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Abstract

Given the non-linear characteristics of photovoltaic modules (PV) and
their dependency on operating conditions, it becomes crucial to accurately
forecast their behavior under varying temperatures and irradiance. As the
demand for this technology continues to grow, it is imperative to develop
effective methods for precisely extracting the intrinsic parameters of these
modules. To help in design and assess the performance of PV panels, a de-
veloped model is used. The model is none other than an equivalent electrical
circuit with basic components (a source, resistors, and one diode or more).
Single-diode and double-diode models are the most popular in the literature.
In this project, these models are used to model the bifacial photovoltaic cell.
Equivalent circuit parameters must be obtained, from either a set of exper-
imental data or a manufacturer’s data sheet, in order to construct a model.
The aim is to obtain values that yield an accurate model. The problem is
tackled as an optimization one, where the sum of Root mean square error
(RMSE), between the experimental and the calculated data, and the power
error around the maximum power point (MPP) is the function to be optimized.
Optimization is achieved using two different meta-heuristic algorithms: Ma-
rine Predators Algorithm (MPA) and Snake Optimizer Algorithm(SOA). The
aforementioned algorithms are adapted to extract the bifacial PV parameters
(af , I0f , Iphf , Rpf , Rsf , ar, I0r, Iphr, Rpr, Rsr) using MATLAB.
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General Introduction

The world is experiencing rapid development, accompanied by an ever-increasing
demand for power[1]. However, meeting this demand often comes at the cost of in-
creased pollution. Fortunately, there is a growing interest in environmentally friendly
alternatives for electricity generation. Among these alternatives, photovoltaics (PV)
have gained significant attention due to their ability to convert solar energy into
electricity. As the cost of PV panels decreases and their efficiency improves, more
individuals and companies are investing in this renewable energy source.
Solar power offers a dependable and consistent energy source due to the permanent
and stable presence of the sun. This renewable energy solution has gained recogni-
tion as a clean and nonpolluting alternative in response to the urgent global warming
issue. Furthermore, the long operational lifespan of solar photovoltaic (PV) instal-
lations, lasting up to 30 years or more with minimal maintenance[2], significantly
reduces operating costs and renders them insignificant when compared to conven-
tional power technologies. The essence of solar power lies in the conversion of light
into electricity through the utilization of semiconducting materials that exhibit the
photovoltaic effect. This conversion occurs at the fundamental level of a PV system,
namely the PV cell, which serves as the basic building block for harnessing solar
energy.
In this study, the focuse is on the bifacial solar modules which absorb sunlight from
both sides (front and back). Bifacial solar cells can reduce the cell cost in a pho-
tovoltaic system since their utilization rate is higher, it is expected that the use of
bifacial solar cell modules will become wider since they have better performance and
better cost. Bifacial panels outperform traditional one-faced panels throughout the
year,under ideal conditions, bifacial panels can produce (32%) more energy [3].
The performance of photovoltaic systems relies heavily on the specific operating
conditions under which they are deployed. Variations in temperature and irradi-
ance, influenced by seasonal and geographical factors, can lead to fluctuations in
the electrical output.
In response, researchers have dedicated efforts to developing appropriate models for
simulating and predicting the behavior of photovoltaic (PV) cells and modules under
various circumstances. These models play a crucial role in the design, manufactur-
ing, and evaluation of PV systems. One essential aspect for ensuring the reliability
of these models lies in accurately estimating their parameters. In this project, our
focus is on extracting the parameters of the single diode model for bifacial mod-
ules under different irradiation levels. Obtaining precise parameter values is vital
for achieving reliable predictions and assessments, ultimately enhancing the overall
performance and efficiency of PV systems. Through this work the Marine Predators
Algorithm and the Snake Optimizer Algorithm will be used.
The project is structured as follows:

Chapter One provides a comprehensive background on the principles and con-
struction of photovoltaic systems. It also highlights the significance of PV panel
parameters and addresses the challenges associated with this technology.

Chapter two focuses on the bifacial cells, their structure, and working principle
along with an explanation of the mathematical and electrical model using the diode
model. It also mentions both advantages and problems facing this technology.

Chapter three explores the objective function to be minimized,gives a detailed
description for the optimization algorithms employed to extract the intrinsic ten

1



parameters of the single-diode model for bifacial cells.
Chapter four shows the result of applying the two used algorithm at identifying

the ten single diode model parameters at each of the different irradiation levels,
along with a discussion of the obtained results and a brief comparison between the
two algorithms.
The report culminates with a general conclusion including proposals for future work.

2



Chapter One: Photovoltaic System Principles
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1.1 Introduction

Solar energy is regarded as a prominent and abundant source of renewable energy,
holding great potential for facilitating a more environmentally sustainable future.
Its benefits include being a freely available energy resource that can be harnessed
through photovoltaic panels, contributing to the reduction of air pollution. However,
it is essential to acknowledge the existing disadvantages associated with solar energy,
which will be discussed in the latter part of this chapter.

The first chapter of this research provides a comprehensive overview of solar
energy, delving into its fundamental principles and exploring the operation of pho-
tovoltaic cells. Furthermore, the chapter presents an analysis of the characteristics
and parameters of solar cells, along with an examination of the conventional models
employed in the study of photovoltaic panels.

1.2 Photovoltaic Term

The term ”Photovoltaic” originates from the combination of the words ”photo,”
meaning light, and ”voltaic,” referring to voltage. It is a technology that directly
converts solar energy into electricity and is commonly abbreviated as PV. This
process involves the use of semiconductor devices, also known as solar cells, which
convert sunlight into direct current (DC) electricity. PV cells are typically arranged
in modules or arrays, and they have various applications, ranging from charging
batteries and powering small electronics like calculators to providing electricity to
homes. Additionally, PV systems can generate alternating current (AC) if equipped
with inverters, which convert DC power to AC power.

1.3 Photovoltaic Cells

1.3.1 Structure

The fundamental composition of a photovoltaic (PV) cell comprises multiple layers
of semiconductor material, predominantly silicon, which is widely employed in PV
cell fabrication.

The uppermost layer of the cell consists of a thin anti-reflective coating, fa-
cilitating enhanced absorption of sunlight. Beneath lies a layer of p-type silicon,
a semiconductor material characterized by positively charged ”holes” representing
electron deficiencies. Adjacent to the p-type layer lies the depletion region or p-n
junction, which serves as a thin region of separation between the p-type and n-type
layers.

The n-type layer, comprising another semiconductor material, houses freely mov-
able, negatively charged electrons. The interface between the p-type and n-type
layers is where the photovoltaic effect takes place, enabling the conversion of light
energy into electrical energy.

Metal contacts positioned at the top and bottom of the PV cell enable the
extraction of the generated electrical energy. When sunlight impinges upon the
cell, electrons are dislodged from the atoms within the material, thereby instigating
an electric current that can be harnessed to power electronic devices or stored in
batteries.
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Figure 1.1: Structure of a photovoltaic

1.3.2 Technologies

PV technology has continuously advanced and will continue to do so in the future,
leading to the emergence of many types of PV cells[4].

• Monocrystalline silicon cells
Monocrystalline silicon cells, which are made of pure silicon crystal with a
continuous lattice and almost no defects, have been around the longest and
offer high efficiency in light conversion (up to 22-24%). However, they are
expensive due to the complicated manufacturing process, and they are also
brittle[5].

• Polycrystalline cells
are made of multiple grains and plates of silicon crystals and have lower effi-
ciency (12%) but are less expensive to manufacture[5].

• Amorphous silicon cells
are produced by depositing silicon film onto substrate glass, resulting in less
silicon usage and lower conversion efficiency (6%)[5].

• Acadmium telluride cells
have become popular due to their lower cost per kW-hour, but they have a
limited supply of tellurium and potentially toxic impact of cadmium at the
stage of disposal. Copper indium gallium selenide cells do not contain toxic
cadmium and have higher efficiency (just under 20%), but mass production
has been challenging.[4]

• polymer and organic PV cells
are lightweight and flexible, but less efficient (about 1/3 of a typical Si cell
efficiency) and have shorter service life.[4]
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While these are the main types of PV technology, research and innovation will
lead to the emergence of new and better types of PV cells in the future. The
breakthroughs in the PV industry are dependent on developments in other fields
such as chemistry.

1.3.3 PV Effect

A solar cell is essentially a semiconductor diode that spans a large area. This diode is
created by adding impurities, or ”doping,” into the semiconductor crystal to form a
P-N junction. The P-region is doped with boron atoms, while the N-region is doped
with phosphorus atoms. This doping process creates an excess of free electrons in
the N-region and a surplus of free holes in the P-region.

Figure 1.2: Photovoltaic effect diagram

When photons strike the PN junction, they generate pairs of opposite electri-
cal charge carriers (electrons and holes). These carriers are separated due to the
presence of the PN junction and move in opposite directions, with electrons moving
toward the N-region and holes moving toward the P-region. This creates a voltage
across the junction, which leads to the formation of a stable electric cell that can
produce a current and power output[6].

