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A B S T R A C T   

This study investigates heat transfer and entropy generation in a microchannel subjected to differential heating, 
viscous dissipation, and Joule heating within a magnetohydrodynamic (MHD) fluid flow. A finite difference 
method with a fully implicit scheme is employed to accurately model temperature distribution and entropy 
generation. A comparison between the average Nusselt numbers (Nu) calculated using the classical method and 
the Bennett Formula reveals a notable discrepancy, particularly at the entry length (up to 14%). It has been found 
that when one plate is heated while the other is cooled and the Hartmann number (Ha) is low, the average Nu for 
both plates converges to 2. However, at high Ha values considering viscous dissipation and Joule heating, there is 
an 8% deviation between the Nu values of the two plates, with the higher Nu found on the cooling plate. 
Sensitivity analyses explore the impact of control parameters on entropy generation, emphasizing the signifi
cance of η as a key parameter that reflects the system's resistance to entropy generation. Increasing η from 0.1 to 
0.5 results in a 32% reduction in entropy generation. In particular, for microchannels, substantial η high values 
imply reduced entropy generation, highlighting their efficiency in heat transfer.   

1. Introduction 

The outstanding ability of microchannels to significantly improve 
heat transfer efficiency, despite their small and compact dimensions, has 
recently attracted a lot of interest [1]. A considerable amount of research 
has been devoted to examining the heat transfer properties of micro- 
sized devices, such as microsensors [2] and micropumps [3], which 
find crucial applications in improving device efficiency and cooling [4]. 
The main distinguishing property of microchannels is their character
istic length, also known as the hydraulic diameter, which ranges from a 
few micrometers to many hundreds of micrometers, often lying below 
the 1-mm threshold. This diminutive characteristic length yields 
intriguing heat and transport phenomena. The first of them is dependent 
on the Knudsen number (Kn), a dimensionless parameter reflecting the 
ratio of the molecular mean free path to the characteristic length. When 
the Knudsen number is <0.01, it signifies a continuum flow regime, 
while a Knudsen number exceeding 10 corresponds to the regime of free- 

molecular flow. When the Knudsen number falls within this range, from 
0.01 to 10, it results in slip flow [5,6] for Kn values are <0.1 and tran
sitions to the transitional flow regime when Kn surpasses 0.1 [7]. Liquid 
flow within microchannels typically conforms to the continuum flow 
regime due to the exceedingly small mean free path of liquid molecules, 
often on the order of angstroms, which leads to the emergence of 
remarkably low Knudsen numbers (Kn <<0.01) [8]. Another significant 
phenomenon that takes place within microchannels, closely tied to their 
characteristic length also, is viscous dissipation. This phenomenon de
pends on the Brinkman number (Br), and it becomes more pronounced 
as Br increases. It is worth highlighting that the Brinkman number is 
inversely proportional to the characteristic length, hence its importance 
in microchannel applications. The presence of viscous heating as an 
additional heat source introduces a noteworthy alteration to the heat 
transfer process [9]. 

Due to its simplicity and lack of moving components, magnetohy
drodynamic (MHD) flow in microchannels presents an appealing option 
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for miniaturization. MHD is perfect for a variety of applications because 
it allows precise control of fluid flow in microscale systems by utilizing 
electromagnetic forces [10]. Hence, it has captured the interest of 
numerous scholars and opened pathways to various practical applica
tions [11–14]. This technique has the potential to simplify the design 
and operation of microchannel-based devices as it has the potential to 
create pressure driven flow [15], and control the fluid movement 
without mechanical valves [16,17]. The utilization of MHD techniques 
introduces an auxiliary heat source, generally known as Joule heating. 
This phenomenon can substantially modify the temperature distribution 
within the fluid and influence the heat transfer processes. Consequently, 
several scholars has exhibited keen interest of MHD flow due to its po
tential to introduce transformative effects on fluid temperature distri
bution and heat transfer dynamics. Mousavi et al. [18] investigated the 
impact of viscous heating and Joule heating on the heat transfer char
acteristics of Al2O3-water nanofluid laminar flow within microchannels 
in the presence of a magnetic field. They employed numerical modeling 
techniques and found that while the effects of temperature-induced 
viscosity changes were negligible without a magnetic field, they 
became significant when a magnetic field was applied. Li et al. [19] 
analyzed the flow field and heat transfer in a microchannel with surface 
hydrophobicity and varying thickness, while subjecting it to a partial 
magnetic field with Hartmann numbers ranging from 0 to 30. They 
found that at Ha is set equal to 0, both viscous dissipation and heat 
transfer decreased as the slip coefficient increased, and increasing Ha 
resulted in an increase in the friction coefficient. In addition, the Nusselt 
number reached its maximum value at Ha = 20 for all cases, but beyond 
that point, increasing Ha led to a reduction in average Nu. Akinshilo [20] 
investigated mixed convective magnetohydrodynamic fluid flow 
through a vertical porous channel with radiation effects. The author 
examined the impact of rheological parameters, pressure gradient, 
Reynolds number, and radiation parameter, on heat and mass transfer. 
The results revealed that an increase in pressure led to higher velocity 
distribution, particularly towards the center of the flow channel, while 
an increase in the radiation parameter resulted in decreased tempera
ture distribution, with a more significant effect near the electrically 
conducting wall. Pordanjani et al. [21] examined heat transfer and fluid 
flow in a MHD nanofluid flow within a two-parallel-plate microchannel 
containing three isothermal heat sources. Their findings revealed that 
increasing the Reynolds number (Re) boosted heat transfer under both 
slip and non-slip conditions, while viscous dissipation reduced heat 
transfer. Additionally, a higher slip coefficient increased the Nusselt 
number, especially at higher Ha, with a 52% increase observed. 

