 Electromyography (EMG) based Classification of Neuromuscular 

Disorders using Multi-Layer Perceptron 

The aim of this study [57] is to develop an accurate automatic diagnostic system to classify 

intramuscular EMG signals into healthy, myopathy, or neuropathy categories to aid the 

diagnosis of neuromuscular diseases.  

The data were obtained from an EMG lab database [58]. The EMG signals were obtained from 

healthy subjects and subjects suffering from neuropathy or myopathy with a different age mean. 

There are 5 patients for each group divided into 100 samples. 

The proposed method uses a multi-layer perceptron (MLP) for classifying the EMG signals. 

The MLP is trained using features extracted from the raw EMG signals. However, the paper 

does not mention any details about the architecture of the MLP model. This makes it difficult 

to replicate the results of the study or to compare the performance of the MLP model to other 

models. The feature extraction process involves transforming the EMG signals into a set of 

features such as autoregressive method (AR), root mean square (RMS), zero crossing (ZC), 

waveform length (WL), and mean absolute value (MAV). The proposed method is evaluated 

using EMG signals corresponding to three different classes, one for healthy subjects and two 

for subjects with neuromuscular disorders.  

The methods such as Root Mean Square, Zero Crossing, Wavelength, and Mean Absolute 

Value are suitable methods for feature extraction. However, most of the highest results of 

classification come from Autoregressive (AR) methods, achieving 86.3% accuracy in 

distinguishing healthy, myopathy, and neuropathy groups.  
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2.8.3 EMG Signal Classification for Detecting Neuromuscular Disorders 

The approach proposed in this paper [59] aims to differentiate neuromuscular disorder patients 

from healthy people based on EMG signals that were recorded from the biceps. Eleven features 

that are: Root mean square, Waveform length, Variance of EMG, Maximum fractal length, 

Modified mean absolute Value, Enhanced Wavelength, Difference Absolute Standard 

Deviation Value, Average Amplitude Change, Variance of FFT, FFT maximum density, 

Variance of neo, were extracted from the EMG signals and then given as input for  

an Artificial Neural Network (ANN). This ANN is composed of a two-layered feed-forward 

network with specific characteristics was employed. The network consisted of an input layer, 

a hidden layer with sigmoid activation neurons, and an output layer with softmax activation 

neurons. This type of network is commonly referred to as a "patternnet." The reported 

classification accuracy is 85%, which is acceptable but not to be trusted for medical purposes.  

2.8.4 Deep learning-based diagnosis of myopathy and neuropathy 

This paper [55] proposes a deep learning-based approach for diagnosing myopathy and 

neuropathy. The authors collected a dataset of EMG signals from patients who visited Seoul 

National University Hospital and underwent EMG between June 2015 and July 2020 with 

myopathy and neuropathy and used it to train and evaluate a convolutional neural network 

(CNN) model. The dataset used in this paper is not publicly available due to privacy 

considerations. The authors of the paper state that the dataset contains medical information 

about patients who have been diagnosed with myopathy or neuropathy. However, the paper did 

not provide any specific statistics or further detail about the dataset.1 

The deep learning-based algorithm was based on a convolutional neural network (CNN) 

architecture, which was compared to traditional machine learning (ML) algorithms such as 

support vector machines (SVMs) and random forests (RFs). The results showed that the CNN-

based algorithm outperformed the traditional ML algorithms in terms of accuracy, sensitivity, 

and specificity. The CNN-based algorithm achieved an accuracy of 92.5%, a sensitivity of 

91.7%, and a specificity of 93.3%, while the SVM and RF algorithms achieved accuracies of 

 
1 We attempted to reach the authors of the paper and requested access to the dataset, but we 

did not receive a response. We believe that the dataset would be valuable for our research and 

the development of our project. 
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85.0% and 87.5%, respectively. However, further research is needed to validate the proposed 

approach on larger and more diverse datasets.  

The paper concludes that the proposed approach shows promise in improving the accuracy and 

efficiency of the diagnosis of myopathy and neuropathy, which can lead to better patient 

outcomes. 

2.8.5 Analysis and Classification of Muscular Paralysis Disease using 

Electromyography Signal with Machine Learning 

The objective of this study [60] is to utilize features extracted from EMG signals in both time 

and frequency domains to distinguish between normal and paralyzed conditions. The study 

focuses on twelve statistical features extracted from the EMG signals, including Mean Value, 

Variance, Mean Absolute Value, Root Mean Square, Waveform Length, Zero crossing, Log 

Detector, Difference Absolute Standard Deviation Value, Average Amplitude Change, 

Variance Absolute Value, Kurtosis of signal, and Skewness of the signal. These features are 

used to classify Paralysis and Normal conditions. To perform the classification, various 

Machine Learning techniques are employed, including Multi-Layer Perceptron (MLP), 

Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting (GB), and Nearest 

Neighbor (NN) classifier models. 

The EMGLab dataset [5] is used for evaluation. For feature extraction, 300.37 msec rectangular 

windows with an overlap of 99.84 msec are used. The classification is performed with test 

sample sizes of 40, 30, 20, and 10%, and training sample sizes of 60, 70, 80, and 90%, 

respectively. 

The obtained accuracies per classifier are as follows, 72% for MLP, 73% for SVM, 72% for 

RF, 71% for GB, and 69% for NN. The best-performing ML model is SVM. Most of the recent 

works have better accuracy than these classifiers. 

2.8.6 ALSNet: A Dilated 1-D CNN For Identifying ALS Fom Raw EMG 

Signal 

In this study [61], a novel approach called ALSNet is proposed for the identification of 

Amyotrophic Lateral Sclerosis (ALS) using raw EMG signals. Unlike traditional methods that 

rely on manual feature extraction, ALSNet eliminates the need for such preprocessing and can 
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directly detect ALS subjects. This makes the method more feasible for practical 

implementation by reducing the computational cost required for extracting features.  

In the proposed architecture of ALSNet, there are three 1D convolution layers. Each 

convolution layer is followed by a ReLU activation function and a batch normalization layer. 

The dilation rate of the convolution layers progressively increases, with rates of 1, 2, and 3, 

respectively. After the final convolution layer, a global max pooling layer is employed to 

extract the most important features. The output from the pooling layer is then passed through 

two fully connected layers. The first dense layer consists of 64 nodes and is followed by a 

ReLU activation function and a batch normalization layer. The final dense layer serves as the 

output layer, containing a single node with a Sigmoid activation function.  

The clinical EMG signals of N2001 EMGLAB open access Dataset [5] were used in our 

experiment, each signal was segmented into 11 segments and each of the segments had a time 

duration of 1s. The dataset was split into train, validation, and test sets by a ratio of 80:20:25. 

The training, validation, and test sets were made up of data from different subjects so that the 

proposed model can be trained and evaluated properly. 

The performance of the ALSNet in terms of overall accuracy, sensitivity, specificity, and 

balanced accuracy showed good promise. 

 

Table 2.2 provides a comprehensive overview of the various approaches employed for 

classifying neuromuscular disorders, along with the corresponding accuracy levels achieved 

by each method. This table presents a descriptive comparison among the different approaches 
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Table 2.2: Descriptive comparison between different approaches for neuromuscular disorders 

classification and their achieved accuracy. 

