
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of the

Requirements for the Degree of

MASTER

Option: Computer Engineering

Title:

NAFFSI, a software application for mental health

service management

Presented by:

MESSAI Amine

Supervisor:

Dr. TOUZOUT Walid

Academic Year: 2022/2023

Dedications

This thesis is dedicated to my lovely parents for their endless support and encou-

ragement. I further extend my dedication to all members of Messai’s family.

I would like to also extend my heartfelt dedication to all my friends, colleagues, and

teachers who have been an invaluable support throughout my journey. Additionally,

I wish to express my deepest gratitude to those who have taught, encouraged, and

provided guidance to me throughout my entire academic pursuit. This master’s

thesis is dedicated to each and every one of them, with sincere appreciation and

admiration.

i

Acknowledgments

First and foremost, all praise and thanks giving to Allah the most powerful and

most merciful who gave me the ability and patience to accomplish the work presented.

This thesis was carried out in the electronics institute of the University of Boumerdes.

I would like to express my sincere thanks to all the university staff who assisted me

throughout my masters studies and offered me a very pleasant studying environment.

I would like to also express my heartiest gratitude and appreciation to my respected

supervisor Dr. Touzout for his support and patience through out the project, and

to all the members of jury for their valuable time and feedback.

ii

Abstract

Mental health issues continue to be a growing concern worldwide, and access to

quality online mental health services remains a challenge for many individuals. In

response to this pressing need, we present Naffsi, a comprehensive mental health

online counseling Flutter Firebase application, which is a service we concluded within

our software development company “Mighiss” needed to exist. Naffsi aims to bridge

the gap between patients and therapists by providing a platform that facilitates

secure and convenient communication through messaging and video calls.

Through Naffsi, patients can connect with professional therapists specialized in

various mental health areas. The application implemented a range of features, in-

cluding live-streams, group therapy sessions, and well-being articles to provide users

with knowledge and support, and for therapists to express themselves. By integra-

ting these elements, Naffsi aims to deliver a holistic approach to mental health care,

addressing the diverse needs of individuals seeking assistance.

iii

Table of Contents

Dedications i

Acknowledgments ii

Abstract iii

List of figures viii

List of tables ix

Abbreviations x

General Introduction 1

1 Backgrounds and project overview 2
1.1 Introduction . 2
1.2 Subject Presentation . 2

1.2.1 Problem Statement . 3
1.2.2 Objectives . 4

1.3 Cross-platform applications . 4
1.4 Conclusion . 5

2 Tools and technologies 6
2.1 Introduction . 6
2.2 Development Tools . 6

2.2.1 Visual Studio Code . 6
2.2.2 Firebase console . 7

2.3 Dart programming Language . 7
2.4 Frameworks . 7

2.4.1 Flutter . 7
2.4.2 Firebase . 8

iv

TABLE OF CONTENTS

2.4.3 VideoSDK . 8
2.5 Packages . 8

2.5.1 Flutter-Facebook-Auth . 8
2.5.2 Google-Sign-In . 9
2.5.3 Firebase-Auth . 9
2.5.4 Firebase-Core . 9
2.5.5 Cloud-Firestore . 9
2.5.6 Firebase-Storage . 9
2.5.7 Firebase-Messaging . 10
2.5.8 Flutter-Calendar-Carousel . 10
2.5.9 Image-Picker . 10
2.5.10 Fluttertoast . 10
2.5.11 Flutter-Local-Notifications . 11
2.5.12 VideoSDK package . 11

2.6 Conclusion . 11

3 System design 12
3.1 Introduction . 12
3.2 Unified modeling language (UML) . 12
3.3 Use case diagram . 13
3.4 Application’s use case diagrams . 16

3.4.1 Therapist’s use case diagram 16
3.4.2 Patient’s use case diagram . 17
3.4.3 Textual description of use cases 19

Therapist’s use case diagram textual description 19
Patient’s use case diagram textual description 23

3.5 System diagrams . 27
3.5.1 Used symbols . 27
3.5.2 Class diagram . 28
3.5.3 Relationships between documents 30
3.5.4 Sequence Diagrams . 31

Appointments process sequence diagram 31
Appointment video communication sequence diagram 32
Messaging sequence diagram 32

3.6 Frontend design . 33
3.6.1 App Structure and Main Navigation 33

v

List of Figures

1 Number of weekly downloads for 16 mental health apps 3
2 Cross platform apps diagram . 5

3 Therapist’s use case diagram . 17
4 Patient’s use case diagram . 18
5 Used symbols figure . 27
6 Class diagram . 28
7 Class diagram continuation . 29
8 Relationships between documents diagram 30
9 Appointment process sequence diagram 31
10 Appointment video communication sequence diagram 32
11 Messaging sequence diagram . 33
12 Naffsi’s homepage Bottom navigation bar 34
13 Naffsi’s logo and welcome image . 34
14 Firestore snapshot code example . 39
15 Fetching data code example . 39
16 Updating data code example . 40
17 Deleting data code example . 40
18 List of all collections in Firestore . 41
19 Firestore security rules interface . 44

20 Login and register interfaces . 49
21 On boarding interface . 49
22 Complete profile, patient edit profile and therapist edit profile interfaces 50
23 Patient homepage and therapist homepage interfaces 51
24 See more therapists interface . 51
25 Therapist details and day availability interfaces 52
26 Booking hours interface . 53
27 Patient appointment tab interface . 54

viii

LIST OF FIGURES

28 Patient appointment rating interface 54
29 Therapist appointment and availability interfaces 55
30 Therapist time of day availability interface 56
31 Therapist booking notification and starting call interfaces 57
32 Successful video call initiation toast 57
33 Therapist conversation list and interlocutor chat page interfaces . . . 58
34 Therapist patient notes interface . 59
35 Patient conversation list and interlocutor chat page interfaces 60
36 Web version homepage and appointment tab interfaces 61
37 One-to-one video call interface . 62
38 Group video call on a web version interface 63
39 Group video call interface . 63
40 Therapist adding article interface example 64
41 Article display interface example . 65

viii

List of Tables

1 Actors and their use cases table . 15
2 Therapist’s authentication use case 19
3 Therapist’s profile information use case 19
4 Therapist’s appointments use case . 20
5 Therapist’s video communication use case 20
6 Therapist’s patient records use case 21
7 Therapist’s messaging use case . 21
8 Therapist’s live events use case . 22
9 Therapist’s notification use case . 22
10 Patient’s profile information use case 23
11 Patient’s therapist details use case . 23
12 Patient’s appointments use case . 24
13 Patient’s video communication use case 24
14 Patient’s messaging use case . 25
15 Patient’s live events use case . 25
16 Patient’s articles use case . 26
17 Patient’s notification use case . 26

ix

Abbreviations

UI User Interface

UX User Experience

SDK Software Development Kit

API Application Programming Interface

FCM Firebase Cloud Messaging

SQL Structured Query Language

noSQL not only SQL

JSON JavaScript Object Notation

CRUD Create, Read, Update and Delete

URL Uniform Resource Locator

UML Unified Modeling Language

x

General Introduction

Naffsi is a Flutter Firebase app which core functionality revolves around enabling

patients to engage in remote therapy sessions. The app provides convenient and op-

tionally anonymous access to professional therapy services, reducing barriers such as

scheduling constraints, and privacy concerns. It also empowers patients to overcome

the stigma surrounding mental health. Additionally, the Naffsi app promotes com-

munity engagement through livestreams, articles and group therapy sessions. These

foster a sense of belonging and create a supportive environment for individuals on

their mental health journey.

This platform is a comprehensive online counseling app designed to deliver acces-

sible mental health services. By leveraging widely-used technologies, Naffsi connects

patients with therapists, facilitates secure communication, and fosters a supportive

community. It has the potential to enhance the delivery of online mental health

services, ensuring individuals have access to the support they need, when they need

it.

The report is organized as follows: Backgrounds and project overview, this chapter

introduces the project’s context, including the problem statement, goals, and motiva-

tions. Tools and technologies, this chapter discusses the chosen tools, technologies,

and software components used in the project’s development. System design, this

chapter presents the high-level architecture and interaction of system components.

and then implementation, which covers the detailed process of translating the system

design into a working prototype.

