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Abstract
Elliptic Curve Digital Signature Algorithm (ECDSA) is a widely-used cryptographic algorithm
that verifies the authenticity of digital messages. The main advantage of ECDSA over other
signature algorithms is requiring smaller key sizes to achieve the same level of security. The smaller
size of the key results in faster operations due to its employment in the most computationally heavy
part of the ECDSA algorithm: the Elliptic Curve (EC) Point Multiplication (PM). Therefore, it
is a target for optimization to achieve better speed, memory consumption, energy dissipation and
security. Some approaches rely on hardware support such as the use of parallelism and more
memory. Others, depend on a more efficient use of EC arithmetic as EC PM is built on EC
operations: Addition (ADD), and Doubling (DBL). The Radix-2w method for EC PM relies on
the recoding of the scalar k with fewer nonzero digits in a w-bit window serving to reduce the
cost in terms of ADD operations used. This project focuses on the implementation of ECDSA
using the Radix-2w method for EC point multiplication (PM) and Double Point Multiplication
(DPM); DPM is the sum of two EC PMs. This implementation is realized in the context of national
institute of standards and technology recommended binary ECs, and serves as proof of concept for
the Radix-2w multiplication methods. The Zynq Evaluation and Development Board’s processing
system (PS) is used for the implementation as it allows for later integration of PL blocks for the
Radix-2w multiplication making up a hardware/software solution. The project was carried out in
three parts. First, the Radix-2w multiplication methods were implemented on computer, and their
functionality validated. Subsequently, they were tested to reveal a 58.63% improvement in the cost
of the Radix-2w EC PM method over the binary EC PM method in terms of ADDs, and a 47.509%
improvement in the cost (in terms of ADDs) for the Radix-2w EC DPM method over the binary
EC DPM method. Second, the ECDSA protocol was implemented on computer, along with an
encryption protocol to complement the security provided by the signature (authentication and non
repudiation). The reason behind this is that signature algorithms do not provide confidentiality.
Thus, for the purpose of encryption, El-Gamal algorithm was used for its compatibility with ECs.
Third and finally, the complete ECDSA/El-Gamal encryption protocol using Radix-2w methods for
multiplication was adapted to the zedboard PS. This project resulted in the successful signature
generation/verification and message encryption/decryption between the board and a computer
using Radix-2w methods for multiplication.
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General Introduction

Communication’s important role in the progress of civilization led to the development of vari-
ous methods for transmitting and receiving information. A wide range of communication practices
emerged across time: the inscription on clay tablets for correspondence, the posting of letters, and
most recently, the modern-day exchange of textual messages via mobile devices. However, these
communication methods were plagued by a number of security concerns regarding privacy, fraud-
ulent messages, and the such. In response, some practices that help ensure confidentiality and
authenticity came into being. In letters, for example, envelopes can be sealed, letters signed, and
messages coded. This demand for security remained unchanged despite the change in communi-
cation mediums.

Cryptography is a field of study that employs mathematical algorithms to keep a piece of
information secure against unwanted interventions. However, the communication protocols emerg-
ing from the field of cryptography are subject to breaches provided suitable mathematical tools
and computational power. In the context of modern day digital communication, cryptography
is concerned with the conception of protocols applicable to machine computational power. The
growing memory and speed capacities of machines entail the continual optimization and creation
of cryptographic algorithms satisfying the security, data protection, and information integrity
communication requirements.

In line with this need for secure digital communication, digital signatures come into play.
Similar to traditional signatures on letters, digital signatures serve as means of authentication
through the verification of: the message’s integrity, and the identity of its sender. To achieve this
aspect of security, a number of cryptographic protocols were developed. The National Institute of
Standards and Technology (NIST) approved digital signature techniques are the Rivest, Shamir,
and Adleman (RSA) algorithm, the Digital Signature Algorithm (DSA), and the Elliptic Curve
Digital Signature Algorithm (ECDSA)[10]. RSA is widely supported, offers strong security, and is
versatile in its functionality. DSA requires shorter key lengths, resulting in faster computations and
efficient signature verification. ECDSA provides robust security with even shorter key lengths,
making it suitable for resource-constrained environments and offering faster computations[11].
Each algorithm has its advantages, and the choice depends on factors such as security requirements
and performance considerations. The distinguishing feature underlying each digital signature
algorithm from the rest is the mathematical problem (typically a number theory problem) that is
posed by the signature and solved by the verification.

Digital signature cryptographic schemes rely on the use of ”keys” in their operation. Keys
are sizable integer numbers used to achieve security. They are used in the computations of both
signature generation and verification, and their size positively correlates with the level of security
provided. However, keys of the same size do not guarantee equal security across different algo-
rithms. ECDSA, for example, relies on elliptic curve (EC) mathematical properties to reduce the
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size of the key while maintaining the level of security resulting in faster operations[12]. Optimiza-
tions for speed, memory, etc., go beyond just minimizing key sizes, but extend to enhancing the
computational aspects of the signature algorithms.

EC point multiplication (PM) is used in the ECDSA and is considered to be the most costly
operation of the protocol making it a target for optimization. It involves the multiplication of a
point P belonging to an EC by a scalar k. The addition of two or more PMs being commonly
required in cryptographic algorithms, Double Point Multiplication (DPM) and Multiple Point
Multiplication, gave rise to further optimizations in EC Multiplication[9][13][14]. Basic EC point
operations: point addition (ADD) and point doubling (DBL) are used to evaluate the multiplica-
tions. The double-and-add technique is the traditional binary algorithm in which the scalar k is
represented as a binary number and the product is evaluated through accumulation. The point
P is added to an accumulator based on the value of each bit in k, followed by a doubling of the
accumulator. A more efficient technique used to reduce the overall cost of the multiplication in
terms of ADDs and DBLs is the recoding of the scalar k. A well used method for computing
ECPM that employs the recoding of k is the windowed Non-Adjacent Form (w-NAF). However, It
achieves cost reduction at the expense of memory consumption in the form of intermediate vari-
ables and carries[3]. The Radix-2w method for EC multiplications overcomes the drawbacks of the
w-NAF method using a different recoding of k. It eliminates the need for intermediate variables
and carries using a minimal amount of precomputation, while reducing the cost of ADDs to a
near-optimal limit in a sub-linear computational time without increasing the number of DBLs[4].

The primary objective of this project is to implement the ECDSA using the Radix-2w method
for EC PM and DPM on ARM processor. The use of the Radix-2w method for recoding in the
EC multiplications is central to this project since our aim is to provide its proof of concept. Since
ECDSA does not target the confidentiality aspect of security, it will be implemented along with
an encryption protocol to complement it. Due to its adaptability to elliptic curves, ElGamal
Encryption algorithm will be used.

The implementation will be two-fold. First, the software program for the ECDSA/El-Gamal
cryptographic system will be written to run on personal computers (PC) as it simplifies the
debugging and the subsequent functionality testing of the different software blocks. Second, the
resulting functional program will be adapted to the the processing system of the Zynq Evaluation
and Development Board (ZedBoard). The end goal is to provide the cryptographic system software
implementation into which hardware blocks for Radix-2w multiplications implemented on a Field
Programmable Gate Array (FPGA) can be integrated.

The report is organized as follows. The first chapter introduces and explains the different
mathematical prerequisites necessary for ECC. It starts by describing finite fields and their un-
derlying arithmetic. Then, it delves into the basic EC operations, EC PM, and finally EC DPM.
The second chapter deals with all ECC concepts relevant to this project. First, it introduces the
fundamental concepts of cryptography and its types. Then, it reviews the ECDSA, and the steps
involved in achieving signature generation, and verification. Finally, it provides a description of
the encryption scheme protocol, and discusses the aspect of joining the ECDSA with the encryp-
tion protocol. Chapter three establishes the design of the Radix-2w EC multiplications and its
underlying EC and finite field operations. Then, it delves into the details of building the crypto-
graphic protocols (ECDSA and ElGamal encryption) The fourth chapter deals with the details of
the entire EC cryptographic system software implementation. This includes descriptions of the li-
braries, languages, tools used throughout the implementation, as well as some problems faced and
the solutions used to overcome them. It provides the details for the Radix-2w EC multiplications
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implementation. Subsequently, it describes the methods used for validating the implementation
of the EC multiplications. Then, it showcases the results obtained from the comparison of the
Radix-2w EC PM/DPM and the binary EC PM. Finally, it presents some details on the ECDSA
and ElGamal encryption system’s implementation along with an overview of the Terminal User
Interface (TUI) used. An example where both encryption and signing are used is given to il-
lustrate the usage of the system on personal computers. Following this, it gives an overview on
the hardware and the development tools included in the ZedBoard implementation along with a
description of the necessary adaptations made to the software to enable it to run on the board’s
processing system. At the end, the report conclusion is presented, where the project results and
recommendations for future improvements are discussed.
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Chapter 1

Elliptic Curves

1.1 Introduction
Cryptography is built upon the idea of one-way (trapdoor) functions. They are characterized

by straight-forward computation in one direction, and difficult reverse computation. An example
of one way functions is the modulo function. The result of modulo a number n operation (denoted
%n) is equal to the remainder of the division over n. Thus, computation of 7 modulo 5 is simple
and gives 2. However, given 2 as the result, all of 7, 12, 17, 22, etc, modulo 5 are possible solutions
to the inverse-modulo. Therefore, retrieving 7 from the result and divisor alone is difficult.

The use of elliptic curves in cryptography also revolves around the concept of one-way-
functions. However, instead of using scalars for the operations (as shown in the previous modulo
example), elliptic curves operate on points G(x, y) where x and y are coordinates of the point. The
most important operation to elliptic curve cryptography is the elliptic curve point multiplication,
where a point G belonging to an elliptic curve E is multiplied by a scalar k. Figure 1.1 shows
an example of a point G represented on an elliptic curve, along with some of its multiples: 2xG,
3xG,..., 5xG. The elliptic curve point multiplication sets the foundation for elliptic curve based
cryptographic systems.

Figure 1.1: Point G multiples from 1 to 5 on an elliptic curve [1].
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The elliptic curve point multiplication is a complex operation and is built atop other mathe-
matical operations. The hierarchy depicted in Figure 1.2 shows the different layers necessary for
understanding and implementing elliptic curve cryptographic systems.

Figure 1.2: Pyramid showing the dependencies between field operations, elliptic curve operations
and elliptic curve cryptographic protocols.

In this chapter, we will be introducing the necessary mathematical background needed for
implementing the fundamental EC operations, and subsequently the EC PM. Finite fields are a
necessary prerequisite for EC operations since ECs are defined over them. therefore, we will start
by introducing them. Subsequently, We will delve into the basic EC operations: addition and
doubling. Finally, we will review EC PM along with some methods to optimize this operation.

1.2 Finite Fields
A field (F,+,·) consists of a set F along with two operations: addition (+), and multiplication

(·). A given field must satisfy nine conditions called field axioms:

1. Associativity of addition.

2. Existence of additive identity: Denoted 0.

3. Existence of additive inverses: Any element x is invertible. The additive inverse is
unique and denoted −x.

4. Commutativity of multiplication.

5. Associativity of multiplication.

6. Existence of multiplicative identity: Denoted 1.

7. Existence of multiplicative inverses: Any element x, except possibly for 0, is invertible
for (·).The multiplicative inverse is unique, and denoted x−1.

8. Distributive law: For all x1, x2, x3 in the field: x1 · (x2 + x3) = (x1·) + (x1 · x3).

9. Zero-one law: The additive identity and multiplicative identity are distinct.

It is customary to call a field (F,+,·), simply, the field F. If the set F is finite, then the field
is said to be finite. The size q of a field F, which is the number of elements present in the field, is
denoted as q = pm. Here, p is a prime number called the characteristic of F, and m is a positive
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integer. There are different types of finite fields, two being prime and extension fields; where, if
m = 1, then F is called a prime field, and if m ≥ 2, then F is called an extension field. A special
case of extension fields are binary fields having p = 2 and m ≥ 2. It is worth noting that, since
the size q of a binary field is equal to 2m, the bit-length1 of an element belonging to F2m does not
exceed m.

In prime finite fields, the addition and multiplication operations are performed modulo p.
However, in extension fields, operations are performed modulo a primitive element (or generator).
The latter is an element that generates a multiplicative subgroup of nonzero elements in the
field. More formally, let Fq be a finite field with q elements. An element α ∈ Fq is called a
primitive element if the powers α0, α1, α2, . . . , αq−2 are all distinct and all nonzero elements of Fq

are generated by an expression these powers.

1.3 Binary Field Arithmetic
F2m elements are represented as binary polynomials (polynomials with coefficients 0 or 1).

In a field, there are 2m such polynomials where the degree of each polynomial does not exceed
m-1. Therefore, these elements can be represented as m-bit strings. An element x is represented
as x(z) = xm−1 × zm−1 + xm−2 × zm−2 + ... + x1 × z1 + x0 × z0 with z being the base, in this
case z = 2. Operations on binary fields are defined using this polynomial representation, and
are performed modulo a primitive polynomial (similar to a primitive element). The latter is an
irreducible polynomial that generates the field itself. In other words, it is a polynomial that cannot
be factored into lower-degree polynomials within the field, and its degree determines the size of
the field. Modulo in binary field operations involves reducing the result of said operations by
the field’s primitive polynomial. This entails dividing the result of an operation by the primitive
polynomial, using polynomial division, and keeping the remainder as the reduced result. The
purpose of this process is to keep the result within the field size.

1.3.1 Binary Field Addition
As shown in Algorithm 1.1, the addition of two elements a(z), b(z) of a binary field is equivalent

to a bit-wise XOR operation. Consider two binary polynomials, a(z) and b(z), of degree at most
m − 1 in the field F2m . For each degree i, the corresponding coefficients in a(z) and b(z) are
added. This addition is performed by applying the XOR operation to said coefficients. This
allows for a carry free addition. The resulting polynomial c(z) represents the sum of a(z) and
b(z). Subtraction in this field is also achieved through the same bit-wise XOR operation.

Algorithm 1.1 Addition in F2m [3]
Input: Binary polynomials a(z) and b(z) of degree at most m−1
Output: c(z) = a(z) + b(z)

1: for i from 0 to m−1 do
2: ci ← ai ⊕ bi
3: Return (c(z))

1bit-length: number of digits in the binary representation of a number.
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1.3.2 Binary Field Multiplication
The multiplication of two elements of a binary field is performed through a combination of

addition and left-shifts. Assuming a binary polynomial f(z) is the primitive polynomial (primitive
element ), the multiplication of binary polynomials a(z) and b(z) is done according to Algorithm
1.2. This algorithm performs multiplication in the binary field by iteratively multiplying and
adding polynomials based on the coefficients of the input polynomials a(z) and b(z). First, the
lowest degree term in polynomial a(z) is checked, and the product polynomial c(z) is initialized
accordingly. If the rightmost coefficient a0 of a(z) is 1, the product polynomial c(z) is set as b(z).
If not, then it is set as 0. Next, a left-shift operation is performed on polynomial b(z). This
is achieved by multiplying it with z and taking the result modulo f(z). Therefore, shifting the
coefficients to the left by one position. Then, if the coefficient ai of polynomial a(z) is 1, the
modified polynomial b(z) is added to the product polynomial c(z). This process is repeated for
all a(z) coefficients. The product polynomial c(z) is then returned as the result of the binary field
multiplication. The modulo operation with the primitive polynomial ensures that the resulting
product polynomial c(z) remains within the specified field.