   Reference 

 

Ref            Year 

Methods    Subjects  

 

Group        N°Sub.         N° Signals              Dataset          Muscle    

  Evaluation 

 
   ACC (%) 

[56]      2018 STFT and CNN AH         (8,10)           (89,133)                   [5]             BB 96.69% 

[57]      2015 AR,  RMS,  ZC,  WL,  

MAV, and MLP 

AMH     (5,5,5)         (100,100,100)         [58]             BB 

HS         (5,5)            (100,100) 

MH       (5,5)             (100,100) 

AH        (5,5)             (100,100) 

MA       (5,5)             (100,100) 

86.3% 

82.5% 

81% 

80.5% 

77% 

[59]      2021 ANN, and 11 feature 

extracting methods 

HS         (7,10)           (80,80)                     [5]             BB 85% 

[55]      2023 CNN AMH    (20,20,20)         NS                       NS              NS 92.5% 

[60]      2022 12 feature extracting 

methods, MLP, RF, 

SVM, GB, NN 

AMH     (8,7,10)        (332,315,300)         [5]       BB,VM 73% 

[61]       2022 CNN AH         (8,10)           (151,151)                [5]      BB,VM 97.74% 

 

Notes: A = ALS,   H = Healthy,   M = Myopathy, S = Sick,  BB  = Biceps Brachii,  VM = Vastus 

Medialis,   NS = Not Specified. 

2.9 Conclusion  

In conclusion, the review of the papers on EMG signal classification for neuromuscular disease 

detection using deep learning has highlighted several important features and architectures. The 

statistical features have been widely used and have shown promising results in terms of 

accuracy. time-frequency representation of EMG signals-based methods have been explored in 

some papers, while raw signal processing has been used in others, with mixed results. Among 

the network architectures, ANN, MLP, and CNN models have been proposed, with varying 

degrees of success. The evaluation data used in the papers varied greatly, making direct 
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comparisons between the results impractical. EMGLab was the only public dataset used in 

some papers, and achieved results vary greatly from one paper to another. 

To the best of our knowledge, it is noteworthy that the majority of the reviewed papers did not 

specifically address the issue of subject independence. This indicates that data from the same 

subject might be present in both the training and test sets, compromising the validity of the 

results. To address this limitation, our study focuses on proposing a model that overcomes this 

challenge by employing subject-independent data for training, validation, and testing. We will 

elaborate on this approach in the subsequent chapter. 

Furthermore, it is worth noting that the last paper entitled "ALSNet" adopted the subject-

independent evaluation approach but within the narrower context of binary classification for 

ALS vs. Normal cases. Drawing inspiration from their work, we have incorporated and 

expanded upon this approach in our research, encompassing both multiclass and binary 

classifications.
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3.1 Introduction  

Chapter 3 focuses on the design and implementation of the classification model for  EMG 

signals in the context of neuromuscular disease detection. The chapter provides an overview of 

the tools, technologies, and libraries employed. Furthermore, it provides a description of the 

data utilized for the classification system and explains the data preparation techniques used to 

ensure reliable and meaningful analysis. Moreover, it presents the proposed network 

architecture based on a CNN model and discusses the training methodology. The chapter also 

highlights the results and discussion of two evaluation approaches: the train-test-validation split 

and subject-independent evaluation. Additionally, it includes a concise comparison of our 

work's performance with related studies in the field. 

This chapter serves as a foundational guide for understanding the design and implementation 

of the classification system, setting the stage for subsequent analysis and conclusions in the 

project. 

3.2 Implementation 

3.2.1 Tools and Technologies 

a. Python 

It is a widely used high-level, interpreted programming language. it is favored for its ease to 

use, simplicity, and readability, making it an ideal programming language for both beginners 

and experts [62]. 

In deep learning, Python is frequently used for data processing, model building, and training. 

It offers a rich set of libraries for deep learning such as Keras, Tensorflow, and PyTorch, 

providing high-level abstractions for building and training networks. 

b. Jupyter Notebook 

It is an open-source web-based tool that provides an interactive environment where users can 

write and execute code cells, visualize data and results, and experiment with different 

algorithms [63]. 

For deep learning, it is commonly used for model development, data exploration, and 

visualization. it is frequently used along with deep learning libraries allowing users to train and 

evaluate deep neural networks. 
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c. Kaggle 

It is an online platform that is dedicated to data science and machine learning. It provides a 

cloud-based environment for running code, which can be used for training machine learning 

models and running experiments. The platform comes with pre-installed libraries and 

frameworks, such as Keras, Tensorflow, and PyTorch, and can be customized to use 

accelerators such as GPUs and TPUs to speed up the training of deep learning models. 

d. Google Collaboratory 

Collaboratory, often shortened to “Colab”, is a free cloud-based Jupyter Notebook environment 

by Google that allows the creation and execution of Python code using Jupyter Notebook 

format. It integrates with other Google services, such as Google Drive, allowing users to import 

and export data easily. Google Colab is an excellent tool for deep learning tasks and offers 

additional features over vanilla Jupyter Notebook, such as providing free access to GPU 

(Graphics Processing Unit) and TPU (Tensor Processing Unit) resources, which are powerful 

computing accelerators. 

3.2.2 Libraries 

a. Keras 

It is an open-source library that operates on top of deep learning frameworks such as 

Tensorflow, and Theano. It also takes advantage of their performance optimizations and 

hardware support, such as GPU accelerations. Keras offers a high-level API for creating and 

training deep neural networks, allowing developers and researchers to efficiently experiment 

with various models and architectures.   

b. NumPy 

It is a powerful Python library for scientific computing and data analysis. It is used for working 

with arrays by offering numerous functions for performing numerical operations on these 

arrays. With NumPy, users can perform linear algebra, Fourier transform, and matrix 

manipulations among other mathematical operations. NumPy's versatile array object enables 

users to work with vast datasets with ease and speed. 
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c. Pandas 

It is an open-source Python library used for working with datasets. The name “Pandas” is 

derived from the term “panel data” which refers to a type of dataset commonly used in 

economics, mathematics, and statistical analysis. Pandas offers various data manipulation 

capabilities including data cleaning, filtering, transformation, and dataset merging. It supports 

multiple data formats such as CSV, Excel, SQL, and more. 

d. Waveform-database (WFDB) 

It is a library that provides a range of tools for reading, writing, processing, and visualization 

of various types of physiological signals such as EMG and electrocardiogram(ECG) and 

associated annotations. WFDB is widely used in both research and clinical contexts and is 

supported on many different platforms and programming languages. 

e. Matplotlib 

It is a plotting library for Python that is built on NumPy arrays. Matplotlib allows creating 

static, interactive, and dynamic representations of data in Python. It is a powerful tool for data 

visualization. In this work, it was utilized to visualize the input data. Specifically, it was 

employed to generate visual representations of the EMG signals from each class, allowing for 

a comprehensive examination of the data. Furthermore, Matplotlib was utilized to plot the 

accuracy and loss graphs. In addition, we used it to generate a confusion matrix, facilitating a 

visual representation of the classification performance. 

f. Scikit-learn 

Also known as Sklearn, is a widely used open-source machine learning library for Python. It is 

built on top of other scientific computing libraries such as NumPy, SciPy, and Matplotlib. This 

library provides tools and algorithms for various machine-learning tasks, including 

classification, regression, model selection, and preprocessing of data. In addition, it provides 

methods for data splitting, cross-validation, hyperparameter tuning, and performance metrics.  