Kalteh and Abedinzadeh [22] analyzed the flow and heat transfer of 
a water-Al2O3 nanofluid in a two-dimensional microchannel influenced 
by a uniform magnetic field. Using the Lattice Boltzmann method, they 
studied the impact of parameters such as Reynolds number, nanoparticle 
volume fraction, and Hartmann number on heat transfer coefficient and 
friction factor. They found that increasing the Reynolds number from 5 
to 25 improved microchannel heat transfer performance by 19%, while 
the magnetic field had a limited effect on heat transfer but increased the 
friction factor by up to 86%. Qomi et al. [23] conducted a numerical 
study on a micochannel with two heat sources and a hybrid nanofluid 
flow, aiming to improve micro cooling efficiency. They found that 
increasing the strength of the magnetic field or the Reynolds number 
enhanced heat transfer by factors of 3.5 and 1.2, respectively. Sayed 
et al. [24] investigated the impact of electromagnetic hydrodynamic 
(EMHD) flow of single-walled carbon nanotubes (SWCNTs)-nanofluid in 
a microchannel with corrugated walls. Their findings indicated that the 
presence of SWCNTs reduced fluid velocity at the channel center, 
providing resistance to fluid motion, while the concentration of SWCNTs 
enhanced heat transfer rates. Gireesha et al. [25] considered the flow of 
a Williamson fluid in a microchannel, taking into account factors such as 
thermal radiation, heat source, slip regime, and convective boundary. 
The results showed that increasing the Weissenberg number and Rey
nolds number led to an increase in the Nusselt number, indicating 

enhanced heat transfer. Yang et al. [26] studied the heat transfer char
acteristics of magnetohydrodynamic electroosmotic flow in a two- 
dimensional rectangular microchannel. It has been found that when a 
lateral electric field is applied, an increase in the Hartmann number 
leads to a changing pattern in both the velocity and temperature pro
files, characterized by initial increases followed by decreases. This 
transition point is defined as the critical Hartmann number. In contrast, 
the Nusselt number profile exhibits an opposing trend under these 
conditions. 

The phenomenon of entropy generation, a fundamental concept in 
thermodynamics, underscores the irreversibility and inefficiency of real- 
world processes [27]. Its impact is far-reaching, affecting the perfor
mance and efficiency of various systems, from heat engines [28,29] to 
chemical reactions [30,31]. Fluid dynamics involves fundamental irre
versible processes, such as liquid viscosity, system interactions, Joule 
heating, etc. [32–35]. Recognizing the importance of entropy optimi
zation, numerous scholars have devoted their efforts to minimizing en
tropy generation, aiming to enhance the efficiency and sustainability of 
diverse technological and industrial applications of microchannels. 
Puttaswmay and Jayanna [36] investigated the entropy generation and 
heat transfer of the magnetohydrodynamic flow of a water-based Al2O3- 
CuO3 hybrid nanoliquid through a vertical microchannel with consid
eration of thermal radiation. They found that the radiation parameter 
and nanoparticle volume fraction reduced the thermal energy of the 
hybrid nanofluid, and entropy generation decreased with the Hartmann 
number but increased with the Grashof number and Biot number. Gir
eesha et al. [37] investigated the impact of magnetic fields, suction/ 
injection, and convective boundary conditions on heat transfer and en
tropy generation in a conducting Casson fluid flowing through an in
clined porous microchannel, considering temperature-dependent heat 
sources. Results showed that the entropy generation rate decreases near 
the channel walls with an increase in the Hartmann number but in
creases in the central region of the microchannel. Hosseini et al. [38] 
analyzed the entropy generation in a horizontal porous microchannel 
heated symmetrically with water and Al2O3 nanoparticles. They 
analyzed the influence of the magnetohydrodynamic field, solid heat 
generation, and symmetric thermal conditions. The findings showed 
that the MHD field significantly affected temperature and velocity dis
tributions and, consequently, reduced heat transfer irreversibilities. The 
study also identified an optimum Reynolds number of 6.5 for mini
mizing total entropy generation when other parameters were held 
constant. Khan et al. [39] focused on entropy optimization in the context 
2D flow of non-Newtonian liquid over a stretched surface with 
convective boundary conditions and consideration for viscous dissipa
tion. They observed that entropy generation was higher for higher 
values of Ec and Ha, while it had the opposite effect with certain material 
parameter called M [39]. 

Madhu et al. [40] investigated entropy production in the fully- 
developed heat transport of non-Newtonian Carreau fluid in an in
clined microchannel, considering Roseland thermal radiation and 
viscous heating. They used mathematical modeling with the Finite 
Element Method and found that entropy generation decreased at the left 
and right phases of the channel, while the Bejan number increased at 
both phases and reached its maximum at the center of the channel with 
increasing Weissenberg number. In a second paper [41], the authors 
conducted an analysis of entropy generation and heat transfer of MHD 
third-grade fluid flow through a vertical porous microchannel with 
convective boundary conditions. The study found that entropy produc
tion could be enhanced through convective heating and viscous dissi
pation. Noreen et al. [42] conducted entropy production analysis for the 
electroosmotically assisted peristaltic flow of EMHD water-based 
nanofluids through a porous asymmetric microchannel. The results 
showed that entropy generation was influenced by various parameters 
such as the Hartmann number, Eckert number an others, while it 
decreased with permeability of the porous medium. Rao et al. [43] 
conducted an analysis of entropy production in the context of hybrid 
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nanofluid flow through a vertical microchannel. They observed that as 
the Brinkman and Dufour numbers increased, there were significant 
changes in the entropy production rate. This suggests that these pa
rameters have a notable impact on the thermodynamic irreversibilities 
associated with the flow. 