The current and power output of a solar cell depends on its efficiency, size, and
the intensity of sunlight striking its surface. Under open-circuit, no-load conditions,
a typical silicon PV cell produces about 0.5-0.6 v DC, which may not be sufficient
to charge batteries or run motors. Due to this, they are available in the form of
modules or panels to provide sufficient voltage and current for real life applications;
as shown in the next section[6][7].
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1.3.4 Types of PV devices

Since a single PV cell can only generate a limited amount of electricity, and so to
increase the electricity collected to a point where it is enough to use in everyday
applications, a number of cells can be interconnected in a sealed, weatherproof
package called a panel/module. So, when multiple solar cells are connected as an
integrated group, all oriented in one plane, a solar photovoltaic panel or module
is created. In general, it can be said that the number of series cells indicates the
voltage of the module, whereas the number of parallel cells indicates the current.
To further increase the collected voltage and current, PV modules can be wired in
series and parallel into what is called a PV array[8].

Figure 1.3: Cell,Module,Array[8]

1.3.5 The Electrical Characteristics of the PV Cell

PV module manufacturers provide the electrical properties of their products based
on specific conditions called standard test conditions (STC). These conditions are
established with a cell temperature of 25°C, irradiation level of 1000 W/m2, and air
mass value represented by AM = 1.5, which measures the impact of air mass on the
spectral distribution and intensity of sunlight. Under these conditions, the current
versus voltage relationship of a PV panel working uniformly can be illustrated using
the following curves :

Figure 1.4: I-V and P-V curve of a photovoltaic cell
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i. I-V P-V Curves

The I-V curve of a PV module displays the potential combinations of current and
voltage outputs. The power generated in a DC electrical circuit is the product of
current and voltage :

P (Watts) = I (Amperes) × V (Volts) (1.1)

When there is no resistance in the circuit, a solar panel produces its maximum
current, known as the Short Circuit Current (Isc).
Conversely, the Open Circuit Voltage (Voc) is obtained when there is infinite resis-
tance, resulting in zero current. The Isc and Voc occur at opposite ends of the load
resistance range and are represented on the I-V curve, with current on the vertical
axis and voltage on the horizontal axis.

The power output can be calculated at any point on the I-V curve, with zero
output at both the Isc and Voc points. The Maximum Power Point (MPP) occurs
at the knee of the I-V curve, where maximum power output is obtained, designated
by Vmpp and Impp.

To model a PV cell, the three important points are: the maximum current at
zero voltage, the maximum voltage without a charge, and the maximum power out-
put.

ii. Fill Factor

The maximum current and voltage that a photovoltaic cell can generate are the
short-circuit current and open-circuit voltage, respectively. However, at these points,
the power output of the solar cell is zero. To express the maximum power produced
by a solar cell in terms of Voc and Isc, a parameter known as the fill factor (FF) is
used. FF is defined as the ratio of the maximum power from the solar cell to the
product of Voc and Isc[9].

The fill factor is directly affected by the values of the cell’s series, shunt resis-
tances and diodes losses. Increasing the parallel resistance (Rp) and decreasing the
series resistance (Rs) lead to a higher fill factor, thus resulting in greater efficiency,
and bringing the cell’s output power closer to its theoretical maximum. The reason
for which the fill factor is calculated by comparing the maximum power to the theo-
retical power (PT) that would be output at both the open circuit voltage and short
circuit current together.

FF = ImppVmpp

IscVoc

(1.2)

iii. Efficiency

Solar cell efficiency is a commonly used parameter to compare the performance
of different solar cells. Efficiency is defined as the ratio of the output power, Pout,
from the solar cell to the solar power input, Pin, into the PV cell. Since the PV
cell can operate up to its maximum power, Pout can be taken as Pmax. Pin is
determined as the product of the irradiance of the incident light with the surface
area of the solar cell [9]. The efficiency not only reflects the performance of the solar
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cell but also depends on the spectrum and intensity of the incident sunlight and the
temperature of the solar cell. Therefore, the conditions under which efficiency is
measured must be carefully controlled to compare the performance of one device to
another. This is typically done under STC conditions. The efficiency is calculated
using the following equation:

η = VocIscFF

Pin

(1.3)

1.4 PV models

1.4.1 Ideal Model

Figure 1.5: Ideal solar cell model

With the presence of irradiation, the p–n junction absorbs the photon from in-
cident light and generates electron–hole pairs (or carriers) as previously explained
in the photovoltaic effect section. the resulting electrical current known as the pho-
tocurrent, Iph. The inclusion of Iph into the Shockley equation forms an elementary
description of an illuminated cell that comprises of a current source connected in
parallel to a p–n junction diode. This is known as the ideal model, as shown in
Fig1.5. The output current of the cell is given by

I = Iph − ID (1.4)

Where ID is the diode current. :

ID = I0

[
exp

(
V

aVt

)
− 1

]
(1.5)

where I0 is the reverse diode saturation current and V is the PV model outputted
voltage. Moreover, n denotes the ideality factor of the diode and Vt is thermal
voltage which is obtained as follows :

Vt = kT

q
(1.6)

I = Iph − I0

[
exp

(
V

aVt

)
− 1

]
(1.7)
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1.4.2 Single Diode Model

Figure 1.6: One diode solar cell model

While the solar cell can be considered as ideal in theory, in reality, it deviates
from the ideal characteristics. To provide more accurate analysis, better models have
been developed. Equation (1.7) is not capable of accurately describing the behavior
of a PV cell. The single-diode model shown in Figure 1.6 is a more practical and
improved model that incorporates series and parallel resistances in the previous
model. While this model takes more computational time, it produces more precise
results. The output current is given by eq (1.8).
By applying KCL :

I = Iph − ID − Ip (1.8)

I = Iph − I0

[
exp

(
V + IRs

aVt

)
− 1

]
− V + IRs

Rp

(1.9)

1.4.3 Double Diode Model

Figure 1.7: Two diode solar cell model

This model is a modified version of the previous one by adding a second diode
in parallel with the first one as shown in Fig 1.7. The additional diode stands for
the effect caused by the recombination that takes place in the space-charge zone
by introducing another diode in parallel. However, the two-diode model makes
computations longer despite its accuracy. Eq (1.11) in this case gives the output
current:

I = Iph − ID1 − IDš − Ip (1.10)

I = Iph − I01

[
exp

(
V + IRs

a1Vt

)
− 1

]
− I02

[
exp

(
V + IRs

a2Vt

)
− 1

]
− V + IRs

Rp

(1.11)
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1.5 PV Model Parameters

1.5.1 Photo-Current Iph

Photo-current pertains to the electric current that ensues as a consequence of light
absorption within the semiconductor material.

The amplitude of the photo-current relies on various factors, including the inten-
sity and wavelength of the incident light, the characteristics of the material itself,
and the existence of external influences like applied voltage or temperature.

1.5.2 Diode Saturation Current I0

The saturation current is a combination of the generation current caused by thermal
generation of electron-hole pairs within the depletion region of the diode and the
diffusion current due to minority carriers in the n and p regions diffusing across the
depletion region. Although the saturation current is voltage independent, it does
depend on temperature since both the current contributions depend on thermally
stimulated carriers[10].

1.5.3 Ideality Factor a

The ideality factor (a) is a unitless parameter. It is a measure of how closely the
diode follows the ideal diode equation. It accounts for the different mechanisms
responsible for moving carriers across the junction. The value of n equal to one
means the transport process is purely diffusion, and a value equal to two if it is
primarily recombination in the depletion region. The parameter n represents one of
parameters to be computed in our work. The ideality factor appears in the diode
current component of equation.

1.5.4 Series Resistance Rs

The presence of series resistance in a solar cell can be attributed to three primary
factors. Firstly, it arises from the flow of current through the emitter and base
regions of the solar cell. Secondly, it arises from the contact resistance between
the metal contact and the silicon material. Lastly, it arises from the resistance
encountered at the top and rear metal contacts. The primary consequence of series
resistance is the reduction of the fill factor, although excessively high values can also
lead to a decrease in the short-circuit current.

It is important to note that series resistance does not impact the solar cell at
open-circuit voltage, as the overall current flow through the cell, including the se-
ries resistance, is negligible. However, as the operating voltage approaches the
open-circuit voltage, the I-V curve of the solar cell is significantly influenced by
the presence of series resistance. A straightforward approach to estimating the se-
ries resistance of a solar cell involves determining the slope of the IV curve at the
open-circuit voltage point[11].

1.5.5 Shunt Resistance Rsh

The occurrence of power losses in solar cells due to the presence of a shunt resistance
(Rp) is commonly attributed to manufacturing defects rather than deficiencies in
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solar cell design. The shunt resistance provides an alternative pathway for the light-
generated current, resulting in a decrease in the current flowing through the solar
cell junction and a reduction in the solar cell voltage. The impact of the shunt
resistance is particularly noticeable under low light conditions, where there is a
diminished light-generated current, leading to a higher loss of current to the shunt.
Furthermore, the effect of a parallel resistance becomes more prominent at lower
voltages when the effective resistance of the solar cell is elevated.

1.6 Effect of Temperature

Solar energy encompasses both light and heat components, and although the amount
of solar energy reaching a PV panel remains unaffected by temperature, its conver-
sion into electrical energy is influenced. With rising temperature, the band gap
energy diminishes, consequently impacting the semiconductor parameters. This re-
duction in the band gap prompts an elevation in the energy of electrons, facilitating
easier bond dissociation with a reduced energy requirement to transition from a lower
to a higher energy state. Among the parameters of a solar cell, the open circuit volt-
age is primarily impacted by temperature increases. The impact of temperature on
the I-V curve is illustrated in the figure presented below[12].