Algorithm 1.2 Right-to-left shift-and-add field multiplication in F2m [3]
Input: Binary polynomials a(z) and b(z) of degree at most m−1
Output: c(z) = a(z)·b(z) mod f(z)

1: if a0 = 1 then c(z) ←b(z)
2: else c(z) ←0
3: for i from 1 to m-1 do
4: b(z) ←b(z)·z mod f(z)
5: if ai = 1 then c(z) ←c(z) + b(z)

6: Return (c(z))

1.3.3 Binary Field Squaring
Squaring an element of this field can be done through multiplication. This is equivalent to

multiplying the element by itself. However, this operation can be optimized by inserting zeroes
between all coefficients of the element, as shown in Figure 1.3.

To understand how this optimization works, let’s consider a binary field element represented
by the following polynomial:

A(z) = am−1 × zm−1 + am−2 × zm−2 + . . .+ a1 × z + a0

When squaring this element, we need to multiply it by itself:

A(z)2 = (am−1×zm−1+am−2×zm−2+. . .+a1×z+a0)·(am−1×zm−1+am−2×zm−2+. . .+a1×z+a0)

Expanding this multiplication, we get:

A(z)2 = a0 × a0 + (a0 × a1 + a1 × a0)× z + (a0 × a2 + a1 × a1 + a2 × a0)× z2 + . . .

Here, the cross-product terms ai × aj and aj × ai, arise from multiplying the coefficients from
different terms together. These cross-product terms introduce additional terms and complexity
in the expanded polynomial. However, by inserting zeroes between the coefficients before the
squaring, the cross-product terms are eliminated. The resulting polynomial after squaring only
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includes terms with products of coefficients from the same term. This results in a more efficient
and concise representation of the squared polynomial.

Figure 1.3: Squaring in F2m using a polynomial-basis representation [2].

1.3.4 Binary Field Inversion
Division by an element is performed through a multiplication by the inverse of that element.

The inverse of an element is obtained using the Algorithm 1.3 for binary inversion, where the
modular inverse of a nonzero binary polynomial a(z)modulo another polynomial f(z) is calculated.

The algorithm begins by initializing variables u and v: u is set to the input polynomial a(z),
and v is set to the primitive polynomial f(z). The variables g1 and g2 are then initialized : g1,
an intermediate variable used in the subsequent calculations, is set to 1; and g2, representing the
resulting inverse of a(z) modulo f(z), is set to 0. The algorithm then enters a loop that continues
until either u or v becomes equal to 1. Within this loop, there are two more inner loops. The first
inner loop divides u by the variable z as long as z divides u. Depending on whether z divides g1,
it adjusts g1 accordingly, where: if z divides g1, z is removed from it. If it does not, g1 is updated
by adding f(z) and dividing the result by z. The same process is also applied on the second
inner loop operating on the variable v and g2. After each pass through the two inner loops, the
algorithm checks the degrees of u and v. If the degree of u is greater than that of v, it updates
u and g1 by adding v and g2 to them, respectively. Otherwise, it updates v and g2 by adding u
and g1 to them, respectively. Once the outer loop finishes, the algorithm checks if u is equal to 1.
If so, it assigns g2 the value of g1. Finally, the algorithm returns the computed value of g2, which
represents the modular inverse of a(z) modulo f .
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Algorithm 1.3 Binary algorithm for inversion in F2m [3]
Input: A nonzero binary polynomial a(z) of degree at most m−1
Output: g2 = a(z)−1 mod f

1: u← a(z), v ← f(z).
2: g1 ← 1, g2 ← 0.
3: while u 6= 1 and v 6= 1 do
4: while z divides u do
5: u← u/z.
6: if z divides g1 then
7: g1 ← g1/z.
8: else
9: g1 ← (g1 + f(z))/z.

10: while z divides v do
11: v ← v/z.
12: if z divides g2 then
13: g2 ← g2/z.
14: else
15: g2 ← (g2 + f(z))/z.
16: if deg(u) > deg(v) then
17: u← u+ v.
18: g1 ← g1 + g2.
19: else
20: v ← u+ v.
21: g2 ← g1 + g2.
22: if u=1 then
23: g2 ← g1.
24: Return g2.

1.4 Elliptic Curve Group Law
An elliptic curve E is a set of points P (x, y) defined over a field F. E(F) satisfies the Weierstrass

equation shown in eq.(1.1). However, in cryptographic applications, eq.(1.2) is generally used. It
is a simplified Weierstrass equation. It requires for the discriminant2 ∆ = −16(4a3 + 27b2) to
be nonzero, and for the polynomial x3 + ax + b to have distinct roots. The National Institute
of Standards and Technology (NIST) recommends, in document [6], a set of ECs to be used in
cryptography.

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.1)

E : y2 = x3 + ax+ b (1.2)

2A mathematical quantity that determines the properties of an elliptic curve and helps classify them into
different types based on its value
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Figure 1.4: Geometric addition and doubling of EC point [3].

An EC E(F) is naturally a group and its group law3 is constructed geometrically. Figure 1.4
shows the geometric definition of addition and doubling, of point elements, in this group. Addition
is defined as the negative of the point at which the line that passes by both points being added
intersects with the curve. Since doubling is the addition of a point to itself, it is defined similarly:
with the two points being added converging to the same point, the line drawn is the tangent to
this point. Each EC has a generator point G from which the entire set of points belonging to E(F)
can be generated using the EC defined operations. The group law for the curve E(F) is as follows:

1. Identity: P +∞ = ∞+ P = P for all P ∈ E(F).

2. Negatives: The negative of a point P(x,y) is a point -P with coordinates (x,-y) in prime
fields. In ECs defined over binary fields, however, the negative is -P with coordinates
(x,x+y). The sum of P and its negative gives the point at infinity.

3. Point Addition (ADD): For two points P (x1, y1) and Q(x2, y2) on the curve, addition
results in a point R(x3, y3) such that:

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2 (1.3)

y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1 (1.4)

4. Point Doubling (DBL): For a point P (x1, y1) on the curve, doubling results in a point
2× P = R(x3, y3)

x3 =

(
3× x2

1 + a

2× y1

)2

− 2× x1 (1.5)

y3 =

(
3× x2

1 + a

2× y1

)
(x1 − x3)− y1 (1.6)

3Group law refers to the operations defined on a group. It specifies how elements of the set combine or interact
with each other under the operations.
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In the algebraic definitions for ADD and DBL, the Affine coordinate system is used to rep-
resent a point P as P (x, y). The problem with the Affine coordinate point representation is the
use of division in the EC ADD and DBL operations. Since division requires inversion, which
is a costly operation, implementing the ADD and DBL as defined in Affine can be expensive.
Table 1.1 shows the cost of the field inversion operation in term of multiplications for different
binary fields. The inversion costs were calculated according to the binary inversion algorithms:
double-base (DB), Itoh-Tsujii (IT), triple-base (TB) algorithms. Due to the high cost of inversion,
different coordinate representations were developed to minimize the use of this field operation.

Field Multiplication Algorithms
F(2163) 9 IT / DB / TB
F(2233) 10 IT / DB / TB
F(2283) 11 IT
F(2409) 10 DB / TB
F(2571) 12 TB

Table 1.1: Smallest number of multiplications for inversions over NIST fields and their correspond-
ing algorithms [7].

1.5 Elliptic Curve Coordinate Systems
A number of Projective coordinate systems were developed with the purpose of optimizing

EC arithmetic for ADD and DBL through minimizing the use of the costly field inversion. They
are alternative representations for points on an EC and an extension of the more commonly used
Affine coordinate system. In a Projective coordinate system, a point P is represented using three
coordinates: X, Y, and Z. The conversion between P (X,Y, Z) and P (x, y) depends on the type of
Projective coordinates. In this section, we will be looking at Projective Jacobian and Lopez-Dahab
(LD) coordinate systems as they are the most efficient and commonly used Projective coordinates.
We will be assuming a simplified EC of eq.(1.2) defined over a binary finite field.

1.5.1 Projective Jacobian Coordinate System
In Projective Jacobian coordinate system, P (X,Y, Z) with Z 6= 0, corresponds to the Affine
P (x, y) = (X/Z2, Y /Z3). This implies that for Z = 1, x = X and y = Y . Therefore, P (x, y)
in Affine coordinates automatically corresponds to P (X,Y, 1) in Projective Jacobian coordinates,
producing a 1-1 correspondence between the two coordinate systems for a fixed Z. In Projective
Jacobian coordinate system, the point at infinity corresponds to (1, 1, 0), while the negative of
(X,Y, Z) is (X,X + Y, Z). The equations for ADD and DBL can be obtained by replacing x by
X/Z2 and y by Y /Z3 in eqs.(1.3), (1.4), (1.5), and (1.6). For the doubling of a point P (X1, Y1, Z1),
eqs.(1.7), and (1.8) are obtained for a resulting point R′(X ′

3, Y
′
3 , Z

′
3), simplifying to eqs.(1.9), and

(1.10).

X ′
3 =

(
3× (X1/Z

2
1)

2 + a

2× (Y1/Z3
1)

)2

− 2×
(
X1

Z2
1

)
(1.7)

Y ′
3 =

(
3× (X1/Z

2
1)

2 + a

2× (Y1/Z3
1)

)(
X1

Z2
1

−X3

)
−
(
Y1

Z3
1

)
(1.8)
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X ′
3 =

(3X2
1 + aZ4

1)
2 − 8X1Y

2
1

4Y 2
1 Z

2
1

(1.9)

Y ′
3 =

(
3X2

1 + aZ4
1

2Y1Z1

)(
X1

Z2
1

−X ′
3

)
− Y1

Z3
1

(1.10)

In order to eliminate inversion, the values of the coordinates of 2P (X3, Y3, Z3) are set to X3 =
X ′

3·Z2
3 and Y3 = Y ′

3·Z3
3 where Z3 = 2Y1Z1. The resuling set of eqs.(1.11),(1.12), and (1.13)

define the DBL operation in the Projective Jacobian coordinate system.

X3 = (3X2
1 + aZ4

1)2−8X1Y
2
1 . (1.11)

Y3 = (3X1 + aZ1)(4X1Y1−X3)−8Y 4
1 . (1.12)

Z3 = 2Y1Z1. (1.13)

By storing some intermediate elements, X3 , Y3 and Z3 can be computed using six field squarings
and four field multiplications: A←Y 2

1 , B←4X1·A, X3←D2−2B, C←8A2 , D←3X2
1 + a·Z4

1 ,
Y3←D·(B−X3)−C, Z3←2Y1·Z1 .

Similar steps are followed for the ADD operation. For the addition of two points P (X1, Y1, Z1)
and Q(X2, Y2, Z2), the point R(X3, Y3, Z3) is obtained as shown in eqs.(1.14), (1.15), and (1.16).

X3 = (X1Y2 +X2Y1)(Y1Y2 − a(X1Z2 +X2Z1)− 3bZ1Z2) (1.14)
− (Y1Z2 + Y2Z1)(aX1X2 + 3b(X1Z2 +X2Z1)− a2Z1Z2)

Y3 = (Y1Y2 + a(X1Z2 +X2Z1) + 3bZ1Z2)(Y1Y2 − a(X1Z2 +X2Z1)− 3bZ1Z2) (1.15)
+ (3X1X2 + aZ1Z2)(aX1X2 + 3b(X1Z2 +X2Z1)− a2Z1Z2)

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + a(X1Z2 +X2Z1) + 3bZ1Z2) (1.16)
+ (X1Y2 +X2Y1)(3X1X2 + aZ1Z2)

Although this Projective coordinate system successfully avoids field inversions, it does not
optimally optimize the overall cost of field operations. By introducing mixed coordinates in the
ADD operation, representing one point in Affine coordinates (x, y) and the other point in Projec-
tive coordinates (X,Y, Z), a balance between the advantages of Affine and Projective coordinate
systems can be achieved. The addition of two points (P (X1, Y1, Z1) in Jacobian Projective coordi-
nates, and Q(X2, Y2, 1) with (X2, Y2) being the Affine coordinates for Q) is obtained by replacing
x by X/Z2 and y by Y /Z3 in eqs.(1.3), (1.4) as well as replacing Z2 = 1. Thus, eqs.(1.17) and
(1.18) are obtained for a resulting point R′(X ′

3, Y
′
3 , Z

′
3).

X ′
3 =

(
Y2 − (Y1/Z

3
1)

X2 − (X1/Z2
1)

)2

− (X1/Z
2
1)−X2 (1.17)

=

(
Y2Z

3
1 − Y1

(X2Z2
1 −X1)Z1)

)2

− (X1/Z
2
1)−X2

Y ′
3 =

(
Y2 − (Y1/Z

3
1)

X2 − (X1/Z2
1)

)
((X1/Z

2
1)−X ′

3)− (Y1/Z
3
1) (1.18)

=

(
Y2Z

3
1 − Y1

(X2Z2
1 −X1)Z1)

)
((X1/Z

2
1)−X ′

3)− (Y1/Z
3
1)

To eliminate inversion, the coordinates for the point R(X3, Y3, Z3) are set to X3 = X ′
3·Z2

3 and
Y3 = Y ′

3·Z3
3 where Z3 = (X2Z

2
1−X1)Z1. The resulting set of eqs.(1.19),(1.20), and (1.21) define
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the ADD operation in mixed Projective Jacobian and Affine coordinate systems.

X3 = (Y2Z
3
1 − Y1)

2 − (X2Z
3
1 −X1)

2(X2Z
2
1 +X1). (1.19)

Y3 = (Y2Z
3
1 − Y1)(X1(X2Z

3
1 −X1)

2 −X3)− Y1(X2Z
3
1 −X1)

3. (1.20)
Z3 = (X2Z

2
1 −X1)Z1. (1.21)

By storing some intermediate elements, X3 , Y3 and Z3 can be computed using three field squarings
and eight field multiplications as follows:
A←Z2

1 , B←Z1·A, F←D−Y1, X3←F 2−(H + 2I), C←X2·A, G←E2, D←Y2·B, H←G·E,
E←C−X1 , I←X1·G, Y3←F·(I−X3)−Y1·H, Z3←Z1·E.

1.5.2 Projective Lopez-Dahab Coordinate System
In Projective LD-coordinate system, P (X,Y, Z) with Z 6= 0, corresponds to the Affine

P (x, y) = (X/Z, Y /Z2). Thus, the implication that for Z = 1, x = X and y = Y also holds
for Projective LD-coordinates. Therefore, P (x, y) in Affine coordinates automatically corresponds
to P (X,Y, 1) in Projective LD-coordinates, producing a 1-1 correspondence between the two co-
ordinate systems for a fixed Z. The point at infinity in Projective LD-coordinates corresponds
to (1, 0, 0), while the negative of (X,Y, Z) is (X,X + Y, Z). Further details on Projective LD-
coordinate system can be found in [15]. The DL coordinate DBL operation of a point P (X1, Y1, Z1)
results in the point 2P (X2, Y2, Z2) obtained through eqs. (1.22), (1.23), and (1.24).