1

Chapter 1

Backgrounds and project overview

1.1 Introduction

In today’s increasingly digital and interconnected age, providing access to health

services across multiple platforms has become increasingly important. Cross-platform

development offers a powerful solution, enabling developers to create applications

that can seamlessly run on various operating systems and devices. Google’s Flutter

framework presents a perfect example that has gained tremendous popularity.

Relevant to this project report, Flutter will be the main building framework for

the Naffsi platform, and will assist in reaching the service’s desired objectives and

ambitions.

1.2 Subject Presentation

In today’s world, mental health is gaining increasing recognition as a vital overall

well-being aspect [1], especially after the COVID-19 pandemic [2].

2

Backgrounds and project overview

Figure 1 – Number of weekly downloads for 16 mental health apps

However, there are still significant barriers that prevent individuals from seeking

help. Stigma[3], privacy concerns[4] [5], limited access to qualified professionals, and

geographical constraints are just a few of the challenges that limit individuals from

accessing mental health services. To address these barriers, we have developed the

Naffsi app; an innovative online counseling platform designed to provide accessible

and optionally anonymous mental health support.

1.2.1 Problem Statement

The Naffsi app aims to address the pressing need for accessible online mental health

counseling, and even hopefully help individuals transition from online to traditional

counseling methods, which are often not sought out due to long waiting times, limited

availability of therapists, and social stigma associated with seeking help. Moreover,

geographic barriers can make it challenging for individuals in remote areas to access

mental health services. These factors contribute to the under-utilization of mental

health resources and hinder individuals’ well-being.

3

Backgrounds and project overview

1.2.2 Objectives

The objectives of the Naffsi app can be summarized as follows:

• Provide a convenient and accessible mental health service.

• Remove barriers to seeking help by providing optional anonymity to its users.

• Facilitate communication between therapists and patients through messaging

and video calls.

• Foster a supportive community dedicated to demonstrate the importance of

mental health through live-streams, well-being articles, and group therapy ses-

sions.

1.3 Cross-platform applications

Cross-platform applications refer to software that is designed to run seamlessly

on multiple types of computers and operating systems [6] [7]. These applications

provide users with the flexibility to use the software on different platforms without

the need for separate versions or adaptation. The term “cross-platform” or “multi-

platform” signifies the ability of software to work efficiently across different platforms,

enhancing accessibility and usability for users.

4

Backgrounds and project overview

Figure 2 – Cross platform apps diagram

1.4 Conclusion

The backgrounds and project overview chapter introduces the concept of cross-

platform development and highlights the need for a solution to conveniently accessing

mental health supports. This chapter sets the stage for the subsequent chapters,

where we will delve into Naffsi’s development technologies used, implementation

details and design considerations.

5

Chapter 2

Tools and technologies

2.1 Introduction

In this chapter, we delve into the tools, technologies, programming language, and

frameworks employed to develop the Naffsi application. We explore their role and

importance in the project’s implementation. By examining these elements, readers

gain valuable insights into the technical foundation of Naffsi.

2.2 Development Tools

2.2.1 Visual Studio Code

Visual Studio Code, often referred to as VS Code, is a versatile lightweight source-

code editor developed by Microsoft. The editor boasts a rich set of features, including

robust debugging capabilities, efficient syntax highlighting, intelligent code comple-

tion, convenient code snippets, seamless code refactoring, and integrated Git support.

With its extensive range of tools, functionalities and plugins ecosystem, Visual Studio

Code offers developers a highly productive and efficient coding environment[8]. It

was chosen for this project specifically for its perfect adaptability with the Flutter

framework development process.

6

Tools and technologies

2.2.2 Firebase console

Firebase Console is a powerful web-based tool provided by Google for mana-

ging various aspects of Firebase services including most importantly Firebase Auth,

Firestore, Storage, and Cloud Messaging. It offers a user-friendly interface that

simplifies Firebase projects’ configuration and monitoring [9].

2.3 Dart programming Language

Dart is a versatile programming language designed to create high-performance

applications across various platforms. It aims to provide developers with a productive

and efficient language for multi-platform development, while also offering a flexible

run-time platform for app frameworks. By leveraging Dart, developers can build fast

and responsive applications that run seamlessly on different devices and operating

systems [10] [11]. Dart was chosen for this project due its object-oriented nature,

its simple UI syntax and widget structuring, and its asynchronous programming

function that is helpful back-end wise in the context of fetching and handling data

with databases.

2.4 Frameworks

2.4.1 Flutter

Flutter is a versatile UI toolkit developed by Google for creating applications that

run seamlessly on mobile, web, and desktop platforms. With Flutter, developers can

write code once and deploy it across multiple platforms, saving time and effort. It

is widely adopted by developers and organizations worldwide and is an open-source

framework. Flutter simplifies app development, reduces costs, and provides a fast

development cycle with rich UI components, along with a wide range of community

packages[12]. It enables engineering managers and businesses to unify their develop-

7

Tools and technologies

ment teams and build branded apps for various platforms from a single code-base,

benefiting the entire customer base[13].

2.4.2 Firebase

Firebase is a comprehensive suite of cloud computing services and development

platforms offered by Google. It provides a wide range of functionalities such as data-

base hosting, authentication, real-time capabilities and integration for various appli-

cations. Firebase supports multiple platforms including Android, iOS, JavaScript,

Node.js, Java, Unity, PHP, and C++, making it a versatile choice for developers[9],

especially for this project, as it integrates seamlessly with Flutter.

2.4.3 VideoSDK

VideoSDk is a real-time audio-video SDKs collection which offer developers com-

plete flexibility, scalability, and control to seamlessly integrate audio-video conferen-

cing and live streaming capabilities into web and mobile applications. These SDKs

provide the necessary tools and resources to enable real-time communication and col-

laboration, empowering developers to create immersive and interactive experiences

for their users [14]. Additionally, this framework allows call monitoring and session

recording .

2.5 Packages

2.5.1 Flutter-Facebook-Auth

The Flutter plugin for Facebook authentication simplifies seamless integration

Facebook authentication into Flutter apps. This plugin is also compatible with

web platforms, ensuring consistent authentication experiences across different devices

[15].

8

Tools and technologies

2.5.2 Google-Sign-In

The Flutter plugin for Google Sign-In enables secure authentication using Google

accounts in Flutter apps. It allows users to sign in with their Google credentials on

both Android and iOS platforms. This plugin provides a seamless integration with

Google’s authentication system, ensuring a reliable and convenient sign-in experience

for users [16].

2.5.3 Firebase-Auth

Firebase Authentication simplifies secure authentication system development and

enhances the user sign-in and onboarding experience. It offers a comprehensive

identity solution, including support for email and password accounts, phone authen-

tication, and login options like Google, Twitter, Facebook, and GitHub [17].

2.5.4 Firebase-Core

The Flutter plugin for Firebase Core empowers developers to establish connections

with multiple Firebase apps [18].

2.5.5 Cloud-Firestore

The Flutter plugin for Cloud Firestore allows seamless integration of the cloud-

hosted, NoSQL database into Android and iOS applications, offering real-time syn-

chronization and offline capabilities [19].

2.5.6 Firebase-Storage

The Flutter plugin for Firebase Cloud Storage enables easy integration of the

powerful and cost-effective object storage service into Android and iOS applications.

It provides a simple and efficient way to handle storage of files and data [20].

9

Tools and technologies

2.5.7 Firebase-Messaging

The Flutter plugin for Firebase Cloud Messaging allows seamless integration of the

cross-platform messaging solution into Android and iOS applications. It provides a

reliable and efficient way to deliver messages and notifications to users on both

platforms [21].

2.5.8 Flutter-Calendar-Carousel

The Calendar Carousel widget for Flutter is a versatile tool that allows custo-

mizable calendar widgets creation. With this widget, navigation through dates is

simple. It provides flexibility to add styling for each day, providing the ability to

personalize calendars [22].

2.5.9 Image-Picker

The Flutter image picker plugin facilitates image selection from the device’s library

and capturing new pictures using the camera. It offers a convenient solution for

integrating image picking and capture functionality into Flutter apps, enhancing the

user experience when managing and manipulating images [23].

2.5.10 Fluttertoast

The FlutterToast library is a Flutter plugin that provides a simple and convenient

way to create toast messages in a Flutter application with just a single line of code.

