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Abstract 

Large-scale decisions can significantly impact the health, security, and economic well-

being of a society, making it essential to provide appropriate tools and data for informed 

decision-making. However, in situations of uncertainty as witnessed with COVID-19, it is 

prudent to utilize simulation tools that can project future scenarios and assess their effects 

on a population. With the computational capabilities available today, population 

simulations can closely mimic real-world dynamics. By setting parameters and observing 

their impact, decision-makers can evaluate different scenarios and assess their 

consequences on the population. 

In this study, we present an Epidemic Simulation Framework to replicate the spread of 

infectious diseases within a population using the Susceptible-Infectious-Recovered (SIR) 

model on a 2D plane, supported by a software application tool. This tool serves as a 

valuable resource for researchers, policymakers, and the general public by allowing them 

to create and manipulate populations with varying sizes and characteristics, incorporating 

parameters such as vaccination, quarantine, and infection rates. By utilizing this tool, 

users can proficiently introduce infectious individuals and closely monitor the subsequent 

dynamics of disease spread. The tool not only offers real-time data concerning the 

distribution of individuals across different disease stages but also presents informative 

graphs and charts that vividly depict the progression of the epidemic. 

To evaluate the accuracy of this framework, we gathered authentic data on the 

dissemination of COVID-19 in Algeria. By comparing this data with the simulation 

results generated by the tool, we observed a noteworthy correlation between the two. This 

substantiates a strong correspondence between the simulation outcomes and the actual 

advancement of the disease. 
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Introduction  

The Covid-19 pandemic has underscored the importance of epidemiology in 

comprehending and managing infectious diseases [1]. Consequently, researchers have 

developed simulation tools such as Covidsim to study and control Covid-19 outbreak in 

137 low and middle-income countries (LMICs). The tool was developed by Imperial’s 

MRC Centre for Global Infectious Disease Analysis, London [2]. 

This report presents a framework supported by a simulation tool that employs the SIR 

(Susceptible, Infectious, Recovered) model to simulate epidemic scenarios, categorizing 

the population into susceptible, infectious, and recovered individuals. By simulating the 

spread of epidemics and analyzing their long-term impact, this tool assists public health 

officials, policymakers, and researchers in understanding disease transmission patterns, 

evaluating control measures, and devising preventive strategies [3][4][5]. The user-

friendly interface of the interactive simulation tool enables individuals with limited 

knowledge of epidemiology to explore various scenarios, experiment with intervention 

strategies, and observe real-time outcomes. 

This approach not only provides valuable insights for decision-making and research but 

also raises awareness about the importance of adhering to regulations and intervention 

methods among diverse users. Ultimately, the tool contributes to the promotion of public 

health by enhancing the understanding of disease dynamics and supporting well-informed 

decision-making to effectively mitigate the impact of future outbreaks [6][7][8]. 

Our primary objectives focused on two main areas of investigation. Firstly, we aimed to 

understand the dynamics of virus propagation within a population, taking into account 

factors such as its potency, contagiousness, and population attributes such as density. 

Secondly, we aimed to examine the impact of various intervention methods, including 

vaccination and social distancing, on disease transmission. 

The Covid-19 pandemic has underscored the significance of epidemic modeling and 

simulation as essential tools for understanding disease dynamics. Simulation models offer 

valuable insights into the spread of infectious diseases, enabling the development of 

effective strategies for outbreak mitigation and informed intervention measures. 

Furthermore, the integration of an interactive tool not only educates but also engages the 

public, fostering proactive participation in public health initiatives. In summary, this 
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project aims to enhance preparedness and response capabilities, ultimately minimizing the 

impact of future epidemics. 

The simulation tool will facilitate the exploration of diverse epidemic scenarios and allow 

for the analysis of different parameters and intervention strategies to comprehend their 

impact on epidemic dynamics. The specific objectives of this report are as follows: 

• Definition of a Framework that describes the guidelines of the simulation of a 

specific disease. 

• Development of a Simulation Model: The first objective is to develop a simulation 

model based on the SIR (Susceptible-Infectious-Recovered) model. 

• Implementation of an Interactive Tool: Users will have the ability to interact with 

the tool seamlessly, modify parameters in real-time, and observe the resulting 

effects on disease spread. 

• Evaluation of Intervention Strategies: This objective entails assessing the 

effectiveness of various interventions, such as vaccination campaigns and 

quarantine policies, through rigorous experimentation within the simulation. 

• Validation with Real-World Data: The final objective is to validate the simulation 

model by comparing its outputs with real-world data on the spread of infectious 

diseases. 

The report is organized into three main chapters. The first chapter, Literature Review, 

provides a theoretical background and a comprehensive review of relevant literature in 

epidemiology. It establishes the project's foundation by discussing key concepts and 

theories. The second chapter, known as the Methodology, concentrates on the 

technologies and techniques employed to develop the interactive epidemic simulation 

tool. It outlines the specific methodologies and approaches used in the development 

process. Finally, the third chapter, Results, Analysis & Discussions, presents the 

application tests and analyzes the effects of various parameters. It also compares real-

world data with the simulation output, facilitating a comprehensive understanding of the 

project's findings and insights. 
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Chapter 1: Literature Review 

1.1 Overview  

Epidemiology is the study of the distribution and determinants of diseases and health 

conditions in populations [9][10]. Epidemics can occur when an infectious disease 

spreads rapidly through a population, causing significant illness and mortality. The 

impact of epidemics can be devastating, both in terms of public health and the economy 

[11]. Understanding how epidemics spread and the factors that contribute to their 

transmission is crucial for public health officials and policymakers to make informed 

decisions. There are different types of epidemics, including outbreaks, epidemics, and 

pandemics [12]. Outbreaks are localized epidemics that occur in a specific geographic 

area or population. Epidemics occur when an infectious disease spreads rapidly through a 

population, affecting a large number of people. Pandemics are global epidemics that 

affect multiple countries and continents [12]. This chapter lays the groundwork for the 

research project by providing a theoretical background and a comprehensive examination 

of relevant literature in the field of epidemiology. It discusses important concepts and 

theories, offering a clear understanding of the existing knowledge in this area of study. 

1.2 Epidemiology Terms 

In this section, we will define important terms that are essential for understanding and 

explaining the results. By providing straightforward explanations of these terms, we aim 

to ensure that readers have the necessary knowledge to discuss and interpret the findings 

accurately. 

1.2.1 Incubation Period 

The incubation period of a disease is the time between when a person is infectious and 

when they start showing symptoms. The incubation period is important because it affects 

the transmission dynamics of the disease. Diseases with a longer incubation period can 

spread more easily because infectious individuals may not know they are sick and can 

unknowingly spread the disease to others [13][14]. 

1.2.2 Virulence 

Virulence in epidemiology refers to the severity of disease caused by a pathogen, 

indicating its ability to harm or cause illness in infected individuals. It encompasses 

factors such as the pathogen's genetic makeup, virulence factors, and the host's immune 
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response, influencing the overall impact and potential complications of the infection. 

Understanding virulence is crucial for assessing the severity of outbreaks and guiding 

appropriate public health measures [15][16][17]. 

1.2.3 Basic Reproduction Number (R0) 

The basic reproduction number (R0), also known as “R naught” or “R zero” serves as a 

measure of how contagious or easily a disease can spread among individuals. It is a 

commonly used metric in the fields of epidemiology and public health, and is often 

discussed in both academic literature and popular media. R0 holds significant importance 

as a fundamental tool for studying the dynamics of infectious diseases. When referring to 

a specific disease outbreak, R0 is typically represented by a single numeric value or a 

range of values, indicating the potential for the outbreak to continue or subside. In 

general, R0 of an epidemiological model represents the average number of new infections 

caused by a single infectious individual [18][19] (Figure 1) in a population that is entirely 

susceptible to the disease.  

 

Figure 1 - Basic Reproduction Number Demonstration 

The basic reproduction number serves as a valuable indicator to predict whether a disease 

will persist or disappear. According to established references in mathematical 

epidemiology, when R0 is less than 1, the number of infectious individuals decreases over 

time, leading to the elimination of the disease. Under certain additional assumptions, the 

population eventually reaches a state where there are no infectious individuals, known as 

a disease-free equilibrium. On the other hand, when R0 is greater than 1, the number of 

infectious cases increases, reaches a peak, and then declines to zero in the case of 

epidemic models. In the case of endemic models, R0 causes the disease to stabilize at a 

certain level, known as an endemic equilibrium [20][21].  

R0 = 3

2 infectious initially infect 3 on average
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The measurement and modeling of R0, along with its application, should be approached 

with caution due to its indirect nature, dependence on model structures and assumptions 

[20]. In the context of the simulation, the basic reproduction number (R0) is computed 

using Equation 1. 

 𝑅! =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠	𝑡𝑜𝑑𝑎𝑦

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠	𝑡𝑤𝑜	𝑑𝑎𝑦𝑠	𝑎𝑔𝑜 (1) 

1.3 Epidemiology 

Epidemiology is a scientific discipline that focuses on studying the distribution and 

determinants of health-related events, particularly diseases, within populations. It 

encompasses the investigation of patterns, causes, and effects of diseases, as well as the 

development of strategies for disease control and prevention. Epidemiologists collect and 

analyze data to understand the frequency and distribution of diseases, identify risk factors, 

and assess the impact of interventions. By studying the epidemiology of diseases, 

researchers can gain insights into disease transmission dynamics and guide public health 

policies and practices [22][23]. 

