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ABSTRACT

In many industries that utilize machinery and equipment, the efficient preventive
maintenance scheduling, which is a complex optimization problem, plays a crucial role in
maintaining their machines and equipment. The preventive maintenance aims to carry out
maintenance procedures prior to equipment failure in order to avoid expensive downtime and

repairs.

This thesis addresses the optimal Generators preventive-Maintenance Scheduling
(GMS) problem in electric power systems that includes several machines. This problem can be
solved using a variety of ways, such as metaheuristic methods and mathematical programming.
The problem is formulated as a mathematical optimization model using mathematical
programming techniques, and the best solution is then found using algorithms. Simulating the
maintenance schedule allows you to assess its effectiveness while modeling the equipment and
its failure behavior. Metaheuristic methods entail creating maintenance schedules utilizing
generalizations or subject-matter expertise. The primary objective of this thesis is to contribute
to the performance improvement of a discrete evolutionary algorithm for a reliable and
extremely accurate optimization of the discrete objective functions in order to address the issue
of the best preventive maintenance scheduling of power systems generators. For planning the
generator preventative maintenance, a modern metaheuristic algorithm named "the Discrete
Mayfly Optimization (DMFO)" has been designed. This algorithm was proposed as an
innovative swarm intelligence optimization algorithm in 2020, it combines the advantages of
several existing optimization algorithms. This algorithm has been used in several applications
including industrial optimization, ensemble forecasting system, and photovoltaic systems. A
First-Bit Flip and Shift (FBFS) strategy for binary vectors, which is a process of manipulating
binary vectors, has been first proposed to improve the performance of evolutionary algorithms,
The FBFS strategy is a local search strategy that performs small changes to the obtained
solutions to help evolutionary algorithms in local optimization and avoiding them from getting
stuck in local optima. The proposed technique has been evaluated on a 21-unit test power
system with a peak power load demand of 4739 MW in three cases where the total number of
the workers available per week is limited. The improved algorithm showed at the end its
effectiveness to find a solution for the GMS problem where the Sum of Squares of the Reserves
(SSR) of generation is minimized. The results are compared to previous works that used other
metaheuristic techniques in order to evaluate the performance of the proposed FBFS-DMFO

algorithm and its search process in solving power system GMS problem.
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Résumé

Dans certaines industries qui utilisent des machines et des équipements, la planification
efficace de la maintenance préventive, qui est un probléme d'optimisation complexe, joue un
role crucial dans la maintenance de leurs machines et équipements. La maintenance préventive
vise a effectuer des procédures de maintenance avant la panne de I'équipement afin d'éviter des

temps d'arrét et des réparations codteux.

Cette thése aborde le probléeme optimal de planification de la maintenance préventive
des générateurs (GMS) dans les systéemes d'alimentation électrique comprenant plusieurs
machines. Ce probléme peut étre résolu de différentes manieres, telles que les méthodes méta
heuristiques et la programmation mathématique. Le probléme est formulé comme un modele
d'optimisation mathématique a l'aide de techniques de programmation mathématique, et la
meilleure solution est ensuite trouvée a l'aide d'algorithmes. La simulation du planning de
maintenance permet d'évaluer son efficacité tout en modélisant I'équipement et son
comportement en cas de panne. Les méthodes méta heuristiques impliquent la création de
calendriers de maintenance en utilisant des generalisations ou une expertise en la matiere.
L'objectif principal de cette thése est de contribuer a I'amélioration des performances d'un
algorithme évolutif discret pour une optimisation fiable et extrémement précise des fonctions
objectives discretes afin de répondre a la problematique de la meilleure planification de la
maintenance préventive des générateurs des systemes electriques. Pour planifier la maintenance
préventive des générateurs, un algorithme méta-heuristique moderne nommé "l'algorithme
d'optimisation discréte de Mayfly (DMFO)" a été concu. Cet algorithme a été proposé comme
algorithme innovant d'optimisation de I'intelligence en essaim en 2020, il combine les avantages
de plusieurs algorithmes d'optimisation existants. Cet algorithme a été utilisé dans plusieurs
applications, notamment l'optimisation industrielle, le systéme de prévision d'ensemble et les
systemes photovoltaiques. Une stratégie First-Bit Flip and Shift (FBFS) pour les vecteurs
binaires a d'abord été proposée pour améliorer les performances des algorithmes
évolutionnaires. La stratégie FBFS est une stratégie de recherche locale qui effectue de petites
modifications des solutions obtenues pour aider les algorithmes évolutifs dans l'optimisation
locale et éviter gu'ils ne restent blogués dans les optima locaux. La technique proposée a été
évaluée sur un systeme électrique de test de 21 unités avec une charge maximale de 4739 MW
dans trois cas ou le nombre total de staff disponibles par semaine est limité. L'algorithme
amélioré a montré a la fin son efficacité pour trouver une solution au probleme GMS ou la

Somme des Carrés des Réserves (SSR) de génération est minimisée. Les résultats sont comparés



a des travaux antérieurs qui utilisaient d'autres techniques méta-heuristiques afin d'évaluer les
performances de l'algorithme FBFS-DMFO proposé et de son processus de recherche dans la

résolution du probleme GMS du systeme électrique.
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GENERAL INTRODUCTION

GENERAL INTRODUCTION

The provision of uninterrupted electrical energy to clients is currently the most crucial
aspect of power networks. Unwanted power system infirmities are mostly caused by various
electric power system failures, which might occur at improbable times and in varied locations
within the various parts as well as pauses. The clients' service would be interrupted as a result
of this unwelcome outage. In order to lessen and prevent the recurrence of these failures and to
ensure that the power systems are operating in an efficient and dependable manner, it is crucial
to establish an effective maintenance strategy. Corrective and preventive processes are used to

carry out maintenance.

The optimal Generator Maintenance Scheduling (GMS) problem's primary function in
power systems is to create an ideal schedule for the preventive maintenance of the generator
portion units. An ideal GMS increases the operational reliability of power systems, increases
the lifespan of the generators, and lowers the cost of generator maintenance. An optimization
problem is how the GMS problem is put forth. This issue should be resolved by ensuring the
power systems' dependability at low operating costs while also satisfying the load's power
consumption and workforce limitations. Since precise mathematical techniques have been
applied in the past to find exact answers to small-scale problems, the GMS problem has been
researched for a long time. These traditional mathematical methods, however, have a number
of drawbacks and suffer from excessive computing demands as system dimension rises. For
medium-scale power systems, traditional approximate approaches have been used to get around
the shortcomings of accurate methods. For wide-area systems with large dimensions, they do,
however, only provide approximations of the solutions and need a significant computational
effort.

Modern techniques based on metaheuristic optimization have recently played a
significant role in resolving the GMS problem and overcoming the shortcomings of
approximate techniques. In this thesis, a proposed Binary vector First-Bit Flip and Shift (FBFS)
strategy with the Discrete Mayfly Optimization (DMFQO) algorithm are used to schedule the
preventive maintenance of the generators used in electric power systems. To enhance both the
exploration and exploitation phases, the suggested algorithm is based on the FBFS and DMFO
strategies. The GMS problem is modeled using an objective function of the Sum of Squares of

the Reserves (SSR) of generations as the dependability requirement. By minimizing an
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evaluation function comprised of the weighted sum of the objective function and the penalty

function for violating the constraints, the optimization process is carried out.

The suggested strategy has been applied in a 21-unit test system over a planned horizon
of 52 weeks, where the highest generation is 5688 MW, the peak load is 4739 MW, and limited
workforce available each week to do the maintenance chores. Multiple statistical tests have
been used to compare the proposed method to current methods used in comparable works. The
acquired results demonstrate the suggested algorithm's superiority over other current methods
for tackling the GMS problem. Currently, this method may be depended upon to address issues

with the scheduling of maintenance for power system generators.



CHAPTER 1: STATE OF THE ART

1. STATE OF THE ART

1.1. Motivation

Today, it is crucial to provide consistent, dependable electricity due to the growing
demand for electrical energy. One of the most important factors of supplying reliable electrical
energy to the necessary industrial and urban loads is the scheduling of generating unit

maintenance [1].

The goal of maintenance is to increase the lifetime of power generation facilities or
at least to increase the interval between failures that could result in expensive repairs. The
frequency of service outages and their effects can also be decreased with an efficient
maintenance schedule. In order to make a power system operates economically and with high
reliability [2]. Power generation companies (GENCOSs) use a variety of maintenance techniques
to accomplish their goals in terms of quality and cost [3]. The two basic types of maintenance
are corrective and preventive. Corrective maintenance refers to corrective actions carried out
following a failure to return the operation to its previous operational state. The term "preventive
maintenance” refers to procedures used to keep an asset's operability at a satisfactory level.
Generation maintenance scheduling (GMS) in power systems is to set up a schedule for
generation units to perform preventive maintenance to lower the possibility of failure.
Furthermore, the generating units must be taken out of operation for a duration ranging from a
few hours to many weeks, regardless of the type of maintenance done. The decision is then
based on a variety of factors, including the impact of maintenance outages on the system as a
whole, reliability, the loss of services, the company's reputation, and the loss of revenue [3],
[4].By performing periodic preventative maintenance, power system equipment remains in
proper functioning. There is no guarantee that the best or nearly best schedule will be found
when the duty of generator maintenance is carried out manually by human professionals who
create the plan based on their knowledge of the system and experience. The goal of maintenance
scheduling is finding the sequence of scheduled outages of generating units over a particular
period of time such that the level of energy reserve is maintained [5]. Such a type of schedule
is crucial since decisions made in one planning activity have an immediate impact on others.
Modern power systems have experienced growing electrical energy demand and corresponding
system size growth, which results in a rise in the number of generators and a decrease in reserve
margins. Constrained GMS optimization problem complexity has increased as a result for such

a huge power system [5].Finding the best schedule for generation preventive maintenance is
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difficult because there are more restrictions, more power system generators, and more customer
demand. As a result, there are more variables to consider, which makes it more challenging to

find the best solution, as demonstrating in [5].