Figure 1.8: I-V curves depending on temperature[12]

1.7 Effect of Light Intensity

The PV cell parameters are highly sensitive to changes in light intensity. Even a
slight variation in light intensity can affect the short circuit current, the open circuit
voltage, the fill factor, the efficiency, and the impact of both the series and shunt
resistances. The standard test light intensity is 1 kW/m2 or AM 1.5. Daily variations
in light intensity are common and can have significant impacts on solar cells. At
low light levels, the shunt resistance plays a more important role. As light intensity
decreases, the current in the PV cell also decreases, causing its equivalent resistance
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to approach the value of the shunt resistance. When these two resistances become
equal, the amount of current flowing through the shunt resistance increases, leading
to an increase in the fractional power loss caused by the shunt resistance. Therefore,
on a cloudy day, a solar cell with a high shunt resistance retains a greater fraction
of its original power than a solar cell with a low shunt resistance.

Figure 1.9: P-V curves depending on irradiation

1.8 Conclusion

Solar energy, a renewable source, possesses the ability to convert sunlight into elec-
tricity through the utilization of photovoltaic panels. While this conversion process
may exhibit certain drawbacks in specific scenarios, solar energy boasts a multitude
of advantages over conventional energy sources such as oil and coal. Consequently,
it is widely regarded as the foremost energy source for the future sustainability of
our planet.

This chapter has provided an overview of the theoretical process involved in the
conversion of solar energy and has explored the various parameters of photovoltaic
panels and their impact on power output. Additionally, the concept of efficiency has
been discussed, highlighting its dependence on external conditions such as temper-
ature and light intensity, as well as on specific parameters.

To model the photovoltaic cell and determine its parameters, equivalent circuits
have been employed. Several of these circuits have been introduced in this chap-
ter, including the single diode model and the double diode model. Mathematical
relationships describing the current-voltage characteristics have been derived from
these circuits. However, solving these equations presents challenges due to their
inherent nonlinearity. For this reason,researchers have endeavored to develop the
global algorithms aimed at identifying the required parameters.
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2.1 Introduction

The increasing demand for renewable energy sources has led to the development of
new and innovative solar technologies. One such technology is bifacial solar cells
which differ from traditional monofacial solar cells in that they can generate elec-
tricity from both the front and back sides of the cell. This allows them to harness
sunlight reflected from the surrounding environment.

this chapter will provide a comprehensive overview of the design and materials
used in bifacial solar cells, as well as the principles underlying their operation. By
investigating the model parameters of bifacial solar cells, a deeper understanding of
their performance characteristics and the factors that influence their efficiency will
be provided. Furthermore, this chapter will explore the various structures and con-
figurations employed in bifacial solar cells, highlighting their potential for enhanced
energy generation through the utilization of both incident and reflected light.

2.2 Bifacial Solar Cells

Bifacial solar cells are made of crystalline silicon, just like traditional solar cells.
However, unlike traditional solar cells, bifacial solar cells have a transparent con-
ductive oxide (TCO) layer on the backside of the cell, which allows light to pass
through and be absorbed by the silicon[13]. This means that bifacial solar cells can
generate electricity not only from the direct sunlight that hits the front side of the
cell but also from the diffuse and reflected sunlight that hits the backside of the cell.

Figure 2.1: Bifacial solar cells

2.3 Bifacial Cells Structure

Bifacial solar cells have a similar basic structure to traditional solar cells, with some
additional features to enable light absorption from both the front and back sides.
The typical structure of a bifacial solar cell includes:

• Front Contact
The front contact of the bifacial solar cell is usually a transparent conductive
oxide (TCO) layer, such as indium tin oxide (ITO) or fluorine-doped tin oxide
(FTO). This layer allows sunlight to pass through while providing an electrical
connection and collecting the current generated in the front side of the cell[14].
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• Front-Side Semiconductor
The front side of the bifacial solar cell consists of a semiconductor material,
typically crystalline silicon (c-Si), which is widely used in solar cell technology.
The front side is doped to create a p-n junction, which facilitates the separation
and flow of photogenerated carriers (electrons and holes) when exposed to
sunlight[15].

• Front-Side Passivation Layer
To reduce surface recombination and improve the efficiency of the front side, a
passivation layer is often applied. This layer, commonly made of silicon nitride
(SiNx) or silicon oxide (SiOx), helps to minimize the loss of charge carriers at
the surface of the front-side semiconductor[14].

• Back-Side Semiconductor
The back side of the bifacial solar cell also consists of a semiconductor mate-
rial, typically lightly doped to enable better light transmission. The back-side
semiconductor can be the same material as the front side or a different ma-
terial optimized for back-side absorption, such as amorphous silicon (a-Si) or
microcrystalline silicon (c-Si)[15].

• Back Contact
The back contact of the bifacial solar cell is usually a conductive layer that
allows for electrical collection of the current generated on the back side. It
is often made of a metal grid or a thin metal film, such as aluminum (Al) or
silver (Ag), to provide good electrical conductivity[14].

• Encapsulation
Bifacial solar cells are typically encapsulated to protect them from environ-
mental factors such as moisture, dust, and mechanical stresses. Encapsulation
layers can consist of a front and back encapsulant, usually made of a trans-
parent polymer material such as ethylene-vinyl acetate (EVA) or encapsulant
sheets, to provide mechanical strength and ensure long-term durability.

Figure 2.2: Bifacial solar cell structure

It’s important to note that the specific structure and materials used in bifacial solar
cells can vary depending on the manufacturing process and the desired performance
characteristics. Different technologies, such as monocrystalline, polycrystalline, or
thin-film, can be adapted to bifacial configurations to achieve optimal energy gen-
eration from both sides of the cell
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2.4 Bifacial Cells Working Principle

Bifacial solar cells work on the principle of capturing sunlight not only from the front
side but also from the back side of the cell, increasing the overall energy generation.
The key working principle of bifacial solar cells can be summarized as follows:

• Front-Side Absorption
Like traditional solar cells, the front side of a bifacial solar cell is designed
to absorb sunlight. It consists of a semiconductor material, such as silicon,
with a p-n junction that generates an electric current when illuminated by
photons. Sunlight incident on the front side is partially reflected, absorbed, or
transmitted through the cell.

• Back-Side Absorption
Bifacial solar cells have an additional feature that allows them to capture
sunlight from the back side as well. The back side of the cell is usually designed
with a transparent or lightly doped material that allows light to pass through.
When sunlight reaches the back side, it can be reflected or transmitted through
the front side, or it can interact with the active material on the back side,
leading to additional current generation.

• Enhanced Light Capture
Bifacial solar cells can benefit from enhanced light capture due to various
mechanisms. The back side can receive sunlight reflected from surrounding
surfaces, such as the ground or nearby structures, increasing the overall energy
yield. Moreover, diffused light that enters the cell from all directions can reach
the back side, enabling energy generation even under non-optimal sun angles
or cloudy conditions.

• Electrical Connection
The front and back sides of the bifacial solar cell are electrically connected
in parallel or series to ensure proper current flow and maximize the overall
energy output. The electrical contacts collect the current generated by both
sides and deliver it to the external load or power conversion system.

• System Design Considerations
To optimize the performance of bifacial solar cells, several factors must be con-
sidered during system design. These include the angle of incidence of sunlight,
cell orientation and tilt, ground albedo (reflectivity), and shading effects. By
carefully considering these factors, the energy yield of bifacial solar cells can
be maximized.

Overall, the principle behind bifacial solar cells revolves around capturing sunlight
from both the front and back sides of the cell, thereby increasing the total energy
generation compared to traditional solar cells. This feature makes bifacial solar
cells well-suited for certain applications, such as ground-mounted installations or
building-integrated photovoltaics, where they can take advantage of reflected and
diffused light to boost overall efficiency[16].
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2.5 Bifacial Solar Cell Types

• Passivated Emitter and Rear Contact (PERC)
The PERC cell configuration involves the deposition of a layer of Al2O3 on the
backside of the wafer, followed by the deposition of SiN over the Aluminum
Oxide layer to establish a passivation layer. Subsequently, laser-induced holes
are created in this passivation layer to generate localized Back Surface Field
(BSF). Finally, a metal contact is applied on the backside of the wafer, resem-
bling the process used in standard poly-Si cells[17].

Figure 2.3: Bifacial PERC

• Passivated Emitter and Rear Totally Diffused (PERT)
PERT cells employ a co-diffusion technique that simultaneously forms the
emitter and the back surface field, effectively mitigating the emergence of
critical shunts at the device edges[18].

Figure 2.4: Bifacial PERT

• Passivated Emitter and Rear Locally Diffused (PERL)
PERL cells are developed based on the PassDop methodology, wherein the
rear surface undergoes localized diffusion with phosphorus to establish a back
surface field (BSF)[18].
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Figure 2.5: Bifacial PERL

• Heterojunction with Intrinsic Thin layer (HIT)
HIT cells incorporate a thin intrinsic layer sandwiched between a p-type and
an n-type layer, resulting in reduced recombination losses[19].

