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Abstract

Human lung which is among the most important parts in human body is
facing mortal diseases especially after the COVID-19 pandemic. The scientific
world is rapidly developing the health-care field to face these disorders and
save millions of lives all around the world. The primary objective was to
find a precise and efficient strategy for the accurate and early detection and
classification of lung diseases. To achieve this goal, we used the power of two
essential medical imaging techniques: computerized tomography (CT-scan)
and X-ray imaging. Additionally, we employed three deep learning models:
Inception-v3, ResNet, and DenseNet, coupled with two distinct classification ;
binary classification and multi-class classification. Our research journey started
with binary classification, focusing on distinguishing between COVID-19 and
non COVID-19, using both CT-scan and X-ray datasets in total of 17,599, all
three models delivered outstanding results, with the highest accuracy reaching
an impressive accuracy of 96%, achieved by DenseNet using CT-scan images.
These results underscore the potential of deep learning in helping healthcare
professionals with highly accurate disease classification. Shifting to the multi-
class classification dictated by the need for a more comprehensive and realistic
approach to diagnosing and identifying a wide range of medical conditions
in clinical practice and research. The new class added to COVID-19, non
COVID-19 is: Community-acquired pneumonia (CAP), in total of 17,104 CT-
scan images,and using the same models we challenged the system using different
splitting data ratios. Through a series of experiments and evaluations, our
system achieves an overall accuracy of 98% in classifying chest images across
multiple categories, using DenseNet model and the 80:10:10 splitting ratio.
The results showcase the significant potential of deep learning in assisting
healthcare.
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General introduction

The human respiratory system is a marvel of biological engineering, intricately created
to perform the vital function of oxygen exchange, which is fundamental for sustaining life.
This complex system includes a network of airways, including the bronchi and alveoli, as
well as a complex set of physiological mechanisms that allow the exchange of oxygen and
carbon dioxide to occur efficiently. However, despite its remarkable design and functionality,
the respiratory system is remarkably delicate and vulnerable to a wide array of diseases and
disorders that can disrupt its intricate workings.

Within this context, this work embarks on a profound exploration of the complexities that
surround lung diseases, peeling back the layers to unveil the intricacies of this vital organ.
It goes deeply into the anatomy of the lungs, revealing the construction and function of these
amazing organs. By going into the anatomical intricacies, this work aims to give a comprehensive
foundation for understanding the wide range of disorders that can affect these critical structures.

Furthermore, this exploration extends to the diverse origins of lung ailments. Lung diseases
can arise from a multitude of factors, including infectious agents such as bacteria, viruses, and
fungi, as well as environmental factors like exposure to pollutants or carcinogens. Notably,
the global COVID-19 pandemic has highlighted the profound impact that infectious agents can
have on the respiratory system. Additionally, lung cancer, one of the most prevalent forms of
cancer worldwide, underscores the significance of understanding how environmental factors
can lead to devastating lung conditions.

The emergence of medical imaging has revolutionized the field of medical diagnosis and
treatment, allowing healthcare professionals to visualize and assess the condition of the lungs
in unprecedented detail. Moreover, the revolutionary impact of deep learning within the field of
medical imaging is highlighted, showcasing how advanced computer algorithms, particularly
deep neural networks, have transformed our ability to interpret complex medical images.

As a result of this extensive exploration, the thesis culminates in an in-depth analysis
of chest CT scan image classification. This represents a state-of-the-art application of deep
learning, where deep neural networks are employed to decipher and categorize pulmonary
conditions, by using the power of artificial intelligence and machine learning, this work tries
to show how artificial intelligence and machine learning have the potential to increase the
precision and effectiveness of lung disease diagnosis, eventually leading to better patient treatment
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General introduction General introduction

and better health outcomes.

This report is divided into the following sections:

Chapter 01: It sets the stage for this journey into the complexities of lung diseases. It
begins by delving into the intricate anatomy of human lungs, highlighting their essential role
in oxygen exchange. Moving forward, it explores the diverse causes behind lung diseases,
encompassing everything from infectious agents to environmental factors, emphasizing the
global health impact. Moreover, this chapter categorizes these conditions, shedding light on
their significance in the realm of pulmonary health. Ultimately, it underscores the critical
importance of precise diagnostics as a cornerstone for effective management, serving as a
crucial foundation for our exploration into the world of lung diseases.

Chapter 2: It delves into the transformative landscape of medical imaging, elucidating its
pivotal role in precision medicine and disease detection. As science and technology advance,
the manual interpretation of complex medical imaging data becomes increasingly challenging.
Recognizing this, radiologists turn to Computer-Aided Design (CAD) systems as indispensable
tools for image analysis. Within this context, Deep Learning takes center stage, progressively
supplanting traditional machine learning techniques. Deep Learning methods, particularly
deep neural networks, emerge as indispensable tools for tasks like image classification, often
achieving remarkable accuracy comparable to human performance. Machine learning techniques
empower computers to autonomously learn from data, enabling them to generate algorithms
and make predictions based on information gleaned. The chapter explores the rapid evolution
of deep learning techniques over the past decade, driven by advancements in computational
capabilities. It highlights the role of Artificial Neural Networks (ANNs) as the foundation
of supervised learning, laying the groundwork for deep architectures that enhance information
processing. The chapter culminates in an exploration of Deep Neural Network (DNN) techniques,
aimed at simplifying mapping functions for human utilization.

Chapter 3: Presents the project’s approach and implementation, highlighting the tools,
techniques,performance metrics, and transfer learning using specific architectures.

Chapter 4: It represents the highest point of our chest classification research. Using
deep neural networks such as ResNet, Inception-V3, and DenseNet on a Kaggle datasets,
including binary and multi-class classification. The main objective is to evaluate these models,
classification methods, and medical imaging techniques methodically in order to determine the
most accurate and efficient strategies. The results have profound implications, particularly in
healthcare, where accurate and timely diagnosis is important to patient care and outcomes.
This chapter discusses the study’s results and shows the significance of correct early diagnosis,
which may have a substantial influence on patient lives and healthcare delivery.

Finally, a general conclusion is given with the contributions and the possible further work.

xiii



Chapter 1

Lung diseases overview

1.1 Introduction
Lung disease refers to several types of diseases that damage the function of lungs. Lung

disease can affect respiratory function, or the ability to breathe, and pulmonary function, which
is how well lungs function.

There are many different lung diseases, some of which are caused by bacterial, viral, or
fungal infections. Other lung diseases are associated with environmental factors, including
Lung cancer, COVID-19, Community Acquired Pneumonia (CAP) [1].

Both COVID-19 and CAP primarily affect the lungs, causing inflammation, damage to
lung tissue, and impaired gas exchange. Early detection and appropriate management are very
important for both conditions to prevent complications and improve patient prognosis.

This chapter lays the groundwork by exploring the fundamental anatomy of human lungs,
delving into the diverse causes of lung diseases, and providing an overview of the distinct
categories of lung disorders. it navigates through common lung diseases, shedding light on
their significance in the context of global health. it also underscores the critical importance of
accurate and efficient diagnostic methods in tackling the challenges posed by these intricate
conditions.

1.2 Literature review
In the ever-evolving landscape of medical science, the quest for effective and accurate

methods of diagnosing lung diseases stands as a testament to our commitment to improving
patient care and saving lives. This comprehensive literature review delves into the historical
evolution, existing research, and recent advancements in the diagnosis of lung diseases, with a
particular focus on the pivotal role played by radiological imaging techniques.

• Historical Perspective: The journey toward understanding and diagnosing lung diseases

1



1.2. Literature review Chapter 1. Lung diseases overview

traces its roots back to ancient medical practices, where clinical observations and rudimentary
physical examinations formed the bedrock of diagnostic approaches. Over the centuries,
this practice evolved, marked by seminal contributions such as René Laennec’s invention
of the stethoscope in 1816 , which revolutionized the physical examination of the chest
[2].

• Evolution of Radiological Imaging: The seismic shift in lung disease diagnosis occurred
with the discovery of X-rays by Wilhelm Conrad Roentgen in 1895 [3]. This groundbreaking
discovery provided the medical community with a non-invasive means to visualize the
internal structures of the human body. Subsequent developments, including the advent of
computed tomography (CT) scans, transformed the diagnostic landscape further, allowing
for the creation of detailed cross-sectional views of the lungs and surrounding tissues. In
this section, we focus on the profound impact of these innovations on the field of medical
diagnostics.

• Previous Studies and Research: In the quest for more accurate and effective diagnostic
tools for lung diseases, numerous studies and research papers have contributed significantly.
These studies range from the identification of distinct patterns in chest X-rays indicative
of specific lung conditions to the quantification of nodule characteristics using advanced
CT scan technologies. The collective knowledge derived from these studies has not
only deepened our understanding of lung diseases but has also laid the foundation for
contemporary diagnostic practices.

• Advancements in Radiology: Recent years have witnessed remarkable advancements in
radiological imaging, driven by technological innovations. Enhanced image resolution,
reduced radiation exposure, and the introduction of cutting-edge imaging modalities have
revolutionized lung disease diagnosis. These advancements have not only improved
diagnostic accuracy but have also made diagnostic methods more patient-friendly and
accessible. In this section, we explore the latest developments in radiology and their
implications for lung disease diagnosis.

• Role of Radiology in Lung Disease Diagnosis: Radiology, particularly X-rays and CT
scans, occupies a central and indispensable role in the diagnosis of lung diseases. These
techniques provide precise, detailed images of the lungs and surrounding structures,
aiding healthcare professionals in accurate diagnosis and treatment planning. Throughout
this section, we highlight specific cases and instances where radiological imaging has
played a transformative role in diagnosing lung diseases, underscoring its clinical significance.

• Challenges and Future Directions: Despite the manifold advantages of radiological
imaging in lung disease diagnosis, challenges persist. False positives, cost considerations,
and disparities in accessibility remain significant concerns. Moreover, the emergence
of artificial intelligence (AI) and machine learning (ML) technologies offers promise in
addressing some of these challenges. We explore the potential of AI and ML in improving
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diagnostic accuracy and efficiency. Additionally, we outline areas for future research and
development, offering insights into the lung disease diagnostics.

1.3 Human Lungs anatomy
The lungs are the major organs of the respiratory system, and are divided into sections, or

lobes. The right lung has three lobes and is slightly larger than the left lung, which has two
lobes.

The lungs are separated by the mediastinum. This area contains the heart, trachea, esophagus,
and many lymph nodes. The lungs are covered by a protective membrane known as the
pleura and are separated from the abdominal cavity by the muscular diaphragm [4]. Figure1.1
represents the anatomy of human lungs.

Figure 1.1: Human Lungs anatomy [5].

The right lung is divided into three LOBES or sections. Each lobe is like a balloon filled
with tissue. Air moves in and out through one opening—a branch of the bronchial tube. The
left lung, on the other hand, is divided into two LOBES. The PLEURA are the two membranes,
actually, one continuous one folded on itself, that surround each lobe of the lungs and separate
the lungs from your chest wall. The bronchial tubes are lined with CILIA (like very small hairs)
that move like waves. This motion carries MUCUS (sticky phlegm or liquid) upward and out
into the throat, where it is either coughed up or swallowed. Mucus catches and holds much of
the dust, germs, and other unwanted matter that has invaded the lungs. This matter is ejected
outside the body through coughing, sneezing, clearing the throat, or swallowing.
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The smallest branches of the bronchial tubes are called BRONCHIOLES, at the end of
which are the air sacs or alveoli, these lattes are the very small air sacs where the exchange of
oxygen and carbon dioxide takes place. CAPILLARIES are blood vessels in the walls of the
alveoli. Blood passes through the capillaries, entering through the PULMONARY ARTERY
and leaving via the PULMONARY VEIN. While in the capillaries, blood gives off carbon
dioxide through the capillary wall into the alveoli and takes up oxygen from air in the alveoli
[5].