Conventional optimization approaches have been used to study the GMS problem for
many years. However, due to the significant computing effort required to arrive at the solution,
old methodologies had many limitations. In this situation, metaheuristics have replaced
traditional computational methods in order to deal with the GMS problem while maintaining
high levels of solution performance. This thesis is based on using a metaheuristic approach to
schedule the maintenance of generators in large-scale power systems, which involves
minimizing an evaluation function made up of the sum of two weighted functions for the
generation's Sum of Squares of Reserves (SSR) and the penalty function for violating

constraints [6].
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1.2. Literature Review

GMS problems have historically been resolved using conventional means. To solve the
maintenance scheduling difficulties, the authors in[7]-[9]provided a stochastic programming
method, whereas authors in [10] and [11] employed decomposition techniques. According to
authors in [2], [12], [13], maintenance scheduling problems in small dimension problems can
be solved precisely with a minimal number of repetitions using traditional methods or exact
methods such mathematical approaches to optimization. Numerous mathematical techniques,
such as integer programming in [14]mixed integer programming presented in [14] dynamic
programming in [15], Successive approximation dynamic programming applied in [16] and
branch and- bound demonstrated in [17]. Authors in [18]provided a mathematically aided
differential evolution strategy to address the power system maintenance scheduling problem.
Nevertheless, as the system size and variables expand because of the expansion of the solution
space, conventional approaches have to deal with long computational and operating times. They

require precise constraint formulations that are lacking in the current system.

In the past, approximate methods have been used to get around various problems caused
by traditional mathematical methods. When compared to conventional procedures, these
approaches are relatively quick to implement and take only a short time to run. In [19],
researchers demonstrated that approximate methods had overcome the challenges posed by the
complexity of the problem, the nonlinear or non-differentiable objective functions [1], and the
discrete form of the variables to solve the problem of excessive computational and running time
in the absence of powerful computers. The GMS problem was solved by the researchers in[20]
even though the constraints were not satisfied and the units schedule was not in any particular
order. For the thermal GMS problem, researchers in [21] suggested a heuristic-guided depth
first search approach by converting the scheduling operation to a tree searching problem and
using heuristic rules to find the solution quickly by satisfying the smallest reserve between total
generation and load's power demand. The Lagrangian-Relaxation method has been applied by
authors in [22], [23] for short-term maintenance scheduling in thermal power plants and electric
power systems, respectively. However, as demonstrated in [12], the goal of approximation
methods is to find at least approximate solutions rather than necessarily precise ones [24]. They
take into account each generator independently and arrange the generation units consecutively
in accordance with a predetermined order. They sometimes fail to offer effective solutions. As
stated in [13], approximate approaches need a significant computing effort for a wide area

system with a large dimension since they perform a significant number of iterations where the
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objective function is assessed and the constraints are confirmed. The performance of
approximate methods can be improved by integrating them with more recent metaheuristic
optimization techniques [19].

Recent studies have praised meta-heuristic algorithms for their ability to solve GMS
problems [25]. They are bio-inspired by the collective thinking of living groups as hawks, ants,
lions, wolves, fishes, etc.[26]. They outperform the aforementioned techniques [1]. The
researchers in[27] presented a Genetic Algorithm (GA) for the optimization and solution of the
GMS problem in power systems. This algorithm was tested in practice on the Macedonian
power system by minimizing the objective function of the yearly Load Expectation Loss
(LOLE), in which all constraints were included and verified and the suggested approach
demonstrated enhanced power systems reliability when compared with approximate
methodologies. By minimizing cost objective functions, the Simulated Annealing (SA)
algorithm was presented in [28], [29] to solve the GMS problem in both the thermal power plant
and the electric power system. SA demonstrated its effectiveness and produced good outcomes
in both cases. Researchers in[25] used a strategy based on SA to solve the GMS problem by
optimizing a reliability objective function; the method was tested on a 32-unit thermal test
system. Authors in [30] introduced the Ant Colony Optimization (ACO) strategy for solving
the GMS problem, which has been treated as an economic cost optimization problem. The
approach has been tested on a test system with 6 producing units, and it has proven successful.
The GMS problem was solved using the Artificial Bee Colony (ABC) algorithm in [31], which
included the use of cost and reliability criterion objective functions. The method demonstrated
its effectiveness in both 21-unit and 49-unit test systems. In order to solve the GMS problem in
electric power systems, researchers in [32] demonstrated the usefulness of the Tabu search
algorithm, which was tested on both 4-unit and 22-unit test systems. This approach was applied
to minimize two objective functions: the total generators operating cost and levering the reserve,
where the same constraints were put to use and verified, including the maintenance completion
constraint, the workforce size constraint, the priority constraint, and the levering the reserve.
The ACO algorithm has been introduced and demonstrated in [33], where the researchers came
to the conclusion that it is more effective than standard techniques. It has been tested in a
hydropower test system where typical constraints have been used and verified. According
to [34], a Modified Discrete Particle Swarm Optimization (MDPSO) technique was used to find
the best GMS solution while taking into account the load's power requirements and workforce

constraints. MDPSO offered superior solutions to GA and DPSO techniques. The technique
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was tested on two different systems, a 49-unit system feeding the Nigerian national grid and a
21-unit test system. Multiple Swarms-DPSO (MS-MDPSO) technique for solving the GMS
problem was described by [5]. It was tested on both 21-unit and 49-unit test systems, and it was
contrasted with the MDPSO method. Also, a Discrete Integer Cuckoo Search (DICS)
optimization algorithm has been described in [26]. In[35], a GA was proposed to address the
GMS problem through the optimization of an economic cost objective function over a
scheduled 25-week time horizon. The GA was evaluated using a test system with 19 generating
units. By minimizing a reliability objective function, a modified ABC algorithm has been
developed in [36] to solve the GMS problem. It has demonstrated its effectiveness on both 13-
unit and 21-unit test systems.

The GMS problem in power systems has been solved using crossbred or hybrid
strategies that combine metaheuristics and approximation methodologies [1]. In [37], a discrete
Particle Swarms Optimization-Genetic Algorithm (PSO-GA) hybrid technique was utilized to
address the GMS problem by optimizing an objective function for the reliability criterion, and
it was evaluated on 5-unit and 21-unit test systems. PSO-GA and PSO-Shuffled Frog Leaping
hybrid strategies have been presented in [2] in order to handle the GMS problem by optimizing
objective functions of both economic cost and reliability requirements. Thermal power systems
with IEEE 24-bus and 32 generating units were used to test these two strategies. They showed
strength in resolving this problem. Using a 21-unit test system, a Hybrid Scatter-Genetic
Algorithm (HSGA) has been used to solve the GMS problem as presented in [38]. It has been
compared to GA, DPSO, and MDPSO approaches. For the purpose of tackling both GMS and
TMS problems in electric power systems, the researchers of [39] suggested a hybrid method
that combines a meta-heuristic approach with a local search methodology termed the Hill
Climbing Technique (HCT). In [24], a hybrid GA-SA strategy was developed, and it was
demonstrated that this methodology is more reliable than both conventional GA and SA
methods. In [40], the researchers presented a hybrid SA/ACO technigue that uses a 21-unit test
system to solve the GMS problem. This hybrid method has been compared to GA, SA, and
ACO methods and has proven to be successful in solving the GMS problem. Researchers in [1]
suggested a strategy combining GA and HCT in order to address the GMS problem. The GMS
problem has proven to be amenable to all the methods listed above, but metaheuristics have
proven to be the most effective in doing so, and they have overcome all the previous difficulties
and limitations that traditional methods had in the past. The GMS problem's historical

advancements are outlined in Table 1.1 below.
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Type of the
test system

Size of the test power system

Branch-and-bound Reliability 7-unit test system [17]
Integer programming Economic Thermal 15-unit test system [41]
cost
Dynamic Reliability - 21-unit test system [15]
programming and
Economic
cost
Successiveapproxim Economic Thermal 20-unit test system [16]
ation dynamic cost (Fossil-
s programming fuelled)
g Stochastic Reliability Hydro- Southern Brazilian 48-unit test (8]
w programming and Thermal system
Economic
cost
decomposition Economic - 5-unit test system [10]
methods cost
decomposition Economic - IEEE-RTS, 32 Generating units, | [42]
methods cost 23 bus, 38 transmission line test
system
Mathematical Economic - 4-unit and 22-unit test system [18]
approach assisted cost
differential evolution
Lagrangian- Economic - 10-unit test system [22]
Relaxation cost
& Heuristic 1 Reliability - 21-unit test system [24]
S
3 Lagrangian- - [23]
1 .
S Relaxation
< Heuristic 2 Reliability - 21-unit test system [24]
Heuristic-guided Reliability Thermal 10-unit test system [21]
depth-first search
Discrete Particle Reliability | Hydrothermal 21-unit test system and [34]
Swarm Optimisation and 49-unit system feeding the
(DPSO) Economic Nigerian National Grid
cost
Simulated Annealing Economic Thermal 29-unit test system [29]
o (SA) cost
2 Simulated Annealing Economic - 15-unit and 30-unit and 60-unit [28]
= (SA) cost test systems
2 Modified - DPSO Reliability | Hydrothermal 21-unit test system and [34]
% (MDPSO) and 49-unit system feeding the
b Economic Nigerian National Grid
cost
Ant Colony Reliability Hydro Tasmania power system with two | [33]
Optimisation (ACO) catchment areas and five power
stations of 8 generating units
each.
Genetic Algorithm Economic Thermal 29 generating units [35]
(GA) cost
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Genetic Algorithm Reliability Thermal 29-unit Macedonian test power [27]
(GA) system
Tabu search Reliability - 4-unit test system and 22-unit test | [32]
and system
Economic
cost
Multiple Swarms- Reliability | Hydrothermal 21-unit test system and [5]
MDPSO (MS- and 49-unit system feeding the
MDPSO) Economic Nigerian National Grid
cost
Discrete Integer Reliability - 21-unit test system [26]
Cuckoo Search
(DICS) optimisation
Ant Colony Reliability Thermal 32 generating units test system [25]
Optimisation (ACO)
Ant Colony Economic - 6 generating units test system [30]
Optimisation (ACO) cost
Artificial Bee Reliability Thermal 21-unit test system and [43]
Colony (ABC) and 49-unit system feeding the
Economic Nigerian National Grid
cost
Modified Artificial Reliability - 13-unit and 21-unit test systems | [36]
Bee Colony
GA + local search Reliability - 33-unit test system [1]
Hill Climbing
Technique (HCT)
GA + SA Reliability - 21-unit test system [24]
Evolutionary Economic - IEEE 30-bus, 6 generating units, | [39]
programming + HCT cost 41 transmission lines
GA+ Heuristic Reliability - 21-unit test system [24]
o GA+ SA+ Heuristics Reliability - 21-unit test system [24]
i) SA + ACO Reliability - 21-unit test system [40]
T Hybrid Scatter- Reliability - 21-unit test system and IEEE [38]
Genetic Algorithm RTS 9 generating units test
(HSGA) system
Hybrid PSO + GA Reliability Thermal IEEE 24-bus, 32 generating units | [2]
and Hybrid PSO- and test system
Shuffled Frog Economic
Leaping cost
Hybrid Discrete PSO Reliability - 5-unit and 21-unit test systems [37]
+ GA