Figure 2.6: Bifacial HIT

• Interdigitated Back Contact (IBC)
IBC cells feature both front and back contacts positioned on the backside of the
cell, effectively minimizing shading losses and enhancing overall efficiency[20].

Figure 2.7: Bifacial IBC
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The table below shows the efficiency of each technology [21] along with their bifa-
ciality factor or coefficient which represents a measure of the ability of a solar cell to
generate electricity from both sides. It is calculated by dividing the power generated
by the rear side of the cell by the power generated by the front side of the cell. The
higher the bifaciality coefficient, the more efficient the solar cell is at generating
electricity from both sides[22].

Bifacial solar cell technology Front-side efficiency Rear-side efficiency Bifaciality factor

PERC 21.2 - 22.7% 15.4-18.6% 69-82%

PERL 19.8% 17.6% 89%

PERT 18.6 - 23.2% 15.3-18.6% 80-87.5%

IBC 20.9 - 22% 15.6-18.3% 74-83%

HIT 23% 22% 95%

Table 2.1: Bifacial Solar Cell Technologies[20]

2.6 Modelling Bifacial Solar Cells
Modelling bifacial solar cells involves developing mathematical models and simu-
lation techniques that accurately represent the physical and electrical behavior of
these cells. These models take into account various factors such as cell structure, ma-
terials, optical properties, and electrical parameters. By simulating the operation of
bifacial solar cells under different environmental conditions, modelling provides valu-
able insights into their performance, efficiency, and energy yield. As seen previously
on the first chapter,the diode model parameters can fully describe the behaviour of
photovoltaic cells.In this section,the electrical model mentionned previously will be
applied on the bifacial solar cells (to simplify the equation and simulation the single
diode model was chosen)[23].

Figure 2.8: Equivalent circuit for a bifacial solar cell[23].
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To establish a model for bifacial module, two single diode models were considered
each for front and rear side IV characterization of the module. Two single diode
models are mounted in parallel to represent the bifacial technology and the influence
of each side on the other. By applying KCL on both sides the same way as Eq (1.8)
:

If = Iphf − IDf − Ipf (2.1)
Ir = Iphr − IDr − Ipr (2.2)

Similarly the equation is the same as Eq.9 for the front and rear currents. The
total current of a bifacial solar cell can be represented by the sum of the current
(If ) generated by the absorbed light from the front, and the current (Ir) generated
by the absorbed light from the rear [23], as shown in Fig 2.8 with the following
equation:

Icell = If + Ir (2.3)

I = Iphf − I0f

[
exp

(
V + IRsf

nfVt

)
− 1

]
− V + IRsf

Rpf

+

Iphr − I0r

[
exp

(
V + IRsr

nrVt

)
− 1

]
− V + IRsr

Rpr

(2.4)

The parallel connection of the front and rear single diode models signifies the
simultaneous operation of both sides in generating electricity. It acknowledges that
the rear side can receive reflected and diffuse light from the surroundings, thereby
contributing to the overall energy generation of the module. The influence of each
side on the other is taken into account, allowing for a more comprehensive analysis
and accurate prediction of the module’s performance.

2.7 Irradiation Effect on Bifacial Solar Cell

The effect of irradiation on bifacial solar modules differs from that on traditional
ones. They have the unique capability of capturing light from both the front and
back sides,as mentionned previously, allowing them to generate electricity from both
direct sunlight and reflected or diffuse light.
Here are some of the key impacts :

Increased Energy Generation: Higher light intensity, especially when combined
with highly reflective surfaces (e.g., snow, white ground), can significantly enhance
the energy generation of bifacial modules. The additional light captured from the
rear side can contribute to increased power output.

Rear Side Contribution: Bifacial modules can generate a considerable portion of
their power from the rear side illumination, which is reflected or scattered light. As
light intensity increases, more light is available for capture on the rear side, further
contributing to the overall power output.

Albedo Effect: Albedo refers to the reflectivity of the ground or surrounding
surfaces. Bifacial modules benefit from high albedo conditions, such as snow-covered
ground or light-colored surfaces, as they reflect more light onto the rear side of the
module. This can result in a significant boost in energy generation.

Angle of Incidence: The angle at which light strikes the module, known as the
angle of incidence, can affect the performance of bifacial modules. Higher light
intensity often corresponds to a lower angle of incidence, which can increase the
amount of light captured by the rear side of the module and consequently enhance
its power output.
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Shading Considerations: While higher light intensity generally benefits bifacial
modules, it is essential to consider potential shading issues. Shadows from nearby
objects or structures can obstruct the light from reaching the rear side of the module,
reducing its energy generation. Careful system design and installation practices are
necessary to minimize shading and maximize the performance of bifacial modules.

In summary, increased light intensity can lead to higher energy generation in
bifacial solar modules due to their ability to capture light from both the front and
back sides. Factors such as albedo, angle of incidence, and shading need to be
considered to optimize the performance of bifacial modules under different light
intensity conditions.

2.8 Advantages of BSC

Bifacial solar panels offer several advantages over conventional monofacial solar ar-
rays. It should be noted that to maximize their performance, installation near
highly reflective surfaces such as swimming pool glass, sandy, stone, or snowy areas
is recommended.

One of the key advantages of bifacial solar panels is their superior performance[24].
By generating electricity from both sides of the panel, they exhibit a significant in-
crease in overall energy generation compared to conventional solar panels. When
mounted on a highly reflective surface, the additional power produced from the rear
side can lead to a claimed increase in output of up to 30%.

Durability is another notable advantage of bifacial panels. Unlike traditional
monofacial panels, bifacial panels are frameless and feature tempered glass cover-
ing on both sides. This design makes them more resilient and able to withstand
harsh weather conditions, high temperatures, strong winds, and UV exposure. The
tempered glass provides weather and UV resistance, enhancing their long-term dura-
bility.

Bifacial panels also perform well in diffuse light conditions, further setting them
apart from monofacial panels. The increased surface area allows them to capture and
convert more light, making them economically advantageous in terms of long-term
costs.

Additionally, bifacial solar panels often come with longer warranty periods, typi-
cally up to 30 years. This extended warranty coverage provides added peace of mind
and ensures the longevity of the investment.

In summary, bifacial solar panels offer improved performance, durability, effi-
ciency in diffused light, and extended warranty periods compared to conventional
monofacial panels. These advantages make them an attractive option for harnessing
solar energy and enhancing overall system performance.

2.9 Disadvantages of BSC

While bifacial solar panels offer numerous advantages, they also come with some
potential disadvantages that should be considered. These include:

Complex installation requirements: To maximize the benefits of bifacial panels,
they need to be installed in specific locations with highly reflective surfaces. This re-
quirement adds complexity to the installation process and may limit the deployment
options in certain settings.
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Variable performance dependence: The performance of bifacial panels is highly
dependent on environmental factors such as the angle of incidence, shading, and the
quality of the reflective surface. In suboptimal conditions, such as when the panels
are installed in areas with low reflectivity or high shading, the energy output from
the rear side may not be significant enough to justify the added cost.

Limited compatibility with existing systems: Bifacial panels may not be compati-
ble with certain existing mounting systems or infrastructure, requiring modifications
or additional investments to integrate them effectively.

Maintenance challenges: Bifacial panels, with their double-sided glass construc-
tion, may require more regular cleaning and maintenance compared to monofacial
panels. This is especially true for the rear side, which is exposed to dirt, dust, and
potential accumulation of debris.

It is important to evaluate these disadvantages alongside the benefits when con-
sidering the adoption of bifacial solar panels. The decision should be based on the
specific project requirements, site conditions, and cost-effectiveness considerations.

2.10 Conclusion

In conclusion, bifacial solar technology presents a promising solution for maximizing
energy generation and increasing the efficiency of photovoltaic systems. The under-
standing of the structure, working principle, and modeling approaches discussed in
this chapter contributes to the knowledge base surrounding bifacial solar cells. By
further exploring the advantages, addressing the disadvantages, and advancing mod-
eling techniques, researchers and industry professionals can unlock the full potential
of bifacial solar technology, driving the transition towards a sustainable and clean
energy future.
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3.1 Introduction

As seen in both chapters One and two, in order to model a PV module/cell several
parameters must be deduced. Modeling holds significance, be it for educational
objectives or for accurately evaluating the performance of a PV panel.Parameters
extraction of photovoltaic models, which remains a multi-variable, nonlinear, and
multi-modal problem especially since the studied case is bifacial solar cells, can
be accomplished using global search algorithms. The algorithms explained in this
chapter are :
- MPA which is a new metaheuristic algorithm developed in 2019 and published in
2020, even used for forecasting confirmed cases of COVID-19 in Italy, USA, Iran
and Korea[25].
- SOA which is is a metaheuristic algorithm proposed by [26] in 2022 to mimic the
mating behavior of snakes. They have been adapted to suite the purpose of bifacial
solar cell parameters identification of single diode model using experimental data.

