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ABSTRACT

Mobile robots have found numerous applications across various domains, such as agri-

culture, mining, construction, and military. The versatility and high mobility of ground

wheeled robots make them a popular choice for navigating complex and hazardous envi-

ronments. However, achieving autonomous navigation is a challenging task as it relies

on critical factors such as perceiving the robot’s surroundings, create a representative

map of the environment, and localize itself in real-time. In this project, we present an

approach for achieving autonomous navigation for a two-wheeled differential ground

robot utilizing the robot operating system (ROS) environment .The objective is to create

a navigation system that is robust and dependable, capable of enabling the robot to

navigate autonomously through an unknown environment and reach a specified destina-

tion. The proposed navigation system incorporates the use of the SLAM algorithm for

mapping and localization, as well as the A* algorithm for path planning. The developed

system is tested and evaluated within simulation environment, which demonstrates

the navigation system’s effectiveness and precision. Finally, the proposed navigation

system is implemented on a mobile robot , and its performance is evaluated in real-world

situations. The outcomes indicate that the developed navigation system can effectively

enable the robot to navigate autonomously while avoiding obstacles and arriving at its

destination with precision. This project topic is part of the research project to develop

a mobile robot platform intended for surveillance purposes called ROSMI, which aims

to adapt perception, localization, and navigation techniques to a surveillance robot that

can perform tasks such as threatening and sensitive sites. These techniques are imple-

mented on the robotic platform, equipped with a Raspberry Pi, a camera, and a Lidar.

The developed application must facilitate the mobile robot’s autonomous navigation while

transmitting in real-time the acquired video stream from the camera to a remote control

station.

Keywords: Navigation System, ROS, SLAM, Navigation Stack.
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NOMENCLATURE

WMR Wheeled Mobile Robot

UGV Unmanned Ground Vehicle

UAV Unmanned Aerial Vehicle

UUV Unmanned Underwater Vehicle

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping

LIDAR Light Detection and Ranging

AMCL Adaptive Monte Carlo Localization

AI Artificial Intelligence

GUI Graphical User Interface

API Application Programming Interface

CPU Central Processing Unit

RGB-D Red Green Blue - Depth

PID Proportional-Integral-Derivative

SSH Secure Shell

VNC Virtual Network Computing

PWM Pulse Width Modulation

URDF Unified Robot Description Format

GMAPPING Grid-based FastSLAM Mapping
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INTRODUCTION

The field of robotics has undergone remarkable transformations in recent years, lead-

ing to groundbreaking advancements that have revolutionized numerous industries and

domains. This rapid progress has played a pivotal role in seamlessly integrating robots

into various facets of human society. Moreover, as robots increasingly interact and collabo-

rate with humans, the need for safe and reliable navigation systems becomes increasingly

paramount. To effectively navigate their surroundings, robots require a robust and com-

prehensive navigation system. This system encompasses various components, including

perception, planning, and control, working together to enable autonomous movement and

interaction with the environment. The success of these missions relies heavily on the

development of adaptable navigation systems that facilitate movement across vast and

unfamiliar landscapes. By continually advancing navigation technologies and algorithms,

research strives to enhance the capabilities of robots, enabling them to operate in complex

and dynamic environments. This ensures the optimal performance of robots with diverse

settings.

This report deals with the development and implemention of navigation system on a

mobile robot, Hence, the remaining of this report is organized as follows: Chapter 1
provides a comprehensive overview of robotics, with a specific emphasis on unmanned

ground vehicles and their architectural aspects. The fundamental elements of robot de-

sign and structure are thoroughly examined with a detailed exploration on the navigation

process within robots, encompassing various components such as perception, localization,

and control. The significance of these components in facilitating autonomous movement

and interaction with the environment is highlighted followed by an introduction to robot

operating system (ROS) and its crucial role in the development of robotics systems.. The

primary objective of this chapter is to establish a solid foundation of knowledge and

comprehension in the field of robotics, laying the groundwork for further investigations

and advancements in the subsequent chapters.