In the context of mobile app development, a toast is a small, unobtrusive message

that appears briefly on the screen to provide information or notifications to the

user. Toast messages typically appear at the bottom of the screen and disappear

after a short duration, allowing users to quickly acknowledge the message without

interrupting their workflow [24]. With the FlutterToast library, developers can easily

incorporate toast messages into their Flutter apps, improving the user experience and

enhancing the communication of important information to the users [25].

10

Tools and technologies

2.5.11 Flutter-Local-Notifications

The Local Notifications plugin for Flutter offers a cross-platform solution for dis-

playing and scheduling local notifications in mobile applications. It allows for cus-

tomization based on the target platform, enabling enhanced user engagement and

interaction [26].

2.5.12 VideoSDK package

The VideoSDK package simplifies the integration of Audio and Video Calling API

and Live Video Streaming API into Flutter apps. It provides developers with an

easy way to add audio and video communication features with minimal code [27].

2.6 Conclusion

In this chapter, we discussed the tools and technologies used in the development

of the Naffsi app. This included Flutter for cross-platform development, Firebase for

backend services, and various plugins like Firebase Messaging and VideoSDK. These

tools greatly contributed to the functionality and effectiveness of the app.

11

Chapter 3

System design

3.1 Introduction

The system design phase is a crucial aspect of developing the Naffsi application

as it enables a comprehensive understanding of the system and its behavior. In this

chapter, we will introduce the Unified Modeling Language (UML) and its various

diagram types that are utilized in the design of the Naffsi application. These dia-

grams serve as valuable tools for visualizing and planning the structure, interactions,

and components of the application. Additionally, we will discuss the frontend and

backend design, and the application’s desired functionalities ultimately contributing

to its effective design and implementation.

3.2 Unified modeling language (UML)

UML, the Unified Modeling Language, is a graphical language that facilitates the

visualization, specification, construction, and documentation of software-intensive

systems. It provides a standardized approach to depict the blueprints of a system,

covering both conceptual aspects like business processes and system functions, as

well as concrete elements such as classes in a specific programming language, da-

tabase schemas, and reusable software components [28]. UML encompasses various

diagram types, categorized into two groups: structural (or static) diagrams and be-

havioral (or dynamic) diagrams. The structural view emphasizes the static structure

12

System design

of the system, showcasing objects, attributes, operations, and relationships through

class diagrams and composite structure diagrams. On the other hand, the behavioral

view highlights the dynamic behavior of the system, illustrating collaborations bet-

ween objects and changes in their internal states using sequence diagrams, activity

diagrams, and state machine diagrams.

3.3 Use case diagram

Use case diagrams provide an overview of the system’s high-level functions and

scope, as well as the interactions between the system and its actors. These diagrams

capture what the system does and how actors utilize it, without delving into the

internal operations of the system.

Typically, a use case diagram comprises four key components:

• Actors: Actors represent entities that fulfill specific roles within the system.

They embody the actual roles of users within the system. In our application,

the main actors are the therapist and the patient.

• System boundary: This defines the sequence of actions and interactions bet-

ween actors and the system, also referred to as a scenario. It outlines the scope

of system functionality.

• Relationships: Use case diagrams involve two types of relationships. The first

type is the dependency relationship between two use cases, depicted by a dotted

arrow labeled with the keyword “include.” The “include” relationship signifies

that the use case at the arrowhead incorporates all the steps from the included

use case. The second type is the extension relationship, illustrated as a dashed

line with an open arrowhead labeled with the keyword “extend.” It indicates

that the behavior defined in the extending use case can be optionally added to

the behavior defined in the extended (base) use case. Additionally, actors and

use cases are connected through associations, representing the interaction or

13

System design

communication between an actor and a use case. Associations are represented

by straight lines.

• Use cases: A use case represents a sequence of interactions between an actor

and the system, depicting a specific function. It is visually represented by

an ellipse with descriptive text. In the context of our application, we have

identified the following use cases:

– Authentication: Users can register, log in, and authenticate their accounts

using Facebook, Google, or email credentials in order to access the Naffsi

app.

– Profile Information: Users, both patients and therapists, can create, up-

date, and manage their profile information, including personal details and

anonymity status.

– Messaging: Users can communicate exchanging messages in real-time, and

can view their previous conversations.

– Appointments (Patients): Patients can view available therapists, book

appointments, cancel or reschedule appointments, and provide ratings.

– Appointments (Therapists): Therapists can manage their work hours,

cancel appointments, or mark them as completed.

– Patient Records: Therapists assigned to a patient can access and update

their patient’s records and notes.

– Video Communication: Therapists can initiate video calls with patients

for remote counseling sessions, and patients can join the call room from

within the app.

– Articles: Therapists have the ability to write and publish articles related

to mental health and well-being for patients to read.

– Live Events: Therapists can schedule live events such as webinars or group

14

System design

therapy sessions, and concerned patients are allowed to access and parti-

cipate in these events.

– Notifications: Users receive notifications indicating appointment events,

new messages, and other relevant activities within the app.

– Therapists List: Users can browse the list of available therapists.

– Therapist Details: Users can view provided detailed information about

therapists, including their field, description, profile picture, availability,

location, and patient reviews.

The table below shows each actor and their corresponding use cases:

Table 1 – Actors and their use cases table

Actors Use cases

Therapist - Authentication - Profile information

- Messaging - Appointments (Therapists)

- Patient records - Video communication

- Writing articles - Hosting live events

- Notifications

Patient - Authentication - Profile information

- Therapists details - Messaging

- Appointments (Patients) - Video communication

- Reading articles - Joining live events

- Notifications

Admin - Addition of therapists into database

15

System design

3.4 Application’s use case diagrams

We utilize use case diagrams to illustrate the application’s functionality for both

patients and therapists. These diagrams provide a clear overview of the specific tasks

and interactions involved in the Naffsi platform, offering a visual representation of

how patients and therapists can effectively utilize the app’s features and services.

3.4.1 Therapist’s use case diagram

The figure below shows the different use cases for the therapist actor:

16

System design

Figure 3 – Therapist’s use case diagram

3.4.2 Patient’s use case diagram

The figure below shows the different use cases for the patient actor:

17

System design

Figure 4 – Patient’s use case diagram

18

System design

3.4.3 Textual description of use cases

Therapist’s use case diagram textual description

• Authentication use case

Table 2 – Therapist’s authentication use case

Use case name Authentication

Actor Therapist

Object Login and have access to the application

Scenario 1- Therapist launches the application.

2- Application requests an email and password, a Google or

Facebook account login.

3- Firebase Auth verifies the query and sends favorable answer.

4- Therapist accesses the application.

Alternative If authentication is unsuccessful, an error message is displayed

• Profile information use case

Table 3 – Therapist’s profile information use case

Use case name Profile information

Actor Therapist

Object Edit information and profile picture showcased to users

Preconditions User should have been added manually on the ’therapists’

Firestore collection, in addition to authentication

Scenario 1- Therapist navigates to profile information tab.

2- Therapists provide their information including their full name,

age, gender, description, profile picture, and therapy type.

3- Therapists edit their descriptions, profile pictures and therapy

types.

19

System design

• Appointment use case

Table 4 – Therapist’s appointments use case

Use case name Appointments (therapist)

Actor Therapist

Object Edit availability, mark appointments as completed or cancelled,

and initiate video calls

Preconditions ’therapists’ Firestore collection inclusion and authentication

Scenario 1- Therapist navigates to appointments tab.

2- Therapists edit their availability in dates and times.

3- Therapist receives detailed list of previous and booked ap-

pointments, containing patients usernames, reviews, dates and

times.

4- Therapist initiates video call rooms with concerned patients,

or cancels appointments

• Video communication use case

Table 5 – Therapist’s video communication use case

Use case name Video communication

Actor Therapist

Object Initiate appointments video call rooms

Preconditions Patient booked an appointment

Scenario 1- Therapist receives notification message about a patient’s boo-

king with them.

2- Therapist navigates to appointments tab and launches desi-

red appointment’s video call room joinable only by concerned

patients.

