People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA - Boumerdes

- —
Université de Boumerdes |
University of Boumerdes *

~———

Institute of Electrical and Electronic Engineering
Department of Electronics

Project Report Presented in Partial Fulfilment of

the Requirements of the Degree of

‘MASTER’

In Electrical and Electronic Engineering

Title:

Freelancing Platform for Tradesmen
Profession “TRADEHUB”

Presented By:
- BEROUAKEN Mohamed

Supervisor:
Dr.ZITOUNI Abdelakder




Dedication

To begin, | express my gratitude to the Almighty God for giving me the strength and
knowledge to live my life every day, and for providing my family and | with good health
and protection.

I would like to dedicate this work to my mother, who serves as my role model and support
system, as her selfless care inspires me to persevere. Additionally, | extend my
appreciation to my father, who consistently encourages me to succeed.

I also want to acknowledge my siblings Imad and manel who always believed in my
abilities and demonstrated eternal love. Furthermore, | owe a debt of gratitude to my
closest friends Sami, Yahia and Nacer who made my university experience more
enjoyable by growing alongside me.

Lastly, | would like to extend my heartfelt appreciation to all my family members, friends,
and those | have met along the way, regardless of their proximity. Thank you all!



Acknowledgements

First and foremost, | express my gratitude to ALLAH for enabling me to complete this
modest work. My unwavering faith in him has enabled me to persevere during difficult
times when it seemed impossible to continue.

I would like to extend my sincere appreciation to my supervisor, Dr. Zitouni Abdelkader
for his constant guidance and encouragement. Without his unwavering support,
this work would not have been possible, and I am truly grateful to him.

I would also like to express my deepest appreciation to Dr. OTMANI for his valuable
lectures and feedback, particularly his guidance on the Advanced Programming

course.

I am also grateful to all the teachers at the Institute of Electrical and Electronic
Engineering, particularly those in the Computer Engineering option, who provided me with
a solid foundation to develop my project.



Abstract

This project aims to develop a freelancing platform specifically designed for
tradesmen (Electricians, Plumber, Handyman...), providing them with a user-friendly and
efficient way to connect with potential clients and offer their services. The platform
“Tradehub” will mainly have three pages: the home page in which clients can see some
services that other freelancers posted them, the account page for both the client and the
freelancer in which they can access the jobs they posted and finally a search page so that

clients can search for specific service.

This platform is built using HTML, CSS and JavaScript for the Front-End and PHP
for Back-End, with a focus on providing a seamless user experience. Its core features include
user registration, job posting and bidding, and dispute resolution, all tailored to the needs of
tradesmen and their clients. This work delves into the design and implementation of the
platform, shedding light on the challenges faced during the development process and the

corresponding solutions employed.

Overall, this project demonstrates the feasibility of creating an intuitive freelancing
platform for tradesmen using modern web technologies. With this platform, tradesmen can
effectively expand their customer base and increase their revenue while providing their
clients with a convenient and reliable way to access their services. The resulting platform

serves as a testament to the successful realization of the project's objective



Table of Contents

DIBUICALION. ...ttt bbb 1
ACKNOWIEAGEMENLES ...t et e e ra e te e e e nneenre e 2
AADSTIACT. ...t 3
Table OF CONLENTS ..o 4
TS 0 T [N =TSSR 8
LISt OF TaDIES: ... bbbt 9
GeNEral INTrOTUCTION: ..o 10
FINEFOAUCTION: (.t et s h e sttt st e b e s bt e sbeesaeesateebeesbeesbeesanenas 10

[ Problem StatemMENT: . ...ii ittt sttt e ae e s s 10

LTI @] o =Tot 41V SRR 11
IV OVEIVIBW: ..eiiietiee ettt ettt ettt e e ettt e e ettt e e ettt e s sttt e e s st et e e s st et e e sansaeeesanseeeesnnaeeesnseeeesannneeesan 11
Chapter One: Theoretical Background .............ccocoiiiiiiniiiiiiieeee e 13
L2 INErOAUCTION: .ottt sttt et e b e s bt e sbe e sae e et e e nbeesbeesaeesanenas 13
B AT LY Y o] o] oF 1 o 13
12,1 DEfiNIION: ittt st e st e e b e s be e e sateesbeeenne 13
1.2.2 Single-Page ApPpPliCation:....c..cii it e e 13
1.2.3 Multi-Page ApPlication:........cei it 13
1.2.4 Web client and Web SErVer:.......o oottt 14
1.2.4. 1 WED CHIENE ..o e 14

1.2.4.2 WD SEIVEI: ...t 14

G o I PP PP PTP PP PPPPTPN 14
L U RL: ettt ettt ettt e e e e e e et et e e e e e e a b e e te e e e e e e aabe et ee e e e e e b rraeeeeeeee e nnrrneeeaeeeaanan 15
O Yo o 1Y 0 1=V A d fe ] o 1o | PP 15
1.4.2 Subdomain and DOMaiN: .....ccceeiiiiiierieree ettt s 15
1.4.3 TOP-LeVEI DOMAIN: ceiiiii ittt e eetae e s e sbae e e et ae e e enbaee s ennbaeeeenareeas 15
Lo Path: ettt sttt b e bt e be e e he e st e ebeenbeenreenaeeea 16
R O LU =Y VA =Y =T o 1= =] N 16
1.4.6 Fragment Identifier/ ANCROI: .......ooviiiiiei ettt ettt e er e esre e ste e steeeaneens 16

1.5 Programming LanGUAgES: . ccuuiiiiiiiiiieieieieieieieeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeseseseseseseeesesesesesseesesseesesseeeee 16
L5 L HTIMLE ettt st et st st st b e b e s be e sbeesateeneebeenreesnne e 16
15,2 S ettt et b e bt et st e e bt e bt e bt e e bt e et e et e e te e bt e nbeenaeena 17
T B - 1Y = 1Y of | o N 17
RS 3 o4 oo o PP 17

1.6 TOOIS aNd FrameWOrKS: ......ooiiiiiiiieeee ettt 17

4



1.6.1 Visual STUdIO COAE (VSCOUR): wuurririiiiieiitiieeeee ettt e e eeeeabrre e e e e e e seeabbrereeeas 17

1.6.2 STArUIMLI.. ettt e e s e e s e s s e s s e e e e e e s e e e e anenas 18
ST I B -1 oY= O PP P PP PPPPPOUPPTPPPPN 18
1.6.4 SENAGHIT: . ..eiitieieeeet ettt ettt st st e b e sttt e b e sheesane e 18
1.7 Introduction £0 The Database: .....c.coceiieerieiieiieee et 18
1.7, DEfiNItION: ettt e b sheesane e 18
1.7.2 Relational IMOdEl: ..ottt st e e s e e snee e sbe e 19
1.7.3 Non-Relational MOdel: ........oouuiiiiieieeee ettt 19
178 SQLITO: ettt sttt b e h ettt e b e b bt s he e st e ere e beenbeenaeena 19
1.8 MOdEINE LANGUAEE: .....cvvieeieiiieeeeteee ettt e ettt e e ettt e e e et e e e et e e e eata e e e esasaeeesssaeeesnsbeeesannsneenan 19
1.8.1 Unified Modeling Language (UML) .....ccueeeiie ettt eee e e eee et estee e e sene e 20
1.8.2 USE CaSE MOMEL:......eiiiiiiiieeiieeetee ettt ettt ettt esbe e e sabe e sabeessateesabeeenes 20
1.9 CONCIUSION ettt ettt ettt et sttt e sb e s bt e st e s bt e e sabeesabee e sbeesabeeebbeesaseesabaeenaseens 20
Chapter TWO: DESIGN ....cveiiieiieieiet ettt 22
2.1 INTFOTUCTION: Lttt ettt e b e s bt e st e st e e be e bt e s beesmeeeaeeeneean 22
|V, o T 1= 1 oY= ST 22
B N Vot o ] 3 PSP O PP PPPT PO 22
2.2.0.1 AAMINISIIALON: ...ttt 22

2.2. 1.2 TrAOBSIMEN: ...ttt bbbttt b bbbttt 22
2.2.1.3 CUSTOMEI ..ot 22
2.2.3 USE CaSe DESCIIPLION: . .uiiiiiiii ittt e eesiitt e e e s st e e e e e s s s sbrreeeeeeessssssbssaeeeesssnsssnnenns 23
2.2.4 Use Case 1dentifications: ......c.coiiiriieiieiieee ettt ettt 23
2.2.5 USE CaSE DIaBramS: ...uuuuuuueerururuiuuurureuurerureuerureeneererneerereeeeeraaeee...—————————————————......—...———.—————. 24
D N O TS D=4 =T o U UUSRROt 27
2.3 DAtADASE et st r e e s aeeeaee s 28
2.3.1 Importance of a Centralized Data RepOSitOry:......ccceveciiieiiciiie e 28
2.3.2 Efficient Data Retrieval and STOrage: .......cocciieieeciiiee ettt et etaee e 28
2.3.3 ENhancCing UsSer EXPeIIENCE: ....ciiiciiieeieiieee ettt e eectte e eeette e e e eette e e e ette e e e sbteeeesnteeeeesaeaeeennes 29
2.3.4 Description of the Database used in OUr Project: ....cccoeeiicieieicciiee e 29
2.3.4.1 Django_admin_1og table: ........cccoooiiiiieiiee e 30
2.3.4.2 DJang0_CONTENT TYPEI .. .iieieiriirieeieeiee ettt 30
2.3.4.3 TradeSMEN_CAEGONY: . c.vevevirtirieitieieeie ettt sttt sttt bbb 31
2.3.4.4 TradeSMEN_JOD: ...viiieiie et s 31
2.3.4.5 USEIS_COMMEBNTS: ....veiiiiieiieiiieeiiesiee ettt sttt e et e e sneeenns 32