X2 = X4
1 + b · Z4

1 . (1.22)
Y2 = bZ4

1 · Z2 +X2 · (aZ2 + Y 2
1 + bZ4

1). (1.23)
Z2 = Z2

1 ·X2
1 . (1.24)

The LD-coordinate ADD operation of two points P (X0, Y0, Z0) and Q(X1, Y1, Z1), giving the point
R(X2, Y2, Z2), is defined as follows:
A0←Y1 · Z2

0 , A1←Y0 · Z2
1 , B0←X1 · Z0 , B1←X0 · Z1 , C←A0 + A1 , D←B0 + B1 , E←Z0 · Z1 ,

F←D · E , Z2←F 2 , G←D2 · (F + aE2) , H←C · F , X2←C2 +H + G , I←D2 · B0 · E +X2 ,
J←D2 · A0 +X2 , Y2←H · I + Z2 · J .
On the other hand, the mixed Affine-LD-coordinates ADD of two points P (X0, Y0, Z0) andQ(X1, Y1, 1),
giving the point R(X2, Y2, Z2), is defined as follows:
A = Y1 · Z2

0 + Y0 , B = X1 · Z0 +X0 , C = Z0 · B , D = B2 · (C + aZ2
0) , Z2 = C2 , E = A · C ,

X2 = A2 +D + E , F = X2 +X1 · Z2 , G = X2 + Y1 · Z2 , Y2 = E · F + Z2 ·G

1.5.3 Coordinate Systems Comparison
The cost of the EC operations ADD and DBL in terms of binary field operations change

according to the coordinate system used to represent points on the EC. Table 1.2 shows the over-
all costs of EC DBL and ADD for Affine, Jacobian and LD-coordinate systems in terms of field
operations. In EC ADD, both Projective coordinate systems (Jacobian and Lopez-Dahab) avoid
the use of field inversion. A field inversion is equivalent to 9-12 field multiplications according to
Table 1.1. Therefore, the total cost of EC DBL in Affine is equal to 11-14 field multiplications
(depending on the inversion algorithm used). Compared to the costs of 5 and 2 field multiplica-
tions for Projective Jacobian and LD-coordinate systems respectively, it is clear that the Affine
representation is too costly. The EC ADD in Affine costs from 11 to 15 field multiplications
depending on the inversion algorithm used. It is comparable to the costs of EC ADD for both
Projective coordinates. However, it is clear that the EC mixed Affine-LD-coordinate system is the
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most cost efficient. Overall, LD-Projective coordinates are most cost effective in the case of EC
DBL and mixed EC ADD.

Coordinates EC point add EC mixed
point add

EC point
double

M I T M I T M I T
Affine 2 1 2 - - - 2 1 2

Projective Jacobian 14 - 6 10 - 6 5 - 2
Projective Lopez-Dahab 14 - 7 9 - 3 4 - 2

Table 1.2: GF (2m) operation count and number of temporary variables (finite field elements) for
EC point addition and doubling (M = Multiplications, I = Inversions, T = number of Temporary
Variables)[8].

The ADD and DBL are the fundamental operations in EC arithmetic upon which the concept
of EC PM is defined. EC PM is an essential operation in EC cryptographic protocols. It is
performed on a point P belonging to E(F) to obtain a product point kP . With k being the scalar
in the field F, the product is evaluated as follows: kP = P + P + ...+ P , k times.

1.6 Elliptic Curve Point Multiplication
In the context of cryptography, EC PM is a computationally demanding operation. It is

achieved using EC ADDs and DBLs. The classical method, known as ”DBL and ADD,” performs
point multiplication based on the binary format of the scalar k. This method uses an accumulator
to store the sum kP. By parsing k from left to right, it performs ADD and DBL operations based
on the digits of k: for every ”1” digit, P is added (ADD) followed by a doubling of the content
of the accumulator (DBL), and for every ”0” digit, only a DBL is performed. However, this
method is vulnerable to side-channel attacks. It is also inefficient as the binary representation
has a high density of 0.5 (Hamming weight4/Total number of bits). This density correlates with
the number of ADDs used in the computation of EC PM. Therefore, to reduce the cost of EC
PM, various representations of the scalar k have been developed. To reduce the cost of EC PM,
various representations of the scalar k have been developed. One commonly used method is
the Non-Adjacent Form (NAF), which reduces the representation density to 0.33. Using w-bit
windowing methods on NAF, (i.e., w-NAF), aims to make the density even sparser, but they
require additional memory for precomputations. The w-NAF method employs a sliding window
approach but has right-to-left carry-overs, making it unsuitable for memory-constrained devices.
The Radix-2w representation, introduced by Homayoon and Gupta in 1990, was applied to EC PM
in [4]. This use of the Radix-2w representation relies on recoding the scalar k with fewer nonzero
digits, achieving a density of 0.19. Therefore, successfully optimizing the cost of EC ADDs while
minimizing memory expenses.

1.7 Radix-2w Elliptic Curve Multiplication
The Radix-2w methods for ECPM and EC DPM rely on the recoding of the scalar k with

fewer nonzero digits using a w-bit window. They utilize a set of precomputed points corresponding
4Hamming weight of a given string is the number of symbols that are different from the zero-symbol of the

alphabet used.
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to the possible values of the non-zero digits in order to evaluate the multiplication. Both the
precomputed set of points, and the possible values of the non-zero digits depend on the size of the
w-bit window used, which is defined based on the bit-length of k. In this section, we will only be
introducing the mathematical concepts necessary for our implementation according to the papers
[4], and [9]. Further details on the Radix-2w method for EC PM, and EC DPM can be found in
the same papers.

1.7.1 Radix-2w Recoding
The Radix-2w EC PM represents the scalar k as the sum shown in eq.(1.25). The number is

sliced into w+1 sized integer values. Each slice is multiplied by its corresponding weight (2w×i).
The slice itself is signed, and the kw×i+w−1 bit (Most Significant Bit (MSB)) of this slice determines
the sign. The value of the bit kw×i−1 is also added to the slice. This bit is shared with a different
slice. This overlap allows for the overall value of the scalar to be evaluated through these slices
without the use of carries. This property is what enables the EC PM to be performed from either
right-to-left or left-to-right. The scalar k can, therefore, be represented in terms of slices Qi as
shown in eq.(1.26). The slices Qi are, therefore, computed as shown in eq.(1.27).

k =

d(l+1)/we−1∑
i=0

(
−2w−1kw×i+w−1+2w−2kw×i+w−2+...+22kw×i+2+21kw×i+1+20kw×i+kw×i−1

)
×2w×i

(1.25)

k =

d(l+1)/we−1∑
i=0

Qi × 2w×i (1.26)

Qi = −2w−1kw×i+w−1 + 2w−2kw×i+w−2 + ...+ 22kw×i+2 + 21kw×i+1 + 20kw×i + kw×i−1 (1.27)
These slices Qi should be of equal bit-length. To ensure that, a number of zero bits are concate-
nated with the scalar k of length l. Specifically, an additional zero to the right of the scalar k,
and a number Nz of zeros to its left are added. Nz is determined by eq.(1.28).

Nz = w − (l mod w) (1.28)

Each slice Qi is, therefore, of fixed bit-length w+1. They are, as previously mentioned, signed.
They also overlap at the extremities, sharing the kw×i+w−1, and kw×i−1 bits, with the neighboring
slices. This implies that the set of values a slice Qi can take is finite and dependent on the value of
w. This set of values is represented by the Digit SetDs(2w) and is shown in eq.(1.29). The unsigned
value of a slice Qi, like any number, can be represented as a product of an odd integer and a power
of two. Using the MSB of the slice to represent the sign, a formula Qi = (−1)kw×i+w−1 ×mi × 2ni

is found, where mi is the odd valued integer, 2ni is the even part of the slice, and kw×i+w−1 is the
MSB of this slice.

Qi ∈ Ds(2w) =
{
−2w−1,−2w−1 + 1, ...,−1, 0, 1, ..., 2w−1 − 1, 2w−1

}
(1.29)

k =

d(l+1)/we−1∑
i=0

(−1)kw×i+w−1 ×mi × 2w×i+ni (1.30)

This makes the representation shown in eq.(1.30) possible, where ni is merged with the weight of
the slice (2w×i). mi ∈ Os(2w) ∪ {0, 1}, where the Odd set Os(2w) is as shown in eq.(1.31).

Os(2w) =
{
3, 5, 7, ..., 2w−1 − 1

}
(1.31)
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Finally, to use this in EC PM, all translation information from binary to Radix-2w format is
grouped in the recoding set Rs(2w) shown in (1.32).

Rs(2w) =
{
(kl,md(l+1)/we−1, nd(l+1)/we−1), (kl−w,md(l+1)/we−2, nd(l+1)/we−2),

..., (k2×w−1,m1, n1), (kw−1,m0, n0)
} (1.32)

The values of mi and ni can be invoked either by a call to Algorithm 1.4, or by making an
appropriate look-up-table.

Algorithm 1.4 Computation of mi and ni

Input: Qi

Output: mi and ni

1: Compute Qi according to eq.(1.25)
2: ni = 0
3: while Qi is even do
4: Qi = Qi/2
5: ni = ni + 1

6: mi = Qi

7: Return mi, ni

The maximum number of ADDs for the whole EC PM k × P is given by (1.33).

d(l + 1)/we+ 2w−2−1 (1.33)

Through this formula, the value w resulting in the minimum number of ADDs is obtained. The
derivative of eq.(1.33) with respect to w, is equated to 0 giving eq.(1.34); with W being the
Lambert function. It is defined as (y = x · e ←→ x = W (y)). For our purposes, an integer
value of w is required. Since the resulting w has a real value, both its ceiling and floor functions
are computed to find its integer value. Their maximum number of ADDs is compared through
eq.(1.33). Then, the value of w resulting in the lesser amount of maximum ADDs is used.

w =
2×W

(
(l + 1)× log(2)

)
log(2)

(1.34)

To better understand how the Radix-2w recoding process works, let’s consider an example.
Let us take k = (5892973)10 having the binary representation: (10110011110101101101101)2,
where l = 23. Using eq.(1.34), w is found:

w =
2×W

(
(23+1)×log(2)

)
log(2)

= 3.4995.

According to eq.(1.33), a maximum of 9 ADDs are required for both w = 3 and w = 4. It is
preferable to use a smaller size for w in order to reduce the size of the precomputation set. However,
we will fix w to 4 in order to show a larger precomputation set for the sake of this example. Having
set w = 4, the scalar k is split into 6 slices Qi, considering that: d(l + 1)/we = d(23 + 1)/4e = 6.
Algorithm 1.4 is used to determine the Rs(24) set corresponding to k, which gives:

Rs(24) =
{
(0, 3, 1), (1, 3, 1), (1, 1, 0), (1, 5, 0), (0, 7, 0), (1, 3, 0)

}
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As for finding the number of zeros to be concatenated, besides the zero added to the right of the
scalar k, we use eq.(1.28) to determine that Nz = 1. These Qi slices are depicted in Figure 1.5

Figure 1.5: Decomposition of k = (5892973)10 in Radix 24[4].

Using eq.(1.30), k is translated in Radix 24 as:

k = 3× 221 − 3× 217 − 1× 212 − 5× 28 + 7× 24 − 3× 20 = (03000300001000500070003)24

Where X represents a negative digit. The concepts dealing with the Radix-2w apply to both EC
PM and DPM methods.

1.7.2 Radix-2w Elliptic Curve Point Multiplication Method
Given an elliptic curve E defined over either a binary or prime field F , and a point P defined

on E. The EC PM of the scalar k, as represented in eq.(1.30), and the point P , is shown in
eq.(1.35).

kP =

d(l+1)/we−1∑
i=0

(−1)w×i+w−1 × (mi × P )× 2w×i+ni (1.35)

Since multiplication by 2 is a point doubling operation DBL, it is necessary that the terms
(−1)w×i+w−1 × mi × P be added to the sum for this EC PM evaluation. From the properties
of elliptic curves, we know mi × P is a point that belongs to E. We also know that the inverse of
the point also belongs to the same EC. Therefore, (−1)w×i+w−1 ×mi × P is a point definded on
E, and can be added to the sum by an ADD operation. The set of points mi×P is precomputed
for the EC PM. This gives the precomputation set Ps(2w) given in eq.(1.36).

Ps(2w) =
{
3× P, 5× P, 7× P, ..., (2w−1 − 1)× P

}
(1.36)

This set is obtained recursively. Starting off with the points P and 2 × P , and using eq.(1.37)
with the counter j from 0 to j = |Os(2w)| − 1, the Ps(2w) is found.

[2× (j + 1) + 1]× P = [2× j + 1]× P + 2× P (1.37)

Finally, the computation for the EC PM method is shown in Algorithm 1.5. It starts by
finding the different parameters and fixed values required for the multiplication: the value of w
and therefore the values of mi, ni, Nz, and the precomputation set. Next, the resulting point R
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Algorithm 1.5 Radix-2w Point Multiplication [4].
Input: P ∈ E(F) and scalar k
Output: R = k.P ∈ E(F)

1: Compute wtemp according to eq.(1.34)
2: Determine w among ceiling and floor functions of wtemp according to (1.33)
3: Compute and store Ps(2w) set
4: Concatenate a zero to ko according to eq.(1.25)
5: Concatenate Nz zeros to kl−1 according to eq.(1.28)
6: R← P∞ . P∞ is the point at infinity
7: for i = (l+Nz)/w - 1 downto 0 do
8: Qi[1] = Qi[0]
9: Qi[0] = Qi[kw×i+w−1]

10: Load (mi, ni) according to Qi[0] from the indexation table
11: for j = w-1 downto 0 do
12: R = R +R . Point Doubling (DBL)
13: if mi 6=0 then
14: if j = ni then
15: R = R + (−1)kw×i+w−1 × (mi × P )

16: Return R

is initialized to the point at infinity. From here, two loops perform the summation according to
the values of the slices Qi: an outer loop serves to double R as required, and an inner loop adding
(−1)w×i+w−1 × mi × P at the appropriate locations. By the end of the iterations, R would be
equal to k × P . It is, therefore, the returned value.

1.7.3 Radix-2w Elliptic Curve Double Point Multiplication Method
For the EC DPM method, we assume two scalars u and v, along with two points on the elliptic

curve P and Q. The scalars u and v are represented in the same manner as the scalar k. The
slices in EC DPM are denoted du and dv for u and v respectively. The sum of the multiplications
u · P and v ·Q is therefore as shown in eq.(1.38).

u · P + v ·Q =
0∑

i=d(l+1)/we−1

(dui · P )2w×i +
0∑

i=d(l+1)/we−1

(dvi ·Q)2w×i (1.38)

The previous definition for odd values m is also applied here for slices du and dv producing mu
and mv as shown in eq.(1.39). Therefore, mu,mv ∈ Os(2w)

⋃
0, 1 and du, dv ∈ Ds(2w).

u · P + v ·Q =
0∑

i=d(l+1)/we−1

[(−1)w×i+w−1 × (mui × P )× 2w×i+ni ]

+
0∑

i=d(l+1)/we−1

[(−1)w×i+w−1 × (mvi ×Q)× 2w×i+ni ]

(1.39)

For the simultaneous EC DPM method, a window size of 2 is fixed. This implies that the pre-
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computation set Ps(2w) is limited to the set shown in eq.(1.40).

Ps(2w) = P∞,±Q,±2Q,P, P +Q,P −Q,P + 2Q,P − 2Q, 2P, 2P +Q, 2P −Q, 2(P +Q), 2(P −Q)
(1.40)

The EC DPM is therefore performed according to Algorithm 1.6.