1.4 Phases of Disease Transmission 

1.4.1 Epidemic 

An epidemic occurs when the occurrence of cases of a particular disease exceeds what is 

normally expected within a given population, geographic area, or time period [24]. 

During an epidemic, there is a rapid and substantial increase in the number of cases, 

resulting in a significant burden on healthcare systems and potentially leading to severe 

morbidity and mortality. Epidemics can arise from various factors, such as the 

introduction of a new pathogen, changes in pathogen virulence or transmissibility, and 

environmental or social factors that promote disease spread. Understanding the dynamics 

of an epidemic is crucial for implementing timely and effective control measures 

[24][25][26]. 

1.4.2 Endemic 

Endemic refers to the constant presence or usual prevalence of a disease within a specific 

population or geographic area. Unlike an epidemic, where there is a sudden surge in 

cases, endemic diseases persistently occur at a relatively steady level, often with periodic 

fluctuations. Endemic diseases are often influenced by factors such as host susceptibility, 

pathogen persistence, environmental conditions, and human behavior. Monitoring and 
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managing endemic diseases require ongoing surveillance, targeted interventions, and 

public health strategies to minimize the disease burden and maintain control over time 

[24][27]. 

1.4.3 Eradication 

Eradication refers to the complete elimination of a disease from a specific population or 

the global population. Eradicating a disease involves permanently reducing the incidence 

of infection to zero through deliberate efforts. Successful eradication efforts have been 

demonstrated in the case of diseases like smallpox, which was declared eradicated in 

1980 [28]. Eradication requires a combination of robust surveillance systems, effective 

vaccines or treatments, widespread public health interventions, and global coordination. 

Achieving eradication is a significant milestone and represents the highest level of disease 

control, offering long-term protection against the disease [5][29]. 

1.5 Compartmental Models 

Compartmental models are a common technique used in mathematical modeling, 

especially when studying infectious diseases. These models divide the population into 

different groups, like "Susceptible," "Infectious," or "Recovered". Each compartment 

represents a distinct stage of infection or disease progression [30][31]. 

1.5.1 SIR Model 

The SIR model is a type of compartmental model that is widely used due to its simplicity 

and versatility. Many derivative models are built upon this basic form, which comprises 

three compartments: S, I, and R. The S compartment represents the number of susceptible 

individuals, i.e., those who have not yet been infectious with the disease but can become 

infectious upon contact with an infectious individual. The I compartment represents the 

number of infectious individuals, i.e., those who have been infected with the disease and 

can transmit it to susceptible individuals. The R compartment represents the number of 

recovered or deceased individuals, who have either recovered from the disease and 

entered the recovered compartment or died. It is assumed that the number of deaths is 

negligible with respect to the total population. This compartment may also be referred to 

as "removed" or "resistant". The SIR model is widely used in the study of infectious 

diseases that are transmitted from human to human, like measles, mumps, and rubella. A 

spatial SIR model simulation can be used to model the spread of disease across a 

population. The S, I, and R variables represent the number of people in each compartment 
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at a specific time, and their values can vary over time due to changes in the number of 

susceptible, infectious, and recovered individuals. The model is dynamic, which means 

that the numbers in each compartment can fluctuate over time [32][33][34]. 

1.5.2 SIRV Model 

The Susceptible-Infectious-Recovered-Vaccinated (SIRV) model is an expanded variant 

of the well-established Susceptible-Infectious-Recovered (SIR) model, designed to 

incorporate the impact of vaccination on the susceptible population. The SIRV model is a 

widely-used tool for modeling infectious disease dynamics and evaluating the potential 

effects of vaccination programs on disease transmission. By considering the effects of 

vaccination in conjunction with the traditional SIR compartments, the SIRV model allows 

for a more comprehensive understanding of the dynamics of infectious diseases and the 

potential impact of vaccination interventions [32][35][36]. 

1.6 Probability 

Probability, in general, refers to the measure of the likelihood or chance of an event or 

outcome occurring. It is a mathematical concept used to quantify uncertainty and provide 

information about the chances of different outcomes in a given situation. Probability is 

expressed as a value between 0 and 1, where 0 represents impossibility (an event will not 

occur) and 1 represents certainty (an event will definitely occur). 

In the context of epidemiology, probability plays a crucial role in understanding the 

relationship between exposures and the risk of health effects. Probability calculations 

involve considering various factors, including the prevalence and incidence of diseases, 

exposure levels, demographics, and other relevant variables. By analyzing these factors 

and applying probability theory, researchers can estimate the probability of disease 

occurrence within a population or specific groups, evaluate the impact of different risk 

factors, and develop strategies for disease prevention and control. 

Probability in epidemiology allows researchers to quantify the likelihood of disease 

outcomes, understand the magnitude of associations between exposures and health 

effects, and assess the effectiveness of interventions. It helps in identifying individuals or 

populations at higher risk, informing public health policies and guidelines, and evaluating 

the impact of preventive measures on disease burden [37][38]. 
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1.6.1 Uniform Distribution 

Uniform distribution, also known as rectangular distribution, refers to a probability 

distribution in which all outcomes within a given range have equal probability. In other 

words, each value within the range has the same likelihood of occurring [39]. 

In a uniform distribution, the probability density function (PDF) is constant over the 

entire range of possible values, resulting in a rectangular shape when plotted on a graph. 

The PDF assigns equal probabilities to all values within the range and is typically 

represented as shown in Equation 2 

 𝑓(𝑥) 	= 	8
1

(𝑏	 − 	𝑎)
					𝑓𝑜𝑟					𝑎 ≤ 𝑥 ≤ 𝑏

	
0					𝑓𝑜𝑟					𝑥 < 𝑎		𝑜𝑟		𝑥 > 𝑏

 (2) 

where 𝑎 and 𝑏 represent the lower and upper limits of the range, respectively[40]. 

The cumulative distribution function (CDF) of a uniform distribution is a linear function, 

increasing steadily from 0 to 1 over the range from a to b.  When the value is below the 

starting point ‘a’, the probability is 0, meaning it cannot occur. On the other hand, when 

the value is beyond the ending point ‘b’, the probability is 1, indicating it is certain to 

happen as summarized in equation (3 [40] 

 𝑓(𝑥) 	= 	?

0	𝑓𝑜𝑟	𝑥 < 𝑎
𝑥 − 𝑎
𝑏 − 𝑎 	𝑓𝑜𝑟	𝑎 ≤ 𝑥 ≤ 𝑏

1	𝑓𝑜𝑟	𝑥 > 𝑏

 (3) 

The uniform distribution is often used in situations where each outcome has an equal 

chance of occurring, such as in random number generation, simulations, certain sampling 

techniques and in epidemiology [41]. It provides a simple and symmetric probability 

model in which all values are equally likely. 

1.7 Mathematical Disease Modeling 

The utilization of mathematical models in examining the transmission of infectious 

diseases has been a subject of investigation for many years. Among the various models 

developed, the SIR (Susceptible-Infectious-Recovered) model introduced by Kermack 

and McKendrick in 1927 as demonstrated in Equations 4, 5 and 6 

 
𝑑𝑆
𝑑𝑡 = −𝛽𝑆𝐼 (4) 
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 𝑑𝐼
𝑑𝑡 = 𝛽𝑆𝐼 − 𝛾𝐼 (5) 

 𝑑𝑅
𝑑𝑡 = 𝛾𝐼 (6) 

Where 𝛽 is the transmission coefficient and 𝛾 is the recovery rate. Adding the three 

equations together implies that the total population 𝑁 = 𝑆 + 𝐼 + 𝑅 is constant [42][43]. 

The SIR model was initially designed to depict the spread of diseases like measles, 

smallpox, and influenza [42]. Over time, it has been widely employed to simulate the 

transmission dynamics of different infectious diseases, including HIV, Ebola, and Covid-

19  [44][45][46]. 

Due to its simplicity, the SIR model has certain limitations. For instance, it assumes a 

homogeneous mixing of the population, which may not accurately represent the true 

social and spatial structure of a population [47]. Additionally, the model assumes uniform 

susceptibility and infectivity among individuals, which may not hold true in reality. 

Consequently, more complex models have been developed to address these limitations 

and account for population heterogeneity, such as the SEIR (Susceptible-Exposed-

Infectious-Recovered) model [48]. 

Despite these limitations, the SIR model has proven to be a valuable tool for studying the 

transmission of infectious diseases and informing public health policies. For example, the 

model was instrumental in simulating the spread of SARS in Hong Kong, aiding the 

government in implementing effective control measures [49]. Similarly, the model was 

utilized to simulate the spread of H1N1 influenza in Mexico, assisting in the development 

of vaccination strategies [50]. 

Numerous studies have employed the SIR model to investigate the impact of various 

control measures on disease transmission. For instance, Kucharski et al. [51] utilized the 

SIR model to assess the impact of school closures and social distancing measures on the 

spread of COVID-19 in the United Kingdom. Their findings demonstrated that a 

combination of school closures and social distancing measures significantly reduced the 

number of infections. 