Table 1.1: The related works to solve the generator maintenance-scheduling problem.

The past few years have seen an increase in the usage of a novel approach called DMFO
algorithm by researchers to solve different optimization problems. The DMFO method is found
to have a fast convergence rate compared to other optimization methods, such as the Symbiotic
Organisms Search (SOS), PSO, and Differential Evolution (DE). The DMFO algorithm will be

used in cooperation with a proposed FBFS strategy to solve the GMS problem. Moreover, the




CHAPTER 1: STATE OF THE ART

results done in this thesis conclude that the FBFS-DMFO algorithm is a reliable and effective
optimization technique compared with others.

1.3. Thesis Objectives

One of the primary motivations for using an improved FBFS-DMFO algorithm to solve
generator maintenance problems is its ability to handle effectively optimization tasks in
complex and dynamic systems. The GMS plays a crucial role in ensuring the reliable and
efficient operation of power systems. It involves determining the optimal time and duration for
performing maintenance activities on generators while minimizing the impact on power supply
and maximizing the availability of the system. The FBFS-DMFO algorithm's ability to balance
exploration and exploitation, along with its stochastic nature, makes it well suited for addressing
the uncertainty and dynamic nature of GMS. By leveraging the algorithm's adaptive search
capabilities, it becomes possible to find optimal maintenance schedules that minimize
downtime, reduce maintenance costs, and enhance the overall reliability and performance of
power systems. The FBFS-DMFO algorithm offers a promising approach for tackling the GMS
problem and can contribute to more efficient and effective maintenance strategies in the power
industry. This thesis is the study of finding an effectives solution for the GMS problem using
this improved FBFS-DMFO algorithm.

1.4. Thesis Organization

This thesis is divided as follows; General introduction, Chapter 1 which represents a
background of all the previous works dealing with GMS problems. Chapter 2 provides a
mathematical formulation of the GMS problem; the objective function, the evaluation function
and its restrictions. Chapter 3 describes general concepts about DMFO algorithm and the FBFS
local search strategy. Chapter 4 presents the 21-unit test system data; obtained results and
discussion. A general conclusion is drawn at the end and the suggestions for more study will be

provided.
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2. MAIN PROBLEM IN POWER SYSTEM

2.1. Introduction

The process of planning preventive maintenance for power generators is essential today
in order to increase the reliability of power systems generators, which have necessary to
continuously supply customer demand for electricity without interruption, and prevent their
possible future electrical failures. Power generators' preventive maintenance planning assures
that the generating reserve should be kept to a minimum and must be as small as possible at the
end of the overall maintenance horizon. The planning process necessitates the best possible use
of the available workforce, with the workforce required for maintenance tasks to be as efficient
and minimal as possible while meeting a number of constraints, including those related to the
maintenance window, load power demand, resource allocation, and reserve boundary.
Therefore, the solution to the problem of scheduling generator maintenance should be
economical and reliable. This chapter covers the difficulties of scheduling preventive

maintenance for the generation section of power systems.

2.2. Generators Preventive Maintenance Scheduling Problems

Preventive maintenance for generators is typically needed within a specified planning
horizon; this horizon is commonly long, ranging from 8 weeks to 5 years, separated into various
time intervals of weeks. Preventive maintenance aims to increase the expected lifespan of
generating units, to ensure a secure operating state, minimize the risks of unexpected outages
produced by defective generators, lower maintenance costs, and provide highly reliable power-
system generation components. The GMS problem signifies that all restrictions have been met
and the objective function has reached its ideal state. There is a common reliability requirement
that maintains a specific level of generating reserve during the period of planned operation for
those who are working with reliability criteria. Therefore, our thesis is focused on reducing the
SSR of generation[6].

2.2.1. The Objective Functions of the Generator Maintenance Scheduling
Problem

The nonlinearity feature identifies GMS difficulties. It is possible to solve GMS
problems and arrive at the best timetable for preventative planned maintenance by optimizing

a predetermined objective function connected to the generation component of electric power
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systems. In addition, solving the GMS problem requires designing a maintenance schedule that
indicates the beginning and end times for maintaining generation part units as well as the
number of workers and resources needed while minimizing SSR and verifying restrictions[6].

During the scheduling process, generators are either being maintained or not. For
decision C; ., generators can be expressed as a binary variable that equals either 1 when
generator is undergoing repair within period ¢ or O if it is not. Each generator must be recovered
from maintenance within a predetermined period using specific and unique resources. The most
significant restrictions taken into account in this thesis are the maintenance window, the
workforce and the load demand. The terminology used to describe the GMS problem's

mathematical model is shown in Table 2.1.

Table 2.1: The terminology of generator maintenance scheduling mathematical model.

Nomenclature

t Index of periods; tet N; The outage duration of maintenance of generator i;
T Total number of planned horizons; k;, | Starting week of maintenance of generator iin period ¢,
i Index of the number of generators; C;. | Variable of maintenance start for generator iin period t;
i=1..., N; i . (on maintenanceC;, = 1
if generator i: { otherwiseC,, _ 0
N Total number of generators; D, The load power demand in MWSs within period t;
P9 | Maximum output power of generator i in MWs in period t; | L;, | Workforce needed for maintaining generator iin period t;
P Generated output power of generator i in MWs in period t; | P, The total generating capacity within period ¢;
N, Set of the total generators under maintenance in period t; p The sum of the squares of the reserves;

a;; The set of maintenance weeks stages of generator i within | u, The minimum reserve capacity within period ¢;
period ¢; a; ¢ € {kip ke + 1, ki + N — 1}
k The index of maintenance stage; kea, , AL, | The available workforce within period t;

The maintenance window restriction determines the outage duration and periods for each

generator to be under maintenance[5], [6], [26]. Consider next equation (Eq. 2.1):

Vtetand VieN;

Z Cir = N; (2.1)

1 lfk € ai,t;

Where, C;; = {0 ifk & a;;

The workforce restriction determines that the total workers can be used to perform a
maintenance assignment in a certain period t cannot be greater than the whole available
workforce [5], [6], [26]. Consider next equation (Eg. 2.2)

Vtetand VieN;

12
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z z Coulir < AL, (2.2)

ieNy Kea;t

Where, Y ey, Xkea;, CikLie implies that the total workforce needed within periodt and

AL.implies the available workforce within periodt.

The load demand restriction determines that the produced power should correspond with
the load demand [5], [6], [26]. Consider next equation (Eqg. 2.3)

N
Y-y (Y )2 0itu 23)
= ieNg kea;t

Where, Y.}, P/t%*stands for the maximum total generated power of the electric power
system within periodt,ZieNt(Zkeai’t Cl-,kPl-,k)stands for the total generation power loss due to
prescheduled outage within periodt, X, P/t — Yien,(Zkea;, CixPix)stands for the total
generated capacity P,of the electric power system during maintenance tasks within period t and

1 Pl — Yien,(Zea, CiPix) — Destands for the total reserves capacity during the

planned period horizon which should be optimal and at minimum value u.[5], [6], [26].

Consider next equation (Eq. 2.4)

Vtetand VieN,

N
pe= ) PR (Z cl-,kPi,k> - D, 24
= ieN kea;it

The objective function based on the reliability criterion presented in previous work [5],
[6], [24], [26], [34], [38], [43]-[45] is the focus of this thesis. A comparison between production
and consumption should be done after each period to keep the total SSR in electric power
systems generation to a minimum level or estimate. The reserve requires to be reduced to a
minimum. Production needs to keep up with demand. By minimizing the SSR objective
function, the GMS problem is then effectively solved. Consider next equations (Eg. 2.5 and Eq.
2.6)

Vtetand VieN;

Fobj =p= ‘u? (25)
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Min(F,p;) = Min(p) = Min (zmuf) (2.6)

This objective function, represented by (Eq. 2.5), is based on the reliability criterion and
aims to ensure that, regardless of load variations, there is always a sufficient balance between
power generation and load power demand. To do this, the utilities usually provide a spinning
reserve by producing more power than the load power demand, which improves the system's
reliability at a low operational cost. Minimizing the SSR can be a successful strategy when
there is significant variation in the reserve. This is utilized as an objective function to be
minimized in this application. By reducing the SSR during the whole operational scheduling
period, as demonstrated in (Eq. 2.6), the reliability criterion GMS problem will be resolved. A
general mathematical model for a general GMS problem expressed as a quadratic 0-1
programming problem is defined by equations (Eg. 2.1) (Eg. 2.6). Additional restrictions could
be placed on the power system's local maintenance and reliability. There may be increased
worry about the generators' insufficient supply during planned maintenance outages. As a
result, the SSR of the generating units is minimized while formulating the reliability criterion
GMS issue. The reliability of the power system is measured by the sum of the squares of the
reserves, or the objective value. The reserve margin is distributed more evenly and the reliability
is higher as the objective values decrease. The test GMS problem's average reserve level
provides the lower bound of the desired value, providing a constant reserve margin throughout

the scheduling period.