P N 0] 4Tl [V ] To] o TR PRR RO 33
Chapter 3: Implementation & RESUILS ..........ccviiiiiiieiicc e 35
B INTrOAUCTION: ettt ettt et e s st s bt b e ne e s e e e eneees 35

5



3.2.1 Iterative DeVelOPMENT: ......veiiie ettt e e e e e e e e rre e e e e e e e e nnbraeeeaaeeeanns 35
0 A 1 Tol T Vo] o <Y - 1 USRS 35
I A @oTe [l [ o o] 110 0 Y=Y 0 = 4 o] o AU 36
R 1V T Yo =] £ o1 SR 36
3.2.1.1 Category MOGEL: ......ccoiiiiiiiieiee e 36
3.2.1.2 CustomUserManager MOdel: .........cccoiviiiiieiice e 37

3.2. 1.3 USEI IMOUEL: ... 37
3.2.1.4J0D MOEL: ... 38
R V1Y AN o 1Y O PO PP PPRPUPPTN 39
3.2.2.1 Customer Service FUNCLION: ..........coviiieie e 39
3.2.2.2 Create-Joh fUNCLION: .......cciiiiieee e 39
3.2.2.3 Delete-Job fUNCLION: ......ccecieieee e 40
3.2.2.4 INAEX FUNCHION: .....iiieiicce e 41
3.2.2.5 RegISter TUNCLION: ....oouiiiiiiiieieie e 41
3.2.2.6 User_page fUNCLION:..........coviiieiicc e 41
- 1o [ o110 1N 1Y SRR 41
R IV o o] [ToF I oY [a] =T = ol =T3PPS 42
R TR A W T4 o T [ 0 A=Y = Yol TR 42
I T A Y=Y - 1 =Ygl [0 =T = Lol PRI 43
3.3.3 AdMIN DashbOard:.......cooieiiiiiniieiiie ettt sttt sbe e e s sbe e s bt e e sbe e sanes 44
3.3.3.1 AdmIn home INtErfaCe: ........cooeeiiiie e 44
3.3.3.2 Admin User_management iNterface: ...........covvvrirererenenene e 45
3.3.3.3 Admin Tradesmen INtErfaCe: ........ccccvveveiieiieie e 46
3.3.4 Web application Main interface:.......ccccueieeeciiee et e aae e 47
3.3.4.1 Main page NEAET: .........cociiiiiiieee e 48
3.3.4.2 JODS SECLION: .....ueeiieeie ettt e 48
3.3.4.3 J0IN US SECLION: ..cvviieieiteeite ettt sttt sttt e ra e ae e be e e s e nre s 49
3.3.4.4 COMMENTS SECTION: ..veiiiiieiiee ettt e e 50
3.3.4.5 BlOQ SECLION: ...ttt 50
3.3.4.6 FOOLEE SECLION: ...oviieiii ittt e e et e nre e 51

3.4 Deployment and HOSEING: ..cccoeoieeiiiiiieee ettt e e e e e e rre e e e e e e e annraneeee s 52
3.5 Functionality EValUatioN:........ooiiiieeec et e e e e e e e 52
3.6 Performance and Scalability:........ccouieiiiiiiiiicee e s 53
3.7 Comparison With INitial GOalS: .....cccuvveeiiiiiieecceeece e e 53
= 38 X0 1= 1 T o N 53
I N 0o o Vol [V 1] T SRR 54
GENEIAl CONCIUSION: ....eiviiceie et et s e e be e s be e et e e saeesbeesreeeree e 55

6



FULUEE MV O K S e s 55

R B INICES ... e e nnnnnn 56



List of Figures:

FIQUIE 1.1: URL Parts .ecuiiiieiieiiiiniietieieeetinceecescesensessessnsonsosssscnssnssnsssnsans 15
Figure 2.2: AdmIin Use Case diagrams ciuieeeeeieeeeeeeeiereeceecnsensescescnsonsessscnsansnns 25
Figure 2.3: Tradesmen Use Case diagram ..ceeeeeeeieereeeerenssasesssonsonssssssnsssssssnss 26
Figure 2.4: Customer Use case diagram ...ccieeeeeeerenrenreeseesnsonsessnsonsssssssnssnsonses 26
Figure 2.5 Class DIiagram .eeeeeeeeeeeeeieeteeceeeneensencessessnsensescessnssnsessessnsansassnss 27
Figure 2.6: Database StrUCIUIE «.uiveieiieiieiieieeeeeinienceeesensencescnssnsensessnsansonsns 29
Figure 2.7: Django_admin_l0g table ....ccvveiiiiiiiiiieiieiiiiiiiiiniierniiniiareecescnssnns 30
Figure 2.8: Django_content_type table ...ceeeeiieiiiniieiiiiiiiniiaiiernriniiareecscnssnns 31
Figure 2.9: tradesmen_category table ...ceeeeeiieiiiiiiiiieiieiiiiniieeneeienceecescnsancnns 31
Figure 2.10: tradesmen_job table ....ceieiieiiiiiiiiiiiiiiiiiiieieieieieeeeeeenrencanns 32
Figure 2.11: users_comments table ..uiveireiiieiiniieiieriiiniieiieenisnteaseecessnsonsssnss 32
Figure 3.12: LOgiN INTEITACE cevuiiriieiieiitenrinieateeserenteessesnsonsssssssnssnsansossnssnsans 42

Figure 3.13: RegiSter INTErface voveeeiieiieiiiiiiiiiiieiiiiiiitieeneenienteecescnsencencnsns 44
Figure 3.14: AdMIiN NOME INTEITACE «ivuiveiieiiiniiniieeieeniinteecneensensescsensencescnsnns 45

Figure 3.15: User management INtErface c..civeiieiieeeeiniiniieerenienseecsonssnsossnsones 45
Figure 3.16: Adding NeW USErs INTEITACE .ivviiiriieiieriieniiniieenienienteessonsonsossnsans 46

Figure 3.17: Category iNTEIrface .iveeeeieiieiieiieeieiiiiiieeeeeetentenceecnscnsensessscnsances 46
Figure 3.18: JOb liSt INTErface ccuveeiieiiiiiiiiiiiiiiiiiiieieentieineeecneensencescnscnnes 47
Figure 3.19: Edit POSES INTEITACE «ivuiierieieiiniieiinrieeerinienteessonssnsessssnssnsossesnns 47
Figure 3.20: Main page HEadEr c.uiiieiieiieiiiiiiiiietiereeenrsnseasssnsonssssessnsonsossnne 48
Figure 3.21: Jobs section Defore 10gin .ceeeeeieiieeieiiiiiieiiiiiieeieceeeneenceecascnsenes 48
Figure 3.22: Jobs section after 0giN ..cuieeiieiiiiiieiiiiniiiieiiiiniieenecneencenceecnsensens 49
Figure 3.23: JOIN US SECTION wiueieiiuiiatieenienteeseesnssnsessesonssnsessessnsonssssssonssnsossns 49
Figure 3.24: COMMENT SECTION viuiiuiieiieineeniiereeeerensensesssonsosssssnssnssssossnssnsonss 50
FIgure 3.25: BlOQg SECHION .euiiuiieiieiiiiiiaieeeneententeeceeensencescescnsensensscnsansansnnes 50
FIgure 2.26: FOOTEr SECLION wiueiniiniieiieineitineeeenteaceecneensansescescnsensescscnsansansnne 51
Figure 3.27: Customer SErviCe fOIM c.uiiiiieiieiieiieietiniinteeensenrensessescnssnsassesones 51



List of Tables:

Table 2.1 Roles of actors in the use case diagram....ceeeeeeeeeeeeeecenrenecensenecensonens

Table 2.2 Description of used arrows



General Introduction:

| Introduction:

The internet has changed the way we conduct business and access services. With the
rise of gig economy, freelancing and job-listing platforms became a very popular way for
individuals to hire professionals to complete their tasks. However, most of these platforms
are geared towards graphic designers and programmers; very few of them are for tradesmen

professions specifically.

Tradesmen, such as plumbers, electrician and painters provide essential services that
helps in maintaining our homes and businesses. But finding a reliable tradesmen can be a
daunting task especially in Algeria where there is no centralized platform connecting clients
and tradesmen. This resulted in many consumers being unable to find a skilled tradesman

and resulting to hiring unlicensed or unskilled workers.

The motive behind this project is to provide a reliable platform that connects between
the consumers and skilled tradesmen in Algeria. Currently many consumers in Algeria resort
to word-of-mouth recommendation and directory listings, which can be tiring and time
consuming. By building a platform that connects consumers with qualified tradesmen, this

project aims to provide a convenient way to finding and hiring tradesmen.

In addition, this platform can benefit tradesmen also by providing them with a
platform to showcase their work and attract more customers. Many skilled tradesmen in
Algeria struggle to find work due to the lack of exposure, and this platform may help them

build reputation and credibility leading to more job offers and increase in earnings.

In conclusion, this project aims to build a web-based platform to help connect
consumers with skilled tradesmen to facilitate the task of finding and hiring tradesmen in
Algeria. By filling this gap in the market, the platform will help to create more job

opportunities for skilled tradesmen while also providing a valuable service to consumers.

Il Problem Statement:

The research problem addressed in this study is the lack of a centralized platform for
accessing the services of tradesmen professionals in Algeria. The absence of such a platform

10



makes it difficult for individuals to find reliable and trustworthy tradesmen for various

services.