20

System design

• Patient record use case

Table 6 – Therapist’s patient records use case

Use case name Patient records

Actor Therapist

Object add and view own patients records

Preconditions Patient initiated messaging, or appointment video call is ongoing

Scenario 1- Therapists open up a conversation page with a patient, or

launch an appointment video call room.

2- Therapists then preview and add desired patient notes.

• Messaging use case

Table 7 – Therapist’s messaging use case

Use case name Messaging

Actor Therapist

Object Messaging with patients and therapists

Preconditions ’therapists’ Firestore collection inclusion and authentication

Scenario 1- Therapists initiate conversations with other therapists

through previewing the ’all therapists’ list.

2- Therapists reply to and view their conversations, including

patient initiated ones, within a callable user chat page.

4- Therapists navigate to chat page tab viewing their conversa-

tions list.

21

System design

• Live event use case

Table 8 – Therapist’s live events use case

Use case name Live events

Actor Therapist

Object Messaging with patients and therapists

Preconditions ’therapists’ Firestore collection inclusion and authentication

Scenario 1- Therapists view scheduled live events on the home page.

2- Therapists schedule their own live events through date and

time selection dialog widgets.

3- Therapists initiate their live event call room as hosts for pa-

tients to join in as audience.

• Notification use case

Table 9 – Therapist’s notification use case

Use case name Notifications

Actor Therapist

Object Receiving event notifications

Preconditions Authentication

Scenario 1- Therapist receives notification message about booking or can-

celling of an appointment, or about a new incoming message.

2- Therapist navigates to the notification’s appropriate page or

tab

22

System design

Patient’s use case diagram textual description

• Profile information use case

Table 10 – Patient’s profile information use case

Use case name Profile information

Actor Patient

Object Edit information and anonymity status

Preconditions Authentication

Scenario 1- Patient navigates to profile information tab.

2- Patients provide and edit their anonymity status (true by

default) and their information including their username (if they

choose not to be anonymous), age, gender, and desired therapy

categories.

• Therapist details use case

Table 11 – Patient’s therapist details use case

Use case name Therapist details

Actor Patient

Object View therapists details

Preconditions Authentication

Scenario 1- Patient clicks on a therapist profile whether from the home-

page suggested list, or ’all therapists’ list.

2- Patients can see the therapist’s username, profile picture, the-

rapy field, work location, description, rating scores, and availa-

bility.

23

System design

• Appointment use case

Table 12 – Patient’s appointments use case

Use case name Appointments (Patient)

Actor Patient

Object Book and cancel appointments

Preconditions Authentication

Scenario 1- Patient books an appointment with a therapist through details

page.

2- Patient navigates to appointments tab.

3- Patient views their scheduled appointments and accesses an

appointment’s call room if its ID is provided by the therapist.

4- Patient can cancel a scheduled appointment, and can view the

number of reschedulings they have left, in case of them conduc-

ting multiple payments, or in case of therapists cancellings.

5- Patient views list of previous appointments and provides these

session’s ratings.

• Video communication use case

Table 13 – Patient’s video communication use case

Use case name Video communication

Actor Patient

Object Join appointment video call

Preconditions Patient booked an appointment, and therapist initiated a call

room

Scenario 1- Patient receives notification message about the designated the-

rapist’s launching of a video call room.

2- Patient navigates to appointments tab, and accesses a ready

appointment’s meeting.

24

System design

• Messaging use case

Table 14 – Patient’s messaging use case

Use case name Messaging

Actor Patient

Object Messaging therapists

Preconditions Authentication

Scenario 1- Patient initiates conversation with a therapist by viewing the

suggested therapists section, or ’all therapists’ list.

2- Patient reply to and view their conversations within a callable

user chat page.

3- Patients navigate to chat page tab viewing their conversations

list.

• Live event use case

Table 15 – Patient’s live events use case

Use case name Live events

Actor Patient

Object Joining livestreams and group therapy sessions

Preconditions Booking for a group therapy session

Scenario 1- Patient views scheduled live events on the home page.

2- Patient books for a group therapy session.

3- Patient joins in a livestream as an audience member, or par-

ticipates in a booked for group therapy session.

25

System design

• Article use case

Table 16 – Patient’s articles use case

Use case name Articles

Actor Patient

Object Reading community articles

Preconditions Authentication

Scenario 1- Patient views articles list on the home page.

2- Patient reads an article and its author’s username.

• Notification use case

Table 17 – Patient’s notification use case

Use case name Notifications

Actor Patient

Object Receiving event notifications

Preconditions Authentication

Scenario 1- Patient receives notification message about cancelling of an

appointment, about a ready video call room or about a new

incoming message.

2- Patient navigates to the notification’s appropriate page or tab

26

System design

3.5 System diagrams

The Diagrams section of the project encompasses various visual representations,

including sequence diagrams, class diagrams, and document relationships diagrams.

These diagrams serve as powerful tools to depict the flow of interactions, the struc-

tural organization, and the dependencies between different components within the

Naffsi application.

3.5.1 Used symbols

Here are some definitions of some symbols we used in the succeeding system diagrams:

Figure 5 – Used symbols figure

27

System design

3.5.2 Class diagram

The following diagram represents the different classes and their relationships:

Figure 6 – Class diagram

28

System design

Figure 7 – Class diagram continuation

29

System design

3.5.3 Relationships between documents

Figure 8 – Relationships between documents diagram

30

System design

3.5.4 Sequence Diagrams

Sequence diagram, the prevalent type of interaction diagram, centers around the

exchange of messages among multiple lifelines. It portrays the interaction through

the sequence of messages and their occurrence specifications on the lifelines.

In order to help visualize some Naffsi’s functionalities processes, we depict them

in sequence diagrams.

Appointments process sequence diagram

Here we assume a one-to-one interaction between a patient and a therapist in an

appointment booking process:

Figure 9 – Appointment process sequence diagram

31

System design

Appointment video communication sequence diagram

Here we assume a one-to-one interaction between a patient and a therapist in a

one-to-one video call:

Figure 10 – Appointment video communication sequence diagram

Messaging sequence diagram

Here we assume a one-to-one interaction between a patient and a therapist in a

messaging process:

32

System design

Figure 11 – Messaging sequence diagram

3.6 Frontend design

The UI Design section focuses on the the Naffsi app’s visual and interactive aspects.

Its purpose is to outline the design principles, components, and user experience

considerations that were taken into account during the development process.

3.6.1 App Structure and Main Navigation

The app structure contains a main HomePage widget class containing a bottom na-

vigation bar utilized for navigation across three tabs: the ChatPage, EditProfile and

33

System design

AppointmentsList tabs. In addition to secondary widget classes accessible through

the tabs such as LoginPage, VideoCallPage, and UserChatPage which will be listed

and discussed further along this chapter.

Figure 12 – Naffsi’s homepage Bottom navigation bar

3.6.2 Login and “on-boarding” page design

The Login Page contains the typical login UI components for an application, with

login and register tabs, text fields for filling in emails and passwords, and the possi-

bility to login or register through Google or Facebook. Whereas the “on-boarding”

page is a welcoming page for newly registered users, showcasing the app’s objectives

and values.

Figure 13 – Naffsi’s logo and welcome image

34

System design

3.6.3 Conditional rendering

Conditional rendering has been set to be utilized through out the project in a way

that only relevant widgets display to the app’s both user types: a therapist or a

patient.

3.6.4 Home page design

The home page widget is designed to display Naffsi’s essential features, through

horizontally scroll-able lists representing: previous and future appointments, sug-

gested therapists recommended for the current user, well-being articles written by

the platform’s therapists, and upcoming live events (live-streams and group therapy

sessions). In addition to allowing the possibility for therapists to add articles and

schedule live events.

3.6.5 Chat and user chat page design

The chat page is designed in a typical manner such that it displays conversations

that the current user has partook in, along with the latest message sent or received.

The user chat page is titled by the relevant username and displays continuously

synchronized messages along with their timestamps.

3.6.6 Appointment page design

The appointment page was designed in an effort to be sufficiently user-friendly

for both therapists and patients, allowing users to manage their appointments by

simply viewing the dates and providing ratings. In addition to allowing therapists

specifically to initiate calls, mark appointments as finished or cancelled, and edit

their work hours for each day separately or collectively with an intuitive interface

implementation of the calendar carousel widget, containing a calendar dialog then a

thirty minute range time intervals one.