1.4 Lung disease causes
The affect of disease on health is fast expanding as a result of environmental changes,

climate change, lifestyle, and other reasons. In 2016, over 3.4 million people died from chronic
obstructive pulmonary disease (COPD), which is typically caused by pollution and smoking,
while 400,000 people passed away from asthma.

The danger of lung diseases is substantial, especially in developing and low middle income
countries, where millions of people are facing daily the poverty and air pollution. According to
the estimation of World Health Organization (WHO), over 4 million premature deaths occur
annually from household air pollution-related diseases, including asthma, and pneumonia.
Hence, it is necessary to take necessary steps to reduce air pollution and carbon emission.
It is also essential to implement efficient diagnostic systems which can assist in detecting lung
diseases. Since late December 2019, a novel coronavirus disease 2019 (COVID-19) has been
causing serious lung damage and breathing problems. In addition, pneumonia, a form of lung
disease can be due to the causative virus of COVID-19 or may be caused by other viral or
bacterial infection. Hence, early detection of lung diseases has become more important than
ever [6].

The main causes of lung disorders are the following:

• Diseases.

• Radiation.

• Aging.

• Pollution.

• Environment.

• Genetics.

• Asbestos (silicates).

• Tobacco (smoking/second hand).

1.5 Lung diseases
Lung disease, as previously stated in the introduction, is any disorder associated with the

lungs that stops them from functioning normally. Airway diseases, lung tissue diseases, and
lung circulation diseases are the three primary categories of lung disease. Each of these diseases
has a unique set of symptoms, testing procedures, and therapies.

4



1.6. Common Lung Diseases Chapter 1. Lung diseases overview

1.5.1 Airway diseases

These diseases affect the tubes (airways) that carry oxygen and other gases into and out of
the lungs. They usually cause a narrowing or blockage of the airways. Airway diseases include
asthma, COPD, bronchiolitis, and bronchiectasis (which also is the main disorder for persons
with cystic fibrosis). People with airway diseases often say they feel as if they are "trying to
breathe out through a straw" [7].

1.5.2 Lung tissue diseases

These diseases affect the structure of the lung tissue. Scarring or inflammation of the tissue
makes the lungs unable to expand fully (restrictive lung disease). This makes it hard for the
lungs to take in oxygen and release carbon dioxide. People with this type of lung disorder often
say they feel as if they are "wearing a too-tight sweater or vest." As a result, they can’t breathe
deeply. Pulmonary fibrosis and sarcoidosis are examples of lung tissue disease [7].

1.5.3 Lung circulation diseases

These diseases affect the blood vessels in the lungs. They are caused by clotting, scarring,
or inflammation of the blood vessels. They affect the ability of the lungs to take up oxygen and
release carbon dioxide. These diseases may also affect heart function. An example of a lung
circulation disease is pulmonary hypertension. People with these conditions often feel very
short of breath when they exert themselves [7].

1.6 Common Lung Diseases
As previously explained, lung diseases encompass a diverse range of conditions that can

vary significantly depending on their underlying cause and the affected area within the respiratory
system. For the purpose of this study, the focus is specifically on three prominent respiratory
illnesses: Lung Cancer, COVID-19, and CAP. These diseases have garnered considerable
attention due to their widespread impact on public health, making them highly relevant subjects
for investigation and analysis in the context of lung disease detection using deep learning
methods. By narrowing the scope, the study aims to contribute valuable insights into the
accurate and efficient detection of these diseases, which can have significant implications for
patient management, public health preparedness, and medical research.

1.6.1 Lung Cancer

Lung cancer is a disease caused by uncontrolled cell division in the lungs. The cells
divide and replicate themselves as a part of their normal function. But sometimes, they get
changes (mutations) that cause them to keep making more of themselves when they should not.
Damaged cells dividing uncontrollably create masses, or tumors, of tissue that eventually keep
the organs from functioning properly.
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Figure 1.2: Lung Tumour [8].

1.6.1.1 Lung Cancer symptoms

Lung cancer is generally characterized by the absence of noticeable signs and symptoms
during its initial stages. The manifestation of indicators and clinical manifestations of lung
cancer usually becomes apparent as the disease progresses to an advanced stage.

The clinical presentation of lung cancer includes:

• An enduring cough that fails to resolve
over time.

• Coughing up blood, even a small
amount.

• Shortness of breath.

• Chest pain.

• Hoarseness.

• Losing weight without trying.

• Bone pain.

• Headache.

1.6.1.2 Types of Lung Cancer

There are many cancers that affect the lungs. However, the term “lung cancer” is used for
two main kinds: non-small cell lung cancer and small cell lung cancer.

• Non-small cell lung cancer (NSCLC).

• Small cell lung cancer (SCLC).

It is worth mentioning that other types of cancer can start in or around the lungs, including
lymphomas (cancer in the lymph nodes), sarcomas (cancer in the bones or soft tissue) and
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pleural mesothelioma (cancer in the lining of the lungs). These are treated differently and
usually are not referred to as lung cancer.

Figure 1.3: Histological types of Lung Cancer [8].

1.6.1.3 Diagnosis tests for Lung Cancer

• Blood tests: Blood tests can not diagnose cancer on their own, but, can help the provider
check how the organs and other parts of the body are working.

• Imaging: Chest X-rays and CT scans give the provider images that can show changes in
the lungs. PET/CT scans are usually done to evaluate a concerning finding on a CT scan
or after a cancer diagnosis to determine whether cancer has spread.

• Biopsy: There are a number of procedures the provider can use to look more closely at
what is going on inside the chest. During the same procedures, the provider can take
samples of tissue or fluid (biopsy), which can be studied under a microscope to look
for cancer cells and determine what kind of cancer it is. Samples can also be tested for
genetic changes (mutations) that might affect the treatment.

• Molecular tests: As part of a biopsy, the provider might have the tissue sample tested
for gene changes (mutations) that special drugs can target as part of the treatment plan.

1.6.2 COVID-19

COVID-19 is a disease caused by a virus named SARS-CoV-2. It is very infectious and
spreads rapidly. COVID-19 has killed over one million individuals in the United States.

COVID-19 most often causes respiratory symptoms that can feel much like a cold, the flu,
or pneumonia. COVID-19 may cause damage to other sections of your body after attacking
your lungs and respiratory system. The majority of COVID-19 patients have mild symptoms,
however some develop serious illness.
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Some persons, even those with no or minor symptoms will develop Post-COVID Conditions,
often known as "Long COVID." [9]

Figure 1.4: CT scan for a COVID sample [10].

1.6.2.1 COVID-19 symptoms

People with COVID-19 have reported experiencing a wide range of symptoms, from little
discomfort to serious sickness. 2 to 14 days after viral contact, symptoms may start to show
[11]. The symptoms include:

• Fever or chills.

• Cough.

• Shortness of breath or difficulty
breathing.

• Muscle or body aches.

• Headache.

• New loss of taste or smell.

• Sore throat.

• Congestion or runny nose.

• Nausea or vomiting.

• Diarrhea.

1.6.2.2 Covid-19 testing

• PCR test: PCR tests are the “gold standard” for COVID-19 tests. They are a type of
Nucleic Acid Amplification Test (NAAT), which are more likely to detect the virus than
antigen tests, As shown in Figure 1.5a. The sample will usually be taken by a healthcare
provider and transported to a laboratory for testing. It may take up to 3 days to receive
results [12].

• Antigen Tests: antigen tests are rapid tests that usually produce results in 15-30 minutes.
Positive results are very accurate and reliable. However, in general, antigen tests are
less likely to detect the virus than PCR tests, especially when symptoms are not present.
Therefore, a single negative antigen test cannot rule out infection. Food and Drug Administration
(FDA) recommends 2 negative antigen tests for individuals with symptoms or 3 antigen
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tests for those without symptoms, performed 48 hours apart. A single PCR test can be
used to confirm an antigen test result [12]. As shown in Figure 1.5b

Figure 1.5 illustrates the two Covid-19 tests.

a PCR test. b Antigen test.

Figure 1.5: Covid-19 tests [12].

1.6.3 Community-acquired pneumonia (CAP)

CAP is one of the most frequent infectious diseases and a major source of death and
morbidity around the world. Streptococcus pneumonia, Haemophilus influenza, and Moraxella
catarrhalis are common bacterial infections that cause CAP. However, with the development
of new diagnostic technology, viral respiratory infections are becoming more common causes
of CAP. Human rhinovirus and influenza are the most prevalent viral infections isolated from
hospitalized CAP patients [13].

1.6.3.1 CAP symptoms

Historical clues and physical examination findings may suggest a causative pathogen, but
the clinical signs and symptoms of CAP are not sufficiently specific to reliably differentiate the
exact etiologic agent. Therefore, additional testing remains necessary to identify the pathogen
and to optimize therapy in CAP. However, extra-pulmonary signs and symptoms seen in some
forms of atypical CAP may include the following:

• Mental confusion.

• Myalgias.

• Ear pain.

• Abdominal pain.

• Diarrhea.

• Rash (Horder spots in psittacosis;

erythema multiforme in Mycoplasma
pneumonia).

• Nonexudative pharyngitis.

• Hemoptysis.

• Splenomegaly.

• Relative bradycardia.
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1.6.3.2 CAP diagnosis

In the field of diagnosing CAP, a range of standard diagnostic studies play a critical role
in accurately identifying and differentiating this common respiratory infection. These essential
tests assist healthcare workers in determining the existence of infiltrates, excluding out other
similar diseases and determining the severity of the infection. The primary diagnostic modalities
include the following:

• Chest radiography (X-rays and CT scans).

• Complete Blood Cell (CBC) count with differential.

• Serum Blood Urea Nitrogen (BUN) and creatinine levels.

Since the main topic of this study revolves around chest scans, the focus will be solely on
chest radiography in the context of diagnosing CAP. Chest radiographs serve as a fundamental
diagnostic tool, allowing for the assessment of infiltrates and the exclusion of conditions that
may imitate CAP symptoms. It is important to note that in early CAP cases, radiography results
may appear negative, necessitating a repeat examination within 24 hours to enhance diagnostic
accuracy. Additionally, in situations involving immunocompromised patients with suggestive
symptoms and negative chest radiography, consideration of X-rays and CT scans may be
prudent. Furthermore, serial chest radiography can be employed to monitor the progression of
CAP; however, it is essential to be aware that radiographic improvement might not immediately
align with clinical improvement.

Figure 1.6: Typical bacterial CAP [10].

1.7 The use of Radiology in the diagnosis
Radiology plays a crucial role in diagnosing lung diseases. Various imaging techniques are

used to visualize the internal structures of the lungs and detect abnormalities. Some of the most
common radiological techniques used for diagnosing lung diseases include:
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• X-rays (Chest Radiography).

• Computed Tomography (CT) Scan.

• Magnetic Resonance Imaging (MRI).

• Positron Emission Tomography (PET) Scan.

• Ultrasound.

• Fluoroscopy.

• Ventilation-Perfusion (V/Q) Scan.