Rosella et al. explored the influence of viral load on disease transmission. The authors 

propose a novel epidemic model that considers the viral load of individuals as a 

determining factor. Through microscopic and macroscopic analysis, the authors highlight 

the significance of viral load in understanding epidemic dynamics [52]. 
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Another study evaluates the usefulness of early-stage Susceptible-Infected-Recovered 

(SIR) modeling in public health, using COVID-19 as an example. The researchers 

develop a modified SIR model using Markov chain simulations to estimate the number of 

beds needed in Wuhan during the early stages of the epidemic. By comparing eight 

scenarios to real-world data, they find that the model performs better when updated data 

is used. The study concludes that early-stage SIR modeling can provide valuable 

information for public health systems and accurately predict epidemic trends [53]. 

Authored by Ian Cooper, Argha Mondal, and Chris G. Antonopoulos, another article 

explores the effectiveness of the Susceptible-Infectious-Recovered (SIR) model for 

studying the spread of COVID-19 in different communities. The SIR model allows for an 

increase in the number of susceptible individuals during surge periods and provides 

insights and predictions beyond recorded data alone. By analyzing diverse populations 

and significant parameters, the authors demonstrate the importance of modeling the 

spread of COVID-19 using the SIR model. Mathematical models, such as SIR, play a 

crucial role in estimating disease transmission and guiding effective intervention 

strategies [54]. 

Additionally, an article discusses a comparative study of mathematical models for 

epidemic diseases and their application to strategic management. The authors focus on the 

SIR (Susceptible-Infectious-Recovered) model and its parameters in Saudi Arabia during 

a 275-day period. They estimate the parameters from recorded data and use them to 

predict values for subsequent periods. The study highlights the effectiveness of lockdown 

and social distancing measures in controlling the spread of the disease. The maximum 

number of daily active infected cases is determined, and the authors emphasize the 

importance of mathematical models in developing strategies to combat epidemics [55]. 

In summary, the SIR model has played a crucial role in understanding and managing the 

spread of infectious diseases. While it has certain limitations, its simplicity and 

effectiveness have made it a valuable tool in informing public health policies. Recent 

advancements, such as incorporating spatial heterogeneity, integrating machine learning 

techniques, and considering dynamic network structures, have further improved the 

accuracy and predictive capabilities of the SIR model, enabling more effective epidemic 

control strategies. 
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1.8 Conclusion 

In conclusion, epidemiology plays a vital role in understanding and addressing the spread 

of infectious diseases. The utilization of mathematical models, particularly the SIR 

model, has been extensive in simulating disease dynamics and guiding public health 

interventions. Despite SIR model's limitations, recent research have improved its 

accuracy, enabling more effective control strategies. Our study will employ the SIR 

model, hence in the subsequent chapter, we will present our work, which expands upon it 

to develop a disease spread simulation tool.  
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Chapter 2: Methodology 

2.1 Overview 

The methodology chapter focuses on describing the development process of an epidemic 

simulation framework capable of simulating disease spread in a two-dimensional (2D) 

plane using the SIR (Susceptible-Infectious-Recovered) model under three different 

scenarios: Basic, Community, and Central Place. The simulation tool incorporates various 

adjustable parameters, such as population size, infection radius, initial number of 

infectious individuals, and quarantine policies, enabling users to experiment with 

different values through a user-friendly graphical interface. This flexibility allows for a 

wide range of simulations with diverse outcomes. The chapter elaborates on the 

methodology's steps, including the functions of the physics engine governing individuals' 

movement within the simulation space, the design and implementation of the core SIR 

model, the integration of each parameter and its associated functionalities, and the data 

collection processes for both storage and real-time visualization. Furthermore, the chapter 

addresses the challenges encountered during the development process and discusses the 

solutions that were implemented to overcome them. This chapter provides an 

encompassing framework for the development of an interactive epidemic simulation tool. 

2.2 Software Tools 

2.2.1 Python Programming Language 

The Python programming language, known for its high-level and general-purpose nature, 

was employed as the primary tool for developing the project at hand. Its design principles 

prioritize code legibility through the utilization of significant indentation via the off-side 

rule. Python can support various programming paradigms, including procedural, object-

oriented, and functional programming. Owing to its vast set of libraries and large, active 

community. 

Guido van Rossum initiated the development of Python in the late 1980s, as a successor 

to the ABC programming language. The first version, Python 0.9.0, was launched in 

1991. Subsequently, Python 2.0 was released in 2000, followed by a major revision, 

Python 3.0, in 2008. However, Python 3.0 was not entirely backward-compatible with 

prior versions. Despite this transition, Python continues to rank as one of the most widely 

used programming languages according to various rankings and surveys [56]. 
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2.2.2 Pymunk 

Pymunk is a 2D physics library for Python, built on top of the Chipmunk 2D physics 

library. It provides an easy-to-use interface for incorporating 2D rigid body physics into 

Python-based applications such as games, simulations, and demonstrations. 

Pymunk has been in active development for over 15 years and has been utilized in various 

successful projects, including three Pyweek game competition winners, multiple scientific 

papers, and a self-driving car simulation. Its effectiveness and versatility make it an 

essential resource for developers seeking to implement 2D physics simulation in various 

applications [57]. 

2.2.3 Pygame 

Pygame is a Python module that enables the creation of video games and multimedia 

programs with added functionality using the SDL library. It is highly portable and runs on 

multiple platforms and operating systems. Pygame is free and open source. Pygame's 

versatility and ease of use make it a valuable tool for building prototypes and simulations, 

particularly in the fields of computer graphics, human-computer interaction, and game 

studies. With optimized C and Assembly code for core functions, Pygame is fast and can 

easily be used on handheld devices, game consoles, and computers. It is modular, 

allowing developers to use specific parts of the library as needed. These features make 

Pygame a suitable tool for building an epidemic simulation tool [58]. 

2.3 Assumptions for SIR Model 

It is important to note that the SIR model used in this report make several assumptions 

about the population: 

• The population is fixed, meaning that no one is born or dies during the duration of 

the model. 

• Each disease has an incubation period of zero, meaning that as soon as a person is 

infected with the disease, they can immediately spread it to others. 

• The time of being infectious is equal to the length of the disease, meaning that the 

recovery time of the disease is fixed for all individuals. 

• The population is homogeneous, meaning that each individual is assumed to have 

the same health conditions, age, social status, and other characteristics. 
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2.4 Approach & Design 

 The tool built in this project is based on simulating people as particles in a 2D space 

using physics. Each person will be in one of 3 main states (Susceptible, Infectious or 

Symptomatic and Recovered) in a basic scenario. Two other states (Asymptomatic, 

Vaccinated) will be presented further with more complex simulations. 

 

Figure 2 - The Five States of the Population 

The concept involves simulating a population in a two-dimensional plane, where each 

individual is represented as a point with specific position and velocity. The primary factor 

influencing disease transmission is the distance between an infectious individual and a 

susceptible individual.  

 

Figure 3 - Visual Representation of the Simulation Space 

In a simulation that involves 500 individuals, calculating the distance between each 

person can quickly become a resource-intensive task. This challenge can significantly 

affect the simulation's performance, hindering its accuracy. To overcome this challenge, 

we came up with an innovative approach that involved using collisions as an indicator of 
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disease spread. By making use of the collisions between individuals, we could determine 

whether an infection should be transmitted or not. We used a larger transparent physical 

object that is attached to a smaller visible shape (Figure 4). This approach creates the 

impression that only the distance between two objects could lead to an infection while the 

real physical objects collided. This novel solution significantly improved the simulation's 

efficiency and accuracy, providing a more realistic representation of the spread of 

infectious diseases. 

 

Figure 4 - Visualization of the True Physical Object 

The foundational component of our simulation involved the creation of a two-

dimensional space to serve as the environment for our simulation. This space was 

populated with individual "people" objects, each assigned a random initial position and 

velocity. The people objects were modeled to have two key physical attributes: position 

and velocity; The later were updated over time randomly to make the people’s path 

curved and random avoiding straight directions or sudden direction changes. To facilitate 

this process, we leveraged Pymunk body class to efficiently manage the objects in the 

simulation, as well as the computations necessary for updating their positions. Pymunk 

also has a well optimized collision handling functions that are used to simulate the 

physical contact or interaction between two individuals. This approach allowed us to 

create a dynamic and flexible simulation environment, capable of modeling complex 

interactions and behaviors of the people objects in the two-dimensional space. 

Pymunk utilizes the collision type attribute to track each object, enabling the 

identification of individuals involved in collisions. This information is crucial in 

determining whether to transmit the disease to a specific person, based on a designated 

probability of infection. This is done in the callback function generated by the collision. If 

the callback generates an infection, it will take a specific duration specified interactively 
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before the person enters to the recovered state. Throughout this duration, if an infected 

individual comes into contact with other susceptible individuals, there is a possibility of 

disease transmission occurring. During the simulation, we add any features depending on 

the scenario. Then, we calculate and record multiple statistics like the practical 

probability of infection and R0 in order to further analyze the results.  