Algorithm 1.6 Simultaneous Radix-22 Double Point Multiplication[9].
Input: : P and Q ∈ E(F) and scalars u and v of bit-length l.
Output: QR = u.P + v.Q ∈ E(F).
// Points of line 1 must be computed in the indicated order

1: P +Q; P + 2Q; 2P +Q; P −Q; P −Q; 2P −Q.
2: Concatenate a zero to the right of u0 and v0.
3: Concatenate Nz zeros to ul-1 and vl-1 according to eq.(1.28).
4: R = P∞ // P∞ is the point at infinity
5: for i = (l +Nz) = 2−1 downto 0 do
6: Case (|dui|,|dvi|)
7: (0,0) : M = P∞
8: (1,0) (2,0) : M = P
9: (0,1) (0,2) : M = Q

10: (1,1) (2,2) : M = P + (−1)v2×i+1−u2×i+1 .Q
11: (1,2) : M = P + (−1)v2×i+1−u2×i+1 .2.Q
12: (2,1) : M = 2.P + (−1)v2×i+1−u2×i+1 .Q
13: R = R +R // DBL
14: Case (|dui|,|dvi|)
15: (0,0) (0,1) : R = R +R ; R = R + (−1)v2×i+1 .M
16: (0,2) : R = R + (−1)v2×i+1 .M ; R = R +R
17: (1,0) (1,1) (1,2) (2,1) : R = R +R ; R = R + (−1)u2×i+1 .M
18: (2,0) (2,2) : R = R + (−1)u2×i+1 .M ; R = R +R

19: Return R

1.8 Conclusion
In this chapter, we have presented an introduction to ECs and the associated Finite Fields in

which they are defined. We have delved into the binary field operations necessary to the construc-
tion of EC operations. Following that, we have introduced the fundamental EC operations. We
also have discussed the the use of EC projective coordinate systems and their subsequent effect
on the cost of EC ADD and DBL. Then, we have considered some methods of constructing EC
PM and their drawbacks. Finally, we introduced the Radix-2w and its method for optimizing the
evaluation of EC PM as it is the focus of this project.

To conclude this chapter, we highlight the relationship between the operations discussed in
it through Figure 1.2 which shows how EC cryptography relies on EC PM, which builds upon EC
ADD and DBL operations. These operations, in turn, depend on the field operations of the field
the elliptic curve is defined over.
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Chapter 2

Elliptic Curve Cryptography

2.1 Introduction
Cryptography refers to the design of mechanisms based on mathematical algorithms that

enable secure communications in the presence of malicious adversaries. The primary objective of
using cryptography is to provide the following four fundamental security services:

1. Confidentiality: Keeping data secret from all but those authorised to access it. It is the
fundamental security service provided by crypto-systems.

2. Data Integrity: Detecting when data is manipulated in unauthorized manners.

3. Authentication: Verifying a communicating entity’s identity, and ensuring they are indeed
who they claim to be.

4. Non-repudiation: Ensuring that the creation and transmission of data by a sender, to a
recipient, can be proven by a third party. It is a property that is most desirable in situations
where there are chances of a dispute over the exchange of data.

In this chapter, we will explain how communication happens in a cryptosystem and how the
aforementioned security services can be achieved. First, we will introduce the concept of keys in
cryptography and their crucial role in cryptographic protocols. Then, we will discuss the elliptic
curve digital signature cryptographic system and its dependency on Public-key cryptography.
Lastly, we will introduce the encryption/ decryption system, how it can be adapted to ECs and
joint to the ECDSA.

2.2 Cryptographic Model
The basic cryptographic model is a fundamental concept in cryptography that describes the

communication process between two (or more) parties. At its core, this model is a cryptographic
system consisting of said two parties, typically referred to as the sender and the receiver, whom
want to interact with one another securely. This model is applicable to different protocols, priori-
tizing different aspects of security. Figure 2.1 focuses on confidentiality. It consists of the following
components:

• Plaintext: It is the data to be protected during transmission.
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• Ciphertext: It is the cipher version of the plaintext produced by the encryption algorithm.
A format that is unintelligible to an interceptor.

• Encryption Key: It is a value that the sender inputs into the encryption algorithm, along
with the plaintext, in order to compute the ciphertext.

• Decryption Key: It is a value that the receiver inputs into the decryption algorithm, along
with the ciphertext, in order to recompute the plaintext. The decryption key is related to
the encryption key, but is not always identical to it.

• Encryption Algorithm: It is a cryptographic algorithm that takes plaintext and an en-
cryption key as input to produce a ciphertext.

• Decryption Algorithm: It is a cryptographic algorithm that takes a ciphertext and a
decryption key as input, and outputs a plaintext. Essentially the inverse operation of the
encryption algorithm.

Figure 2.1: Cryptographic Model.

In order to achieve secure communication, the sender, in Figure 2.1, converts their message into
ciphertext using the encryption algorithm. The ciphertext is then forwarded to the receiver
through a publicly accessible channel. The receiver would then input it into the decryption
algorithm to recover the plaintext.

Fundamentally, cryptosystems can be classified into two types: Symmetric and Asymmetric-
Key Encryption cryptosystems. This classification is made based on the symmetry, or lack there
of, appertaining to the keys used in the encryption and decryption processes.

2.2.1 Symmetric-key Cryptography
Symmetric Key Cryptography is a cryptographic system where a common secret key is lever-

aged for both the encryption and decryption processes. This makes it so that when data is
converted to cyphertext, it cannot be read or inspected by anyone who does not have the secret
key that was used to encrypt it.

For example, take a secret key k shared by sender A and receiver B. A would encrypt a
plaintext message m using k. They would then transmit the resulting ciphertext c to B. Upon
receiving this, B would use the same key k to recover m. Some common symmetric encryption
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algorithms to achieve this confidentiality include the Advanced Encryption Standard and the Data
Encryption Standard. As for data integrity and origin authentication, then A would compute the
authentication tag t of m. This is done using a message authentication code (MAC) and k. A
would then send m and t to B. Upon receiving this, B would use the MAC algorithm and the
same k to recompute the tag t′ of m. The message is accepted as having originated from A if
t′ = t. A common MAC algorithm used is the Hash Message Authentication Code (HMAC).

This form of cryptography is fast and of high efficiency, however it requires both the sender and
recipient of the data to have access to the secret key. This requirement is one of the main drawbacks
of symmetric key encryption. It is referred to as the key distribution problem, where there would
be a need for a secret and authenticated channel in order to distribute keying material. Another
drawback is the key management problem. Where in a network of N parties, each party may
have to maintain different keying material with each of the other N−1 parties. In addition, since
keying material is shared between two (or more) parties, it is impossible to distinguish between
the actions taken by the different holders of a secret key. Therefore, symmetric-key techniques
cannot be used to devise elegant digital signature schemes that provide non-repudiation services.

2.2.2 Public-key Cryptography
Public-key cryptography, also known as Asymmetric-key cryptography, was introduced to

overcome the shortcomings of symmetric-key cryptography. The difference between these two
types of cryptography is that the former requires for the keying material exchanged to be authentic
but not secret. Each entity selects a single key pair consisting of a public key and a corresponding
private key that the entity keeps secret. The key pair is selected such that the problem of deriving
the private key, solely from knowledge of its corresponding public key, is equivalent to solving a
computational problem that is believed to be intractable. Some number-theoretic problems used
in popular public-key schemes are:

• Integer Factorization Problem (IFP).

• Discrete Logarithm Problem (DLP).

• Elliptic Curve DLP.

Since public-key encryption uses a key pair, it takes a different approach to achieve the
fundamental security services. To explain the scheme, take as example the entity A. To establish
confidentiality, A obtains an authentic copy of B’s public key QB. This key, along with A’s
private key dA, is used to encrypt a message m and transmit the resulting cyphertext c to B.
Upon receiving c, B would then use it along with their private key dB to recover m.

As for data integrity and origin authentication, A would use dA to compute the signature s
of m by way of a signature generation algorithm. A would then forward s and m to B. Since dA
is known only to A, it is assured that m indeed originates from A. Then B uses an authentic copy
of A’s public key QA, along with m, to confirm that s was indeed generated by A. This is done
using a signature verification algorithm.

As discernible, this verification requires only the non-secret quantities m and QA. This
means that the signature for a message m can also be verified by a third party in case A denies
having signed m. Therefore ensuring non-repudiation. Additionally, given that s changes entirely
depending on the message m being signed, a third party can not simply append s to a different
message and claim that A signed it.
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Building upon these concepts, various public-key cryptography based systems have emerged,
each with its own strengths and weaknesses. One widely known cryptosystem is RSA, which is
named after its creators Rivest, Shamir, and Adleman. It is based on the Integer factorization
problem. RSA is known for its versatility and is widely used for secure data transmission, digital
signatures, and key exchange protocols. However, RSA key generation and encryption/decryption
operations can be computationally expensive, particularly for large key sizes. DSA, which stands
for Digital Signature Algorithm, is another popular public key cryptosystem that is specifically
designed, as the name suggests, for digital signatures. It is based on the mathematical properties
of the DLP in a finite field. It provides a mechanism to verify the authenticity and integrity of
messages. Compared to RSA, DSA generally offers faster signature generation and verification.
However, DSA does not provide encryption capabilities and is mainly focused on signature-related
operations. ECC is an asymmetric cryptosystem that has gained significant popularity due to
its strong security and computational efficiency. It relies on the EC DLP to provide robust
encryption and digital signature capabilities. Compared to RSA, ECC offers equivalent security
with shorter key lengths, resulting in faster computation and reduced memory requirements. This
makes ECC particularly suitable for resource-constrained environments such as embedded systems.
Additionally, ECC signatures, such as ECDSA, are generally shorter than DSA signatures for the
same level of security.

2.3 Elliptic Curve Digital Signature Algorithm
ECDSA, developed for use with elliptic curves, is an evolution of the briefly aforementioned

DSA. The latter is based on modular exponentiation and the discrete logarithm problem in finite
fields. On the other hand, ECDSA utilizes elliptic curves to provide the same functionality as
DSA but with more efficient computations and shorter signature lengths. ECDSA operates on
elliptic curves over finite fields, using the EC DLP. The latter involves finding the exponent, or
private key, in the equation P = kG. P here is a point on an elliptic curve, G is the generator
point of the curve, and k is the private key. The difficulty lies in determining the corresponding
private key k, given P and G. The security of ECDSA relies on the assumption that no algorithm
exists to efficiently solve this computational problem for sufficiently large keys. Examples of the
best-known algorithms capable of solving the EC DLP are Pollard’s rho algorithm or the index
calculus method. Then again, these algorithms have exponential time complexities, making them
impractical for said large keys. Therefore, the choice of the elliptic curve parameters used in the
ECDSA, including the curve coefficients, the field size, and the generator point G is necessary
to ensure the algorithm’s security against potential attacks. ECDSA consists of a multi-step
process involving signature generation and signature verification which will be addressed in the
next subsections.

2.3.1 Signature Generation
To create a digital signature for a message m, an asymmetric key pair is to first be generated.

An asymmetric key pair, (Q, d), consists of the private key d and its corresponding public key Q.
The private key is a randomly generated integer within a specific range. The range is determined
according to the elliptic curve selected and its parameters. The public key is a point belonging
to the elliptic curve obtained by performing an EC PM operation. This operation consists of
multiplying d by the generator point G to obtain the corresponding public key. This process
is assimilated in Algorithm 2.1, where it takes in as input a set D of domain parameters and
generates key pairs (Q,d). The set D consists of (q,E,G,n), where q is the field size; E is the
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elliptic curve used; G is the generator point, and n is the order of G.

Algorithm 2.1 Elliptic Curve Key Pair Generation
Input: Elliptic curve domain parameters (q,E,G,n)
Output: Public key Q and private key d

1: Generate d ∈R [1, n−1]
2: Compute Q = d ·G
3: Return(Q,d)

Before proceeding to signing the message, ECDSA typically applies a cryptographic hash
function, that takes the entire message as input, and produces a message digest. It is also known
as a hash value or hash digest. This serves as a condensed representation of the original message
and is used during both signature generation and verification. The hash digest produced possesses
the following properties:

• Deterministic: The same input message will always produce the same hash digest.

• Fixed Length: Regardless of the size of the input message, the hash function produces a
hash digest of a fixed length.

• One-Way: It is computationally infeasible to derive the original message from its hash
digest.

• Collision-Resistance: It is highly unlikely that two different messages will produce the
same hash digest.

This offers multiple benefits, including efficiency, standardized representation, and resistance to
potential attacks.

After obtaining the hash digest, a random number known as a nonce (number used once) is
generated. A new nonce is chosen for each signing operation, meaning it is independent of the
private key and the message being signed. This ensures that each signature produced by the same
private key for different messages will be unique. As depicted in Figure 2.2, these parameters
calculated (the private key d, the hash digest e, and the nonce k) are then used to compute two
components: the r and the s values, which form the digital signature. These values are calculated
as follows:

• Calculating the r value: k is multiplied by the generator point G and the x-coordinate of
the resulting point is taken as the r value.

• Calculating the s value: k, d, e, and the r value are used in modular arithmetic operations
to compute s.

Figure 2.2: Signature generation process (m = message, e = hash digest, d = private key, k =
nonce, (r, s) = signature components).
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This process is assimilated in Algorithm 2.2, where it takes as input the private key d, a
message m and the set of domain parameters D to produces the signature. Domain parameters
for ECDSA are of the form (q, FR, a, b, G, n), where q, again, is the field size; FR is an indication
of the basis used; a and b are two field elements that define the equation of the curve; G is the
generator point, and n is the order of G. The condition in steps 4 and 8 is a precautionary measure
to ensure that the signature generation process follows the required guidelines and produces valid
signatures. The r and s values forming the digital signature are later used, along with the public
key Q and the original message m, for signature verification.

Algorithm 2.2 ECDSA signature generation
Input: Domain parameters D = (q,FR,a,b,G,n), private key d, message m
Output: Signature (r, s)

1: Select k ∈R [1,n−1]
2: Compute kG = (x1,y1) and convert x1 to an integer x1

3: Compute r = x1 mod n
4: if r = 0 then
5: go to step 1
6: Compute e = H(m)
7: Compute s = k−1(e+ dr) mod n
8: if s = 0 then
9: go to step 1

10: Return(r,s)

2.3.2 Signature Verification
To verify a signature, the verifier obtains the public key Q of the signer, which is typically avail-
able through a trusted source. Additionally, the verifier receives the message and its associated
signature consisting of the r and s values. Similar to the signature generation process, the same
cryptographic hash function is applied to the message, to obtain a fixed-length hash digest.

Figure 2.3: Signature verification process(m = message, e = hash digest, Q = public key, (r, s)=
signature components).

This ensures the standardized representation of the message. By applying a series of mathematical
calculations, involving modular arithmetic and elliptic curve point operations on the parameters
received (the public key Q, hash digest e, and the received signature), the ECDSA confirms the
integrity and authenticity of the signature. This process is depicted in Figure 2.3, the signature is
authenticated by checking if the r and s values fall within certain ranges specified by the elliptic
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curve parameters. If either value is out of range, the signature is rejected. The inverse of the s
value modulo the curve’s order is then computed. This is used to derive two elliptic curve points:

• One point is obtained by multiplying the inverse of s by the hash digest e.

• The other point is obtained by multiplying the r value by the inverse of s.

These points are added together using EC ADD. The resulting point’s x-coordinate is then com-
pared to the original r value’s x-coordinate. If the values match, the signature is accepted.

This process is assimilated in Algorithm 2.3, where it takes as input the domain parameters
D, the public key Q, the message m, and the purported signature. It then accepts or rejects said
signature. Step 8 of the algorithm serves as an immediate rejection of the signature if the computed
point X is the point at infinity. This is on account that the point at infinity is a special point on
the elliptic curve. It represents the result of adding a point to its inverse. Therefore, if X is ∞, it
means the computation in step 7 produced an invalid result. It ensures that any subsequent steps
or calculations based on an invalid point are skipped, saving computational resources.