In chapter 2 the tools used in this study are presented, recognizing that the initial

stage in establishing a functional navigation system is the precise setup of the robot. This

involves meticulous configuration of both the hardware and software components to guar-

antee flawless integration and compatibility. Additionally, a comprehensive examination

of the proposed methods and their evaluation techniques is provided, encompassing the

configuration of essential software packages such as SLAM (Simultaneous Localization

1



LIST OF FIGURES

and Mapping) and the navigation stack.

Chapter 3 covers the configuration of network communication, enabling remote control

of the robot, as well as the incorporation of ROS within the Raspberry Pi. The chapter

also addresses the setup of the navigation environment. Finally, we explore the practi-

cal implementation of navigation algorithms, including fine-tuning parameters and the

launch files to optimize performance.

The experimental results of the implemented navigation system is presented in Chapter
4, followed by evaluation and the discussion of the effectiveness of the developed system.

Finally the future work and further developments are presented in the conclusion.

2



C H A P T E R 1

INTRODUCTION

This chapter presents overview of robotics, with a focus on unmanned ground vehicles

including their overall architecture design and structure of a robot. Additionally, a

comprehensive explanation of the navigation process of robots is presented, along with

an introduction to the Robot Operating System (ROS) and its various tools and concepts

that are essential for understanding and implementing robotic systems.

1.1 Overview of robotics

Robotics is a multidisciplinary area of research that focuses on the design, construc-

tion, operation, and utilization of robots. It is a fusion of various fields, such as computer

science, electrical engineering, and mechanical engineering, to create machines that can

perform tasks typically carried out by humans. The field of robotics has seen significant

advancements in recent years, resulting in the development of robots for diverse appli-

cations, including manufacturing, healthcare, and education [1]. The goal of robotics

research is to create intelligent and autonomous machines that can sense, reason, and

act in the physical world and interact seamlessly and safely with humans. Achieving this

requires the implementation of various techniques, algorithms, and machine learning

strategies that enable robots to learn from their environment, make decisions, and exe-

cute actions based on perceived conditions. . Robots are classified into various types based

on their intended function and application. The most common types include industrial

robots, humanoid robots, and autonomous vehicles. Each type of robot possesses unique

capabilities and characteristics, making them suitable to perform specific industry task.

The flexibility and adaptability of robotics design allows robots to be developed for a wide

range of applications in various industries.

3



CHAPTER 1. INTRODUCTION

1.2 Autonomous mobile robots

Autonomous mobile robots are robotic systems that operate independently in their

environment and can move without continuous human intervention or control. Equipped

with various sensors, perception systems and embedded intelligence, these robots per-

ceive their surroundings, make decisions, plan actions and perform tasks without the

need for constant human guidance [2]. By moving autonomously and interacting with

their environment, these robots can perform a variety of functions such as exploration,

transport, inspection, surveillance and support with a high degree of autonomy and

adaptability.

There are many different types of autonomous mobile robots, each designed for spe-

cific applications and environment (Figure 1.1). Some of the most common types are:

1. Wheeled robots (WMR/UGV): These robots are usually equipped with 2-4 wheels

and can move efficiently on flat surfaces. They are often used indoors in warehouses,

hospitals, and offices for tasks such as material handling, transportation, and

surveillance.

2. Legged Robots: Legged robots mimic the movements of animals and insects with

their legs and limbs. These robots have the advantage of being able to navigate

uneven terrain, stairs, or rough surfaces that are difficult for wheeled robots to

traverse. Legged robots are used for search and rescue missions, reconnaissance, or

military operations [3].

3. Aerial Robots (UAV): These robots are designed to fly and navigate through the

air. They typically use rotors or wings for propulsion and can be used in a variety of

environments, including indoors and outdoors. Aerial robots are widely [4] used for

aerial photography, surveillance, delivery services, and environmental monitoring .