This study is fundamentally oriented towards an in-depth examination of X-rays and CT
scans. Its principal aim is to enhance the comprehension of these methodologies. In pursuit of
this goal, the subsequent comparative analysis is formulated:

1.7.1 CT scans & X-rays

As explained in the previous section, during the diagnostic stage, a variety of imaging
examinations are conducted to assist the medical team in achieving a precise diagnosis. These
examinations also play a crucial role in determining the most suitable course of treatment.
Each imaging procedure employs distinct technologies to generate visuals that aid physicians
in recognizing specific medical issues. This study primarily concentrates on CT scans, yet for
the purpose of comparison, it is beneficial to elucidate both CT scans and X-rays and draw a
comparison between them.

Figure 1.7: Sample of the two datasets: (a) chest X-ray images; (b) CT scans. [14]

Table 1.1 compares the main aspects between X-ray and CT-scan.
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Table 1.1: Comparison: X-rays vs. CT Scans

Aspect X-rays CT Scans
Technology Uses X-rays for imaging. Utilizes rotating X-ray tube and

detectors for cross-sectional
imaging.

Image Detail Provides 2D images of tissue
density differences.

Produces cross-sectional images for
better tissue differentiation and 3D
reconstructions.

Applications Diagnoses fractures, joint issues,
and some lung conditions.

Detects tumors, soft tissue
problems, internal injuries, and
guides medical procedures.

Radiation
Exposure

Lower radiation dose. Higher radiation dose due to
detailed imaging.

Exposure
Time

Shorter exposure time. Longer due to machine rotation.

Speed and
Comfort

Quick and requires brief patient
positioning.

Longer procedure with the patient
lying still.

Image
Formation

Denser tissues appear whiter, less
dense appear darker.

Constructs detailed cross-sectional
images.

Clinical
Purpose

Good for bones, joints, and some
lung issues.

Preferred for detailed
investigations, tumors, blood
vessels, and complex procedures.

Frequency of
Use

Can be used more often. Reserved for specific cases due to
higher radiation exposure.

Safety
Considerations

Generally safe with precautions. Requires careful consideration due
to higher radiation exposure.

1.8 The need for Accurate and Efficient Diagnosis Methods
The need for accurate and efficient diagnosis methods in the field of medicine is of paramount

importance due to its direct impact on patient care, treatment outcomes, and overall healthcare
systems. Accurate diagnosis refers to the precise identification of a medical condition or disease
that a patient is experiencing. Efficient diagnosis, on the other hand, involves achieving this
identification in a timely and resource-effective manner. Let us delve into the details of why
both accuracy and efficiency are crucial in medical diagnosis:

• Optimal Patient Care and Treatment: Accurate diagnosis is the foundation of effective
medical care. It provides essential information about the nature, severity, and specific
characteristics of a patient’s condition. With accurate diagnosis, healthcare professionals
can tailor treatment plans to address the underlying causes and characteristics of the
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disease, leading to better patient outcomes. Incorrect or delayed diagnosis can result in
inappropriate treatments, worsening of the condition, and even patient harm.

• Reduced Healthcare Costs: Efficient diagnosis methods can significantly reduce healthcare
costs. Timely and accurate diagnosis helps avoid unnecessary medical tests, treatments,
and hospitalizations. Unneeded procedures can burden patients financially and strain
healthcare systems. By streamlining the diagnostic process, healthcare resources can be
allocated more effectively, reducing both financial and time-related burdens.

• Prevention and Early Intervention: Accurate diagnosis enables the early identification
of diseases, which is critical for effective interventions and preventive measures. Detecting
diseases at an early stage often provides more treatment options, higher success rates, and
potentially lower healthcare costs. For conditions like cancer, early detection can mean
the difference between successful treatment and advanced, less treatable stages.

• Public Health and Contagious Diseases: Rapid and accurate diagnosis is essential
in identifying contagious diseases and preventing their spread. During outbreaks or
pandemics, such as the case with COVID-19, swift and precise diagnosis helps isolate
and treat affected individuals, limiting the disease’s transmission and protecting public
health.

• Research and Innovation: Accurate and efficient diagnostic methods contribute to
medical research and innovation. Researchers can use reliable diagnostic tools to study
disease patterns, develop new treatments, and identify emerging health threats. The
ability to accurately identify diseases also aids in monitoring the effectiveness of new
treatments and interventions.

• Personalized Medicine: Precision medicine relies on accurate diagnosis to tailor treatments
to individual patients’ genetic, molecular, and clinical characteristics. Accurate diagnostics
enable the identification of specific biomarkers that can guide treatment decisions, maximizing
therapeutic benefits while minimizing adverse effects.

• Building Patient Trust: Accurate diagnosis fosters trust between patients and healthcare
providers. When patients receive timely and precise diagnoses, they have confidence
in their healthcare professionals and the recommended treatment plans. Trust in the
healthcare system encourages patient compliance with treatments and enhances overall
patient satisfaction.

• Global Health Challenges: In regions with limited access to healthcare resources, accurate
and efficient diagnosis becomes even more critical. Diagnostic tools that are portable,
cost-effective, and easy to use can help address global health challenges, enabling the
rapid identification and management of diseases in resource-constrained settings.
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Incorporating accurate and efficient diagnostic methods is essential for improving patient
outcomes, optimizing healthcare resources, and advancing medical knowledge. Ongoing advancements
in technologies like medical imaging, molecular diagnostics, and artificial intelligence are
contributing to the development of innovative diagnostic tools that hold the potential to revolutionize
medical practice and patient care.

1.9 Conclusion
This chapter introduced the anatomy of human lungs, causes of lung diseases, and various

types of lung diseases including airway, lung tissue, and lung circulation disorders. Notably,
Lung Cancer, Covid-19, and Community-acquired pneumonia (CAP) were highlighted. The
imperative for accurate and efficient diagnostic methods in lung disease detection was emphasized,
as they are pivotal for tailored treatments and optimal patient outcomes. The chapter sets the
stage for in-depth exploration of lung disease mechanisms, diagnostic advancements, and their
transformative impact on healthcare.
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Chapter 2

Deep learning background and
Implementation

2.1 Introduction
Deep learning is a type of machine learning that is based on artificial neural networks,

which are designed to learn from large amounts of data. Deep neural networks have become
increasingly popular in recent years due to the advances in processing power and the availability
of large datasets. In this chapter we will provide an overview of the theoretical foundations
of deep neural networks, including the backpropagation algorithm, activation functions, and
different types of neural networks.

2.2 Machine Learning & Deep learning

2.2.1 Machine Learning (ML)

Machine learning is an evolving branch of computational algorithms that are designed to
emulate human intelligence by learning from the surrounding environment. They are considered
the working horse in the new era of the so-called big data. Techniques based on machine
learning have been applied successfully in diverse fields ranging from pattern recognition,
computer vision, spacecraft engineering, finance, entertainment, and computational biology
to biomedical and medical applications [15].

2.2.1.1 Machine Learning process stages

As shown in the flow diagram below in Figure 2.1, the Machine Learning process stages
are as follows:
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Figure 2.1: Machine Learning process Steps [8].

• Collection of Data: The initial step in the machine learning process is to gather relevant
data that will be used to train and test the model, This data may be obtained from a variety
of sources, including databases, APIs, and sensors. this data might be in any format(CSV,
XML, JSON, etc.)

• Data Cleaning and Feature Engineering: After collecting the date it is frequently
necessary to clean and preprocess data. This include dealing with outliers, handling
missing values, normalizing or scaling characteristics, and converting the data into a
format that will be used for future research.

• Model Training: Once the data is collected, cleaned and processed, a machine learning
model is chosen and trained using this data.

• Evaluate Model: After the model has been trained, it needs to be evaluated to determine
how well it performs and how well it generalizes. Evaluation is typically done using
a standard data set called the test set, which is unseen data and it was not used during
the training. Depending on the particular learning task, common performance measures
include accuracy, precision, recall, sensitivity, or mean squared error, . . . ect.

• Model Deployment: Based on the evaluation outcomes, the model can be fine-tuned
or optimized to enhance its performance. This could entail modifying hyperparameters,
experimenting with various algorithms or architectures, or gathering more data to address
any discovered constraints or shortfalls [8].

2.2.1.2 Classifiers in Machine Learning

A classifier in machine learning is an algorithm that automatically organises or categorizes
data into one or more of a set of "classes". One of the most common examples is an email
classifier, which evaluates emails and filters them based on whether they are spam or not.
Machine learning algorithms can be useful for automating processes that previously required
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manual labor. They can significantly speed the process, cut costs and increase productivity for
companies. The difference between a Classifier and a Model is that a classifier is an algorithm,
or the set of rules that computers use to categorize data. However, a classification model is the
outcome of the classifier’s machine learning. The classifier is used to train the model, which
eventually uses the classifier to classify the data. Classifiers can be supervised or unsupervised.
Only unlabeled datasets are supplied to unsupervised machine learning classifiers, and they
categorize the data based on patterns, structures, and anomalies found in the data. Training
datasets are provided to supervised and semi-supervised classifiers so they can learn how to
classify data into specific groups or classes [16].

2.2.1.3 Five Types of Classification Algorithms

These top 5 categorization algorithms must be able to deal with both needs and data.

• Decision Tree: A Decision Tree is a supervised machine learning algorithm used for
classification and regression. It is a flexible and interpretable model that makes decisions
based on a set of rules that can be represented as a tree-like structure. Each leaf node
in the tree represents a class label (in classification) or a numerical value (in regression)
[16].

• Naive Bayes Classifier: The Naive Bayes classifier is a probabilistic machine learning
algorithm commonly used for classification tasks. The probability that a given data point
will fall into one or more of a group of categories (or not) is calculated using the Naive
Bayes. In text analysis, Naive Bayes is used to group texts into subjects, topics, or tags
in order to arrange them in accordance with specified criteria. Naive Bayes algorithms
determine the probability of each tag for a given text, then they produce the tag with the
highest probability: the probability of A if B is true, is equal to the probability of B, if A
is true, times the probability of A being true, divided by the probability of B being true
[16].

P(A\B) =
P(B\A)×P(A)

P(B)
(2.1)

• K-Nearest Neighbors: K-Nearest Neighbors (K-NN) is a simple and intuitive machine
learning algorithm used for both classification and regression tasks. It’s a non-parametric
and instance-based learning algorithm, meaning it doesn’t make any assumptions about
the underlying data distribution and instead relies on the data itself to make predictions.
In text analysis, the k-NN algorithm would classify a given word or phrase by determining
its closest neighbor: k is decided by a plurality vote of its neighbors. It would be placed
in the class closest to 1 if k = 1 [16].

• Support Vector Machines (SVM): SVM is a flexible and powerful supervised machine
learning algorithm that could be utilized for classification and regression tasks. SVM
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is very useful when there is a clear margin of separation between classes or when the
data cannot be separated linearly. SVM, which was developed in the 1990s by Vapnik
and his colleagues, it has acquired significant acceptance and popularity in a variety of
applications, including image classification, text classification, and bioinformatics [17].

• Artificial Neural Networks: The artificial neural network (ANN), often known as a
neural network, is a machine learning technology that was developed to simulate the
human brain. The data explosion in modern drug discovery research requires sophisticated
analysis methods to uncover the hidden causal relationships between single or multiple
responses and a large set of properties.The ANN is one of several flexible tools available
to meet the growing need for drug discovery modeling. When compared to standard
regression methods, the ANN can describe complicated nonlinear interactions. The ANN
also has excellent fault tolerant, quick, and highly scalable with parallel processing [18].