Algorithm 2.3 ECDSA signature verification
Input: Domain parameters D = (q,FR,a,b,G,n), public key Q, message m, signature (r,s)
Output: Acceptance or rejection of the signature

1: Verify that r and s are integers in the interval [1,n−1]
2: if any verification fails then
3: return(“Reject the signature”)
4: Compute e = H(m).
5: Compute w = s−1 mod n.
6: Compute u1 = ew mod n and u2 = rw mod n
7: Compute X = u1G+ u2Q
8: if X = ∞ then
9: return(“Reject the signature”)

10: Convert the x-coordinate x1 of X to an integer x1;
11: Compute v = x1 mod n.
12: if v = r then
13: return(“Accept the signature”)
14: else
15: return(“Reject the signature”)

While ECDSA is a widely used cryptographic algorithm for generating and verifying digital
signatures, it is not concerned with the functionality of encrypting data. Its main purpose is
to ensure the authenticity, integrity, and non-repudiation of messages through signature-related
operations. It does not inherently provide confidentiality of messages. To achieve this confi-
dentiality, in conjunction with ECDSA, additional cryptographic mechanisms such as symmetric,
asymmetric, or hybrid-key encryption schemes are employed.

2.4 Encryption Schemes
Encryption schemes are cryptographic methods used to transform plaintext data into cipher-

text, ensuring confidentiality. These encryption schemes are used to encrypt the message itself
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before applying the ECDSA signature, providing a comprehensive security solution.

2.4.1 Joint Signature and Encryption System
Figure 2.4 presents an overview of the high-level blocks forming the elliptic curve digital

signature and encryption scheme system. This serves as a guide to understanding the connections
between said blocks, where the message to be sent is used for signature generation and verification.
Before sending it to the recipient, the message is signed and encrypted. The result of the encryption
process, m_enc, is then forwarded along with the signature. Then the message passes through
the decryption process and its signature is verified.

Figure 2.4: Joint ECDSA / Encryption Protocol workflow.

Various encryption schemes exist, each employing different algorithms and techniques. One
popular public-key encryption protocol is ElGamal’s encryption protocol. It is a public key encryp-
tion protocol proposed by Taher Elgamal in 1985. It is based on the DLP. There exist variations
and enhancements to the ElGamal encryption protocol. A notable variant is the EC-ElGamal
encryption protocol. This variation utilizes ECC instead of the DLP to achieve the same security
level with smaller key sizes.

2.4.2 EC-ElGamal Encryption Protocol
As operations in ECC are performed on points on the elliptic curve, EC encyption requires

some adaptations. Typically, encryption involves manipulating the characters composing the
message via mathematical means to obtain the coded text. As EC operations do not operate
directly on characters, a process called mapping is used to convert each character into a distinct
point on the elliptic curve. In EC-ElGamal encryption, each character mi in a message m is
individually encrypted through manipulations performed on its mapped point Pm. Pm is generally
chosen as a multiple of the EC generator point G. The coordinates of the resulting point of the
encryption Pc represent the encrypted character. This process is shown in Figure 2.5. Thus, a
sequence of these coordinates would represent the encrypted message. The decryption is later
done on the other end by a reverse process. This means that the result of the decryption is a set
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of points Pm, where each point would then need to be mapped back into the original character
mi. Therefore, it is necessary that all parties have access to the same mapping.

Figure 2.5: Mapping and encryption process for a single character.

To achieve this encryption scheme, the communicating parties need to exchange their public
keys which are obtained as previously described in Algorithm 2.1. These exchanged keys are then
used both to obtain Pc (Message Encryption) and retrieve Pm (Message Decryption).

2.4.2.1 Message Encryption

Let two parties A and B, having keys (QA, dA) and (QB, dB) respectively, be the communicat-
ing parties. The encryption process is done according to Algorithm 2.4; where, for A to encrypt
the message m, each character mi of m must be encrypted. This is achieved by first retrieving the
point Pm corresponding to mi from a lookup table containing all the character mappings. Next,
A’s private key dA is multiplied, using EC PM, by B’s public key QB. Finally, Pm, dA and QB

are used to obtain Pc through the following operation: Pc = Pm + dA × QB. Pc’s coordinates xc

and yc are then stored in m_enc. This process is repeated for every character in m.

Algorithm 2.4 Encryption of single character
Input: m, QB, dA
Output: Pc

1: if m ∈ Cs then . CS is character set of m
2: Retrieve Pm from mapping table
3: Compute dA ×QB

4: Pc ← Pm + dA ×QB

5: Return Pc

2.4.2.2 Message Decryption

This process is done according to Algorithm 2.5; where, for B to decrypt the message m_enc
received from A, Pc is to be retrieved from m_enc for every character. This is achieved by first
multiplying QA, using EC PM, by dB. Then, Pc, dB and QA are used to obtain Pm through the
following operation: Pm = Pc− dB ×QA. Finally, mi is retrieved from the lookup table according
to the resulting Pm. This process is repeated for every point Pc corresponding to a character in
m_enc.
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Algorithm 2.5 Decryption of single character
Input: Pc, QA, dB
Output: mi

1: Compute dB ×QA

2: Pm ← Pc − dB ×QA

3: Retrieve mi from mapping table
4: Return mi

2.5 Conclusion
In this chapter, we have introduced the ECC concepts most relevant to our project. We

started by introducing Public-key cryptography as it is foundational to both digital signature
algorithms and cryptographic encryption schemes we aim to implement. Then, building on the
mathematical notions given in chapter 1, both ECDSA and ElGamal encryption algorithms were
explained and the utility of their joining highlighted. The combination of ECDSA’s signature
generation and verification with ElGamal’s encryption scheme presents a comprehensive security
solution for text message communication. The next chapter will delve into our complete design
of this joint cryptography system based on the Radix-2w method for EC multiplications.
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Chapter 3

ECDSA System Design using Radix-2w
EC multiplication methods

3.1 Introduction
In this chapter, we outline the methods and materials used in our design of the cryptographic

system composed of ECDSA and EC-ElGamal encryption algorithm. We will provide a description
of the cryptographic system design, and the hardware it was devised for. Given the protocols
described in chapter 2 and their mathematical dependencies discussed in chapter 1, we will define
the software blocks necessary at every level building up.

First, we will establish the design of the Radix-2w EC multiplications. The underlying EC
operations, and therefore the finite field operations will be addressed in the context of the EC
multiplications. We will also propose the binary EC PM method for the purpose of: cost com-
parison with the Radix-2w EC multiplications, and verification of functionality for EC ADD and
DBL. Finally, we will delve into the details of building the cryptographic protocols (Public-key,
ECDSA and EC-ElGamal encryption) around our design of the EC PM and EC DPM.

3.2 Radix-2w Elliptic Curve Point Multiplication Design
The design of the EC multiplications using the Radix-2w method for recoding is composed of

three layers. Figure 3.1 shows a comprehensive diagram encompassing the blocks needed on each
of the layers. Both EC PM and DPM rely on the ADD and DBL operations, which in turn rely
on finite field operations. The order in which these blocks are to be implemented follows from
these dependencies: starting from the bottom and going up. Therefore, the design of the blocks
will be presented from the bottom up as well.

30



Figure 3.1: Elliptic curve operations and their dependencies.

The ECs recommended by NIST in [6] fall under two categories: curves defined over binary
fields (a special case of extension fields), and curves defined over prime fields. The arithmetic of
the operations over each type of field differs. According to [2], binary fields are faster for hardware
implementations. Since our application is intended for later integration of hardware blocks for
the EC multiplication, binary fields were chosen. Therefore, the EC operations, and subsequently,
the cryptographic system is designed to operate on the NIST recommended binary curves: B-163,
B-233, B-283, B-409, B-571.

The design of the addition, multiplication, and inversion binary field operations was based
on the algorithms provided in [3] and previously explained in chapter 1. Field squaring can be
achieved by multiplying the scalar by itself. Therefore, the design of an optimized finite field
squaring operation is not necessary but would affect the cost of the EC operations in terms of
speed and memory consumption.

3.2.1 Elliptic Curve Doubling and Addition
The design of The EC ADD and DBL operations depends on the coordinate system used

to represent the points on the EC. As established in the chapter 1 through Tables 1.2, and 1.1,
using DL coordinates for EC DBL, and mixed coordinates for EC ADD, best optimizes the cost in
terms of binary field operations. Therefore, our design of these blocks will be based on Projective
DL-coordinate system formulas for these operations. The algorithms we will present for EC DBL
and EC ADD can be found in the appendix of the paper [15]. The binary field operation blocks
were introduced as building blocks for the EC DBL and ADD operations.

3.2.1.1 Point Doubling

The DBL operation is done according to Algorithm 3.1. Starting by checking the input point
P to determine if it is the point at infinity (∞). If so, the result of the doubling operation is also
the point at infinity. Next, the slope of the tangent line at the input point is calculated using the
curve equation and the coordinates of P . This slope is then used to find the intersection point of
the tangent line with the elliptic curve. The coordinates of the doubled point are computed based
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on this intersection point as specified by eqs.(1.22), (1.23), (1.24) in section 1.5.2. The resulting
coordinates of the doubled point, are returned as the output of the point doubling operation.

Algorithm 3.1 Point doubling (y2 + xy = x3 + ax2 + b, a0,1, LD coordinates)
Input: P = (X1 : Y1 : Z1) in LD coordinates on E/K : y2 + xy = x3 + ax2 + b
Output: : 2P = (X3 : Y3 : Z3) in LD coordinates

1: if P = ∞ then
2: return(∞).
3: T1←Z2

1 .
4: T2←X2

1 .
5: Z3←T1·T2.
6: X3←T 2

2 .
7: T1←T 2

1 .
8: T2←T1.b.
9: X3←X3 + T2.

10: T1←Y 2
1 .

11: if a = 1 then
12: T1←T1 + Z3.
13: T1←T1 + T2.
14: Y3←X3·T1.
15: T1←T2·Z3.
16: Y3←Y3 + T1.
17: Return(X3 : Y3 : Z3).

3.2.1.2 Point Addition

The process of point addition involves combining two input points, P and Q, to obtain a
new resulting point. The coordinates of the input points are represented as (X1, Y 1, Z1) and
(X2, Y 2, 1) respectively. The Arithmetic behind this algorithm is explained in chapter 1, section
1.5.2, according to the work done in [15].
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Algorithm 3.2 Point addition (y2 + xy = x3 + ax2 + b, a ∈ 0, 1, LD-Affine coordinates)
Input: P = (X1 : Y1 : Z1) in LD coordinates, Q = (x2, y2) in Affine coordinates on E/K :
y2 + xy = x3 + ax2 + b
Output: : P +Q = (X3 : Y3 : Z3) in LD coordinates

1: if Q = ∞ then
2: return(P )
3: if P = ∞ then
4: return(x2 : y2 : 1)
5: T1←Z1·x2.
6: T2←Z2

1 .
7: X3←X1 + T1.
8: T1←Z1·X3.
9: T3←T2·y2.

10: if X3 = 0 then
11: if Y3 = 0 then
12: use Algorithm 3.1 to compute:
13: (X3 : Y3 : Z3) = 2(x2 : y2 : 1) and return (X3 : Y3 : Z3).
14: else return(∞).
15: Z3←T 2

1 .
16: T3←T1·Y3.
17: if a = 1 then
18: T1←T1 + T2.

19: T2←X2
3 .

20: X3←T2·T1.
21: T2←Y 2

3 .
22: X3←X3 + T2.
23: X3←X3 + T3.
24: T2←x2·Z3.
25: T2←T2 +X3.
26: T3←T3 + Z3.
27: Y3←T3·T2.
28: T2←x2 + y2.
29: T3←T1·T2.
30: Y3←Y3 + T3.
31: Return(X3 : Y3 : Z3)

3.2.2 Elliptic Curve Multiplication using Radix-2w Methods
In order to describe the design for Radix-2w EC PM and DPM, we will rely on the Radix-2w

recoding method given in chapter 1.

3.2.2.1 Radix-2w Elliptic Curve Point Multiplication Design

Both the EC and Radix-2w EC PM parameters can be determined from the multiplication
scalar k bit-length. According to eqs.(1.36), and (1.32), the bit-size of the window w deter-
mines Radix-2w recoding parameters. In addition, w is computed from the scalar k bit-length
l according to eq.(1.34). The bit-length l of the multiplication scalar k is fixed for each of the
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NIST-recommended binary curves, therefore, the sizes of w were computed for each one of the
curves. The results are shown in Table 3.1. The optimal value for w is 5 bits for keys of bit-sizes
163 bits and 233 bits, and 6 bits for keys of bit-sizes 283 bits, 409 bits and 571 bits. These key sizes
correspond to NIST EC curves B-163, B-233, B-283, B-409 and B-571 respectively. It followes that
the relationship between the EC parameters, Radix-2w EC PM parameters, and multiplication
scalar k’s size allows the set-up of all necessary parameters given one variable only.

bit-length(l) 163 233 283 409 571
wmin 5 bits 6 bits

Table 3.1: Radix−2w configuration parameters for NIST recommended binary field elliptic curves
[4].

In the context of EC cryptographic systems, the field scalars bit-length would be determined
by the desired key size. The size of the key is expected to be chosen and introduced to the
cryptographic system. Therefore, it entails that all EC multiplications are to be performed on
that scalar length.

Figure 3.2 shows how the key size is involved with the blocks making-up and surrounding
Radix−2w EC PM. The multiplication relies on the key size to determine the EC curve parameters
and w window size which in turn determine the Radix−2w recoding parameters. Since the NIST-
recommended binary ECs require window sizes of either 5 or 6 bits, it was more efficient to
compute and store a recoding set 1.32 look-up table for each w size. The Look-up table used for
the multiplication would be determined according to the size of the window w.
Similarly, given a multiplication point P , the precomputation set can be determined using the
key size. Precomputation process block generates the precomputation set according eq.(1.37) as
explained in chapter 1. This method for precomputation aims to minimize the number of ADD
operations. It is noteworthy that since the precomputation process depends on the multiplication
point P , it will be required prior to the multiplication process. However, in EC digital signature
generation, the multiplication is always performed on the generator point of the EC. Thus, only
running this process once suffices to perform signature generation for as long as the key size
and curve parameters remain fixed. Therefore, not including the precomputation block in the
multiplication block reduces the cost of the overall EC PM in this manner. The actual Radix−2w
EC PM of k and P can be performed given the precomputation set and the recoding set shown
in green in Figure 3.2.
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Figure 3.2: Block diagram of the Radix−2w EC PM precomputations.

An important feature of this EC PM method is the recoding and multiplication being per-
formed on-the-fly as described in Algorithm 1.5. First, a slice Q must be obtained and subsequently
used to retrieve m, and n from the look-up table which dictate the employment of EC ADD and
DBL with respect to an accumulator. This process is repeated for all slices and the accumulator
would equal kP by the end. The block shown in Figure 3.3 was designed to retrieve each slice
Q by windowing the scalar k. A scalar whose binary value from the right equals w ones. This
scalar is a slice sized window. It is shifted such that its right most ”1” matches slice Q’s Least
Significant Bit (LSB). An AND operation is performed on k and the scalar to obtain a shifted
slice Q. The initial shifting is then reversed to obtain a slice Q. The value of Q is therefore used
to retrieve m and n from the look-up table. EC operations are then performed according to the
values of m and n. For non-zero values of m, an EC ADD is performed, the point added to the
accumulator depends on the value of m. For non-zero values of n, an EC DBL of the accumulator
is performed. In this manner, the recoding of k does not require to be stored then fetched again
for the multiplication.

Figure 3.3: Design of the block that retrieves a slice Q.