3.2 Objective Function Formulation

The electrical parameters of the SDM model of PV module can be identified us-
ing the optimization approach, which essentially needs a definition of the objective
function. The proper structure of the objective function is essential for precise iden-
tification of unknown parameters. The extracted parameters should guarantee that
the model exactly simulates the PV cell/panel.In this study, the objective function
proposed to optimally design the ten parameters of such model is the Root Mean
Square Error (RMSE) between experimental and estimated currents. RMSE is given
by the equation :

RMSE(θ) =

√√√√ 1
N

N∑
i=1

(Ii,measured − Ii,estimated)2 (3.1)

N: is the number of points measured (Ii, Vi).
Ii,measured: is the measured current.
Ii,estimated: is the estimated current.
θ=[af , I0f , Iphf , Rpf , Rsf , ar, I0r, Iphr, Rpr, Rsr] : parameters to estimate.

RMSE is the the most used objective functions in PV parameters extraction [27]
,as the objective function may cause some imperfections around the MPP ,in order
to avoid this problem the error at the MPP between the maximum power measured
and the maximum power estimated was introduced. The objective function becomes
:

F (θ) = RMSE + α ∗ (Pmax,measured − Pmax,estimated)2 (3.2)
α : the weight multiplied to the power error to have an effect on the objective func-
tion.
F(θ): is the objective function to minimize.
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3.3 Global Search Algorithms : Metaheuristics

There are many options for classifying optimization algorithms. Mainly, they can be
classified into two categories, which are: Local optimization algorithms and Global
optimization algorithms. In our work ,the algorithm used is a global optimazation
one. The process of globally optimizing a function or a set of functions is guided
by specific criteria. Typically, a set of boundaries and constraints are considered
to optimize the decision variables. This approach differs from regular optimization
methods as it aims to identify the maximum or minimum across all possible input
values, rather than local extrema [28]. Unlike other optimization techniques that
focus on local optima, global optimization algorithms do not require an initial guess
and yield more accurate results by efficiently discovering and utilizing the global
optima of the cost function.

In this project, metaheuristics are employed. Metaheuristics are adaptable meth-
ods that can effectively tackle a wide range of optimization problems. These tech-
niques are designed to find high-quality solutions from a vast space of feasible so-
lutions, offering computational efficiency compared to other optimization methods.
In the next section the used technique will be fully discussed.

3.4 Marine Predator Algorithm

The Marine Predator Algorithm (MPA) is a nature-inspired optimization method
that imitates the hunting strategies of marine predators like sharks and dolphins.
Its goal is to solve optimization problems by leveraging the techniques used by these
predators to search for and capture prey.

3.4.1 MPA Mechanisms

MPA relies on the principle of survival of the fittest, where predators must choose the
best strategy to outperform prey confrontation rates. In MPA, predators actively
search for prey while the prey itself seeks its food[29]. Many animals employ a
stochastic foraging strategy, where the next location is determined by the current
position and the transition probability to the next position. This optimal strategy
has evolved in marine ecosystems and has been adopted by predators for survival.
Marine creatures such as sharks, swordfish, and tunas exhibit Lévy-like behavior
when searching for prey, which is an effective strategy for locating patchy prey in
nature. Predators use a Lévy approach in areas with lower prey density and switch
to Brownian movement in environments with abundant prey.
The MPA is a population-based approach. The initial randomization of the MPA is
similar to different metaheuristics algorithms, in which the candidate’s position is
updated as follows:

X0 = Xmin + rand(Xmax − Xmin) (3.3)
where Xmax and Xmin are the upper and lower limit of design variable,respectively,and
rand represents a random vector that its upper and lower bounds ∈ [0, 1]
According to the survival of the fittest strategy, top predators are highly gifted in
the foraging process. Therefore, the optimal solution is specified as a top predator
to arrange Elite. Such Elite supervises in seeking and finding the prey related to
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the knowledge of prey’s locations.

Elite = [XI
1,1X

I
1,2X

I
1,d; ......; XI

n,1X
I
n,2X

I
n,d] (3.4)

where
−→
XI is a vector consisting of the highest-performing predators, which reproduce

n times to form the Elite group. The variables n and d represent the number of agents
and dimensions, respectively. The Elite is updated during each iteration if a better
predator replaces the current top predator.

The Prey is structured in a way that aligns with the dimensions of the Elite.
Predators update their positions based on the Prey. To initialize the process, the
fittest predator organizes the Elite, and this arrangement establishes the initial Prey.
The Prey can be described as follows:

Prey = [X1,1X1,2X1,d; ......; Xn,1Xn,2Xn,d] (3.5)

where Xij is the j-th dimension of the i-th prey .The optimization process heavily
relies on both the Elite and the Prey. The Marine Predator Algorithm (MPA)
utilizes random variables and operators to facilitate exploration and prevent being
trapped in local minima.

3.4.2 MPA Optimization Stages

The MPA optimization process incorporates three distinct phases that emulate the
life cycle of predators and prey in nature. The transition between these phases
is determined by the velocity ratio between prey and predator. The first stage is
characterized by a high-velocity ratio, while the second and third stages exhibit
unity and low-velocity ratios, respectively. Each phase is associated with a specific
number of iterations, aligning with the movement patterns observed in nature. Let’s
delve into each of these stages:

• Stage 1 : High-Velocity Ratio
In the initial iterations of the optimization process, the prey exhibits a higher
velocity compared to the predator (a high-velocity ratio). This phase is focused
on exploration, emphasizing the need to explore the search space extensively.
In this high-velocity phase (v ≥ 10), the predator remains stationary while the
prey moves rapidly in search of optimal solutions. The mathematical model
representing this phase is illustrated as follows [29][30]:

For Iter <1
3 Itermax

−−−−−−→
stepsizei = −→

RB ⊗ (−−−→
Elitei −

−→
RB ⊗

−−−→
Preyi) (3.6)

where i= 1,2....n −−−→
Preyi = −−−→

Preyi + P.
−→
R ⊗

−−−−−−→
Stepsizei (3.7)

The velocity ratio between prey and predator is represented by v. The vector−→
RB represents the Brownian movement, depicting a normal distribution. The
symbol ⊗ indicates element-wise multiplication. P is a constant value of 0.5,
and represents a vector of random numbers ranging from 0 to 1. Iter and
IterMax denote the current iteration and the maximum number of iterations,
respectively. This scenario occurs during one-third of the optimization process
iterations, characterized by a high step-size or movement speed to enhance
exploration capabilities[31].
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• Stage 2 : Unity-Velocity Ratio
During this stage, the predator and prey move at an equal velocity, replicating
the behavior of both searching for their respective food sources. This phase
occurs in the middle of the optimization process. In this scenario, half of the
population is dedicated to exploration, while the other half focuses on exploita-
tion. The prey primarily handles exploitation, while the predator takes charge
of exploration. For v ≈ 1, the prey moves according to Lévy distributions,
whereas the predator follows Brownian motion. Mathematically, this phase is
described as follows [30]:

For 1
3Itermax<Iter<2

3Itermax

For the first half of the population;

−−−−−−→
stepsizei = −→

RL ⊗ (−−−→
Elitei −

−→
RL ⊗

−−−→
Preyi) (3.8)

where i= 1,2....n/2
−−−→
Preyi = −−−→

Preyi + P.
−→
R ⊗ −−−−−−→

stepsizei (3.9)

The vector −→
RL represents a set of random numbers associated with Lévy move-

ment. The term −→
RL ⊗

−−−→
Preyi imitates the prey’s movement using the Lévy ap-

proach, where the inclusion of the prey’s location step size simulates its motion.

For the second half of the population :

−−−−−−→
stepsizei = −→

RB ⊗ (−→RB ⊗
−−−→
Preyi −

−−−→
Preyi) (3.10)

where i=n/2,....n
−−−→
Preyi = −−−→

Elitei + P.CF ⊗ −−−−−−→
stepsizei (3.11)

where CF is the parameter that controls the step size of movement for the
predator.
The term −→

RB ⊗
−−−→
Preyi emulates the predator’s movement using the Brownian

approach, allowing the prey to update its location based on the predator’s
motion characterized by Brownian motion[30].

• Stage 3 : Low-Velocity Ratio
During this phase, the predator moves faster than the prey. It represents the
final scenario in the optimization process and is associated with intensive ex-
ploitation. In the case of a low-velocity ratio (v=0.1), the predator’s movement
follows a Lévy distribution. This phase is mathematically described as follows
[30]-[32]:

For Iter > 2
3Itermax

−−−−−−→
stepsizei = −→

RL ⊗ (−→RL ⊗
−−−→
Elitei −

−−−→
Preyi) (3.12)

where i=1,....n
−−−→
Preyi = −−−→

Elitei + P.CF ⊗ −−−−−−→
stepsizei (3.13)
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By utilizing the Lévy approach, the term −→
RL ⊗

−−−→
Elitei emulates the predator’s

movement.By incorporating the step size into the Elite’s location, the prey’s
position is updated to simulate the predator’s motion.

3.4.3 Eddy Formation and FADs’ Effect

Environmental factors, such as the formation of eddies or the influence of Fish
Aggregating Devices (FADs), can induce behavioral changes in marine predators.
The effect of FADs is mathematically expressed as:

−−−→
Preyi =


−−−→
Preyi + CF [−−−→

Xmin + −→
R ⊗ (−−−→

Xmax −
−−−→
Xmin)] ⊗

−→
U , if r < FADs,

−−−→
Preyi + [FADs(1 − r) + r](−−−−→

Preyr1 −
−−−−→
Preyr2), if r > FADs.