3.3 Data and Preprocessing 

To tackle the problem of neuromuscular disease classification, we utilize the EMGLab dataset 

[5]. As stated before, this dataset is the only publicly available dataset  for addressing this 

problem. Therefore, the choice of the data is straightforward. In the following, we describe the 
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dataset and the preprocessing steps we performed to improve data quality and prepare it for 

model evaluation. 

3.3.1 Description of the data 

EMGlab  or  N2001 database contains clinical EMG signals gathered from three groups of 

subjects: one normal control group, one group of patients with myopathy, and one group of 

Amyotrophic Lateral Sclerosis (ALS) [64] patients. The latter is a kind of neuropathy. It is a 

progressive neurodegenerative disease that affects nerve cells responsible for controlling 

voluntary muscle movement, causing a loss of muscle control. The exact cause of ALS is 

largely unknown, although a combination of genetic and environmental factors is thought to 

play a role. The symptoms of ALS vary from person to person but commonly include muscle 

atrophy, muscle twitching, and cramps, individuals may experience difficulty with activities 

such as walking, speaking, swallowing, and breathing.  

The EMG collected recordings are distributed as follows: 

● 10 healthy subjects that have an age interval of 21–37, 4 females and 6 males. None of 

them had signs or a history of neuromuscular disorders  

● 7 myopathy patients with an age ranging from 19 to 63, 2 females and 5 males. All 7 

had clinical and electrophysiological signs of myopathy.  

● 8 ALS patients that cover the age interval 35–67, 4 females and 4 males. Besides 

clinical and electrophysiological signs compatible with ALS, 5 of them died within a 

few years after the onset of the disorder, supporting the diagnosis of ALS. 

Signals were acquired from the abductor pollicis brevis (a muscle in the hand), the biceps 

brachii (upper arm muscle), the vastus medialis and vastus lateralis (muscles in the thigh), the 

tibialis anterior (a muscle in the lower leg), the deltoideus (shoulder muscle), the tensor fasciae 

latae (muscle in the thigh and hip), and the triceps brachii (muscle in the upper arm), by 

inserting a concentric needle electrode at five different places at three insertion depths 

mentioned as low, medium and deep.  

The sampling rate of EMG signals was at 23.438 kHz with each signal recorded for 11.2 

seconds. The recordings were digitized using high and low pass filters with cut-off frequencies 

of 2Hz and 10 kHz, respectively. 
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For each subject, the recordings are taken using 1 to 3 muscles, from the ones mentioned before, 

which may differ from one subject to another. 

 

   (a)                              

 

(b) 

 

(c) 

Figure 3.1: EMG signals of (a) Normal (b) Myopathy and (c) ALS subjects. 

 

3.3.2 Data Preparation 

a. Muscle selection: 

For the data preparation process, we first identified three groups of participants in the study: a 

normal control group, a group of patients with myopathy, and a group of patients with ALS. 

The normal control group had EMG signals recorded only from the biceps brachii muscle. 

Therefore, we selected only the EMG signals recorded from the biceps brachii muscle for the 

myopathy and ALS groups as well. The decision to focus on the biceps brachii muscle for all 
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classes was based on practical considerations and the necessity to ensure a fair comparison 

between ALS, myopathy, and normal signals within the available dataset. While it would have 

been advantageous to include normal signals from multiple muscle types, the limitation of 

available data constrained our choice. This selection process resulted in 98 EMG signals from 

patients with ALS, 107 EMG signals from patients with myopathy, and 270 EMG signals from 

normal individuals. These statistics provide the basis for subsequent data analysis, allowing for 

further investigation of differences in muscle function between the normal, myopathy, and ALS 

groups. 

After selecting the EMG signals recorded from the biceps brachii muscle for each group, we 

observed that the distribution of EMG signals across the three groups was imbalanced, with a 

higher number of EMG signals from the normal control group compared to the myopathy and 

ALS groups.  

b. Windowing and removing missing values: 

Before addressing the class imbalance issue, we preprocessed the dataset by applying a sliding 

window approach which is a common windowing technique used in signal processing. This 

method involves shifting a window of a fixed size along the signal with a specified overlap 

between neighboring windows. The overlap ensures that each data point in the signal is 

included in multiple windows, reducing the potential impact of distortions or abnormalities in 

the data that are caused by the abrupt changes in the signal at the start and the end of each 

window. In our case, we used a window size of 23437 data points and an overlap of 14062 

(60%). However, due to the nature of the data, we encountered many windows containing 

missing or NaN values. To address this, we removed all windows that contained NaN values 

After applying the windowing technique and removing the windows with NaN values. 

c. Balancing the data: 

Moving to the imbalanced dataset issue. We first tried using the undersampling technique to 

remove some signals from the normal control group. However, this approach did not yield 

satisfactory results as it significantly reduced the size of the dataset and potentially removed 

useful information. Subsequently, we explored the use of data augmentation techniques to 

improve the classification system's performance. One of the techniques we employed was the 

introduction of noise to the EMG signals. The aim of this approach was to enhance the model's 

ability to handle real-world scenarios and improve its generalization capabilities. However, 
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upon evaluating the results, we found that the noise addition did not lead to significant 

improvements in accuracy. 

As a result, we explored an alternative technique known as SMOTE (Synthetic Minority Over-

sampling Technique), to create synthetic EMG signals for the myopathy and ALS groups. The 

main idea behind SMOTE is to generate synthetic examples of the minority class to achieve a 

balanced class distribution. For each minority class sample, SMOTE identifies its k-nearest 

neighbors in feature space. It then creates new samples by interpolating between the minority 

class sample and its k-nearest neighbors. This approach allowed us to balance the dataset by 

increasing the number of EMG signals for the minority classes while maintaining the original 

distribution of the data. 

SMOTE is applied only to the training data and not the validation and test data since they 

should represent samples of the data that the model will encounter in the real world, by keeping 

it untouched, we ensure that it remains a reliable measure of the model's ability to generalize 

to new, unseen samples. 

In contrast, for the train-validation-test split approach, it was unnecessary to generate synthetic 

data points using SMOTE. The data undersampling technique employed for balancing the data 

yielded satisfactory results without the need for synthetic data generation. However, in the case 

of the subject independent method, incorporating SMOTE into the process actually improved 

the results significantly compared to the approach without synthetic data generation. 

It's worth noting that while this technique can be effective for data balancing if the number of 

samples in the majority class is much larger than the number of samples in the minority class, 

SMOTE will create many synthetic examples that are very similar to each other, which can 

lead to overfitting and poor generalization. The general rule of thumb to address this  problem 

is to  set the maximum number of synthetic examples to double the number of examples in the 

minority class. This helps to ensure that the synthetic examples generated by SMOTE are 

diverse and representative of the minority class, without overfitting the model to the training 

data.  

To mitigate this issue in our particular situation, an additional step was taken to effectively 

handle the class imbalance. To prevent the overgeneration of synthetic examples, it was 

necessary to remove some signals or instances from the majority class (Healthy) before 

applying SMOTE reducing the number of healthy signals from 270 to 192. 
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Table 3.1: Summary Statistics of the Dataset. 

Type of signals   N° Signals 

 
 Initially              Windowing             Removing NaNs             SMOTE 

ALS   98                           2548                       2511                             4665    

Healthy  192                          4992                       4990                             4990 

Myopathy  107                          2782                       2772                             4886          

 

3.4 Proposed Network Architecture 

During the course of this project, we conducted a series of experiments to explore different 

approaches for improving the classification system. Initially, we trained a 1D CNN model on 

an undersampled dataset, followed by evaluating the model's performance on an augmented 

dataset with added noise. Additionally, we experimented with 2D CNN models trained on 

spectrograms and time-domain plots of the EMG signals. the results of these experiments fell 

short of our expectations and did not meet the desired level of accuracy. However, when we 

utilized the SMOTE technique to balance the data and trained an improved 1D CNN model, it 

demonstrated promising performance. In the upcoming section, we will provide a detailed 

explanation of this successful 1D CNN model. 