The simulation comprises of three distinct scenarios, namely Basic, Community, and 

Central Place. In the subsequent sections, we will delve deeper into each scenario and 

provide a detailed analysis. 

2.5 Simulation Scenarios 

2.5.1 Basic 

The Basic scenario is the simplest simulation model in which a single compartment 

represents the entire population. Individuals interact randomly with each other when 

moving around inside the 2D space. The simulation assumes that each individual has an 

equal chance of being infected and the virus transmission rate is uniform throughout the 

population. This scenario provides a baseline for the other scenarios and helps in 

understanding the basic dynamics of virus transmission in a closed population. 

 

Figure 5 - Spatial Arrangement of Elements in the Basic Scenario Simulation 

2.5.2 Community 

In this scenario, the population is divided into nine distinct communities, each with a 

random population size distributed in a 3x3 grid. Individuals can travel between 

communities, and the simulation considers more factors such as whether the traveling 

between communities is allowed or not and more importantly the traveling rate between 

communities which indicates how many individuals travel from a community to another 

per week. This scenario is more complex than the Basic scenario and provides insights 
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into the role of community structure in virus transmission and can inform whether closing 

the borders between these different communities is a reliable intervention method. 

 

Figure 6 - Spatial Arrangement of Elements in the Community’s Scenario Simulation 

2.5.3 Central Place 

In a real world, there are places in a community with higher density of population like 

universities or markets and are potential hotspots for virus transmission. Which is why we 

developed this scenario that represents places within a community that have high 

population density. The simulation forces the center to have higher population density by 

picking random individuals to travel to it. This scenario provides insights into the impact 

of central places on the spread of the virus within a community. The output of this 

simulation is more representative to the real world and can help in developing targeted 

interventions to control the spread of the virus in high-density areas. 

 

Figure 7 - Spatial Arrangement of Elements in the Central Place Scenario Simulation 

2.6 Simulation Parameters 

To facilitate experimentation with the different scenarios previously outlined, a Graphical 

User Interface (GUI) was developed. This GUI provides users with the capability to 
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dynamically adjust simulation parameters and observe their impact on the spread of the 

virus in real-time. 

The parameters are categorized into the following four groups: 

• Population Parameters 

• Disease Parameters 

• Control Measures Parameters 

• Settings Parameters 

2.6.1 Population Parameters 

Population Size 

This parameter represents the total number of individuals in the simulated population. 

The size of the population can have a significant impact on the spread of the virus, as 

larger populations can lead to more extensive outbreaks. 

2.6.2 Disease Parameters 

Infection Radius 

The infection radius parameter represents the radius of the circle around the person within 

which infection can occur. It is calculated in Equation 7. 

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛	𝑅𝑎𝑑𝑖𝑢𝑠 = 2 × 𝑅 (7) 

𝑅: Radius of physical object in Figure 4 

This parameter is essential in determining the likelihood of virus transmission between 

individuals, as individuals outside of the infection radius are not at risk of infection. 

Initially Infectious 

The Initially Infectious parameter represents the number of individuals who are infectious 

at the beginning of the simulation. This parameter can be used to model different 

scenarios, such as a single index case or a larger outbreak at the start of the simulation. 

Infection Duration 

Infection Duration represents the duration of time that an individual remains infectious. It 

is implemented by incrementing a specific counter attributed to each person individually. 

The duration of infection can vary between different viruses, and longer durations of 

infection can lead to more extensive outbreaks. 
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Infection Probability 

This parameter represents the probability of an infectious individual transmitting the virus 

to others. Programmatically, assuming that the infection probability is equal to 20%, at 

each interaction between a susceptible and infectious person, a random number is 

generated from a uniform distribution between 0 and 1. Subsequently, the generated 

number is compared with the infection probability of 20% to determine whether an 

infection will occur. Notably, If the generated number is less than 0.2 meaning that the 

value falls within the 20% range, an infection occurs. On the other hand, if the generated 

number is greater than 0.2 which happens approximately 80% of the time, no infection 

takes place. 

The probability of transmission is subject to various factors that can significantly impact 

the spread of the virus. These factors include the virulence of the disease, the use of 

protective measures such as hygiene and masks, and other host and environmental factors. 

Therefore, accurate modeling and estimation of the probability of transmission require 

careful consideration of these factors to ensure effective control and prevention of 

infectious diseases. 

2.6.3 Control Measures Parameters 

Quarantine 

The Quarantine parameter allows users to enable or disable quarantine within the 

simulation. Quarantine is a common public health intervention used to control the spread 

of infectious diseases, and the simulation of quarantine can provide insights into its 

effectiveness. The tool simulates quarantine by isolating infectious people from the rest of 

the population. 

Quarantine After 

The Quarantine After parameter defines the time interval between the onset of infection 

and the initiation of quarantine for an individual. This parameter is a critical factor in 

modeling various quarantine policies, including prompt quarantine of all symptomatic 

individuals or delayed quarantine due to a lack of public cooperation or awareness. 

Understanding the effects of quarantine policies on the epidemic's spread requires 

examining the impact of these policies under different quarantine timing conditions. 

Therefore, adjusting the quarantine after parameter in the epidemic simulation tool allows 
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researchers to explore the interplay between timing and quarantine policies in curbing 

epidemic outbreaks. 

Symptoms Probability 

The Symptoms Probability parameter represents the probability of an individual 

displaying symptoms after being infected. The same logic used to handle Infection 

probability is used to handle Symptoms probability.  

Notably, the Symptoms probability parameter is particularly relevant in modeling the 

impact of asymptomatic transmission. This is because asymptomatic individuals can 

transmit the virus without displaying any symptoms and may be missed in quarantine 

efforts. Therefore, the accurate estimation and modeling of the Symptoms probability 

parameter are crucial in controlling and preventing the spread of infectious diseases. 

Traveling 

The Traveling parameter is used only in Community’s scenario where it allows users to 

enable or disable traveling between communities within the simulation. When Traveling 

is enabled, a random individual is selected to travel to a different community every time 

interval specified by the Traveling rate parameter. This simulation of traveling provides 

valuable insights into the role of mobility in the spread of infectious diseases. 

Furthermore, it allows for an examination of the effectiveness of travel restrictions as a 

public health intervention. 

Overall, the Traveling parameter is a useful tool in modeling and analyzing the spread of 

infectious diseases in complex social networks. By incorporating the mobility factor, the 

simulation can better capture the real-world dynamics of disease transmission, and 

facilitate the development of effective control and prevention strategies. 

Traveling Rate 

The Traveling Rate parameter represents the frequency at which individuals travel 

between communities per week. This parameter can be used to model different travel 

patterns, such as regular commuting or occasional travel for social or cultural events. 

Vaccination 

The vaccination parameter allows users to enable or disable the simulation of a 

vaccination program. The implementation of the Vaccination parameter is based on the 

concept that the Infection probability of a vaccinated individual is reduced proportionally 
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to the Vaccine Efficiency parameter. This enables the simulation to reflect the impact of 

vaccination on disease transmission, and provides valuable insights into the effectiveness 

of different vaccination strategies. 

Vaccination is widely regarded as one of the most effective ways to control the spread of 

infectious diseases. Therefore, incorporating the Vaccination parameter into the 

simulation enables the exploration of different vaccination scenarios and their potential 

impact on disease control. 

Vaccine Efficiency 

The Vaccine Efficiency parameter represents the effectiveness of the vaccine in 

preventing virus transmission. This parameter can be used to model different types of 

vaccines, such as those with varying levels of efficacy. 

To simulate the impact of a vaccine in reducing the transmission of the virus, the 

Infection Probability of a vaccinated person is modified using a formula that takes into 

account the Vaccine Efficiency value. As shown in Equation 8. 

𝑁𝑒𝑤	𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑂𝑙𝑑	𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ (1 − 𝑉𝑎𝑐𝑐𝑖𝑛𝑒	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) (8) 

Since Vaccine Efficiency is a percentage, it takes values between 0 and 1. 

2.6.4 Settings Parameters 

Simulation Speed 

The simulation speed parameter allows users to control the speed of the simulation. 

2.7 Data Generation 

The interactive epidemic simulation tool offers a convenient way to save the data 

generated during each simulation. Users can simply click a button in the user interface 

(GUI) to save the data in a CSV file format (Figure 8). This allows for easy analysis and 

exploration of the data using popular tools and software. By providing this option, the 

simulation tool enhances its usability and provides valuable insights into epidemic 

dynamics and effective intervention strategies. 

 

Figure 8 - Example of data generated by a simulation 
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2.8 Graphical User Interface (GUI) 

A practical Graphical User Interface (GUI) was designed specifically for the Interactive 

Epidemic Simulation Tool. This Graphical User Interface assumes a fundamental role as 

a conduit between end-users and the simulation tool, serving to facilitate a user-friendly 

and coherent interaction with the underlying simulation model. Figure 9 demonstrates the 

GUI. 

 

Figure 9 - Interactive Epidemic Simulation Tool Graphical User Interface 

2.9 Epidemic Simulation Framework Flowcharts 

In order to visually depict the simulation and its various processes, a series of flowcharts 

have been developed to outline the key steps and components of the simulation. Figure 10 

specifically demonstrates the main program flow of the simulation. This flowchart serves 

as a visual representation of the sequence of processes that take place within the 

simulation's main program. 