(3.14)

Here, FADs = 0.2 represents the probability of FADs’ effect on the optimization
process. U is a binary vector containing elements of zero and one. It is generated
by creating a random vector within the range [0,1] and setting the elements to zero
if they are less than 0.2, and one if they are greater than 0.2. r is a random number
from a uniform distribution within the range [0,1]. −−−→

Xmin and −−−→
Xmax are vectors that

define the lower and upper bounds of the dimensions. The subscripts r1 and r2
represent random indexes of the prey matrix.

3.4.4 Marine Memory Saving

Marine predators possess the ability to remember successful foraging locations, and
this characteristic is emulated through memory saving in the Marine Predator Al-
gorithm (MPA). Once the Prey is updated and the FADs effect is implemented,
the resulting matrix is evaluated for its fitness in order to update the Elite. The
fitness of each solution in the current iteration is compared to its counterpart from
the previous iteration, and if the current solution demonstrates better fitness, it re-
places the previous one. This process ensures that the MPA retains the most fitting
solutions over time.

Initialize search agents (Prey) populations i=1,....,n
While termination criteria are not met
Calculate the fitness and construct the Elite matrix
If Iter < IterMax
Update prey based on Eq.(3.7)
Else if IterMax/3 < Iter < 2*IterMax/3
For the first half of the populations ( i=1,....,n/2 )
Update prey based on Eq.(3.9)
For the other half of the populations ( i = n/2,....,n )
Update prey based on Eq.(3.11)
Else if Iter > 2*IterMax /3
Update prey based on Eq.(3.13)
End (if)
Accomplish memory saving and Elite update
Applying FADs effect and update based on Eq. (3.14)
Accomplish memory saving and Elite update
End while

Figure 3.1: Pseudo code of the MPA approach
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Figure 3.2: Flowchart for the Marine Predator Algorithm
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3.5 Snake Optimizer Algorithm
The Snake Optimization Algorithm (SOA) is a metaheuristic algorithm inspired by
the behavior of snakes in nature. It simulates the movement and hunting strategies
of snakes to solve optimization problems.

3.5.1 Inspiration

The Snake Optimization (SO) algorithm draws inspiration from the mating behavior
of snakes. The algorithm operates based on the availability of food and temperature
conditions. The search process can be categorized into two phases, namely explo-
ration and exploitation. During the exploration phase, snakes primarily focus on
searching for food in their surroundings when environmental factors such as a cold
place and food are absent.

The exploitation phase aims to achieve global optimization through several tran-
sitional phases. If food is available but the temperature is high, the snakes prioritize
consuming the existing food. Conversely, when both food and a cold environment
are present, the mating process is triggered. The mating process involves two dis-
tinct modes: fight mode and mating mode.

In the fight mode, male snakes compete to secure the best female partner, while
females strive to select the most suitable male partner. In the mating mode, pairs of
snakes mate based on the availability of food quantity. During the search process,
there is a probability that females may lay eggs, which eventually hatch into new
snakes, contributing to the exploration of the search space.

3.5.2 SOA Steps

1. Initialization
Like all metaheuristics algorithms, SO starts by generating a random popu-
lation in uniform distribution to be able to begin the optimization algorithm
process. The initial population can be obtained using equation (3.2).

2. Diving the swarm into two equal groups males and females
In this study, the number of male is assumed to be 50% and the number of
females to be 50%. The population is divided to 2 groups: male group and
female one. To divide the swarm use the following two Eqs. (3.15), (3.16).

Nm = N/2 (3.15)

Nf = N − Nm (3.16)
where N is the number of individuals, Nm refers to the male individual num-
bers and Nf refers to the female individual numbers.

3. Evaluating each group and defining temperature and food quantity

– Find the best individual in each group and get the best male (fbest,m) and
best Female (fbest,f ) and the Food position (fbest).

– The Temperature Temp can be defined using the following equation :

Temp = exp(−t

T
) (3.17)

where t refers to the current iteration and T refers to the maximum
number of iterations.
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– Defining Food quantity (Q) The food quantity can be obtained using the
following equation:

Q = c1 ∗ exp(t − T

T
) (3.18)

where c1 is constant and equals 0.5.

4. Exploration phase (no food)
If Q < Threshold (Threshold = 0.25) the snakes search for food by selecting any
random position and update their position respect to it. To model exploration
phase the following equations are used :

Xi,m(t + 1) = Xrand,m(t) ± c2 × Am × ((Xmax − Xmin) × rand + Xmin) (3.19)

where Xi,m refers to ith male position,Xrand,m refers to position of random
male, rand is a random number between 0 and 1, c2 is constant and equals
0.05 and Am is the male ability to find the food and can be calculated as
follows:

Am = exp(−frand,m

fi,m

) (3.20)

where frand,m is the fitness of Xrand,m and fi,m is the fitness of ith individual
in male group.

Xi,f = Xrand,f (t + 1) ± c2 × Af × ((Xmax − Xmin) × rand + Xmin) (3.21)

where Xi,f refers to ith female position,Xrand,f refers to position of random
female, rand is a random number between 0 and 1 and Af is the male ability
to find the food and can be calculated as follows:

Af = exp(−frand,f

fi,f

) (3.22)

where frand,f is the fitness of Xrand,f and fi,f is the fitness of ith individual in
female group.

5. Exploitation phase (food exists)
If Q > Threshold
If the temperature > Threshold (0.6)(hot)
The snakes will move to the food only.

Xi,j(t + 1) = Xfood ± c3 × Temp × rand × ((Xfood − Xi,j(t)) (3.23)

where Xi,j is the position of individual (male or female), Xfood is the position
of the best individuals, and c3 is constant and equals 2.
If the temperature < Threshold (0.6)(cold)
The snake will be in the fight mode or mating mode.
Fight mode

Xi,m(t + 1) = Xi,m(t) + c3 × FM × rand × ((Q × Xbest,f − Xi,m(t)) (3.24)

where Xi,m refers to ith male position, Xbest,f refers to the position of the best
individual in female group, and FM is the fighting ability of male agent.

Xi,f (t + 1) = Xi,f (t) + c3 × FF × rand × ((Q × Xbest,m − Xi,f (t)) (3.25)
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where Xi,f refers to ith female position, Xbest,m refers to the position of the
best individual in male group, and FF is the fighting ability of female agent.
FM and FF can be calculated from the following equations:

FM = exp(−fbest,f

fi

) (3.26)

FF = exp(−fbest,m

fi

) (3.27)

where fbest,f is the fitness of the best agent of female group, fbest,m is the fitness
of the best agent of male group, and fi is the agent fitness.

Mating mode

Xi,m(t + 1) = Xi,m(t) + c3 × Mm × rand × ((Q × Xi,f (t) − Xi,m(t)) (3.28)

Xi,f (t + 1) = Xi,f (t) + c3 × Mf × rand × ((Q × Xi,m(t) − Xi,f (t)) (3.29)
where Xi,f is the position of ith agent in female group and Xi,m is the position
of ith agent in male group and Mm&Mf refers to the mating ability of male
and female respectively and they can be calculated as follow:

Mm = exp(−fi,f

fi,m

) (3.30)

Mf = exp(−fi,m

fi,f

) (3.31)

If Egg hatch, select worst male & Female and replace them

Xworst,m = Xmin + rand(Xmax − Xmin) (3.32)

Xworst,f = Xmin + rand(Xmax − Xmin) (3.33)
where Xworst,m is the worst individual in male group, Xworst,m is the worst
individual in female group. The flag direction operator which is also called
diversity factor, gives possibility to increase or decrease positions’ solution
to give high opportunities to change the direction of agents that results a
good scan of the given search space in all possible directions. This parameter
generated randomly to achieve randomization aspect hat is essential in any
metaheuristic algorithm.

The process will continue for a number of iteration from step 2, if the criterion is
satisfied the process will be terminated[26].
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Initialize Problem Setting (Dim ,Ub, Lb, and
Popsize(N),MaxIter(T),CurrIter(t))

Initialize the population randomly

Divide population into 2 equal groups Nm and Nf using Eqs.(3.15)
and (3.16)

While(t ≤ T) do

Evaluate each group Nm and Nf

Find best male fbest,m

find best female fbest,f

Define Temp using Eq.(3.17)

Define food quantity Q using Eq. (3.18)

If (Q < 0.25) then
Perform exploration using Eqs; (3.19) and (3.21)

Else if (Q > 0.6) then
Perform exploitation Eq. (3.23)

Else
If (rand > 0.6) then
Snakes in Fight mode Eqs. (3.24) and (3.25)

Else
Snakes in Mating Mode Eqs. (3.28) and (3.29)
Change the worst male and female Eqs. (3.32) and (3.33)
End if
End if
End while

Return best solution

Figure 3.3: Pseudo code of the SOA approach
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Figure 3.4: Flowchart for the Snake Optimizer Algorithm
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3.6 Conclusion

In mathematics, optimization is defined as finding the best solution for a problem
from all feasible solutions [33]. Depending on whether the variables are continuous or
discrete, the process of finding values of variables that satisfy an objective function
is called optimization. In this chapter, two of the optimization algorithms which are
MPA and SOA were demonstrated, with a discussion of their approaches of search.
The algorithms were used to minimize the objective function in order the extract
the needed parameters of the Bifacial cell model. The last chapter will present the
results of this process and discuss them.
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4.1 Introduction

In this section, the results of MPA based bifacial PV single-diode model parameters
extraction are shown for five different levels of irradiation to observe their effect on
the bifacial technology.The provided data are I-V characteristics of bifacial (PERC)
single-cell laminate in its reference state at five irradiation levels ranging from 185
W/m2 to 925 W/m2 (If -V and Ir-V measurements). The results consist of I-V and
depicting both estimated and measured current data, P-V curves presenting both
estimated and measured power, and graphs showing the modified RMSE vs iteration
number. Also a small comparison is done between MPA,SOA and Particle swarm
Optimization (PSO) and Differentiel Evolution (DE) algorithms.
The algorithms used are population-based ones, Here is the way they were used :

• The number of iterations and number of population are chosen.
As a rule of thumb, since the number of parameters is ten, the number of
population is chosen to be ten times that number (number of population=100).
The maximum number of iterations is chosen to be 1000.