4. Underwater Robots (UUV): These robots are specifically designed for remotely

operation or autonomous underwater (AUV) operations. They are used for marine

research, underwater exploration, pipeline inspection, and deep-sea research [5].

This work focuses on the use of Wheeled Mobile Robot(WMR), which are preferred over

other types of robot designs because they are simpler in design, production, and program-

ming processes for moving on flat terrain and easier to control [6]. Wheeled robots can

use different locomotion methods depending on their number of wheels. Generally, two-

wheeled robots control their heading by differential steering method, which is applicable

to not only three-wheeled but also four-wheeled robots.

4



CHAPTER 1. INTRODUCTION

Aerial Robot [7] Underwater Robot [8]

Legged Robot [9] Wheeled robot [10]

Figure 1.1: Different type of Autonomous mobile robots

1.2.1 Robot Architecture

1.2.1.1 Perception

The concept of perception in mobile robotics refers to a system’s capacity to gather,

interpret, and coordinate data that will let the robot operate and interact with its envi-

ronment accurately and in real-time despite complexities such as noise, occlusions, and

dynamic changes. Additionally, the robot must have various sensors that assess both its

internal status and the environment in which it evolves the extraction of meaningful

information in order for the robot to perform its task.

1.2.1.2 Localization

Localization for robots refers to the ability of a robot to determine its own position

and orientation within a given environment. The most widely used technique for relative

localization is odometry. It involves initialization relative to the surroundings and

optical encoders attached on the axis motors to determine the basic wheel rotations. The

approach is based on establishing the robot’s location and orientation in relation to an

absolute reference frame.

5



CHAPTER 1. INTRODUCTION

The following diagram (Figure 1.2) illustrates the localization process:

Figure 1.2: Localization system diagram [11]

1.2.1.3 Cognition

Cognition is a critical aspect of mobile robotics, involving the ability of the robot to

gather data from its sensors, analyze it, and utilize it to make decisions based on its

objectives and tasks. Perception is the foundation of cognition, as the robot’s sensors

collect data which is subsequently processed to construct maps of the environment, plan

paths, and execute tasks [11]. Moreover, developing cognitive robots presents significant

challenges, such as the development of robust and scalable algorithms, the integration of

complex sensory inputs, and the requirement for high computing and storage capacity.

Achieving cognitive capabilities in robots could enable them to operate autonomously and

interact intelligently with their environment.

1.2.1.4 Motion Control

Motion control of a mobile robot refers to the process of controlling the movement and

direction of the robot by adjusting the speed and direction of the wheels. This involves the

use of sensors to measure the current status of the robot, as well as the desired motion ,

and then calculating the necessary wheel speeds to make the action. The control scheme

typically includes a trajectory generator, a motion control law, and a steering control

law. An efficient motion control system enables the robot to move while ensuring that it

accomplishes its intended task precisely.

The diagram in Figure 1.3 provides a visual representation of the interconnected of the

four key components in robotic systems:

6



CHAPTER 1. INTRODUCTION

Figure 1.3: Architecture of Robotic System

1.3 Wheeled robotic locomotion:

The Differential Drive Wheeled Mobile Robots (DDWMRs) usually have two inde-

pendently driven wheels and one or more unpowered wheels at the rear as a balance;

as represented in Figure 1.4 The two fixed wheels are mounted on the same axis, a

longitudinal axis, and a center wheel. The two fixed wheels’ velocity and the steerable

wheel’s orientation determine the robot’s direction of travel. The axis that corresponds

with the fixed wheels and the axis of the steerable wheel meet at the point where its

center of rotation is situated. In this configuration, the velocity of each wheel is controlled

separately , this what gives the robot the flexibility to perform rolling motion. The robot

rotates about a point that lies along their common left and right wheel axis, this point

is known as the ICC - (Instantaneous Center of Curvature) The trajectories that the

robot follows can be varied by varying the velocities of the two wheels [12]. The following

equations describe the velocities of the right and left wheel respectively:

ω(R+ l/2)=V r (1.1)

ω(R− l/2)=V l (1.2)

Where w is the rate of rotation about the ICC, where l is the distance between the centers

of the two wheels, and R is the signed distance from the ICC to the midpoint between the

wheels.