35

System design

3.6.7 Edit profile page design

The design of the profile page allows the current user to view and edit their anony-

mity status and their profile information (username, age, gender, preferred therapy

categories), along with allowing the current therapist a profile picture addition. A

similar profile page is displayed on the user’s first login for their information input.

3.6.8 “All therapists” and “therapist-details” page design

When the user chooses viewing all available therapists, an activity displays a list

of available ones along with their descriptions, profile pictures, work locations and

star reviews. Furthermore, a user may view additional data about a therapist such

as their work hours, and may book an appointment or initiate messaging with said

therapist through the therapist details activity.

3.6.9 Video call page design

This layout page is inspired by the VideoSDK package’s one, and allows displaying

the interlocutors and the user’s own webcam streams, in addition to controls for

toggling between enabling or disabling video and audio input.

3.6.10 Patient record design

Helpful to the therapist, this layout contains a tab allowing the addition and

viewing of notes about a specific patient, whether on the user chat or the video call

pages, displayed as an end drawer alongside these layouts.

3.6.11 Event message design

Event messages comprise of login or internet disconnection errors, successful up-

dates to the database, and notification messages. While errors are displayed using

flutter’s Snackbar widget, executed updates are displayed as being successfully conduc-

36

System design

ted using flutter Toasts, and notifications as typical alert messages depending on the

device utilized, with the help of the flutter local notification package.

3.6.12 Article and live event section design

Articles are designed to be displayed in a list widget specifically on the home

page screen, alongside a similar live events widget. These subsections additionally

provide simple article input text dialogs for therapists, and provide a calendar and

time widgets for live event scheduling inputs.

3.7 Backend design

3.7.1 Firebase authentication

In the backend development chapter, Firebase Authentication plays a key role in

the Naffsi app. The Auth-service.dart class is implemented as to handle user au-

thentication, including Google and Facebook sign-up and sign-in, error handling and

sign-out functionalities. These classes’ functions can be called by simply initiating

the class and referencing the desired method, i.e: AuthService().logout().

3.7.2 “Complete profile” and “edit profile” backend

After choosing to register for a new account on the app, a unique userId which

is used as every user’s main identifier, is saved from the Firebase Authentication

service to the Firestore database, along with the user information they are promp-

ted to provide on the complete profile page. In addition, another unique username

formatted as the word user concatenated to a random number, i.e: user12501 is gene-

rated and saved for each user, attempting to assist therapists in at least identifying a

number associated with an anonymous user profile. This data, except for the secret

username, can of course be edited and synchronized later on from the edit profile

section.

37

System design

3.7.3 Main.dart and global variables

Every Flutter app starts by firstly executing code on the main.dart class. Consequently,

it is used to set up the app’s launching in the foreground first parameters. A Firebase

instance is called checking if a user is already logged in, displaying the homepage

or the login page, and checking if the currentUserId corresponds to a patient or a

therapist as to display relevant widgets accordingly. The therapists table is set to

be configured manually on the Firebase console, as Naffsi is set not to allow new

therapists directly registering. In addition, a list of global variables which use is

relevant across the app are initialized, mainly: currentEmail, the isPatient boolean,

FCM token and currentUserId.

3.7.4 Firebase Firestore

The Naffsi app uses a Firebase Firestore NoSQL database. NoSQL is a non-

relational database approach that offers flexibility and scalability for modern ap-

plications. We chose NoSQL for the app based on the specific requirements of the

project[29]. The main advantage of using NoSQL, and specifically Firebase Firestore,

over a traditional MySQL database is its real-time data synchronization and hori-

zontal scaling capabilities[30]. Firestore allows for instant updates and notifications,

ensuring that data changes are immediately reflected across all connected devices,

and guarantees handling increased data and user load by adding more servers or ins-

tances to the database cluster, executing tasks in a parallel manner independent of

increased traffic [31], while providing a simple yet effective document-based structure

to store data documents in JSON files, ordered in dynamically createable collections

and sub-collections. These are crucial elements for a real-time messaging and coun-

seling app like Naffsi, where seamless and timely updates are essential. One essential

Firebase object utilization is the snapshot object, which continuously listens for a

database change on a specific node, as shown in the figure below:

38

System design

Figure 14 – Firestore snapshot code example

Queries and updates in a relational context

Where multiple row queries and relational fields are required, we carefully imple-

ment through out the project CRUD operations using Flutter Firestore syntax, in a

manner disallowing inconsistencies such as missing fields, incorrect data types, and

inaccurate data queries, accounting for the fact that Firestore is a non-relational

database which adds documents into collections regardless of their fields, therefore

simulating a relational database when needed. We achieve this by using appropriate

code listed below for different scenarios:

• A consistent query syntax dedicated to fetching data through field equality

conditions, using the CollectionReference, DocumentSnapshot, and QueryFirestore

Objects, and the where(isEqualTo: “field”) method.

Figure 15 – Fetching data code example

39

System design

• A query syntax dedicated to updating data.

Figure 16 – Updating data code example

• Syntax for deleting a document from the database, for this example below,

appointments are deleted as intended so by the therapist:

Figure 17 – Deleting data code example

3.7.5 Data models

This subsection will discuss how data is structured and stored in the database.

Firestore uses collections, which are containers grouping other subcollections, or

related JSON documents together, instead of SQL tables. In the figure below are all

the collections names:

40

System design

Figure 18 – List of all collections in Firestore

In order to assist in visualizing the data structure we propose listing and detailing

these collections along with their contained documents fields as follows:

Users collection

• userId: unique user identification.

• email

• age

• gender

• isAnonymous: boolean defining user’s anonymity status.

• secretUsername: randomly and uniquely generated for utilization with anony-

mous users i.e: “user15457”.

• reschedulings: number of reschedulings available to the user in case of cancel-

lings or multiple appointment unity price payments.

41

System design

Therapists collection

• userId: unique therapist identification.

• therapistUsername and fullname: intended for patients display.

• therapistDesc and therapistField: therapist’s description and field.

• email

• age

• gender

• location: work location for one-on-one traditional therapies.

• photoUrl: therapist profile picture’s URL on Firebase Storage.

Appointments collection

• userId: identifies therapist concerned with specific work hour.

• assignedTo: userId array of the patients who booked the appointment.

• dateAndTime: date and time of the appointment formatted “yyyy-mm-dd

hh:mm”.

• roomId: joinable VideoSDk meeting room Id.

• rating: session’s rating provided by the patient.

• state: current state of appointment (reserved, available, finished, cancelled).

Conversations collection

This collection contains documents with a “participants” array field, and they in

turn each contain a “messages” subcollection, with message documents consisting of

message text, senderId, and timestamp fields.

• participants: an array field containing the conversation’s participants userIds.

• conversation: a collection containing the messages sent and received between

both participants.

• message: message text.

• senderId: message sender’s identification.

• timestamp: message’s date and time object.

42

System design

Notes collection

• userId: therapist’s identification.

• patientId: patient’s identification.

• note: note text.

• timestamp: note’s date and time object.

Live events collection

• hostId: event host therapist identification.

• dateAndTime: date and time planned for the event.

• roomId: joinable VideoSDk meeting roomId.

• isGroup: boolean determining if live event is group therapy session

• patientIds: userIds of patients who booked for the group therapy session

Articles collection

• userId: author’s identification.

• articleText: article’s text body.

• articleTitle: article’s title.

3.7.6 Security rules

Firebase Firestore provides setting up database’s security rules allowing only au-

thenticated users to read from and write into collections, it is implemented simply

in the Firebase console as shown in the following figure:

43

System design

Figure 19 – Firestore security rules interface

3.7.7 Firebase Storage

Although set to be utilized minimally throughout the project, it is worth men-

tioning that Firebase Storage assisted in backend development by providing nodes

in which profile pictures image files are stored, and in providing better user expe-

rience. Once the therapist provides an image file and its upload is successful, Firebase

Storage upload function returns the image file storage retrieval URL, which is stored

in turn to Firestore under the relevant therapist’s document.

