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ABSTRACT  

In many industries that utilize machinery and equipment, the efficient preventive 

maintenance scheduling, which is a complex optimization problem, plays a crucial role in 

maintaining their machines and equipment. The preventive maintenance aims to carry out 

maintenance procedures prior to equipment failure in order to avoid expensive downtime and 

repairs.  

This thesis addresses the optimal Generators preventive-Maintenance Scheduling 

(GMS) problem in electric power systems that includes several machines. This problem can be 

solved using a variety of ways, such as metaheuristic methods and mathematical programming. 

The problem is formulated as a mathematical optimization model using mathematical 

programming techniques, and the best solution is then found using algorithms. Simulating the 

maintenance schedule allows you to assess its effectiveness while modeling the equipment and 

its failure behavior. Metaheuristic methods entail creating maintenance schedules utilizing 

generalizations or subject-matter expertise. The primary objective of this thesis is to contribute 

to the performance improvement of a discrete evolutionary algorithm for a reliable and 

extremely accurate optimization of the discrete objective functions in order to address the issue 

of the best preventive maintenance scheduling of power systems generators. For planning the 

generator preventative maintenance, a modern metaheuristic algorithm named "the Discrete 

Mayfly Optimization (DMFO)" has been designed. This algorithm was proposed as an 

innovative swarm intelligence optimization algorithm in 2020, it combines the advantages of 

several existing optimization algorithms. This algorithm has been used in several applications 

including industrial optimization, ensemble forecasting system, and photovoltaic systems. A 

First-Bit Flip and Shift (FBFS) strategy for binary vectors, which is a process of manipulating 

binary vectors, has been first proposed to improve the performance of evolutionary algorithms. 

The FBFS strategy is a local search strategy that performs small changes to the obtained 

solutions to help evolutionary algorithms in local optimization and avoiding them from getting 

stuck in local optima. The proposed technique has been evaluated on a 21-unit test power 

system with a peak power load demand of 4739 MW in three cases where the total number of 

the workers available per week is limited. The improved algorithm showed at the end its 

effectiveness to find a solution for the GMS problem where the Sum of Squares of the Reserves 

(SSR) of generation is minimized. The results are compared to previous works that used other 

metaheuristic techniques in order to evaluate the performance of the proposed FBFS-DMFO 

algorithm and its search process in solving power system GMS problem. 
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 الملخص

ي مشننة ة تيخننن  ع عهجلآعلة الصنننا ة الائاةنة الاعالة في بعض الصننعاتاا ال ي تخنن الآلا اواا عالتعلآااع ت ع 

ع دعرًا مهتًا في صنننا ة هجههتها عمعلآاتهات تهلآا الصنننا ة الائاةنة تلف تعانر تجتاااا الصنننا ة ئل  تعع  التعلآاا م  معقلآة

 .هج  تجع  الأتعال عالإصلاحاا اللاهظة

في ه ظتة العائة الةهتباةنة ال ي تشننت  تلآة  ت عاعل هره التسننالة التشننة ة التل ف لجلآعلة الصنننا ة الائاةنة ل تاللآاا

عاللتمجة  الااارزمناا ال عارية ع مل  طت باسننننننن الآالا مجتاتة م عاتة م  العت ح  هره التشنننننننة ة  يتة  .آاا

ع ثم ي م العلار ت ف هفض  ح  اس الآالا تقعناا اللتمجة التياضنةصناغة التشة ة كعتاذج تيخن  رياضي بالتياضنةت تتت 

تخننتم مياكاة جلآعل الصنننا ة ب قننم فعالن ها هثعاا  ترجة التعلآاا عسنن اا فشنن هات تخنن  هلا  .ا ال عاريةباسنن الآالا الااارزمنا

هع الالتة في التاضاعت الهلآا الأساسي م  هره الأطتعحة ها  ت شاا جلآاعل صنا ة باس الآالا ال عتنتاا ال عاريةالعت  

 الغنت التخ تتة التخ هلآفة ل لآعالالتخاهتة في تيخن  هداا خاارزمنة تعارية معاص ة م  هج  تيخن  ماثا  عدئنق ل غاية 

ع تم تصتنم ااالائاةنة ل تاللآل  اعنط ل صنا ة م  هج  معالجة مخألة هفض  تاعنط ل صنا ة الائاةنة لتاللآاا ه ظتة العائةت 

تم ائ تاح هره الااارزمنة كااارزمنة مل ةتة  ت ل  يخننن ذباب مايا التعاصنن ة حلآيلة تخننتف وخاارزمنة تعاريةخاارزمنة 

ع فهي تجتع بن  مهايا العلآيلآ م  خاارزمناا ال يخننننننن  اليالنةت تم اسنننننن الآالا هره 2020ل يخننننننن  ذكاا الخننننننتب في تالا 

لآ م  ال علنقاا بتا في ذلك ال يخننننننن  الصننننننعاتي ع ظالا ال عللأ الجتاتي عالأ ظتة الةهتعضنننننناةنةت تم الااارزمنة في العلآي

هي  اسننننننن تاتنجنةهره ع ل يخنننننننن  هداا الااارزمناا ال عاريةت ل ت جهاا اللعاةنة ائ تاح اسننننننن تاتنجنة اا قلاب عال يال

تم اليصال ت نها لتخاتلآة الااارزمناا ال عارية  اس تاتنجنة بيث مي نة تقالا بإجتاا تغننتاا صغنتة ت ف الي ال ال ي

عحلآة  21في ال يخننننن  التي ي عتجع  الائاع في مشننننة ة مي نةت تم تقننم ال قعنة التق تحة ت ف  ظالا طائة اخ لار مةا  م  

عداًت منجاعاا في ثلاث حااا حنث يةا  العلآد الإجتالي ل عتال الت احن  في الأسنننلاع ميلآ 4739مع حتالة ئصننناب تل   

حنث ي م  جلآعلة الصنا ة الائاةنة ل تاللآاا الةهتباةنة هظهتا الااارزمنة التيخّعة في العهاية فعالن ها في تيجاد ح  لتشة ة

م  هج   ال عارية  قعنااالل  النلآت تتت مقار ة الع اةج بالأتتال الخننابقة ال ي اسنن الآمت  تق ن  مجتاع متبعاا ااح ناطناا

 .لعظالا العائة جلآعلة الصنا ة الائاةنة ل تاللآاا الةهتباةنةالتق تحة عتت نة الليث في ح  مشة ة  ةااارزمنالتقننم هداا 
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Résumé  

Dans certaines industries qui utilisent des machines et des équipements, la planification 

efficace de la maintenance préventive, qui est un problème d'optimisation complexe, joue un 

rôle crucial dans la maintenance de leurs machines et équipements. La maintenance préventive 

vise à effectuer des procédures de maintenance avant la panne de l'équipement afin d'éviter des 

temps d'arrêt et des réparations coûteux.  

Cette thèse aborde le problème optimal de planification de la maintenance préventive 

des générateurs (GMS) dans les systèmes d'alimentation électrique comprenant plusieurs 

machines. Ce problème peut être résolu de différentes manières, telles que les méthodes méta 

heuristiques et la programmation mathématique. Le problème est formulé comme un modèle 

d'optimisation mathématique à l'aide de techniques de programmation mathématique, et la 

meilleure solution est ensuite trouvée à l'aide d'algorithmes. La simulation du planning de 

maintenance permet d'évaluer son efficacité tout en modélisant l'équipement et son 

comportement en cas de panne. Les méthodes méta heuristiques impliquent la création de 

calendriers de maintenance en utilisant des généralisations ou une expertise en la matière. 

L'objectif principal de cette thèse est de contribuer à l'amélioration des performances d'un 

algorithme évolutif discret pour une optimisation fiable et extrêmement précise des fonctions 

objectives discrètes afin de répondre à la problématique de la meilleure planification de la 

maintenance préventive des générateurs des systèmes électriques. Pour planifier la maintenance 

préventive des générateurs, un algorithme méta-heuristique moderne nommé "l'algorithme 

d'optimisation discrète de Mayfly (DMFO)" a été conçu. Cet algorithme a été proposé comme 

algorithme innovant d'optimisation de l'intelligence en essaim en 2020, il combine les avantages 

de plusieurs algorithmes d'optimisation existants. Cet algorithme a été utilisé dans plusieurs 

applications, notamment l'optimisation industrielle, le système de prévision d'ensemble et les 

systèmes photovoltaïques. Une stratégie First-Bit Flip and Shift (FBFS) pour les vecteurs 

binaires a d'abord été proposée pour améliorer les performances des algorithmes 

évolutionnaires. La stratégie FBFS est une stratégie de recherche locale qui effectue de petites 

modifications des solutions obtenues pour aider les algorithmes évolutifs dans l'optimisation 

locale et éviter qu'ils ne restent bloqués dans les optima locaux. La technique proposée a été 

évaluée sur un système électrique de test de 21 unités avec une charge maximale de 4739 MW 

dans trois cas où le nombre total de staff disponibles par semaine est limité. L'algorithme 

amélioré a montré à la fin son efficacité pour trouver une solution au problème GMS où la 

Somme des Carrés des Réserves (SSR) de génération est minimisée. Les résultats sont comparés 
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à des travaux antérieurs qui utilisaient d'autres techniques méta-heuristiques afin d'évaluer les 

performances de l'algorithme FBFS-DMFO proposé et de son processus de recherche dans la 

résolution du problème GMS du système électrique. 
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GENERAL INTRODUCTION 

The provision of uninterrupted electrical energy to clients is currently the most crucial 

aspect of power networks. Unwanted power system infirmities are mostly caused by various 

electric power system failures, which might occur at improbable times and in varied locations 

within the various parts as well as pauses. The clients' service would be interrupted as a result 

of this unwelcome outage. In order to lessen and prevent the recurrence of these failures and to 

ensure that the power systems are operating in an efficient and dependable manner, it is crucial 

to establish an effective maintenance strategy. Corrective and preventive processes are used to 

carry out maintenance.  

 

The optimal Generator Maintenance Scheduling (GMS) problem's primary function in 

power systems is to create an ideal schedule for the preventive maintenance of the generator 

portion units. An ideal GMS increases the operational reliability of power systems, increases 

the lifespan of the generators, and lowers the cost of generator maintenance. An optimization 

problem is how the GMS problem is put forth. This issue should be resolved by ensuring the 

power systems' dependability at low operating costs while also satisfying the load's power 

consumption and workforce limitations. Since precise mathematical techniques have been 

applied in the past to find exact answers to small-scale problems, the GMS problem has been 

researched for a long time. These traditional mathematical methods, however, have a number 

of drawbacks and suffer from excessive computing demands as system dimension rises. For 

medium-scale power systems, traditional approximate approaches have been used to get around 

the shortcomings of accurate methods. For wide-area systems with large dimensions, they do, 

however, only provide approximations of the solutions and need a significant computational 

effort.  

 

Modern techniques based on metaheuristic optimization have recently played a 

significant role in resolving the GMS problem and overcoming the shortcomings of 

approximate techniques. In this thesis, a proposed Binary vector First-Bit Flip and Shift (FBFS) 

strategy with the Discrete Mayfly Optimization (DMFO) algorithm are used to schedule the 

preventive maintenance of the generators used in electric power systems. To enhance both the 

exploration and exploitation phases, the suggested algorithm is based on the FBFS and DMFO 

strategies. The GMS problem is modeled using an objective function of the Sum of Squares of 

the Reserves (SSR) of generations as the dependability requirement. By minimizing an 
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evaluation function comprised of the weighted sum of the objective function and the penalty 

function for violating the constraints, the optimization process is carried out.  

 

The suggested strategy has been applied in a 21-unit test system over a planned horizon 

of 52 weeks, where the highest generation is 5688 MW, the peak load is 4739 MW, and limited 

workforce available each week to do the maintenance chores. Multiple statistical tests have 

been used to compare the proposed method to current methods used in comparable works. The 

acquired results demonstrate the suggested algorithm's superiority over other current methods 

for tackling the GMS problem. Currently, this method may be depended upon to address issues 

with the scheduling of maintenance for power system generators. 
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1. STATE OF THE ART 

1.1. Motivation 

Today, it is crucial to provide consistent, dependable electricity due to the growing 

demand for electrical energy. One of the most important factors of supplying reliable electrical 

energy to the necessary industrial and urban loads is the scheduling of generating unit 

maintenance [1]. 