2.2.2 Deep Learning (DL)

Deep learning is a subfield of machine learning that focuses on the development and
training of artificial neural networks with many layers, also known as deep neural networks.
Deep learning has gained significant attention and popularity due to its remarkable performance
in a wide range of applications, including image and speech recognition, natural language
processing, and especially healthcare like medical imaging interpretation, disease diagnosis,
drug discovery, personalized treatment planning, and remote patient monitoring. It also
powers healthcare chatbots, assists with genomics analysis, and automates tasks in radiology
and pathology.However, it also poses challenges related to data requirements, model
interpretability, and computational resources, which researchers and practitioners continue
to address.

Deep learning algorithms can be broadly categorized into three types:

2.2.2.1 Supervised Learning

In supervised deep learning, the model is trained using labeled data, where each input
is paired with a matching target or output. By reducing the difference between its
predictions and the real labels, the model learns to map inputs to outputs. This method is
often used for image classification and natural language processing tasks.

2.2.2.2 Semi- Supervised

Semi-supervised learning combines supervised and unsupervised learning elements. To
train the model, it uses a combination of labeled and unlabeled data. Deep learning
models in this category can benefit from the extra knowledge offered by labeled data
while continuing to learn from unlabeled samples.
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2.2.2.3 Unsupervised Learning

Unsupervised deep learning is used to process unlabeled data. The model aims to find
hidden patterns or representations within the data without explicit supervision. Common
techniques include clustering, dimensionality reduction, and generative modeling. Some
examples of unsupervised deep learning are models autoencoders and deep belief networks.

2.2.3 Historical Development and Relevance of Deep Learning

In the late 20th century, deep hierarchical patterns of human voice perception and production
systems served as inspiration for deep learning algorithms. Breakthroughs on deep
learning have been achieved since Hinton presented a unique deep structured learning
architecture dubbed the Deep Belief Network (DBN) in 2006 [19].

Artificial neural networks (ANNs) were the subject of research that gave rise to the idea
of deep learning. Since 1980, backpropagation, an effective gradient descent technique,
has been a key component of ANNs. Due to its local optima and overfitting issue,
its performance may not be sufficient when applied to testing data. To achieve global
optimums with reduced power consumption, several efficient machine learning methods
(seen in classifiers title) such support vector machine (SVM), boosting, and K-nearest
neighbor (K-NN) have been implemented.

Deep learning methods were initially introduced with Geoffrey Hinton’s [19] proposal
of layer-wise greedy learning in 2006. In this approach, unsupervised learning is utilized
to pre-train the network before proceeding with layer-by-layer training. This technique
significantly decreases the number of dimensions in data and produces a short representation.
The growth in popularity of deep learning can be related to advancements in big-data
analysis techniques, which, in part, address the issue of overfitting during training by
providing the network with non-random initial values, this leads to faster convergence
rates and better performance by locating lower values in the loss function.

Deep learning methods have piqued significant attention and achieved outstanding results
in various fields. For example, in 2012, using deep learning techniques, a research team
led by Hinton won the ImageNet Image Classification competition by surpassing the
runner-up by 10% [20]. Google and Baidu have improved their image search engines
by using Hinton’s deep learning architecture. Furthermore, in 2016, Google’s DeepMind
project demonstrated outstanding performance in predicting the activity of pharmacological
compounds and their effects on gene expression [21].

2.3 Artificial Neural Networks:
ANNs are computational models inspired by the form and function of biological neural
networks observed in the human brain as shown in Figure 2.2 . ANNs are made up of
linked artificial neurons or nodes that are grouped into layers. They are used in machine
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learning and computational neuroscience to handle complicated problems including as
pattern recognition, classification, regression, and optimization. ANNs are distinguished
by their capacity to learn from data, adapt to new information, and generalize patterns,
making them an important tool for supervised and unsupervised learning tasks. They’ve
assisted in a variety of fields, including image and speech recognition, natural language
processing, and autonomous systems.

In ANNs, two different kinds of neurons are employed: the biological neurons present
in the human brain that serve as inspiration, and the artificial neurons, also known as
perceptrons, that mimic their activity in the ANN design.

– The biological neuron: The living neuron is: The biological neuron, which has a
cell body, dendrites, an axon, and synapses, is the basic building block of the neural
network in the human brain. Axons transfer information while dendrites receive it
as neurons join to transmit chemical and electrical impulses. Synapses are crucial
in determining how strongly neurons are connected to one another [22].

The Figure 2.2 represent the biological neuron.

Figure 2.2: Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon terminals
[23].

– Artificial neuron: Emulates the capabilities of a biological neuron in ANNs. It
determines the weighted sum after receiving various inputs that have all been multiplied
by a synaptic weight. Non-linearity is introduced by including a bias term and using
an activation function, which enables ANNs to recognize complicated relationships.
The network’s succeeding neurons receive an artificial neuron’s output as input,
promoting communication and learning [24] [25].

The Figure 2.3 represent the artificial neuron.
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Figure 2.3: An artificial neuron [26].

– Multilayer Merceptron (MLP): The MLP architecture, which has several hidden
layers between the input and output layers, is a more robust and adaptable ANN
design as the diagram in Figure 2.4 shows. The weighted total of the inputs is
applied by each neuron in the hidden layers as an activation function. MLPs are
well suited for a variety of applications because they can learn intricate nonlinear
correlations between inputs and outputs [25]

Figure 2.4: Connection between input, hidden and output layers [23].

2.4 Neural Network Training:
Neural networks training is a critical step in machine learning research. It requires
incrementally improving network parameters using error minimization techniques such
as gradient descent. Neural networks Training allows them to catch detailed patterns from
large datasets, improving their capacity to generalize and generate accurate predictions
across a wide range of applications such as computer vision, natural language processing,
and reinforcement learning.

2.4.1 Loss function

A loss function, which is also known as a cost function, considers the probability or
uncertainty of a forecast depending on how much it varies from the real value. This
provides us with a deeper understanding of how the model is doing.
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2.4.2 Gradient Descent

Gradient descent is an optimization approach that iteratively modifies the weights and
biases of the network. The amplitude and direction of updates are chosen using the
gradient of the loss function (L) with respect to the parameters. The parameters are
changed as follows:

θ = θ − learningrate×∆L (2.2)

where θ represents the network’s parameters (weight and bias), and the learningrate
controls the step size in each iteration.

2.4.3 Backward Propagation

Backward propagation is the tool that gradient descent uses to calculate the gradient of
the loss function (cost function). It is an algorithm used to determine the gradients of a
neural network by propagating errors backward through the network, it requires applying
the chain rule of calculus to compute the partial derivatives of the loss function with
respect to the network’s parameters. The gradients are then used to update the parameters
during training via gradient descent. The gradients (∆) of the loss function (L) with
respect to the parameters (θ) are computed mathematically during back propagation as
follows:

∆ =
dL
dθ

(2.3)

These gradients are then used to update the parameters in the opposite direction of the
gradient as shown in Figure 2.5:

Figure 2.5: Gradient descent and weights update in Backpropagation algorithm [27].
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2.4.4 Dropout

Dropout is a regularization method commonly used in deep learn used to stop overfitting
in deep learning models, during training, it randomly cuts out (sets to zero) certain
number of neurons from the neural network. This prevents the network from being
overly dependent on any specific features or neurons, and forces it to learn more reliable
ones by promoting better generalization to unseen data. Dropout is a widely adopted
technique that enhances the robustness and performance of deep neural networks in
various applications.

As shown in Figure 2.6

Figure 2.6: Dropout Regularization [28]

2.4.5 Batch Normalization

Batch normalization is a technique for normalizing the inputs to each layer in a neural
network. It helps improve training stability and speed, by minimizing the internal covariate
shift (changes in the distribution of a network’s internal activations through training).
To understand more the Figure 2.7 shows the neuron before and after applying batch
normalization.

Figure 2.7: A Neural Network before and after Batch Normalization [28].

2.5 Hyperparameters
Hyperparameters are parameters whose values control the learning process and determine
the values of model parameters that a learning algorithm ends up learning. The prefix
‘hyper-’ indicates that they are ‘top-level’ parameters that control the learning process
and the model parameters that come from it [29]. These parameters can have a direct
impact on the behavior of the training algorithm and have a significant impact on the
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performance of the model being trained and they are set by the data scientist or machine
learning practitioner before the training process starts. The learning rate, the number of
epochs, the batch size, the dropout rate, and other factors that control how the model
learns and generalizes from data are examples of hyperparameters.

2.5.1 Learning rate

The learning rate is a hyperparameter that controls the magnitude of parameter changes
during training. It controls how fast or slowly a machine learning model converges on
the ideal set of parameters for minimizing the loss function. To calculate the amount of
each parameter update in gradient-based optimization, the learning rate is multiplied by
the gradient of the loss function with respect to the model’s parameters.

2.5.2 Number of epochs

The number of epochs is another critical hyperparameter that determines how many times
the entire training dataset is processed by the model during training. each epoch is made
up of numerous iterations (mini-batches). The number of epochs determines how long
the training process will last.

2.5.3 Batch size

The batch size is a hyperparameter that defines how many data samples are utilized to
compute the gradient and update the model’s parameters during one training iteration. A
larger batch size may lead to faster training but can require more memory, while a smaller
batch size may result in slower training but potentially better convergence.

2.6 Activation Functions
An important part of artificial neural networks is the activation function, which decides
whether or not to activate a neuron based on input. By controlling which neurons are
engaged and have an impact on the subsequent layer, this function plays a critical role in
aiding neural networks in learning complicated patterns in data. The activation function
transforms the output from one neuron into an input for the following neuron, much as
how neurons in the human brain do so. Since a neural network would only be able to
perform as a linear regression model in the absence of an activation function, its main
function is to add non-linearity into the network. Applying an activation function to the
weighted sum of a neuron’s inputs, which includes the bias term, yields the neuron’s
activity as shown below:

A = G(W1X1 +W2X2 + · · ·+WnXn +B) (2.4)
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Such that:
- A: output of the neuron.
- G: activation function.
- W : weight.
- Xi: features.
- B: bias.

2.6.1 Sigmoid

The sigmoid activation function, also known as the logistic function, generates outputs
between 0 and 1 by compressing the input into an S-shaped curve. As a result, it is
applied to models that need to do binary classification. The mathematical formulation of
sigmoid function is:

sigmoid =
1

1+ e−x (2.5)

While sigmoid activation functions have their applications, particularly in specific output
layers and historical contexts, other activation functions, such as ReLU and its variants,
have gained popularity in modern deep learning architectures due to their ability to
address some of the limitations associated with sigmoid functions.

2.6.2 Softmax

Softmax is a powerful generalization of sigmoid , it is an essential component in neural
network architectures for multi-class classification tasks, such as image classification,
natural language processing, and many other applications where the model needs to
assign inputs to one of several possible categories. It uses a softmax operation to normalize
the input vector into a probability vector, where each value denotes the probability or
confidence score for the relevant class. It is frequently used at the topmost layer of the
neural network as the final activation function. Softmax is mathematically represented
by:

so f tmax(x) =
exi

∑
k
j=1 ex j

(2.6)

Such that:
- x: input vector.
- K: number of classes in the multi-class classifier.
- exi : exp(xi).
- ex j : exp(x j).
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2.6.3 ReLU

Rectified Linear Unit ReLU is a very common activation function in neural networks. it
generates non-linearity by outputting the input directly if it’s positive, and zero otherwise.
Its formula is

f (x) = max(0,x) (2.7)

ReLU has a number of benefits, including the ability to learn more quickly than sigmoid
activations and avoid saturation because its gradient is either 0 or 1. Additionally, it
reduces the likelihood of gradient-related issues such as exploding gradients and vanishing
gradients. Furthermor, it surpass sigmoid in striking a compromise between computational
effectiveness and biological realism. However, it can suffer from the "dying ReLU"
problem, where some neurons can become inactivee during training.