3.7.8 Appointment backend

Appointments are a crucial element for an online counseling app like Naffsi. Their

backend design on this project combines with query constraints, error-handling and

code consistency, therefore seamlessly integrating with the frontend, and providing a

comprehensive appointment management system. In consequence, it allows storing

organized appointments in the database’s provided collection within appointment

type documents. Appointments have the “state” field initially marked as available,

editable by therapists to cancelled or finished, and by patients to reserved or cancel-

led. Additionally, patients can retrieve their appointments as well as therapists avai-

lability from the database, permitting easy access, rating or scheduling of sessions.

Regarding multiple payments and appointment cancellings, the patient reschedulings

field is utilized representing how many possible bookings are available.

44

System design

3.7.9 Homepage backend

The Naffsi’s homepage backend handles fetching data for the app’s most important

features, it fetches from Firestore along with the user’s appointments the suggested

therapists for them, the app’s therapists articles, and upcoming live events.

3.7.10 Messaging backend

The messaging backend is designed allowing sending messages, synchronously and

continuously listening for received ones and their timestamps from the database,

using a Firebase snapshot object on the relevant conversation node.

3.7.11 Notification backend

So as to reliably send and receive push notifications, we use Firebase Cloud

Messaging. The way that FCM works is it sends notifications based on a device

token, and handles received ones on the background or foreground using an event

listener. Consequently, we implement a NotificationHandler.dart class containing

an updateFCMtoken method called on every user login or logout ensuring the la-

test token is always associated with every user’s device, a sendNotification method

which requires notification body (title, body text, and metadata) and userId as pa-

rameters, in addition to a firebaseMessagingHandler method which handles received

notifications for display using the flutter-local-notifications package.

3.7.12 VideoSDK backend

The VideoSDK plugin is utilized with an appID inside the used class, specifically

set in the console platform for this project. On the backend side, users can join a

room provided they possess its roomId, which is set on the “roomId” field relevant

meeting’s document by the therapist.

45

System design

3.7.13 Patient record backend

Patient records are organized for each therapist and their designated patients in

the notes collection in Firestore, and are stored along side the users’ relevant userIds

and the notes’ timestamps.

3.7.14 Article and live event backend

It is simply designed to fetch and add organized articles and live events from and

into their respective collections in Firestore.

3.8 Features and functionality

3.8.1 Appointments

Therapists have the ability to add, edit, and delete appointments individually as

well as collectively, where collective work hour editing specifically is implemented by

a simple algorithm, which detects multiple selected dialog days similar in work hours,

then updates these potential appointments in the database accordingly. Therapists

can also set the “roomId” field required for patients joining in a meeting. Patients on

the other hand can pay for multiple appointments, or reschedule sessions in the case

of cancelling, and provide finished state sessions’ rating. This two-way interaction

between therapists and patients ensures a smooth and efficient appointment process,

enhancing the overall user experience of the app.

3.8.2 Video calling with VideoSDK

As mentioned on the VideoSDK backend subsection, the service requires from

users a roomId in order to join a video call. We adapt this to Naffsi’s desired

functionalities which are: one-on-one or group video calls, livestreams where there

is one host therapist, and group therapy sessions where only the audience’s audio

is permitted. Using the VideoCallPage.dart class optional meetingID parameter, we

46

System design

define if the room is being created or joined into, depending if this variable’s value

is empty, otherwise we assign it. In addition, we use the optional ifAudioAllowed

parameter to define if the room being created or joined into is a livestream or a group

therapy session, consequently configuring the current user client role type as host or

audience, and enabling or disabling webcam and audio inputs and outputs.

3.8.3 Articles and live events

Aiming to create a collaborative and supportive community, Naffsi allows thera-

pists the ability to add articles and their titles, and the ability to schedule live events,

which are displayed to all users.

3.8.4 Patient records

The patient records functionality allows therapists to input notes desired to be

saved for a specific user, it is made possible from within this user’s chat page or from

the video call page both sides are participating in.

3.9 Conclusion

The Naffsi app’s Design chapter created the foundation for the implementation

stage, creating the conditions for transforming our conceptual design into a useful

reality. We have developed a thorough design for the application using UML mode-

ling, diagrams, frontend and backend design, and addressing functionalities.

Our design choices have been informed by a comprehensive study of the system re-

quirements and a careful consideration of user needs, guaranteeing that the Naffsi

app will successfully satisfy the needs of individuals looking for mental health help.

We will start the real development process of turning the design artifacts into a

functioning application when we go into the following chapter: implementation.

47

Chapter 4

Implementation

4.1 Introduction

In this final chapter, following the design phase and the specification of user roles,

our focus shifts to the implementation of the application. We bring the envisioned

ideas into reality by transforming them into a functional and interactive system. This

chapter encompasses a comprehensive presentation of the application, showcasing its

various features and functionalities. Additionally, we provide a tangible glimpse into

the user experience.

4.2 Interfaces of login and on-boarding pages

The login page provides an interface allowing email, Facebook or Google login and

registering. When users first register, they are greeted with the on boarding page.

48

Implementation

Figure 20 – Login and register interfaces

Figure 21 – On boarding interface

49

Implementation

4.3 Interfaces of complete and edit profile pages

The complete profile page provides an interface similar to the edit profile tab page,

allowing users to fill in their information after registering.

Figure 22 – Complete profile, patient edit profile and therapist edit profile interfaces

4.4 Interface of homepage and “all therapists” pages

On successful login, users are redirected to the homepage, where they can see a

list of suggested therapists, and can choose to view all of the available ones.

50

Implementation

Figure 23 – Patient homepage and therapist homepage interfaces

Figure 24 – See more therapists interface

51

Implementation

4.5 Interface of therapist details and booking ap-

pointment pages

After selecting a therapist, users can access detailed information about the thera-

pist and proceed to book an appointment conveniently.

Figure 25 – Therapist details and day availability interfaces

52

Implementation

Figure 26 – Booking hours interface

4.6 Interface of patient and therapist appointment

tab pages

The appointments tab interface displays conditionally the relevant functionalities for

both types of users, where therapists can manage their work hours, and patients can

manage and rate appointments.

53

Implementation

4.6.1 Interface of patient appointment tab pages

Figure 27 – Patient appointment tab interface

Figure 28 – Patient appointment rating interface

54

Implementation

4.6.2 Interface of therapist appointment tab pages

Figure 29 – Therapist appointment and availability interfaces

55

Implementation

Figure 30 – Therapist time of day availability interface

4.7 Interfaces of therapist appointment manage-

ment pages

Therapists receive notifications when appointments are booked by patients and can

choose to initiate a video call room by sending the room id to the relevant patients.

56

Implementation

Figure 31 – Therapist booking notification and starting call interfaces

Figure 32 – Successful video call initiation toast

4.8 Interfaces of messaging pages

Users can view their lists of conversations, and preview messages in the user chat

page, while therapists specifically can add their notes in a conversation with a patient

using the drawable patient notes tab interface, accessible also from the video call

page.

57

Implementation

4.8.1 Therapist messaging and patient notes interfaces

Figure 33 – Therapist conversation list and interlocutor chat page interfaces

58

Implementation

Figure 34 – Therapist patient notes interface

59

Implementation

4.8.2 Patient messaging page interfaces

Figure 35 – Patient conversation list and interlocutor chat page interfaces

4.9 Web version interface examples

The app can be compiled into a web version and ran in a browser as shown in the

figures below:

60

Implementation

Figure 36 – Web version homepage and appointment tab interfaces

4.10 Interfaces of video call pages

The app includes different types of video communication interfaces, some examples

use an emulator device and are shown below:

61

Implementation

4.10.1 Interface of one-to-one video call page

Figure 37 – One-to-one video call interface

62

Implementation

4.10.2 Interfaces of group video call pages

Figure 38 – Group video call on a web version interface

Figure 39 – Group video call interface

63

Implementation

4.11 Interfaces of article pages

Patients can read articles and therapists can contribute their own with the commu-

nity.

Figure 40 – Therapist adding article interface example

64

Implementation

Figure 41 – Article display interface example

4.12 Conclusion

Within this chapter, we have presented the distinct graphical user interfaces tailo-

red to the specific functionalities of both therapists and patients in the Naffsi appli-

cation. The comprehensive overview provided demonstrates that the system actors

can seamlessly utilize our application, benefiting from its intuitive and user-friendly

design to effortlessly accomplish their desired tasks.