The goal of maintenance is to increase the lifetime of power generation facilities or 

at least to increase the interval between failures that could result in expensive repairs. The 

frequency of service outages and their effects can also be decreased with an efficient 

maintenance schedule. In order to make a power system operates economically and with high 

reliability [2]. Power generation companies (GENCOs) use a variety of maintenance techniques 

to accomplish their goals in terms of quality and cost [3]. The two basic types of maintenance 

are corrective and preventive. Corrective maintenance refers to corrective actions carried out 

following a failure to return the operation to its previous operational state. The term "preventive 

maintenance" refers to procedures used to keep an asset's operability at a satisfactory level. 

Generation maintenance scheduling (GMS) in power systems is to set up a schedule for 

generation units to perform preventive maintenance to lower the possibility of failure. 

Furthermore, the generating units must be taken out of operation for a duration ranging from a 

few hours to many weeks, regardless of the type of maintenance done. The decision is then 

based on a variety of factors, including the impact of maintenance outages on the system as a 

whole, reliability, the loss of services, the company's reputation, and the loss of revenue [3], 

[4].By performing periodic preventative maintenance, power system equipment remains in 

proper functioning. There is no guarantee that the best or nearly best schedule will be found 

when the duty of generator maintenance is carried out manually by human professionals who 

create the plan based on their knowledge of the system and experience. The goal of maintenance 

scheduling is finding the sequence of scheduled outages of generating units over a particular 

period of time such that the level of energy reserve is maintained [5]. Such a type of schedule 

is crucial since decisions made in one planning activity have an immediate impact on others. 

Modern power systems have experienced growing electrical energy demand and corresponding 

system size growth, which results in a rise in the number of generators and a decrease in reserve 

margins. Constrained GMS optimization problem complexity has increased as a result for such 

a huge power system [5].Finding the best schedule for generation preventive maintenance is 
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difficult because there are more restrictions, more power system generators, and more customer 

demand. As a result, there are more variables to consider, which makes it more challenging to 

find the best solution, as demonstrating in [5].  

Conventional optimization approaches have been used to study the GMS problem for 

many years. However, due to the significant computing effort required to arrive at the solution, 

old methodologies had many limitations. In this situation, metaheuristics have replaced 

traditional computational methods in order to deal with the GMS problem while maintaining 

high levels of solution performance. This thesis is based on using a metaheuristic approach to 

schedule the maintenance of generators in large-scale power systems, which involves 

minimizing an evaluation function made up of the sum of two weighted functions for the 

generation's Sum of Squares of Reserves (SSR) and the penalty function for violating 

constraints [6].  
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1.2. Literature Review  

GMS problems have historically been resolved using conventional means. To solve the 

maintenance scheduling difficulties, the authors in[7]–[9]provided a stochastic programming 

method, whereas authors in [10] and [11] employed decomposition techniques. According to 

authors in [2], [12], [13], maintenance scheduling problems in small dimension problems can 

be solved precisely with a minimal number of repetitions using traditional methods or exact 

methods such mathematical approaches to optimization. Numerous mathematical techniques, 

such as integer programming in [14]mixed integer programming presented in [14] dynamic 

programming in [15], Successive approximation dynamic programming applied in [16] and 

branch and- bound demonstrated in [17]. Authors in [18]provided a mathematically aided 

differential evolution strategy to address the power system maintenance scheduling problem. 

Nevertheless, as the system size and variables expand because of the expansion of the solution 

space, conventional approaches have to deal with long computational and operating times. They 

require precise constraint formulations that are lacking in the current system. 

In the past, approximate methods have been used to get around various problems caused 

by traditional mathematical methods. When compared to conventional procedures, these 

approaches are relatively quick to implement and take only a short time to run. In [19], 

researchers demonstrated that approximate methods had overcome the challenges posed by the 

complexity of the problem, the nonlinear or non-differentiable objective functions [1], and the 

discrete form of the variables to solve the problem of excessive computational and running time 

in the absence of powerful computers. The GMS problem was solved by the researchers in[20] 

even though the constraints were not satisfied and the units schedule was not in any particular 

order. For the thermal GMS problem, researchers in [21] suggested a heuristic-guided depth 

first search approach by converting the scheduling operation to a tree searching problem and 

using heuristic rules to find the solution quickly by satisfying the smallest reserve between total 

generation and load's power demand. The Lagrangian-Relaxation method has been applied by 

authors in [22], [23] for short-term maintenance scheduling in thermal power plants and electric 

power systems, respectively. However, as demonstrated in [12], the goal of approximation 

methods is to find at least approximate solutions rather than necessarily precise ones [24]. They 

take into account each generator independently and arrange the generation units consecutively 

in accordance with a predetermined order. They sometimes fail to offer effective solutions. As 

stated in [13], approximate approaches need a significant computing effort for a wide area 

system with a large dimension since they perform a significant number of iterations where the 
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objective function is assessed and the constraints are confirmed. The performance of 

approximate methods can be improved by integrating them with more recent metaheuristic 

optimization techniques [19]. 

Recent studies have praised meta-heuristic algorithms for their ability to solve GMS 

problems [25]. They are bio-inspired by the collective thinking of living groups as hawks, ants, 

lions, wolves, fishes, etc.[26]. They outperform the aforementioned techniques [1]. The 

researchers in[27] presented a Genetic Algorithm (GA) for the optimization and solution of the 

GMS problem in power systems. This algorithm was tested in practice on the Macedonian 

power system by minimizing the objective function of the yearly Load Expectation Loss 

(LOLE), in which all constraints were included and verified and the suggested approach 

demonstrated enhanced power systems reliability when compared with approximate 

methodologies. By minimizing cost objective functions, the Simulated Annealing (SA) 

algorithm was presented in [28], [29] to solve the GMS problem in both the thermal power plant 

and the electric power system. SA demonstrated its effectiveness and produced good outcomes 

in both cases. Researchers in[25] used a strategy based on SA to solve the GMS problem by 

optimizing a reliability objective function; the method was tested on a 32-unit thermal test 

system. Authors in [30] introduced the Ant Colony Optimization (ACO) strategy for solving 

the GMS problem, which has been treated as an economic cost optimization problem. The 

approach has been tested on a test system with 6 producing units, and it has proven successful. 

The GMS problem was solved using the Artificial Bee Colony (ABC) algorithm in [31], which 

included the use of cost and reliability criterion objective functions. The method demonstrated 

its effectiveness in both 21-unit and 49-unit test systems. In order to solve the GMS problem in 

electric power systems, researchers in [32] demonstrated the usefulness of the Tabu search 

algorithm, which was tested on both 4-unit and 22-unit test systems. This approach was applied 

to minimize two objective functions: the total generators operating cost and levering the reserve, 

where the same constraints were put to use and verified, including the maintenance completion 

constraint, the workforce size constraint, the priority constraint, and the levering the reserve. 

The ACO algorithm has been introduced and demonstrated in [33], where the researchers came 

to the conclusion that it is more effective than standard techniques. It has been tested in a 

hydropower test system where typical constraints have been used and verified. According 

to [34], a Modified Discrete Particle Swarm Optimization (MDPSO) technique was used to find 

the best GMS solution while taking into account the load's power requirements and workforce 

constraints. MDPSO offered superior solutions to GA and DPSO techniques. The technique 
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was tested on two different systems, a 49-unit system feeding the Nigerian national grid and a 

21-unit test system. Multiple Swarms-DPSO (MS-MDPSO) technique for solving the GMS 

problem was described by [5]. It was tested on both 21-unit and 49-unit test systems, and it was 

contrasted with the MDPSO method. Also, a Discrete Integer Cuckoo Search (DICS) 

optimization algorithm has been described in [26]. In[35], a GA was proposed to address the 

GMS problem through the optimization of an economic cost objective function over a 

scheduled 25-week time horizon. The GA was evaluated using a test system with 19 generating 

units. By minimizing a reliability objective function, a modified ABC algorithm has been 

developed in [36] to solve the GMS problem. It has demonstrated its effectiveness on both 13-

unit and 21-unit test systems. 

The GMS problem in power systems has been solved using crossbred or hybrid 

strategies that combine metaheuristics and approximation methodologies [1]. In [37], a discrete 

Particle Swarms Optimization-Genetic Algorithm (PSO-GA) hybrid technique was utilized to 

address the GMS problem by optimizing an objective function for the reliability criterion, and 

it was evaluated on 5-unit and 21-unit test systems. PSO-GA and PSO-Shuffled Frog Leaping 

hybrid strategies have been presented in [2] in order to handle the GMS problem by optimizing 

objective functions of both economic cost and reliability requirements. Thermal power systems 

with IEEE 24-bus and 32 generating units were used to test these two strategies. They showed 

strength in resolving this problem. Using a 21-unit test system, a Hybrid Scatter-Genetic 

Algorithm (HSGA) has been used to solve the GMS problem as presented in [38]. It has been 

compared to GA, DPSO, and MDPSO approaches. For the purpose of tackling both GMS and 

TMS problems in electric power systems, the researchers of [39] suggested a hybrid method 

that combines a meta-heuristic approach with a local search methodology termed the Hill 

Climbing Technique (HCT). In [24], a hybrid GA-SA strategy was developed, and it was 

demonstrated that this methodology is more reliable than both conventional GA and SA 

methods. In [40], the researchers presented a hybrid SA/ACO technique that uses a 21-unit test 

system to solve the GMS problem. This hybrid method has been compared to GA, SA, and 

ACO methods and has proven to be successful in solving the GMS problem. Researchers in [1] 

suggested a strategy combining GA and HCT in order to address the GMS problem. The GMS 

problem has proven to be amenable to all the methods listed above, but metaheuristics have 

proven to be the most effective in doing so, and they have overcome all the previous difficulties 

and limitations that traditional methods had in the past. The GMS problem's historical 

advancements are outlined in Table 1.1 below. 
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Method type Algorithm Criterion Type of the 

test system 

Size of the test power system Ref. 

 

E
x
a
c
t 

Branch-and-bound Reliability - 7-unit test system [17] 

Integer programming Economic 

cost 

Thermal 15-unit test system [41] 

Dynamic 

programming 

Reliability 

and 
Economic 

cost 

- 21-unit test system [15] 

Successiveapproxim

ation dynamic 

programming 

Economic 

cost 

Thermal 

(Fossil-

fuelled) 

20-unit test system [16] 

Stochastic 

programming 

Reliability 

and 

Economic 

cost 

Hydro-

Thermal 

Southern Brazilian 48-unit test 

system 

[8] 

decomposition 

methods 

Economic 

cost 

- 5-unit test system [10] 

decomposition 

methods 

Economic 

cost 

- IEEE-RTS, 32 Generating units, 

23 bus, 38 transmission line test 

system 

[42] 

Mathematical 

approach assisted 

differential evolution  

Economic 

cost 

- 4-unit and 22-unit test system [18] 

 

A
p

p
r
o

x
im

a
te

 

Lagrangian-

Relaxation 

Economic 

cost 

- 10-unit test system [22] 

Heuristic 1 Reliability - 21-unit test system [24] 

Lagrangian-

Relaxation 

 -  [23] 

Heuristic 2 Reliability - 21-unit test system [24] 

Heuristic-guided 

depth-first search 

Reliability Thermal 10-unit test system [21] 

 

M
e
ta

h
e
u

ri
st

ic
 

Discrete Particle 

Swarm Optimisation 

(DPSO) 

Reliability 

and 

Economic 

cost 

Hydrothermal 21-unit test system and 

49-unit system feeding the 

Nigerian National Grid 

[34] 

Simulated Annealing 

(SA) 

Economic 

cost 

Thermal 29-unit test system [29] 

Simulated Annealing 

(SA) 

Economic 

cost 

- 15-unit and 30-unit and 60-unit 

test systems 

[28] 

Modified - DPSO 

(MDPSO) 

Reliability 

and 

Economic 

cost 

Hydrothermal 21-unit test system and 

49-unit system feeding the 

Nigerian National Grid 

[34] 

Ant Colony 

Optimisation (ACO) 

Reliability Hydro Tasmania power system with two 

catchment areas and five power 

stations of 8 generating units 

each. 