In this study, the novelty lies in the comprehensive exploration of 
entropy generation and heat transfer dynamics within a magnetohy
drodynamic (MHD) flow system in the context of a parallel plate 
microchannel subjected to differential heating. The applied heat flux 
distributions have a notable impact the thermal response [44]. What sets 
this research apart is its practical significance, as it mirrors real-world 
scenarios, for instance, where one wall is actively heating while the 
other wall is poorly insulated (heat leaking), or instances of dual-wall 
heating with varying heat fluxes due to inadequate control mecha
nisms. This investigation is crucial for the design of energy-efficient 
equipment and predicting the performance of aging or suboptimal sys
tems, highlighting its unique contribution to the field of heat transfer 
and entropy generation. The subsequent section presents the problem 
statement and mathematical formulations, whereas section 3 delves into 
the modeling of entropy generation. Section 5 provides insights into the 
numerical methodology employed, along with a sensitivity analysis of 
the developed computational code. Section 6 presents our key findings, 
followed by a comprehensive conclusion. 

2. Problem statement 

Consider a rectangular microchannel that satisfies the condition of 
having a width considerably greater than its height, which allows us to 
model the flow occurring within using the parallel plates approach [45]. 
These plates are parallel to the xz-plane, separated by a distance denoted 
l, are considered to be electrically non-conducting and thermally con
ducting. Within this microchannel, a fully developed laminar flow, in 
the z-axis direction, is established between the parallel plates. The 
Lorentz force generated due to a perpendicular magnetic field with an 
intensity denoted as B0 drives this flow. The fluid possesses finite elec
trical conductivity and constant thermally independent physical prop
erties. Upon entry into the channel, the fluid has a fully developed 
velocity profile with a uniform temperature distribution. The Fig. 1 
presents schematic view of the considered problem. 

In our analysis, we consider a differential heating case that means the 
bottom plate (referred as Plate 1) is subjected to a constant heating flux 
q̇˝

1, whereas the top plate (referred as Plate 2) experiences a uniform heat 
flux q̇˝

2, that could either heat or cool the fluid at a different rate 
compared to plate 1. The special cases of q̇˝

2 = q̇˝
1 and q̇˝

2 = 0 are 
considered also. Additionally, no sleep boundary condition have been 
considered as well as viscose dissipation and joule heating whereas the 

axial conduction is neglected due to the forced convection (Pe > 100), 
hence the energy equation can be written as follow: 

ρcpu
(

∂T
∂z

)

= k
(

∂2T
∂y2

)

+ μ
(

∂u
∂y

)2

+ σB2
0u2 (1)  

with the following boundary conditions 

k
∂T
∂y

⃒
⃒
⃒
⃒

y=0
= q̇˝

1 = q̇˝ (2)  

− k
∂T
∂y

⃒
⃒
⃒
⃒

y=l
= − q̇˝

2 = − δq̇˝ (3)  

T(y, z = 0) = T0 (4)  

where δ = q̇˝
2/q̇˝

1. When δ is set equal to 0, the upper plate operates as an 
adiabatic wall, If it takes on a positive value, the plate functions as a 
heating wall, conversely, a negative value indicates that the plate acts as 
a heat sink, causing the fluid to lose heat and thereby cooling it down. 

To derive a comprehensive and more representative solution, the 
problem defined by Eqs. (1–4) is reformulated in the dimensionless form 
using the following dimensionless parameter: 

Z =
z

l.Pe
; Y =

y
l

(5)  

U =
u

umax
; θ =

k(T − T0)

l.q̇˝
(6)  

Pe =
ρcpumaxl

k
; Br =

μu2
max

l.q
; Ha = B0l

̅̅̅σ
μ

√

(7)  

where Pe is the Péclet number, Br is the Brinkman number, and Ha is the 
Hartmann number. By substitution, the dimensionless energy equation 
is rewritten as follow: 

U
(

∂θ
∂Z

)

=

(
∂2θ
∂Y2

)

+Br
(

∂U
∂Y

)2

+Br.Ha2.U2 (8)  

with the following boundary conditions: 

∂θ
∂Y

⃒
⃒
⃒
⃒

Y=0
= 1 (9)  

∂θ
∂Y

⃒
⃒
⃒
⃒

Y=1
= δ (10)  

θ(Y , Z = 0) = 0 (11) 

As previously stated, given the constancy of fluid properties and the 
assumption of a non-slip condition at the fluid-wall interface for veloc
ity, it is valid to employ Hartmann's velocity profile, and it is defined as 
follows [46,47]: 

U(Y) = Ha⋅
[

cosh(Ha) − cosh(Ha⋅(2Y − 1) )
Ha⋅cosh(Ha) − sinh(Ha)

]

(12) 

It is noteworthy to mention that when Ha≪1, the flow exhibits a 
parabolic profile characteristic of Poiseuille flow. In our study, we have 
approximated this flow by assigning a value of Ha = 0.0001, as going 
below this value can lead to a divergence due to the division by 0 in Eq. 
(12). This choice ensures numerical stability while preserving the ac
curacy of the obtained results. 