65

General conclusion

In this project, we have undertaken the design and implementation of the Naffsi

app, a comprehensive mental health online counseling Flutter application. Our ob-

jective was to create a qualitative and accessible platform for individuals seeking

mental health services.

Through careful analysis and consideration of user requirements, we have success-

fully developed a range of functionalities, including secure one-on-one video calls for

remote therapy sessions, convenient and optionally anonymous access to professio-

nal mental health services, and the promotion of community engagement and peer

support through livestreams and articles.

By leveraging widely-used technologies and applying UML diagrams in addition to

frontend and backend design principles, we have ensured a robust and well-structured

application. This project has not only expanded our knowledge and skills in software

development but has also highlighted the importance of addressing mental health

needs through innovative technological solutions.

66

Future works

In terms of future developments for the Naffsi app, there are several areas that can

be explored to further enhance its functionality and user experience. These include:

Integration of e-payment functionality: Overcoming administrative constraints to

implement an e-payment API would provide users with a convenient and secure way

to make payments for the mental health services they receive through the app.

User interface (UI) enhancements: Improving the user interface by refining the

layout, optimizing navigation, and incorporating intuitive design elements would

create a more user-friendly and visually appealing experience.

Group livestreams: Introducing the capability for multiple therapists to host lives-

tream sessions together for a larger audience would foster community engagement

and enable users to participate in more informative conferences and conversations.

“isRead” feature for messages: Implementing an “isRead” indicator for messages

would help users keep track of read and unread messages, improving communication

and ensuring important messages are not overlooked.

User feedback and support: Establishing dedicated sections for user feedback and

support would allow users to provide valuable feedback, report issues, and seek

assistance when needed, further enhancing the app based on user input and providing

timely support.

Additionally, implementing a reporting system would enable users to report instances

of misbehavior or inappropriate conduct by other users, maintaining a safe and

respectful community environment.

67

By focusing on these future works, the Naffsi app can continue to improve and hope-

fully provide users with enhanced mental health services, ensuring a comprehensive

and user-friendly experience that supports individuals on their mental health jour-

ney.

68

References

[1] D. Becker, ‘Acceptance of Mobile Mental Health Treatment Applications’,
Procedia Computer Science, t. 98, p. 220-227, 2016, The 7th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN
2016)/The 6th International Conference on Current and Future Trends of
Information and Communication Technologies in Healthcare (ICTH-2016)/Affiliated
Workshops, issn : 1877-0509. doi : https://doi.org/10.1016/j.procs.
2016 . 09 . 036. adresse : https : / / www . sciencedirect . com / science /
article/pii/S1877050916321652 (cf. p. 2).

[2] X. Wang, C. Markert et F. Sasangohar, ‘Investigating Popular Mental
Health Mobile Application Downloads and Activity During the COVID-19
Pandemic’, Human Factors, t. 65, no 1, p. 50-61, 2023, PMID: 33682467.
doi : 10.1177/0018720821998110. adresse : https://doi.org/10.1177/
0018720821998110 (cf. p. 2).

[3] H. M. Kim, Y. Xu et Y. Wang, ‘Overcoming the Mental Health Stigma
Through m-Health Apps: Results from the Healthy Minds Study’, Telemedicine
Journal and E-health, mars 2022. doi : 10.1089/tmj.2021.0418 (cf. p. 3).

[4] B. Aljedaani et M. A. Babar, ‘Challenges With Developing Secure Mobile
Health Applications: Systematic Review’, JMIR Mhealth Uhealth, t. 9, no 6,
e15654, juin 2021, issn : 2291-5222. doi : 10.2196/15654. adresse : http:
//www.ncbi.nlm.nih.gov/pubmed/34152277 (cf. p. 3).

[5] L. H. Iwaya, M. A. Babar, A. Rashid et C. Wijayarathna, ‘On the Privacy
of Mental Health Apps: An Empirical Investigation and its Implications for
Apps Development’, CoRR, t. abs/2201.09006, 2022. arXiv : 2201 . 09006.
adresse : https://arxiv.org/abs/2201.09006 (cf. p. 3).

[6] T. Zohud et S. Zein, ‘A Systematic Mapping Study of Cross-Platform Mobile
Apps’, Journal of Computer Science, t. 15, p. 519-536, avr. 2019. doi : 10.
3844/jcssp.2019.519.536 (cf. p. 4).

[7] techterms.com. ‘Cross-platform defintion’. (2022), adresse : https://techterms.
com/definition/crossplatform. (accessed: 31.05.2023) (cf. p. 4).

[8] A. Del Sole et D. Sole, Visual Studio Code Distilled. Springer, 2019 (cf.
p. 6).

69

https://doi.org/https://doi.org/10.1016/j.procs.2016.09.036
https://doi.org/https://doi.org/10.1016/j.procs.2016.09.036
https://www.sciencedirect.com/science/article/pii/S1877050916321652
https://www.sciencedirect.com/science/article/pii/S1877050916321652
https://doi.org/10.1177/0018720821998110
https://doi.org/10.1177/0018720821998110
https://doi.org/10.1177/0018720821998110
https://doi.org/10.1089/tmj.2021.0418
https://doi.org/10.2196/15654
http://www.ncbi.nlm.nih.gov/pubmed/34152277
http://www.ncbi.nlm.nih.gov/pubmed/34152277
https://arxiv.org/abs/2201.09006
https://arxiv.org/abs/2201.09006
https://doi.org/10.3844/jcssp.2019.519.536
https://doi.org/10.3844/jcssp.2019.519.536
https://techterms.com/definition/crossplatform
https://techterms.com/definition/crossplatform

REFERENCES

[9] L. Moroney, ‘An Introduction to Firebase’, in The Definitive Guide to Firebase:
Build Android Apps on Google’s Mobile Platform. Berkeley, CA : Apress, 2017,
p. 1-24, isbn : 978-1-4842-2943-9. doi : 10.1007/978-1-4842-2943-9_1.
adresse : https://doi.org/10.1007/978-1-4842-2943-9_1 (cf. p. 7, 8).

[10] M. Belchin et P. Juberias, Web Programming with Dart. Apress, 2015 (cf.
p. 7).

[11] Google. ‘Dart Overview’. (2022), adresse : https://dart.dev/overview.
(accessed: 31.05.2023) (cf. p. 7).

[12] A. Tashildar, N. Shah, R. Gala, T. Giri et P. Chavhan, ‘Application
development using flutter’, International Research Journal of Modernization
in Engineering Technology and Science, t. 2, no 8, p. 1262-1266, 2020 (cf. p. 7).

[13] Google. ‘Flutter presentation’. (2022), adresse : https://flutter.dev/.
(accessed: 31.05.2023) (cf. p. 8).

[14] VideoSDK. ‘VideoSDK Overview’. (2022), adresse : https://www.videosdk.
live. (accessed: 31.05.2023) (cf. p. 8).

[15] Facebook. ‘Facebook-Auth package overview’. (2020), adresse : https://
facebook.meedu.app/docs/5.x.x/intro. (accessed: 31.05.2023) (cf. p. 8).

[16] Pub.dev. ‘Google Sign-in package Overview’. (2018), adresse : https://pub.
dev/packages/google_sign_in. (accessed: 31.05.2023) (cf. p. 9).

[17] Google. ‘Firebase-auth Overview’. (2022), adresse : https://firebase.
google.com/products/auth/. (accessed: 31.05.2023) (cf. p. 9).

[18] Pub.dev. ‘Firebase-Core Overview’. (2020), adresse : https://pub.dev/
packages/firebase_core. (accessed: 31.05.2023) (cf. p. 9).

[19] Google. ‘Firebase-Cloud-Firestore Overview’. (2020), adresse : https : / /
pub.dev/packages/cloud_firestore. (accessed: 31.05.2023) (cf. p. 9).

[20] Pub.dev. ‘Firebase-Storage Overview’. (2020), adresse : https://pub.dev/
packages/firebase_storage. (accessed: 31.05.2023) (cf. p. 9).

[21] Pub.dev. ‘Firebase-Messaging Overview’. (2020), adresse : https://pub.
dev/packages/firebase_messaging. (accessed: 31.05.2023) (cf. p. 10).

[22] Pub.dev. ‘Calendar carousel package Overview’. (2020), adresse : https :
//pub.dev/packages/flutter_calendar_carousel. (accessed: 31.05.2023)
(cf. p. 10).