[33] 

Genetic  Algorithm 

(GA) 

Economic 

cost 

Thermal 29 generating units [35] 
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Genetic Algorithm 

(GA) 

Reliability Thermal 29-unit Macedonian test power 

system 

[27] 

Tabu search Reliability 

and 

Economic 
cost 

- 4-unit test system and 22-unit test 

system 

[32] 

Multiple Swarms-

MDPSO (MS-

MDPSO) 

Reliability 

and 

Economic 

cost 

Hydrothermal 21-unit test system and 

49-unit system feeding the 

Nigerian National Grid 

[5] 

Discrete Integer 

Cuckoo Search 

(DICS) optimisation 

Reliability - 21-unit test system [26] 

Ant Colony 

Optimisation (ACO) 

Reliability Thermal 32 generating units test system [25] 

Ant Colony 

Optimisation (ACO) 

Economic 

cost 

- 6 generating units test system [30] 

Artificial Bee 

Colony (ABC) 

Reliability 

and 

Economic 

cost 

Thermal  21-unit test system and 

49-unit system feeding the 

Nigerian National Grid 

[43] 

Modified Artificial 

Bee Colony 

Reliability - 13-unit and 21-unit test systems [36] 

 

H
y

b
ri

d
 

GA + local search 

Hill Climbing 

Technique (HCT)  

Reliability - 33-unit test system [1] 

GA + SA Reliability - 21-unit test system [24] 

Evolutionary 

programming + HCT 

Economic 

cost 

- IEEE 30-bus, 6 generating units, 

41 transmission lines 

[39] 

GA+ Heuristic Reliability - 21-unit test system [24] 

GA+ SA+ Heuristics Reliability - 21-unit test system [24] 

SA + ACO Reliability - 21-unit test system [40] 

Hybrid Scatter-

Genetic Algorithm 

(HSGA) 

Reliability - 21-unit test system and IEEE 

RTS 9 generating units test 

system 

[38] 

Hybrid PSO + GA 

and Hybrid PSO–

Shuffled Frog 

Leaping  

Reliability 

and 

Economic 

cost 

Thermal IEEE 24-bus, 32 generating units 

test system 

[2] 

Hybrid Discrete PSO 

+ GA  

Reliability - 5-unit and 21-unit test systems [37] 

Table 1.1: The related works to solve the generator maintenance-scheduling problem. 

The past few years have seen an increase in the usage of a novel approach called DMFO 

algorithm by researchers to solve different optimization problems. The DMFO method is found 

to have a fast convergence rate compared to other optimization methods, such as the Symbiotic 

Organisms Search (SOS), PSO, and Differential Evolution (DE). The DMFO algorithm will be 

used in cooperation with a proposed FBFS strategy to solve the GMS problem. Moreover, the 
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results done in this thesis conclude that the FBFS-DMFO algorithm is a reliable and effective 

optimization technique compared with others. 

1.3. Thesis Objectives 

One of the primary motivations for using an improved FBFS-DMFO algorithm to solve 

generator maintenance problems is its ability to handle effectively optimization tasks in 

complex and dynamic systems. The GMS plays a crucial role in ensuring the reliable and 

efficient operation of power systems. It involves determining the optimal time and duration for 

performing maintenance activities on generators while minimizing the impact on power supply 

and maximizing the availability of the system. The FBFS-DMFO algorithm's ability to balance 

exploration and exploitation, along with its stochastic nature, makes it well suited for addressing 

the uncertainty and dynamic nature of GMS. By leveraging the algorithm's adaptive search 

capabilities, it becomes possible to find optimal maintenance schedules that minimize 

downtime, reduce maintenance costs, and enhance the overall reliability and performance of 

power systems. The FBFS-DMFO algorithm offers a promising approach for tackling the GMS 

problem and can contribute to more efficient and effective maintenance strategies in the power 

industry. This thesis is the study of finding an effectives solution for the GMS problem using 

this improved FBFS-DMFO algorithm.  

1.4. Thesis Organization 

This thesis is divided as follows; General introduction, Chapter 1 which represents a 

background of all the previous works dealing with GMS problems.  Chapter 2 provides a 

mathematical formulation of the GMS problem; the objective function, the evaluation function 

and its restrictions. Chapter 3 describes general concepts about DMFO algorithm and the FBFS 

local search strategy. Chapter 4 presents the 21-unit test system data; obtained results and 

discussion. A general conclusion is drawn at the end and the suggestions for more study will be 

provided.
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2. MAIN PROBLEM IN POWER SYSTEM 

2.1. Introduction 

The process of planning preventive maintenance for power generators is essential today 

in order to increase the reliability of power systems generators, which have necessary to 

continuously supply customer demand for electricity without interruption, and prevent their 

possible future electrical failures. Power generators' preventive maintenance planning assures 

that the generating reserve should be kept to a minimum and must be as small as possible at the 

end of the overall maintenance horizon. The planning process necessitates the best possible use 

of the available workforce, with the workforce required for maintenance tasks to be as efficient 

and minimal as possible while meeting a number of constraints, including those related to the 

maintenance window, load power demand, resource allocation, and reserve boundary. 

Therefore, the solution to the problem of scheduling generator maintenance should be 

economical and reliable. This chapter covers the difficulties of scheduling preventive 

maintenance for the generation section of power systems. 

 

2.2. Generators Preventive Maintenance Scheduling Problems 

Preventive maintenance for generators is typically needed within a specified planning 

horizon; this horizon is commonly long, ranging from 8 weeks to 5 years, separated into various 

time intervals of weeks. Preventive maintenance aims to increase the expected lifespan of 

generating units, to ensure a secure operating state, minimize the risks of unexpected outages 

produced by defective generators, lower maintenance costs, and provide highly reliable power-

system generation components. The GMS problem signifies that all restrictions have been met 

and the objective function has reached its ideal state. There is a common reliability requirement 

that maintains a specific level of generating reserve during the period of planned operation for 

those who are working with reliability criteria. Therefore, our thesis is focused on reducing the 

SSR of generation[6]. 

 

2.2.1. The Objective Functions of the Generator Maintenance Scheduling 

Problem 

The nonlinearity feature identifies GMS difficulties. It is possible to solve GMS 

problems and arrive at the best timetable for preventative planned maintenance by optimizing 

a predetermined objective function connected to the generation component of electric power 
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systems. In addition, solving the GMS problem requires designing a maintenance schedule that 

indicates the beginning and end times for maintaining generation part units as well as the 

number of workers and resources needed while minimizing SSR and verifying restrictions[6]. 

During the scheduling process, generators are either being maintained or not. For 

decision 𝐶𝑖,𝑡, generators can be expressed as a binary variable that equals either 1 when 

generator is undergoing repair within period 𝑡 or 0 if it is not. Each generator must be recovered 

from maintenance within a predetermined period using specific and unique resources. The most 

significant restrictions taken into account in this thesis are the maintenance window, the 

workforce and the load demand. The terminology used to describe the GMS problem's 

mathematical model is shown in Table 2.1. 

Table 2.1: The terminology of generator maintenance scheduling mathematical model. 

Nomenclature 

𝑡 Index of periods; 𝑡𝜖𝜏 𝑁𝑖  The outage duration of maintenance of generator 𝑖; 

𝜏 Total number of planned horizons;  𝑘𝑖,𝑡 Starting week of maintenance of generator 𝑖in period 𝑡, 

𝑖 Index of the number of generators; 

𝑖 = 1, . . . , 𝑁; 

𝐶𝑖,𝑡 Variable of maintenance start for generator 𝑖in period 𝑡; 

if generator 𝑖: {
on maintenance𝐶𝑖,𝑡 = 1 

otherwise𝐶𝑖,𝑡 = 0
; 

𝑁 Total number of generators; 𝐷𝑡 The load power demand in MWs within period 𝑡; 

𝑃𝑖 ,𝑡
𝑚𝑎𝑥  Maximum output power of generator 𝑖 in MWs in period 𝑡; 𝐿𝑖,𝑡 Workforce needed for maintaining generator 𝑖in period 𝑡; 

𝑃𝑖 ,𝑡 Generated output power of generator 𝑖 in MWs in period 𝑡; 𝑃𝑡  The total generating capacity within period 𝑡; 

𝑁𝑡  Set of the total generators under maintenance in period 𝑡; 𝜌 The sum of the squares of the reserves; 

𝑎𝑖,𝑡 The set of maintenance weeks stages of generator 𝑖 within 

period 𝑡; 𝑎𝑖,𝑡 ∈ {𝑘𝑖,𝑡, 𝑘𝑖,𝑡 + 1, … , 𝑘𝑖 ,𝑡 + 𝑁𝑖 − 1}; 

𝜇𝑡 The minimum reserve capacity within period 𝑡; 

𝑘 The index of maintenance stage; 𝑘𝜖𝑎𝑖 ,𝑡 𝐴𝐿𝑡 The available workforce within period 𝑡; 

The maintenance window restriction determines the outage duration and periods for each 

generator to be under maintenance[5], [6], [26]. Consider next equation (Eq. 2.1): 

Ɐ𝑡𝜖𝜏and Ɐ𝑖𝜖𝑁; 

∑ 𝐶𝑖,𝑡 =  𝑁𝑖

𝑡𝜖𝜏

                                                             (2.1) 

Where, 𝐶𝑖,𝑡 =  {
1 𝑖𝑓𝑘 ∈ 𝑎𝑖,𝑡;

0 𝑖𝑓𝑘 ∉ 𝑎𝑖,𝑡;
 

The workforce restriction determines that the total workers can be used to perform a 

maintenance assignment in a certain period 𝑡 cannot be greater than the whole available 

workforce [5], [6], [26]. Consider next equation (Eq. 2.2) 

Ɐ𝑡𝜖𝜏and Ɐ𝑖𝜖𝑁; 
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∑ ∑ 𝐶𝑖,𝑘𝐿𝑖,𝑡 ≤ 𝐴𝐿𝑡

𝐾𝜖𝑎𝑖,𝑡𝑖𝜖𝑁𝑡

                                                    (2.2) 

Where,∑ ∑ 𝐶𝑖,𝑘𝐿𝑖,𝑡𝐾𝜖𝑎𝑖,𝑡𝑖𝜖𝑁𝑡
 implies that the total workforce needed within period𝑡 and 

𝐴𝐿𝑡implies the available workforce within period𝑡. 

The load demand restriction determines that the produced power should correspond with 

the load demand [5], [6], [26]. Consider next equation (Eq. 2.3) 

∑ 𝑃𝑖,𝑡
𝑚𝑎𝑥

𝑁

𝑖=1

− ∑ (∑ 𝐶𝑖,𝑘𝑃𝑖,𝑘
𝑘𝜖𝑎𝑖,𝑡

) ≥ 𝐷𝑡 + 𝜇𝑡                             
𝑖𝜖𝑁𝑡

(2.3) 

Where,∑ 𝑃𝑖,𝑡
𝑚𝑎𝑥𝑁

𝑖=1 stands for the maximum total generated power of the electric power 

system within period𝑡,∑ (∑ 𝐶𝑖,𝑘𝑃𝑖,𝑘𝑘𝜖𝑎𝑖,𝑡
)𝒊𝜖𝑁𝑡
stands for the total generation power loss due to 

prescheduled outage within period𝑡,∑ 𝑃𝑖,𝑡
𝑚𝑎𝑥𝑁

𝑖=1 − ∑ (∑ 𝐶𝑖,𝑘𝑃𝑖,𝑘𝒌𝜖𝑎𝑖,𝑡
)𝒊𝜖𝑁𝑡
stands for the total 

generated capacity 𝑃𝑡of the electric power system during maintenance tasks within period 𝑡 and 

∑ 𝑃𝑖,𝑡
𝑚𝑎𝑥𝑁

𝑖=1 − ∑ (∑ 𝐶𝑖,𝑘𝑃𝑖,𝑘𝑘∈𝑎𝑖,𝑡
) − 𝐷𝑡𝑖∈𝑁𝑡

stands for the total reserves capacity during the 

planned period horizon which should be optimal and at minimum value 𝜇𝑡[5], [6], [26]. 