Upon the completion of the resolution process, the determination of 
the bulk temperature is obtained using the following formula: 

Fig. 1. Schematic representation of the microchannel and heat transfer 
configuration. 
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θb(Z) =

∫1

0

U(Y)⋅θ(Y ,Z)dY

∫1

0

U(Y)dY

(13) 

The local Nusselt number of the bottom plate (Plate 1) is given by: 

Nu1(Z) =
1

θw1(Z) − θb(Z)
(14)  

whereas for the top plate (Plate 2) is defined as follows: 

Nu2(Z) =
|δ|

θw2(Z) − θb(Z)
(15) 

Here, θwreferrers to the temperature of corresponding wall. 
For the calculation of the local Nusselt number of plate 2 (Nu2), we 

have introduced the absolute value of the ratio δ. This adjustment serves 
the purpose of enhancing the differentiation between the heating and 
cooling phases. Specifically, during the cooling phase by plate 2 (δ < 0, 
negative numerator), the wall temperature falls below the bulk tem
perature (negative denominator), a positive Nusselt number is yielded. 
Although this is correct, it fails to explicitly convey whether the fluid is 
undergoing heating or cooling. Consequently, by considering |δ|, the 
Nusselt number acquires a sign: if the wall temperature is lower than the 
bulk temperature (indicating cooling), the Nusselt number becomes 
negative (the heat transfer from the fluid to the wall), effectively rep
resenting the cooling phase, and vice-versa. It is important to note that 
during the resolution phase, Delta can take its imposed value without 
the absolute sign. 

Traditionally, the average Nusselt number is calculated as follow: 

Nu(L) =
1
L

∫L

0

Nu(Z)dZ (16) 

However, according to Bennett [48,49], there was a historical 
misperception in calculating the average Nusselt number in ducts sub
ject to a constant wall heat flux. This misperception can result in an 
average error of 12.5% for fully developed flow. Therefore, in our study, 
we are following the methodology proposed by Bennett [48]. The 
average Nusselt number of each plate, for a given duct length L, is 
calculated as follows: 

Nui(L) =
L

∫L

0

dZ
Nui(Z)

(17)  

where i is the plate index (i = 1 or 2). 

3. Evaluation of entropy generation 

Once the velocity and temperature fields have been obtained, it be
comes possible to assess the rate of entropy generation within the 
microchannel, serving as a fundamental aspect for optimization en
deavors. In the context of a viscous, incompressible laminar flow, the 
local rate of entropy generation can be expressed as shown in Eq. (18), 
where three distinct sources of entropy generation are identified: the 
first arises from heat transfer, the second from viscous dissipation, and 
the third from Joule heating [27]: 

S ′̋
gen(y, z) =

k
T(y, z)2

[(
∂T(y, z)

∂y

)2

+

(
∂T(y, z)

∂z

)2
]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Entropy generation
due to heat transfer

SHT

+
μ

T(y, z)

(
∂u(y)

∂y

)2

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Entropy generation

due to viscous heating
SVD

+
σB2

0

T(y, z)
u(y)2

⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟
Entropy generation
due to Joule heating

SJH

(18) 

By introducing dimensionless parameters defined in Eqs. (5–7), the 
dimensionless local entropy generation can be written as follow: 

NST(Y,Z) =
l2

k
S ′̋

gen

=
1

(θ + η)2

[(
∂θ
∂Y

)2

+
1

Pe2

(
∂θ
∂Z

)2
]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
NSHT

+
Br

(θ + η)

(
∂U
∂Y

)

⏟̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟
NSVD

+
Br.Ha2.U2

(θ + η)
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟

NSJH

(19)  

where 

η =
k T0

l q̇˝
(20) 

The dimensionless parameter given by Eq. (20), particularly denoted 
as η, and its physical implications, will be further elaborated upon in the 
subsequent discussion. 

As we are considering forced convection, we make the assumption 
that the Pe > 100. This allows us to simplify Eq. (19) to the following 
form: 

NST(Y,Z) =
1

(θ + η)2

(
∂θ
∂Y

)2

⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟
NSHT

+
Br

(θ + η)

(
∂U
∂Y

)

⏟̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟
NSVD

+
Br.Ha2.U2

(θ + η)
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟

NSJH

(21) 

Upon evaluation of the local entropy generation rate, it becomes 
feasible to proceed with the assessment and determination of the local 
Bejan number, Be, a fundamental parameter that serves as a crucial 
component in the characterization and analysis of the thermodynamic 
and heat transfer performance within the given system, by following the 
expression as outlined below [50]: 

Be(Y, Z) =
NSHT

NST
=

NSHT

NSHT + NSVD + NSJH
(22) 

Additionally, the average entropy number for each component can 
be calculated using the following integration formula: 

NSxx =
1

l⋅Ld
⋅
∫Ld

0

∫l

0

NSxx(Y, Z)dYdZ (23) 

Consequently, the average Bejan number for the system is given by: 

Be =
NSHT

NST
(24)  

4. Numerical resolution and validation 

The numerical solution for the previously stated problem, as defined 
by Eq. (8), along with the boundary conditions presented in Eqs. (9–11), 
is achieved through the utilization of the finite difference method [51]. 
To discretize the partial differential equation, a fully implicit scheme is 
employed, resulting in the formulation of an algebraic system of equa
tions with three diagonals matrices for each axial step ΔZi. Implicit 
schemes are known for their inherent stability and convergence prop
erties, which contribute to the accuracy and reliability of the numerical 
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solution [52]. Eq. (8) is discretized through the implementation of three- 
point central differences to handle second-order derivatives, while first- 
order derivatives are managed using two-point forward differences. In 
order to have a dynamic resolution process and to accurately evaluate 
the heat response in the entry length of the microchannel, a variable ΔZi 
is used as follow [53]: 

ΔZi+1 = Zi+1 − Zi (25)  

where 

Zi = Ld

(
i
n

)r

(26) 

Here, i is the discretization index along the Z-axis, n is the number of 
steps, r is numerical exponent and Ld represents the dimensionless length 
of the channel. Selecting a suitable exponent value, r > 1, enhances the 
accuracy of calculated temperature at the entrance of the duct. For this 
investigation, the value r = 4 is chosen to attain starting ΔZi values on 
the order of 10− 10. 