• Algorithm coefficients are initialized; these coefficients can be tuned along the
program depending on the algorithm.

• A random initial population is initialized within the parameters boundaries.
Each population member is a vector of the ten parameters of interest:
v=[af , I0f , Iphf , Rpf , Rsf , ar, I0r, Iphr, Rpr, Rsr]

Parameter search range
af [1, 2]
I0f [1µA, 5µA]
Iphf [0.95 × Iscf , 1.05 × Iscf ]
Rpf [ Vmppf

Iscf −Imppf
, 1000Ω]

Rsf [0 , Vmppf −Vocf

Imppf
]

ar [1, 2]
I0r [1µA, 5µA]
Iphr [0.95 × Iscr , 1.05 × Iscr ]
Rpr [ Vmppr

Iscr−Imppr
, 1000Ω]

Rsr [0 ,Vmppr−Vocr

Imppr
]

Table 4.1: SDM Parameter search ranges

• Population members are updated; with the boundary conditions checked and
respected, in order to get a better modified RMSE.

• The fitness ( modified RMSE) of each population member (candidate solution)
is evaluated.

• The algorithms run for a defined number of iterations and give the smallest
obtained value of the modified RMSE.
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4.2 Results
In this section, the results of SOA and MPA based PV single-diode model parameters
extraction are shown. The results consist of I-V curves depicting both estimated and
measured current data, and graphs showing the convergence curve of each algorithm.
The results are organised as follows:

• Each algorithm has four results sections (for the five different irradiance levels)

• Each section comprises two graphs: modified RMSE vs iteration and I-V curve

4.2.1 Parameters Identification Using MPA

Case study #1 : G=925W/m2

Figure 4.1: Convergence curve of the MPA on a PERC bifacial cell at G=925W/m2

Figure 4.2: I-V Curve of both calculated (through MPA) and measured currents at
G=925W/m2
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Case study #2 : G=740W/m2

Figure 4.3: Convergence curve of the MPA on a PERC bifacial cell at G=740W/m2

Figure 4.4: I-V Curve of both calculated (through MPA) and measured currents at
G=740W/m2
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Case study #3 : G=555W/m2

Figure 4.5: Convergence curve of the MPA on a PERC bifacial cell at G=555W/m2

Figure 4.6: I-V Curve of both calculated (through MPA) and measured currents at
G=555W/m2



Chapter Four : Results and Discussions 42

Case study #4 : G=370W/m2

Figure 4.7: Convergence curve of the MPA on a PERC bifacial cell at G=370W/m2

Figure 4.8: I-V Curve of both calculated (through MPA) and measured currents at
G=370W/m2
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Case study #5 : G=185W/m2

Figure 4.9: Convergence curve of the MPA on a PERC bifacial cell at G=185W/m2

Figure 4.10: I-V Curve of both calculated (through MPA) and measured currents
at G=185W/m2
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Parameters G=925W/m2 G=740W/m2 G=555W/m2 G=370W/m2 G=185W/m2

af 1.541177328 1.546026969 1.558499924 1.565593841 1.597997258

I0f 1.000192e-06 1.017646846e-06 1.00044e-06 1.0007e-06 1.0001e-06

Iphf 8.153356626 7.118371666 5.38097546 3.650015015 1.751312501

Rpf 225.0685395 281.6685674 376.042325 563.7715687 1128.342699

Rsf 0.00800235 0.00805009 0.0080039 0.0080258 0.00801276

ar 2 2 2 2 2

I0b 1e-06 1e-06 1e-06 1e-06 1e-06

Iphr 6.636685015 5.007618179 3.929697255 2.606081068 1.222243235

Rpr 242.418856 303.13357 404.8413266 606.18724 1212.23427

Rsr 0.008511 0.008763 0.0089201 0.008982 0.0093716

RMSE 0.07664587929 0.07140995982 0.0616539666 0.04157017744 0.03181410063

Table 4.2: The extracted model parameters using MPA
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4.2.2 Parameters Identification Using SOA

Case study #1 : G=925W/m2

Figure 4.11: Convergence curve of the SOA on a PERC bifacial cell at G=925W/m2

Figure 4.12: I-V Curve of both calculated (through SOA) and measured currents at
G=925W/m2
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Case study #2 : G=740W/m2

Figure 4.13: Convergence curve of the SOA on a PERC bifacial cell at G=740W/m2

Figure 4.14: I-V Curve of both calculated (through SOA) and measured currents at
G=740W/m2
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Case study #3 : G=555W/m2

Figure 4.15: Convergence curve of the SOA on a PERC bifacial cell at G=555W/m2

Figure 4.16: I-V Curve of both calculated (through SOA) and measured currents at
G=555W/m2
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Case study #4 : G=370W/m2

Figure 4.17: Convergence curve of the SOA on a PERC bifacial cell at G=370W/m2

Figure 4.18: I-V Curve of both calculated (through SOA) and measured currents at
G=370W/m2
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Case study #5 : G=185W/m2

Figure 4.19: Convergence curve of the SOA on a PERC bifacial cell at G=185W/m2

Figure 4.20: I-V Curve of both calculated (through SOA) and measured currents at
G=185W/m2
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Parameters G=925W/m2 G=740W/m2 G=555W/m2 G=370W/m2 G=185W/m2

af 1.537205875 1.544571639 1.552530755 1.564558772 1.59800601

I0f 1e-06 1e-06 1e-06 1e-06 1e-06

Iphf 8.186910155 7.18797 5.110252663 3.40953893 1.623678845

Rpf 230.106427 292.4330447 388.011712 582.668073 1166.623426

Rsf 0.0080635 0.00809241 0.008132 0.0081279 0.0081287

ab 2 2 2 2 2

I0b 1e-06 1e-06 1e-06 1e-06 1e-06

Iphb 6.541098615 5.202882681 4.199005356 2.84320683 1.342805383

Rpf 249.9643728 311.544577 416.728860 624.510344 1250.679128

Rsb 0.008517472 0.00870841972 0.00894958 0.0089963 0.009163

RMSE 0.0895808753 0.07630082773 0.06017209404 0.04197653735 0.03274338952

Table 4.3: The extracted model parameters using SOA

4.3 Discussion
The employed algorithms have demonstrated excellent performance, as evidenced by
the low estimated error values obtained. This indicates that the variance between
the experimental and calculated data is minimal, reflecting the accuracy of the ex-
tracted parameters. Consequently, the established models can be deemed reliable
and effectively represent the modules. A visual examination of the resulting I-V
curves further confirms the accuracy of the models, as the calculated data points
closely align with the experimental curves.
The convergence curves, which depict the relationship between the number of it-
erations and the convergence behavior of the five algorithms, provide insights into
their performance in searching for optimal parameter values to achieve the lowest
possible estimated error. It can be observed that the algorithms exhibit consistent
patterns during the optimization process. For instance, the curve for MPA displays
a staircase-like behavior, indicating a gradual descent of the estimated error val-
ues in relatively large steps. Another notable observation is that the majority of
the curves demonstrate that the best error value is attained well before reaching
the predetermined maximum number of iterations. Therefore, there is no need to
increase the iteration count in search of further improvements.
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Demonstrating the irradiance effect on the extracted parameters

• The series resistance is a critical parameter that can negatively impact the
power output and fill factor of a photovoltaic (PV) module, using both algo-
rithms the series resistance is independent of irradiance.

Rsf (G, T ) ≈ RsfST C (4.1)

Rsb(G, T ) ≈ RsbST C (4.2)

• The shunt resistance models the p-n junction non-idealities and its effect is
equivalent to partial short-circuiting at the junction, which reduces the output
current,it varies inversely with irradiance.

Rpf (G, T ) ≈ (GST C

G
)RpfST C (4.3)

Rpr(G, T ) ≈ (GST C

G
)RprST C (4.4)

• The photocurrent is known to be a strong function of irradiance, since it refers
to the electric current generated by the absorption of light. As the irradiance
increases the current eventually increases.