Consider next equation (Eq. 2.4) 

Ɐ𝑡𝜖𝜏and Ɐ𝑖𝜖𝑁; 

𝜇𝑡 = ∑ 𝑃𝑖,𝑡
𝑚𝑎𝑥

𝑁

𝑖=1

− ∑ (∑ 𝐶𝑖,𝑘𝑃𝑖,𝑘
𝑘𝜖𝑎𝑖,𝑡

) − 𝐷𝑡
𝑖𝜖𝑁𝑡

                               (2.4) 

The objective function based on the reliability criterion presented in previous work [5], 

[6], [24], [26], [34], [38], [43]–[45] is the focus of this thesis. A comparison between production 

and consumption should be done after each period to keep the total SSR in electric power 

systems generation to a minimum level or estimate. The reserve requires to be reduced to a 

minimum. Production needs to keep up with demand. By minimizing the SSR objective 

function, the GMS problem is then effectively solved. Consider next equations (Eq. 2.5 and Eq. 

2.6) 

Ɐ𝑡𝜖𝜏and Ɐ𝑖𝜖𝑁; 

𝐹𝑜𝑏𝑗  =  𝜌 = ∑ 𝜇𝑡
2

𝑡𝜖𝜏
                                                    (2.5) 
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𝑀𝑖𝑛(𝐹𝑜𝑏𝑗) = 𝑀𝑖𝑛(𝜌) = 𝑀𝑖𝑛 (∑ 𝜇𝑡
2

𝑡𝜖𝜏
)                                  (2.6) 

This objective function, represented by (Eq. 2.5), is based on the reliability criterion and 

aims to ensure that, regardless of load variations, there is always a sufficient balance between 

power generation and load power demand. To do this, the utilities usually provide a spinning 

reserve by producing more power than the load power demand, which improves the system's 

reliability at a low operational cost. Minimizing the SSR can be a successful strategy when 

there is significant variation in the reserve. This is utilized as an objective function to be 

minimized in this application. By reducing the SSR during the whole operational scheduling 

period, as demonstrated in (Eq. 2.6), the reliability criterion GMS problem will be resolved. A 

general mathematical model for a general GMS problem expressed as a quadratic 0–1 

programming problem is defined by equations (Eq. 2.1) (Eq. 2.6). Additional restrictions could 

be placed on the power system's local maintenance and reliability. There may be increased 

worry about the generators' insufficient supply during planned maintenance outages. As a 

result, the SSR of the generating units is minimized while formulating the reliability criterion 

GMS issue. The reliability of the power system is measured by the sum of the squares of the 

reserves, or the objective value. The reserve margin is distributed more evenly and the reliability 

is higher as the objective values decrease. The test GMS problem's average reserve level 

provides the lower bound of the desired value, providing a constant reserve margin throughout 

the scheduling period. 

Heuristic methods and traditional mathematical techniques like Integer programming or 

Dynamic programming are the traditional approaches to such situations. However, despite 

being effective, these old strategies frequently have problems when it comes to their 

applicability to significant issues. Due to their ability to resolve complex optimization issues, it 

is preferable to take into account the usage of metaheuristic techniques for the general 

mathematical model of the GMS problem[6]. 

2.2.2. The Evaluation Function of the Generator Maintenance Scheduling 
problem  

Modeling the GMS problem as an optimization issue using a minimum cost evaluation 

function is recommended. Two weighted functions make up the evaluation: a weighted 

objective function and a weighted penalty function for violating the constraints [5], [6], [24], 

[26], [34], [38], [43]–[45]. However, the final maintenance plan might not meet the workforce, 
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load, and maintenance window requirements, as the workforce number may exceed the 

maximum available workforce and the load demand may exceed the entire generating capacity 

when maintenance operations are being performed. Therefore, the objective function in (Eq. 

2.5) should include additional penalties for the workforce violation given by (Eq. 2.7) and the 

load demand violation given by (Eq. 2.8). To prevent any crossing of limitations, these penalties 

are reduced together with the target function. Equation (Eq. 2.7) can be used to calculate the 

workforce violation 𝛼 [5], [6], [26], as demonstrated below: 

𝛼 = ∑ ( ∑ ∑ 𝐶𝑖,𝑘𝐿𝑖,𝑘
𝑘𝜖𝑎𝑖,𝑡𝑘𝜖𝑁𝑡

− 𝐴𝐿𝑡)
𝑖𝜖𝜏

                                    (2.7) 

Where, 𝛼 is calculated during the times when the total workforce needed to complete 

the maintenance chores exceeds the available workforce. In other words when 

∑ (∑ ∑ 𝐶𝑖,𝑘𝐿𝑖,𝑘𝑘𝜖𝑎𝑖,𝑡𝑘𝜖𝑁𝑡
)𝑖𝜖𝜏  is greater than 𝐴𝐿𝑡. If not, workforce violation does not exist. 

According to [5], [6], [26] the load demand violation 𝛽 is computed in the next equation 

(Eq. 2.8): 

𝛽 = 𝐷𝑡 − (∑ 𝑃𝑖,𝑡
𝑚𝑎𝑥

𝑁

𝑖=1

− ∑ (∑ 𝐶𝑖,𝑘𝑃𝑖,𝑘
𝑘𝜖𝑎𝑖,𝑡

)
𝑖𝜖𝑁𝑡

)                             (2.8) 

Where, 𝛽 is calculated during the times when the load demand to complete the 

maintenance chores exceeds the generating capacity. In other words when 𝐷𝑡 is greater 

than ∑ 𝑃𝑖,𝑡
𝑚𝑎𝑥𝑁

𝑖=1 − ∑ (∑ 𝐶𝑖,𝑘𝑃𝑖,𝑘𝑘𝜖𝑎𝑖,𝑡
)𝑖𝜖𝑁𝑡
. If not, load demand violation does not exist. 

Every time a constraint is broken, a penalty value is proportionate to the amount by 

which the constraint is violated [5], [6], [24], [26], [34], [38], [43]–[45]. Consider next 

equation (Eq. 2.9): 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑐𝑜𝑠𝑡 =  ∑ 𝐶𝑙 × 𝑉𝑙

𝐿

𝑙=1

=  𝐶1 × 𝑉1 + 𝐶2 × 𝑉2 + … +  𝐶𝐿 × 𝑉𝐿              (2.9) 

Where, 𝐿 is the total number of violated constraints and 𝑙 is the index of violated 

restriction number, 𝐶𝑙  is the weight of the violation 𝑉𝑙.  

According to [5], [6], [24], [26], [34], [38], [43]–[45], if both constraints of 

the workforce and the load's power demand are violated, the penalty function for these 

violations is represented in next equation (Eq. 2.10) 
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𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑐𝑜𝑠𝑡 =  𝐶𝑀 × 𝛼 +  𝐶𝐿 × 𝛽                                     (2.10) 

To describe the GMS problem, we assume a minimization problem of an evaluation 

function (𝐸), also known as a crisp evaluation function, as mentioned in[46]. This function is 

a weighted sum of the objective function (𝜌) and the penalty function for violating the 

constraints (𝛼 and 𝛽 ) [5], [6], [24], [26], [34], [38], [43]–[45]. This evaluation function 

is represented in next equation (Eq. 2.11): 

𝐸𝑏𝑒𝑠𝑡 = 𝑀𝑖𝑛[𝐶𝑅 × 𝜌 +  𝐶𝑀 × 𝛼 +  𝐶𝐿 × 𝛽]                                 (2.11) 

Where, 𝐸𝑏𝑒𝑠𝑡  stands for the best evaluation function value, 𝜌 stands for the SSR of 

generation. 𝛼 stands for the total workforce violation, 𝛽 stands for the total violation during 

service time,𝐶𝑅  stands for the weight coefficient associated with SSR of generation. 𝐶𝑀 stands 

for the weight coefficient associated with the total workforce violation and 𝐶𝐿stands for the 

weight coefficient associated with the total load demand violation. 

The weighting coefficients are chosen so that penalty values for violations of the 

constraints dominate over the objective function, and to ensure that the violation of the 

relatively hard load constraint results in a higher penalty value compared to the relatively low 

workforce constraint [5], [6], [24], [26], [34], [38], [43]–[45]. 

2.3. Conclusion 

The reliability criterion of an evaluation of a weighted sum of the goal function and the 

penalty function of violations of the constraints has been used to define and model the GMS 

problem mathematically. The objective function is based on the sum of the squares of the 

generation reserves. The penalty function is set for any violation of the load power demand and 

the workforce constraints, as well as when the load power demand during maintenance exceeds 

the total maximum generation and when the workforce used for maintaining generators exceeds 

the total workforce available. In order to satisfy several limitations, including the maintenance 

window constraint, the workforce constraint, the load power demand constraint, and the reserve 

constraint, the problem is then based on mathematical optimization techniques. The solution to 

the issue can be found in mathematical optimization techniques like metaheuristics and 

evolutionary algorithms, which will be covered in a later chapter.
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3. THE FIRST-BIT FLIP AND SHIFT-BASED DISCRETE MAYFLY 
OPTIMIZATION ALGORITHM 

3.1. Introduction 

A bio-inspired population-based method called the Discrete Mayfly Optimization 

(DMFO) algorithm was recently proposed and has been effectively used to solve successfully 

several engineering issues, Zervoudakis and Tsafarakis first proposed the DMFO in the year of 

2020. The DMFO algorithm begins by creating a population of mayflies at random, which are 

represented as points in the search space. A fitness function is used to evaluate each mayfly's 

effectiveness as a solution to the optimization problem. Any objective function that needs to be 

minimized or maximized can be the fitness function. The exploration phase is represented by a 

brief period of time during which the mayflies execute a random search of the search area. The 

mayflies move randomly in the search area during this phase while being directed by a random 

vector. As a result, the algorithm can quickly explore multiple regions of the search area. 

Following the exploration phase, the mayflies converge on the best solution as of now; 

led by the solution that has the highest rate of success among the population. The phase of 

exploitation is represented by this. Then use a swarm intelligence strategy, the mayflies proceed 

in the direction of the right approach, with each one adjusting its location in regard to the best 

answer and its neighbors' positions. Up until an ending requirement is satisfied, the algorithm 

runs through the exploration and exploitation stages. The optimal solution generated by the 

algorithm during the search phase is the ultimate solution.  

3.2. Motivation 

As technology has advanced, there are more optimization issues than ever before, and 

these problems typically exhibit nonlinearity and high dimensionality. The Newton technique 

and gradient descent method were once thought to be efficient approaches for solving these 

issues since they could produce the desired outcomes in an acceptable amount of time. 

Moreover, the limitations of those traditional methods are that: they can only be used to solve 

small-scale issues and that they necessitate that the issues be differentiable. As a result, they are 

not the ideal option when problems get more complicated. Swarm intelligence optimization 

algorithms, which draw their inspiration from the behavior of naturally occurring biological 
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groups, have gained popularity because it has been shown that they are effective at handling 

complex issues. 

Swarm intelligence optimization methods have so far been proposed to handle a variety 

of optimization problems such as ABC, PSO, SOS, Grey Wolf Optimization (GWO), and 

Hunger Games Search (HGS), etc. They are commonly utilized in many different domains. In 

2020, a fresh swarm intelligence optimization technique called the DMFO algorithm was 

proposed. It mixes the properties of several well-known optimization algorithms, including the 

Firefly Algorithm (FA), GA, and PSO. 

The DMFO algorithm is an effective method for resolving optimization issues due to 

many advantages [47]:  

 Easy implementation: DMFO algorithm is a workable option for resolving optimization 

issues in a variety of fields because it is simple to use and doesn't demand a lot of 

computational capabilities [47]. 

 Effective search: DMFO algorithm effectively explores the search space and identifies 

the best solution by combining local search and global search methodologies [47]. 

 Flexibility: A wide variety of optimization issues, such as engineering design, financial 

optimization, and power system optimization, can be resolved with DMFO algorithm 

[47]. 

 Robustness: DMFO algorithm can handle optimization issues with many objectives and 

is noise-resistant [47]. 

Therefore, the DMFO algorithm has demonstrated beneficial result in a variety of 

optimization situations and can be a helpful tool for academics and industry professionals who 

must resolve challenging optimization issues [47]. 