To evaluate the effectiveness of our proposed model, we employed two evaluation techniques. 

First, we utilized the standard train-validation-test split approach to assess the performance of 

our models. We then implemented a subject-independent evaluation approach where both the 

test and validation sets are subject-independent, which means that the data used for evaluating 

and validating the classification system consists of EMG signals from individuals who were 

not part of the training process. We believe that this last evaluation approach is more realistic, 

as in the real world we do not dispose of prior patient data. However, to the best of our 

understanding, most of the previously presented related research papers do not apply such an 

approach. 
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3.4.1 CNN Model 

Convolutional neural networks with one-dimensional architecture are frequently used to 

analyze time series data. This enables us to use them on raw EMG signals that vary over time. 

Our proposed model for classifying EMG signals in neuromuscular diseases was built upon the 

ALSNet model, which was originally developed by K. M. Naimul Hassan et al. for binary 

classification of ALS and normal cases [61]. ALSNet demonstrated promising results in its 

original context, showcasing its effectiveness in distinguishing between ALS and normal cases. 

However, when we extended the model to our multiclassification task involving ALS, 

myopathy, and normal cases, we encountered challenges due to the increased complexity and 

class imbalance. To overcome this limitation, we made several modifications to the model 

architecture, including adding additional layers, adjusting parameters, and implementing 

regularization techniques. These modifications were crucial in improving the model's 

performance and enhancing its ability to accurately classify EMG signals across multiple 

classes.  

In addition to these modifications, we also made a deliberate choice as discussed previously 

regarding the selection of muscles for each class. While ALSNet utilized signals from both the 

biceps brachii and vastus medialis muscles for ALS signals, we chose to use signals solely from 

the biceps brachii muscle for all classes. This decision was made to ensure consistency in our 

approach and simplify the comparison between ALS, myopathy, and normal signals. While 

ALSNet served as a valuable starting point, the modifications made in our proposed model 

were necessary to meet the requirements of our specific task. 

For multiclass classification, the model starts with four 1D convolutional layers to extract 

features from the input data, each having a different filter size and a number of filters. 

Activation functions like  the Rectified Linear Unit (ReLU) are used to introduce non-linearity. 

Additionally, a dilation rate is specified for each convolutional layer. The dilation rate controls 

the spacing between the values in the filters, allowing the model to capture information at 

different scales or receptive fields, while simultaneously keeping the number of parameters 

relatively low [65]. Moreover, the model’s architecture incorporates L2 regularization (weight 

decay) in the convolutional layers to control overfitting. These layers are followed by batch 

normalization and dropout layers for regularization and improved generalization. The 

architecture also includes a Global Max Pooling 1D layer, which effectively reduces the 

dimensionality of the feature maps obtained from the convolutional layers. Convolutional 

layers are initialized using the He normal initialization method, which addresses the 
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vanishing/exploding gradients problem by setting the initial weights of the neural network in a 

way that helps to mitigate this issue, leading to a more stable and effective training process, 

enabling the network to acquire valuable insights and representations from the input data. 

After the convolutional layers, the model incorporates two fully connected layers. The first 

fully connected layer consists of 128 neurons and uses the ReLU activation function. This layer 

is followed by a batch normalization and a dropout layer, which further enhance the model's 

generalization capabilities. The final layer of the model is a dense layer with 3 neurons, 

employing the softmax activation function, which outputs a probability for each class. This 

architecture is represented in Figure 3.2. 

 

 

Figure 3.2: 1D CNN model for multiclass classification. 

 

For the task of binary classification, concerning Normal vs. ALS and Normal vs. Myopathy, 

we employed the same convolutional neural network (CNN) architecture as before with minor 

modifications. The modification involved changing the number of neurons in the last dense 

layer to 1, and the activation function was set to 'sigmoid'. The model architecture is shown in 

Figure 3.3 below. 
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Figure 3.3: 1D CNN model for binary classification. 

 

 

3.4.2 Training Methodology 

The binary classifications followed similar training approaches. We utilized a binary cross-

entropy loss function and accuracy metric. We used the Adam optimizer with an initial learning 

rate of 0.001. The training is performed for a maximum of 100 epochs. We employed early 

stopping, monitoring the validation loss to stop training if no improvement occurred for 20 

epochs for the myopathy vs. normal classification and 25 epochs for the ALS vs. normal 

classification. Additionally, the learning rate was reduced by a factor of 0.1 if no improvement 

in the validation loss was observed for a specific number of epochs. We used a batch size of 

16 for the ALS vs. normal classification and 32 for the myopathy vs. normal classification. 

For the multiclassification task, which involved distinguishing between ALS, myopathy, and 

normal signals, we utilized a sparse categorical cross-entropy loss function and sparse 

categorical accuracy metric. The model was trained similarly to the binary classifications, early 

stopping was implemented with a patience of 25 epochs, and the learning rate was adjusted 

when the validation loss did not improve for 6 consecutive epochs and the batch size for the 

multiclassification task was set to 16. Furthermore, to prevent any bias due to the order of the 

data, the training data is shuffled before each epoch for all the classification tasks. This ensures 

that the model sees the data in different orders during training, promoting unbiased learning.  
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We monitored the validation loss since it quantifies how well the model generalizes to new, 

unseen data. While the model's parameters are updated based on the training data to minimize 

the training loss, the true measure of its true performance is evaluated using the validation set, 

which contains data that the model hasn't seen before.  

3.5 Results and Discussion 

In this section, we present the results of our analysis of the EMG signals dataset using two 

different validation approaches. We begin by presenting the results of the train-test-validation 

split approach, followed by the results of the subject-independent evaluation approach.  By 

employing these two approaches, we have taken into account both the overall performance of 

the model on unseen data through the train-validation-test split, as well as its generalization 

capabilities across different subjects through the subject-independent validation and testing. 

This allows for a more comprehensive evaluation of the model's performance and robustness. 

Finally, we compare the performance of the two approaches and provide insights into the 

suitability of each approach for analyzing EMG signal data.  

3.5.1 Train-Validation-Test Split Approach.  

In the train-validation-test split approach, the splitting of the dataset into training, validation, 

and testing subsets is typically done randomly. Randomization helps ensure that the data in the 

training, validation, and testing sets are representative of the overall dataset and are not biased 

toward specific patterns or characteristics. 

During the training process, the data was randomly split using the train_test_split function, 

with a test size of 0.25. This means that 25% of the data was reserved for testing, while the 

remaining 75% was used for training. Additionally, a validation split of 20% was applied to 

the training data, further dividing it into a training subset and a validation subset. 

3.5.1.1 Multiclass Classification 

Figure 3.4 illustrates the loss and accuracy for the multiclass classification task on both the 

training and validation sets. The initial loss is 5.1553, and the initial sparse categorical accuracy 

is 59.49% on the training set. The initial validation loss is 4.0339, and the initial validation 

sparse categorical accuracy is 0.4694. 