Iphf (G, T ) ≈ ( G

GST C

)IphfST C (4.5)

Iphr(G, T ) ≈ ( G

GST C

)IphrST C (4.6)

Through rigorous experimentation and analysis, a strong alignment was observed
between the extracted parameters and the equations above under different irradia-
tion levels. This compatibility reaffirms the robustness and reliability of the used
algorithms in accurately estimating the PV system parameters, even when subjected
to varying irradiation conditions.
The consistent agreement between the obtained results and the mentionned equa-
tions highlights the algorithms ability to capture the complex relationship between
the PV system parameters and their response to changes in irradiation. This valu-
able insight enhances our understanding of the underlying principles governing PV
systems and their behavior under different irradiation levels.

Comparative Discussion
Among the numerous optimization algorithms available, two widely utilized and
well-established approaches for parameter identification are Particle Swarm Opti-
mization (PSO) and Differential Evolution (DE). These algorithms have demon-
strated their effectiveness and efficiency in tackling the challenging task of parameter
identification in various domains. In order to check the used algorithms efficiency
we have applied both PSO and DE on the studied SDM model.
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• PSO Results

(a) I-V Curve of both calculated
(through PSO) and measured currents
at G=925W/m2

(b) I-V Curve of both calculated
(through PSO) and measured currents
at G=740W/m2

(c) I-V Curve of both calculated
(through PSO) and measured currents
at G=555W/m2

(d) I-V Curve of both calculated
(through PSO) and measured currents
at G=370W/m2

(e) I-V Curve of both calculated
(through PSO) and measured currents
at G=185W/m2
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• DE Results

(a) I-V Curve of both calculated (through
DE) and measured currents at G=925W/m2

(b) I-V Curve of both calculated (through
DE) and measured currents at G=740W/m2

(c) I-V Curve of both calculated (through
DE) and measured currents at G=555W/m2

(d) I-V Curve of both calculated (through
DE) and measured currents at G=370W/m2

(e) I-V Curve of both calculated (through
DE) and measured currents at G=185W/m2
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Algorithm G=925W/m2 G=740W/m2 G=555W/m2 G=370W/m2 G=185W/m2

MPA 7.664587929e-2* 7.140995982e-2* 6.16539666e-2 4.157017744e-2* 3.181410063e-2*

SOA 8.95808753e-2 7.630082773e-2 6.017209404e-2* 4.197653735e-2 3.274338952e-2

PSO 1.56060e-1 1.52509e-1 1.69996e-1 1.68952e-1 1.94069e-1

DE 1.2753e-1 1.2698e-1 1.291e-1 1.387e-1 1.26374e-1

Table 4.4: Comparative table of the error values of the five irradiation for MPA,SOA,
PSO and DE

*: best obtained error value for the module.

From the comparative tables above, MPA is clearly on top in terms of error val-
ues; it has four best error values out of four. It has not even reached a value above
0.08; this shows the effectiveness of this optimization method for the purpose of
single-diode model PV parameters extraction. SOA has also given one best results,
which shows that this newly developed algorithm is very effective.
The widely used algorithms (PSO and DE) did not give the desired results ,as shown
on the five I-V curves corresponding to their simulation,the difference between the
simulated current and the experimental one were clearly obvious. The smallest error
at both PSO and DE was still higher than the worst error on MPA and SOA.

Another observation is the narrow gap in error values overall between MPA and
SOA; the gap is very narrow between the two values on all the table.
The widely varying parameter, between the algorithms results, are the parallel re-
sistances Rpf and Rpr; this is mainly due to its wider range.
The less varying parameter between the two algorithms results is the photo-generated
current Iphf and Iphr; this is logical because Iphf and Iphr must be very close to the
short-circuit current of the module.
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Proposed Objective Function Effect
In order to obtain the best results as mentionned previously we used a modified
version of RMSE , to observe the effect of this edit on the parameters obtained we
have plotted the error between the measured and the simulated currents calculated
from both usual RMSE and the modified one versus voltage .

Figure 4.23: Current error of both RMSE and modified RMSE at G = 925 W/m2

Figure 4.24: Current error of both RMSE and modified RMSE at G = 555 W/m2

As we can see the error obtained from the modified RMSE is noticeably less
than the one obtained from the regular RMSE especially around the maximum
power point voltage .
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4.4 SDM Model Simulation
The primary objective of parameter identification is to achieve precise determina-
tion of the model parameters that effectively characterize the behavior of the bifa-
cial photovoltaic (PV) cell. The accuracy and reliability of this technique heavily
rely on the alignment between model predictions and observed experimental data.
To demonstrate the efficacy of the parameter identification process, a SIMULINK
circuit was constructed to represent the single-diode model (SDM), utilizing the
parameter values obtained from the results of the Marine Predators algorithm.

In order to assess the performance of the SDM model, a simulation was conducted
at a specific irradiance level of G = 925 W/m2. The Simulink circuit is depicted in
Fig 4.21.

Figure 4.25: Simulink circuit for SDM model

To compare the model predictions with the experimental data, the I-V curve
was plotted. The curve illustrated in Fig 4.22, allowed for a comprehensive evalu-
ation of the degree of concurrence between the simulated results and the observed
experimental data.
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Figure 4.26: Simulation I-V curve

The close alignment between the simulated and experimental IV curves serves
as a testament to the fidelity of the chosen model and the accuracy of the extracted
parameters. This concurrence strengthens confidence in the predictive capabilities
of the model and its ability to accurately represent the performance of the bifacial
PV cell in diverse operating conditions (as seen previously with irradiance levels).
It also signifies that the selected algorithm or technique successfully captured the
essential characteristics of the PV cell and accurately determined the values of the
model parameters.

4.5 Conclusion

Our methodology leverages the power of metaheuristic techniques to efficiently ex-
plore the parameter space and identify the optimal values that best fit the exper-
imental data. By formulating the parameter extraction as an optimization prob-
lem, it was doable to employ diverse algorithms that offer distinct search strate-
gies, to uncover the most accurate parameter values for the single-diode bifacial
PV cells. Moreover, the compatibility observed across different irradiation lev-
els underscores the algorithm’s versatility and adaptability to real-world operating
conditions.Furthermore,after comparing between the used algorithms and PSO and
DE,the results were much more compatible using MPA and SOA. Finally to validate
the resulting parameters the model was simulated on SIMULINK.



General Conclusion

Solar energy has emerged as the primary energy source for the future, and as a
result, the literature on photovoltaics has witnessed rapid growth over the years. In
the context of this project, our focus was specifically directed towards the modeling
of photovoltaic systems. This particular focus enabled us to acquire a comprehensive
understanding of photovoltaics, as embarking on the journey of realizing this project.

Exploring various research domains within the field, ranging from broad areas to
more specific ones, proved to be an engaging experience. By considering the bigger
picture, a deeper understanding of how the intricate details fit together was grasped,
making the work even more captivating.
Our work commenced with a fundamental elucidation of the underlying principle of
photovoltaics (PVs), laying a crucial foundation before delving into more intricate
aspects. Subsequently, various equivalent models were presented, including the ideal
PV cell representation, single-diode model, and double-diode model. In conjunction
with these models, the parameters that characterize them were introduced , namely
the ideality factor, series resistance, parallel resistance, photo-generated current,
and diode saturation current. Building upon this knowledge, light was shed on the
novel technology of bifacial cells where the latter structure and working principle ,
the different types of this technology were described, also a model was proposed for
this kind of cells along with the parameters to be obtained.
Obtaining the most accurate five parameters search was the main objective of this
project. The single-diode model parameters were identified using two global algo-
rithms (MPA and SOA) that used the I-V experimental data at different levels of
irradiation. Global algorithms showed a satisfying estimation as the ten parameters
were extracted with slight errors. The results have proved that the Marine Predator
Algorithm was better for the search. Finally, it is to be emphasized that the main
objective of this work is achieved as the two global algorithms that were employed,
extracted bifacial PV single-model parameters with high accuracy.

a further work on parameters identification is required by the use of more sophis-
ticated search algorithms. The features of the algorithms explored in this work can
be combined by developing a hybrid algorithm adapted to the parameters search.
Also, performing the process with different accuracy metrics as objective functions
contributes to a better assessment of tested algorithms. Also better results might be
obtained in case of using the double diode model which takes into account the effect
of recombination that takes place in the space-charge zone by introducing another
diode in parallel.
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[18] Nico Wöhrle, Elmar Lohmüller, Max Mittag, and et al. Solar cell demand for
bifacial and singulated-cell module architectures. 2017.

[19] M. I. U. Haque, Charles Dickens Tusha Falia, and Mahmudul Hasan. Investi-
gating the performance of nanocrystalline silicon hit solar cell by silvaco atlas.
2019 22nd International Conference on Computer and Information Technology
(ICCIT), 2019.

[20] Chien-Chih Huang, Tinghuan Yang, Ling-Yu Wang, and et al. Tcad modeling
of interdigitated back contact solar cells with hybrid diffusion and tunnel ox-
ide passivated contacts. 2021 IEEE 48th Photovoltaic Specialists Conference
(PVSC), 2021.

[21] Anton Nygren and Elin Sundström. Modelling bifacial photovoltaic systems.
Malardalen university sweeden, June 2021.
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