Heuristic methods and traditional mathematical techniques like Integer programming or
Dynamic programming are the traditional approaches to such situations. However, despite
being effective, these old strategies frequently have problems when it comes to their
applicability to significant issues. Due to their ability to resolve complex optimization issues, it
is preferable to take into account the usage of metaheuristic techniques for the general

mathematical model of the GMS problem[6].

2.2.2. The Evaluation Function of the Generator Maintenance Scheduling
problem

Modeling the GMS problem as an optimization issue using a minimum cost evaluation
function is recommended. Two weighted functions make up the evaluation: a weighted
objective function and a weighted penalty function for violating the constraints [5], [6], [24],

[26], [34], [38], [43]-[45]. However, the final maintenance plan might not meet the workforce,
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load, and maintenance window requirements, as the workforce number may exceed the
maximum available workforce and the load demand may exceed the entire generating capacity
when maintenance operations are being performed. Therefore, the objective function in (Eq.
2.5) should include additional penalties for the workforce violation given by (Eq. 2.7) and the
load demand violation given by (Eq. 2.8). To prevent any crossing of limitations, these penalties
are reduced together with the target function. Equation (Eq. 2.7) can be used to calculate the

workforce violation « [5], [6], [26], as demonstrated below:

a= Z Z Z CixLix — AL (2.7)
ieT kea;;

kENt

Where, a is calculated during the times when the total workforce needed to complete

the maintenance chores exceeds the available workforce. In other words when
Zia(ZkeNt Dkea;, CixLix ) is greater than AL,. If not, workforce violation does not exist.

According to [5], [6], [26] the load demand violation B is computed in the next equation
(Eq. 2.8):

N
B =D — (Z P — Z <Z Ci,kPi,k>> (2.8)
ieNg kea;¢

i=1
Where, B is calculated during the times when the load demand to complete the

maintenance chores exceeds the generating capacity. In other words when D, is greater

than XN, P72 — Yien,(Zkea;, CisePix)- 1 not, load demand violation does not exist.

Every time a constraint is broken, a penalty value is proportionate to the amount by
which the constraint is violated [5], [6], [24], [26], [34], [38], [43]-[45]. Consider next
equation (Eq. 2.9):

Penaltycost = CXVi=0C xVi+ C, xV,+ ...+ C, XV, (2.9)

l
Where, L is the total number of violated constraints and [ is the index of violated

L
=1

restriction number, C; is the weight of the violation V.

According to [5], [6], [24], [26], [34], [38], [43]-[45], if both constraints of
the workforce and the load's power demand are violated, the penalty function for these

violations is represented in next equation (Eq. 2.10)
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Penaltycost = Cy X a+ C, X f (2.10)

To describe the GMS problem, we assume a minimization problem of an evaluation
function (E), also known as a crisp evaluation function, as mentioned in[46]. This function is
a weighted sum of the objective function (p) and the penalty function for violating the
constraints (a and g8 ) [5], [6], [24], [26], [34], [38], [43]-[45]. This evaluation function
is represented in next equation (Eq. 2.11):

Ebest = Mln[CR X P + CM Xa + CL X ﬁ] (211)

Where, E} . Stands for the best evaluation function value, p stands for the SSR of
generation. « stands for the total workforce violation, g stands for the total violation during
service time, Cy stands for the weight coefficient associated with SSR of generation. C,, stands
for the weight coefficient associated with the total workforce violation and C,stands for the
weight coefficient associated with the total load demand violation.

The weighting coefficients are chosen so that penalty values for violations of the
constraints dominate over the objective function, and to ensure that the violation of the
relatively hard load constraint results in a higher penalty value compared to the relatively low
workforce constraint [5], [6], [24], [26], [34], [38], [43]-[45].

2.3. Conclusion

The reliability criterion of an evaluation of a weighted sum of the goal function and the
penalty function of violations of the constraints has been used to define and model the GMS
problem mathematically. The objective function is based on the sum of the squares of the
generation reserves. The penalty function is set for any violation of the load power demand and
the workforce constraints, as well as when the load power demand during maintenance exceeds
the total maximum generation and when the workforce used for maintaining generators exceeds
the total workforce available. In order to satisfy several limitations, including the maintenance
window constraint, the workforce constraint, the load power demand constraint, and the reserve
constraint, the problem is then based on mathematical optimization techniques. The solution to
the issue can be found in mathematical optimization techniques like metaheuristics and

evolutionary algorithms, which will be covered in a later chapter.
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3. THE FIRST-BIT FLIP AND SHIFT-BASED DISCRETE MAYFLY
OPTIMIZATION ALGORITHM

3.1. Introduction

A Dbio-inspired population-based method called the Discrete Mayfly Optimization
(DMFO) algorithm was recently proposed and has been effectively used to solve successfully
several engineering issues, Zervoudakis and Tsafarakis first proposed the DMFO in the year of
2020. The DMFO algorithm begins by creating a population of mayflies at random, which are
represented as points in the search space. A fitness function is used to evaluate each mayfly's
effectiveness as a solution to the optimization problem. Any objective function that needs to be
minimized or maximized can be the fitness function. The exploration phase is represented by a
brief period of time during which the mayflies execute a random search of the search area. The
mayflies move randomly in the search area during this phase while being directed by a random

vector. As a result, the algorithm can quickly explore multiple regions of the search area.

Following the exploration phase, the mayflies converge on the best solution as of now;
led by the solution that has the highest rate of success among the population. The phase of
exploitation is represented by this. Then use a swarm intelligence strategy, the mayflies proceed
in the direction of the right approach, with each one adjusting its location in regard to the best
answer and its neighbors' positions. Up until an ending requirement is satisfied, the algorithm
runs through the exploration and exploitation stages. The optimal solution generated by the

algorithm during the search phase is the ultimate solution.

3.2. Motivation

As technology has advanced, there are more optimization issues than ever before, and
these problems typically exhibit nonlinearity and high dimensionality. The Newton technigque
and gradient descent method were once thought to be efficient approaches for solving these
issues since they could produce the desired outcomes in an acceptable amount of time.
Moreover, the limitations of those traditional methods are that: they can only be used to solve
small-scale issues and that they necessitate that the issues be differentiable. As a result, they are
not the ideal option when problems get more complicated. Swarm intelligence optimization

algorithms, which draw their inspiration from the behavior of naturally occurring biological

17



CHAPTER 3: THE FIRST-BIT FLIP AND SHIFT-BASED DISCRETE MAYFLY
ALGORITHM

groups, have gained popularity because it has been shown that they are effective at handling

complex issues.

Swarm intelligence optimization methods have so far been proposed to handle a variety
of optimization problems such as ABC, PSO, SOS, Grey Wolf Optimization (GWO), and
Hunger Games Search (HGS), etc. They are commonly utilized in many different domains. In
2020, a fresh swarm intelligence optimization technique called the DMFO algorithm was
proposed. It mixes the properties of several well-known optimization algorithms, including the
Firefly Algorithm (FA), GA, and PSO.

The DMFO algorithm is an effective method for resolving optimization issues due to
many advantages [47]:

= Easy implementation: DMFO algorithm is a workable option for resolving optimization
issues in a variety of fields because it is simple to use and doesn't demand a lot of
computational capabilities [47].

= Effective search: DMFO algorithm effectively explores the search space and identifies
the best solution by combining local search and global search methodologies [47].

= Flexibility: A wide variety of optimization issues, such as engineering design, financial
optimization, and power system optimization, can be resolved with DMFO algorithm
[47].

= Robustness: DMFO algorithm can handle optimization issues with many objectives and

IS noise-resistant [47].

Therefore, the DMFO algorithm has demonstrated beneficial result in a variety of
optimization situations and can be a helpful tool for academics and industry professionals who

must resolve challenging optimization issues [47].

3.3. The Discrete Mayfly Optimization Algorithm

According to [48], it has been demonstrated that certain modifications are required for
the PSO algorithm in order to ensure the attainment of an optimal point in when dealing with
high-dimensional spaces. The DMFO algorithm gives researchers who worked to improve the
effectiveness of the PSO algorithm using methods like crossover [49] and local search [50] an
effective hybrid algorithmic structure. [51] and [52] report on improved optimization

techniques that take advantage of existing techniques' advantages. The algorithm draws
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inspiration from the mating process of mayflies, utilizing their social behavior. The assumption
is made that mayflies, upon hatching from eggs, instantly reach adulthood, and the survival of
the fittest mayflies is independent of their lifespan. Each mayfly's position in the search space
signifies a potential solution to the problem at hand. The algorithm begins by generating two
sets of mayflies randomly, one representing the male population and the other representing the
female population. Every mayfly is placed randomly within the problem space, representing a
potential solution denoted by a d-dimensional vector x = (x4, ..., x4). The effectiveness of each
mayfly's solution is assessed using a predetermined objective function f(x). The velocity of a
mayfly v = (v, ..., v,4) is determined by the change in its position, taking into account both
individual and social flying experiences. Notably, each mayfly modifies its flight path in order
to reach both its individual best position (p,.s:) and the best position reached by any mayfly

within the group (gpes:) [53].