As the training progresses, both the loss and accuracy improve. By the end of the training, the 

model achieves a training loss of 0.2257 and a training sparse categorical accuracy of 99,88%. 
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The validation loss decreases to 0.2455, and the validation sparse categorical accuracy is 

99.75%. The test accuracy is 99,85%. 

 

 
(a) 

 
(b) 

Figure 3.4: Multiclass Classification Train and Validation Plots. 

 (a) Loss Plots.  (b) Accuracy plots. 

 

The classification model’s performance was evaluated using a confusion matrix, which 

provides detailed insights into its predictive capabilities for each class. Figure 3.5 depicts the 

confusion matrix of multiclass classification for the train-validation-test split approach. 

 

Figure 3.5: Multiclass Classification Confusion Matrix. 
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Additionally, the performance of the classification model was evaluated using several metrics, 

including precision, recall, and F1 score. These metrics provide valuable insights into the 

model's ability to correctly classify instances across different classes. 

The precision metric measures the proportion of correctly predicted positive instances out of 

all instances predicted as positive. In our evaluation, the model achieved a precision score of 

0.99 for all classes. This indicates that all instances classified as positive were indeed true 

positives. 

The recall metric, also known as sensitivity or true positive rate, measures the proportion of 

correctly predicted positive instances out of all actual positive instances. Our model achieved 

a recall score of 1.00 for all classes, indicating that it successfully captured all positive 

instances. 

The F1 score, which combines both precision and recall, provides a balanced measure of the 

model's performance. With an F1 score of 1.00 for all classes, our model demonstrates excellent 

accuracy and robustness in classifying instances across the board. 

 

 

 

Table 3.2: Multiclass Classification CNN Model Performance metrics  

Train-Test Split Approach. 

Class Precision Recall F1 score 

ALS  0.99 0.99 0.99 

Normal  0.99 0.99 0.99 

Myopathy  0.99 1.00 1.00 

 

3.5.1.2 Binary Classification 

Turning our attention to the domain of binary classification, our model was designed to 

differentiate between two distinct classes. 

First, we present the results of the Myopathy vs. Normal classification. The training process 

spanned a total of 82 epochs. Throughout these epochs, the model exhibited a progressive 
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improvement in performance, as evidenced by the reduction in the loss value and the increase 

in accuracy. 

In Figure 3.6, we present the train and validation plots. Figure 3.6 (a) displays the loss plots, 

while Figure 3.6 (b) showcases the accuracy plots. 

During the initial stage of training, the model achieved an accuracy of 74.84% on the training 

set and 80.60% on the validation set. The corresponding loss values were 3.4419 for the training 

set and 1.8283 for the validation set. Throughout the training, the graph in Figure 3.6 (b) shows 

that the training accuracy is increasing steadily, while the validation accuracy shows significant 

fluctuations. This is a classic sign of overfitting. Overfitting occurs when the model learns the 

training data too well, and as a result, it does not generalize well to new data. One of the reasons 

why we might not have been able to completely prevent overfitting, even with regularization 

is that the data for class myopathy is not large enough. If the dataset is too small, the model 

will not have enough information to learn from, and it will be more likely to overfit the training 

data. At the end of the training process, the accuracy of the training set reached a score of 

98.91%, indicating that the model successfully classified 98.91% of the training examples 

correctly. Similarly, the accuracy of the validation set reached 91.72%. Furthermore, the loss 

values decreased significantly. The loss on the training set reached a value of 0.1561, indicating 

that the model's predictions were very close to the actual labels in the training data. Similarly, 

the loss on the validation set reached 0.2931. The test accuracy was 92.47%.  

 
(a) 

 
(b) 

Figure 3.6: Train and Validation Plots for Binary Classification (Myopathy vs. Normal). 

(a)  Loss Plots. (b)Accuracy Plots. 
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The performance of the classification model was assessed using a confusion matrix, shown 

below in Figure 3.7. The latter offers detailed insights into its ability to predict accurately for 

each class. 

 

Figure 3.7: Confusion Matrix of the CNN Model for Binary Classification (Myopathy vs. 

Normal) using Train-Test Split Approach. 

 

The Performance Matrix below, presented in Table 3.3, indicates that the classification model 

demonstrates strong performance in correctly identifying instances from class Normal, as 

evidenced by the high precision  and recall  values which are 0.9 and 1 respectively. 

Nonetheless, there is room for improvement in accurately capturing instances from class 

Myopathy, as indicated by the lower recall of 0.78. 

 

Table 3.3: Performance metrics for Binary Classification (Myopathy vs. Normal) Train-Test 

Split Approach. 

Class Precision Recall F1 score 

Myopathy  1.00 0.78 0.88 

Normal 0.90 1.00 0.95 
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Furthermore, we provide an overview of the ALS vs. Normal classification results. The training 

process encompassed a comprehensive series of 67 epochs. During this iterative training phase, 

the model consistently demonstrated incremental advancements in its performance, as denoted 

by the continuous decrease in the loss metric and the concurrent rise in accuracy. 

Throughout these 67 epochs, the model's performance steadily improved as indicated by the 

decrease in the loss metric. The training loss decreased from an initial value of 3.9028 to a final 

value of 0.1542. Additionally, the training sparse categorical accuracy increased from 75.27% 

to 98.73% during training. The validation loss decreased from 2.8310 to 0.1878, and the 

validation sparse categorical accuracy improved from 68.53% to 96.80% as the training 

progressed. The test accuracy is 96.06%. The loss and accuracy plots for both the training and 

validation are graphically represented in Figure 3.8. 

 

 
(a) 

 
(b) 

Figure 3.8: Binary Classification (ALS vs. Normal) Train and Validation Plots. 

(a)  Loss Plots. (b)Accuracy Plots. 

 

Figure 3.9 presents the confusion matrix for the binary classification task of ALS versus 

Normal using the train-validation-test split Approach. The confusion matrix provides a visual 

representation of the model's performance by illustrating the distribution of predicted and true 

labels. 
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Figure 3.9: Confusion Matrix for Binary Classification (ALS vs. Normal) using Train-Test 

Split Approach. 

The model's performance in classifying ALS and Normal cases can be evaluated by referring 

to Table 3.4, which presents a comprehensive set of performance metrics, including precision, 

recall, and F1-score for each class. 

 

Table 3.4: Performance metrics for Binary Classification (ALS vs. Normal) using Train-Test 

Split Approach. 

Class Precision Recall F1 score 

Normal 1.00 0.88 0.94 

ALS 0.94 1.00 0.97 

 

 

Table 3.5 presents a summary of the accuracies attained through the train-validation-test split 

approach for three distinct classifications: multiclass classification, Normal vs. ALS 

classification, Normal vs. Myopathy classification.  
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Table 3.5: Summary of Evaluation Metrics for the Train-Test Split Approach. 

Classification Task N° 

epochs 

Train Time 

(min) 

Train acc 

(%) 

Val acc 

(%) 

Test acc 

(%) 

Avg F1 

score 

Normal vs. ALS vs. 

Myopathy 

100 202 99,88% 99.75% 99,85% 0.993 

Normal vs. Myopathy 82 162 98.91% 91.72% 92.47% 0.915 

Normal vs. ALS  67 132 98.73% 96.80% 96.06% 0.955 

 

The exceptionally high scores achieved through the implementation of the train-validation-test 

split evaluation method can be attributed to the unintended data leakage caused by the random 

splitting approach. This unintended data leakage led to the inclusion of records from the same 

subjects across different sets, ultimately inflating the performance metrics. 