The resulting point of the EC PM must be converted to Affine coordinates since our design
of EC ADD and DBL output points in DL-coordinate system for optimization purposes. The
conversion involves inversion field operations. This is due to a point P (X,Y, Z) with Z 6= 0
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in projective LD coordinate system corresponding to the Affine P (x, y) = (X/Z, Y /Z2). Based
on this formula, our design of the full conversion block requires an inversion, a squaring, and 2
multiplications. First, the inverse of Z, Z−1 is found and stored in a temporary variable. Then,
the inverse is squared to obtain Z−2. Finally, X is multiplied by Z−1 and Y by Z−2, and Z either
set to 1 or eliminated completely. Thus, the result of EC PM can be obtained in Affine coordinates
using the Radix−2w method.

As EC ADD takes mixed DL-Affine coordinates, one of the input points must always be in
Affine coordinates before the operation. This may lead to extensive use of the DL-Affine conversion
block within the multiplication. To avoid this, the precomputed values must all be converted to
Affine within the precomputation process before being stored. This is due to the multiplication
algorithm 1.5 only using ADDs with the precomputed values. This ensures at least one point in
Affine coordinates at every ADD.

3.2.2.2 Radix-2w Elliptic Curve Double Point Multiplication Design

The Radix-2w EC DPM method proposed in [9] and discussed in chapter 1, section 1.7.3
has a fixed window size w of 2 unlike the EC PM method. Another difference is its use of the
values of the slices directly without requiring to retrieve values from the recoding set. This means
that the same method for obtaining the slices from the scalar shown in Figure 3.3 applies. The
multiplication process depends on the key size only in obtaining the EC parameters as shown in
Figure 4.9.

The precomputation set for EC DPM depends on the two points involved in the multiplication,
and is performed in the order described in line 1 of Algorithm 1.6. However, unlike the EC PM,
there is no benefit to excluding the precomputation process from the EC DPM block as the
points are not fixed for any of the system protocols. the precomputed values are converted to
Affine coordinates before storage for the same reasons mentioned in the EC PM design discussion
and the result of the multiplication is given in Affine coordinates. In the Radix-2w EC DPM,
operations are performed on each iteration according to a pair of slices, each corresponding to a
point. Similarily to EC PM, the recoding and multiplication must be performed on-the-fly and
by the end of the multiplication, the result must be converted to Affine coordinates.
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Figure 3.4: Block diagram of the Radix−2w EC DPM precomputations.

3.2.3 Binary Method for Elliptic Curve Point Multiplication
The classical binary method for EC PM will be used for cost comparison with the Radix-2w EC

PM and EC DPM methods. The binary EC PM uses the binary representation of the scalar k in
the multiplication. It can be performed from either left-to-right or righ-to-left. Algorithms 3.3 and
3.4 show the methods used to achieve binary multiplication. In both algorithms an accumulator
is used in a loop to collect the sum of the points representing each significant digit ”1” in the
number’s binary representation. The difference between the two binary multiplication strategies
is the DBL operation is performed on different points. In both instances the DBL operation serves
to account for the analogous shift operation for the binary represented scalar k. In the righ-to-left
method, the added point P gets doubled with every iteration, accounting for the power of the
”1” digits that are added to the sum Q. On the other hand, in the left-to-right method, the
accumulator point Q gets doubled with every iteration

Algorithm 3.3 Left-to-Right binary method for point multiplication
Input: k = (kt−1, ..., k1, k0), and P ∈E(F2m)
Output: : kP ∈E(F2m)

1: Q←∞
2: for i = t− 1 downto 0 do
3: Q←2Q . Point DBL
4: if ki=1 then
5: Q←Q+ P . Point ADD
6: Return(Q).
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Algorithm 3.4 Right-to-Left binary method for point multiplication
Input: k = (kt−1, ..., k1, k0), and P ∈E(F2m)
Output: : kP ∈E(F2m)

1: Q←∞
2: for i = 0 to t− 1 do
3: if ki=1 then
4: Q←Q+ P . Point ADD
5: P←2P . Point DBL
6: Return(Q).

3.3 Cryptographic System Design
The ECDSA cryptosystem, as previously mentioned in chapter 2, relies on public key pairs

(Q, d). Thus, a random number generator block is needed to generate the private key d. The
implemented EC PM design is then used to generate the public key Q by applying the multipli-
cation on the randomly generated private key and a point on the EC, as described in Algorithm
2.1. This process is also used in the EC-ElGamal protocol to generate the keys to be exchanged
between the communicating parties, and used in the encryption scheme. The random number
generator block also generates the nonce required in the signature generation process, described
by Algorithm 2.2. This algorithm, as well as Algorithm 2.3 describing the signature verification
process, rely on hashing. The hash function chosen for implementation is the "SHA256" function.
This function was chosen as it is one of the four fixed-length SHA-3 algorithms approved by the
NIST secure hash standard [16].

Another block needed is a mapping table generator. This block takes in the EC parameters
associated with the binary curve chosen, and generates a mapping table that would subsequently
be used for the encryption scheme. This process is illustrated in Figure 3.5. The message encryp-
tion block takes as input the receiver’s public key QB, the message (made up of a set of characters
”m”), and the sender’s key-pair (dA, QA) and produces the encrypted message. To perform the
encryption, the mapping Pm of the characters m are retrieved one by one and encrypted individu-
ally. The decryption process relies on the same mapping look-up table as described in Algorithm
2.5. The same original message is also signed by the signature generation block using the key-pair
(dA, QA). At the end of the encryption and signature generation process, the resulting encrypted
message and message signature are then transferred to the receiver to be decrypted then verified.
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Figure 3.5: Block diagram of the joint EC cryptographic system.

3.4 Conclusion
In this chapter, we have covered the cryptographic system architecture and its elements.

We have focused on the Radix-2w multiplication design and the components necessary for its
implementation as it is the backbone of our project. We have also introduced the binary method
for EC PM as we will be using it for cost comparison with the Radix-2w multiplication methods.
Finally, we have shown the joint system design. In the following chapter, we will discuss the
implementation details of the previously reviewed designs and the evaluation of our solution.
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Chapter 4

EC Signature/Encryption System
Implementation and Results

4.1 Introduction
The ECDSA implementation flow is two fold: writing the programs necessary and debugging

on a private computer, then, running and debugging on the Board. This was a more convenient
method in terms of testing the different code blocks. Since these blocks operate on long numbers
(keys of bit-lengths 164, 233, etc.), it is necessary to test for large samples of randomly generated
integers. This makes it significantly faster to run these tests on a laptop. CLion is an Integrated
Development Environment (IDE) for C/C++ languages that was used for the development of the
software solution for ECDSA and EC-ElGamal encryption, which were to be later fitted for the
ZedBoard. CLion IDE was chosen for its support of development for various platforms, including
embedded systems and cross-compilation1, making it suitable for our application. However, to
use it as such, it must be configured to work with the ZedBoard by setting up the appropriate
toolchain2 and build configurations. The lack of a direct built-in support for ZedBoard on Clion
made Xilinx’s3 software developement kit a more suitable choice for running and debugging the
software on the board.

In this chapter, we will start by introducing the ZedBoard, touch on its relevant functionalities
and briefly explain the overview of the full system in light of the used board. Next, we delve into
the details of the implementation. We will introduce the library we used for multiple precision
arithmetic4 as the large sizes of the keys necessitate. Then, we will describe a global overview of
the implemented cryptographic system highlighting relevant details proper to our implementation.
Following that, we will delve into the Radix-2w EC multiplications; where we touch on some details
concerning our implementation of the different layers of arithmetic preceding the multiplication.
Subsequently, we will describe the methods we employed for testing the Radix-2w method and
discuss the obtained results. Afterwards, we will describe the specifics of the implementation

1Creating executable code for a platform other than the one on which the compiler is running.
2A set of programs, to build on, that are used for specialized (related) software development.
3A leading provider of programmable logic devices and associated technologies, as well as development tools,

software libraries, and intellectual property cores to facilitate the design and implementation of digital systems
using their products.

4Calculations performed on numbers that can have a limitless number of digits, constrained only by the memory
capacity of the computer.
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of the protocols and the user interface. Next, we will show an illustrative example on message
encryption and signing. Finally, we will review the modifications made to adapt the cryptographic
system to the ZedBoard.

4.2 Hardware Environment

4.2.1 Zynq Evaluation and Development Board
The ZedBoard is a FPGA development board based on the Xilinx Zynq-7000 All Programmable

(AP) System On Chip (SoC). It is comprised of two main parts: a Processing System (PS) formed
around a dual-core Advanced Reduced Instruction Set Computer Machine (ARM) Cortex-A9 pro-
cessor, and Programmable Logic (PL) consisting of FPGA fabric. The ARM Cortex-A9 is an
application grade processor, capable of running full operating systems such as Linux, while the
programmable logic is based on Xilinx 7-series FPGA architecture. Thus, allowing development
of both hardware and software components on the same device. It also features several memory
and storage options, including Double Data Rate3 (DDR3) Synchronous Dynamic Random-Access
Memory (SDRAM) for running software applications, flash memory for booting the system, and
a micro-SD card slot for expandable storage, The ZedBoard also offers a wide range of periph-
erals for connectivity and I/O operations. The interface between these different elements within
the Zynq architecture is based on the Advanced eXtensible Interface (AXI) which provides high
bandwidth and low latency connections.

To connect the board to a host PC (Personal Computer), the following two ports are utilized:

• USB-JTAG port: It allows for high-speed data transfer between the ZedBoard and the
host computer, enabling efficient programming and debugging operations. This Universal
Serial Bus (USB) port follows the Joint Test Action Group (JTAG) protocol. This protocol
provides commands and signals to communicate with and control the internal components
of the ZedBoard.

• USB-UART port: It is primarily used for establishing a serial communication link between
the ZedBoard and a host computer. It enables the exchange of data in a serial format,
allowing for various applications such as console output, data transfer, and control between
the ZedBoard and the host. This USB port follows the Universal Asynchronous Receiver
/ Transmitter (UART) protocol, which is a common asynchronous serial communication
protocol. It provides features such as configurable baud rate, data bits, stop bits, and parity
for flexible communication settings.

Figure 4.1 illustrates the placement of these two ports, as well as the layout of the remaining
elements of the ZedBoard.
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Figure 4.1: ZedBoard layout[5].

To design and develop the hardware and software components of the ZedBoard, seperate IDEs
were used. These being Vivado and SDK IDEs, which are both tools developed by Xilinx and
are commonly used for FPGA development, including the ZedBoard. Vivado is used for FPGA
design and implementation, while SDK is used for embedded software development targeting
the processors within the ZedBoard. Together, they enable the development of complex systems
that combine both hardware and software components. The typical workflow involves designing
the hardware system in Vivado; then, in SDK, creating and configuring software projects to
communicate with the custom hardware implemented in Vivado.

4.2.2 Development Tools
4.2.2.1 Vivado

Vivado is an IDE used for designing, implementing, and programming Xilinx FPGAs and
SoCs. It provides a graphical interface for creating FPGA designs, performing synthesis, place-
ment, routing, and generating programming files. Vivado supports both hardware description lan-

42



guages (HDLs) VHDL and Verilog, as well as high-level synthesis (HLS) languages like C/C++.
It also includes Intellectual Property (IP)5 cores and a wide range of debugging and verification
tools.

For this implementation, Vivado was used to customize the processing system. This was
achieved through the following steps:

• Launching Vivado: Opening the Vivado IDE and creating a project.

• Creating the block design: Once the project is open, ”Create Block Design” can be
selected under the ”IP Integrator” section of the ”Flow Navigator” pane.

• Selecting the PS IP: In the IP Integrator tool, the ”Zynq Processing System” IP is selected
from the list of IPs and added to the block design.

• Modifying the selected IP’s Configuration: By double-clicking on the added ”Zynq
Processing System” IP block, its configuration dialog is opened, where it can be customized.
In the ”PS-PL Configuration” tab, the AXI master interface can be unchecked. This is done
because, as mentioned, the PL portion is not integrated in this implementation. Additionally,
the SD card can be selected in the ”Periphiral I/O Pins” tab to allow for its detection and
use.

• Generating the bitstream: This consists of selecting the ”Generate Bitstream” in the
”Flow Navigator” pane. Bitstream generation combines the synthesized and implemented
design into a binary bitstream file that can be programmed onto the FPGA. Vivado auto-
matically runs synthesis and implementation as part of the bitstream generation process.
Synthesis converts the design into a gate-level representation suitable for implementation on
the FPGA. Implementation involves mapping the synthesized design onto the target FPGA,
including placement and routing.

The generated bitstream file can then be saved and exported to a software development IDE, that
being Xilinx SDK in this implementation.

4.2.2.2 Xilinx SDK

SDK (Software Development Kit), also known as Xilinx SDK, is also an IDE that is part of
the Xilinx Vivado Design Suite. It is specifically designed for embedded software developments
targeting Xilinx FPGAs and SoCs. It provides a set of tools, libraries, and compilers to develop and
debug embedded software that interacts with the FPGA fabric and peripherals on the board. SDK
supports programming in languages such as C, C++, and Assembly. It also offers code editing,
project management, debugging, and software performance analysis features. The applications
developed on SDK run on Xilinx processing systems and can be designed to interact with other
programmable hardware blocks or firmware.

4.3 Software System Implementation

4.3.1 Global System Overview
In light of the functionalities of the zedboad and its PS system, the use of serial communication

and the SD card was employed to turn the ECDSA/EC-ElGamal encryption system design into

5IPs are pre-designed functions that can directly be included in FPGA designs
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a functional application. It is illustrated in Figure 4.2.

Figure 4.2: Global system layout.

The flow of operation consists first of the public key acquisition; where said public keys of
the communicating entities are exchanged through serial communication with the board. These
public keys are used for the cryptographic protocols described in chapter 3 (ECDSA and EC-
ElGamal). The outputs of these protocols are exchanged between said entities to run the processes
contained within the system. Typically, this is achieved through a secured public channel. In our
implementation, this channel is emulated through an SD card which transports said outputs
between the board and the communicating entity; for example, a PC. The SD card contains text
files that hold the outputs. For ECDSA, the file used to hold the signature is "MSG_SIG.TXT ".
In signature generation, the generated signature is written into this file. While in signature
verification, it is read to retrieve the signature which is then verified. As for the EC-ElGamal
encryption protocol, two files are assigned: "DEC_MSG.TXT ", and "ENC_MSG.TXT ". When
encrypting a message, the resulting ciphertext is written into "ENC_MSG.TXT ". This file is
then read in the decryption process to retrieve the ciphertext and decrypt it. Once decrypted, the
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message is then stored into "DEC_MSG.TXT ". This file is also used in the signature verification;
where it would be read to retrieve the message which is then used as input for this process.

The computer version of this system implementation was initially realised. In the next section
we will discuss the basic representations of numbers and points that are the foundation of our
implementation and how they were achieved.

4.3.2 Scalars and Points Representation
Our implementation requires programming to be done using either C or C++. This is due to

the application being made for the ZedBoard processing system. Therefore, our implementation
was restricted to having native data types that do not exceed 64 bits. Since the key sizes used are
significantly large, we faced issues storing and operating on scalars of this size (i.e., 164 bits, 233
bits, etc.). Initially, the size of the keys used was fixed to 233 bits allowing the use of arrays to
store their values. This array method required the implementation of partial operations. Carries,
the result of the operation, and conditions on some bits are all taken into account with this
method. The implementation of such operations required additional functions to locate specific
bits, intermediate variables for carries and counters, as well as the heavy use of loops. There were
two major disadvantages to this approach: The inflexibility of key lengths, and the complexity
of these basic operations (addition, multiplication, subtraction, inversion). With the increased
difficulty to implement and build on these function, a library that would provide finite field
operations on large scalars seemed a good alternative. However, these libraries often had the issue
of limited sized scalars. Another solution was using a library that could handle operations on
large scalars without approximating the resulting values. One such library is the GNU Multiple
Precision (GMP) library . Details concerning all the functionalities GMP provides can be found
on their website [17].