As a result, ReLU has become a preferred choice for many deep learning architectures,
contributing to their stability and faster training convergence.

2.7 Deep Neural Network:
DNNs have been suggested as an extension of ANN shallow architectures due to improvements
in hardware and processing capacity. DNNs do not seek to represent the biological brain
in the same way that cortical algorithms (CAs) or other machine learning methods with
biological inspiration do, even if they use the idea of neurons from the biological brain.
The Fukushima (1980) neocognitron model is where DNN ideas come from. DNN
architectures are designed to build powerful AI models and are broadly characterized
as a collection of machine learning algorithms that tries to learn in a hierarchical fashion
and that involves various levels of abstraction for knowledge representation. The learning
at the higher level is determined by and builds on the statistical learning that occurs at the
lower-level layers of these systems as information spreads through higher levels. With
such a broad definition of deep learning, we might consider backpropagation algorithms,
which have been there since 1974, to be the forerunners of deep architectures, along
with recurrent neural networks and convolution neural networks, which were developed
in the 1980s. Research on deep architectures has been going, though, only after Hinton,
Osindero, and Teh’s (2006) contribution to deep learning training [26]. In actuality, linear
models or shallow neural networks might not have enough expressiveness to accurately
predict the task. It has been suggested that deep neural networks (DNNs) could be used
to create more accurate predictive models. They can be represented abstractly as a series
of layers,

f (x) = fL ◦ · · · ◦ f1(x) (2.8)
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Each of these applies a linear transformation and then introduces an elementwise nonlinearity.
By combining many of these layers, the model has a tremendous capacity for prediction.
Computer vision tasks have shown particular success for DNNs. However, DNN models
are also much more complex and nonlinear, and quantities entering into the simple
explanation model become considerably harder to compute and estimate reliably [30].
Four main deep learning architectures are restricted: Boltzmann machines (RBMs), deep
belief networks (DBNs), autoencoder (AE), and convolutional neural networks (CNNs).
Convolutional neural networks will be the main focus of this study.

2.8 Convolutional Neural Networks CNNs:
CNNs, a subclass of the discriminative deep architecture, have demonstrated acceptable
processing performance for two-dimensional data with grid-like topology, such as images
and videos. CNNs use convolution processes to identify visual patterns by imitating the
visual cortex [31]. Convolution has taken the place of the universal matrix multiplication
in standard NNs in CNNs. By doing this, the number of weights is reduced and the
network’s complexity is lowered. Additionally, the photos can be instantly integrated
into the network as raw inputs without having to go through the feature extraction process
that is required by conventional learning techniques. Due to the effective training of the
hierarchical layers, CNNs are the first fully successful deep learning architecture. By
utilizing spatial relationships, the CNN architecture minimizes the amount of parameters
in the network, which improves performance when using conventional backpropagation
techniques. The GPU-accelerated computing techniques have been used to train CNNs
more effectively due to the quick development of calculation techniques. CNNs are
now successfully used in recommender systems, handwriting recognition, face detection,
behavior recognition, speech recognition, and particularly image classification [32]. CNNs
are made up of a stack of convolution and pooling layers that are alternated, along with
several fully connected layers as shown in Figure 4.14 and Figure 4.14.

Figure 2.8: Schematic of CNNs [32].
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Figure 2.9: Conceptual structure of CNNs [32].

2.8.1 Convolutional Layer

When extracting features from an input image, a Convolutional Layer is essential. The
image is convolved using a smaller matrix known as a kernel or filter. The dot product
between the kernel and the image is calculated as the kernel slides across the image. The
sliding distance is determined by stride length. When working with colored images, the
kernel’s channel count must coincide with the image’s channel count. With their sizes
maintained constant, many kernels can be used to extract numerous features. Convoluted
features are layered together to create an output with the number of channels equal to
the number of filters applied. An activation function, such as ReLu or Tanh, is applied
to the convolved features to induce non-linearity. The output, sometimes referred to as a
feature map, is what this method produces.

2.8.2 Pooling Layer

The pooling layer is an essential component of convolutional neural networks (CNNs)
that plays a number of important roles in the processing of visual and spatial input. It
usually comes after convolutional layers to reduce dimensionality, provide translation
invariance, and select features. By reducing the size of the input image and increasing the
reliability of recognized features, it enhances computational speed and memory management.
Pooling increases the network’s ability to recognize features independent of their actual
geographical locations, promoting strength. It systematically collects essential information
from tiny locations, either by max-pooling (keeping the maximum value) or by average-pooling
(calculating the mean). This reduces the network’s parameter count dramatically, decreasing
overfitting while increasing generalization.

2.8.3 Fully Connected Layer

The Fully Connected Layer (FCL), also known as the Dense Layer, is an important
component in artificial neural networks, especially in feedforward neural networks and
deep learning designs such as multi-layer perceptrons (MLPs). It connects the feature
extraction layers (such as the convolutional and pooling layers in CNNs) to the output
layer, which is responsible for generating final predictions or classifications [33]. It is
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also useful for tasks like image classification and natural language processing, where
complex relationships between features need to be captured to make high-level predictions.
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Chapter 3

Approach and Implementation

3.1 Introduction
This chapter presents the approach and implementation details for our project. We
discuss the tools and technologies used, we delve into the concept of transfer learning,
specifically focusing on the ResNet, Inception-V3, and DenseNet architectures, and introduce
performance metrics.

3.2 Tools
In our way to develop and evaluate deep learning models for chest image classification,
powerful tools and technologies were relied . These tools played a critical role in the
successful execution of our study, enabling us to manipulate, process, and analyze our
dataset effectively. Our toolkit included: Kaggle, Python, TensorFlow, Keras,and OpenCV.

3.2.1 Kaggle

Kaggle [34] is an online platform and community dedicated to data science, machine
learning, and artificial intelligence. It provides access to a diverse array of datasets
and hosts competitions that challenge data scientists and machine learning enthusiasts
to solve real-world problems. It serves as a hub for data-driven collaboration, enabling
knowledge sharing, model development, and insights discovery within the global data
science community.

3.2.2 Python

Python [35] is an interpreted, object-oriented, high-level programming language with
dynamic semantics. Its high-level built in data structures, combined with dynamic typing
and dynamic binding, make it very attractive for Rapid Application Development, as
well as for use as a scripting or glue language to connect existing components together.
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Python’s simple, easy to learn syntax emphasizes readability and therefore reduces the
cost of program maintenance.

3.2.3 TensorFlow

TensorFlow [36] is an open-source numerical computing library developed by Google
that focuses on machine learning and deep learning applications. It provides an adaptive
and fast framework for executing multi-dimensional array-based mathematical computations
known as tensors. TensorFlow is intended to make it easier to construct, train, and deploy
machine learning models, particularly neural networks, across a variety of platforms and
computing environments.

3.2.4 Keras

Keras [37] is a high-level, deep learning API developed by Google for implementing
neural networks. It is written in Python and is used to make the implementation of neural
networks easy. It also supports multiple back-end neural network computation.

3.2.5 OpenCV

OpenCV [38], or Open Source Computer Vision Library, is a free and open-source
computer vision and machine learning software library. It provides a wide number of
tools and functionalities for tasks relating to computer vision, image processing, and
machine learning, making it a significant resource for developers and academics working
in disciplines such as robotics, augmented reality, facial recognition, image and video
analysis, and more.

OpenCV is built in C++ and provides bindings for other computer languages, including
Python, Java, and MATLAB, making it accessible to a large community of developers.
It supports a variety of operating systems, including Windows, Linux, macOS, Android,
and iOS.

3.3 Transfer Learning
Transfer learning is a powerful technique in which knowledge gained from one model
is applied to another related task. In our project, we have employed transfer learning
using the ResNet, Inception-V3, and DenseNet architectures, utilizing pretrained models
trained on large datasets such as ImageNet. The architectures are renowned for their
effectiveness in medical imaging classification. We have specifically chosen these models
due to their capability to achieve remarkable performance while having a relatively smaller
number of parameters. This choice is well-suited for our dataset, which comprises a large
number of high-resolution images.
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Figure 3.1: This is an example image.

3.3.1 ResNet

ResNet stands for Residual Neural Network is a Convolution Neural Network with 50
Deep Layers developed in 2015 by Kaimimg He. There are two blocks in this Model:
Convolution Block and Identity Block. ResNet50 uses the principle of Skip Connection.
There are 48 Convolution Layers, 1 Max Pool Layer, and 1 Average Pool Layer among
the 50 Layers, it is used for computer vision applications designed to support hundreds
or thousands of convolutional layers. Residual neural networks are a type of artificial
neural network (ANN) that forms networks by stacking residual blocks [39].

3.3.2 Inception-V3

Inception-V3 is a convolutional neural network for assisting in image analysis and object
detection in a total of 48 layers, including convolutional layers, pooling layers, fully
connected layers, and auxiliary classifiers. It utilizes factorized convolutions and aggressive
regularization to reduce the number of parameters and prevent overfitting.

3.3.3 DenseNet

DenseNet is a type of convolutional neural network that utilizes dense connections between
layers, through Dense Blocks, where we connect all layers (with matching feature-map
sizes) directly with each other [40]. It consists of 121 layers, including densely connected
convolutional layers. The key innovation of DenseNet is its dense connectivity pattern,
where each layer receives direct input from all preceding layers. This design promotes
feature reuse, enhances information flow, and reduces the risk of vanishing gradients.

3.4 Performance Metrics

3.4.1 Confusion Matrix

It is N by N matrix, where N is the number of classes or outputs, and it is one of the
most intuitive performance measurements for machine learning classification problems
where output can be two or more classes. It displays a tabular representation of the
model’s correct and wrong predictions, classified according to the actual and projected
classifications. This matrix is very useful when dealing with unbalanced datasets with
varying class distributions. By studying error patterns, it is possible to discover areas
where the model may be failing, allowing for targeted modifications to improve overall
performance [41]. It gives a comparison between actual and predicted values and summarizes
the count of the parameters as follows in Figure 3.2:
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Figure 3.2: Confusion Matrix [42].

– True Positive(TP): The actual value and the predicted values are the same.

– True Negative(TN): The actual value and the predicted values are the same.

– False Positive(FP): The actual value is negative, but the model has predicted it as
positive,

– False Negative(FN): The actual value is positive, but the model has predicted it as
negative.

3.4.2 Accuracy

Accuracy is a metric for classification models that measures the number of predictions
that are correct as a percentage of the total number of predictions that are made [43].
Formally, accuracy has the following definition:

Accuracy =
Sum of Correct Predictions for All Classes
Total Number of Predictions for All Classes

(3.1)

For binary classification, accuracy can also be calculated in terms of positives and negatives
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

3.4.3 Recall

Recall (or sensitivity) measures the proportion of actual positive instances that were
correctly identified by the model. It provides an indication of the model’s ability to avoid
missing positive cases, making it particularly relevant when the cost of false negatives is
high. Recall is commonly used in medical diagnostics, information retrieval, and other
applications where the focus is on finding relevant items [44].

The equation for recall is as follows:
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Recall =
TP

TP+FN
(3.3)

3.4.4 Specificity

Specificity measures the proportion of actual negative instances that were correctly identified
as negative by the model. It provides insight into the model’s ability to avoid classifying
negative cases as positive, which is essential when the cost of false positives is high.

The equation for specificity is as follows:

Specificity =
TN

TN+FP
(3.4)

3.4.5 Precision

Precision in classification is the measurement of the accuracy of positive predictions
made by a model. It quantifies the proportion of instances that the model correctly
classified as positive out of all instances it predicted as positive [44].