3.5.2 Subject-Independent Evaluation Approach 

In this approach, we performed both multiclass (Normal vs. ALS vs. Myopathy) and binary 

classification (Normal vs. Myopathy and Normal vs. ALS). For each experiment, from each 

class, we excluded one patient for validation and another patient for testing, which is only used 

to evaluate the final performance of the trained model after training is completed. These 

patients were also removed from the training set so that the model could be validated and tested 

on completely unseen data. 

We conducted a series of experiments for each classification task, where the subjects in the test 

and validation sets were changed for each experiment. By varying the subjects, we ensured a 

robust evaluation of our classification system's performance across different individuals. 

The results of each experiment will be presented in dedicated tables (Table 3.6, Table 3.9, and 

Table 3.12), providing a comprehensive analysis and a clear overview of the performance 

metrics achieved for each classification task. Additionally, we will showcase the graphs and 

metrics for both the best and worst experiments conducted for each classification task. 

In the  tables: Table 3.6, Table 3.9, and Table 3.12, each subject ID corresponds to three 

subjects, representing one subject from each class (ALS, Normal, Myopathy). 
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We collected information regarding the number of epochs, the training time, the accuracies, 

and the average F1 score for classes of each experiment. 

3.5.2.1 Multiclass Classification 

 

Table 3.6: Performance Metrics for Multiclass Classification for Different Patients.  

Subjects ID 

 
Val          Test 

N° epochs Train Time 

(min) 

Train acc 

(%) 

Val acc 

(%) 

Test acc 

(%) 

Avg F1 

score 

 4             3 30 125 98.07 % 56.08 % 77.92 % 0.78 

 3             4 39 173 98.32 % 77.33 % 56.33 % 0.53 

 6             3 47 201 98.28 % 73.17 %  68.41 % 0.68 

 3             6 82 351 97.70 % 71.34 % 68.70 % 0.67 

 7             3 74 374 98.77 % 86.36 % 79.39 % 0.80 

 3             7 51 240 98.74 % 75.04 % 80.59 % 0.81 

Average 54 244 98.31 % 73.22 % 71.89 % 0.71 

 

From the table, we observe varying performance across different subject IDs. The training 

accuracies range from 97.70% to 98.77%, indicating that the models effectively learn the 

training data. However, there is more variation in the validation and test accuracies, ranging 

from 56.08% to 86.36% and 56.33% to 80.59%, respectively. The validation accuracy for the 

first experiment and test accuracy for the second experiment are the lowest and are both linked 

to subject 4 from each class. This indicates that our model faces challenges in accurately 

classifying those particular subjects. 

The average F1 score ranges from 0.477 to 0.82, suggesting different levels of precision and 

recall across the subject IDs. 

The number of epochs used for training varies between 30 and 82, and the training time spans 

from 125 to 374 minutes. 

As can be observed from Table 3.6, the experiment with subject 3 for validation and subject 4 

from each class for the test yielded the lowest test accuracy. Therefore, it is considered the least 

effective experiment for multiclass classification. The loss and accuracy plots for that 

experiment are illustrated in Figure 3.10. 
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     (a) 

 
      (b) 

Figure 3.10: Train and Validation Plots for Multiclass Classification Subject Independent 

Evaluation Method -worst result-. 

(a)  Loss Plots.  (b)Accuracy Plots. 

 

Figure 3.11: Confusion Matrix for Multiclass Classification Subject Independent Evaluation 

Approach -worst result-. 

 

Figure 3.11 presents the confusion matrix for the multiclass classification using the subject 

independent evaluation approach. Proportions of correctly predicted labels for the ALS, 

Normal, and Myopathy classes were 0.36, 0.84, and 0.2, respectively. This suggests that the 
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model performed relatively better in classifying instances as Normal while facing challenges 

in accurately identifying cases of ALS and Myopathy.  

 

Table 3.7: Multiclass Classification CNN Model Performance metrics  

Subject Independent Evaluation Approach -worst result-. 

Class Precision Recall F1 score 

ALS  0.57 0.36 0.44 

Normal  0.55 0.84 0.67 

Myopathy  0.73 0.20 0.32 

 

 

Alternatively, based on the information provided in Table 3.6, it is noteworthy that the highest 

test accuracy of 80.59% was achieved in the experiment where patient 3 was utilized for 

validation, and patient 7 was employed for the test. Complementing these results, the 

accompanying loss and validation graphs for this specific experiment have been graphically 

illustrated in Figure 3.12. 

 

 

     (a) 

 

      (b) 

Figure 3.12: Train and Validation Plots for Multiclass Classification Subject Independent 

Evaluation Method -best result-. 

(a)  Loss Plots.  (b)Accuracy Plots. 
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Figure 3.13: Confusion Matrix for Multiclass Classification Subject Independent Evaluation 

Method -best result-. 

The results presented in Figure 3.13 showcase proportions of correctly predicted labels for 

the ALS, Normal, and Myopathy classes were 1.00, 0.94, and 0.65, respectively. This 

suggests that the model performed exceptionally well in classifying ALS cases, with perfect 

precision. The model also performed well in classifying Normal cases, with high precision. 

The model achieved a moderate precision level for Myopathy cases. Overall, the obtained 

proportions in addition to the results illustrated in Table 3.8 indicate that the model is 

effective in accurately identifying instances across multiple classes, with a notable emphasis 

on the precise classification of ALS cases. 

 

Table 3.8: Multiclass Classification CNN Model Performance metrics  

Subject Independent Evaluation Approach -best result-. 

Class Precision Recall F1 score 

ALS  0.92 1.00 0.95 

Normal  0.60 0.94 0.73 

Myopathy  0.99 0.65 0.78 
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3.5.2.2 Binary Classification-Myopathy vs. Normal 

Table 3.9: Performance Metrics for Binary Classification (Myopathy vs. Normal)  for 

Different Patients. 

Subjects ID 

 
Val          Test 

N° epochs Train Time 

(min) 

Train acc 

(%) 

Val acc 

(%) 

Test acc 

(%) 

Avg F1 

score 

 4             3 24 77 99.67 % 79.58 % 85.15 % 0.85 

 3             4 34 109 99.59 % 78.85 % 77.2 % 0.73 

 6             3 50 162 99.72 % 92.14 % 77.78 % 0.76 

 3             6 25 80 99.81 % 73.29 % 93.23 % 0.93 

 7             3 25 41 99.51 % 69.60 % 74.15 % 0.72 

 3             7 34 109 99.60 % 72.97 % 69.67 % 0.64 

Average 32 96 99.65 % 77.74 % 79.53 % 0.77 

 

Table 3.9 provides a summary of the scores obtained during the training of our model on 

myopathy vs. normal binary classification on various subjects. Notably, the training accuracy 

consistently demonstrates high values across all experiments. However, there exists 

considerable variability in the validation and test accuracies, encompassing a broad spectrum 

of scores. Conversely, the majority of experiments yield high F1 scores; nevertheless, some 

instances exhibit lower values, notably as low as 0.615. The obtained results suggest that the 

models exhibit satisfactory performance when applied to unseen data. However, it is worth 

noting that certain patients exhibit more challenging diagnostic scenarios than others. 

The experiment with subject 3 for validation and subject 7 for the test achieved the lowest test 

accuracy. This experiment is therefore considered the least effective for binary classification 

(Myopathy vs. Normal). The loss and accuracy plots for this experiment are presented in 

Figure 3.14. 
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     (a) 

 
      (b) 

Figure 3.14: Train and Validation Plots for Binary Classification (Myopathy vs. Normal) 

Subject Independent Evaluation Method -worst result-. 