Since this application requires the use of signed integers to represent keys, we will be focusing
on the integer category of functions called ”mpz”. This category allows for a long list of arithmetic
and logic operations to be performed. A variable of type mpz_t is used to store the value of an
integer through a string and a specified number base (i.e, string = ”857B68A0f”, base = 16 would
interpret the string as a hexadecimal number and store it in the variable). This use of strings
made the use of C++ as a programming language more advantageous for this implementation.

The used GMP library does not automatically run on the ZedBoard processor. However, the
cross-compilation of this library was possible. This library was cross-compiled on a UNIX host
using instructions from [18]. It is note worthy that the configuration of this library requires setting
up the ”CFLAGS” (compiler flags) correctly for the specific processor. For our case the following
flags were used in the command for the cross-compilation:

./configure CC=arm-none-eabi-gcc CFLAGS="-nostartfiles --specs=nosys.specs
-mtune=cortex-a9 -mfpu=vfpv3 -mfloat-abi=hard -mcpu=cortex-a9"
--host=arm-none-eabi --disable-assembly

The CC=arm-none-eabi-gcc targets the ARM architecture and is used for standalone applications.
The flags specified in the configuration correspond to the ZedBoard processor. Figure 4.3 shows
the result of this process.

45



Figure 4.3: Result of the cross-compilation of GNU MP library for ARM Cortex-A9 processor.

As for the EC point representation, to start off, an EC must be selected from the NIST-
recommended binary curves in order to run the implemented cryptographic system. Each of the
curves is defined by its binary field’s primitive polynomial, the coefficients a and b of the curve
equation (eq.(1.2)), and the generator point of the curve G. All parameters for each curve were
retrieved from [6]. Figure 4.4 shows an example of the parameters provided for the B-283 EC
where f(z) is the underlying binary field’s primitive polynomial, a and b are the coefficients, and
finally Gx and Gy are the Affine coordinates for the generator point.

Figure 4.4: B-283 NIST-recommended binary elliptic curve parameters [6].

Overall, two classes were implemented: EC_point, and KeyPair, in order to simplify the
programming:

1. EC_point: this class was created to represent points on EC, and subsequently, facilitate
the implementation of EC operations. Points on ECs are assumed to have DL-coordinates
X,Y, andZ which are represented as mpz_t type attributes, with mpz_t being the multiple
precision integer type from the GMP library. When an EC_point is instantiated, it takes
the coordinates of the point at infinity by default. However, if the coordinates are provided
for the constructor as strings, they are used instead. The methods for this class allow the
values X,Y, Z to be modified, printed, compared, etc.
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2. KeyPair: this class was created to facilitate the implementation of ECDSA and EC-
ElGamal encryption protocols as they both rely on Public-key cryptography. Every instance
of this class has two attributes: a public key Q of the class EC_point, and a private key
d of type mpz_t. When a KeyPair key-pair is generated, a randomly generated scalar is
assigned to the private key d. As shown in Algorithm 2.1, the result of the multiplication
of d with the EC generator G is assigned to the public key Q.

4.4 Radix 2w Elliptic Curve Multiplication Implementa-
tion

The first layer of the implementation involves writing the functions for the binary field opera-
tion Algorithms 1.1, 1.2, and 1.3. Due to the nature of the data type mpz_t being a pointer, both
operands and result variables are entered as parameters. Therefore, These functions perform-
ing binary field operations are void type. The second and third layers of the EC multiplication
implementation build on the binary field operations functions, and their implementation follows.

4.4.1 Elliptic Curve Addition and Doubling Implementation
The DBL operation was implemented to operate on EC_point types (EC points respresented

in DL coordinate system) as shown in Algorithm 3.1. On the other hand, the ADD operation,
which was coded according to Algorithm 3.2, uses mixed Affine-DL coordinates. This means
that its operands, point1 and point2, are represented in DL-coordinates and Affine coordinates
respectively. In order for the ADD operation to function properly, point2 must be in Affine
coordinate representation. Therefore, whenever a point S(X,Y, Z) is to be added to another
point A(Xa, Ya, Za), for example, a conversion to SAffine(xs, ys, 1) is performed on S using the
DL-Affine conversion function.

4.4.2 Elliptic Curve Point Multiplication Implementation
4.4.2.1 Binary Method for Point Multiplication Implementation

First, the function implementing the naive binary EC PM operation was written. The purpose
of this implementation is to, both, examine the functionality of the implemented ADD and DBL,
as well as provide later comparison to the Radix-2w method for multiplication. The binary method
can be performed from both Left-to-Right (Algorithm 3.3) and Right-to-Left (Algorithm 3.4). The
disadvantage of the Right-to-Left method is the necessity of performing coordinate conversion after
every point DBL operation. This is due to the coordinates of the output point. Although the
DBL operation takes a point in DL-coordinates as input, the ADD operation must have at least
one point in Affine coordinates. Thus, requiring the extra cost for conversion. In order to avoid
this extra cost, the binary Left-to-Right method shown in Algorithm 3.3 was chosen, as ADD
operations involve adding a fixed point P to sum, thus, not necessitating coordinate conversion.

4.4.2.2 Radix-2w Method for Point Multiplication Implementation

Since the result of EC PM can not be judged correct through simple observation, some testing
programs must be designed and implemented. In order to simplify the debugging, the writing of
the Radix-2w EC PM was done in two steps. The Radix-2w recoding was tackled first as it is the
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foundation of the Radix-2w EC PM. Having a functional recoding, the program for the EC PM
was written second.

As the Radix-2w EC PM is performed on-the-fly, the processes for recoding and multiplication
are fundamentally joint. Therefore, a simplification of the EC PM Algorithm 1.5 that focuses on
the recoding part was programmed as shown in Figure 4.5. The simplified multiplication was
achieved through equating points on the EC to simple scalars. Thus, the multiplied point P in
the algorithm was replaced by a scalar p = "1", and the accumulator R, storing the product, was
equated to r = 1× k. Therefore, the value of the input scalar k should equal the value of output
scalar r. The program for the simplified multiplication was written as described for the Radix-2w
EC PM design in chapter 3, section 1.7.2, with the above mentioned modifications. It follows
that eliminating the use of points entails the dismissal of the coordinate conversion process. The
precomputed set of points is represented with an array containing the odd set, shown in eq.(1.31),
in the simplified multiplication. The reason being that the precomputation set is made up of
the products of point P with each value of the odd set, and by simplifying P to p = 1, the
precomputation set is simplified to the odd set.

Figure 4.5: Block diagram of the simplified Radix−2w EC PM.

To ensure functionality of the simplified multiplication program, prior to the realisation of the
Radix-2w method for EC PM, the code must be tested for a large number of scalars k. This is due
to k having a sizable bit-length, therefore, numerous possible values. Given the impossibility of
testing for every value of k, a small randomly generated subset is tested. The testing was performed
through the bench test whose flowchart is shown in Figure 4.6. The function mpz_urandomb()
belongs to the GMP library. It is a Random Number Generator (RNG) that takes 3 parameters:
rop, state, and n, to generate a random number. The variable rop is the randomly generated scalar
of type mpz_t, k in our case. The state variable defines the type of random number generation
used depending on its initialization. The different types of initialization are detailed in the GMP
library documentation in [19]. For our purposes, we used the default initialization, which provides
a compromise between randomness and speed. The value of the variable n specifies the range
that the randomly generated number falls into: 0 to 2n-1, inclusive. The randomly generated k
is processed by the simplified multiplication block called ”Simplified Radix-2w multiplication” to
produce r. k and r are compared to ensure r equals 1 × r for the above explained reason. The
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longer this bench test runs for without error, the less likely there is an issue with the recoding.
Both bench tests ran for approximately 24 hours each without error.

Figure 4.6: Radix-w recoding test bench.

Unlike the simplified multiplication, the Radix-2w EC PM requires a precomputation set of
points. This set is stored in a global array of EC_point type variables. This allows the EC
PM program to have access to the precomputed points’ values. The precomputation process
block shown previously in Figure 3.2 was programmed for the calculation of the precomputation
set, shown in eq.(1.36), as described in eq.(1.37). It takes the point to be multiplied, the EC
parameters, and the size of the window w as inputs. It suffices to call this function at the start of
the EC PM to have all precomputed values available in the global array. Since every precomputed
point m× P corresponds to a single odd value m, this odd value is used to retrieve the required
point.

Given a fixed w, the recoding set is fixed as shown in eq.(1.32). It entails that each pair of
the values m and n correspond to a specific slice value Q. Since Q is directly obtained from the
scalar k, it is viable as index to obtain the appropriate values for m and n from a look-up table.
As previously discussed in chapter 3, the values of w corresponding to NIST-recommended binary
curves B-163 and B-233 is equal to 5, while that corresponding to B-283, B-409, B-571 is equal to
6. Therefore, two look-up-tables were made for each value of w. The tables are written as arrays
where each table is made up of two arrays storing the sets of values for m and n. The arrays are
ordered such that each m, n pair can be retrieved using the same index. An example for w = 3
(as the tables for w = 5, or w = 6, are large) is shown in Table 4.1, where each element in the m
and n arrays are ordered such that they can be accessed by the corresponding value of the slice
Q.
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Q m n
0 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 1 1
0 1 0 1 3 0
0 1 1 0 3 0
0 1 1 1 1 2
1 0 0 0 1 2
1 0 0 1 3 0
1 0 1 0 3 0
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 1 2

Table 4.1: Radix-23 recoding set look up table.

With both the precomputation and recoding set available, the Radix-2w EC PM program
was written according to Algorithm 1.5 as shown in Figure 4.7. The EC PM block is followed by
the DL-Affine conversion block. The DL-Affine coordinate conversion is explained in chapter 3,
section 3.2.2 and the function performing it was written accordingly.

Figure 4.7: Block diagram of the Radix−2w EC PM.
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4.4.2.3 Radix-2w Method for Double Point Multiplication Implementation

Unlike the Radix-2w EC PM, the simultaneous method for Radix-2w EC DPM does not require
the use of the recoding set. Therefore, m and n values are not relevant. Since w is fixed to two, the
w window size limits the slice values to 23 = 8 possible values: 000, 001, 010, 011, 100, 101, 110,
111. Evaluating the values of these slices according to eq.(1.27) yields the values: 0, 1, 1, 2, -2, -1,
-1, 0. An array d containing the values 0, 1, 1, 2, 2, 1, 1, 0 is used to represent the absolute value
of the slices given their binary value. The sign bit (right-most bit) is accounted for independently.
Since the EC DPM involves two scalars u and v, a slice pair (du, dv) (corresponding to the scalars
u and v respectively) is considered instead of a single slice Q.

Similarly to EC PM, a precomputation program was written and must be called before the
start of the EC DPM computation. The result of the precomputation program is an array where
the precomputed set shown in eq.(1.40) is stored. The combinations of the slice-pair values
and their sign-bit indicate the order and operands that the ADD and DBL operations take as
shown in Algorithm 1.6. Thus, a switch statement, taking the slice pair as parameter, was used
to distinguish between cases. Figure 4.9 shows the implementation of the Radix-2w EC DPM.
To implement the Radix-2w EC DPM, similarly to the EC PM, the simplified Radix-2w double
multiplication program was written first, followed by the normal one. Given two scalars u and v
and two points P and Q, the expected result is u × P + v × Q. By setting these points to unit
scalar ”1”, the output is therefore u+ v. In the context of Figure 4.9, the change from EC points
to scalars translates to the removal of the point precomputation and the coordinate conversion
blocks, as well as the replacement of the EC operations by scalar operations of equivalent function.
To accommodate the simplification in the switch statement taking the slice pair (du, dv), the EC
ADD is turned into scalar addition, and EC DBL into scalar squaring. Thus, the simplification
was implemented and subsequently tested, prior to the implementation of the normal Radix-2w
EC DPM. Figure 4.8 shows the bench test done for the simplified multiplication.

Figure 4.8: Radix-2w DPM recoding test bench.
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Figure 4.9: Block diagram of the Radix−2w EC DPM.

4.5 Elliptic Curve Multiplication Blocks Tests

4.5.1 Functionality Validation
As previously mentioned, given the nature of the EC multiplication functions, the results of

these computations can not be validated by direct observation. Instead, they must be compared
to the output of an already working function. These comparisons must also be performed for
a large number of samples due to the size of the keys (the operand of the multiplication). It
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is impossible to test for all key values, but a subsection large enough requires an automated
process for testing. Therefore, finding a ready EC multiplication implementation for testing these
blocks was necessary. We found a limited number of open-source libraries in different programming
languages built for performing multiple precision EC arithmetic. For example, ”SageMath”, which
is a versatile, open-source, mathematical tool. However, to the best of our knowledge, its use of
binary field is limited to polynomial form. Despite writing conversion functions for field elements
to and from polynomial form, it proved difficult to operate on them, and even more so, to automate
the process.

The website ”GF(2m) elliptic curve calculator”[20] provides an online calculator for perform-
ing operations on binary fields and ECs (including PM). Our implementation of EC arithmetic was
tested using this website. In order to test the EC PM and DPM implementations, an automated
process was necessary due to the large number of samples required. A python testing program was
written using Selenium, which is an open source tool used for browser automation. The testing
process (shown in Figure 4.10) consists of two parts:

1. Generating a number of sample scalars ki and their corresponding points Pi(Yi,Xi), where
Pi is the result of the Radix2w EC PM of the generator point G and ki. Both ki and the
coordinates of Pi are stored in a ”result.txt” file in the order k1,Y1,X1,k2,Y2,X2... shown in
Figure 4.10.

2. The ”result.txt” file is used next by the testing program, described in Figure 4.11, to verify
that the results of the EC PM match. This is performed by, first, retrieving ki from the result
file. Then, the multiplication ki × G is computed on the website, the resulting coordinates
are retrieved and stored in variables Xcheck, Ycheck. These values are then compared to the
ones retrieved from ”result.txt”. An error is produced in any case of mismatch. If the end
of the file is reached without errors, an ”Ok” message is delivered.

Figure 4.10: Radix-2w EC PM implementation validation flowchart.
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Figure 4.11: EC PM validation test flowchart.

The same procedure is followed for verifying the Radix-2w EC DPM implementation. The only
difference being the contents of the ”result.txt” file. While EC PM requires a single scalar k and
a single point P (in our case the generator G), EC DPM requires two scalars u and v as well as
two points P and Q. Both EC PM and EC DPM output a single point. Therefore, in the case of
EC DPM both scalars are stored followed by the resulting point.

4.5.2 Elliptic Curve Point Multiplication Comparison
For comparison purposes, the average cost of binary and Radix-2w EC multiplication methods

in terms of ADD operations was computed for a 10,000 randomly generated scalar samples, for
each NIST-recommended binary curve. Figure 4.12 showcases how this comparison between the
binary and the Radix-2w EC PM methods was conducted.