The presented flowchart depicted in Figure 10 illustrates the program's setup and main 

loop. It commences with the initialization of the graphical user interface (GUI) and 

establishment of default values for simulation parameters. Upon loading the GUI, the 

simulation enters a paused state. User interaction with the tool involves modifying 

parameters and starting the simulation. During the simulation's execution, an initial step 
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involves updating the velocity of each individual that leads to randomized curved paths. 

Subsequently, a population-wide iteration is performed to process each person 

individually. Following the population processing phase, various statistics are computed, 

such as the total number of infected individuals and the current day… Furthermore, 

additional functionalities are incorporated based on specific scenarios and parameters, 

such as community-based travel or increased population density for a central location. 

Moreover, the implementation of a vaccine campaign may be included. Finally, the 

physics engine calculates the new positions of each individual, with a frame rate limit set 

at 30 frames per second to ensure smooth animation. The main loop is then repeated to 

generate the next frame. 

 

Figure 10 - Flowchart of Main Program 
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The flowchart depicted in Figure 11, illustrates the subroutine known as 'Process Person'. 

This subroutine is designed to operate on each individual in a given population, and 

execute appropriate actions based on the individual's current state (Susceptible, 

Infectious, Recovered and Vaccinated). 

If the person is infectious, a counter for the number of infectious individuals and the 

duration of infection is incremented. If quarantine is enabled and the duration of infection 

passes the threshold of illness duration before getting detected and quarantined, the 

individual is moved to quarantine. Finally, the person is drawn as a red or yellow circle 

whether its state is symptomatic or asymptomatic respectively. 

For the three other states namely: susceptible, recovered and vaccinated; Each individual 

is drawn as a light green, blue or dark green circle respectively. 

Every susceptible person in the simulation has a counter for the number of times it has 

interacted with an infectious individual. The values of each counter are summed in the 

aim to be used later for calculating the practical probability of infection. 

 

Figure 11 - Process Person Flowchart 

The flowchart in Figure 12 titled 'Calculate Statistics' is designed to compute and store 

various statistics related to the simulation. These statistics include the total number of 

susceptible, infectious or recovered individuals, the practical probability of infection, and 
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the basic reproduction number (R0) value. The calculations are made every day to avoid 

unnecessary operations that will cause the system to be slow. This subroutine processes 

data generated during the simulation to compute these values to help analyze the results. 

In the initial step, the precise number of individuals who are infectious is determined for 

each time frame in order to provide accurate data and ensure real-time updates. 

Subsequently, the remaining calculations are conducted on a daily basis within the 

simulation, commencing with the recording of the total number of cases using the formula 

in Equation 9. After that, the practical probability of infection is computed according to 

the formula denoted as Equation 10. Following this, the value of R0 is determined in 

accordance with Equation 1. It is important to note that precautions are taken to prevent 

division by zero in the last two calculations. Finally, the day counter is incremented, and 

all the accumulated data is appended to an array. In the event that the count of infected 

individuals reaches zero, the simulation is paused automatically indicating the eradication 

of the disease. 

 𝑡𝑜𝑡𝑎𝑙	𝑐𝑎𝑠𝑒𝑠 = 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠	𝑐𝑜𝑢𝑛𝑡 + 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑	𝑐𝑜𝑢𝑛𝑡 (9) 

 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑎𝑙	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑡𝑜𝑡𝑎𝑙	𝑐𝑎𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (10) 
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Figure 12 - Calculate Statistics Flowchart 

The 'Add Scenarios to Simulation' flowchart is designed to implement different actions 

based on the scenario being simulated, specifically the Community or Central Place 

scenarios. The flowchart in Figure 13 describes the steps involved in adding scenarios to 

the simulation and incorporating the appropriate actions. 
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For the community scenario, if traveling between communities is enabled, a random 

person is picked every specific duration defined by the frequency of traveling and moved 

to a different community.  

For the central place scenario, the same thing is applied with the destination being the 

center of the simulation space in order to have a higher population density mimicking 

markets and other crowded spaces. 

As the selection of individuals is determined randomly, a constraint is established to 

prevent the code from interrupting the displacement of individuals who are already in the 

process of traveling. 

 

Figure 13 - Add Scenarios to Simulation Flowchart 
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The last flowchart demonstrated in Figure 14 is responsible for processing the 

vaccination. By vaccinating a random susceptible person at every frame, the new 

probability of infection will be reduced according to formula in Equation (8). 

 

Figure 14 - Process Vaccination Flowchart 

2.10 Conclusion 

In summary, this chapter presents a methodology for designing and implementing an 

interactive epidemic simulation framework. The tool, developed using Python with 

Pymunk and Pygame libraries, includes three scenarios to explore different population 

structures and virus transmission. It utilizes collision detection to calculate distances 

between individuals and offers adjustable parameters that affect the outcomes of the 

simulation through a GUI. The tool enables data storing and visualization, facilitating the 

study of epidemic dynamics and intervention strategies. This methodology provides a 

comprehensive framework for developing an interactive tool to understand and control 

infectious disease outbreaks. Which leads to the next chapter where the impact of each 

parameter is demonstrated and discussed. Furthermore, the framework is validated by 

simulating the early stages of Covid-19 in Algeria.  
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Chapter 3: Results, Analysis & Discussions 

3.1 Overview 

This chapter provides an in-depth evaluation of the epidemic simulation framework and 

its effectiveness in modeling the spread of infectious diseases under different scenarios 

and parameter values. To demonstrate the impact of every parameter, two simulations are 

implemented with the same setup and different values for the parameter at focus. The 

generated data is then visualized, analyzed and discussed accordingly. The Real-World 

Application section validates the epidemic simulation framework by interpreting the 

results of a simulation compared to the early stages of Covid-19 in Algeria and discussing 

their implications for public health policy and future research. The chapter concludes by 

summarizing the main findings and discussing the usefulness of the simulation tool for 

modeling the spread of infectious diseases. 

3.2 Results and Analysis 

3.2.1 Population Parameters 

Population Size 

When comparing the outcomes of epidemic simulations with varying population sizes, it 

is crucial to take into account the influence of population density on disease transmission. 

A higher population size typically indicates a denser community with more interactions 

between people, which can lead to increased disease transmission. This can be verified by 

the results of simulations 1 and 2 with the corresponding parameters in Table 1. 

Table 1 - Parameters for Simulations with Different Population Size 

 Simulation 1 Simulation 2 
Population Size 300 1000 
Infection Radius 10 pixels 10 pixels 

Initially Infectious 1% 1% 

Infection Duration 10 days 10 days 
Infection Probability 7% 7% 

Figure 15 show the results of Simulations 1 and 2 respectively: 
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Figure 15 - Data Visualization for Simulations with Different Population Size 

The results of the two epidemic simulations indicate that population size has a significant 

impact on disease transmission. In simulation 1, with a population size of 300, the spread 

of the disease is flat and stable (Figure 15), and the total number of infections is low. The 

disease is eradicated within 120 days, with a total of 177 infections. This suggests that a 

smaller population size may limit the spread of the disease, as there are fewer 

opportunities for infectious individuals to come into contact with non-infectious 

individuals. 

In contrast, simulation 2, with a population size of 1000, shows a steep increase in 

infections (Figure 15), with 80% of the population being infectious simultaneously by day 

15. Additionally, 99% of the population is infected during the 40 days of the simulation. 

These results demonstrate that a larger population size can significantly increase the 

spread of the disease. The increased population density and interactions between 

individuals may facilitate the rapid spread of the disease and make it more difficult to 

control. 

3.2.2 Infection Parameters 

Infection Radius 

The objective is to investigate the effect of the Infection Radius on the propagation of the 

disease by conducting two simulations with varying Infection Radius values. Specifically, 
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the second simulation will utilize triple the Infection Radius which will represent a more 

socially engaged society with more total interactions between people. The infection radius 

could also be attributed to the disease characteristics and whether it could be spread by air 

or by direct contact like touching. The simulation parameters are outlined in Table 2. 

Table 2 - Parameters for Simulations with Different Infection Radius 

 Simulation 3 Simulation 4 
Population Size 200 200 
Infection Radius 8 pixels 24 pixels 

Initially Infectious 1% 1% 

Infection Duration 10 days 10 days 
Infection Probability 14% 14% 

The simulations yielded the results demonstrated in Figure 16: 

 

Figure 16 - Data Visualization for Simulations with Different Infection Radius 

In the first simulation, with an infection radius of 8 pixels, the disease transmission 

progresses steadily and peaks at 24 simultaneous infections by day 67. This indicates that 

the disease spreads over a relatively short distance and may be more easily controlled 

through interventions that limit contact between infectious and non-infectious individuals. 

In contrast, in the second simulation, with an infection radius of 24 pixels, the disease 

spreads at a faster rate, with 25% of the population experiencing simultaneous infections 
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by day 29. This suggests that the disease can spread over longer distances and may be 

more difficult to control through traditional interventions. 