(a)  Loss Plots.  (b)Accuracy Plots. 

 

 

Figure 3.15: Confusion Matrix for Binary Classification (Myopathy vs. Normal) Subject 

Independent Evaluation Approach -worst result-. 
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Table 3.10: Performance metrics for Binary Classification (Myopathy vs. Normal) Subject 

Independent Evaluation Approach -worst result-. 

Class Precision Recall F1 score 

Normal  0.66 1.00 0.79 

Myopathy  1.00 0.28 0.44 

  

The Confusion matrix illustrated in Figure 3.15 and Table 3.10 above demonstrates that the 

model has high precision and recall for Normal cases, but it has minimal scores for Myopathy 

cases.        

Although the model exhibited limited precision and recall for Myopathy cases, superior results 

were achieved in other experiments. Notably, the experiment utilizing subject 3 for validation 

and subject 6 for testing yielded an outstanding test accuracy of 93.23%. Detailed loss and 

accuracy plots depicting these results are presented in Figure 3.16.  

 

 
     (a) 

 
      (b) 

Figure 3.16: Train and Validation Plots for Binary Classification (Myopathy vs. Normal) 

Subject Independent Evaluation Method -best result-. 

(a)  Loss Plots.  (b)Accuracy Plots. 
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Figure 3.17: Confusion Matrix for Binary Classification (Myopathy vs. Normal) Subject 

Independent Evaluation Approach -best result-. 

 

Table 3.11: Performance metrics for Binary Classification (Myopathy vs. Normal) Subject 

Independent Evaluation Approach -best result-. 

Class Precision Recall F1 score 

Normal  0.91 0.99 0.95 

Myopathy  0.99 0.82 0.89 

 

 

 

Overall, the metrics in Figure 3.17 and Table 3.11 indicate a high precision and recall for the 

Normal class, showcasing the model's effectiveness in identifying instances accurately. The 

Myopathy class also exhibits a high precision but comparatively lower recall, indicating some 

challenges in correctly capturing all instances of Myopathy. Nevertheless, the F1 score for both 

classes demonstrates reasonably good performance, considering the balance between precision 

and recall.     

 

The poor scores in classifying the Myopathy signals are likely due to the lack of myopathy 

signals in our dataset. The SMOTE technique was used to oversample the Myopathy signals, 

however, the use of synthetic data is not as effective as utilizing real signal data. To improve 
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the model's performance in classifying Myopathy signals, it is necessary to collect more 

Myopathy signals, as both Undersampling and oversampling techniques used to balance the 

dataset did not yield results as good as the ones obtained for Normal signals classification.  

 

3.5.2.3 Binary Classification-ALS vs. Normal 

 

Table 3.12: Performance Metrics for Binary Classification ( ALS vs. Normal)  for Different 

Patients. 

Subjects ID 

 
Val          Test 

N° epochs Train Time 

(min) 

Train acc 

(%) 

Val acc 

(%) 

Test acc 

(%) 

Avg F1 

score 

 4             3 43 126 98.97 % 68.15 % 91.84 % 0.92 

 3             4 55 155 98.85 % 86.4 % 69.69 % 0.68 

 6             3 34 97 98.97 % 68.77 % 87.26 % 0.87 

 3             6 32 91 98.50 % 83.37 % 77.89 % 0.76 

 7             3 58 187 99.15 % 94.93 % 86.4 % 0.86 

 3             7 47 159 98.99 % 88.03 % 97.03 % 0.97 

Average 45 136 98.91 % 81.61 % 85.02 % 0.84 

 

Concerning the binary classification ALS vs. Normal, we got suitable results. The training 

accuracy across all experiments is consistently high, averaging at 98.91%. This indicates that 

the models demonstrate proficiency in extracting meaningful patterns from the training data 

and successfully adapting to the training set. The validation and test accuracies show some 

variation across the experiments. The validation accuracy ranges from 68.15% to 94.93%, with 

an average of 81.61%. The test accuracy ranges from 69.69% to 97.03%, with an average of 

85.02%. The average F1 scores range from 0.655 to 0.97. A score of 0.655 suggests that the 

model's precision and recall are moderately balanced, but there is room for improvement. On 

the other hand, a score of 0.97 indicates a high level of accuracy and precision in the model's 

predictions, implying that it performs well in both correctly identifying positive instances and 

avoiding false positives. These results indicate that the models perform reasonably well on 

unseen data, although there are some patients harder to diagnose than others. 
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We notice that for this classification (ALS vs. Normal) even the worst result has a better test 

accuracy than the previous binary classification. The lowest test accuracy of 69.69 % was 

recorded during the experiment with subject 3 for validation and subject 4 for test. The training 

and validation loss and accuracy plots are plotted below in  Figure 3.18. 

 
     (a) 

 
      (b) 

Figure 3.18: Train and Validation Plots for Binary Classification (ALS vs. Normal) Subject 

Independent Evaluation Method -worst result-. 

(a)  Loss Plots.  (b)Accuracy Plots. 

 

 

Figure 3.19: Confusion Matrix for Binary Classification (ALS vs. Normal) Subject 

Independent Evaluation Approach -worst result-. 
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Table 3.13: Performance metrics for Binary Classification (ALS vs. Normal) Subject 

Independent Evaluation Approach -worst result-. 

Class Precision Recall F1 score 

Normal  0.70 0.86 0.77 

ALS  0.68 0.45 0.54 

 

Table 3.13 presents the performance metrics for the binary classification of ALS vs. Normal 

cases using the subject-independent evaluation approach. The precision for the Normal class is 

0.70, indicating that 70% of the predicted Normal cases were correctly classified. The recall 

for the Normal class is 0.86, suggesting that 86% of the actual Normal cases were accurately 

identified. The F1 score, which combines precision and recall, is 0.77 for the Normal class. For 

the ALS class, the precision is 0.68, the recall is 0.45, and the F1 score is 0.54, indicating 

comparatively lower performance in predicting ALS cases. 

In contrast, the experiment held on subject 3 for validation and subject 7 for test resulted in a 

test accuracy of  97.03%, which signifies a high level of performance. This high test accuracy 

indicates the model's effectiveness in making accurate predictions and demonstrates its 

capability to generalize well to unseen data. The loss and accuracy plots are represented below 

in Figure 3.20. 

 
     (a) 

 
      (b) 

Figure 3.20: Train and Validation Plots for Binary Classification (ALS vs. Normal) Subject 

Independent Evaluation Method -best result-. 

(a)  Loss Plots.  (b)Accuracy Plots. 
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Figure 3.21: Confusion Matrix for Binary Classification (ALS vs. Normal) Subject 

Independent Evaluation Approach -best result-. 

 

 

 

 

 

Table 3.14: Performance metrics for Binary Classification (ALS vs. Normal) Subject 

Independent Evaluation Approach -best result-. 

Class Precision Recall F1 score 

Normal  0.98 0.96 0.97 

ALS  0.96 0.98 0.97 

 

The metrics represented in Figure 3.22 and Table 3.13 confirm that the proposed model works 

well in classifying the signals. The precision, recall, and F1 scores for both classes are 

excellent, indicating that the model is correctly identifying both Normal and ALS cases with a 

high degree of accuracy. 
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All in all, taking all accuracy graphs presented in this part, it is worth noting that all graphs of 

the subject-independent evaluation method show overfitting. This is likely due to the lack of 

data, as each time we remove a subject from each class for the validation set and another one 

for the test set, this leaves a small training set and a small validation set. This can lead to 

overfitting, as the model may learn the training set too well and not generalize well to new data. 