The lack of transparency in pricing and service quality also hinders the growth of the
tradesmen profession in Algeria. Additionally, the traditional methods of finding tradesmen,
such as word of mouth or newspaper ads, are outdated and unreliable. Therefore, the research
problem is to develop a platform that provides a centralized and reliable source for accessing
tradesmen services, thereby addressing the issues of transparency, trustworthiness, and

accessibility for both the customers and the tradesmen professionals.

111 Objectives:

Building a centralized web-based platform that connects consumers with tradesmen

and provide a reliable and efficient way to find and hire tradesmen in Algeria.

1V Overview:

There are five chapters in this report. After defining the project objectives and
research problem, the first chapter will provide information about the theoretical background
needed to complete this project from the concept of web and the programming languages
used in this project. The second chapter is about the design of our website and how it was
implemented using (HTML, CSS and JAVA SCRIPT). The third chapter will discuss in
detail how the front and back-end of our platform were implemented. The fourth chapter will
present the results we got with brief over view on how the platform looks online as well as

discuss our results and limitations.

11



Chapter One:
Theoretical Background

12



Chapter One: Theoretical Background

1.1 Introduction:

This chapter aims to define the project objectives and problem statment and then

provide information about the theoretical background needed to complete this project.

1.2 Web applications:

1.2.1 Definition:

A web application is a software program accessible through a web browser that
allows the user to interact and perform tasks over the internet. Unlike static websites, web
application are dynamic, providing interactive functionality, data processing, and often
involve user authentication and data base integration. Web applications commonly utilize a
combination of front-end technologies (HTML, CSS, JavaScript) for user interface design
and interactivity, along with back-end technologies (programming languages, frameworks,
and databases) for server-side processing and data management [1]. Web applications can
be further classified into two main types: single-page web applications and multi-page web

applications which we will discuss next.

1.2.2 Single-Page Application:

Single-page web applications (SPAS) are characterized by having a single HTML
page that dynamically updates its content as users interact with the application, providing a
seamless and responsive user experience. SPAs often rely on JavaScript frameworks like
AngularJS, React, or Vue.js to handle client-side rendering and data management.

Overall, single-page web applications are known for their ability to deliver a fluid

user experience within a single page, without the need for frequent reloads [2].

1.2.3 Multi-Page Application:

Multi-page web applications consist of multiple interconnected HTML pages. Each
page represents a separate functional component or section of the application. Users navigate
between different pages to access different features or perform specific tasks. Unlike single-
page web applications (SPAs), multi-page applications rely on traditional server-side
rendering, where each interaction typically results in a page refresh. This approach is suitable

13



for applications with distinct sections or complex navigational structures, providing clear
separation between different functionalities and content. Multi-page web applications are
built using server-side technologies, such as PHP, Python, or Ruby, to handle requests,

process data, and render HTML pages dynamically [3].

1.2.4 Web client and Web server:

1.2.4.1 Web client:

A web client is a software application, typically a web browser, that users use to
access websites and web applications. It serves as a gateway between users and the web,
providing a user-friendly interface to navigate and interact with web content. The web client
plays a crucial role in rendering web pages by interpreting the HTML, CSS, and executing
JavaScript code. It ensures that the visual and interactive aspects of web pages are displayed
accurately and enables users to interact with various elements, such as forms, buttons, and
media. [4].

1.2.4.2 Web server:

A web server can be either a hardware or software or both component working
together to facilitate the hosting, processing, and delivery of web content.

On the Hardware side, a web server refers to the computer system that is used to store
and serve the web server software and the files that comprise a website (HTML documents,
CSS stylesheets, and JavaScript files). It connects to the internet, enabling physical data
interchange with other devices.

On Software side, a web server includes components such as an HTTP server, which
is responsible for understanding URLs and HTTP protocol. The HTTP server software
allows users to access websites via domain names and ensures the delivery of websites

content [5].

1.3HTTP:

HTTP (Hypertext Transfer Protocol) is an application protocol that serves as the
foundation for the communication between web clients and web servers. It defines the set of
rules and conventions for the format and transmission of messages between the clients and
server, ensuring reliable and standardized data exchange. The HTTP protocol enables clients
to request specific resources, such as web pages or files, from servers and receive responses

14



containing the requested content. By establishing a standardized protocol, HTTP simplifies
the process of accessing and delivering web content, contributing to the interoperability and
scalability of the World Wide Web|[6].

1.4 URL.:

URL (Uniform Resource Locator) is a web address that identifies the location of a
specific resource on the internet. It consists of several components, each serving a specific
purpose in defining the location and accessing the resource [7]. The most important parts are
highlighted on the URL parts on Figure 1.1:

[ Authority |
http:// www.example.com: 80 /path/to/myfile.html ?key1=value1 &key2=value2 #SomewherelnTheDocument

Scheme “p Domain Name Port = Path to thefile Parometers Anchor

Figure 1.1: URL Parts [7]

1.4.1 Scheme/Protocol:

The scheme or protocol specifies the communication protocol used to access the
resource. Common schemes include "http://" for Hypertext Transfer Protocol and "https://"

for Hypertext Transfer Protocol Secure [7].

1.4.2 Subdomain and Domain:

The subdomain and domain identify the specific website or server hosting the
resource. The subdomain is an optional part that precedes the domain. For example, in

"www.example.com," "www" is the subdomain and "example.com™ is the domain [8].

1.4.3 Top-Level Domain:

The top-level domain is the last part of the domain and represents the category or
type of organization associated with the website. Examples include ".com” for commercial

websites, ".org" for non-profit organizations, and ".edu” for educational institutions [8].

15


http://www.example.com/

1.4.4 Path:

The path represents the specific location or file within the website's directory

structure. It helps navigate to a specific resource or page on the website [7].

1.4.5 Query Parameters:

Query parameters are optional and appear after a question mark "?" in the URL. They
provide additional information to the server, such as search terms or parameters for data
retrieval. Query parameters are typically in the form of key-value pairs, separated by
ampersands "&" [7].

1.4.6 Fragment Identifier/ Anchor:

The fragment identifier is an optional part of the URL that appears after a hash "#"
symbol. It specifies a specific section or element within the resource itself, such as an anchor

tag on a webpage [7].

1.5 Programming Languages:

Programming languages are formal languages designed for instructing computers to
perform specific tasks. They provide a set of syntax and semantics that enable developers to
write code and create software applications. Programming languages are used to define the
behavior and functionality of a program, allowing developers to build web applications and

other software systems [9].

1.5.1 HTML:

HTML is a markup language used for structuring the content of web pages. It
provides a standardized way to describe the elements and layout of a webpage, including
text, images, links, and other media. HTML uses tags to mark up different elements and
create a hierarchical structure. Web browsers interpret HTML code to render web pages on

users' devices [10].

16



1.5.2 CSS:

CSS is a style sheet language used to describe the presentation and visual layout of
HTML documents. It enables developers to define the appearance of web pages, including
colors, fonts, spacing, and positioning of elements. CSS works in conjunction with HTML
to separate the content and presentation aspects of a webpage, allowing for consistent and

reusable styling across multiple pages [11].

1.5.3 JavaScript:

JavaScript is a versatile programming language primarily used for creating
interactive and dynamic web content. It runs on the client-side (in the browser) and enables
developers to add behavior, interactivity, and real-time updates to web pages. JavaScript can
manipulate HTML elements, handle user events, make asynchronous requests, and interact
with server-side components. It plays a crucial role in enhancing the user experience and

adding functionality to web applications [12].
1.5.4 Python:

Python is a high-level programming language known for its readability and
simplicity. It is widely used for web development, among other domains. In the Tradehub
project, Python was used in conjunction with the Django framework. Django is a powerful
web framework that follows the Model-View-Controller (MVC) architectural pattern,
allowing developers to build scalable and maintainable web applications. Python, along with
Django, facilitated server-side processing, database interactions, and the overall business

logic of the Tradehub web application [13].

1.6 Tools and Frameworks:

The Tradehub project incorporates a range of tools and frameworks that enhance the
development process and provide additional functionalities. These tools streamline the
workflow and help create a robust and efficient web application. The following are the key

tools and frameworks utilized in the Tradehub project:

1.6.1 Visual Studio Code (VScode):

VScode is a powerful source code editor that offers a wide range of features such as

syntax highlighting, debugging, code completion, and version control integration. It was

17



the primary editor used throughout the development of Tradehub due to its flexibility,

extensive plugin ecosystem, and user-friendly interface [14].

1.6.2 StarUML.:

StarUML is a UML modeling tool that aids in designing and visualizing the system
architecture. It allows for the creation of UML diagrams such as class diagrams, sequence
diagrams, and use case diagrams [15]. StarUML was utilized to create comprehensive UML
diagrams for Tradehub, providing a visual representation of the system's structure and

interactions.

1.6.3 Django:

Django is a high-level Python web framework that simplifies the development of
complex web applications. It follows the Model-View-Controller (MVC) architectural
pattern, providing a clear separation between the data models, views, and templates. Django
was chosen for its robustness, scalability, and built-in features such as authentication,

database management, and URL routing [16].

1.6.4 SendGrid:

SendGrid is an email delivery service that offers reliable email sending capabilities.
It provides APIs and libraries for integrating email functionality into web applications. In
Tradehub, SendGrid was used to facilitate customer service email sending, ensuring that

important notifications and communication were effectively delivered to users [17].

1.7 Introduction to The Database:

1.7.1 Definition:

A database is a structured collection of data that allows for efficient storage,
organization, and retrieval of information. It serves as a central repository for data used in
applications, enabling operations such as inserting, updating, querying, and deleting data.
Databases can be relational or non-relational, offering different approaches to data storage

and management [20].