1.If Vl = Vr, The robot exhibits forward linear motion by moving in a straight line.

2. If Vl = -Vr, the robot rotates about the midpoint of the wheel axis ( the robot rotates in

place).

7



CHAPTER 1. INTRODUCTION

3. If Vl < Vr the robot deviates to the left , and if Vl > Vr the robot deviates to the right.

Figure 1.4: Mobile robot with tricycle kinematics [11]

1.4 Navigation

Navigation ability is the most crucial element of a mobile robot design. The objective

for the robot is to move from one place to another taking into account the sensor data

to achieve its goals, whether the environment is known or unknown. To do so , the

robot should be able to combine the four perspectives, mentioned in the first chapter

: Perception, localization, cognition, and motion control . The use of sensors to collect

environment data this is important because it allows the robot to preform fundamental

requirements for navigation such as mapping and obstacle detection;furthermore, to

operate effectively, the robot needs to perform several tasks. It must accurately estimate

its position and orientation within the environment. This requires cognitive abilities such

as path planning and obstacle avoidance. Finaly, the robot must execute the planned

algorithms and convert the intended path into control signals. These signals are then

transmitted to the robot’s actuators, enabling it to execute the desired path.

1.5 The Robotics Operating System (ROS)

The Robotics Operating System (ROS) is a free and open source robotics software

framework that is used in both commercial and research applications.[13] In addition

to being the first large-scale collaborative robotics project to offer a set of time-saving

software tools for the development of a robot or robotic system, The major goal of ROS is

to support code reuse in robotics research and development. It has quickly become the

standard development process for many robotics research institutions and companies.The

flexible ROS framework may be used to create software for robots. It consists of a collection

of tools that make it simpler to create complex, reliable robot behaviors on a variety of

robotic systems.

8



CHAPTER 1. INTRODUCTION

1.5.1 ROS Tools

1.5.1.1 ROS Concepts

ROS provides a set of powerful concepts and tools which plays the role of building

blocks of ROS applications . In this context, it is essential to understand the core concepts

of ROS and their applications, as they form the foundation of any ROS project.

Node: Process that use ROS APIs to perform computations.

ROS master: an intermediate program that connects ROS nodes.

ROS parameters server: program that runs with ROS master where parameters stored

there can be accessed by all nodes.

Ros topics: named buses through which nodes can publish or subscribe.

ROS massages: the information send through topics.

ROS services: request and reply mechanism connection server node and client node.

ROS bag: Save and play back ROS topics and log data from robot to process it later.

Sending and receiving messages is the primary means through which ROS nodes com-

municate. Topics are the channels through which the messages are exchanged . Nodes

can subscribe to a topic to receive information or publish messages on it. This process is

illustrated in the diagram 4.2 :

Figure 1.5: ROS communication block diagram

1.5.1.2 RViz

Rviz, is a visualization tool specifically designed for the Robot Operating System

(ROS), possesses the capacity to effectively visualize and present data derived from ROS

topics in both 2D and 3D formats. Within the ROS projects, Rviz plays a critical role in

facilitating the visualization and analysis of simulated environments, as well as real-time

hardware applications. Its extensive range of visualization features and interactive con-

trols renders it an invaluable asset for the purposes of debugging, monitoring, and gaining

9



CHAPTER 1. INTRODUCTION

profound insights into the behavior and performance of ROS-based systems. By providing

a comprehensive view of sensor data, robot models, and environmental elements, Rviz

significantly enhances the development and analysis processes in the realm of robotics

applications.

1.6 Conclusion

In conclusion, this chapter provided an overview of mobile robots and its various

aspects, including the fundamental aspects of the robots to be able to perceive and

interact with its environment, and navigation. The chapter also discussed the Robot

Operating System (ROS) and its importance in robotics to preform navigation. The

subsequent chapter will provide a more comprehensive analysis of the robot setup and

navigation stack.