Figure 4.12: Diagram for comparison of binary and Radix 2-w methods for EC PM in terms of
cost in ADDs.
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Table 4.2 shows the results of the comparison carried out between the binary and the Radix-2w
EC PM methods. The results show that the average cost of ADDs increases with the increase of
the scalar size associated with each curve. This increase is natural as longer scalars are split into
more slices, therefore, requiring more EC ADDs and DBLs overall. In addition to the number of
ADDs performed within the multiplication process, the precomputations also take up a number
of 2w−2 ADDs. In the case of the B-233 curve for example, the window size w = 5. Therefore, the
required ADDs for precomputation is equal to 8. Summing the ADD cost for the precomputation
and multiplication processes, the total number of additions is equal to 53.482, which is consistent
with the estimations in the paper [4]. The table shows that the Radix-2w EC PM utilizes less
than half the number of ADDs utilized within the binary EC PM. The reduction is due to the
difference in density for the number representation with 0.19 for the Radix-2w representation and
0.5 for the binary method.

Cost Reduction per NIST-recommended binary curve
EC Multiplication

Algorithm B-163 B-233 B-283 B-409 B-571

Binary PM 81.143 116.485 142.311 204.703 283.395
Radix-2w PM 31.967 45.482 46.962 67.711 94.243

Radix-2w PM Total 39.967 53.482 54.962 75.711 102.243

Table 4.2: Average cost of EC PM for each multiplication method in terms of EC ADDs for each
NIST-recommended binary curve.

The improvement percentage of the Radix-2w EC PM over the binary method was calculated
using formula (4.1), and is shown in Table 4.4.

Improvement Percentage = 1− Total number of ADDs for (compared) PM method

Number of ADDs for (compared to) PM method
(4.1)

Similarly, a comparison between Radix-2w EC DPM and an addition of two Radix-2w PMs was
performed for 10,000 EC DPM operations. The results arranged in Table 4.4 show an improvement
percentage averaging 47.509% in the cost of Radix-2w EC DPM in comparison to the binary EC
PM+PM. The improvement percentage of the Radix-2w EC DPM over the binary method was
also calculated using formula (4.1).

Cost Reduction per NIST-recommended binary curve
EC Multiplication

Algorithm B-163 B-233 B-283 B-409 B-571

Radix-2w DPM 82 117 144 207 288
Radix-2w DPM Total 88 123 150 213 294
Radix-2w PM+PM 64.887 91.918 95.02 136.372 189.521
Radix-2w PM+PM

Total 80.887 107.918 111.02 152.372 205.521

Binary PM+PM 163.907 234.01 283.92 409.983 571.773

Table 4.3: Average cost of EC DPM for each multiplication method in terms of EC ADDs for each
NIST-recommended binary curve.

However, when compared with the addition of two EC PMs, the Radix-2w EC DPM does not
show improvement in terms of ADD cost. For example, for a scalar of bit-length 233, PM method
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uses approximately 92 ADDs, while EC DPM uses 117. Taking the precomputation cost: PM
requires twice the cost of a single point precomputation, making the overall ADDs about 108; EC
DPM requires 6 ADDs for precomputation making the total cost of ADDs 123. The improvement
percentage of the Radix-2w EC DPM over the addition of two Radix-2w EC PM for each EC was
calculated according to formula (4.1), and is shown in Table 4.4. On average, Radix-2w EC DPM
shows a decrease in cost efficiency of 28.144%. The reason the simultaneous Radix-2w EC DPM
costs more ADDs in this case is that the window size for this algorithm was fixed to w = 2. In
the paper [9], the simultaneous algorithm we implemented for Radix-2w EC DPM was not most
optimized for cost. Other algorithms for Radix-2w EC DPM can be found in the same paper with
further cost details.

Cost Reduction Percentage per NIST recommended EC
Compared EC
Multiplication

Algorithms
B-163 B-233 B-283 B-409 B-571

Radix-2w PM
/Binary PM 50.745% 54.087% 61.379% 63.014% 63.922%

Radix-2w DPM
/Binary PM+PM 46.311% 47.438% 47.168% 48.047% 48.581%

Radix-2w DPM
/Radix-2w PM+PM -8.794% -13.975% -35.110% -39.789% -43.051%

Table 4.4: Comparative percentage for cost of operations.

4.6 Elliptic Curve based Cryptographic Protocol Imple-
mentation

4.6.1 Public-Key Implementation
The key generation process is performed by instantiating a KeyPair object. The private

and public keys are generated as attributes as described in Algorithm 2.1. The private key is
generated using the RNG mpz_urandomb() (previously discussed in section 4.3.2). However, this
function produces the same list of pseudo random integer values at every run. This is due to
RNG algorithms using recursive methods starting at a base value. This base value depends on
another integer value called a seed. Having a fixed value for the seed would result in the same
list of generated values. This is not an issue for generating a testing set of scalars for arithmetic
operations. However, in the case of generating a private key, this sort of predictability poses a
security problem. This issue was resolved (on Linux) using getrandom() to randomly generate the
seed value for mpz_urandomb(), subsequently improving the randomness of the multiple precision
random values. The public key is generated through performing an EC PM of the private key and
the generator G using the Radix-2w method from our implementation.

4.6.2 ElGamal Elliptic Curve Encryption Implementation
Using Elliptic Curves for Encryption and Decryption requires a unified mapping table. The

purpose of this table is to assign each character, belonging to the set of characters used in the
exchanged messages, to a point on the EC. Table 4.5 shows the mapping used in our implemen-
tation. The character set used includes letters A,B,...,Z and digits 0,1,...,9. In this method, each
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character is encrypted independently of the rest of the message. The encryption depends solely
on the keys and the character. The Algorithm 2.4 is used to encrypt each character individually.

ASCII
CODE SYMBOL Pm

48 ”0” 1×G
49 ”1” 2×G
50 ”2” 3×G
... ... ...
57 ”9” 10×G
65 ”A” 11×G
66 ”B” 12×G
67 ”C” 13×G
... ... ...
90 ”Z” 36×G

Table 4.5: Lookup table for encryption in ECC.

In order to encrypt an array of characters (a string message), a string parsing loop was utilized.
The end result of this process would be a sequence of points belonging to the EC. The encryption
function stores the coordinates of each point, in sequence, into a file ”ENC_MSG.TXT” that it
creates. To reverse this process, the decryption function must first find the ”ENC_MSG.TXT”
file. Using a loop, it retrieves one point Pc at a time. Each point is utilized to obtain a character
mi, as descried in Algorithm 2.5. The resulting sequence of characters are appended to a file
”DEC_MSG.TXT” that is created by this function. At the end of this process, the original
message should be found in that text file.

4.6.3 Elliptic Curve Digital Signature Implementation
The signature generation program was written as a method6 for KeyPair. This means that

signature generation can only be performed given a key pair. With a message string input, the
implementation of Algorithm 2.2 produces a text file ”MSG_SIG.TXT” containing the signature
(r,s). Required domain parameters are available through the ec_parameters.h file, as previously
mentioned. The hashing funtion SHA256 used was acquired from [21]. On the other hand, the
signature verification program was written as a simple function. As specified in Algorithm 2.3,
this function requires the public key of the other communicating party in addition to domain
parameters. The public keys for both parties must be exchanged prior to using the ECDSA.
The signature verification function expects two files:”DEC_MSG.TXT”, and ”MSG_SIG.TXT”.
These files would contain the message itself and its signature, respectively.

4.7 Joint Elliptic Curve Cryptographic Protocols Imple-
mentation

The programs for Public-Key, ECDSA, and ElGamal protocols were joined in the main func-
tion to achieve a TUI with access to both protocols individually and jointly as showcased in Figure
4.13.

6A procedure (function) associated with a class
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Figure 4.13: Flowchart showing the user interface implemented to access the cryptographic pro-
tocols.

Running the software implementation starts by a public key exchange. First, a key-pair is
generated, then the corresponding public key is displayed. Next, the user is required to enter
the other communicating party’s public key coordinates. Following the key exchange, a menu is
displayed where the user is given a choice to sign and encrypt a message, or decrypt a message
and verify its signature.

Figure 4.14: Produced signature of a message ”MSG_SIG.TXT”.
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Figure 4.15: Produced encryption of a message ”ENC_MSG.TXT”.

Figure 4.16: Produced decryption of an encrypted message ”DEC_MSG.TXT”.

Figure 4.17: Result of the example decryption and signature verification from the TUI view of
software implementation.

Given a message ”HELLO”, the resulting signature is shown in Figure 4.14. This is ac-
companied by the encryption of the message shown in Figure 4.15. Since ”HELLO” contains 5
letters, its encryption is expected to be represented by 5 EC points. This sums up to a total of 10
scalars, since each point has two coordinates (X,Y). The decrypted message file is shown in Figure
4.16 where ”HELLO” was successfully retrieved. From the TUI, the decrypted message and the
verification are printed as shown in Figure 4.17.

4.8 System Implementation on the ZedBoard
In order to run the ECDSA/EC-ElGamal encryption system software on the ZedBoard, a

number of adjustments must first be made. In addition to serial communication, which is used for
the initial key exchange, the use of this software requires reading from, and writing to, text files.
In order to make the transportation of an encrypted message or signature file from the board to
a different machine, using an SD card, possible.

4.8.1 File Manipulation on the ZedBoard
To manipulate files on the SD card of the board, the approach taken was to use the Xilinx

File System (XilFFS) library. This library is provided by Xilinx for their embedded platforms.
It is designed to provide file system support for external storage devices, such as SD cards, in
embedded applications. XilFFS is based on the generic FATFS7 open-source library. It stands for

7A lightweight and portable file system implementation for small embedded systems.
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File Allocation Table (FAT) File System. It supports various file system formats, including FAT12,
FAT16, and FAT32, which are commonly used in SD cards and other removable storage devices.
XilFFS provides a simplified application programming interface for accessing files and directories
on external storage devices connected to the ZedBoard; performing common file operations such
as opening, reading, writing, and closing files, as well as navigating and manipulating directories.
To use the XilFFS library, it needs to be selected in the Board Support Package settings of the
application project in SDK.
A few more steps are necessary and customary no matter the file system operation implemented.
This includes declaring a ′FATFS ′ object. This object serves as the workspace or context that
allows the code to interact with the file system on the storage device, being the SD card. It is
used to manage and keep track of the overall file-system, including information such as its type,
free space, and various file-system parameters. A ′FIL′ object is initialized. ′FIL′ is a structure
that represents an individual file within the file-system. It is used to handle access and operations
specific to the file, such as opening, closing, reading, and writing. It can be thought of as a handle
or reference to a specific file in the file-system. The next step is to mount the file system on the
logical drive using the ′f_mount′ function. This serves to establish a connection between the file-
system and the storage device on which it is located, allowing subsequent file system operations
to be performed on the mounted device.

The two main operations needed in this implementation are:

1. Reading a text file:
SD_read is a custom function written using the FATFS library, designed to read the con-
tents of a text file located on the ZedBoard’s SD card. It takes two parameters: FileName,
which is the name of the file to be read, and buffer_size, which specifies the size of the
buffer in which the data read is stored. The FileName parameter is converted to a C-style
string using the c_str function. This is because the f_open function, used to open the file
as the name suggests, expects a constchar∗ argument for the file name. A character array,
with the specified buffer_size, is also declared and used to store the data read from the
specified file. The latter is then opened in read mode, and a loop is executed to read the
file data using the f_read function. This is done by repeatedly reading data from the file,
using the f_read function, storing it in the character array, and appending it to the string
type buffer. Once the reading is complete, the file is closed using the f_close function, and
the string type buffer containing the data from the file is returned.

2. Writing on a text file:
SD_write is a custom function written using the FATFS library, designed to write on a text
file located on the ZedBoard’s SD card. It takes two parameters: FileName, and constchar∗
data representing the content to be written to the file. The function opens the file specified
by the FileName parameter using f_open(&fil, F ile_name, FA_CREATE_ALWAY S
| FA_WRITE | FA_READ). The FA_CREATE_ALWAY S flag ensures that if the
file exists, it will be overwritten. If the file doesn’t exist, a new file will be created. The
FA_WRITE and FA_READ flags indicate that the file should be opened for both writing
and reading. The data provided by the data parameter is then written to the file using
f_write. Finally, the function closes the file and displays a message indicating that the file
has been written.

The integration of these two functions into the ECDSA/EC-ElGamal encryption system imple-
mentation is depicted in Figure 4.2.
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General Conclusion

This project focused on the implementation of ECDSA using the Radix-2w method for EC
PM and DPM on an ARM processor, in the context of NIST recommended binary elliptic curves.
The GMP library integer data type was used to achieve multiple precision computations in our
implementation of the binary field functions. The EC ADD and DBL operations were built
upon our binary field functions with the EC points represented in Projective DL-coordinates.
Subsequently, a binary EC PM function was written for comparison purposes, followed by the
Radix-2w EC PM and EC DPM functions which were later utilized in our cryptographic system.
Finally, the Public-key, ECDSA and EC-ElGamal protocols were implemented as independant
software programs which were joint for the TUI lastly.

In order to test the functionality of the Radix-2w EC PM and EC DPM, automated testing was
needed due to the large number of samples required. The calculator website ”GF(2m) elliptic curve
calculator”[20] was used in the testing to validate the computations. Following this, the cost of the
binary PM, Radix-2w EC PM and DPM were compared in terms of ADDs. The average number
of ADDs used for each multiplication was computed for a sample of 10,000 randomly generated
integers for each NIST recommended binary field elliptic curve. We found that the Radix-2w EC
PM method is more efficient than the binary method, averaging 58.63% improvement in the cost
of ADDs for the ECs B-163, B-233, B-283, B-409, and B-571. The number of ADD operations
incurred during the Radix-2w EC PM process is consistent with estimations in the paper [4]. As
for the Radix-2w EC DPM, it was compared to the cost of the ADD of two EC PM multiplications.
When compared to the ADD of two binary EC PM multiplications, it proved to be 58.63% more
cost efficient than the binary (averaging for the same sequence of ECs). However, when compared
to the the ADD of two Radix-2w EC PM multiplications, the EC DPM was found to be 28.14%
less cost efficient. Meaning, the Radix-2w EC DPM costs more than the sum of two Radix-2w
EC PMs. These results are due to the Radix-2w EC DPM method having a fixed w = 2 that
is not most optimized for cost, which is consistent of the findings in paper [9]. The results of
said testing show that both the Radix-2w EC PM and DPM methods demonstrate the expected
computational efficiency compared to the binary method. The elliptic curve joint cryptographic
protocol was then implemented for both PCs and the zedboard. The signatures and encrypted
messages are successfully produced and processed by both types of machines: using the TUI for
PCs, and serial communication for the zedboard. The resulting files containing the signature and
the encrypted message are transferred between communicating devices manually, through the SD
card, and placed appropriately for reading and writing.

This project successfully achieved its primary objective, however, it would benefit from a num-
ber of improvements. First, the binary field squaring was implemented as a simple multiplication
in our squaring function. This can be improved by implementing existing optimization algorithms
for this function. Second, this system exclusively runs on the NIST recommended binary elliptic
curves. The implementation of prime field operations along with the inclusion of the parameters
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of their corresponding curves would enhance the versatility and applicability of the system. Third,
the use of a multiple precision library to ensure the integrity of the large values of the scalars leaves
the memory usage ambiguous. Hence, it could pose a problem in memory constrained devices.
The issue could be improved by using a different method for achieving the desired precision in the
computations (i.e., array representation for large scalers). In addition, unlike the signature file
containing exactly 2 values independently of the message, the encrypted message file’s size is not
fixed thus may posing problems concerning memory and speed with memory constraint devices.
Lastly, since our implementation deals with serial communication and text files, it would benefit
from a more efficient method for data transfer. This could be performed through the integration
of TCP-IP protocols for example. These future improvement suggestions would enable broader
and more efficient applications for the system.
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