3.4. The Discrete Mayfly Optimization Algorithm Application

The DMFO algorithm can be applied to a wide range of optimization problems across

different domains. Some of the common uses of the DMFO algorithm include:

= Function Optimization: The DMFO algorithm can be used to find the optimal
solution for mathematical functions. It explores the search space to locate the global
or near-global optimum, making it suitable for problems with multiple local optima
[47].

= Engineering Design: The DMFO algorithm can be employed in engineering design
tasks, such as parameter tuning, circuit design, and structural optimization. It helps
in finding optimal configurations and designs by exploring the solution space
efficiently [47].

= Data Clustering: Clustering is a common task in data mining and pattern
recognition. The DMFO algorithm can be utilized to partition data points into
distinct clusters by optimizing a clustering objective function. It aids in discovering
hidden patterns and grouping similar data points together [47].

= Image and Signal Processing: The DMFO algorithm can be used for image and

signal processing tasks, such as image segmentation, feature selection, and noise
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reduction. It helps in finding optimal parameters and configurations to enhance the
quality and analyze the data effectively [47].

= Machine Learning: The DMFO algorithm can be integrated into machine learning
algorithms to optimize hyper parameters, such as learning rates, regularization
parameters, and network architectures. It aids in improving the performance and
generalization capabilities of machine learning models [47].

= Portfolio Optimization: The DMFO algorithm can be applied in financial portfolio
optimization, where the goal is to find the optimal allocation of assets to maximize
returns or minimize risks. It helps in selecting the right combination of investments
based on historical data and risk preferences [47].

= Resource Allocation: The DMFO algorithm can be used to optimize the allocation
of limited resources, such as workforce, energy, or transportation, to maximize
efficiency and minimize costs. It aids in finding optimal schedules or configurations
for resource utilization [47].

= Neural Network Training: The DMFO algorithm can be utilized in training neural
networks by optimizing the weights and biases. It helps in improving the
convergence speed and finding better network architectures for various applications
[47].

These are just a few examples of the potential applications of the DMFO algorithm. Its
versatility and ability to handle complex optimization problems make it a useful tool across

various domains where finding optimal solutions is crucial.

3.5. Movement of Mayflies
3.5.1. Movement of Male Mayflies

Males tend to congregate in swarms; this suggests that each male mayfly adjusts its
position based on its own experience and that of its neighbors. Let suppose the actual position
of the male mayfly i is x}at time step t in the search area. A velocity v*! is added to modify

the position [53]. This could be expressed as follow:

xft = xf +vft? (3.1)

With xio ~ U(Xmin, Xmax)
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Assuming that male mayflies cannot achieve enormous speeds and that they move
constantly since they are often a few meters above water when doing the nuptial dance [53].
Consequently, the velocity is then developed as follow:

vt = v+ a,e s (pbestij - xlt]) + aze (gbestj - xlt]) 3.2)
Where, vitj is the mayfly i velocity at time step t in dimension j wherej =1, ..., n, xitj
is the male mayfly i position at time step ¢t in dimension j, a,and a, stand for the positive
attraction constants for the social role used to scale the contribution of the cognitive and social
component respectively while g is the mayflies’ visibility coefficient, it controls the visibility
range of each one. Moreover, Pbest is the best position has been visited by mayfly i and

gbestjstands for global best position for mayflies.

According to [53], at next time step t + 1 the Phest is determined as follow:

Dhost; = { xPL o if feY) < f(Pest;) (3.3)

remains unchanged, otherwise

Where, fthat goes from R™ toR, is the objective function that evaluates the

effectiveness of a solution [53]. Then, at the time step t the g,...iS determined as follow:

Gpest € {pbestli pbestzl ---:pbestN|f(Cbest)} = {minf(pbestl): f(pbestz)' ---'f(pbestN)} (3-4)

Where, N is the total number of males in the mayfly swarm. Furthermore, 7, is the
distance in Cartesian terms between the actual position x; and the individual best position p;.;
and r, is the distance in Cartesian terms between the actual position x; and the global best

position g,.s: [53]. These tow distances in Cartesian terms is determined as follow:

2
=Xl =[Sy~ X,) 35
Where, x;; is the jt" element of mayfly i and X; stands to Pbest; OF Gpest-

The best mayflies in the swarm must continue to dance their up-and-down nuptial dance
in order to make the algorithm execute properly [53]. The best mayflies therefore need to
change constantly their velocities. As a result and according to [53], the velocity of a male
mayfly i is determined as follow:
vitt =vf +dr (3.6)

ij
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Where, r is a random number, providing a mayfly's flight a random element ranges
in[—1,1], r € [-1,1], and d stands for the nuptial dance coefficient [53].

3.5.2. Movement of Female Mayflies

Female mayflies do not form swarms as males do. Instead, they fly in the direction of
males to breed. Let suppose the actual position of the female mayfly i is y}at time step ¢ in the
search area [53]. A velocity vfj‘“lis added to modify the position. This could be expressed as

follow:

yitt=yi+oit (3.7)
With ¥ ~ U(Yrmin, Ymax)
The attraction process is modeled as a deterministic one even though it could be random.
The best male should be attracted to the best female, the second best male should be attracted
to the second best female and so on [53]. The female mayfly velocity is determined as follow:

SEL = {vfj + aze—ﬁrrznf(xitj — ylt]) if f(yl.) > f(x;) (3.8)

Y v + fir, if f() < fxy)

Where vfj is the mayfly i velocity at time step t in dimension j wherej =1, ..., n, yi‘j is
the female mayfly i position at time step t in dimension j, a, stand for the positive attraction
coefficients, g is the mayflies’ visibility coefficient, r,,,; is the Cartesian distance between male
and females mayflies calculated using equation number3.5 [53]. Moreover, f; is a random walk
coefficient used in the case when a male does not attract a female that flies randomly and r is

an random number ranges in[—1, 1] [53].

3.5.3. Mating of Mayflies

According to the crossover operator, two mayflies mate in the manner described here:
One parent is chosen from among the male and female populations. The process of choosing
parents is similar to how females are attracted to males. This selection process can be random
or based on their fitness function. At the end, the best female mates with the best male, the

second-best female pairs with the second-best male, and so on [53].

After individual sorting using mutations and crossovers [53], the next generation of two

offspring comes as follow:
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of fspring; = L+ xt; + (1 = L) * y}
{ffp 91 o+ (- 1) * ¥ 59

of fspring, = L yi + (1 - L)+ x;

Where, x{j and yl-tj here are the male parent and the female parent respectively, L is a

random value with a certain range and the initially set velocities of the offspring are zero [53].

3.6. Improvement of Basic Discrete Mayfly Optimization Algorithm

During the exploration of the fundamental algorithm, we discovered problems regarding
the stability caused by velocity-induced perturbations in the existing solutions. Additionally,
we observed premature convergence of the algorithm due to an inadequate balance between
exploitation and exploration. To address these limitations, several modifications to the
algorithm have been devised and are outlined below [53].

3.6.1. Velocity Limits

When evaluating the performance of our algorithm, it was discovered that the velocity
can rapidly escalate to extremely large values, especially when updating the velocity of a distant
mayfly from the global best or personal best position. This situation can result in mayflies flying
outside the boundaries of the problem space [53]. It is important to note that addressing this
issue can be achieved by assigning a zero initial velocity to offspring [53]. This allows for the
presence of mayflies with small velocity values that can still contribute to convergence.
Drawing inspiration from real mayflies, which do not achieve high speeds to remain above
water, it is proposed in [53] propose that each mayfly has a specified maximum velocity,

denoted as 1,4, In these cases, the velocity is then determined as follow:

¢ _{ Vinax if vfj-'-l > Vinax (3.10)

(P .
Y —Vinaxif vfj-i-l < —Vinax

The important aspect to consider is that while 1},,,, controls the extent of exploration

within the search space, excessively small values may hinder exploitation beyond local optima

[53]. The V},,,, Values can be selected as follow:

Vnax = rand X (xmax - xmin) (3-11)
Where, rand € (0, 1].
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3.6.2. Gravity Coefficient

While imposing a velocity limit can restrict the mayflies from attaining high speeds,
there are instances where it becomes necessary to decrease velocities in order to regulate
effectively the balance between exploration and exploitation capabilities of the mayflies. The
gravity coefficientg, functioning similarly to the inertia weight in PSO [54], helps achieve an
optimal equilibrium between exploration and exploitation [53]. Consequently, the updated

velocity of male mayfly i is determined as follow:

—Br2 _py2
vitj-’-1 =49 vfj + ae Pre (pbestij - xlt]) + aze br (gbestj - xltj) (3-12)

Then updated velocity of female mayfly i is determined as follow:

S = {g vl-tj + aze_ﬁr‘%f(xitj - :VLt]) if f(yi) > f(x) (3.13)

Y gvi; +fir, if fr) < fxp)
The gravity coefficient g can either be a constant value ranges in (0, 1] or it can be
gradually decreased during the iterations, enabling the algorithm to to avail some specific areas

[53], by being updated using the equation as follow:

Imax—9min XN (314)

Nmax

Where, gmax aNd gpmin are the maximum and minimum values that the gravity

9 = Imax —

coefficientcan take, n is the actual iteration of the algorithm and n,,,,, is the maximum number

of iteration.

3.6.3. Reduction of Nuptial Dance and Random Walk

The female mayflies' random walking and the male mayflies' nuptial dance are two
highly effective local search methods that can aid the algorithm in escaping local optima [53].
However, engaging in a random walk may inadvertently lead a mayfly to a significantly worse
search area. The problem is that nuptial dance d or randomwalk f; often takes large initial
values. To mitigate this, a gradual reduction of both d and f; over iterations is implemented

[53]. As a result, both values can be updated using a geometric progression formula, as follow:

dy = doS" (3.15)
fie = fiy0" (3.16)

Where § is a constant value ranges in (0,1), 0 < § < 1 and ¢t is the number of iteration.
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3.6.4. Mutate the Genes of Offspring

In order to address the issue of premature convergence, which can result in the algorithm
converging to a local minimum instead of a global minimum, a modified version of the original
algorithm incorporates a random mutation into a subset of the population. This modification
allows the algorithm to explore uncharted regions of the search space that might otherwise
remain unvisited [53]. Specifically, a normally distributed random number is added to the
selected offspring's variable for the purpose of mutation [53]. This alteration modifies the
offspring as follow:

of fspring’, = of fspring, + oN,(0,1) (3.17)

Where, o is the standard deviation of the normal distribution and N,, is the standard

normal distribution with mean = 0 and variance = 1.