18



1.7.2 Relational Model:

The relational model is a widely used data model that represents the database as a
collection of tables with predefined relationships between them. In Tradehub, the relational
model is employed to organize and structure data in a logical manner. Tables such as
"Users," "Jobs,” and "Comments" are created with appropriate fields to store related
information. The relational model ensures data consistency, integrity, and allows for

efficient querying through SQL operations [21].

1.7.3 Non-Relational Model:

The non-relational model, also known as the NoSQL model, is an alternative to the
relational model for database management. NoSQL databases, such as MongoDB or other
document-oriented databases, offer flexibility in data storage and retrieval [21]. In Tradehub,
certain components of the system, such as user comments or customer inquiries, may be
stored in a non-relational database. This model allows for scalability, fast data retrieval, and

accommodates unstructured or semi-structured data.

1.7.4 SQLite:

SQLite is a popular embedded database engine that provides a self-contained,
serverless, and file-based relational database management system (RDBMS). It is
lightweight, fast, and widely used in various applications and programming languages.
SQLite implements a transactional SQL database engine with support for standard SQL
syntax, data integrity, and ACID (Atomicity, Consistency, Isolation, Durability) properties.
It is designed to be embedded within applications, requiring minimal configuration and
administration. SQLite is known for its simplicity, efficiency, and compatibility, making it

a popular choice for small to medium-sized projects [22].

1.8 Modeling Language:

Modeling languages are essential tools used in software development to represent
and communicate different aspects of a system'’s design. They provide a standardized way to
visually depict the structure, behavior, and interactions of software components. In the
context of the Tradehub project, we utilized modeling languages to create clear and concise

representations of the system's architecture and design [18].

19



1.8.1 Unified Modeling Language (UML):

The Unified Modeling Language (UML) is a widely adopted modeling language in
software engineering. It provides a standardized notation to visualize, specify, construct, and
document the artifacts of a system's design. UML offers a comprehensive set of diagrams
that cover different aspects of a software system, allowing developers to effectively

communicate and understand the system's structure, behavior, and interactions [19].

1.8.2 Use Case Model:

A Use Case Model provides a high-level view of the system's functionality from the
perspective of its users, known as actors. It helps identify the various interactions between
actors and the system, represented as use cases. Each use case represents a specific goal or

task that an actor can perform within the system.

1.9 Conclusion

In this chapter, we have explored the theoretical foundations that form the basis of
our project. We discussed web applications and their types, highlighting Tradehub as an
example, and examined important concepts such as HTTP, URLs, web servers, and clients.
We also defined the various programming languages, frameworks and tools that were used
to design and build our website.

By understanding these concepts and employing the necessary tools and frameworks,
we have gained insights into the fundamental principles behind web development. In the
next chapter, we will delve deeper into the architectural design and implementation details
of the Tradehub web application, further enhancing our understanding of its technical

aspects.

20



Chapter Two:

Design

21



Chapter Two: Design

2.1 Introduction:

In this chapter, we explore the design of Tradehub, our web application connecting
tradesmen and clients. Using UML, we present a comprehensive model illustrating system
components and interactions. Additionally, we discuss the database structure, highlighting
the use of Django ORM. These design elements form the foundation of Tradehub,
enhancing job searches, communication, and user experience for tradesmen and clients.

2.2 Modelling:

In the Tradehub project, we employed UML to create various diagrams that capture
different perspectives of the application's design. These diagrams helped us analyze and
communicate the system's architecture, relationships between components, and the flow of

information and control.

By utilizing UML, we were able to visualize and document the Tradehub
application’s design in a clear and concise manner. In the following sections, we will delve
into the specific UML diagrams used in the Tradehub project, highlighting their purpose and
how they contribute to the overall design of the application..

2.2.1 Actors:

Actors in the Tradehub system represent different entities that interact with the
application. Based on our project, we can identify the following actors:
1. Tradesmen: Represents registered users who post their services in the website.
2. Customer: Represent users who come to website just to view its contents
3. Admin: Represents an administrator or superuser with privileged access and
additional functionalities.

In our website we have three types of actors:

2.2.1.1 Administrator:
Responsible for managing the whole website, he has the authority to manage all the
users accounts and the jobs they posted on the platform.

2.2.1.2 Tradesmen:
They can create accounts and post their services on the platform.

2.2.1.3 Customer:
A user role in Tradehub who can browse job listings, post comments, and contact
customer support.

22



2.2.3 Use Case Description:
The role of each actor in our web-application is defined in Table 1

Table 1 Roles of actors in the use case diagram

Actors Use Case

Admin e Login: access his account through an email and password

e User management: The admin has the ability to add, remove users
(Tradesmen) and post new jobs for them or modify old ones

e Authentication and Authorization: The admin has the ability to set

permissions of a certain user or group

Tradesmen | e Login: access his account with an email and password

e Job Posting: Post new jobs or edit previous ones

¢ Job Deletion: Tradesmen can delete the jobs they posted

e Comment Posting: Tradesmen can post comments on the website.

e Customer Service Contact: Tradesmen can fill out a form to contact

customer service.

Customer e Comment Posting: Customers can post comments on the website.
e Customer Service Contact: Tradesmen can fill out a form to contact

customer service.

2.2.4 Use Case Identifications:

a) Login: Allow the users to access their accounts

b) User management: The admin ability to add or remove any user, and to create new
job postings for them or edit old ones

c) Authentication and Authorization: The admin ability to decide which kind of
permissions a certain group or user can have

d) Job Posting: registered Tradesmen have the ability to post their services in the form
of a job post, or edit, remove a previously posted job

e) Job Deletion: Tradesmen can delete the jobs they posted.

f) Comment Posting: Tradesmen can post comments on the website.

g) Customer Service: Tradesmen can fill out a form to contact customer service.

23



2.2.5 Use Case Diagrams:

A use case diagram is a visual representation of the interactions between users
(known as actors) and a system. It provides a high-level view of the functionality and
behavior of a system from the perspective of its users. Use case diagrams are widely used in
software development to capture and communicate the requirements of a system.

Actors in a use case diagram represent the different entities that interact with the
system, they each have certain tasks to perform within the system known as use cases

Use cases in a use case diagram represent specific interactions or tasks performed by
actors within the system. They capture the functional requirements of the system and
describe the desired behavior or outcomes. Use cases are connected to actors through
associations, indicating which actors are involved in each use case.

Before show casing the diferent Use Case Diagrams of our system, let's briefly define
the meaning of each arrow symbol used which represent the relationship between actors and
use cases in the diagram in Table 2

Table 2 Description of used arrows

Symbol Description
Association The association arrow in a use case diagram represents a relationship

between an actor and a use case. It indicates that the actor interacts

with or participates in the use case.

Include The include arrow in a use case diagram represents a relationship
between two use cases, indicating that one use case includes the
functionality of another use case. It signifies that the base use case
incorporates the behavior defined in the included use case. This
relationship allows for modularization and reuse of common

functionality across multiple use cases.

Extend The extend arrow in a use case diagram indicates an optional or
alternative behavior that can be added to a base use case. It signifies
that the extending use case may be invoked under certain conditions,
which are defined as extension points in the base use case. The extend
relationship allows for the specification of additional functionality that

is not always present in the base use case.

24



Now that we have covered the basics of the use case diagram, we will present the
System Diagram in Figures 2.2, 2.3 and 2.4. Highlighting the key elements and their
connections, which will provide a comprehensive visual representation of the Tradehub

system's architecture.

\Add Job pu-s-t'_'_'_

A Verify ™,
f email \
and ] |
" password aextends T ui
— ¢ Edit Job Post [ save
.CDmpIete Job List > cextends — wextend: _
ey aExtends | |
M i wextends _Delete Job post_
A Login ..,"
Admin T Ll T
wextends (" Users list ) PP ——
TR agxtends — -
wextends
agxtends
TN ./_'_'.Edit user"_'_\. N
L —— — - cextends e
¢ Change ™
‘. password /
¢ Delete User

Figure 2.2 Admin Use case diagrams

From the description above (Figure 2.2), we can outline the interactions of an admin
with our Tradehub platform. The admin's journey begins by logging in using their dedicated
admin account. Upon successful authentication of the provided email and password, they are

granted access to the admin interface, which serves as their central control hub.

Within the admin interface, the admin is presented with comprehensive options and
functionalities. They can navigate through the complete list of jobs posted on the platform,
gaining insights into the various opportunities available. Additionally, the admin has access
to the list of registered users, enabling them to manage and monitor the user base effectively.

The admin's authority extends beyond mere observation. They possess the ability to make
modifications as needed. This includes the capability to add or delete job posts or registered
users, granting them a high degree of flexibility and control over the platform's content.
Furthermore, the admin is empowered to edit user information or update details of previously
posted jobs, ensuring the accuracy and relevance of the platform's data.

25



Add Job po st 3

S Vernfy i
| emailand | wetende
‘. password —— —

( user JobList )

= —% ¢ Edit Job Post

wpxienge — L_‘_. SAVE ___/l
wextends
wincludex
Enctend wgxtend
F > Login ~ Delete Job post
— 1 S, e
T (_Login ) _Delete Job post
Tragksman el —— T
extent» Comment section
Extends — e ——
sxtendn e _C_umment F'::-stln_g_____) C save D)
edends
axtends
/" Change ™
'\_._passwnn:l_.__ ! Ll | | 11
T ~7 Customer service “Fi = — ——
¥ { ill Form # et
. contact A b o \___EEnd ema||____.
T —  Eextends wextend = -

Figure 2.3 Tradesmen Use case diagram

From the description above (Figure 2.3), we can outline the interactions of tradesmen
with our Tradehub platform. The process begins with tradesmen logging in and verifying
their email and password. Once authenticated, they are redirected to a dedicated interface
where they can access their previously posted jobs. In this interface, tradesmen have the
ability to edit or delete their existing job posts and add new ones, providing them with
flexibility and control over their listings. Moreover, tradesmen can actively engage with the
platform by posting comments or contact customer service for any inquiries or assistance

they may need during their platform usage.