The equation for precision is as follows:

Precision =
TP

TP+FP
(3.5)

3.4.6 F1-Score

The F1-Score is a machine learning evaluating metric in classification that combines
precision and recall (sensitivity) scores of a model into a single value. The F1-Score
ranges between 0 and 1, with higher values indicating better model performance [45]. It
is especially useful when there is an imbalance between the classes.

The equation for F1-Score is as follows:

F1-Score =
2 ·Precision ·Recall
Precision+Recall

(3.6)

3.5 Conclusion
Chapter 3 provides an overview of the methodology and tools used in the project. It
highlights the evaluation metrics, and the used transfer learning models. Overall the
chapter establishes the foundation for the next chapter’s results and discussion laying the
groundwork for the development and evaluation of a deep learning model for chest image
classification.
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Chapter 4

Results and Discussion

4.1 Introduction
In this chapter, we unveil the outcomes of our comprehensive analysis in the field of chest
image classification. Building upon the foundation laid in the previous chapters where
we explored the background of chest diseases and deep learning methodologies, and the
approach used, this chapter serves as the culmination of our research efforts.

Our investigation centers on the utilization of deep neural networks, including ResNet,
Inception-V3, and DenseNet, to classify chest images, utilizing datasets sourced from
Kaggle. This exploration extends to both binary classification with two different types
of datasets: CT-scan and X-ray, where we discern specific conditions, and multi-class
classification, which broadens our scope to encompass a range of diagnostic categories.

Our primary objective is to conduct a meticulous comparison between these deep learning
models and classification approaches, aiming to identify the most accurate and efficient
strategies. These findings carry profound implications, particularly in the domain of
healthcare, where accurate and efficient diagnoses play a critical role in saving lives and
improving patient outcomes.

4.2 Experiments and Results

4.2.1 Binary classification

In our binary classification experiment,we used two datasets for distinguishing COVID-19
from non-COVID-19 cases, both datasets downloaded from kaggle platform under the
name of "COVID 19 X-Ray and CT-Scan Image" [10] in total of 17099 X-ray and
CT-scan images. The dataset contains two main folders, one for the X-ray images, which
includes two separate sub-folders of 5500 Non-COVID images and 4044 COVID images.
The other folder contains the CT images. It includes two separate sub-folders of 2628
Non-COVID images and 5427 COVID images.
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a Example from COVID CT-scan dataset b Example from Non COVID CT-scan dataset

Figure 4.1: Examples from CT-scan dataset [10].

a Example from COVID X-ray dataset b Example from Non COVID X-ray dataset

Figure 4.2: Examples from X-ray dataset [10]

Now we will present the results of our classification experiment. We used three distinct
models with a fixed splitting ratio at 60:20:20.

In addition, we carefully evaluated several combinations of hyperparameter values to
determine the most successful ones. After extensive testing.

We chose the hyperparameters presented in Table 4.1. The subsections that follow give
thorough results, analyses, and discussions for each model and imaging technique, giving
light on their adaptability to different data situations and their implications for practical
medical picture classification.
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Table 4.1: Selected hyperparameters values for Binary classification

Hyperparameter Fixed value

Number of Epochs 20
Learning rate 0.001

Batch size 32
Optimizer Adam

Loss function categorical crossentropy

4.2.1.1 Inception V3

In the exploration of chest image classification, the first step was deploying the Inception-V3
model on both CT scan and X-ray dataset. With a splitting ratio of 60:20:20 for train,
validation and test respectively, and a fixed number of epochs at 20 epochs. As we present
the curves of accuracy and loss of this experiment in Figure 4.3 and Figure 4.4:

a Accuracy graph of CT-Scan dataset

b Accuracy graph of X-ray dataset

Figure 4.3: Accuracy graphs of Inception-V3 model

a Loss graph of CT-scan dataset b Loss graph of X-ray dataset

Figure 4.4: Loss graphs of Inception-V3 model
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As we can see from Figure 4.3, both graphs exhibit a noticeable upward trend, indicating
positive learning progress, while The loss graphs in Figure 4.4 indicate a consistent
downward trend, indicating effective convergence during training, with a remarkable
advantage in CT-scan curves. Further information is needed from the confusion matrix
in Figure 4.5 :

a Confusion matrix of CT-scan dataset b Confusion matrix of X-ray dataset

Figure 4.5: Confusoin matrix of Inception-V3

As we can see from the confusion matrix CT-scan is giving a slightly better results. in
addition, we have other metrics to cover in Table 4.2 :

Table 4.2: Performance Metrics for Inception-V3 Model on COVID-19 Binary Classification

Dataset Class Accuracy Precision Recall F1-Score

CT Scan COVID 0.92 0.95 0.95 0.95
CT Scan Non-COVID 0.92 0.89 0.88 0.89

X-ray COVID 0.88 0.83 0.90 0.86
X-ray Non-COVID 0.88 0.92 0.85 0.88

Table 4.2 compares the performance between CT-scan and X-ray datasets for COVID-19
binary classification using the Inception-V3 model. Notably, for the CT Scan dataset,
both COVID and Non-COVID classes demonstrate high accuracy at 0.92, indicating
strong classification. In particular, the COVID class achieves a precision, recall, and
F1-Score of 0.95, showing outstanding performance in detecting COVID cases. On the
other hand, the X-ray dataset also performs well with an accuracy of 0.88 for both classes.
However, the Non-COVID class has a greater precision of 0.92, demonstrating its ability
to properly identify Non-COVID instances. The COVID class has a high recall of 0.90,
highlighting its efficacy in collecting COVID instances.
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4.2.1.2 ResNet

With the same hyperparameters and steps of inception-V3, we deployed the ResNet
model on both CT scan and X-ray datasets and the curves shown in Figure 4.6 and Figure
4.7 as follows :

a Accuracy graph of CT-scan dataset. b Accuracy graph of X-ray dataset.

Figure 4.6: Accuracy graphs of Resnet models

a Loss graph of CT-scan dataset. b Loss graph of X-ray dataset.

Figure 4.7: Loss graphs of ResNet models

In Figure 4.6, we observe consistent upward trends in accuracy for both CT Scan and
X-ray datasets, indicating that the model steadily improves its ability to classify COVID-19
cases over training epochs. This suggests that the model is effectively learning from the
data. Moreover, the loss curves in Figure 4.7 show a continuous downward trajectory,
affirming that the model is converging during training. The decreasing loss values reflect
the diminishing error in the model’s predictions. More details from the confusion matrix
in Figure 4.8.
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a Confusion matrix of CT-scan dataset b Confusion matrix of X-ray dataset

Figure 4.8: Confusion matrix of ResNet

The confusion matrix results in Figure 4.8 are indicative of the model’s performance
in both the CT Scan and X-ray datasets. Notably, in the CT Scan dataset, the model
misclassified 38 cases as non-COVID when they were not, and 47 cases as COVID when
they were non-COVID. Similarly, in the X-ray dataset, there were 38 false positives
(non-COVID misclassified as COVID) and 44 false negatives (COVID misclassified as
non-COVID).

Table 4.3: Performance Metrics for ResNet Model on COVID-19 Binary Classification

Dataset Class Accuracy Precision Recall F1-Score

CT Scan COVID 0.95 0.96 0.97 0.96
CT Scan Non-COVID 0.95 0.93 0.93 0.93

X-ray COVID 0.92 0.93 0.94 0.93
X-ray Non-COVID 0.92 0.92 0.93 0.92

In Table 4.1 the model demonstrates strong accuracy, with CT Scan achieving 0.95
for both COVID and Non-COVID classes and X-ray achieving 0.92 for both classes.
Notably, CT Scan exhibits exceptional precision, recall, and F1-Score values of 0.96,
0.97, and 0.96 for COVID, demonstrating its proficiency in identifying COVID cases.
Similarly, X-ray maintains a solid precision, recall, and F1-Score of 0.93 for COVID.

4.2.1.3 DenseNet

With the same parameters and steps of inception-V3 and ResNet, we deployed the DenseNet
model on both CT scan and X-ray datasets and the graphs of accuracy and loss are shown
in Figure 4.9 and Figure 4.10, respectively:
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a Accuracy graph of CT-scan dataset b Accuracay graph of X-ray dataset

Figure 4.9: Accuracy graphs of DenseNet models

a Loss graph of CT-scan dataset b Loss graph of X-ray dataset

Figure 4.10: Loss graphs of DenseNet models

in Figure 4.9 and Figure 4.10 the accuracy and loss curves for the DenseNet model for
both datasets reveal promising trends. The accuracy consistently improves, demonstrating
effective learning, while the loss steadily decreases, indicating convergence. These patterns
suggest the model’s potential for accurate COVID-19 classification, although further
evaluation is necessary from the confusion matrices in Figure 4.11.
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a Confusion matrix of CT-scan dataset b Confusion matrix of X-ray dataset

Figure 4.11: Confusion matrix of DenseNet model

The confusion matrix results that the model’s performance in both the CT Scan and X-ray
datasets looks better than the matrices of ResNet and Inception-V3 with less misclassified
samples. Notably, in the CT Scan dataset, the model misclassified 29 cases as COVID
when they were not and 29 cases as non-COVID when they were COVID. Similarly, in
the X-ray dataset, there were 29 false positives (COVID misclassified as non-COVID)
and 51 false negatives (non-COVID misclassified as COVID).

Table 4.4: Performance Metrics for DenseNet Model on COVID-19 Binary Classification

Dataset Class Accuracy Precision Recall F1-Score

CT Scan COVID 0.96 0.97 0.97 0.97
CT Scan Non-COVID 0.96 0.94 0.94 0.94

X-ray COVID 0.94 0.94 0.93 0.93
X-ray Non-COVID 0.94 0.94 0.93 0.92

The performance metrics table for the DenseNet model in binary classification, which
includes both CT Scan and X-ray datasets, demonstrates outstanding results. In the CT
Scan dataset, the model achieves exceptional accuracy scores of 0.96 for both COVID
and Non-COVID classes. Moreover, precision, recall, and F1-Score values consistently
reach 0.97 for COVID, underlining the model’s precision and effectiveness in identifying
COVID cases. Similarly, the DenseNet model’s performance in the X-ray dataset is
commendable, with an accuracy of 0.94 for both COVID and Non-COVID classes. The
COVID class maintains solid precision, recall, and F1-Score values of 0.94, confirming
its capability in COVID-19 detection.

These results underscore the superiority of the DenseNet model, which outperforms
both the ResNet and Inception-V3 models. Its consistently high performance metrics
highlight its potential as a valuable asset in medical diagnostics, with significance for
enhancing health care and disease management. Notably, the CT-scan dataset performs
more efficiently than the X-ray dataset, demonstrating its strength in COVID-19 classification.
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4.3 Multi-Class Classification
In our earlier exploration, we started on a binary classification journey, employing three
popular deep learning models(Inception-V3, ResNet, and DenseNet) to distinguish between
COVID-19 cases and non-COVID-19 within CT-Scan and X-ray datasets. This initial
study provided significant results, including the superiority of CT scans over X-rays and
the prominence of the DenseNet architecture for binary classification tasks. we now turn
our attention to a more intricate and comprehensive challenge: multi-class chest image
classification. Beyond the dichotomy of COVID-19 and non COVID-19 diagnoses,
we interact on a mission to distinguish between three distinct classes COVID-19, non
COVID-19, and Community-Acquired Pneumonia (CAP).