3.7. The First Bit-Flip and Shift Local Search Strategy

Binary vector First-Bit Flip and Shift (FBFS) is a process of manipulating binary
vectors, which have elements of numbers in binary form with values of sequences of 0's and
1's, by flipping and shifting their first bits. Bit flipping refers to changing the value of a single
bit from 0 to 1 or vice versa, while bit shifting involves moving the flipping process of bits to
the left or right. These operations can be useful in a variety of contexts, such as in computer
programming, where binary vectors are often used to represent data or instructions. For
example, bit flipping and bit shifting can be used to change specific values in a data structure.
For that reason, binary vector bit flip shift provides a flexible and powerful tool for
manipulating binary data. In our study, if the better solution vector is, for example, x,=[4 28
251546 121391123145012 17 710 45 37 27 33 16] in iterationn, then the solution would
be improved by the FBFS strategy. The first element is 4=100 is becoming then equal to 101=5,
the maintenance of generator number 1 starts then from week number 5 instead of week number
4. The new solution in iterationn becomes, x’,, =[528251546121391123145012177 10
45 37 27 33 16]. This solution is evaluated in the evaluation function. If the new SSR of
generation in iteration n provide by x',is less than the previous SSR of generation provided by
X, in iteration n, then, the new solution x',,of iteration n will be considered as a new better
solution. Otherwise, the previous better solution x,, in iterationnis kept and the

solution x',, provided by the FBFS strategyin iterationnwill be rejected and will be used again
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for the evolutionary for the next iteration n + 1 to prevent themetaheuristic algorithm from
getting fall in local optima and keeping them in continuous search without undesired fails and
stops. Another new solution will be generated in iteration n 4+ 1 by the evolutionary algorithm.
If, for example and not necessarily, the solution provided the evolutionary algorithm in iteration
i+1iSx,4,=[528251546121391123145012 17 710 45 37 27 33 16], then the value
28=11100 will be converted to 11101=29. The flipping process is then shifted to the second
element of the full binary vector. The new solution x',,,,in iterationn + 1 becomes x',,, =
[529 251546 1 21 39 11 23 14 50 12 17 7 10 45 37 27 33 16]. This solution is tested again if
it is a better solution or not, if not, the previous better solution, which is found previously and
not necessarily in the previous iteration, is kept and the current solution x',,, ; in iterationn + 1
is used in the evolutionary algorithm to update the new solution x,,,, in iterationn + 2. In
iteration n + 2, if the evolutionary algorithm generates a solution which is, as an example and
not necessarily, x,,,,=[529 251546121 391123 1450 12 17 7 10 45 37 27 33 16], then the
value 25=11001 will be converted to 11000=24 and the same process will be performed in next

iteration.
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Figure 3.1: Flowchart of the FBFS-DMFO strategy search

The maintenance-starting week of a generator i, after performing the FBFS strategy and
if the FBFS strategy found a new better solution may become greater or smaller than its previous
maintenance-starting week, and this is according to its previous first bit value if it is 0 or 1.The
FBFS strategy is a local search strategy that performs small changes to the previous solutions
to help other evolutionary algorithms in local optimization and avoiding them from getting
stuck in local optima. This strategy works in cooperation with algorithms. In the same iteration,

the evolutionary algorithm works to find the solution, and then the FBFS strategy comes to try
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to improve the solution and find a new solution that is better than the previous one. If the FBFS
strategy cannot find a better solution than the previous one, then the previous better solution is
kept and the new worse solution provided by the FBFS strategy is used again in the evolutionary
algorithm to avoid it from getting stuck in local optima and then making it in constant search
without any stuck or fail. The first bit of an element is then flipped and the flip process is then
shifted at each iteration by taking into account the evaluation of the new obtained solutions in
the evaluation function. Two conditions should be stratified if we want to consider the solution
provided by the FBFS strategy as a better solution; the SSR of generation provided by the
solution made by the FBFS strategy should be less than the previous SSR of generation, and all
constraints should be strictly satisfied without any kind of violations. Otherwise, the solution
provided by the FBFS strategy is only used to update the new next solutions of evolutionary

algorithms.

3.8. Conclusion

The First-Bit Flip and Shift-based Discrete Mayfly Optimization algorithm has been
applied to various optimization problems, including function optimization, engineering design,
and data clustering. Its effectiveness lies in its ability to strike a balance between exploration
and exploitation, leveraging the characteristics of mayflies' short lifespan and their reproductive
behavior. Overall, the DMFO algorithm is a promising optimization technique that draws
inspiration from nature and the behavior of mayflies to solve efficiently complex optimization

problems.
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4. RESULTS AND DISCUSSION

4.1. Introduction

This chapter presents how the Discrete Mayfly Optimization (DMFO) algorithm can be
used to schedule preventive maintenance for power system generators. The algorithm
minimizes a discrete evaluation function that combines an objective function (which is the SSR
of generation) with a penalty function for constraint violations. The algorithm ensures that
several constraints (including maintenance windows, workforce, load power demand, and
reserve boundaries) are satisfied and that neither load power demand nor workforce constraints
are violated during maintenance time. The algorithm is tested on a 21-unit test power system
and will be run for 30 times to reinforce its accuracy and robustness to reach the best solution.
Then its performance (including efficacy and reliability) is compared to other recent methods
using statistical metrics such as mean, standard deviation, min and max, as well as statistical

tests such as the Friedman test, the Holm-Sidak test, and the Wilcoxon signed rank test.

4.2. The 21-Units Industrial Test Power System

The previously discussed GMS problem is applied to the proposed improved FBFS-
DMFO algorithm in this part. A 21-unit test system shown in the Table4.1 [15] is used to
evaluate the FBFS-DMFO algorithm performance. This test system is a utility that mostly burns

coal. The operating characteristics of the units are provided in startup order in Table 4.1.

Table 4.1: The 21-Units Test Power System [15].

apa Allowed period Outage ee 0 orce Req ed fo

10+10+5+5+5+5+3

1 555 1-26 7

2 555 27 — 52 5 10+10+10+5+5
3 180 1-26 2 15 +15

4 180 1-26 1 20

5 640 27 — 52 5 10+10+10+10 + 10
6 640 1-26 3 15+ 15+ 15

7 640 1-26 3 15+ 15+ 15

8 555 27 — 52 6 10+10+10+5+5+5
9 276 1-26 10 3+2+2+2+24+2+2+2+2+3
10 140 1-26 4 10+10+5+5
11 90 1-26 1 20

12 76 27 — 52 3 10 +15+ 15

13 76 1-26 2 15 +15

14 94 1-26 4 10+10+10+ 10
15 39 1-26 2 15 +15

16 188 1-26 2 15 +15

17 58 27 — 52 1 20

18 48 27 — 52 2 15 +15

19 137 27 — 52 1 15

20 469 27 — 52 4 10+ 10 +10+ 10
21 52 1-26 3 10+ 10+ 10
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The size of the units ranges from 39 MW to 640 MW. One week to ten weeks may pass
without service. The system'’s total generating capacity is 5688 MW, while its peak load is 4739
MW. Each unit was given a 26-week window in which to begin maintenance. Units were
permitted to start maintenance either between weeks 1 and 26 or between weeks 27 and 52, as
stated in Table 4.1. All units required to accomplish their maintenance by week 52 in order to
guarantee that similar timetables are compared. This practically forced units to start their outage
before week 52 — D; if they areto be maintained in the second half of the year.
WhereD;represents the length of the outage. Eight outages start in the second half of the year,

while thirteen units start their outages in the first half.

Table 4.2: The parameters of the applied methods.

GA Population size: 200 Crossover probability: 1 | Mutation probability: 0.05 -
GAJ/SA Population size: 100 Tournament pool size: 10| Cooling rate: 0.95 -
SA Initial temperature: 10 | Final temperature: 0.5 Cooling rate: 0.95 -
ACO Number of ants:10 Reward factor: 20 Initial pheromone: 0.5 Evaporation rate:0.9
SAJACO Number of ants: 10 Initial temperature: 10 Cooling rate: 0.95 Initial pheromone: 2.5
Evaporation rate: 0.9 | Reward factor: 40
MFO Population size: 20 Nuptial dance: 5 Personal learning Global learning
Inertia weight: 0.8 Random flight: 1 coefficient a;: 1 coefficient:
Inertia weight damping | Dance damping ration: Distance sight coefficient: | a, = 1.5, a; = 2
ration:1 0.8 2 Number of off-
Flight damping ration: spring:20
0.9 Mutation rate: 0.08
LC-JAYA Population size: 25 - - -
FBFS-DMFO | Population size: 20 Nuptial dance: 5 Personal learning Global learning
Inertia weight: 0.8 Random flight: 1 coefficient a;: 1 coefficient:
Inertia weight damping | Dance damping ration: Distance sight coefficient: | a, = 1.5, a3 =2
ration: 1 0.8 2 Number of off-
Flight damping ration: spring:20
0.9 Mutation rate: 0.08

The GMS problem can be formulated as an integer-programming problem by using
integer variables representing the period in which maintenance of each unit starts. The variables
are bounded by the maintenance window constraints. However, for clarity the problem is first
formulated using binary variables, which indicate the start of maintenance of each unit at each
time. Maintenance window constraints define the possible times and duration of maintenance
for each unit. The relative timetabling of maintenance of certain units may be restricted. The
available generation must exceed the load, and the workforce and resources available for
maintenance work are limited. Further constraints may be imposed involving the reliability.
The problem involves the reliability criteria of minimizing the SSR. Each unit must be
maintained (without interruption) for a given duration within an allowed period and limited

number of workforce.
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4.3. Results and Discussion

This section compares FBFS-DMFO algorithm performance to that of other methods as
GA, SA, ACO, SA combined with ACO, MFO, and Logistic Chaotic JAYA algorithm (LC-
JAYA)[55]. Considering that the same objective function, the same evaluation function
formula, the same evaluation function settings and the same test system were used to run each
of those methods in order to make sure the comparison is adequate. In addition, those methods

are applied with the same parameters listed in Table 4.2.