/~ Comment ™ Cﬁ'g;?;ﬁgt \ ( save )
. ) \ / N e
N _E.ecllon S wextends ~— «extend»
z@xtends B
o~ - e
p ]
% —/" Accessig
SN [ the
Customer . Platform /
\'-._____ ____.x/ L - _---"'--.
7~ Customer ™ — ——
zextends | service } { Fill Form ) _ Send email >

S comact  fevtends ———  «extend»

Figure 2.4 Customer Use case diagram

Figure 2.4 showcase the customer interaction with the platform. For the customers they don’t
have to login they can see the job list on website directly and look for their suitable

tradesmen, they also have the ability to post comments and contact customer support.

26



2.2.6 Class Diagram:

In this section, we present the Class Diagram for our project, "Tradehub,” which
serves as a central hub for tradesmen and clients to connect and collaborate effectively. The
Class Diagram illustrates the entities and their associations, helping us gain a deeper

understanding of the system's design and organization.

CustomUserManager

+One to One

o FCreate_superuser()
+create_user()

User +0One to Many Job
+Username: Siring " +itle: String
+Email: String L5 +description: String
+Phone number: String B +posted: DateTime
+Address: String TOone o O +profile_image: Image
+Profile Picture: ImageField +label: String

M

+Zero to Many +0One to One

)
Category

+name: Siring

Figure 2.5 Class Diagram

The Figure 2.5 provides a comprehensive overview of the system's structure,
highlighting the essential classes and their relationships within the "Tradehub" platform. The

diagram showcases the following classes:
User: Represents the users of the platform, including tradesmen and clients. The User class

contains attributes such as username, phone number, address, and profile picture. It has a

one-to-many relationship with the Job class, allowing users to post and manage their jobs.

27



Job: Represents the job postings made by tradesmen. The Job class includes attributes such
as title, description, posted date, and label. It has one-to-one relationships with both the
Category and User classes, associating each job with a specific category and the

corresponding user who posted it.

Category: Represents the categories or types of jobs available on the platform. The Category
class contains attributes such as name and establishes a zero-to-many relationship with the
Job class, allowing multiple jobs to be associated with a specific category.

Additionally, the diagram includes the CustomUserManager class, responsible for
managing user creation and authentication. It is compositionally associated with the User
class, ensuring each User object is associated with a CustomUserManager object.

The Class Diagram offers a visual representation of the system's architecture, aiding
in the understanding of the relationships between entities and their roles in the platform. It
serves as a valuable reference for developers, enabling them to implement the system's

functionality effectively.

By analyzing the Class Diagram, we gain insights into the organization of classes,
their attributes, and the associations between them. This understanding forms the foundation
for the successful implementation of the "Tradehub™ platform, facilitating efficient

tradesmen-client connections and collaborations.

2.3 Database:

2.3.1 Importance of a Centralized Data Repository:

Our platform relies on a robust and efficient database as a central repository for
storing and managing the data necessary to power the web application's functionality and
facilitate user interactions. The database serves as a fundamental component, ensuring data

integrity, scalability, and accessibility.

2.3.2 Efficient Data Retrieval and Storage:

Tradehub's well-structured database enables efficient data retrieval, storage, and
manipulation. Users can quickly search for specific jobs, access their profiles, and retrieve

relevant details, resulting in reduced response times and an enhanced user experience. The

28



database's storage capabilities efficiently handle large amounts of data, ensuring scalability

and robustness

2.3.3 Enhancing User Experience:

By leveraging the power of a well-designed database, Tradehub ensures a smooth
and engaging user experience. Efficient data retrieval, storage, and manipulation contribute
to seamless interactions, allowing users to find information quickly and perform actions

smoothly.

2.3.4 Description of the Database used in our project:

Our web application utilizes a SQL.ite database, which is a lightweight, serverless,
and file-based database management system. The database schema consists of several

tables that store different types of data related to the system's functionality.

Since we used Django commands to create the Database, there are many tables that
were created by default to facilitate various Django functionalities (As you will see in Figure
2.5). However, for the purpose of our discussion, we will focus on the essential tables that
were specifically defined through Django models. These tables capture the core functionality
and data storage requirements of the Tradehub web application.

Mom Type Schéma

v || Tables (14)
~| auth_group CREATE TABLE "auth_group” ("id"
~| auth_group_permissions CREATE TABLE "auth_group_perm
~| auth_permission CREATE TABLE "auth_permission"
—| auth_user CREATE TABLE "auth_user" ("id" ir
~| auth_user_groups CREATE TABLE "auth_user_groups
~| auth_user_jobs CREATE TABLE "auth_user_jobs" (
~| auth_user_user_permissions CREATE TABLE "auth_user_user_p
~| django_admin_log CREATE TABLE "django_admin_loc
~| django_content_type CREATE TABLE "django_content_ty
~| django_migrations CREATE TABLE "django_migration:
~| django_session CREATE TABLE "django_session" (
~| sglite_sequence CREATE TABLE sqglite_sequence(ng
~| tradesmen_category CREATE TABLE "tradesmen_cateqc
~| tradesmen_job CREATE TABLE "tradesmen_job"

Figure 2.6 Database Structure

29



2.3.4.1 Django_admin_log table:

This table contains eight columns shown in Figure 2.6:

¢ Id: An identification number that is automatically generated by the database.

e Object_id: stores the ID of the specific object that was modified or affected by the
administrative action.

e Object_repr: stores the name of the user or the title of a post that an action was
performed on.

e Action_flag: stores numerical values that correspond to different types of actions.
These values are predefined constants in Django's source code, such as ( 1=Adittion
2=Change, 3=Deletion).

e Change_message: stores an optional descriptive message associated with a specific
action performed in the Django admin interface

e Content_type_id: A foreign key to the table “Django content type”

e User_id: Stores the users_id ( which in our case are tradesmen )

e Action_time: Record the time that the specific action happened at.

Table:| |~ | diango_admin_log v @ e % g LE"] B, A @ E;H Filter in any colu
id  object id object_repr action_flag change_message  content_type_id  user_id action_time
Filter |Filter Filter Filter Filter Filter Filter  [Filter
1 11 Electrician 1 [{"added": {}}] B 2 2023-06-07 20:55:07.363435
2 23 Plumber 1 [{"added": {}}] B 2 2023-06-07 21:01:45.004275
7 31 Farid 1 [{"added"; {}}] 3 2 2023-06-07 21:28:39.088377

Figure 2.7 Django_admin_log table

2.3.4.2 Django_content_type:

This table contains three columns shown in table 2.7:
e Id: An identification number that is automatically generated by the database.
e App_label: represents the label or name of the Django application associated with
the content type
e Model: represents the name of the model associated with the content type. It is used
by Django's content type framework to manage and retrieve content types

dynamically at runtime.

30



Table: | | diango_content_type o

id app_label model
Filter |Filter Filter
1 1 admin logentry
2 2 auth permission
3 3 auth group
4 4 contenttypes contenttype
2 2 sessions session
& 6 tradesmen  user
7 7 tradesmen  category
8 8 tradesmen job

Figure 2.8 Django_content_type table

2.3.4.3 Tradesmen_category:

It contains 2 columns shown in Figure 2.8:

¢ Id: An identification number that is automatically generated by the database.

e Name: The names of each category

ITaI:uIE: | radesmen_cateqgory

id name
|Filter |Filter

1 1 Electrician
2 2 Carpenter
3 3 Plumber
4 4 Painter

Figure 2.9 tradesmen_category table

2.3.4.4 Tradesmen_job:

It contains 7 columns shown in Figure 2.9:

¢ Id: An identification number that is automatically generated by the database.

o Title: the title of the job post

31



Description: the main part of the post where the user can describe the job he is
offering and his contact information

Posted: the date that the post was added to website

Profile_image: an image attached with the job post

Label: location of operation of the user (tradesmen)

User_id: an identification number unique to each registered user

Tedk: | adesnen b VR G Jj'@ 90 4 b % Fenayaim

1
!
]

(o desripton posted orofle image fabel  user id
Fiter |Fiter ~ |Fier Fiter Fier Fiter — |Fier
1 Electrican I can fix or insall mast electrial set ups.. 023-06-07 20:55:07.357489 job_images/electrician,pg Alger !

2 Carpenter T can make any custom wooden consructure you.. 2023-06-07 20:59:18.933684 job_images/Carpenter jpq Boumerdes 2
3 Plumber T can help fix any leak or ipe insallaton atyour . 2023-06-07 20,01:44.998291 job_images/Plumber.jpg ~ Alger !

Figure 2.10 tradesmen_job table

2.3.4.5 Users_comments:

It contains 4 columns shown in Figure 2.10:

Id: The unique identifier for each comment.
user_id: The foreign key referencing the user who made the comment.
Content: The actual content of the comment.

created_at: The timestamp indicating when the comment was created.

5
5

Table: | | users_comments W

id user_id content created at

Filter |Filter Filter Filter

Figure 2.11 users_comments table

32




2.4 Conclusion:

In this design chapter, we presented a comprehensive use case model that captured
the interactions between actors and the Tradehub system's functionalities. We emphasized
the importance of a well-designed database as a central repository for efficient data retrieval,
storage, and manipulation, contributing to a seamless user experience.

We explored the database structure, focusing on the essential tables defined through
Django models. Each table and its relevant columns were described, providing insights into
how the system organizes and stores data.