Interestingly, the differences in infection radius and the rate of disease transmission, both 

simulations ultimately result in a different number of infections. Simulation 3 experienced 

just over 75 cases. However, Simulation 4 with the infection radius of 24 noticed a 

relatively higher number of cases with a total of 150. It is also noteworthy to highlight 

that the time frame for infection is slightly different, with the first simulation taking 93 

days and the second simulation taking 65 days. 

Infection Duration 

The duration of infection can be attributed to two potential factors. On one hand, the 

infection may be classified as acute, which means that the virus typically causes 

symptoms that develop quickly and last for a relatively short period of time. On the other 

hand, early intervention and treatment may enable individuals to recover from the 

infection promptly, leading to a reduced duration of illness. In order to visualize the 

impact of infection duration, we conducted two simulations with the parameters outlined 

in Table 3. 

Table 3 - Parameters for Simulations with Different Infection Duration 

 Simulation 5 Simulation 6 
Population Size 500 500 
Infection Radius 10 pixels 10 pixels 

Initially Infectious 1% 1% 

Infection Duration 5 days 15 days 

Infection Probability 7% 7% 

The data generated is as follows in Figure 17: 
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Figure 17 - Data Visualization for Simulations with Different Infection Duration 

Figure 17 consists of two line-plots that investigate the impact of Infection Duration on 

disease transmission. The first plot, located on the top, presents the results of a simulation 

with an infection duration of 5 days. The plot displays a steady and limited transmission 

rate due to the short duration of illness, leading to the transfer of individuals from the 

infectious category to the recovered one. This shift reduces the likelihood of further 

interactions that could result in infection, and ultimately, less than 200 infections were 

recorded in the 63-day simulation period. 

In contrast, the second plot in Figure 17 presents the results of a simulation with an 

infection duration of 15 days. The plot indicates a rapid increase in infection cases, with a 

peak of 300 simultaneous infections recorded by day 30. The epidemic persists for a more 

extended period, approximately 80 days, and reaches a staggering 97% of the population. 

The presented results illustrate the significant impact of infection duration on disease 

transmission rates. A more extended infection duration leads to a higher transmission rate, 

resulting in a more extensive spread of the disease. These findings emphasize the need for 

timely intervention measures to reduce the duration of the infection and, consequently, 

the transmission rate. Such measures include early diagnosis, prompt treatment, and 

preventive strategies such as quarantine. 
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Infection Probability 

In order to evaluate the impact of the primary parameter in the simulation, namely 

'Infection Probability,' two simulations were conducted with distinct sets of parameters. 

Lowering the probability of infection may be attributed to a multitude of factors, such as 

adherence to improved hygiene practices, enhanced respiratory etiquette as better cough 

protection, and decreased frequency of facial contact. The parameters utilized in the 

simulations are outlined in Table 4. 

Table 4 - Parameters for Simulations with Different Infection Probability 

 Simulation 7 Simulation 8 
Population Size 500 500 
Infection Radius 10 pixels 10 pixels 

Initially Infectious 1% 1% 

Infection Duration 10 days 10 days 
Infection Probability 5% 10% 

Figure 18 displays the results for simulations 7 and 8 respectively: 

 

Figure 18 - Data Visualization for Simulations with Different Infection Probability 

The presented graphs in Figure 18 illustrate the influence of Infection Probability on 

disease transmission. The first graph, representing a simulation with an infection 

probability of 5%, displays a slow increase in the number of simultaneous infections over 
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the initial 40 days. The disease reaches a maximum of nearly 100 simultaneous infections 

before gradually declining and eventually eradicating in 80 days, resulting in 

approximately 60% of the population being infectious. Conversely, the second graph 

shows a simulation with an infection probability of 10%, demonstrating a significantly 

higher transmission rate, with almost 95% of the population being infectious in less than 

45 days. The disease spread at an accelerated rate, with 300 simultaneous infections 

recorded on day 20. 

The presentation of R0, or the basic reproduction number, is a valuable opportunity to 

expound upon the relationship between this parameter and the transmission rate of 

infectious diseases. Figure 19 provides a graphical representation of R0 as a function of 

time, enabling a more comprehensive understanding of how this value influences the 

spread of diseases. 

 

Figure 19 - R0 for simulations with Different Infection Probability 

The basic reproduction number (R0) serves as a fundamental parameter in assessing the 

potential for the transmission of infectious diseases. Specifically, R0 is defined as the 

expected number of individuals who will become infectious by a single infectious 

individual, within a population where all individuals are susceptible to the disease. 

Notably, an R0 value greater than 1 suggests that the disease has a high potential for rapid 

spread throughout a population; this is demonstrated in Figure 19 when R0 value was 

greater than 1.5 when the virus transmission rate was growing exponentially in simulation 

8. While an R0 value of 1 indicates that the number of cases will remain constant. 

Conversely, an R0 value below 1 suggests that the disease is in the eradication phase. 

Thus, a clear understanding of this parameter is paramount in developing effective 

strategies for mitigating disease transmission. 
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The results of these simulations highlight the critical role of infection probability in 

disease transmission. Increased infection probability leads to a faster and more extensive 

spread of the disease, resulting in a higher number of infectious individuals within a 

shorter duration. Consequently, it underscores the need for public health interventions 

aimed at reducing infection probability, such as social distancing measures and the use of 

personal protective equipment. 

3.2.3 Control Measures Parameters 

Quarantine 

Quarantine, a widely recognized and essential method of intervention in infectious 

disease control, involves the isolation and restriction of movement for individuals who 

have been exposed to an infectious disease. Its importance lies in its ability to disrupt the 

transmission chain by separating potentially infectious individuals from the general 

population. By effectively limiting contact during the disease's incubation period, 

quarantine mitigates the risk of further spread within the community. Furthermore, it 

allows for early identification, close monitoring, and timely intervention for potentially 

infectious individuals, ensuring prompt medical care and reducing strain on healthcare 

systems. Notably, quarantine also serves to safeguard vulnerable populations, such as the 

elderly or immunocompromised, who are at heightened risk of severe illness. 

Additionally, its implementation communicates the gravity of the situation, instilling 

public awareness and fostering a sense of collective responsibility in adhering to 

preventive measures.  

To assess the impact of quarantine, we conducted two simulations building upon the 

scenario presented in Figure 15, specifically Simulation 2. In the following simulations, 

we implemented a quarantine measure once the number of infections reached a 

predetermined threshold of 100. By introducing quarantine at this point, we aimed at 

observing its effect on the subsequent progression of the epidemic. The parameters for 

simulations 9 and 10 are shown in Table 5. 
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Table 5 - Parameters for Simulations with Different Quarantine Policies 

 Simulation 9 Simulation 10 
Population Size 1000 1000 
Infection Radius 10 pixels 10 pixels 

Initially Infectious 1% 1% 

Infection Duration 10 days 10 days 
Infection Probability 7% 7% 

Quarantine After 5 days 3 days 

The results of the simulations are demonstrated in Figure 20: 

 

Figure 20 - Data Visualization for Simulations with Different Quarantine Policies 

Figure 20 illustrates the impact of Quarantine and timely intervention on disease spread 

within a population. Simulation 9 shows that quarantining infectious individuals after 5 

days of illness results in a slightly improved situation compared to Simulation 2 (without 

quarantine), with slower disease progression and 25% fewer maximum simultaneous 

infections. However, the overall reduction in total infections is only 20%. In Simulation 

10, where individuals are quarantined after 3 days of illness, there is a significant 

decrease of 70% in the number of simultaneous cases, and only half of the population 

becomes infectious before the disease is eradicated by day 40. These findings emphasize 

the crucial role of early detection, swift response, and effective implementation of 

quarantine measures in mitigating the spread of infectious diseases. Swift and efficient 

intervention measures are vital to protect public health and limit the impact of outbreaks. 
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Symptoms Probability 

To account for the complexities of real-world disease dynamics, where individuals can 

carry infections without displaying symptoms, we incorporated the parameter of 

Symptoms Probability into our simulations. To further investigate the influence of 

varying asymptomatic rates on disease transmission, we conducted Simulation 11 and 

Simulation 12, both based on the framework of Simulation 10. In Simulation 11, we 

assumed a symptomatic rate of 80%, implying that 80% of infectious individuals would 

remain symptomatic. Conversely, Simulation 12 featured a reduced symptomatic rate of 

40%, indicating a higher proportion of asymptomatic cases. By analyzing the results of 

these simulations, we aimed to gain insights into how the presence or absence of 

symptoms affects the spread and severity of the disease. This investigation underscores 

the significance of considering symptoms probabilities in epidemic modeling and 

informing effective intervention strategies. 