3.3. The Discrete Mayfly Optimization Algorithm 

According to [48], it has been demonstrated that certain modifications are required for 

the PSO algorithm in order to ensure the attainment of an optimal point in when dealing with 

high-dimensional spaces. The DMFO algorithm gives researchers who worked to improve the 

effectiveness of the PSO algorithm using methods like crossover [49] and local search [50] an 

effective hybrid algorithmic structure. [51] and [52] report on improved optimization 

techniques that take advantage of existing techniques' advantages. The algorithm draws 
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inspiration from the mating process of mayflies, utilizing their social behavior. The assumption 

is made that mayflies, upon hatching from eggs, instantly reach adulthood, and the survival of 

the fittest mayflies is independent of their lifespan. Each mayfly's position in the search space 

signifies a potential solution to the problem at hand. The algorithm begins by generating two 

sets of mayflies randomly, one representing the male population and the other representing the 

female population. Every mayfly is placed randomly within the problem space, representing a 

potential solution denoted by a d-dimensional vector 𝑥 = (𝑥1, … , 𝑥𝑑). The effectiveness of each 

mayfly's solution is assessed using a predetermined objective function f(x). The velocity of a 

mayfly 𝑣 = (𝑣1, … , 𝑣𝑑) is determined by the change in its position, taking into account both 

individual and social flying experiences. Notably, each mayfly modifies its flight path in order 

to reach both its individual best position (𝑝𝑏𝑒𝑠𝑡) and the best position reached by any mayfly 

within the group (𝑔𝑏𝑒𝑠𝑡) [53]. 

 

3.4. The Discrete Mayfly Optimization Algorithm Application 

The DMFO algorithm can be applied to a wide range of optimization problems across 

different domains. Some of the common uses of the DMFO algorithm include: 

 Function Optimization: The DMFO algorithm can be used to find the optimal 

solution for mathematical functions. It explores the search space to locate the global 

or near-global optimum, making it suitable for problems with multiple local optima 

[47]. 

 Engineering Design: The DMFO algorithm can be employed in engineering design 

tasks, such as parameter tuning, circuit design, and structural optimization. It helps 

in finding optimal configurations and designs by exploring the solution space 

efficiently [47]. 

 Data Clustering: Clustering is a common task in data mining and pattern 

recognition. The DMFO algorithm can be utilized to partition data points into 

distinct clusters by optimizing a clustering objective function. It aids in discovering 

hidden patterns and grouping similar data points together [47]. 

 Image and Signal Processing: The DMFO algorithm can be used for image and 

signal processing tasks, such as image segmentation, feature selection, and noise 
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reduction. It helps in finding optimal parameters and configurations to enhance the 

quality and analyze the data effectively [47]. 

 Machine Learning: The DMFO algorithm can be integrated into machine learning 

algorithms to optimize hyper parameters, such as learning rates, regularization 

parameters, and network architectures. It aids in improving the performance and 

generalization capabilities of machine learning models [47]. 

 Portfolio Optimization: The DMFO algorithm can be applied in financial portfolio 

optimization, where the goal is to find the optimal allocation of assets to maximize 

returns or minimize risks. It helps in selecting the right combination of investments 

based on historical data and risk preferences [47]. 

 Resource Allocation: The DMFO algorithm can be used to optimize the allocation 

of limited resources, such as workforce, energy, or transportation, to maximize 

efficiency and minimize costs. It aids in finding optimal schedules or configurations 

for resource utilization [47]. 

 Neural Network Training: The DMFO algorithm can be utilized in training neural 

networks by optimizing the weights and biases. It helps in improving the 

convergence speed and finding better network architectures for various applications 

[47]. 

These are just a few examples of the potential applications of the DMFO algorithm. Its 

versatility and ability to handle complex optimization problems make it a useful tool across 

various domains where finding optimal solutions is crucial. 

3.5. Movement of Mayflies  

3.5.1. Movement of Male Mayflies 

Males tend to congregate in swarms; this suggests that each male mayfly adjusts its 

position based on its own experience and that of its neighbors. Let suppose the actual position 

of the male mayfly 𝑖 is 𝑥𝑖
𝑡at time step 𝑡 in the search area. A velocity 𝑣𝑖

𝑡+1 is added to modify 

the position [53]. This could be expressed as follow: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                                          (3.1) 

With 𝑥𝑖
0 ∼ 𝑈(xmin, xmax) 
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Assuming that male mayflies cannot achieve enormous speeds and that they move 

constantly since they are often a few meters above water when doing the nuptial dance [53]. 

Consequently, the velocity is then developed as follow: 

𝑣𝑖𝑗
𝑡+1 = 𝑣𝑖𝑗

𝑡 + 𝑎1𝑒−𝛽𝑟p
2

(𝑝𝑏𝑒𝑠𝑡𝑖𝑗
− 𝑥𝑖𝑗

𝑡 )  + 𝑎2𝑒−𝛽𝑟g
2

(𝑔𝑏𝑒𝑠𝑡𝑗
− 𝑥𝑖𝑗

𝑡 )                      (3.2) 

Where, 𝑣𝑖𝑗
𝑡  is the mayfly 𝑖 velocity at time step 𝑡 in dimension 𝑗 where 𝑗 = 1, … , 𝑛, 𝑥𝑖𝑗

𝑡  

is the male mayfly 𝑖 position at time step 𝑡 in dimension 𝑗, 𝑎1and 𝑎2 stand for the positive 

attraction constants for the social role used to scale the contribution of the cognitive and social 

component respectively while 𝛽 is the mayflies’ visibility coefficient, it controls the visibility 

range of each one. Moreover, 𝑝𝑏𝑒𝑠𝑡 𝑖𝑗
 is the best position has been visited by mayfly 𝑖 and 

𝑔𝑏𝑒𝑠𝑡𝑗
stands for global best position for mayflies. 

According to [53], at next time step t + 1 the 𝑝𝑏𝑒𝑠𝑡𝑖𝑗
 is determined as follow: 

𝑝𝑏𝑒𝑠𝑡 𝑖
=  {

𝑥𝑖
𝑡+1,         𝑖𝑓 𝑓(𝑥𝑖

𝑡+1) < 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖
)

𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                   (3.3) 

Where, 𝑓 that goes from ℝ𝑛 to ℝ, is the objective function that evaluates the 

effectiveness of a solution [53]. Then, at the time step 𝑡 the 𝑔𝑏𝑒𝑠𝑡is determined as follow: 

𝑔𝑏𝑒𝑠𝑡 ∈ {𝑝𝑏𝑒𝑠𝑡1
, 𝑝𝑏𝑒𝑠𝑡2

, … , 𝑝𝑏𝑒𝑠𝑡𝑁
|𝑓(𝑐𝑏𝑒𝑠𝑡)} = {min 𝑓(𝑝𝑏𝑒𝑠𝑡1

), 𝑓(𝑝𝑏𝑒𝑠𝑡2
), … , 𝑓(𝑝𝑏𝑒𝑠𝑡𝑁

)} (3.4) 

Where, 𝑁 is the total number of males in the mayfly swarm. Furthermore, 𝑟𝑝 is the 

distance in Cartesian terms between the actual position 𝑥𝑖 and the individual best position 𝑝𝑏𝑒𝑠𝑡 

and 𝑟𝑔 is the distance in Cartesian terms between the actual position 𝑥𝑖 and the global best 

position 𝑔𝑏𝑒𝑠𝑡 [53]. These tow distances in Cartesian terms is determined as follow: 

‖𝑥𝑖 − 𝑋𝑖‖ =  √∑ (𝑥𝑖𝑗 − 𝑋𝑖𝑗)
2𝑛

𝑗=1                                            (3.5) 

Where, 𝑥𝑖𝑗 is the 𝑗𝑡ℎ  element of mayfly 𝑖 and 𝑋𝑖 stands to 𝑝𝑏𝑒𝑠𝑡 𝑖
 or 𝑔𝑏𝑒𝑠𝑡. 

The best mayflies in the swarm must continue to dance their up-and-down nuptial dance 

in order to make the algorithm execute properly [53]. The best mayflies therefore need to 

change constantly their velocities. As a result and according to [53], the velocity of a male 

mayfly 𝑖 is determined as follow: 

𝑣𝑖𝑗
𝑡+1 = 𝑣𝑖𝑗

𝑡  + 𝑑𝑟                                                        (3.6) 
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Where, 𝑟 is a random number, providing a mayfly's flight a random element ranges 

in [−1, 1], 𝑟 ∈ [−1, 1], and 𝑑 stands for the nuptial dance coefficient [53]. 

3.5.2. Movement of Female Mayflies 

Female mayflies do not form swarms as males do. Instead, they fly in the direction of 

males to breed. Let suppose the actual position of the female mayfly 𝑖 is 𝑦𝑖
𝑡at time step 𝑡 in the 

search area [53]. A velocity 𝑣𝑖𝑗
𝑡+1is added to modify the position. This could be expressed as 

follow: 

𝑦𝑖
𝑡+1 = 𝑦𝑖

𝑡 + 𝑣𝑖
𝑡+1                                                   (3.7) 

With 𝑦𝑖
0 ∼ 𝑈(ymin , ymax) 

The attraction process is modeled as a deterministic one even though it could be random. 

The best male should be attracted to the best female, the second best male should be attracted 

to the second best female and so on [53]. The female mayfly velocity is determined as follow: 

𝑣𝑖𝑗
𝑡+1 = {

𝑣𝑖𝑗
𝑡 +  𝑎2𝑒−𝛽𝑟mf

2
(𝑥𝑖𝑗

𝑡 − 𝑦𝑖𝑗
𝑡 )  𝑖𝑓 𝑓(𝑦

𝑖
) > 𝑓(𝑥𝑖)

𝑣𝑖𝑗
𝑡  + 𝑓𝑙𝑟,                    𝑖𝑓 𝑓(𝑦𝑖) ≤ 𝑓(𝑥𝑖)

                          (3.8) 

Where 𝑣𝑖𝑗
𝑡  is the mayfly 𝑖 velocity at time step 𝑡 in dimension 𝑗 where 𝑗 = 1, … , 𝑛, 𝑦𝑖𝑗

𝑡  is 

the female mayfly 𝑖 position at time step 𝑡 in dimension 𝑗, 𝑎2 stand for the positive attraction 

coefficients, 𝛽 is the mayflies’ visibility coefficient, 𝑟𝑚𝑓 is the Cartesian distance between male 

and females mayflies calculated using equation number3.5 [53]. Moreover, 𝑓𝑙 is a random walk 

coefficient used in the case when a male does not attract a female that flies randomly and 𝑟 is 

an random number ranges in[−1, 1] [53]. 

3.5.3. Mating of Mayflies 

According to the crossover operator, two mayflies mate in the manner described here: 

One parent is chosen from among the male and female populations. The process of choosing 

parents is similar to how females are attracted to males. This selection process can be random 

or based on their fitness function. At the end, the best female mates with the best male, the 

second-best female pairs with the second-best male, and so on [53]. 

After individual sorting using mutations and crossovers [53], the next generation of two 

offspring comes as follow: 
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{
𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1 = 𝐿 ∗ 𝑥𝑖𝑗

𝑡 +  (1 − 𝐿) ∗ 𝑦𝑖𝑗
𝑡

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2 = 𝐿 ∗ 𝑦𝑖𝑗
𝑡 + (1 − 𝐿) ∗ 𝑥𝑖𝑗

𝑡                                    (3.9) 

Where, 𝑥𝑖𝑗
𝑡  and 𝑦𝑖𝑗

𝑡  here are the male parent and the female parent respectively, 𝐿 is a 

random value with a certain range and the initially set velocities of the offspring are zero [53]. 

3.6. Improvement of Basic Discrete Mayfly Optimization Algorithm 

During the exploration of the fundamental algorithm, we discovered problems regarding 

the stability caused by velocity-induced perturbations in the existing solutions. Additionally, 

we observed premature convergence of the algorithm due to an inadequate balance between 

exploitation and exploration. To address these limitations, several modifications to the 

algorithm have been devised and are outlined below [53]. 

3.6.1. Velocity Limits 

When evaluating the performance of our algorithm, it was discovered that the velocity 

can rapidly escalate to extremely large values, especially when updating the velocity of a distant 

mayfly from the global best or personal best position. This situation can result in mayflies flying 

outside the boundaries of the problem space [53]. It is important to note that addressing this 

issue can be achieved by assigning a zero initial velocity to offspring [53]. This allows for the 

presence of mayflies with small velocity values that can still contribute to convergence. 