4.3.1. Case (a)

In this case, the load power demand is 4739 MW. The total available workforce is 25.
The coefficientsC, = 1075, C,; = 4 and ¢, = 2. For the purpose of comparison, the statistical
values of the GMS problem evaluation function for 30 separate runs using the suggested FBFS-
DMFO algorithm and previous techniques are all shown in Table 4.3.

Table 4.3: The statistical values of the crisp evaluation function of the GMS problem for case (a) using 30
independent runs

Method Min ‘ (VEEN Max ‘ SDV
GA 139.09 150.68 167.76 7.87
SA 138.26 143.83 150.36 2.93
ACO 139.99 148.63 168.95 6.82
SA/ACO 137.12 142.11 147.86 2.94
LC-JAYA 140.09 147.35 172.87 6.51
MFO 145.36 177.19 219.94 21.13
FBFS-DMFO 136.54 140.49 146.68 3.37

The numerical results in Table 4.3 have been obtained by setting the coefficients Cg, Cy,
and ¢, t0107°, 4 and 2 respectively. These results display the performance of each method by
presenting their best and worst obtained values, mean values, and standard deviations. The
standard deviation (SDV) measures the robustness of each method, and it indicates how the
values in each series are spread out in relation to their mean. The mean value indicates the
quality of the solutions provided by each method since the available solutions cluster around
the mean, and the best mean value represents the best quality of solutions provided by a specific
method. The lowest and highest values indicate the range limits within which the values may
vary, and the best method is the one that yields the best minimum value (Min) and the lowest
maximum value (Max). The obtained mean value of the solutions gained by the FBFS-DMFO
algorithm is 140.49. Compared to the other mean values produced by the previous approaches,

this mean is far better which can be regarded as an improvement. The obtained best solution
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(Min value) by the FBFS-DMFO algorithm is 136.54 and it is better than the obtained best
solutions (Min values) by other methods. The obtained worst solution (Max value) by the
proposed approach is 146.68 and it is lower than the previously obtained worst solutions by the
other approaches. The obtained SDV by the proposed method is 3.37 and it is much better than
the other SDV values obtained by other methods.

In terms of the best reached solution and the obtained worst solution, the proposed
approach performs better than the previously mentioned current methods. The main benefit is
that even the worst solution found using the suggested FBFS-DMFO algorithm is superior to
the best solution found using the previous methods. Additionally, as the SDV previously
demonstrated, the solutions are very close to the mean value because if the SDV value is
smaller, it means the solutions are closer to the average value, which suggests that the method
used is more robust. As well as, the mean also demonstrated the superiority of the results

produced using the suggested approach.
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Figure 4.1: Crisp evaluation function versus iterations of FBFS-DMFO algorithm in case
(a),Evaluation function = 136.76215 MW?

The crisp evaluation function (E) has quick convergence during the first 150 iterations
at any run as shown in Figure 4.1 then it is remarkable that this improvement starts to be slow
and seems to be constant. However, the improvement is just slightly continued as the number

of iterations increases.
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Figure 4.2:Crisp evaluation function versus iterations for case (a) using: (a)- GAE = 139.54063MW 2, (b)-
SAE = 139.49059 MWW 2, (c)-ACO;E = 138.42575MW?2, (d)- SA/ACO;E = 138.92987MW?2,(e)-MFOE =

145.47739MW? (f)- LC-Jaya; E = 147.18675MW?

There are four categories of optimization methods based on convergence of their

evaluation function and quality of solutions. The first type achieves quick evaluation function

convergence and produces the best solutions, while the second type has slow evaluation
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function convergence but also produces the best solutions. The third type converges quickly,but
produces poor solutions, and the fourth type has slow convergence and also produces poor
solutions. The last two types are not considered effective since they do not generate solutions
with best quality. The first and second types are considered acceptable due to their solutions of
high-quality, but the speed of convergence is crucial. The first type is preferred over the second

type because it has better evaluation function convergence.

2 5 T T e T T T T T T T

20
15 .
10 - i
| | |
0

0

0 5 10 15 20 25 3 35 40 45 50
Maintenance periods (in Weeks)

Manpower used

Figure 4.3: Workforce used during maintenance periods of FBFS-DMFO algorithm in case
(a),Evaluation function = 136.76215 MW?2,

As shown in Figure 4.2, The convergence of the GA algorithm is strong during the first
100 iteration. As well as SA is strong during the first 400 iterations while for ACO, it is strong
during the first 300 iterations and for SA/ACO, it is strong during the first 400 iterations. Also
for MFO, is strong during the first 300 iterations, and for LC-JAY A’s strength convergence
appears during the first 100 iterations. Although, both the speed of convergence and the
accuracy of the optimization are still important. The next results represent the workforce used
per week and the production per weeks and shown in Figure 4.3 and Figure 4.4 respectively,
recorded during the obtained best solution.The results in Figure 4.3 are recorded at
(Evaluation function = 136.76215 MW?). The workforce restriction is satisfied as the total
amount of workforce for maintaining units during maintenance periods should not exceed the
total number of the available workforce that has been set to 25. The workforce as shown is fully
used in week 23 for maintaining generators 7 and 10. The minimum workforce used is at weeks
6, 9, 31, 32, 42, 43 and 44 for maintaining generators 1, 2 and 8.
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Figure 4.4: Production during maintenance periods of FBFS-DMFO algorithm in case (a),
Evaluation function = 136.76215 MW 2.

Table 4.4: Generators maintenance planning per weeks of FBFS-DMFO algorithm, case
(@), Evaluation function = 136.76215 MW?2.

0 0 a ena e e ed 0 0 a ena e ed
1 6 15 5048 27 19 15 5551
2 6 15 5048 28 2 10 5133
3 6 15 5048 29 2 10 5133
4 1 10 5133 30 2 10 5133
5 1 10 5133 31 2 5 5133
6 1 5 5133 32 2 5 5133
7 1,15 20 5094 33 20 10 5219
8 1,15 20 5094 34 20 10 5219
9 1 5 5133 35 20 10 5219
10 1,16 18 4945 36 20 10 5219
11 9,16 18 5224 37 18 15 5640
12 9,13 17 5336 38 18 15 5640
13 9,13 17 5336 39 8 10 5133
14 9,11 22 5322 40 8 10 5133
15 4,9 22 5232 41 8 10 5133
16 9,21 12 5360 42 8 5 5133
17 9,14,21 22 5266 43 8 5 5133
18 9,14,21 22 5266 44 8 5 5133
19 9,14 12 5318 45 17 20 5630
20 9,14 13 5318 46 5 10 5048
21 7 15 5048 47 5 10 5048
22 7 15 5048 48 5 10 5048
23 7,10 25 4908 49 5 10 5048
24 10 10 5548 50 512 20 4972
25 3,10 20 5368 51 12 15 5612
26 3,10 20 5368 52 12 15 5612

The total generation (maximum production) of the 21-unit test system under no
maintenance is 5688 MW. Figure 4.4 shows that the load’s power demand (in red dashed line)
does not exceed the total generation, and this means that the load’s power demand restriction is

satisfied and the load’s power demand should not exceed the maximum generation during
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maintenance. Under maintenance, the system achieved its minimum total generation of 4908
MW during week 23 when generators 7 and 10 are under maintenance. The maximum total
generation under maintenance has achieved 5640 MW during weeks 37 and 38 when generator
18 is under maintenance. The maintenance scheduling due to the performance of FBFS-DMFO
algorithm is shown in the Table 4.4 and Gantt chart represented in Figure 4.5.According to the
schedule found in Table 4.4, there can be no more than three generators under maintenance
each week at maximum, and there can only be one generator under maintenance at minimum.
Table 4.4 has been recorded based on the results obtained from the Gantt chart in Figure 4.5

due to the optimal evaluation function value.
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Figure 4.5: Gantt chart of maintenance planning per week of FBFS-DMFO algorithm, case (a),
Evaluation function = 136.76215 MW ?

The Friedman test has been used to compare the performance of the algorithms stated
in Table4.4. The Friedman test is a non-parametric statistical test used to determine if there are
significant differences among multiple related groups. It is used when the data are not normally
distributed, and the same subjects are measured under different conditions or at different times.
The test ranks the data within each group and calculates the average rank for each subject across

all groups. It then uses a chi-square distribution to determine if there is a significant difference
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in the ranks between groups. The Friedman test is often used in fields such as psychology,
education, and medicine to analyze data from experiments where multiple treatments are
applied to the same subjects[56]. Seven algorithms have been used for the comparison versus
the proposed FBFS-DMFO algorithm as shown if Table 4.5.

Table 4.5: The Friedman test ranks

IBM SPSS 26.0
Mean ranks

Algorithm Friedman Rank Rank
ACO 4.53 5
ACO-SA 2.53 2
FBFS-DMFO 1.90 1
GA 4.83 6
SA 3.23 3
LC-JAYA 4.37 4
MFO 6.60 7

The proposed FBFS-DMFO algorithm ranked first and ACO-SA ranked second, SA
ranked third LC-JAY A fourth, ACO, GA and Mayfly Optimization (MFO) algorithms ranked
fifth, sixth and seventh respectively. Friedman rank test has been performed to rank the methods
according to the results acquired by these methods. However, this test does not show any
statistical difference in the results [57]. Thus, the Holm-Sidak test has been performed to specify
the statistical differences between the methods [57]. Table 4.6 shows the Holm-Sidak test
results. The statistical differences between the proposed FBFS-DMFO algorithm and the other
algorithms are presented by the acquired pairwise p-values from the Holm-Sidak test for all the
algorithms. It ranks the p-values from smallest to largest and adjusts the significance level for
each comparison based on the number of remaining comparisons. This allows amore accurate
control of the error rate. If the p-value is high, it indicates that there is less statistical difference

and less significant outperformance[45].