The numerical resolution was obtained using an in-house code, and 
once the temperature field is obtained, entropy generation is calculated 
using second-order differences to compute the temperature derivatives. 
The code underwent mesh sensitivity analysis and the results were 
compared with literature for reliability assessment, as depicted in Fig. 2. 
Fig. 2a illustrates the effect of grid size on result accuracy. Three types of 
quadratic grids were considered: 50 × 1000, 100 × 2000, and 200 ×
4000, where the first number represents discretization along the Y-axis, 
and the second number along the Z-axis. Additionally, a comparison is 
made based on the local Nusselt number using the analytical solution 

provided by Cotta and Özişik [54], for a Newtonian fluid, without 
considering viscous dissipation (Br = 0), along with Joule heating and 
Hartmann flow (Ha = 0.0001). The plates are subjected to the same 
heating flux (δ = 1). It is evident that as the grid size increases, the 
deviation between our solution and Cotta and Özişik diminishes. At Z =
10− 6, the error between our solution and the analytical one is approxi
mately 2.7%. At Z = 10− 5, this error reduces to 0.5%. Further down
stream, the error continues to decrease, reaching 0.04% at Z = 10− 4 and 
ultimately 0.00% in the developed region where the asymptotic Nusselt 
number reaches 8.235. It is important to note that the Nusselt number of 
the system is the sum of the Nusselt numbers of each plate (Nu = Nu1 +

Nu2). However, this addition is not valid when the plates have different 
heat fluxes. The remaining results on this paper are obtained using a grid 
of 200 × 4000. 

In the second step, we investigate the accuracy of our code con
cerning Hartmann flow under a constant heat flux (δ = 1), without 
considering viscous and Joule heating effects. The comparison is based 
on the asymptotic Nusselt number of the system (Nu), obtained by our 
code at Z = 10 and the analytical correlation obtained by Lahjomri et al. 
(refer to Eq. 49 in Ref. [55]). As observed in Fig. 2b, our results closely 
align with the correlation proposed by Lahjomri et al. For low values of 
the Hartmann number (Ha < 40), the error remains below 0.01%, with 
the maximum error reaching 0.32% at Ha = 200. 

The Fig. 2c illustrates the asymptotic Nusselt number of both the 
upper and bottom plates, comparing it to the analytical correlation 
derived by Sheela-Francisca and Tso (refer to Eq. 21 in Ref. [56]). This 
comparison is made for the case of symmetric heating (δ = 1), consid
ering viscous dissipation while neglecting Joule heating (Ha = 0.0001). 

Fig. 2. Code sensitivity analysis and validation, a) Grid size impact on local Nusselt number deviation. b) Accuracy assessment of asymptotic Nusselt number for 
Hartmann. c) Comparison of asymptotic Nusselt numbers for symmetric heating with viscous dissipation. d) Assessment of viscous dissipation effect in case of 
differential heating. 
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As observed, our results align perfectly with the data obtained from the 
Sheela-Francisca and Tso correlation, with an overall error of <0.01%. 

In Fig. 2d, we investigate the scenario of differential heating with 
viscous dissipation (Plate 2 has a higher heat flux, δ = 2). Once again, 
our results are compared against the correlation by Sheela-Francisca and 
Tso [56]. As can be observed, the computed asymptotic Nusselt numbers 
for the bottom plate (plate 1) match those calculated using the corre
lation (errors <0.01%). However, the proposed correlation by Sheela- 
Francisca and Tso is not valid for the top plate. Plate 2 exhibits 
different asymptotic Nusselt numbers. For low Brinkman numbers (Br <
5), its Nusselt number is lower than that of plate 1. However, for higher 
Brinkman numbers, it is larger than the Nusselt number of plate 1. 

In summary, our developed code demonstrates remarkable accuracy 
in predicting local and asymptotic Nusselt numbers for various heat 
transfer scenarios, as highlighted in Fig. 2. The strong agreement with 
established correlations and literature data validates the code's reli
ability and accuracy. 

5. Results and discussion 

5.1. Heat transfer response 

In the first part of this discussion, we will be interested on the effect 
of differential heating with consideration of viscous dissipation and 
Joule heating. The main purpose of this paper is to investigate the en
tropy generation, as the heat response for the classical symmetry heating 
cases has been widely discussed in literature. The only case of 

differential heating we know that exists in literature is the work of 
Sheela-Francisca and Tso [56], where the authors investigated this type 
of boundary condition For Graetz-Brinkman flow. 