In the next chapter, we will delve into the implementation phase, discussing the
development process, data migration, version control, and the integration of various
technologies. By examining the implementation details, we will gain a comprehensive
understanding of how the design concepts discussed in this chapter were translated into a

fully functional Tradehub web application.

33



Chapter Three:

Implementation
& Results

34



Chapter 3: Implementation & Results

3.1 Introduction:

In this chapter, we will delve into the implementation phase of the Tradehub project,
where we bring the designed concepts to life and present the tangible results. Building upon
the tools and roles discussed in previous chapters, we will explore the functionalities of the
web application and showcase the user interfaces that have been developed. Additionally,
we will evaluate the performance, functionality of the Tradehub platform, discussing the
achieved milestones and addressing any identified limitations.

3.2 Development Process:

3.2.1 Iterative Development:

The Tradehub application was developed iteratively, focusing on incremental
progress and continuous improvement. | broke down the project into smaller tasks and
milestones, setting achievable goals for each iteration. Regular self-evaluations and progress
reviews were conducted to ensure the project was on track and aligned with the initial

objectives.

3.2.2 Technology Stack:

The Tradehub web application leveraged the power of the Django framework for
seamless back-end development. Django provided a comprehensive set of tools and features
that simplified the implementation of essential functionalities. The built-in user
authentication system allowed for secure user management, including registration, login, and
password recovery. Django's ORM (Object-Relational Mapping) facilitated easy integration
with the database, ensuring efficient data retrieval and manipulation. The framework's URL
routing mechanism enabled clean and organized URL patterns, making it simple to define
routes and connect them to the appropriate views. Moreover, Django models were employed
to define the database structure and relationships between entities. Models such as User, Job,
Category, Comment provided a structured representation of the data, enabling seamless data

management and retrieval within the Tradehub application.

On the front-end, the Tradehub web application employed a combination of HTML,

CSS, JavaScript to create an engaging user interface. HTML provided the backbone for
35



structuring the content and defining the various elements of the application. CSS was utilized
to style and customize the visual presentation, ensuring a visually appealing and cohesive
design. JavaScript enhanced interactivity, allowing for dynamic functionality such as client-
side form validation and real-time updates. Additionally, Django's built-in templating
language was utilized to generate dynamic HTML content, enabling the inclusion of

variables and logic in the presentation layer.

By leveraging the capabilities of Django for back-end development and utilizing
HTML, CSS, JavaScript for the front-end, the Tradehub web application offered a powerful
and user-friendly platform that streamlined user interactions, provided robust data

management, and delivered an aesthetically pleasing user experience.

3.2 Code Implementation:

3.2.1 Models.py:

The models.py file plays a crucial role in the Tradehub project as it defines the data
models used for storing and managing various entities. These models represent the structure
of the application’s database and facilitate the organization and retrieval of data.

Now let's dive into the implementation details of each key model in the Tradehub project

3.2.1.1 Category Model:

class Category(models.Model):
name = models.CharField(max_length=100)

def __str_ (self):
return self.name

o Title: Category Model

« Description: The Category model represents a category of tradesmen available in the
Tradehub application. It serves as a way to classify tradesmen based on their
specialization. The model includes a single field, name, which stores the name of the
category.

e Use: The Category model allows tradesmen to be grouped into specific categories,
enabling users to search and filter tradesmen based on their desired category or

specialization.

36



3.2.1.2 CustomUserManager Model:

CustomUserManager (BaseUserManager):
create user(self, email, password= , ¥*extra fields):

if email:

raise ValueError('The Email field must be set')
email = self.normalize email(email)
user = self.model(email=email, **extra_ fields)
user.set_password(password)
user.save(using=self. db)
return user

create superuser(self, email, password= , ¥*extra fields):
extra_fields.setdefault('is_staff’,

extra fields.setdefault('is superuser’, )
return self.create_user(email, password, **extra_fields)

o Title: Custom User Manager

o Description: The CustomUserManager class extends the BaseUserManager provided
by Django and is responsible for creating and managing user accounts. It includes
methods for creating regular users and superusers with enhanced privileges.

e Use: The CustomUserManager handles the creation and management of user
accounts in the Tradehub application. It ensures that user data is properly validated,

encrypted, and stored in the database.

3.2.1.3 User Model:

User(AbstractUser):
phone_number = models.CharField(max_length=20)
address = models.CharField(max_length=255)
profile_picture = models.ImageField(upload_to='profile_pictures/',
blank= , hull= )

objects = CustomUserManager()
Meta:

verbose name = 'User'
db_table = 'auth_user’
swappable = 'AUTH_USER_MODEL'

__str_ (self):
return self.username

37



jobs = models.ManyToManyField('tradesmen.Job",
related name='tradesmen user', related query name='tradesmen user',
NENE )

delete_job(self, job_id):

try:
job = self.jobs.get(id=job_id)
job.delete()

except Job.DoesNotExist:

pass

o Title: User Model

e Description: The User model extends Django's AbstractUser model to represent a
user in the Tradehub application. It includes additional fields such as
phone_number, address, and profile_picture. The model also establishes a many-
to-many relationship with the Job model, allowing users to create and manage
multiple jobs.

e Use: The User model serves as the foundation for user authentication, profile
management, and job association. It stores user-specific information, such as contact
details and profile pictures, and provides methods for job-related operations,
including job creation and deletion.

3.2.1.4 Job Model:
Job(models.Model):
user = models.ForeignKey(User, on_delete=models.CASCADE, null=
related name='tradesmen job")

title = models.CharField(max_length=100)
description = models.TextField()

posted = models.DateTimeField(auto now_add=

profile_image = models.ImageField(upload_to='job_images/', blank=
label = models.CharField(max_length=100, blank= )

__str__(self):
return self.title

o Title: Job Model

o Description: The Job model represents a job posted by a user in the Tradehub
application. It contains fields such as title, description, posted, and label. The model
maintains a foreign key relationship with the User model to associate jobs with the

respective user who posted them.

38



e Use: The Job model serves as a central entity for storing job-related information. It
enables users to create and manage their posted jobs, and it provides fields to store
details like the job title, description, posting date, and labels for categorization.

Together, these models form the backbone of the Tradehub application's data structure,
allowing for the efficient storage, retrieval, and manipulation of information related to

categories, users, and jobs.
3.2.2 views.py:

The “views.py file in the Tradehub project contains the implementation of various views,
which handle the logic behind rendering templates, processing form submissions, and

interacting with the models. Let's explore the key functionalities provided by these views.

3.2.2.1 Customer service function:

def customer_service(request):
if request.method == 'POST':
form = CustomerServiceForm(request.POST)
if form.is valid():
email = form.cleaned data[ ‘email’]
message = form.cleaned_data[ 'message’]
send mail(
'Customer Service',
f'Email: {email}\nMessage: {message}',
"tradehub.dz@gmail.com’,
[ 'tradehub.dz@gmail.com'],
fail _silently=False,
)
return render(request, 'customer service success.html')
else:
form = CustomerServiceForm()

return render(request, 'customer service.html', {'form': form})

e Description: This view handles the submission of the customer service form. Upon
receiving a POST request, the form data is validated, and an email is sent to the
customer service email address containing the customer's email and message. Upon

successful submission, the user is redirected to a success page.

3.2.2.2 Create-job function:

@login_required
def create_job(request):
if request.method == 'POST':

form = JobForm(request.POST, request.FILES)
if form.is valid():




job = form.save(commit=False)
job.user = request.user
job.save()

job data = {
"title': job.title,
‘description’: job.description,
'profile_image': job.profile_image.url if job.profile_image

‘label': job.label,
"posted’: job.posted.strftime('%Y-%m-%d")

return JsonResponse({'job': job_data})
else:
return JsonResponse({'error': 'Invalid form data'})

return JsonResponse({'error': 'Invalid request method'})

e Description: This view handles the creation of a new job. Upon receiving a POST
request with valid form data, a new job instance is created and associated with the
currently authenticated user. The job details are then saved, and a JSON response is

returned with the created job data.

3.2.2.3 Delete-job function:

@login_required
def delete_job(request):
if request.method == 'POST':
job_id = request.POST.get('job_id")
job = get_object or_4e4(Job, id=job_id)

if job.user != request.user:
raise PermissionDenied("You don't have permission to delete this

job.delete()
return JsonResponse({'message’': 'Job deleted successfully'})

else:
return JsonResponse({'message’': 'Invalid request method'})

e Description: This view handles the deletion of a job. When a POST request is
received, the corresponding job is fetched based on the provided job ID. If the
authenticated user is the owner of the job, the job is deleted, and a success message

is returned as a JSON response.

40



3.2.2.4 Index function:

index(request):

jobs = Job.objects.all().order_by('-posted")
return render(request, 'index.html', {'jobs': jobs})
e Description: This view retrieves all the jobs from the database and renders the

“index.html” template, displaying the jobs in descending order of their posting dates.

3.2.2.5 Register function:
register(request):
if request.method == 'POST':
form = UserRegistrationForm(request.POST)
if form.is valid():
form.save()
return redirect('login')

else:
form = UserRegistrationForm()

return render(request, 'registration.html', {'form': form})

e Description: This view handles user registration. Upon receiving a POST request
with valid form data, a new user account is created, and the user is redirected to the

login page for authentication.

3.2.2.6 User page function:
user_page(request, username):
user = User.objects.get(username=username)
jobs = user.jobs.all()

context = {'user': user, 'jobs': jobs}
return render(request, 'tradesmen/user page.html', context)

e Description: This view retrieves a specific user based on the provided username and
renders the “user_page.html” template. It fetches all the jobs associated with the user

and passes them to the template for display.

These views play a crucial role in handling user interactions, rendering templates, and
processing data in the Tradehub application.