10



C H A P T E R 2

METHODOLOGY

This chapter delves into the various aspects of setting up a robust navigation system

for robotic applications. It begins by discussing the network configuration and communi-

cation setup which provides the remote control of the robot. Afterwards, the configuration

of the Raspberry Pi for seamless integration with the Robot Operating System (ROS)

is explained. Moreover,it demonstrates the navigation environment setup and the map

building technique. Finally, the chapter addresses the practical application of navigation

stack, including algorithms of the launch files and fine-tuning the parameters.

2.1 Robot setup

A detailed understanding of the robot’s physical is essential for creating a robot that

meets the specific requirements and facilitates the integration of software components.

This includes aspects such as the robot’s mechanical design, as well as, the used hardware

components.

2.1.1 Mechanical design

The robot is made up from metal which provides a low cost prototype and provides a

strong and solid architecture for the robot to be able to work in outdoor environment.

The robot platform is made up of three layers: The base layer, medium layer and top layer

as showen in Figure 2.1.

For the hardware connection on the base layer consists of two wheels with one on each

side of the chassis; they are linked to the DC motors and encoders which are required

to provide odometry information. A third wheel is centered at the chassis to make the

movement of the robot possible.

The platform’s specifications and measurements are illustrated in Table 2.1:
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Back View of the Model Front View of the Model

Figure 2.1: 3D Model for the robot

Table 2.1: Robot platform specifications

Specification Value (cm)
Chassis length 45
Chassis Width 36
Wheel Width 2

Wheel Diameter 7
Distance between Wheels 51

2.1.2 Hardware Setup

The Rplidar: RP-LiDAR (Light Detection and Ranging) showen in Figure 2.2 is

laser scanner sensor that provides 360-degree scan field, rotating at 5.5 Hz/10 Hz. It is

based on laser triangulation ranging principle and uses high-speed vision acquisition and

processing. The sensor utilize a sequential process to detect obstacles and produce laser

scan data. Initially, the LiDAR sensor emits laser beams in multiple directions, covering

a 360-degree horizontal field of view; upon encountering objects in the environment;

these laser beams reflect back towards the sensor. Through precise time-of-flight mea-

surements, the sensor calculates the distances between itself and the detected objects. By

combining these distance measurements, a comprehensive point cloud representation of

the environment is formed.[14] Algorithms can then be applied to analyze the point cloud

data, identifying clusters of points that correspond to physical obstacles. Furthermore,

the laser scan data can be visualized through 3D point representations or top-down maps,

providing an intuitive display of the detected obstacles and their spatial relationship with

the LiDAR sensor.
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Figure 2.2: RPLIDAR A2M8 360 Degree 2D Laser [15]

The data acquisition and analysis serves as a foundation for several key functionali-

ties, including the creation of highly accurate maps that depict the surroundings in detail.

As the RPLIDAR sensor scans the surroundings and generates a point cloud, the pro-

cessed data is utilized to identify and delineate obstacles or occupied regions. These areas

are then represented as black edges in the map to indicate their presence and outline

their boundaries. Conversely, the remaining unoccupied or free spaces are displayed as

white, providing a visual representation of the accessible areas within the environment.

Additionally, robots can leverage laser scan data to detect obstacles in real-time, allowing

them to promptly respond and navigate safely through their environment. Furthermore,

laser scan data facilitates the process of localization, enabling robots to determine their

precise position relative to the surrounding environment. By incorporating laser scan

data into their decision-making processes, robots can plan optimal paths for navigation,

ensuring efficient and effective movement towards their goals.