Fig. 3a illustrates the progression of the Local Nusselt number along 
the microchannel for three distinct Hartmann number values (Ha =
0.0001, Ha = 10, Ha = 40), considering both viscosity and Joule heating 
under symmetric boundary conditions (δ = 1). Given δ = 1, the Nusselt 
number of the system is equal to the sum of Nu1 and Nu2. Notably, upon 
consideration of viscous and Joule heating, and for the Poiseuille flow 
(Ha = 0.0001), a slight reduction in the Nusselt number is observed in 
comparison to the case where Br = 0. This reduction is evident until it 
attains a value of 7.95 within the fully established region (for Br = 0, the 
asymptotic Nu = 8.235). With an increase in the Hartman number value, 
the local Nusselt number also experiences an improvement. This is due 
to the increase in velocity gradients near the plates, thereby enhancing 
heat transfer. Moreover, we have computed the average Nusselt number 
at a designated distance (Z) using eqs. (16) and (17), as presented in 
Fig. 3b. The dashed lines depict the average Nusselt number derived 
using the conventional approach defined by Eq. (16), while the solid 
lines represent the average calculated using the Bennett formula out
lined in Eq. (17). Upon examining the thermally developing region, a 
marked distinction between the traditional average Nusselt and the 
Bennett average Nusselt is evident. This the error between the two 
equations is quantified and presented in Fig. 3c. As observable, the error 
between the two formulas can reach up to 14% within the developing 
region, marking a highly significant disparity. This divergence holds 
substantial implications for the design of heat-related equipment, such 

Fig. 3. a) Evolution of local Nusselt number along microchannel with viscous and joule heating. b) Comparison of average Nusselt numbers, classical (Eq. 16, dashed 
lines) vs. Bennett approach (Eq. 17, solid lines). c) Absolute error between classical and Bennett average Nusselt numbers. The asymptotic values in (a) and (b) are 
computed at Z = 1. 
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as electronic coolers. The potential for inadequate performance relative 
to expectations could result in equipment damage over prolonged use, 
stemming from ineffective heat dissipation (see Eqs. 14 and 15). 

Fig. 4 illustrates the impact of the heat flux ratio, δ, on the average 
Nusselt number of the upper and lower plates. Evidently, under sym
metric heating conditions with δ = 1, the average Nusselt numbers for 
both plates are congruent. When δ = 2, i.e. the upper plate's heat flux 
doubles that of the lower plate, and for parabolic flow (Ha = 0.0001), 
the heat transfer in the entry region yields equal Nusselt numbers for 
both plates (Z < 0.01). However, as the Hartmann number increases, the 
differences in Nu between the two plates amplify, and it becomes more 
pronounced at Ha = 40. The increase in Hartmann number flattens the 
velocity profile at the core, augment the gradient near the walls, thus 
intensifying heat exchange between the plate and fluid and accentuating 
inter-plate deviations. In the developed region, the average Nusselt 
number for the upper plate converges towards an asymptotic value 
below that of the bottom plate. At specific axial positions, the fluid bulk 
temperature aligns with the bottom plate's temperature, thereby causing 
an increase in Nusselt number and for some cases leads to singularity 
point when θb ≈ θw, (see Eqs. 14 and 15). Notably, the elevated Nusselt 
number for the bottom plate in the developed region does not correlate 
with an improved heat transfer rate. Rather, it signifies that the fluid's 
bulk temperature approximates the plate's temperature, leading to 
diminished heat absorption at this fluid-plate interface. 

In another scenario with δ = − 1, where the bottom plate heats the 
fluid while the upper plate cools it at an equivalent rate. Here, the 
negative Nusselt number implies heat transfer from fluid to wall. 
Comparing absolute Nusselt values reveals the upper plate's Nusselt 

number (Nu2) surpasses the lower plate's (Nu2), and this difference in
creases with higher Hartmann numbers. This can be explained as follow: 
in this configuration, the fluid experiences heat input from three distinct 
sources. The first source is viscous dissipation, which primarily takes 
place in close proximity to the wall due to the high velocity gradients. 
The second source is Joule heating, distributed throughout the fluid's 
bulk with a maximum at the center core. The third source emanates from 
the bottom plate. The heat emanating from the bottom plates interacts 
with the heat from the other two sources that contributes to significant 
elevation in the plate temperature, hence, the reduction of the Nusselt 
number. Conversely, the top plate functions as the sole heat sink in this 
arrangement. All heat fluxes are directed towards this plate, leading to a 
minimization of temperature disparities between the plate and the fluid 
bulk, which increases the Nusselt number. At Z = 1 and for Ha = 40, 
Nu1 = 2.089 and |Nu2| = 2.263 (denoting a + 8.3% augmentation). For 
the case δ = − 2, Nusselt number diminishes in the entry region at a given 
Ha number. However, in the fully developed region, plate 2's average 
absolute Nusselt number at Z = 1 increases to 2.638, while plate 1's 
diminishes 1.606. 

The average Nusselt number has been computed at various dimen
sionless lengths for both plates, across different values of the heating 
ratio (δ), Brinkman number (Br), and the Hartmann Number (Ha). 
>30,000 combinations were considered, and the results are tabulated in 
the associated Excel file provided with this paper. These results are 
presented through a pivot table, allowing readers to select specific 
values of δ, Br, and Ha to obtain the corresponding average Nusselt 
number. 