Table 4.6: The p-values of the Holm-Sidak test

Algo p-va

1-2 0.1746

1-3 0.0054938
1-4 0.50835
1-5 0.0010269
1-6 4.4942 x 10~°
1-7 8.3075 x 1073

1-FBFS-DMFO, 2-SA, 3-LC-JAYA, 4-ACO/SA Hybrid, 5- ACO, 6-GA, 7-MFO

The Wilcoxon signed-rank test sown in Table 4.7 has been used to compare the
performance of the proposed FBFS-DMFO algorithm against other algorithms. The symbols
R+ or R- presents that the FBFS-DMFO method has better or worse performances than the
control one. The meaning of *‘Better’’, ‘‘Equal’” and ‘Worse’’ is the numbers of the test cases

where the FBFS-DMFO method is better, equal or worse than the control one. The P-value
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indicates the significance level, when the P-value is less than 0.05, then the two methods have
obvious differences. The symbol ‘‘+’’means that the FBFS-DMFO performance is better than
the control method. The Z-value indicates which algorithm is close in performance to the
performance of the proposed algorithm based on negative ranks, as Z-value increases as the

rank of the algorithm towards to the proposed algorithm rank increases.

Table 4.7: The Wilcoxon signed rank test for 30 runs, alpha=0.05

e Bette gua orse R P-value alue DO
FBFS-DMFO vs ACO 27 0 3 448.00 17.00 0.000 -4.4324 +
FBFS-DMFO vs ACO-SA 20 0 10 317.00 148.00 0.082 -1.7380 +
FBFS-DMFO vs GA 28 0 2 445.00 20.00 0.000 -4.3707 +
FBFS-DMFO vs LC-JAYA 26 0 4 442.00 23.00 0.000 -4.3090 +
FBFS-DMFO vs MFO 30 0 0 465.00 0.00 0.000 -4.7821 +
FBFS-DMFO vs SA 22 0 8 370.00 95.00 0.005 -2.8281 +

4.3.2. Case (b)

In this case, the load power demand is 4739 MW. The total available workforce is 35.
The coefficients Cr, = 1, Cy = 0 and C,, = 0. The proposed FBFS-DMFO has been compared
with two recent techniqgues MDPSO and MS-MDPSO algorithms presented in [5], [34] as
shown in the comparison of statistical results of table 4.8 in which only SSR of generation is
considered and there is no total workforce and total load violation. At the same number of
evaluation, the mean value of the proposed method is 13,732,895.11MW 2; which is better than
13,984,883.84MW? of MDPSO method and 13,870,778.81MW 2 of MS-MDPSO method. The
minimum value of the proposed method is 13,687,592.01MW?; which is better than
13,863,021.02MW? of MDPSO method and 13,749,264.32MW 2 of MS-MDPSO method. The
maximum value of the proposed method is 13,967,735.97MW?2; which is better than
14,132,336.49MW? of MDPSO method and 14,015,289.69MW? of MS-MDPSO method.

Table 4.8: The SSR statistical results for case (b) of FBFS-DMFO algorithm compared with MDPSO and MS-
MDPSO using 30 independent runs

SSR (in MW s?)

Total workforce Total load violation

violation

MIN MEAN MAX
MDPSO 13,863,021.02 | 13,984, 883.84 14,132, 336.49 No violation No violation
MS-MDPSO 13,749, 264.32 | 13,870, 778.81 14,015, 289.69 No violation No violation
FBFS-DMFO 13,687,592.01 | 13,732, 895.11 13, 967, 735.97 No violation No violation

Figure 4.6 represents the convergence curve of the evaluation function versus the
number of evaluation function value of 13,751,664.53MW?2. The convergence of this function

is fast during the 600 iterations begins from the value 2.1 x 10’ MW 2. The evaluation function,
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in a short period of iterations, nearly achieves an optimal value better than the outcomes of the
preceding two methods.
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Figure4.6:The SSR objective function versus iterations of FBFS-DMFO algorithm in case (b), SSR value =
13,751,664.53MW?

4.3.3. Case (c)

In this case, the load power demand is 4739 MWs and 6.5% spinning reserve, i.e. load
power demand is 5047 MWs, Total available workforce is 40. The coefficients Cr = 1, Cy =
0 and €, = 0. Table 4.9 shows an additional comparison that has been made between the best
results obtained from the proposed method and other recent methods; GAIR presented in [58],
GABR presented in [34], DPSO presented in [34] and MDPSO presented in[34]. The
comparison made with the same number of iterations and no total workforce and total load

violation.

Table 4.9: The SSR comparison results for case (c) of FBFS-DMFO algorithm against other recent methods

Algorithm Best Sum of the Squares Total load demand violation Total Labour force violation
of the Reserves (SSR)
(in MW s?)
GAIR 3 425 971.00 Violated in weeks 6, 7, 8 No violation
GABR 8, 691, 137.00 Violated in weeks 1, 2, 3, 4, 14, 15, 16, 17, 31 Violated in weeks 15,16, 24
DPSO 3 090 335.00 No violation No violation
MDPSO 3,073, 911.00 No violation No violation
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FBFS-DMFO 3,008, 179.05 No violation No violation

The above table showed that the proposed method reaches a value of 3,008,179.05M W2
as a best evaluation function. This value is better compared to the best values obtained using
other methods where the GAIR algorithm reached3, 425,971.00MW?2, GABR algorithm
reached8, 691,137.00MW?, DPSO algorithm reached3,090,335.00MW? and MDPSO
algorithm reached3, 073,911.00MW?2. It is clear that the solution of the proposed approach is
better the best solutions given by the previous methods.The statistical results for the proposed
algorithm using 30 independent runs are presented in table4.10 compared with the previous
methods GAIR, GABR, DPSO and MDPSO to show the effectiveness of the proposed method.

Table 4.10: The SSR statistical results of case (c) for FBFS-DMFO algorithm using 30 independent runs.

Method ~  Bestobjective functionvalue =~ |  Total workforce Total load violation
SSR (in MW s?) violation

MIN MEAN MAX SDV
FBFS-DMFO | 3,008,179.05 | 3,069, 261.47 3,294, 666.69 76,005.33 No violation No violation

The proposed FBFS-DMFO algorithm has then excelled all the GAIR, GABR, DPSO
and MDPSO methods in all the 30 runs. Figure 4.7 represents the performance of the objective
function during the 600 iterations of proposed algorithm. The convergence of this function is fast
during the first period of the iterations and its convergence begins from a value of 8.1 X

10°MW?2 then it barely progresses up to achieve an optimal value of 3,009, 696.05MW?2.
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Figure 4.7:The SSR objective functionversus iterations of FBFS-DMFO algorithm in case (c), SSR value =
3,009,696.05 MW ?2

4.4, Conclusion

This section presents the findings of the suggested FBFS-DMFO algorithm, which was
employed to address the problem of scheduling preventive maintenance for generators in the
21-unit test power system. The effectiveness of the proposed algorithm was assessed by
comparing it to various metaheuristic algorithms using different statistical measures, including
standard deviation, mean, maximum, and minimum values. Additionally, statistical tests such
as the Friedman rank test, the Holm-Sidak test, and the Wilcoxon signed rank test were
conducted. The results demonstrated that the proposed method outperformed all other
metaheuristic algorithms. The Friedman test ranked it as the best algorithm compared to the
others, and the Wilcoxon signed rank test confirmed its superiority in all pair wise comparisons
against the alternative algorithms. Notably, the developed algorithm exhibited fast

convergence, high reliability, and required minimal computational efforts.
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GENERAL CONCLUSION

In order to find the best way to schedule the preventive maintenance of generators in
power systems, this thesis studied the Generator preventive Maintenance Scheduling (GMS)
problem which is described as an optimization problem in terms of dependability criteria, where
a number of constraints have been validated and satisfied with the outcome. The GMS problem
has been resolved using an improved Discrete Mayfly Optimization (DMFQO) metaheuristic
algorithm with First-Bit Flip and Shift search strategy. The evaluation function of a weighted
sum of the objective function of the Sum Squares of the Reserves of generation (SSR) and the
penalty function for violations of the restrictions has been optimized using the algorithm. A
week-long maintenance starting duration has been determined optimally for each generator unit
using the proposed DMFO algorithm. The vector for the best maintenance starting period
produces the lowest evaluation function value and the lowest reserve. This best case solution
offers an optimum maintenance schedule with maintenance starting period and maintenance

duration for each unit.

The proposed approach First-Bit Flip and Shift-based Discrete Mayfly Optimization
(FBFS-DMFO) finds an optimal solution by using the best results from the optimization
process, which are updated from the current solutions in the search area. For comparing present
study against previous recent works for solving the Generator preventive Maintenance
Scheduling problem in electric power systems, the performance of the suggested algorithm has
been examined using conventional and advanced renowned tests. The FBFS-DMFO algorithm
proved its efficacy comparing to other approaches. It also yields significantly better results,
achieving very high-quality optimal solutions in a brief period of time, with high reliability and

constant closeness of solutions to each other when contrasted with new and traditional methods.

Finally, the proposed FBFS-DMFO algorithm succeeds to find better results to solve the
GMS problem and achieve optimal maintenance schedule. As prospective work, this proposed
approach will be applied to achieve better results for scheduling the power system maintenance

and solving other optimization problems in power systems.
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