Drawing inspiration from real mayflies, which do not achieve high speeds to remain above 

water, it is proposed in [53] propose that each mayfly has a specified maximum velocity, 

denoted as 𝑉𝑚𝑎𝑥 . In these cases, the velocity is then determined as follow: 

𝑣𝑖𝑗
𝑡 = {

𝑉𝑚𝑎𝑥   𝑖𝑓 𝑣𝑖𝑗
𝑡+1 > 𝑉𝑚𝑎𝑥

−𝑉𝑚𝑎𝑥𝑖𝑓 𝑣𝑖𝑗
𝑡+1 < −𝑉𝑚𝑎𝑥

                                              (3.10) 

The important aspect to consider is that while 𝑉𝑚𝑎𝑥  controls the extent of exploration 

within the search space, excessively small values may hinder exploitation beyond local optima 

[53]. The 𝑉𝑚𝑎𝑥  values can be selected as follow: 

𝑉𝑚𝑎𝑥 = 𝑟𝑎𝑛𝑑 × (𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛)                                          (3.11) 

Where, 𝑟𝑎𝑛𝑑 ∈ (0, 1]. 
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3.6.2. Gravity Coefficient 

While imposing a velocity limit can restrict the mayflies from attaining high speeds, 

there are instances where it becomes necessary to decrease velocities in order to regulate 

effectively the balance between exploration and exploitation capabilities of the mayflies. The 

gravity coefficient𝑔, functioning similarly to the inertia weight in PSO [54], helps achieve an 

optimal equilibrium between exploration and exploitation [53]. Consequently, the updated 

velocity of male mayfly 𝑖 is determined as follow: 

𝑣𝑖𝑗
𝑡+1 = 𝑔 𝑣𝑖𝑗

𝑡 +  𝑎1𝑒−𝛽𝑟p
2

(𝑝𝑏𝑒𝑠𝑡𝑖𝑗
− 𝑥𝑖𝑗

𝑡 )  + 𝑎2𝑒−𝛽𝑟g
2

(𝑔𝑏𝑒𝑠𝑡𝑗
− 𝑥𝑖𝑗

𝑡 )                (3.12) 

Then updated velocity of female mayfly 𝑖 is determined as follow: 

𝑣𝑖𝑗
𝑡+1 = {

𝑔 𝑣𝑖𝑗
𝑡 +  𝑎2𝑒−𝛽𝑟mf

2
(𝑥𝑖𝑗

𝑡 − 𝑦𝑖𝑗
𝑡 )  𝑖𝑓 𝑓(𝑦

𝑖
) > 𝑓(𝑥𝑖)

          𝑔 𝑣𝑖𝑗
𝑡  + 𝑓𝑙𝑟,                    𝑖𝑓 𝑓(𝑦𝑖) ≤ 𝑓(𝑥𝑖)

                        (3.13) 

The gravity coefficient 𝑔 can either be a constant value ranges in (0, 1] or it can be 

gradually decreased during the iterations, enabling the algorithm to to avail some specific areas 

[53], by being updated using the equation as follow: 

𝑔 = 𝑔𝑚𝑎𝑥 −  
𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛

𝑛𝑚𝑎𝑥
× 𝑛                                                 (3.14) 

Where, 𝑔𝑚𝑎𝑥 and 𝑔𝑚𝑖𝑛 are the maximum and minimum values that the gravity 

coefficientcan take, 𝑛 is the actual iteration of the algorithm and 𝑛𝑚𝑎𝑥  is the maximum number 

of iteration. 

3.6.3. Reduction of Nuptial Dance and Random Walk 

The female mayflies' random walking and the male mayflies' nuptial dance are two 

highly effective local search methods that can aid the algorithm in escaping local optima [53]. 

However, engaging in a random walk may inadvertently lead a mayfly to a significantly worse 

search area. The problem is that nuptial dance 𝑑 or randomwalk 𝑓𝑙 often takes large initial 

values. To mitigate this, a gradual reduction of both 𝑑 and 𝑓𝑙 over iterations is implemented 

[53]. As a result, both values can be updated using a geometric progression formula, as follow: 

𝑑𝑡 =  𝑑0𝛿𝑛                                                             (3.15) 

𝑓𝑙 𝑡
=  𝑓𝑙 0

𝛿𝑛                                                            (3.16) 

Where 𝛿 is a constant value ranges in (0,1), 0 < 𝛿 < 1  and 𝑡 is the number of iteration. 



CHAPTER 3: THE FIRST-BIT FLIP AND SHIFT-BASED DISCRETE MAYFLY 

ALGORITHM  

 

25 
 

3.6.4. Mutate the Genes of Offspring 

In order to address the issue of premature convergence, which can result in the algorithm 

converging to a local minimum instead of a global minimum, a modified version of the original 

algorithm incorporates a random mutation into a subset of the population. This modification 

allows the algorithm to explore uncharted regions of the search space that might otherwise 

remain unvisited [53]. Specifically, a normally distributed random number is added to the 

selected offspring's variable for the purpose of mutation [53]. This alteration modifies the 

offspring as follow: 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔′
𝑛

= 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑛 +  𝜎𝑁𝑛(0, 1)                               (3.17) 

Where, 𝜎 is the standard deviation of the normal distribution and 𝑁𝑛 is the standard 

normal distribution with 𝑚𝑒𝑎𝑛 = 0 and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1. 

3.7. The First Bit-Flip and Shift Local Search Strategy 

Binary vector First-Bit Flip and Shift (FBFS) is a process of manipulating binary 

vectors, which have elements of numbers in binary form with values of sequences of 0's and 

1's, by flipping and shifting their first bits. Bit flipping refers to changing the value of a single 

bit from 0 to 1 or vice versa, while bit shifting involves moving the flipping process of bits to 

the left or right. These operations can be useful in a variety of contexts, such as in computer 

programming, where binary vectors are often used to represent data or instructions. For 

example, bit flipping and bit shifting can be used to change specific values in a data structure. 

For that reason, binary vector bit flip shift provides a flexible and powerful tool for 

manipulating binary data. In our study, if the better solution vector is, for example,  𝑥𝑛= [4 28 

25 15 46 1 21 39 11 23 14 50 12 17 7 10 45 37 27 33 16] in iteration𝑛, then the solution would 

be improved by the FBFS strategy. The first element is 4=100 is becoming then equal to 101=5, 

the maintenance of generator number 1 starts then from week number 5 instead of week number 

4. The new solution in iteration𝑛 becomes, 𝑥′𝑛 = [5 28 25 15 46 1 21 39 11 23 14 50 12 17 7 10 

45 37 27 33 16]. This solution is evaluated in the evaluation function. If the new SSR of 

generation in iteration 𝑛 provide by 𝑥′𝑛is less than the previous SSR of generation provided by 

𝑥𝑛 in iteration 𝑛, then, the new solution 𝑥′𝑛of iteration 𝑛 will be considered as a new better 

solution. Otherwise, the previous better solution 𝑥𝑛 in iteration 𝑛 is kept and the 

solution 𝑥′𝑛 provided by the FBFS strategyin iteration𝑛will be rejected and will be used again 
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for the evolutionary for the next iteration 𝑛 + 1 to prevent themetaheuristic algorithm from 

getting fall in local optima and keeping them in continuous search without undesired fails and 

stops. Another new solution will be generated in iteration 𝑛 + 1 by the evolutionary algorithm. 

If, for example and not necessarily, the solution provided the evolutionary algorithm in iteration 

𝑖 + 1 is 𝑥𝑛+1= [5 28 25 15 46 1 21 39 11 23 14 50 12 17 7 10 45 37 27 33 16], then the value 

28=11100 will be converted to 11101=29. The flipping process is then shifted to the second 

element of the full binary vector. The new solution 𝑥′𝑛+1in iteration 𝑛 + 1 becomes 𝑥′𝑛+1= 

[529 25 15 46 1 21 39 11 23 14 50 12 17 7 10 45 37 27 33 16]. This solution is tested again if 

it is a better solution or not, if not, the previous better solution, which is found previously and 

not necessarily in the previous iteration, is kept and the current solution 𝑥′𝑛+1 in iteration 𝑛 + 1 

is used in the evolutionary algorithm to update the new solution 𝑥𝑛+2 in iteration 𝑛 + 2. In 

iteration 𝑛 + 2, if the evolutionary algorithm generates a solution which is, as an example and 

not necessarily, 𝑥𝑛+2= [529 25 15 46 1 21 39 11 23 14 50 12 17 7 10 45 37 27 33 16], then the 

value 25=11001 will be converted to 11000=24 and the same process will be performed in next 

iteration.  
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Figure 3.1: Flowchart of the FBFS-DMFO strategy search 

The maintenance-starting week of a generator 𝑖, after performing the FBFS strategy and 

if the FBFS strategy found a new better solution may become greater or smaller than its previous 

maintenance-starting week, and this is according to its previous first bit value if it is 0 or 1.The 

FBFS strategy is a local search strategy that performs small changes to the previous solutions 

to help other evolutionary algorithms in local optimization and avoiding them from getting 

stuck in local optima. This strategy works in cooperation with algorithms. In the same iteration, 

the evolutionary algorithm works to find the solution, and then the FBFS strategy comes to try 
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to improve the solution and find a new solution that is better than the previous one. If the FBFS 

strategy cannot find a better solution than the previous one, then the previous better solution is 

kept and the new worse solution provided by the FBFS strategy is used again in the evolutionary 

algorithm to avoid it from getting stuck in local optima and then making it in constant search 

without any stuck or fail. The first bit of an element is then flipped and the flip process is then 

shifted at each iteration by taking into account the evaluation of the new obtained solutions in 

the evaluation function. Two conditions should be stratified if we want to consider the solution 

provided by the FBFS strategy as a better solution; the SSR of generation provided by the 

solution made by the FBFS strategy should be less than the previous SSR of generation, and all 

constraints should be strictly satisfied without any kind of violations. Otherwise, the solution 

provided by the FBFS strategy is only used to update the new next solutions of evolutionary 

algorithms. 

3.8. Conclusion  

The First-Bit Flip and Shift-based Discrete Mayfly Optimization algorithm has been 

applied to various optimization problems, including function optimization, engineering design, 

and data clustering. Its effectiveness lies in its ability to strike a balance between exploration 

and exploitation, leveraging the characteristics of mayflies' short lifespan and their reproductive 

behavior. Overall, the DMFO algorithm is a promising optimization technique that draws 

inspiration from nature and the behavior of mayflies to solve efficiently complex optimization 

problems.
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4. RESULTS AND DISCUSSION 

4.1. Introduction 

This chapter presents how the Discrete Mayfly Optimization (DMFO) algorithm can be 

used to schedule preventive maintenance for power system generators. The algorithm 

minimizes a discrete evaluation function that combines an objective function (which is the SSR 

of generation) with a penalty function for constraint violations. The algorithm ensures that 

several constraints (including maintenance windows, workforce, load power demand, and 

reserve boundaries) are satisfied and that neither load power demand nor workforce constraints 

are violated during maintenance time. The algorithm is tested on a 21-unit test power system 

and will be run for 30 times to reinforce its accuracy and robustness to reach the best solution. 

Then its performance (including efficacy and reliability) is compared to other recent methods 

using statistical metrics such as mean, standard deviation, min and max, as well as statistical 

tests such as the Friedman test, the Holm-Sidak test, and the Wilcoxon signed rank test. 

4.2. The 21-Units Industrial Test Power System 

The previously discussed GMS problem is applied to the proposed improved FBFS-

DMFO algorithm in this part. A 21-unit test system shown in the Table4.1 [15] is used to 

evaluate the FBFS-DMFO algorithm performance. This test system is a utility that mostly burns 

coal. The operating characteristics of the units are provided in startup order in Table 4.1.  

Table 4.1: The 21-Units Test Power System [15]. 