DC motor with an integrated encoder: The Pololu 12 V 37D Metal Gearmotor

is used in this project , which is a powerful brushed DC motors paired with 37mm-

diameter gearbox with ratio of 1:50 . Notably, this gearmotor includes an integrated

64 CPR quadrature encoder situated on the motor shaft enabling precise feedback on

position and speed.[16]

Figure 2.3: Pololu 12 V 37D Gearmotor with encoder [16]
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Batteries for Energy Storage

220v 110v AC Output Portable UPS Battery compact and portable backup bat-

tery that offers uninterrupted power supply (UPS) capabilities. It has been specifically

designed to provide continuous AC power output options of either 220V or 110V, with a

capacity of 150 watt-hours (WH). The device incorporates multiple input and output fea-

tures, including a DC input for charging within the range of 12V to 20V, with a maximum

power input of 65W.

Rechargeable Lipo Battery: the battery shown in Figure 2.5 features a high energy

density, allowing it to store a large amount of energy in a small and lightweight package.

Additionally, this battery incorporates built-in protection circuitry, effectively safeguard-

ing against potential risks such as overcharging, over-discharging, and short-circuiting.

These safety measures ensure dependable and secure operation of the battery.

Figure 2.4: Versatile Portable UPS Bat-
tery

Figure 2.5: 25000mAh Rechargeable
LiPo Battery [17]

Wheels: lightweight wheels; shown in figure 2.6are used with an inner portion

composed of a durable plastic material, providing structural integrity. The outer layer of

the wheel is coated with high-quality rubber, which enhances traction during operation.

These wheels exhibit the capability to withstand heavy loads. With a radius of 5cm, the

wheels are directly driven by gearmotors, which provide the necessary rotational force

for locomotion. These wheels are designed to be steerable, allowing precise control over

the robot’s direction of movement. The steering mechanism integrated with the wheels

enables the robot to navigate and maneuver in various directions, enhancing its mobility

and versatility.
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Figure 2.6: Rubber-Coated Plastic Wheels

The RoboClaw: A motor controller designed for mobile robots that can be used to

control the speed and direction of two brushed DC motors. It provides advanced control

features, such as acceleration and deceleration control, stall detection, and speed control.

Figure 2.7: RoboClaw 2x30A Motor Controller [18]

Figure 2.8: Roboclaw and Motor connection [19].

Raspberry Pi : is a versatile single-board computer , with its compact size, low

power consumption, and GPIO pins, the Raspberry Pi can interface with various sensors,

actuators, and motor controllers due to its connectivity options such as USB, Ethernet,

and wireless interfaces (Wi-Fi, Bluetooth). In this project the Raspberry Pi 4 presented

in Figure 2.9 is used , which features a powerful quad-core ARM Cortex-A72 processor

running at high clock speeds. This processor configuration offers notable advantages,

including High-speed Data Transmission and high-performance capabilities.
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Figure 2.9: Raspberry Pi 4G [20]

Raspberry Pi Camera: The Raspberry Pi Camera Module V2 (Figure 2.10)is a

camera accessory designed specifically for the Raspberry Pi single-board computer. It is a

compact and lightweight camera module with high quality 8 megapixel Sony IMX219

image sensor custom . The Connection to the Raspberry Pi is through a small sockets on

the top of the board. This interface uses a dedicated CSI interface specifically designed

for the camera.

Figure 2.10: Raspberry Pi 4G [21]

2.1.2.1 Hierarchical Layering of Robot Components:

The foundational layer of the robot’s architectural framework provides space for

the placement of the Roboclaw motor controller and gearmotors, which establish the

vital connection to the wheels. Above this base layer, the subsequent layer is specifically

allocated for the optimal positioning of batteries, strategically designed to optimize weight

distribution across the robot’s structure. This deliberate configuration aims to enhance

the robot’s stability and maneuverability as a result. Moving up to the third layer, the

Rplidar sensor and the Raspberry Pi are placed, synergistically contributing to the robot’s

sensory perception and processing capabilities(see Figure 2.11). Finally, the topmost layer

is reserved for accommodating the camera module, facilitating visual perception and

further expanding the robot’s sensing capabilities.
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Figure 2.11: Robot Architecture: Component Placement

2.1.2.2 Data Transmission and Component Connection Process

The Raspberry Pi sends the prepared motor control commands to the RoboClaw via

USB serial.Upon receiving the commands, the RoboClaw interprets the data and extracts

the relevant information, such as motor speed and direction. Then the RoboClaw pro-

cesses the commands and adjusts the motor’s PWM signals accordingly to achieve the

desired control parameters. After that the motor responds to the adjusted PWM signals

and changes its speed and direction accordingly, hence,t he motor’s movement, based on

the control signals received, will lead to a change in the robot’s position or orientation.