3.2.3 admin.py:

from django.contrib import admin
from .models import Job, Category, User

admin.site.register(Job)
admin.site.register(Category)
admin.site.register(User)

41



The code registers the Job, Category, and User models with the Django admin interface.
This enables administrators to perform various administrative tasks related to these models,
such as creating, editing, and deleting records directly through the admin interface. By
registering these models, you provide an easy-to-use interface for managing and
manipulating the data stored in these models.

3.3 Application Interfaces:

3.3.1 Login Interface:

The login interface in our web application is a vital component that enables users to
access their accounts and perform various actions within the web application. It serves as a
gateway for tradesmen, customers, and admins to securely log in and access personalized

features and functionalities.

The login interface consists of a user-friendly form that prompts users to enter their
login credentials. It includes two main fields: the username field and the password field.
Users need to provide their registered username and password to authenticate their identity

and gain access to their respective accounts.

In case a user forgets their password, the login interface offers a password recovery
option. This feature allows users to initiate the password retrieval process, typically through
an email or verification link, enabling them to reset their password and regain access to their

account.

The login interface plays a pivotal role in Tradehub by controlling access to essential
features such as creating and managing job posts, viewing previous job postings, and
administering user accounts. It establishes a secure and reliable connection between users

and the web application, providing a seamless and efficient user experience.

Username:

Password:

Figure 3.12 Login interface
42



3.3.2 Register Interface:

The register interface in Tradehub provides a straightforward and convenient way for
new users to create an account and join the platform. It serves as an entry point for

individuals who wish to access the features and services offered by Tradehub.

To begin the registration process, users are directed to the register page by clicking on
the "Join Us" button located on the main index page. The register page presents a registration

form that captures essential user information. The form includes the following entries:

1. Username: Users are prompted to enter a unique username that will serve as their
identification within the Tradehub platform. The registration form provides clear
instructions and guidelines regarding username restrictions, such as character limits

or specific character requirements.

2. Email: Users are required to provide a valid email address, which will serve as a

primary contact method and enable communication between Tradehub and the user.

3. Password: Users must create a secure password that meets specific criteria, such as
minimum length or the inclusion of special characters. The registration form includes

comments and instructions to guide users in creating a strong and reliable password.

4. Confirm Password: To ensure accuracy and prevent input errors, users are prompted

to re-enter their chosen password in a separate field for confirmation.

The registration form in Tradehub incorporates validation checks to ensure that all
required fields are filled out before proceeding. If a user fails to provide the necessary
information or misses a required field, an appropriate notification or error message is

displayed, indicating the missing or incorrect input.

Once all the required information is provided and the form is successfully submitted, the
user's registration data is processed, and an account is created. The register interface plays a
crucial role in expanding the Tradehub community by facilitating user onboarding and

providing a seamless registration experience.

By offering a user-friendly and intuitive registration process, Tradehub aims to
encourage new users to join the platform and explore its various functionalities, including
43



the ability to create job posts, access personalized features, and engage with the Tradehub
community.

Register

Figure 3.13 Register Interface

After registering, the user can now access his user page by logging in. There are two
types of user pages in this project, admin interface and tradesmen interface. The interfaces
of various users will be discussed in the following sections.

3.3.3 Admin Dashboard:

3.3.3.1 Admin home interface:

The admin interface in Tradehub provides an essential tool for managing and
overseeing various aspects of the platform. It offers two main sections: the Tradesmen
section and the Authentication and Authorization section.

44



Djaﬂgo admim'stration WELCOME, MEDA4. VIEW SITE / CHANGE PASSWORD / LOG OUT ()

Site administration

AUTHENTICATION AND AUTHORIZATION .
Recent actions
Groups tAdd ¢ Change

My actions

TRADESMEN + Farid
Group
Categorys
*+ Plumber
Jobs +Add & Change Job

*+ Electrician
Job

Figure 3.14 Admin home interface

Our admin home interface is made of header and a main area which is divided into

two parts mainly “site administration” and “Recent actions”.

From the header you can either redirect to the main page of the website or change the
password of your account, and of course the option to log out of your account when you are

done with your actions.

3.3.3.2 Admin User_management interface:

Now for the Authentication and Authorization section, when you click on the group
you will be directed to another page as shown in Figure 3.14 where you will be able to see
all the users and groups available and you will have the ability to set the permission for any

user or you can add/delete users from the platform.

Select user to change ADD USER +

Search

Action:  ———----—- v Go 0of1selected

B crowr

B rarid

1 group

Figure 3.15 User management interface

As seen from the figure above, we were redirected to the list of users. Currently there is only
one, as an admin we can add new users by cliking the button “ADD USER” and then setting

his permission as shown in Figure 3.15:

45



Add group

Permissions:

Available permissions Chosen permissions @

admin | log entry | Can add log entry
admin | log entry | Can change log entry
admin | log entry | Can delete log entry
admin | log entry | Can view log entry
auth | group | Can add group

auth | group | Can change group

auth | group | Can delete group

auth | group | Can view group

auth | permission | Can add permission
auth | permission | Can change permission
auth | permission | Can delete permission
auth | permission | Can view permission

Choose all

Held down “Control”, or “"Command” on a Mac, to select more than one.

SAVE Save and add another Save and continue editing

Figure 3.16 Adding new users interface

3.3.3.3 Admin Tradesmen interface:

Now lets go to the Tradesmen section which has two parts Categorys and Jobs.
By cliking on Categorys we will be redirected to another page where we can see all types of

tradesmen there is on the platform, as shown in Figure 3.16:
Select category to change ADD CATEGORY
v  Go 0of4selectsd
Painter
Carpenter

Plumber

Electrician

4 categorys

Figure 3.17 Category interface

46



Now we go to the Jobs section, where we can view all the jobs listed on our platform, and
have the ability to add new one in our name or in the name of another user, we can also

delete or edit job posts, as shown in Figure 3.17 and 3.18:

Select job to change ADD 1O +

Action;  ==m-=memn v  Go 0of3selected

JoB
Plumber
Carpenter

Electrician

Figure 3.18 Job list Interface

Change job
HISTORY
Electrician

User:
Electrician

Description: | can fix or install most electrical set ups
contact me at 0555444321

Profile image: Currently: job_images/electrician jpg [Jjj Clear

Change: NoWIEHQTLRTViEY Aucun fichier choisi

Alger

SAVE Save and add another Save and continue editing

Figure 3.19 Edit Posts Interface

3.3.4 Web application main interface:

In this section we will describe the main interface that any user will se when first

accessing our platform, and highlight its different parts

47



3.3.4.1 Main page header:

The main page interface features a header section with various options to navigate
through the Tradehub website as seen in Figure 3.19. These options include "Jobs,"

"Comments," "Blog," and a “footer”.

Figure 3.20 Main page Header

3.3.4.2 Jobs section:

Clicking on the "Jobs" option in the header directs users to the job list, where they
can find previously posted jobs. Tradesmen who wish to add a new job are required to log
in. After logging in, a job creation form appears above the job list. By filling out the form
and clicking "Create," a new job is posted as highlighted in the Figures 3.20 and 3.21. This
functionality allows tradesmen to easily add new job listings and manage their offerings.
As you can see from the Figure bellow, before login in the user can’t post a new job they

can only observe the list.

Plumber
S | can help fix any leak or pipe installation at your home Contact me at 098765431
91\ o / be / @TEZ®  Posted June 7, 2023, 9:01 p.m. ago

Carpenter
| can make any custom wooden constructure you want 0666777321

Posted June 7, 2023, 8:59 p.m. ago
7 Electrician
o471l can fix or install most electrical set ups contact me at 0555444321
: “ Posted June 7, 2023, 8:55 p.m. ago

Figure 3.21 Jobs section before login

48



And now, after the user logged into their account they can see a form appearing above the
list, by filling it they can create new job posts that would be displayed in the list.

Job Description

Job Title # | Choisir un fichier | Aucun fichier choisi Label Create Job
Plumber
= | can help fix any leak or pipe installation at your home Contact me at 098765431
W P g e ! @TEZ®  Posted June 7, 2023, 9:01 pm. ago
M

Carpenter
| can make any custom wooden constructure you want 0666777321
d y Posted June 7, 2023, 8:59 p.m. ago
A Electrician
i | can fix or install most electrical set ups contact me at 0555444321
“ p Posted June 7, 2023, 8:55 p.m. ago
( More List )

Figure 3.22 Jobs section after login

3.3.4.3 Join us section:

Located below the job list, there is a section with a button labeled "Join Us" as seen
in Figure 3.22. Clicking this button redirects users to the registration form we showed in
Figure 3.12, where they can create a new account to access additional features and services

of the platform such as posting their services.

B 1505 WRPA R°T

YOUR NEW JOB

WITH US

Figure 3.23 Join us section

49



3.3.4.4 Comments section:

When users select the "Comments"” option from the header, they are presented with
a rotating display of comments posted by other users. The comments are displayed in the
form of cards, allowing users to view and engage with the feedback and experiences shared
by the Tradehub community.

Comments

Let's see what our clients say about us

"I needed a reliable "I was skeptical about "As a carpenter, I've
plumber for an urgent finding reliable struggled to find

repair, and I found the tradesmen online, but consistent work until I

perfect professional on this website exceeded joined this platform. It
this website. Will my expectations. has helped me grow my

definitely use it again!" Fantastic results!" client base.”

& » ¢

Salah Eddine Jamal Chemsi Farid SB
Homeowner Homeowner Carpenter

Figure 3.24 Comment section

3.3.4.5 Blog section:

Selecting the "Blog" option scrolls the page further down to a dedicated section that
contains three informative blog posts relevant to tradesmen as shown by Figure 3.23.
Clicking on a specific blog post redirects users to a separate page where they can access

detailed information and resources related to the topic of interest.