Unit Capacity (MW) Allowed period Outage (Weeks) Workforce Required for Each Week 

1 555 1 − 26 7 10 + 10 + 5 + 5 + 5 + 5 + 3 

2 555 27 − 52 5 10 + 10 + 10 + 5 + 5 

3 180 1 − 26 2 15 + 15 

4 180 1 − 26 1 20 

5 640 27 − 52 5 10 + 10 + 10 + 10 + 10 

6 640 1 − 26 3 15 + 15 + 15 

7 640 1 − 26 3 15 + 15 + 15 

8 555 27 − 52 6 10 + 10 + 10 + 5 + 5 + 5 

9 276 1 − 26 10 3 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3 

10 140 1 − 26 4 10 + 10 + 5 + 5 

11 90 1 − 26 1 20 

12 76 27 − 52 3 10 + 15 + 15 

13 76 1 − 26 2 15 + 15 

14 94 1 − 26 4 10 + 10 + 10 + 10 

15 39 1 − 26 2 15 + 15 

16 188 1 − 26 2 15 + 15 

17 58 27 − 52 1 20 

18 48 27 − 52 2 15 + 15 

19 137 27 − 52 1 15 

20 469 27 − 52 4 10 + 10 + 10 + 10 

21 52 1 − 26 3 10 + 10 + 10 
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The size of the units ranges from 39 MW to 640 MW. One week to ten weeks may pass 

without service. The system's total generating capacity is 5688 MW, while its peak load is 4739 

MW. Each unit was given a 26-week window in which to begin maintenance. Units were 

permitted to start maintenance either between weeks 1 and 26 or between weeks 27 and 52, as 

stated in Table 4.1. All units required to accomplish their maintenance by week 52 in order to 

guarantee that similar timetables are compared. This practically forced units to start their outage 

before week 52 − 𝐷𝑖 if they are to be maintained in the second half of the year. 

Where𝐷𝑖represents the length of the outage. Eight outages start in the second half of the year, 

while thirteen units start their outages in the first half.  

Table 4.2: The parameters of the applied methods. 

Methods Parameters 

GA Population size: 200 Crossover probability: 1 Mutation probability: 0.05 - 

GA/SA Population size: 100 Tournament pool size: 10 Cooling rate: 0.95 - 

SA Initial temperature: 10 Final temperature: 0.5 Cooling rate: 0.95 - 

ACO Number of ants:10 Reward factor: 20 Initial pheromone: 0.5 Evaporation rate:0.9 

SA/ACO Number of ants: 10 

Evaporation rate: 0.9 

Initial temperature: 10 

Reward factor: 40 

Cooling rate: 0.95 Initial pheromone: 2.5 

MFO Population size: 20 
Inertia weight: 0.8 
Inertia weight damping 
ration:1 

Nuptial dance: 5 
Random flight: 1 
Dance damping ration: 
0.8 
Flight damping ration: 
0.9 

Personal learning 

coefficient 𝑎1: 1 
Distance sight coefficient: 
2 

Global learning 
coefficient: 

𝑎2 = 1.5, 𝑎3 = 2 
Number of off-
spring:20 
Mutation rate: 0.08 

LC-JAYA Population size: 25 - - - 

FBFS-DMFO Population size: 20 
Inertia weight: 0.8 
Inertia weight damping 
ration: 1 

Nuptial dance: 5 
Random flight: 1 
Dance damping ration: 
0.8 
Flight damping ration: 
0.9 

Personal learning 

coefficient 𝒂𝟏: 1 
Distance sight coefficient: 
2 

Global learning 
coefficient: 

𝒂𝟐 = 𝟏. 𝟓, 𝒂𝟑 = 𝟐 
Number of off-
spring:20 
Mutation rate: 0.08 

The GMS problem can be formulated as an integer-programming problem by using 

integer variables representing the period in which maintenance of each unit starts. The variables 

are bounded by the maintenance window constraints. However, for clarity the problem is first 

formulated using binary variables, which indicate the start of maintenance of each unit at each 

time. Maintenance window constraints define the possible times and duration of maintenance 

for each unit. The relative timetabling of maintenance of certain units may be restricted. The 

available generation must exceed the load, and the workforce and resources available for 

maintenance work are limited. Further constraints may be imposed involving the reliability. 

The problem involves the reliability criteria of minimizing the SSR. Each unit must be 

maintained (without interruption) for a given duration within an allowed period and limited 

number of workforce. 
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4.3. Results and Discussion  

This section compares FBFS-DMFO algorithm performance to that of other methods as 

GA, SA, ACO, SA combined with ACO, MFO, and Logistic Chaotic JAYA algorithm (LC-

JAYA)[55]. Considering that the same objective function, the same evaluation function 

formula, the same evaluation function settings and the same test system were used to run each 

of those methods in order to make sure the comparison is adequate. In addition, those methods 

are applied with the same parameters listed in Table 4.2. 

4.3.1. Case (a) 

In this case, the load power demand is 4739 MW. The total available workforce is 25. 

The coefficients𝐶𝑅 = 10−5, 𝐶𝑀 = 4 and 𝐶𝐿 = 2. For the purpose of comparison, the statistical 

values of the GMS problem evaluation function for 30 separate runs using the suggested FBFS-

DMFO algorithm and previous techniques are all shown in Table 4.3. 

Table 4.3: The statistical values of the crisp evaluation function of the GMS problem for case (a) using 30 

independent runs  

The numerical results in Table 4.3 have been obtained by setting the coefficients 𝐶𝑅, 𝐶𝑀  

and 𝐶𝐿  to10−5, 4 and 2 respectively. These results display the performance of each method by 

presenting their best and worst obtained values, mean values, and standard deviations. The 

standard deviation (SDV) measures the robustness of each method, and it indicates how the 

values in each series are spread out in relation to their mean. The mean value indicates the 

quality of the solutions provided by each method since the available solutions cluster around 

the mean, and the best mean value represents the best quality of solutions provided by a specific 

method. The lowest and highest values indicate the range limits within which the values may 

vary, and the best method is the one that yields the best minimum value (Min) and the lowest 

maximum value (Max). The obtained mean value of the solutions gained by the FBFS-DMFO 

algorithm is 140.49. Compared to the other mean values produced by the previous approaches, 

this mean is far better which can be regarded as an improvement. The obtained best solution 

Method Min Mean Max SDV 

GA 139.09 150.68 167.76 7.87 

SA 138.26 143.83 150.36 2.93 

ACO 139.99 148.63 168.95 6.82 

SA/ACO 137.12 142.11 147.86 2.94 

LC-JAYA 140.09 147.35 172.87 6.51 

MFO 145.36 177.19 219.94 21.13 

FBFS-DMFO 136.54 140.49 146.68 3.37 
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(Min value) by the FBFS-DMFO algorithm is 136.54 and it is better than the obtained best 

solutions (Min values) by other methods. The obtained worst solution (Max value) by the 

proposed approach is 146.68 and it is lower than the previously obtained worst solutions by the 

other approaches. The obtained SDV by the proposed method is 3.37 and it is much better than 

the other SDV values obtained by other methods. 

In terms of the best reached solution and the obtained worst solution, the proposed 

approach performs better than the previously mentioned current methods. The main benefit is 

that even the worst solution found using the suggested FBFS-DMFO algorithm is superior to 

the best solution found using the previous methods. Additionally, as the SDV previously 

demonstrated, the solutions are very close to the mean value because if the SDV value is 

smaller, it means the solutions are closer to the average value, which suggests that the method 

used is more robust. As well as, the mean also demonstrated the superiority of the results 

produced using the suggested approach. 

 
Figure 4.1: Crisp evaluation function versus iterations of FBFS-DMFO algorithm in case 

(a),Evaluation function = 136.76215 𝑀𝑊2 

The crisp evaluation function (E) has quick convergence during the first 150 iterations 

at any run as shown in Figure 4.1 then it is remarkable that this improvement starts to be slow 

and seems to be constant. However, the improvement is just slightly continued as the number 

of iterations increases. 
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Figure 4.2:Crisp evaluation function versus iterations for case (a) using: (a)- GA;E = 139.54063𝑀𝑊2, (b)-

SA;E = 139.49059 𝑀𝑊2, (c)-ACO;E = 138.42575𝑀𝑊2, (d)- SA/ACO;E = 138.92987𝑀𝑊2,(e)-MFO;E =

145.47739𝑀𝑊2,(f)- LC-Jaya; E = 147.18675𝑀𝑊2 

There are four categories of optimization methods based on convergence of their 

evaluation function and quality of solutions. The first type achieves quick evaluation function 

convergence and produces the best solutions, while the second type has slow evaluation 

(f) 

(a) (b) 

(c) (d) 

(e) 
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function convergence but also produces the best solutions. The third type converges quickly,but 

produces poor solutions, and the fourth type has slow convergence and also produces poor 

solutions. The last two types are not considered effective since they do not generate solutions 

with best quality. The first and second types are considered acceptable due to their solutions of 

high-quality, but the speed of convergence is crucial. The first type is preferred over the second 

type because it has better evaluation function convergence. 

 

Figure 4.3: Workforce used during maintenance periods of FBFS-DMFO algorithm in case 

(a),Evaluation function = 136.76215 𝑀𝑊2. 

As shown in Figure 4.2, The convergence of the GA algorithm is strong during the first 

100 iteration. As well as SA is strong during the first 400 iterations while for ACO, it is strong 

during the first 300 iterations and for SA/ACO, it is strong during the first 400 iterations. Also 

for MFO, is strong during the first 300 iterations, and for LC-JAYA’s strength convergence 

appears during the first 100 iterations. Although, both the speed of convergence and the 

accuracy of the optimization are still important.The next results represent the workforce used 

per week and the production per weeks and shown in Figure 4.3 and Figure 4.4 respectively, 

recorded during the obtained best solution.The results in Figure 4.3 are recorded at 

(Evaluation function = 136.76215 𝑀𝑊2). The workforce restriction is satisfied as the total 

amount of workforce for maintaining units during maintenance periods should not exceed the 

total number of the available workforce that has been set to 25. The workforce as shown is fully 

used in week 23 for maintaining generators 7 and 10. The minimum workforce used is at weeks 

6, 9, 31, 32, 42, 43 and 44 for maintaining generators 1, 2 and 8. 
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Figure 4.4: Production during maintenance periods of FBFS-DMFO algorithm in case (a), 

Evaluation function = 136.76215 𝑀𝑊2. 

Table 4.4: Generators maintenance planning per weeks of FBFS-DMFO algorithm, case 

(a), Evaluation function = 136.76215 𝑀𝑊2. 

Week 

no. 

Generating units scheduled 

for maintenance 

Workforc

e used 

Production 

in MW 

Week 

no. 

Generating units scheduled 

for maintenance 

Workforce 

used 

Production 

in MW 

1 6 15 5048 27 19 15 5551 

2 6 15 5048 28 2 10 5133 

3 6 15 5048 29 2 10 5133 

4 1 10 5133 30 2 10 5133 

5 1 10 5133 31 2 5 5133 

6 1 5 5133 32 2 5 5133 

7 1, 15 20 5094 33 20 10 5219 

8 1, 15 20 5094 34 20 10 5219 

9 1 5 5133 35 20 10 5219 

10 1, 16 18 4945 36 20 10 5219 

11 9, 16 18 5224 37 18 15 5640 

12 9, 13 17 5336 38 18 15 5640 

13 9, 13 17 5336 39 8 10 5133 

14 9, 11 22 5322 40 8 10 5133 

15 4, 9 22 5232 41 8 10 5133 

16 9, 21 12 5360 42 8 5 5133 

17 9, 14, 21 22 5266 43 8 5 5133 

18 9, 14, 21 22 5266 44 8 5 5133 

19 9, 14 12 5318 45 17 20 5630 

20 9, 14 13 5318 46 5 10 5048 

21 7 15 5048 47 5 10 5048 

22 7 15 5048 48 5 10 5048 

23 7, 10 25 4908 49 5 10 5048 

24 10 10 5548 50 5, 12 20 4972 

25 3, 10 20 5368 51 12 15 5612 

26 3, 10 20 5368 52 12 15 5612 

The total generation (maximum production) of the 21-unit test system under no 

maintenance is 5688 MW. Figure 4.4 shows that the load’s power demand (in red dashed line) 

does not exceed the total generation, and this means that the load’s power demand restriction is 

satisfied and the load’s power demand should not exceed the maximum generation during 
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maintenance. Under maintenance, the system achieved its minimum total generation of 4908 

MW during week 23 when generators 7 and 10 are under maintenance. The maximum total 

generation under maintenance has achieved 5640 MW during weeks 37 and 38 when generator 

18 is under maintenance. The maintenance scheduling due to the performance of FBFS-DMFO 

algorithm is shown in the Table 4.4 and Gantt chart represented in Figure 4.5.According to the 

schedule found in Table 4.4, there can be no more than three generators under maintenance 

each week at maximum, and there can only be one generator under maintenance at minimum. 

Table 4.4 has been recorded based on the results obtained from the Gantt chart in Figure 4.5 

due to the optimal evaluation function value. 