The dataset used for multi-class classification task, downloaded from kaggle platform
under the name of "Large COVID-19 CT scan slice dataset" [46]. To ensure the dataset
quality, the closed lung normal slices that do not carry information about inside lung
manifestations have been removed. Additionally, they did not include images lacking
clear class labels or patient information. In total, they collected 7,593 COVID-19 images
(44.39%) from 466 patients, 6,893 normal images (40.30%) from 604 patients, and 2,618
CAP images (15.31%) from 60 patients. Figure 4.12 represents samples from the dataset.

a Example of COVID-19 CT-scan. b Example of non COVID-19 CT-scan. c Example of CAP CT-scan.

Figure 4.12: Examples from CT-scan dataset of Multi-class classification [46].

Now we will present the outcomes of our classification experiment. We employed three
different splitting ratios to properly evaluate model performance: 80:10:10, 70:15:15,
and 60:20:20 for training, validation, and testing, respectively. Additionally, we carefully
evaluated various combinations of hyperparameter values to identify the most effective
ones. After thorough experimentation.

We selected the hyperparameters shown in Table 4.5. The following subsections present
detailed results, analyses, and discussions for each model and splitting ratio, shedding
light on their adaptability to varying data scenarios and their implications for practical
medical image classification.
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Hyperparameter Fixed value

Number of Epochs 50
Learning rate 0.001

Batch size 32
Optimizer Adam

Loss function categorical crossentropy

Table 4.5: Selected hyperparameters values for Multi-class classification

4.3.1 Inception V3

4.3.1.1 First splitting ratio

In this subsection, we discuss the results obtained when employing the Inception-V3
model with an 80:10:10 data splitting ratio. This scenario represents the conventional
approach of an 80% training set, 10% validation set, and 10% testing set. The dataset
splitting is shown in Table 4.6.

Table 4.6: Distribution of Dataset Samples

Training validation test

Number of samples 13684 1696 1724

Figure 4.13 shows the accuracy and loss graphs obtained after 50 training epochs:

a Accuracy graph. b Loss graph.

Figure 4.13: Accuracy and Loss graphs of Inception-V3’s first ratio.

From both graphs in Figure 4.13 we see the accuracy and loss curves displaying consistent
patterns. The model learned and generalized well. The absence of overfitting or underfitting
suggests strong generalization capabilities. These findings open the way to further analysis
through the confusion matrix.
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Figure 4.14: Confusion matrix of Inception-V3’s first ratio.

The confusion matrix offers valuable insights into the classification performance of the
Inception-V3 model, reflecting its proficiency in correctly identifying COVID-19 cases
with a notable true positive rate. However, there were instances of misclassifications
between COVID and Non-COVID cases and few misclassifications with CAP cases. As
we explore the performance metrics, we will gain more comprehensive understanding of
its strengths for further enhancement.

Table 4.7: Performance Metrics table of Inception-V3’s first ratio.

Class Accuracy Precision Recall F1-Score

COVID 0.96 0.95 0.96 0.96
Non-COVID 0.96 0.96 0.95 0.95

CAP 0.96 0.96 0.97 0.96

From Table 4.7 the model achieves a commendable accuracy of 96% with splitting ratio
of 80:10:10, demonstrates its ability to make accurate predictions. The precision values,
averaging at 0.96, indicate a low rate of false positives, while the recall values, averaging
at 0.96, signify the model’s effectiveness in correctly identifying true positives. This
balance between precision-recall is reflected in an F1-Score of 0.96, indicating strong
performance.

4.3.1.2 Second Splitting ratio

In this part we will put more challenges on the performance by reducing the training data
to 70%, and increasing the validation and test data to 15% each as shown in Table 4.8:
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Table 4.8: Distribution of Dataset Samples

Train validation test

Number of samples 11973 2560 2571

Figure 4.15 and Figure 4.16 show the accuracy and loss graphs and the confusion matrix
obtained after 50 training epochs:

a Accuracy graph. b Loss graph.

Figure 4.15: Accuracy and Loss graphs of Inception-V3’ second ratio.

Figure 4.16: Confusion matrix of Inception-V3’s second ratio.

The accuracy and loss graphs illustrate consistent patterns and provide confidence in the
model’s training process and its potential for accurate classification. The accompanying
confusion matrix, although revealing a few misclassifications, underscores the model’s
overall proficiency in distinguishing between classes.
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Table 4.9: Performance Metrics table of Inception-V3’s second ratio

Class Accuracy Precision Recall F1-Score

COVID 0.95 0.96 0.94 0.95
Non-COVID 0.95 0.95 0.96 0.95

CAP 0.95 0.96 0.97 0.96

With accuracy of 0.95, precision, recall, and F1-Score values all hovering between 0.94
and 0.96, the model demonstrates a balanced classification performance.

Changing the dataset splitting ratio from 80:10:10 to 70:15:15 can impact the size of
the training, validation, and test sets, which, in turn, can affect model performance,
generalization, and the ability to detect overfitting. However, despite this shift, the model
maintains its proficiency with admirable accuracy, precision, recall, and F1-Score scores
across all classes.

4.3.1.3 Third Splitting ratio

In this part we will put more challenges than the last part on the performance by reducing
the the training data to 60%, and increasing the validation and test data to 20% each,the
distribution shown in Table 4.10

Table 4.10: Distribution of Dataset Samples

Train validation test

Number of samples 10263 3424 3417

a Accuracy graph. b Loss graph.

Figure 4.17: Accuracy and Loss graphs of Inception-V3’s third ratio.

Throughout training, and with reduced training data both training and validation accuracy
exhibited consistent upward trends as shown in Figure 4.17, indicating effective learning
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from the data, and loss curves showed steady convergence, reflecting efficient error
minimization. Further information needed from the confusion matrix.

Figure 4.18: Confusion matrix of Inception-V3’s third ratio

The confusion matrix shown in Figure 4.18 shows similar trend with the previous confusion
matrix but with more missclassified samples.

Further analysis through performance metrics will help us discern any nuanced differences
and offer insights into the model’s adaptability across varying data distributions.

Table 4.11: Performance Metrics table of Inception-V3’s third ratio

Class Accuracy Precision Recall F1-Score

COVID 0.95 0.93 0.95 0.95
Non-COVID 0.95 0.95 0.93 0.95

CAP 0.95 0.96 0.96 0.96

From Table 4.11 The model show overall good performance starting by high accuracy of
0.95 and balance between precision and recall leading to high F1-score, when considering
different data split ratios, we find that the ratio of 70:15:15 produces even better results.
Moreover, the most impressive performance is achieved with the 80:10:10 data split ratio.

4.3.2 ResNet

4.3.2.1 First Splitting ratio

In this section, we present the results obtained from training the ResNet model under
the 80:10:10 dataset splitting ratio. We begin by analyzing the accuracy and loss graphs
in Figure 4.19b to gain more details into the model’s training progress. Subsequently,
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we move to the confusion matrix to assess classification performance.Finally, we present
the performance metrics, including accuracy, precision, recall, and F1-Score to have the
overall analysis.

a Accuracy graph. b Loss graph.

Figure 4.19: Accuracy and Loss graphs of ResNet’s first ratio.

From Figure 4.19 the accuracy and loss graphs for the ResNet model built a highly
successful training process. In addition, both training and validation accuracy consistently
improved, indicating the model’s ability to learn effectively from the data.

Figure 4.20: Confusion matrix of ResNet’s first ratio.

In the confusion matrix shown in Figure 4.20 we see strong classification performance,
with high true positive rate for the CAP class with no misclassified samples. While
there are 32 and 12 misclassified samples for COVID and Non-COVID, respectively. In
addition with the graphs and confusion matrix, further information will be discovered
from the performance metrics in Table 4.12
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Table 4.12: Performance Metrics table of ResNet’s first ratio.

Class Accuracy Precision Recall F1-Score

COVID 0.97 0.98 0.96 0.97
Non-COVID 0.97 0.96 0.98 0.97

CAP 0.97 1.00 1.00 1.00

The performance metrics in Table 4.12 showcases exceptional results for our ResNet
model trained under the 80:10:10 dataset splitting ratio. Across all classes(COVID,
Non-COVID, and CAP) the model consistently reaches outstanding accuracy of 0.97,
precision, recall, and F1-Score values, all hovering around the remarkable 0.96 to 0.98
range for both COVID and Non COVID classes and strong 1.00 for CAP class. Of
particular note is the model’s flawless performance in distinguishing CAP cases, with
a precision and recall of 1.00, underscoring its absolute accuracy in identifying this
condition. These results collectively affirm the ResNet model’s exceptional classification
capabilities, highlighting its potential as a highly reliable diagnostic tool for CT scans
across various medical conditions.

4.3.2.2 Second Splitting ratio

With the same parameters we shift from 80:10:10 to 70:15:15.The shift to 70:15:15 ratio
was prompted by a need to allocate a larger proportion of the dataset to both the validation
and test sets.

a Accuracy graph. b Loss graph.

Figure 4.21: Accuracy and Loss graphs of ResNet’s second ratio.
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Figure 4.22: Confusion matrix of ResNet’s second ratio.

The accuracy and loss graphs in Figure 4.21 , along with the confusion matrix in Figure
4.22, present a comprehensive view of our model’s performance under the 70:15:15
dataset splitting ratio. The accuracy and loss graphs demonstrate consistent progress and
convergence, suggesting effective learning and stability during training. The confusion
matrix reveals a proficient classification performance. While the presence of misclassified
samples highlights the inherent complexity of the task.

Table 4.13: Performance Metrics table of ResNet’s second ratio.

Class Accuracy Precision Recall F1-Score

COVID 0.96 0.97 0.96 0.97
Non-COVID 0.96 0.96 0.97 0.96

CAP 0.96 1.00 1.00 1.00

From the Table 4.13 we can see strong performance and high metrics for all classes, but
looking to the previous ratios metrics we can note that the ratio of 80:10:10 gives the
highest performance followed by 70:15:15 then 60:20:20.

4.3.2.3 Third Splitting ratio

Moving to 60:20:20 ratio to challenge more the model performance. Accuracy and Loss
graphs shown in Figure 4.23.
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a Accuracy graphs. b Loss graph.

Figure 4.23: Accuracy and Loss graphs of ResNet’s third ratio.

Figure 4.24: Confusion matrix of ResNet’s third ratio.

Both training and validation accuracy displayed steady rising trends during training and
after lowering training data to 60%, as seen in Figure 4.23, indicating effective learning
from the data, and loss curves showed steady convergence, reflecting efficient error
minimization. In addition the confusion matrix in Figure 4.24 demonstrates an efficient
classification performance. While the existence of misclassified samples emphasizes the
task’s essential difficulty.

Table 4.14: Performance Metrics table of ResNet’s third ratio.

Class Accuracy Precision Recall F1-Score

COVID 0.96 0.97 0.95 0.97
Non-COVID 0.96 0.95 0.97 0.96

CAP 0.96 1.00 1.00 1.00
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From Table 4.14 the model exhibits generally strong performance, start with a high
accuracy of 0.96 and a balance between recall and precision, resulting in a high F1-score.
When other data split ratios are considered, we discover that a ratio of 70:15:15 generates
even better results. Furthermore, the best performance is obtained with an 80:10:10 data
split ratio.

4.3.3 DenseNet

4.3.3.1 First Splitting ratio

In this part, we state the results of training the DenseNet model with different splitting
ratios starting with ratio of 80:10:10. To get insight into the model’s training process,
we begin by studying the accuracy and loss graphs. The confusion matrix is then used to
evaluate classification performance.Finally, we provide the performance measures, which
include accuracy, precision, recall, and F1-Score.

a Accuracy graph. b Loss graph.

Figure 4.25: Accuracy and Loss graphs of DenseNet’s first ratio.