It has been observed that under certain circumstances, differential 

Fig. 4. Effect Heat Flux Ratio (δ) on average Nusselt numbers for upper and lower plates in with consideration of viscous and Joule heating.  
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heating can lead to the appearance of singularity points on the average 
Nusselt Number curve of either the upper or the bottom plate. For 
example, by using the accompanying Excel file, readers can choose pa
rameters such as δ = 0.1, Br = 0, and Ha = 0.0001 to visualize the 
behavior of the average Nusselt number through an interactive dynamic 
figure. The abrupt fluctuations in Nu2 within the region between Z =
10− 2 and 10− 1 can be explained as follows: As the fluid enters the 
microchannel with an initial temperature,θ0, lower than the wall tem
perature of plate 2, θw2, it receives heat from both plates at varying rates. 
At some point downstream, due to the lower heating rate of plate 2, the 
bulk temperature of the fluid, θb, becomes equal then higher than the 
wall temperature θw2. The point where θw2 = θ0, causes Nu2→∞ due to 
the division by zero (see Eq. 15). As a result, the high values of the 
average Nusselt number in this particular region are meaningless. 

5.2. Entropy assessment 

The subsequent discussions delve into a comprehensive analysis of 
entropy generation within the system, including insights into how 

different parameters contribute to the overall thermodynamic response 
of the system. Fig. 5 depicts the temperature field (Fig. 5a), dimen
sionless entropy generation due to: heat transfer (Fig. 5b), viscous 
dissipation (Fig. 5c), Joule heating (Fig. 5d) and global dimensionless 
entropy generation (Fig. 5e), in addition to the local Bejan number 
(Fig. 5f), considering Br = 1, Ha = 1, δ = 1, and η = 1. Notably, the axial 
distance is presented on a logarithmic scale. In Fig. 5a, it is evident that 
fluid temperature symmetrically rises downstream due to the heating 
process (δ = 1). This figure is included to elucidate the entropy gener
ation rate's evolution, which inherently depends on temperature. 
Initially, entropy generation due to heat transfer (Fig. 5b) is concen
trated near the wall in the entry region, and it extend gradually towards 
the bulk fluid center downstream, in which significant heat transfer 
occurs in this region. However, further downstream, this region con
tracts due to the increase of the fluid temperature. 

Fig. 5c depicts entropy generation due to viscous dissipation. 
Initially, uniform distribution prevails in the entry region due to uniform 
heat generation rate caused by viscous heating that depends only of 
velocity gradient; higher near the wall and lower at the fluid's center. 

Fig. 5. Entropy Generation, Bejan Number, and Temperature Evolution Downstream.  
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Moving downstream, entropy rate diminishes due to fluid temperature 
elevation. Similar observations hold for joule heating (Fig. 5d), where 
entropy generation rate is uniform at the entry, and decreases down
stream owing to elevated fluid temperature caused by heat transfer, and 
viscous and Joule heating. 

The dimensionless entropy generation rate NST (Fig. 5e), being the 
sum of the three aforementioned entropies, follows analogous behavior - 
higher at entry, diminishing downstream. However, this figure does not 
reveal the heat transfer process contribution to entropy generation rate. 
Thus, the most suited parameter for clear representation is the Bejan 
number, as it represents the ratio of entropy generated due to heat 
transfer over the global entropy generation rate. Local Bejan number has 
been computed and depicted in Fig. 5f. The figure's shape, akin to 
Fig. 5b, reflects high Bejan numbers aligning with zones of high entropy 
generation due to heat transfer. Hence, in the forthcoming discussion, 
we will investigate the influence of different parameters on entropy 
generation, considering only the Bejan number. 

Fig. 6 illustrates the impact of the dimensionless number, η, on the 
entropy generation rate with consideration of viscous and Joule heating. 
As it can be seen, for low values of η, high value of the Bejan number 
cover the majority of the fluid, and decreases as the value of η increases. 
The dimensionless parameter, η, can be regarded as a factor representing 
the resistance of the system to entropy generation, dependent on both 
the geometry (l), and the initial conditions(T0, q̇˝

). A high value of η can 
be associated with either a low heating rate or a small channel width (l), 
as is often the case in micro-channels. Systems characterized by high 
values of η exhibit less entropy generation. Conversely, a low value of η 
can be associated with a high heat flux, resulting in significant entropy 
generation within the system. 

To gain a comprehensive understanding of the influence of the 

parameter η, we computed the average entropy generation rates (NSHT, 
NSVD, NSJH) and the average Bejan number over a wide range of η. The 
results are depicted in Fig. 7. It's important to note that in this case, we 
assumed Br = 1, Ha = 1, and d = 1. Additionally, we included the curve 
for the average NSHT in the case of Br = 0 and Ha = 0.0001 with δ = 1 for 
the purpose of comparison. As can be observed from the data, a high 
value of η is associated with a low entropy generation rate for all three 

Fig. 6. Influence of dimensionless parameter η on local Bejan number.  

Fig. 7. Variation of average entropy generation rates and Bejan number with 
dimensionless parameter η. 
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components, as well as the average Bejan number that tends to zero. 
Conversely, as the value of η decreases, the entropy rates increase for all 
three components. 

Of particular interest in the Bejan number is its initial peak at around 
η = 10− 2, where Be = 0.26. Following this peak, the Bejan number de
creases as η decreases. Subsequently, it starts increasing again as η drops 
below 10− 6. By examining the first part of Eq. (21), we observe that the 
NSHT component is divided by (θ + η)

2
. Since the temperature is essen

tially equal to zero at the entry, and as η tends to 0, this division tends 
towards infinity. Consequently, for η values below 10− 6, the increase in 
entropy generation and the Bejan number lose physical significance. 
Therefore, for systems where entropy generation cannot be avoided, 
maintaining η within the range of 10− 3 to 10− 1 is of utmost importance. 
In the case of micro-channels, where l is on the order of tens to hundreds 
micrometers, the equivalent η lies between 1 and several hundreds. This 
configuration results in low entropy generation within the system. 