 
Figure 4.5: Gantt chart of maintenance planning per week of FBFS-DMFO algorithm, case (a), 

Evaluation function = 136.76215 𝑀𝑊2 

The Friedman test has been used to compare the performance of the algorithms stated 

in Table4.4. The Friedman test is a non-parametric statistical test used to determine if there are 

significant differences among multiple related groups. It is used when the data are not normally 

distributed, and the same subjects are measured under different conditions or at different times. 

The test ranks the data within each group and calculates the average rank for each subject across 

all groups. It then uses a chi-square distribution to determine if there is a significant difference 
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in the ranks between groups. The Friedman test is often used in fields such as psychology, 

education, and medicine to analyze data from experiments where multiple treatments are 

applied to the same subjects[56]. Seven algorithms have been used for the comparison versus 

the proposed FBFS-DMFO algorithm as shown if Table 4.5. 

Table 4.5: The Friedman test ranks 

IBM SPSS 26.0 

Mean ranks 

Algorithm Friedman  Rank Rank  

ACO 4.53 5 

ACO-SA 2.53 2 

FBFS-DMFO  1.90 1 

GA 4.83 6 

SA 3.23 3 

LC-JAYA 4.37 4 

MFO 6.60 7 

The proposed FBFS-DMFO algorithm ranked first and ACO-SA ranked second, SA 

ranked third LC-JAYA fourth, ACO, GA and Mayfly Optimization (MFO) algorithms ranked 

fifth, sixth and seventh respectively. Friedman rank test has been performed to rank the methods 

according to the results acquired by these methods. However, this test does not show any 

statistical difference in the results [57]. Thus, the Holm-Sidak test has been performed to specify 

the statistical differences between the methods [57]. Table 4.6 shows the Holm-Sidak test 

results. The statistical differences between the proposed FBFS-DMFO algorithm and the other 

algorithms are presented by the acquired pairwise p-values from the Holm-Sidak test for all the 

algorithms. It ranks the p-values from smallest to largest and adjusts the significance level for 

each comparison based on the number of remaining comparisons. This allows amore accurate 

control of the error rate. If the p-value is high, it indicates that there is less statistical difference 

and less significant outperformance[45]. 

Table 4.6: The p-values of the Holm-Sidak test 

Algorithm a p-value 

1-2 0.1746 

1-3 0.0054938 

1-4 0.50835 

1-5 0.0010269 

1-6 4.4942 × 10−5 

1-7 8.3075 × 10−35 

1-FBFS-DMFO, 2-SA, 3-LC-JAYA, 4-ACO/SA Hybrid, 5- ACO, 6-GA, 7-MFO 

The Wilcoxon signed-rank test sown in Table 4.7 has been used to compare the 

performance of the proposed FBFS-DMFO algorithm against other algorithms. The symbols 

R+ or R- presents that the FBFS-DMFO method has better or worse performances than the 

control one. The meaning of ‘‘Better’’, ‘‘Equal’’ and ‘Worse’’ is the numbers of the test cases 

where the FBFS-DMFO method is better, equal or worse than the control one. The P-value 
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indicates the significance level, when the P-value is less than 0.05, then the two methods have 

obvious differences. The symbol ‘‘+’’means that the FBFS-DMFO performance is better than 

the control method. The Z-value indicates which algorithm is close in performance to the 

performance of the proposed algorithm based on negative ranks, as Z-value increases as the 

rank of the algorithm towards to the proposed algorithm rank increases. 

Table 4.7: The Wilcoxon signed rank test for 30 runs, alpha=0.05 

Item Better Equal Worse R+ R- P-value Z-value Symbol 

FBFS-DMFO vs ACO 27 0 3 448.00 17.00 0.000 -4.4324 + 

FBFS-DMFO vs ACO-SA 20 0 10 317.00 148.00 0.082 -1.7380 + 

FBFS-DMFO vs GA 28 0 2 445.00 20.00 0.000 -4.3707 + 

FBFS-DMFO vs LC-JAYA 26 0 4 442.00 23.00 0.000 -4.3090 + 

FBFS-DMFO vs MFO 30 0 0 465.00 0.00 0.000 -4.7821 + 

FBFS-DMFO vs SA 22 0 8 370.00 95.00 0.005 -2.8281 + 

4.3.2. Case (b) 

In this case, the load power demand is 4739 MW. The total available workforce is 35. 

The coefficients 𝐶𝑅 = 1, 𝐶𝑀 = 0 and 𝐶𝐿 = 0. The proposed FBFS-DMFO has been compared 

with two recent techniques MDPSO and MS-MDPSO algorithms presented in [5], [34] as 

shown in the comparison of statistical results of table 4.8 in which only SSR of generation is 

considered and there is no total workforce and total load violation. At the same number of 

evaluation, the mean value of the proposed method is 13,732,895.11𝑀𝑊2; which is better than 

13,984,883.84𝑀𝑊2 of MDPSO method and 13,870,778.81𝑀𝑊2 of MS-MDPSO method. The 

minimum value of the proposed method is 13,687,592.01𝑀𝑊2; which is better than 

13,863,021.02𝑀𝑊2 of MDPSO method and 13,749,264.32𝑀𝑊2 of MS-MDPSO method. The 

maximum value of the proposed method is 13,967,735.97𝑀𝑊2; which is better than 

14,132,336.49𝑀𝑊2 of MDPSO method and 14,015,289.69𝑀𝑊2 of MS-MDPSO method. 

Table 4.8: The SSR statistical results for case (b) of FBFS-DMFO algorithm compared with MDPSO and MS-

MDPSO using 30 independent runs 

Method SSR (𝒊𝒏 𝑴𝑾𝒔𝟐) Total workforce 

violation 

Total load violation 

 MIN MEAN MAX   

MDPSO  13, 863, 021.02 13, 984, 883.84 14, 132, 336.49 No violation No violation 

MS-MDPSO 13, 749, 264.32 13, 870, 778.81 14, 015, 289.69 No violation No violation 

FBFS-DMFO 13, 687, 592.01 13, 732, 895.11 13, 967, 735.97 No violation No violation 

 

Figure 4.6 represents the convergence curve of the evaluation function versus the 

number of evaluation function value of 13,751,664.53𝑀𝑊2. The convergence of this function 

is fast during the 600 iterations begins from the value 2.1 × 107𝑀𝑊2. The evaluation function, 
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in a short period of iterations, nearly achieves an optimal value better than the outcomes of the 

preceding two methods. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                         

 

 

 

Figure4.6:The SSR objective function versus iterations of   FBFS-DMFO algorithm in case (b), SSR value =
13, 751, 664.53𝑀𝑊2 

4.3.3. Case (c) 

In this case, the load power demand is 4739 MWs and 6.5% spinning reserve, i.e. load 

power demand is 5047 MWs, Total available workforce is 40. The coefficients 𝐶𝑅 = 1, 𝐶𝑀 =

0 and 𝐶𝐿 = 0. Table 4.9 shows an additional comparison that has been made between the best 

results obtained from the proposed method and other recent methods; GAIR presented in [58], 

GABR presented in [34], DPSO presented in [34] and MDPSO presented in[34]. The 

comparison made with the same number of iterations and no total workforce and total load 

violation. 

Table 4.9: The SSR comparison results for case (c) of FBFS-DMFO algorithm against other recent methods 

Algorithm Best Sum of the Squares 

of the Reserves (SSR) 

(𝒊𝒏 𝑴𝑾𝒔𝟐) 

Total load demand violation Total Labour force violation 

GAIR 3, 425, 971.00 Violated in weeks 6, 7, 8 No violation 

GABR 8, 691, 137.00 Violated in weeks 1, 2, 3, 4, 14, 15, 16, 17, 31 Violated in weeks 15,16, 24 

DPSO 3, 090, 335.00 No violation No violation 

MDPSO 3, 073, 911.00 No violation No violation 
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FBFS-DMFO 3, 008, 179.05 No violation No violation 

The above table showed that the proposed method reaches a value of 3,008,179.05𝑀𝑊2 

as a best evaluation function. This value is better compared to the best values obtained using 

other methods where the GAIR algorithm reached3, 425, 971.00𝑀𝑊2, GABR algorithm 

reached8, 691, 137.00𝑀𝑊2, DPSO algorithm reached3, 090, 335.00𝑀𝑊2 and MDPSO 

algorithm reached3, 073, 911.00𝑀𝑊2. It is clear that the solution of the proposed approach is 

better the best solutions given by the previous methods.The statistical results for the proposed 

algorithm using 30 independent runs are presented in table4.10 compared with the previous 

methods GAIR, GABR, DPSO and MDPSO to show the effectiveness of the proposed method. 

Table 4.10: The SSR statistical results of case (c) for FBFS-DMFO algorithm using 30 independent runs. 

Method Best objective function value  

SSR (𝒊𝒏 𝑴𝑾𝒔𝟐) 

Total workforce 

violation 

Total load violation 

 MIN MEAN MAX SDV   

FBFS-DMFO 3, 008, 179.05 3, 069, 261.47 3, 294, 666.69 76, 005.33 No violation No violation 

The proposed FBFS-DMFO algorithm has then excelled all the GAIR, GABR, DPSO 

and MDPSO methods in all the 30 runs. Figure 4.7 represents the performance of the objective 

function during the 600 iterations of proposed algorithm. The convergence of this function is fast 

during the first period of the iterations and its convergence begins from a value of 8.1 ×

106𝑀𝑊2 then it barely progresses up to achieve an optimal value of  3, 009, 696.05𝑀𝑊2. 
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Figure 4.7:The SSR objective functionversus iterations of FBFS-DMFO algorithm in case (c), SSR value =
3, 009, 696.05 𝑀𝑊2 

4.4. Conclusion  

This section presents the findings of the suggested FBFS-DMFO algorithm, which was 

employed to address the problem of scheduling preventive maintenance for generators in the 

21-unit test power system. The effectiveness of the proposed algorithm was assessed by 

comparing it to various metaheuristic algorithms using different statistical measures, including 

standard deviation, mean, maximum, and minimum values. Additionally, statistical tests such 

as the Friedman rank test, the Holm-Sidak test, and the Wilcoxon signed rank test were 

conducted. The results demonstrated that the proposed method outperformed all other 

metaheuristic algorithms. The Friedman test ranked it as the best algorithm compared to the 

others, and the Wilcoxon signed rank test confirmed its superiority in all pair wise comparisons 

against the alternative algorithms. Notably, the developed algorithm exhibited fast 

convergence, high reliability, and required minimal computational efforts. 
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GENERAL CONCLUSION 

In order to find the best way to schedule the preventive maintenance of generators in 

power systems, this thesis studied the Generator preventive Maintenance Scheduling (GMS) 

problem which is described as an optimization problem in terms of dependability criteria, where 

a number of constraints have been validated and satisfied with the outcome. The GMS problem 

has been resolved using an improved Discrete Mayfly Optimization (DMFO) metaheuristic 

algorithm with First-Bit Flip and Shift search strategy. The evaluation function of a weighted 

sum of the objective function of the Sum Squares of the Reserves of generation (SSR) and the 

penalty function for violations of the restrictions has been optimized using the algorithm. A 

week-long maintenance starting duration has been determined optimally for each generator unit 

using the proposed DMFO algorithm. The vector for the best maintenance starting period 

produces the lowest evaluation function value and the lowest reserve. This best case solution 

offers an optimum maintenance schedule with maintenance starting period and maintenance 

duration for each unit. 

The proposed approach First-Bit Flip and Shift-based Discrete Mayfly Optimization 

(FBFS-DMFO) finds an optimal solution by using the best results from the optimization 

process, which are updated from the current solutions in the search area. For comparing present 

study against previous recent works for solving the Generator preventive Maintenance 

Scheduling problem in electric power systems, the performance of the suggested algorithm has 

been examined using conventional and advanced renowned tests. The FBFS-DMFO algorithm 

proved its efficacy comparing to other approaches. It also yields significantly better results, 

achieving very high-quality optimal solutions in a brief period of time, with high reliability and 

constant closeness of solutions to each other when contrasted with new and traditional methods. 

Finally, the proposed FBFS-DMFO algorithm succeeds to find better results to solve the 

GMS problem and achieve optimal maintenance schedule. As prospective work, this proposed 

approach will be applied to achieve better results for scheduling the power system maintenance 

and solving other optimization problems in power systems. 
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