Table 6 - Parameters for Simulations with Different Symptoms Probability 

 Simulation 11 Simulation 12 
Population Size 1000 1000 
Infection Radius 10 pixels 10 pixels 
Initially Infectious 1% 1% 

Infection Duration 10 days 10 days 

Infection Probability 7% 7% 

Quarantine After 3 days 3 days 
Symptoms Probability 80% 40% 

Figure 21 visualizes the results for simulations 11 and 12 respectively 
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Figure 21 - Data Visualization for Simulations with Different Symptoms Probability 

Simulation 11 represents an intermediate scenario between quarantining the entire 

infectious population and taking no action at all, resulting in 400 simultaneous infections 

by day 20. Approximately 80% of the population is infected within the 63 days of the 

simulation. This outcome suggests that implementing quarantine measures for a 

population with a few missed cases has a partial but limited impact on reducing the 

number of simultaneous infections. In contrast, Simulation 12 closely resembles a 

scenario where quarantine fails to be effective, with over 95% of the population becoming 

infectious in less than 40 days. This failure is primarily attributed to a significant 

proportion (60%) of asymptomatic individuals who continue to spread the disease, 

evading detection and undermining quarantine efforts. These results underscore the 

crucial role of symptomatic presentation and successful implementation of quarantine 

measures in controlling disease transmission. Comprehensive strategies incorporating 

early detection, timely isolation, and awareness of asymptomatic cases are essential for 

effective containment of infectious diseases. 

These results underscore the crucial role of public awareness and collective collaboration 

in effectively implementing quarantine measures. The success of quarantine relies heavily 

on individuals' understanding of the need to isolate themselves when experiencing 

symptoms. Public education campaigns, clear communication of guidelines, and fostering 

a sense of responsibility among the population play a pivotal role in ensuring widespread 

compliance with quarantine protocols. By cultivating a culture of awareness and active 

participation, communities can enhance the effectiveness of quarantine measures, leading 
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to a more successful containment of infectious diseases. These findings highlight the 

significance of asymptomatic cases and emphasize the essential role of individual 

behavior and societal cooperation in mitigating disease transmission through effective 

quarantine practices. 

Traveling 

In the context of the community’s scenario, the traveling parameter plays a significant 

role in shaping the dynamics of disease spread. To illuminate the influence of traveling 

rate on the transmission of the disease, we conducted a series of simulations specifically 

tailored to this scenario. These simulations, denoted as Simulation 13 and Simulation 14, 

were designed to explore the effect of varying traveling rates on the epidemic's 

progression. Simulation 13 focused on a higher traveling rate, reflecting a scenario where 

individuals frequently move between communities. Conversely, Simulation 14 examined 

a lower traveling rate, representing a scenario where mobility between communities is 

limited. By comparing the outcomes of these simulations, we aimed to discern the impact 

of traveling rate on the spread of the disease and assess its role in facilitating or inhibiting 

transmission between different communities.  

Table 7 summarizes the corresponding parameters of the two simulations. 

Table 7 - Parameters for Simulations with Different Traveling Rate 

 Simulation 13 Simulation 14 
Population Size 500 500 
Infection Radius 16 pixels 16 pixels 
Initially Infectious 1% 1% 

Infection Duration 10 days 10 days 

Infection Probability 7% 7% 

Traveling Rate 14 per week 4 per week 

The data generated in the two simulations are visualized in Figure 22. 
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Figure 22 - Data Visualization for Simulations with Different Traveling Rate 

The analysis of Simulation 13 and Simulation 14 reveals contrasting outcomes regarding 

the spread of the disease in different communities, influenced by the traveling rate 

between them. In Simulation 13, the number of infections fluctuates over time, remaining 

below 100 cases without surpassing this threshold. This behavior can be attributed to the 

higher traveling rate, which facilitates the transmission of the disease between 

communities. Consequently, seven communities become compromised, resulting in a 

total of 366 infections by day 105. 

In contrast, Simulation 14 presents a different pattern of disease spread. Initially, there is 

an increase in infections within the first two communities. However, due to the lower 

traveling rate between communities, the disease fails to spread beyond these initial areas. 

As a result, the infection is effectively contained, and the disease is eradicated by day 57 

with a total of 171 infections. The distinct outcomes observed in these simulations can be 

explained by the role of traveling rate in disease transmission. In Simulation 13, the 

higher traveling rate allows for increased interaction and contact between communities, 

facilitating the spread of the disease across multiple areas. This results in a higher overall 

number of infections and the involvement of a larger number of communities in the 

outbreak. In Simulation 14, the lower traveling rate acts as a limiting factor for disease 

transmission. The reduced movement between communities restricts the spread of the 
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infection beyond the initial areas, ultimately leading to containment and eradication 

within a shorter timeframe. 

These findings emphasize the significance of considering the interplay between traveling 

rate and disease spread in assessing the effectiveness of containment strategies. 

Implementing measures to regulate or restrict travel between communities can be an 

effective strategy to mitigate disease transmission, as observed in Simulation 14. This 

highlights the importance of comprehensive approaches that account for various factors, 

such as population movement patterns, in designing interventions and control measures to 

effectively manage and contain infectious diseases. 

Vaccination 

In order to examine the effects of vaccination within the SIRV model, an additional 

category, "Vaccinated," was introduced to the classic Susceptible-Infectious-Recovered 

framework. Simulations 15 and 16 were based on simulation 6 to showcase the impact of 

vaccination on disease dynamics. Vaccination in these simulations was initiated once the 

number of infections surpassed a predetermined threshold of 100. Simulation 15 

simulated a scenario with low vaccination efficiency, reflecting a situation where vaccine 

is ineffective for the different people in the population. In contrast, Simulation 16 

represented a scenario with higher vaccination efficiency, aiming to evaluate the potential 

of vaccination in reducing disease spread and mitigating its impact. Through these 

simulations, we investigated the influence of vaccination on the overall trajectory of the 

epidemic, including its ability to reduce infections and limit the severity of the outbreak.  

Table 8 demonstrates the different parameters used in the two simulations. 

Table 8 - Parameters for Simulations with Different Vaccine Efficiency 

 Simulation 15 Simulation 16 
Population Size 500 500 
Infection Radius 10 pixels 10 pixels 

Initially Infectious 1% 1% 
Infection Duration 15 days 15 days 

Infection Probability 7% 7% 

 Vaccine Efficiency 40% 90% 

The obtained data is visualized in Figure 23 and Figure 24 
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Figure 23 - Data Visualization for Simulations with Different Vaccine Efficiency 

Simulations 15 and 16 implemented a vaccination program, commencing on days 13 and 

14 respectively. In Simulation 15, all individuals who had not contracted the disease were 

vaccinated by day 23. However, despite this intervention, the vaccine exhibited low 

efficacy, resulting in 88% of the population becoming infectious over the course of the 

73-day simulation period. In contrast, Simulation 16 demonstrated a significant reduction 

in the number of infections, with only 46% of the population contracting the disease 

compared to the original simulation (Simulation 6), where 96% were infected. 

Remarkably, the virus was eradicated in a mere 54 days. The predefined vaccine 

effectiveness of 90% in this simulation elucidates the critical role of vaccination as an 

effective intervention strategy against epidemics. These findings underscore the 

importance of high vaccine efficacy in achieving substantial control over disease 

transmission. The results also underscore the importance of rigorous vaccine testing and 

ensuring its effectiveness to ensure a successful intervention against infectious diseases. 

One of the gathered data from running a simulation is the practical probability of 

infection; Figure 24 visualizes the effect of the vaccination on this metric. 



 47 

 

Figure 24 - Practical Infection Probability for Simulations with Different Vaccine Efficiency 

This graph illustrates the effect of vaccination on the likelihood of individuals contracting 

the disease in real-world scenarios. The data clearly shows that simulation 6 with higher 

vaccination efficiency exhibit significantly reduced practical probabilities of infection, 

indicating the effectiveness of vaccination in lowering the risk of contracting the disease. 

Conversely, simulation 15 with lower vaccine efficiency demonstrate notably higher 

probabilities of infection.  

Central Place 

Within the Central Place scenario, which emulates real-world dynamics by incorporating 

a central location with a higher population density, we conducted two simulations to 

examine the impact of a central place compared to a basic simulation environment. 

Building upon simulations 3 and 4, simulations 17 and 18 were specifically designed to 

explore the effects of the central place in terms of disease spread dynamics. 

Hypothetically, we expected that the presence of a central place would result in a more 

rapid and extensive transmission of the disease, given the higher population density and 

increased interactions within this central hub. Through the analysis of these simulations, 

we aimed to assess whether the central place indeed influences the spread of the disease, 

providing valuable insights into the role of densely populated central locations in 

epidemic scenarios. 
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Table 9 - Parameters for Simulations in Central Place Scenario 

 Simulation 17 Simulation 18 
Population Size 500 500 
Infection Radius 8 pixels 24 pixels 

Initially Infectious 1% 1% 

Infection Duration 10 days 10 days 
Infection Probability 7% 7% 

Figure 25 visualizes the obtained results 

 

Figure 25 - Data Visualization for Simulations in Central Place Scenario 

Figure 25 illustrates the results of Simulations 17 and 18, which reveal a higher 

transmission rate compared to Simulations 3 and 4, respectively. In both Simulations 17 

and 18, a slightly larger number of infections is observed, with over 98% of the 

population being infectious. The use of a central place in these simulations implies a 

higher population density; Hence, more interactions that results in more infections, 

confirming the findings from Simulations 1 and 2. The denser population in the central 

place in Simulations 17 and 18 contributes to a faster transmission rate and a greater 

number of infections. These results provide further evidence supporting the correlation 

between community density and disease transmission, emphasizing the significance of 

accounting for crowded locations when formulating strategies to effectively manage and 

mitigate the propagation of infectious diseases. 
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3.3 Real-World Application 

To further validate the effectiveness of our interactive epidemic simulation tool, we 

conducted an in-depth analysis of a dataset capturing the daily progression of the Covid-

19 pandemic. By some investigation and data collection about Covid-19 and leveraging 

the capabilities of our developed tool, we performed a simulation that closely mirrored 

the observed rate of transmission, reproducing the propagation patterns of the virus and 

aligning them with empirical data. This empirical validation not only demonstrated the 

efficacy of our tool but also provided a deeper understanding of the underlying 

mechanisms governing the spread of Covid-19. 