Both graphs in Figure 4.25 demonstrate consistent progress throughout the 50 epochs.
Further information is described in the confusion matrix in Figure 4.26 :

53



4.3. Multi-Class Classification Chapter 4. Results and Discussion

Figure 4.26: Confusion matrix of DenseNet’s first ratio.

The confusion matrix for our DenseNet model trained with the 80:10:10 dataset splitting
ratio and 50 epochs indicates an exceptional performance, especially in identifying CAP
cases with no misclassifications and only one missclassified sample for Non COVID.
This perfect detection of CAP and Non COVID displays the model’s excellent accuracy
in detecting this essential disease. While there have been occasional instances of misclassification,
most notably 38 false negatives for COVID, overall classification performance has remained
strong. These findings show the model’s ability to identify between COVID, Non-COVID,
and CAP instances, as well as its promise as a reliable diagnostic tool for CT scan
categorization, with a particular strength in CAP and Non COVID identification. Table
4.15 below gives the performance metrics of our model.

Table 4.15: Performance Metrics table of DenseNet’s first ratio.

Class Accuracy Precision Recall F1-Score

COVID 0.98 1.00 0.95 0.97
Non-COVID 0.98 0.95 1.00 0.97

CAP 0.98 1.00 1.00 1.00

Performance metrics shown in Table 4.15 demonstrates an extraordinary degree of performance
across all classes, starting with the high accuracy value of 0.98 for all classes and the
notable superior level of CAP class at 1.00 with all metrics, and high scores for other
classes with precision, recall, and F1-Score, all hanging around the 0.95 to 0.98 area.

4.3.3.2 Second Splitting ratio

With the same parameters we shift from 80:10:10 to 70:15:15. This shift will put additional
challenges on the performance evaluation. As shown in the graphs of accuracy and loss
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in Figure 4.27 below:

a Accuracy graph. b Loss graph.

Figure 4.27: Accuracy and Loss graphs of DenseNet’s second ratio.

Both graphs in Figure 4.27 demonstrate consistent progress throughout the 50 epochs.
Further information is described in the confusion matrix in Figure 4.28 :

Figure 4.28: Confusion matrix of DenseNet’s second ratio.

Our DenseNet’s confusion matrix displays a mixed performance. While the model succeeds
at correctly recognizing CAP situations with no misclassifications, it exhibits slightly
less performance in discriminating between COVID and Non-COVID cases. Notably,
23 Non-COVID cases and 31 COVID cases have been misclassified. This suggests that
the model is having difficulties distinguishing between these two classes, maybe due to
similarities in imaging features.In addition, further information will be displayed in Table
4.16 below.
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Table 4.16: Performance Metrics table of DenseNet’s second ratio.

Class Accuracy Precision Recall F1-Score

COVID 0.97 0.98 0.97 0.98
Non-COVID 0.97 0.97 0.98 0.98

CAP 0.97 0.99 1.00 1.00

From Table 4.16 we see high performance with accuracy of 0.97 and high performance
measures for all class ranges between 0.97 and 0.99 and strong value of recall and
F1-score for CAP class at 1.00 .

4.3.3.3 Third Splitting ratio

Putting additional challenges on the model’s performance leads to the results shown in
the following, starting by the accuracy and loss graphs shown in the Figure 4.29.

a Accuracy graph. b Loss graph.

Figure 4.29: Accuracy and Loss graphs of DenseNet’s third ratio.

The graphs in Figure 4.29 shows positive trend through the 50 epochs with consistent
pattern.
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Figure 4.30: The classification results obtained by DenseNet’s third ratio.

From confusion matrix in Figure 4.30 even after putting additional challenges the model’s
ability to correctly identify CAP cases without any misclassifications is remarkable.
While there are 24 misclassified COVID cases and 89 misclassified Non-COVID cases.
While the additional information will be discovered from the performance metrics in
Table 4.17

Table 4.17: Performance Metrics table of DenseNet’s third ratio.

Class Accuracy Precision Recall F1-Score

COVID 0.97 0.95 0.98 0.96
Non-COVID 0.97 0.98 0.94 0.96

CAP 0.97 0.99 1.00 1.00

from Table 4.17 we see DenseNet demonstrates exceptional results across all classes.the
model achieves an accuracy of 0.97 for COVID, Non-COVID, and CAP classes, indicating
its adaptability in accurately classifying diverse medical conditions. Precision values
for all classes consistently exceed 0.95, underlining the model’s precision in correctly
identifying each class. Moreover, recall values are notably high, with the CAP class
achieving perfect recall, signifying the model’s ability to effectively capture all instances
of this condition. The F1-Score values of approximately 0.96 demonstrate the balanced
performance of the DenseNet model across all classes. These outstanding results reflect
the model’s strength in multi-class classification, making it an effective tool in medical
diagnostics and disease classification.
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4.4 General Discussion
The binary classification of chest images using CT scan and X-ray datasets was the core
focus of the first part of this study, which used three deep learning models (Inception-V3,
ResNet, and DenseNet) and fixed 20 training epochs, and a combination of multiple
hyperparameters settings presented in Table 4.1. The distribution data of 60% for training,
20% for validation and test each, comes up from the unique characteristics of the research
and data constraints. With limited data availability, allocating a larger share (60%) for
training enhances the model’s ability to learn complex patterns. The 20% reserved
for validation facilitates rigorous model evaluation and hyperparameter optimization.
Simultaneously, the remaining 20% for testing enables thorough performance evaluation
on previously unseen data. This split balances the need for model learning and generalization
while maintaining statistical significance in the results.

Inception-V3 reaches commendable accuracy across both datasets,with clear representation
of accuracy and loss curves and a confusion matrix particularly excelling in CT scan data
with an accuracy of 0.92 for both COVID and non-COVID classes. These findings are
corroborated by precision and recall values that underline its proficiency in classification.
However, as compared to X-rays, CT scan data has a more balance between precision and
recall.

ResNet also exhibited remarkable confusion matrix performance with a bit higher accuracy
of 0.95 for both CT scan and X-ray datasets, coupled with high precision and recall
values, signifying its strong performance in accurately discerning COVID-19 cases. This
consistency and precision-recall balance across both datasets make ResNet a compelling
candidate for the best model.

Moreover, DenseNet showcased exceptional accuracy of 0.96 and an outstanding F1-Score
0.97 for CT-scan dataset, highlighting its strong performance and the reliability of its
predictions. These results position DenseNet as the strongest model at this task, with
clear superiority of CT-scan dataset.

Moving to the second part, our study has moved on from binary classification to multi-class
classification. In addition to COVID-19 and non-COVID classes, we included Community-
Acquired Pneumonia (CAP) . This approach shift introduces new difficulties and insights
on model performance and dataset relevance, we expanded our investigation by introducing
a single CT scan dataset and varying splitting ratios of 80:10:10, 70:15:15, and 60:20:20
for each model (Inception-V3, ResNet, and DenseNet). The aim was to impose additional
challenges on the models and ascertain their adaptability to diverse scenarios.

Comparing the performance of the Inception-V3 model with different ratios, it is evident
that 80:10:10 achieved the strongest performance, with only 37 misclassified samples for
non-COVID and 30 for COVID cases, and none for CAP in the confusion matrix. The
performance metrics table (Table 4.7) showed Inception-V3’s capabilities, with accuracy,
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precision, recall, and F1-Score values of 0.96 across all classes. These results exhibit
Inception-V3’s ability to effectively classify COVID-19, non-COVID-19, and CAP cases
under the specified conditions.

Moving to ResNet model also presented an outstanding performance, especially with the
ratio of 80:10:10 clearly with highest accuracy and best confusion matrix performance
with only 12 misclassifications for non-COVID and 32 for COVID cases, and none
for CAP. The performance metrics table (Table 4.12) reflected ResNet’s exceptional
capabilities, with accuracy, precision, recall, and F1-Score values of 0.97 or higher across
all classes.

Moreover, DenseNet delivered the best performance in the confusion matrix, with just
one misclassification for non-COVID cases, 38 for COVID, and none for CAP under the
80:10:10 splitting ratio with total of 39 misclassified samples.The performance metrics
table (Table 4.15) highlighted the proficiency of the model, with accuracy, precision,
recall, and F1-Score values consistently at or above 0.98 across all classes.

4.5 Conclusion
In conclusion, this chapter has presented an analysis of binary and multi-class chest
image classification using three different deep learning models (Inception-V3, ResNet,
and DenseNet) across varying datasets and different splitting ratios. Our findings confirmed
the significance of model selection and dataset choice in achieving accurate and reliable
respiratory condition diagnosis. Notably, DenseNet stood up as the best performer,
excelling in both binary and multi-class classification with an 80:10:10 splitting ratio
across various evaluation metrics. Furthermore, the consistent superiority of the CT-scan
dataset over X-ray dataset across different models and scenarios highlights its critical
role in improving the accuracy and clinical relevance of respiratory disease detection.
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After the COVID-19 pandemic, respiratory disorders are a developing global concern
that requires early and precise identification for effective care and control. In this research
project We proceed properly into the topic of chest image classification using deep learning
techniques, with the primary objective of improving the identification of respiratory
disorders. During this study, we used deep learning’s strong capabilities, deploying three
differentiated models Inception-V3, ResNet, and DenseNet, to examine the complex
environment of chest image categorization. Our work extended beyond model selection
to include the essential choice of dataset (CT-scans and X-rays) as a major component.

The findings from our deep research are stunning. Among the models under evaluation,
DenseNet stood out among the models tested, constantly giving high accuracy, precision,
recall, and F1-Score. Its outstanding performance, especially in the multi-class classification
scenario using the 80:10:10 splitting ratio, highlights its potential for clinical applications,
where the precise identification of respiratory conditions holds life-saving significance.

Furthermore, our findings shed light on the importance of dataset quality. It became
evident that the CT scan dataset consistently outperformed X-rays across all models,due
to their superior resolution, 3D imaging capabilities, tissue differentiation, quantitative
analysis, and enhanced visualization of pathologies. confirming its key significance
in producing solid chest classification outcomes. This discovery illustrates the critical
relevance of data quality in medical imaging and highlights why CT scans are better than
X-rays.

The significant limitations encountered in our study, particularly with CT scan and X-ray
datasets, involved several critical factors. These included the challenge of limited dataset
sizes; which impacted model generalization. While Class imbalance; affecting the model’s
performance. And the presence of noise, variability, and artifacts in medical images
posed complexities demanding advanced pre-processing solutions. Furthermore, The
limitations regarding hardware and resource requirements involve the need for significant
computational power, including high-performance GPUs or TPUs for model training
and inference, large memory for storing models and data, and enough storage space for
datasets. These limitations collectively emphasize the need for ongoing research and
methodological improvement in order to fully realize the potential of deep learning in
applications.
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The future work of this study holds a great promise for advancing the field. Firstly,
We can use this research work presented as the groundwork for another research in
the medical field and extend the current binary and multi-class classification models to
include more types of respiratory conditions and diseases, this can help in the accurate
and early diagnosis of a larger range of diseases. Moreover, developing more advanced
deep learning models that can achieve higher accuracy rates and be developed for specific
diseases. Furthermore, focus on making AI-based medical image classification accessible
and affordable to healthcare providers and facilities worldwide, including those in underserved
regions.

Finally, this study represents a step forward in the search of more precise and efficient
medical imaging systems, with the potential to improve healthcare outcomes and the
quality of life for countless people worldwide. The need for accuracy and efficiency
in healthcare remains critical, and our study confirms the revolutionary impact of deep
learning in medical image classification.
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