[23] Pub.dev. ‘ImagePicker package Overview’. (2020), adresse : https://pub.
dev/packages/image_picker. (accessed: 31.05.2023) (cf. p. 10).

70

https://doi.org/10.1007/978-1-4842-2943-9_1
https://doi.org/10.1007/978-1-4842-2943-9_1
https://dart.dev/overview
https://flutter.dev/
https://www.videosdk.live
https://www.videosdk.live
https://facebook.meedu.app/docs/5.x.x/intro
https://facebook.meedu.app/docs/5.x.x/intro
https://pub.dev/packages/google_sign_in
https://pub.dev/packages/google_sign_in
https://firebase.google.com/products/auth/
https://firebase.google.com/products/auth/
https://pub.dev/packages/firebase_core
https://pub.dev/packages/firebase_core
https://pub.dev/packages/cloud_firestore
https://pub.dev/packages/cloud_firestore
https://pub.dev/packages/firebase_storage
https://pub.dev/packages/firebase_storage
https://pub.dev/packages/firebase_messaging
https://pub.dev/packages/firebase_messaging
https://pub.dev/packages/flutter_calendar_carousel
https://pub.dev/packages/flutter_calendar_carousel
https://pub.dev/packages/image_picker
https://pub.dev/packages/image_picker

REFERENCES

[24] flutterbeads.com. ‘Toast definition’. (2020), adresse : https : / / www .
flutterbeads.com/show- toast- in- flutter/. (accessed: 31.05.2023) (cf.
p. 10).

[25] Pub.dev. ‘FlutterToast package Overview’. (2020), adresse : https://pub.
dev/packages/fluttertoast. (accessed: 31.05.2023) (cf. p. 10).

[26] Pub.dev. ‘Flutter-Local-Notifications package Overview’. (2019), adresse :
https://pub.dev/packages/flutter_local_notifications. (accessed:
31.05.2023) (cf. p. 11).

[27] Pub.dev. ‘ImagePicker package Overview’. (2020), adresse : https://pub.
dev/packages/videosdk. (accessed: 31.05.2023) (cf. p. 11).

[28] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles et J. E. Robbins,
‘Modeling Software Architectures in the Unified Modeling Language’, ACM
Trans. Softw. Eng. Methodol., t. 11, no 1, p. 2-57, jan. 2002, issn : 1049-331X.
doi : 10.1145/504087.504088. adresse : https://doi.org/10.1145/
504087.504088 (cf. p. 12).

[29] M. Ohyver, J. V. Moniaga, I. Sungkawa, B. E. Subagyo et I. A. Chandra,
‘The Comparison Firebase Realtime Database and MySQL Database Performance
using Wilcoxon Signed-Rank Test’, Procedia Computer Science, t. 157, p. 396-
405, 2019, The 4th International Conference on Computer Science and Computational
Intelligence (ICCSCI 2019) : Enabling Collaboration to Escalate Impact of
Research Results for Society, issn : 1877-0509. doi : https://doi.org/10.
1016/j.procs.2019.08.231. adresse : https://www.sciencedirect.com/
science/article/pii/S1877050919311500 (cf. p. 38).

[30] C. Khawas et P. Shah, ‘Application of Firebase in Android App Development-
A Study’, International Journal of Computer Applications, t. 179, p. 49-53, juin
2018. doi : 10.5120/ijca2018917200 (cf. p. 38).

[31] Google. ‘Firestore read and write scale’. (2019), adresse : https://firebase.
google.com/docs/firestore/understand-reads-writes-scale. (accessed:
31.05.2023) (cf. p. 38).

69

https://www.flutterbeads.com/show-toast-in-flutter/
https://www.flutterbeads.com/show-toast-in-flutter/
https://pub.dev/packages/fluttertoast
https://pub.dev/packages/fluttertoast
https://pub.dev/packages/flutter_local_notifications
https://pub.dev/packages/videosdk
https://pub.dev/packages/videosdk
https://doi.org/10.1145/504087.504088
https://doi.org/10.1145/504087.504088
https://doi.org/10.1145/504087.504088
https://doi.org/https://doi.org/10.1016/j.procs.2019.08.231
https://doi.org/https://doi.org/10.1016/j.procs.2019.08.231
https://www.sciencedirect.com/science/article/pii/S1877050919311500
https://www.sciencedirect.com/science/article/pii/S1877050919311500
https://doi.org/10.5120/ijca2018917200
https://firebase.google.com/docs/firestore/understand-reads-writes-scale
https://firebase.google.com/docs/firestore/understand-reads-writes-scale

	Dedications
	Acknowledgments
	Abstract
	List of figures
	List of tables
	Abbreviations
	General Introduction
	Backgrounds and project overview
	Introduction
	Subject Presentation
	Problem Statement
	Objectives
	Cross-platform applications
	Conclusion
	Tools and technologies
	Introduction
	Development Tools
	Visual Studio Code
	Firebase console
	Dart programming Language
	Frameworks
	Flutter
	Firebase
	VideoSDK
	Packages
	Flutter-Facebook-Auth
	Google-Sign-In
	Firebase-Auth
	Firebase-Core
	Cloud-Firestore
	Firebase-Storage
	Firebase-Messaging
	Flutter-Calendar-Carousel
	Image-Picker
	Fluttertoast
	Flutter-Local-Notifications
	VideoSDK package
	Conclusion
	System design
	Introduction
	Unified modeling language (UML)
	Use case diagram
	Application’s use case diagrams
	Therapist's use case diagram
	Patient's use case diagram
	Textual description of use cases
	Therapist’s use case diagram textual description
	Patient’s use case diagram textual description
	System diagrams
	Used symbols
	Class diagram
	Relationships between documents
	Sequence Diagrams
	Appointments process sequence diagram
	Appointment video communication sequence diagram
	Messaging sequence diagram
	Frontend design
	App Structure and Main Navigation
	Login and =frabbrev.tex [楦䔠ightBitOutput french.sty :] (à la ligne 528).2(french)[frabbrev.tex]``on-boarding'' page design
	Conditional rendering
	Home page design
	Chat and user chat page design
	Appointment page design
	Edit profile page design
	=frabbrev.tex [楦䔠ightBitOutput french.sty :] (à la ligne 565).2(french)[frabbrev.tex]``All therapists'' and =frabbrev.tex [楦䔠ightBitOutput french.sty :] (à la ligne 565).2(french)[frabbrev.tex]``therapist-details'' page design
	Video call page design
	Patient record design
	Event message design
	Article and live event section design
	Backend design
	Firebase authentication
	=frabbrev.tex [楦䔠ightBitOutput french.sty :] (à la ligne 590).2(french)[frabbrev.tex]``Complete profile'' and =frabbrev.tex [楦䔠ightBitOutput french.sty :] (à la ligne 590).2(french)[frabbrev.tex]``edit profile'' backend
	Main.dart and global variables
	Firebase Firestore
	Queries and updates in a relational context
	Data models
	Users collection
	Therapists collection
	Appointments collection
	Conversations collection
	Notes collection
	Live events collection
	Articles collection
	Security rules
	Firebase Storage
	Appointment backend
	Homepage backend
	Messaging backend
	Notification backend
	VideoSDK backend
	Patient record backend
	Article and live event backend
	Features and functionality
	Appointments
	Video calling with VideoSDK
	Articles and live events
	Patient records
	Conclusion
	Implementation
	Introduction
	Interfaces of login and on-boarding pages
	Interfaces of complete and edit profile pages
	Interface of homepage and =frabbrev.tex [楦䔠ightBitOutput french.sty :] (à la ligne 46).2(french)[frabbrev.tex]``all therapists'' pages
	Interface of therapist details and booking appointment pages
	Interface of patient and therapist appointment tab pages
	Interface of patient appointment tab pages
	Interface of therapist appointment tab pages
	Interfaces of therapist appointment management pages
	Interfaces of messaging pages
	Therapist messaging and patient notes interfaces
	Patient messaging page interfaces
	Web version interface examples
	Interfaces of video call pages
	Interface of one-to-one video call page
	Interfaces of group video call pages
	Interfaces of article pages
	Conclusion
	General conclusion
	Future works
	References