Dataset Description 

The COVID-19 Daily Progression dataset, sourced from the World Health Organization 

(WHO) [59], provides a concise and reliable overview of the daily progression of 

COVID-19 in 237 countries. It serves as a valuable resource for researchers, analysts, and 

policymakers seeking up-to-date and credible information to track the global impact of 

the pandemic and inform decision-making processes. The dataset is organized as shown 

in Table 10 

Table 10 - Description of Variables in Covid-19 Dataset 

Field name Type Description 

Date_reported Date Date of reporting to WHO 

Country_code String ISO Alpha-2 country code 

Country String Country, territory, area 

WHO_region String 

Regional Office for Africa (AFRO), Regional Office for 
the Americas (AMRO), Regional Office for South-East 
Asia (SEARO), Regional Office for Europe (EURO), 
Regional Office for the Eastern Mediterranean 
(EMRO), Regional Office for the Western Pacific 
(WPRO) 

New_cases Integer 
New confirmed cases. Calculated by subtracting 
previous cumulative case count from current cumulative 
cases count 

Cumulative_cases Integer Cumulative confirmed cases reported to WHO to date 

New_deaths Integer 
New confirmed deaths. Calculated by subtracting 
previous cumulative deaths from current cumulative 
deaths 

Cumulative_deaths Integer Cumulative confirmed deaths reported to WHO to date 
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Data Preprocessing & Assumptions 

In order to focus our analysis on a specific country, namely Algeria, we filtered the 

extensive dataset comprising Covid-19 statistics from 237 different countries. Our 

objective was to extract the daily progression of the pandemic within Algeria and 

compare it with the simulated outcomes generated by our tool. To facilitate this 

comparison, we required the values for three key variables: susceptible, infectious, and 

recovered individuals. By employing appropriate feature engineering techniques on the 

available "Cumulative cases" data and under the assumptions that the duration of 

infection for Covid-19 is 15 days [60] and the total susceptible population in Algeria 

during the early stages of the virus is approximately 20,000 individuals. We successfully 

derived these essential variables using the formulas in Equations 8, 9 and 10. 

 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 = 	𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒	𝑐𝑎𝑠𝑒𝑠 − 	𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒	𝑐𝑎𝑠𝑒𝑠	(𝑠ℎ𝑖𝑓𝑡𝑒𝑑	𝑏𝑦	15	𝑑𝑎𝑦𝑠) (11) 

 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 = 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒	𝑐𝑎𝑠𝑒𝑠	(𝑠ℎ𝑖𝑓𝑡𝑒𝑑	𝑏𝑦	15	𝑑𝑎𝑦𝑠) (12) 

 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 = 20000 − (𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 + 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑) (13) 

As the simulation tool does not support over 1000 individuals. A population size of 500 

individuals was selected for similar population density. We sliced the first 100 days after 

the first Covid-19 case in Algeria. The obtained results are shown on Figure 26. 

Simulation 

To simulate the breakthrough of Covid-19 in Algeria, the following parameters in Table 

11 were used. 

Table 11 - Parameters for Simulation of Covid-19 Outbreak in Algeria 

 Covid Simulation 
Population Size 500 
Infection Radius 5 pixels 

Initially Infectious 1% 

Infection Duration 15 days 
Infection Probability 3% 

The results of the simulation are shown in Figure 26 
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Figure 26 - Data Visualization for Real World and Simulation of Covid-19 Outbreak in Algeria 

The findings presented in Figure 26 demonstrate a remarkable similarity between the rate 

of transmission of Covid-19 in Algeria, as observed in real-world data, and the outcomes 

derived from a simulation model. Notably, both scenarios depict a gradual and consistent 

progression of transmission throughout a 100-day period. Moreover, the final tally of 

infections in both instances approximates slightly less than 50% of the total population. 

These similar patterns provide compelling evidence to support the assertion that our 

simulation tool possesses the capacity to effectively emulate the spread of actual diseases 

when equipped with appropriate parameters and informed assumptions as foundational 

elements. This validation of the simulation tool's efficacy offers researchers and 

policymakers a valuable resource for forecasting and assessing disease dynamics, thereby 

contributing to enhanced preparedness and response strategies. 

3.4 Conclusion 

In conclusion, the 'Results, Analysis & Discussions' chapter provided a comprehensive 

evaluation of an epidemic simulation framework and its effectiveness in modeling the 

spread of infectious diseases. Through the implementation of various simulations and 

analysis of the generated data, several key findings emerged. 

Firstly, population size was found to have a significant impact on disease transmission. 

Simulations showed that a larger population size led to a faster and more extensive spread 
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of the disease, highlighting the importance of population density and interactions between 

individuals. 

Secondly, the infection radius parameter played a crucial role in the propagation of the 

disease. Simulations demonstrated that a larger infection radius resulted in a faster spread 

of the disease over longer distances, making it more difficult to control through traditional 

interventions. 

Thirdly, the duration of infection was found to be a critical factor in disease transmission 

rates. Simulations showed that a longer infection duration led to a higher transmission 

rate and a more extensive spread of the disease, emphasizing the need for timely 

intervention measures to reduce the duration of infection. 

Fourthly, the infection probability parameter had a significant impact on disease 

transmission. Higher infection probability resulted in a faster and more extensive spread 

of the disease, highlighting the importance of public health interventions aimed at 

reducing infection probability, such as social distancing measures and the use of personal 

protective equipment such as hygiene and facemasks. 

Additionally, the effectiveness of control measures was evaluated. Simulations showed 

that early detection and swift response, along with effective implementation of quarantine 

measures, played a crucial role in mitigating the spread of infectious diseases. 

Furthermore, the presence or absence of symptoms had a considerable impact on disease 

spread and severity. Simulations demonstrated that a significant proportion of 

asymptomatic cases could undermine quarantine efforts and lead to a higher overall 

transmission rate. 

Lastly, the role of public awareness and collective collaboration in implementing control 

measures was highlighted. The success of interventions such as quarantine relied on 

individuals' understanding and adherence to guidelines, emphasizing the need for public 

education campaigns and clear communication. 

Overall, the findings from this chapter underscore the complex dynamics of disease 

transmission and the importance of various parameters and control measures in shaping 

the spread of infectious diseases. The simulation framework proved to be a valuable tool 

for modeling and analyzing the impact of different scenarios, providing insights that can 

inform public health policy and future research efforts.  
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Conclusion 

This project aimed at proposing and evaluating an Interactive Epidemic Simulation 

Framework for modeling the spread of infectious diseases based on SIR model. The tool 

successfully provided a platform for simulating various scenarios and manipulating 

parameter values to analyze the impact of population and infection parameters on disease 

transmission dynamics. 

The simulations conducted using the tool highlighted the crucial role of population size in 

disease propagation. Larger populations were found to facilitate a rapid spread of 

infections due to higher population densities and increased interactions between 

individuals. Conversely, smaller populations exhibited limited disease spread, indicating 

that reduced opportunities for contact between infectious and non-infectious individuals 

can help contain outbreaks. 

Moreover, the investigation into infection parameters underscored the significance of the 

infection radius. Simulations with smaller infection radii demonstrated more controlled 

spread, while larger radii resulted in a substantial escalation of infections. These findings 

emphasize the importance of interventions that limit contact between infectious and 

susceptible individuals in curbing the spread of infectious diseases. 

The Interactive Epidemic Simulation Tool proved to be an effective resource for 

modeling disease dynamics and analyzing epidemic trends. By providing the ability to 

simulate different scenarios and manipulate parameter values, the tool facilitated a deeper 

understanding of the complex relationship between population dynamics, infection 

parameters, and disease transmission patterns. This enhanced understanding has practical 

implications for public health policy and intervention strategies. 

However, it is important to acknowledge the limitations of the tool and the study. The 

simulations were based on specific assumptions and simplifications, and real-world 

scenarios may involve additional complexities and factors. Future improvements could 

explore the incorporation of more realistic parameters and consider the impact of other 

variables, such as vaccination rates, mobility patterns, and behavioral factors, to further 

enhance the tool's accuracy and applicability. 

In conclusion, this project successfully developed and evaluated an Interactive Epidemic 

Simulation Tool that demonstrated its effectiveness in modeling the spread of infectious 

diseases. The tool's capability to simulate various scenarios and manipulate parameter 
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values provided valuable insights into the impact of population and infection parameters 

on disease transmission. This project contributes to the field of public health by offering a 

practical tool for designing effective strategies to prevent and control epidemics. By 

further refining and expanding upon simulation tools like this, we can improve our 

preparedness and response to future disease outbreaks, ultimately safeguarding public 

health and well-being.  
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