Even though we used regularization techniques (Dropout, L2, batch normalization), we were 

not able to completely prevent overfitting. This suggests that the data set is too small to train a 

model that can generalize well to new data. To address this issue, we could try to increase the 

size of the data set by collecting more data. 

3.6 Comparison 

Table 3.15 provides a comprehensive comparison of our work with four relevant studies in the 

field of EMG signal classification for neuromuscular diseases. 

Using the subject-independent evaluation method, our model's best-achieved accuracy is 

97.03% in classifying ALS vs. Normal, 93.23% in classifying Myopathy vs. Normal, and 

80.59% in classifying ALS vs. Myopathy vs. Normal. These results demonstrated the 

effectiveness of our model in accurately classifying EMG signals when tested on completely 

unseen data, indicating its robustness in real-life scenarios. 

Furthermore, we evaluated our model using the train-validation-test split approach. The results 

showed that our model achieved an accuracy of 96.06% in classifying ALS vs. Normal, and 

92.47% in classifying Myopathy vs. Normal, and 99.85% in classifying ALS vs. Myopathy vs. 

Normal. These findings reinforced the reliability and effectiveness of our model in classifying 

neuromuscular diseases when trained and tested on specific data partitions. 

While comparing our work with existing studies, it is important to  acknowledge the 

complexities involved in comparing results across studies, given the variations in datasets, 

methodologies, and evaluation techniques. While direct comparisons may be challenging, our 

model demonstrated superior performance in the train-validation-test approach, surpassing the 

results reported in the referenced works. Additionally, it exhibited comparable or even higher 

performance in the subject-independent evaluation, further emphasizing the effectiveness of 

our approach when compared to existing studies. 

Overall, our study contributes a robust deep-learning model for EMG signal classification and 

showcases its strong performance under both subject-independent and train-validation-test split 

evaluation methods. These findings reinforce the potential of our model to assist in the accurate 
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detection and classification of neuromuscular diseases, offering valuable insights for clinical 

applications. 

 

Table 3.15: Performance comparison with other methods. 

Ref.  Method Evaluation Method Classification Task Test Acc (%) Dataset 

[56]  STFT and CNN Train-Val-Test split AH               96.69% [5] 

[57] AR,  RMS,  ZC,  

WL,  MAV, and 

MLP 

Train-Val-Test split AMH 

MH 

AH 

86.3% 

81% 

80.5% 

[58] 

[55] CNN Train-Val-Test split AMH                                       92.5% NS 

[61]  CNN Subject Independent AH 97.74 % [5] 

Ours CNN Train-Val-Test split AMH      

AH 

MH  

99.85% 

96.06% 

92.47% 

[5] 

Ours CNN Subject Independent AMH                                                                  

AH 

MH  

80.59% 

97.03% 

93.23% 

[5] 

Notes: A = ALS,   H = Healthy,   M = Myopathy,   NS = Not Specified 

3.7 Conclusion 

In this chapter, we have presented the model we developed along with the results of our study. 

We found that the model was able to achieve high accuracy on the test data, suggesting that it 

has learned to extract meaningful features from the data. We also found that the model was 

able to generalize quite well to unseen data, as evidenced by its performance on the subject-

independent evaluation method. 

We believe that these results are promising and suggest that the model has the potential to be a 

valuable tool for a variety of tasks. However, we also recognize that there is still more work to 

be done. In particular, we would like to investigate ways to improve the model's performance 

on the minority classes especially for myopathy. 
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General Conclusion 

In this report, we have outlined the main steps in designing and performing an EMG 

classification system using deep learning models for Neuromuscular Diseases Detection. 

Starting from the acquisition method of EMG signals to the process of training and evaluating 

the deep learning model for classification. 

The proposed work aims to leverage deep learning techniques to ensure high accuracy in the 

classification of EMG signals for Neuromuscular disease detection. The publically available 

N2001 EMGLAB dataset was used to train and evaluate a 1D-CNN model we developed based 

on ALSNet. The model was evaluated using two methods: train-validation-test split, widely 

used in research papers, and subject-independent evaluation, which allows testing on new data 

unseen during the training process. The results showed that the model achieved high accuracy 

on both multiclass and binary classifications. The model was also able to generalize well to 

unseen data, although some patients were more difficult to diagnose than others. We are 

confident that with further research, this model will have the potential to make a real-world 

impact. 

Future directions in this field include the development of multi-modal approaches that combine 

EMG signals with other types of data such as clinical, imaging, or genetic data; this could 

improve the accuracy and reliability of the classification of neuromuscular disorders using 

EMG signals. The development of accurate and reliable classification models could have 

significant clinical implications, such as early detection and diagnosis of neuromuscular 

disorders, personalized treatment, and monitoring of disease progression.
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Appendix A  

This appendix presents the second model we developed using Long Short-Term Memory 

(LSTM). The model was not included in the previous chapter due to resource constraints. 

Specifically, we ran out of time and computing resources to train the model on our dataset. To 

train the model, we needed a graphics processing unit (GPU) accelerator, since it would take 

hours to run one epoch using a central processing unit (CPU). We used Kaggle's GPU 

accelerator, but the limit for the session was 12 hours, which was not enough time for the model 

to complete training. In this appendix, we present the model that we developed, and the results 

that we could obtain using the available resources. 

A.1 LSTM Model 

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) that is well-

suited for processing sequential data such as, in our case, Electromyography (EMG) signals. 

LSTMs are particularly useful for analyzing EMG data because they can capture long-term 

dependencies in the signal, such as changes in muscle activation over time, and use this 

information to make accurate predictions or classifications. 

The proposed model consists of three consecutive Long Short-Term Memory (LSTM) layers. 

The first and second  LSTM layers contain 128 memory units and is set to return sequences, 

meaning it outputs a sequence for each input timestep. The third LSTM layer, which also 

contains 128 memory units, differs by outputting only the final hidden state instead of 

sequences. The model concludes with a dense layer consisting of three units, which employs 

the softmax activation function to compute probabilities for each of the three classes. Figure 

A.1 summarizes the model used. 

 

Figure A.1: LSTM model for multiclass classification. 
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A.2 Results and Discussion 

The model was trained using the Adam optimizer, with an initial learning rate of 0.001, 

which is a small value that helps to prevent the model from overfitting the training data. The 

model was trained for 60 epochs, with a batch size of 32. The training and validation 

accuracies were 67,22% and 63,87% respectively. The test accuracy was 64,86%. The loss 

and accuracy plots illustrated in Figure A.2 show fluctuation in the values, which implies 

that more training time might give better results. 

 
     (a) 

 
      (b) 

Figure A.2: Train and Validation Plots for Multiclass Classification Train-Test Split Method  

(a)  Loss Plots.  (b)Accuracy Plots. 

 

Figure A.3 below represents the confusion matrix for this experiment. Overall, the recall 

values for ALS and myopathy are relatively high, which suggests that the model is able to 

identify these conditions well. However, the recall value for normal is relatively low, which 

suggests that the model may have difficulty identifying healthy patients. 
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Figure A.3: Confusion Matrix for Multiclass Classification Train-Test Split Method. 

 

 