Career A dvices

Learn more career tips from Company's recruter

How to enjoy your work 10 tips for technical interview Achieving Work-Life Balance as a
7 = b E = Tradesman:
Discover valuable tips to enhance Prepare for a technical interview
your skills as a tradesman and excel with 10 essential tips. Discover practical strategies to
in your craft. balance your work and personal life

effectively as a tradesman.
Read more

Read more
Read more

Figure 3.25 Blog section

50



3.3.4.6 Footer section:

The footer section appears at the bottom of the main page interface and includes

various elements (Figure 3.25).

TRADEHU B Support

fradehub.dz@gmail.com Customer Service

fyino Terms of service
Partnership

Figure 2.26 Footer section

One of the clickable texts within the footer is "Customer Service." Clicking on it
redirects users to another page that features a form for submitting comments or inquiries.
When users fill out the form and click the "Send" button, an email is sent to the Tradehub
team, facilitating efficient communication and customer support( Figure 3.26).

Customer Service

Message:

Figure 3.27 Customer service form

The main page interface serves as the central hub for users to explore job listings,
access relevant information through the blog, engage with comments from the Tradehub

51



community, and interact with essential features such as user registration and customer
service. Its intuitive design and clear navigation contribute to an enhanced user experience

on the Tradehub website.

3.4 Deployment and Hosting:

In order to make the Tradehub web application accessible to users, it is necessary to
host and deploy the website. However, during the deployment process, several challenges
were encountered when attempting to deploy the Tradehub website on various free hosting
platforms. These challenges were primarily related to the compatibility of Python and

SQLite versions.

Many free hosting platforms do not support the latest versions of Python and SQL.ite,
which resulted in deployment errors and compatibility issues. It was observed that the
Tradehub project was developed using the latest versions of these technologies, making it
difficult to find a suitable free hosting platform that fully supported the required versions.

Considering these limitations, a decision was made to deploy and run the Tradehub
web application locally. By deploying the website locally, we could ensure compatibility
with the required Python and SQLite versions, eliminating the deployment errors

experienced on external hosting services.

Although the Tradehub website is deployed locally, it is still possible to demonstrate
the functionality and features of the application to stakeholders or users. By providing access
to the locally hosted environment, users can interact with the Tradehub web application and

experience its core features.

3.5 Functionality Evaluation:

The implemented features, including the login and registration system, job posting
mechanism, comments section, and blog posts, were evaluated for their effectiveness and
user satisfaction. The login and registration system provided a seamless experience, enabling
users to easily create and access their accounts and post new jobs. The comments section
helped give a positive image for our website, while the blog posts offered valuable

information to tradesmen.

During the evaluation, some challenges were encountered, such as occasional delays

in job posting updates or the misplacement the of profile image right after the job is posted
52



and minor issues with the comments rotation feature where it wont go back to the first
comment after reaching the end. These challenges were promptly addressed and resolved to

ensure a smooth user experience.

3.6 Performance and Scalability:

Tradehub demonstrated commendable performance throughout the evaluation
period. The platform maintained efficient response times and loading speeds, ensuring a
seamless browsing experience for users, there was no delay or staggering of the website
when scrolling up and down. Performance optimizations, including database indexing and

caching mechanisms, were implemented to enhance platform scalability.

Unfortunately we didn’t manage to deploy the website online, so we couldn’t test its

performance when multiple users were on it.

3.7 Comparison with Initial Goals:

The achieved results were compared against the initial goals and requirements
defined for the Tradehub project. The platform met the majority of the set objectives,
delivering essential features and functionalities as planned. While minor adjustments and
modifications were made during the implementation phase, they were aligned with the
project's scope and contributed positively to the overall outcome.

One point that we weren’t able to implement is a rating system for tradesmen that
would decide the placement of their job posts on the job list, so that the ones with the highest

ratings would have their jobs displayed at the front.

3.8 Limitation:

Despite the successful implementation and positive user feedback, there are certain
limitations and areas for future improvement. One limitation is the lack of support for newer
versions of Python and SQLite on free hosting platforms, which restricted the ability to
deploy the website externally. Another limitation is the lack of security measure since our
website only included basic user authentication and authorization mechanisms As a result,

the platform was deployed locally for evaluation purposes only.

53



3.9 Conclusion:

In this combined chapter, we have presented the implementation details and
evaluated the functionality, performance of the Tradehub web application. Throughout the
implementation process, we focused on leveraging Django as our core framework, along
with HTML, CSS, and JavaScript to create an engaging front-end interface. Key features,
such as user management and database connectivity, were successfully developed,

providing a seamless user experience.

During the evaluation of the implemented features, we found that they aligned well with
the intended requirements and demonstrated good performance during testing. However,
it's important to note that scalability challenges may arise with an increasing number of
users, and further optimizations might be required to ensure efficient scaling.

Comparing the system with the initial goals, Tradehub has successfully achieved its core
functionalities, providing tradesmen a platform to showcase their services and clients an
easy way to find the right professionals for their needs. However, we also identified certain
limitations, such as limited mobile responsiveness, security considerations, and scalability
issues. These limitations present opportunities for future improvement, focusing on

enhancing usability, security, scalability, and overall user experience.

In conclusion, the Tradehub project has successfully delivered a functional web application,
showcasing the potential of our technology stack and implementation efforts. While
acknowledging the achievements, we also recognize the importance of ongoing
enhancements to address the identified limitations and ensure the platform's continued

growth and success.

54



General Conclusion:

The Tradehub project has successfully developed a web application to facilitate trade
activities and connect tradesmen with customers. Through the utilization of technologies
such as Django, HTML/CSS, and JavaScript, the project aimed to facilitate the connection
between tradesmen and their customers by creating a user-friendly platform for job postings.
The implementation phase involved the careful design and implementation of various
interfaces, including login and registration pages, job posting functionality, and an admin

interface for user and job management.

While facing challenges with hosting and deployment compatibility, the project
overcame limitations to provide a functional trade platform for tradesmen and customers.
The interfaces created, such as the login and registration pages, enable users to easily access
and utilize the platform's features. The admin interface empowers administrators to manage
users, job postings, and categories efficiently. Additionally, the main page provides a
comprehensive overview of available jobs and encourages tradesmen to engage in trade
activities. Overall, the Tradehub web application offers a seamless and user-friendly

experience.

Future Works:

Looking ahead, future improvements could focus on enhancing mobile
responsiveness, strengthening security measures, and ensuring scalability to accommodate a
growing user base. By incorporating user feedback and continually refining the application,
Tradehub has the potential to become a reliable and efficient platform for tradesmen and
customers. The knowledge gained from this project serves as a foundation for future

advancements in web development and trade management.

55



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[Online]. Available:
https://www.techtarget.com/searchsoftwarequality/definition/Web-application-Web-
app. [Accessed 4 06 2023].

[Online]. Available: https://developer.mozilla.org/en-US/docs/Glossary/SPA.
[Accessed 5 06 2023].

[Online]. Available: https://www.codingninjas.com/codestudio/library/single-page-
apps-vs-multi-page-apps. [Accessed 7 06 2023].

[Online]. Available: https://www.pcmag.com/encyclopedia/term/web-client.
[Accessed 7 06 2023].

[Online]. Available: https://economictimes.indiatimes.com/definition/web-server.
[Accessed 7 06 2023].

[Online]. Available: https://www.techtarget.com/whatis/definition/HTTP-Hypertext-
Transfer-Protocol. [Accessed 7 06 2023].

[Online]. Available: https://developer.mozilla.org/en-
US/docs/Learn/Common_questions/Web_mechanics/What_is_a URL. [Accessed 7
06 2023].

[Online]. Available: https://blog.hubspot.com/marketing/parts-url. [Accessed 7 06
2023].

[Online]. Available:
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/p/Programming_language.htm
. [Accessed 8 06 2023].

[10] [Online]. Available: https://www.freecodecamp.org/news/what-is-html-definition-

and-meaning/. [Accessed 8 06 2023].

[11] [Online]. Available: https://www.w3schools.com/css/css_intro.asp. [Accessed 8 06

2023].

[12] [Online]. Available: https://www.freecodecamp.org/news/what-is-javascript-

definition-of-js/. [Accessed 8 06 2023].

[13 [Online]. Available: https://developer.mozilla.org/en-US/docs/Learn/Server-

]

side/Django/Introduction. [Accessed 8 06 2023].

56



[14] [Online]. Available: https://www.infoworld.com/article/3666488/what-is-visual-
studio-code-microsofts-extensible-code-editor.html. [Accessed 8 06 2023].

[15] [Online]. Available: https://www.methodsandtools.com/tools/staruml.php. [Accessed
10 06 2023].

[16] [Online]. Available: https://www.techopedia.com/definition/28227/django. [Accessed
10 06 2023].

[17] [Online]. Available: https://sendgrid.com/wp-content/uploads/2016/09/SendGrid-
Implementation-Review.pdf. [Accessed 10 06 2023].

[18] [Online]. Available: http://sahet.net/htm/swdev9.html. [Accessed 10 06 2023].

[19] [Online]. Available: https://www.futura-sciences.com/tech/definitions/informatique-
uml-3979/. [Accessed 10 06 2023].

[20] [Online]. Available: https://www.oracle.com/database/what-is-database/. [Accessed
10 06 2023].

[21] [Online]. Available: https://aloa.co/blog/relational-vs-non-relational-database-pros-
cons#:~:text=A%?20relational%20database%20is%20structured,0f%20a%20laundry%
20list%20order..

[22] [Online]. Available: https://www.sqglite.org/about.html. [Accessed 10 06 2023].

57