In Fig. 8, we explore the effects of differential heating and cooling on 
the entropy generation rate based on the local Bejan number. As evident 
from the figure, the ratio δ has a significant impact on entropy genera
tion. This effect becomes noticeable when one plate heats while the 
other cools (δ = − 2 and − 1), resulting in notably high entropy gener
ation rates in terms of the local Bejan number. This phenomenon arises 
due to the considerable temperature gradient existing between the two 
plates. For the scenario where the top plate is isolated (δ = 0), we can 
observe a concentration of high local Bejan numbers near the bottom 
plate, attributed to heat transfer between the wall and the fluid, whereas 
low local Be are localized near the isolated wall. In cases where both 

plates heat up, albeit at different rates (δ = 0.5), an unbalanced distri
bution of the local Bejan number emerges, characterized by a high Bejan 
number near the bottom plate and a low Bejan number near the top 
plate. 

The practical implications of these findings are contingent upon the 
specific system in question. Consider, for instance, the situation where 
we aim to dissipate the heat generated by plate 1. If we possess a heat 
sink (represented as plate 2) capable of dissipating the heat produced by 
plate 1, the introduction of a film fluid between the surface and the sink 
becomes redundant. This is due to the high entropies generated by the 
fluid, which in turn renders the system inefficient. In this context, a more 
practical approach involves placing the heat sink directly in contact with 
the heat source. 

In another scenario, we might encounter a situation where the 
isolation of plate 2 is inadequate. Heat evacuated by plate 2 could then 
be perceived as a heat loss from the system to the environment. These 
heat losses contribute to entropy generation, thereby leading to elevated 
values of the Bejan number. Similarly, when heat flows into the system 
due to poor isolation and a hot environment, this circumstance also 
contributes to the rate of entropy generation. 

Fig. 9 provides a summary of the average Bejan number for the 
system across various values of Br, Ha, δ, and η. It is important to note 
that in certain cases, such as when Br = 0.01 and η = 0.01, the presence 
of zigzag contours can be observed. These contours arise from the 
plotting method employed by third-party software to generate contours 
and lack significant physical implications. One notable observation is 
that the local Bejan number diminishes as the Hartmann number and/or 

Fig. 8. Effect of heat flux ratio, δ, on entropy the local Bejan number.  
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the Brinkman number increases. This decrease can be attributed to the 
augmentation in heat generation due to either/both viscous dissipation 
and Joule heating. Furthermore, it becomes evident that for a given 
Hartmann number, the system's minimum average Bejan number occurs 
at approximately δ = 0. The value of Be increases as the magnitude of δ 
deviates from zero. However, the rate of increase varies, whether posi
tive or negative. In addition, it is especially remarkable the substantial 
rate of increase in the Bejan number when plate 2 is subjected to cooling. 
This phenomenon is driven by the presence of a high temperature 
gradient, as discussed earlier, and in various cases, this increase leads to 
the Bejan number attaining a value of Be = 1. 

6. Conclusion 

This study investigates the heat transfer and entropy generation 
dynamics within a magneto-hydrodynamic fluid flow (MHD), in a 
microchannel, under the influence of differential heating, viscous 
dissipation and Joule heating. The numerical solution strategy employs 
a finite difference method along with a fully implicit scheme to dis
cretize the governing equations. This approach accurately captures the 
temperature field and subsequent entropy generation. The developed in- 
house code's reliability is rigorously established through mesh sensi
tivity analyses and extensive comparisons with analytical solutions and 
literature data. The main findings are:  

• Heat transfer analysis reveals subtle fluctuations in the heat transfer 
rate, influenced by factors such as viscous dissipation, Joule heating, 
Hartmann number, Brinkman number, and heating ratio.  

• The comparison between the average Nusselt number calculated 
using the classical formula and the Bennett Formula [48] demon
strates a significant deviation, particularly noticeable at the entry 
length, with potential errors of up to 14%. This has critical impli
cations for engineering applications, leading to the computation of 
average Nusselt numbers for over 30,000 combinations of Br, Ha, 
and δ at various axial positions, with detailed results provided in the 
accompanying spreadsheet.  

• When one plate is subjected to heating while the other plate is 
cooled, and the Hartmann number is at a low level, the average 
Nusselt number for both plates approaches 2. Nevertheless, at 
elevated Ha values, taking into account viscous dissipation and Joule 
heating, an 8% disparity emerges between the Nusselt numbers of 
the two plates, with the cooling plate exhibiting the higher Nu value. 

• Entropy assessment highlights the sensitivity of dimensionless en
tropy generation rates to controlling parameters like Br, Ha, and δ. 
Within the dimensionless entropy formulation, the parameter η 
emerges as a significant factor affecting entropy generation rates. 

• Higher η values correspond to lower entropy generation, under
scoring its role in entropy minimization. Increasing η form 0.1 to 0.5 
reduces the entropy generation rate by 32%.  

• For Micro Channels, it's noteworthy that they typically exhibit higher 
δ values by default, and substantial high η values imply reduced 

Fig. 9. Average Bejan number variation with Br, Ha, δ, and η in a micro-channel with length Z = 10.  
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entropy generation, underscoring their high efficiency in heat 
transfer. 

In essence, the findings reveal the delicate balance between heat 
transfer and entropy generation in microscale systems subjected to dif
ferential heating. 
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