The process of sending commands from the Raspberry Pi to the motors involves the im-

plementation of a control loop on the Raspberry Pi, which continuously reads the desired

position and orientation values from the user or application. The RoboClaw extracts the

relevant encoder data, such as motor position, speed, or other feedback parameters, from

the processed encoder signals.This data represents the current state of the motor as

measured by the encoders. The loop calculates the necessary adjustments required to

achieve the desired position and orientation. To ensure accuracy and precision, a feedback

control algorithm, such as a PID controller, is utilized to compare the desired position and

orientation with the actual readings from the encoders. The control signals generated

by the feedback control algorithm are used by the Roboclaw to adjusts the motor’s PWM

signals to achieve the desired position and orientation. This iterative process is repeated

continuously until the desired position and orientation are reached.

The Raspberry Pi Camera Module uses the Camera Serial Interface (CSI) connector to

transfer image data to the Raspberry Pi. This dedicated interface enables high-speed data
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transfer between the camera module and the Raspberry Pi, where the camera module

uses the image sensor to capture images or video, and the CSI interface facilitates the

transfer of raw image data. The CSI protocol defines data formats and synchronization

mechanisms for transmission. On the Raspberry Pi side, the CSI receiver converts the

received differential signals into digital data. The Raspberry Pi can process, analyze, and

store image data according to specific requirements, allowing for flexible utilization of

the captured data.

2.2 Software Setup

2.2.1 Simultaneous Localization and Mapping (SLAM)

SLAM is the process by which a mobile robot can build a map of its environment and

at the same time estimates its own position within that map.[22] It works by integrating

sensor measurements, such as odometry, visual data, or range measurements, with prob-

abilistic estimation techniques. As the robot moves through the environment, it collects

sensor data and uses it to update its belief about its own position and the surrounding

environment. This iterative process allows the robot to incrementally build an accurate

map and maintain a reliable estimate of its location, even in the presence of uncertainty

and dynamic changes in the environment. SLAM enables robots to autonomously navi-

gate and operate in unknown or partially known environments by combining perception

and localization [23], thus facilitating tasks that require knowledge of both the robot’s

location and the surrounding environment. SLAM algorithms use probabilistic estimation

techniques to estimate the robot’s position based on sensor measurements and a map

of the environment. Some common probabilistic estimation techniques used in SLAM

include Markov Localization, Kalman Localization, Monte Carlo Localization(AMCL),

Probabilistic Principal Component Analysis (PCA), and Conditional Probability Density

Functions (PDFs). SLAM algorithms often use a combination of these techniques to

estimate the robot’s position and build an accurate map of the environment. The choice of

technique depends on the specific requirements of the application, such as the type of

sensors used, the level of accuracy required, and the available computational resources.

2.2.2 Path Planing

Path planning, a fundamental aspect of the navigation of robots, it relies on repre-

senting the environment and potential paths as a graph data structure.

This representation involves partitioning the environment into distinct locations, de-

noted as nodes N, and connections between these nodes represent possible transitions

or movements. Each node in the graph typically corresponds to a specific location or
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configuration in the environment, while the edges capture the permissible connections or

paths between these locations. By representing path planning as a graph, the problem is

transformed into a search task. Algorithms possessing the capability to systematically

and effectively explore the graph G in order to determine the optimal path from an

initial node A to a destination node B are referred to as admissible algorithms. [24]

The graph representation allows for the integration of various factors such as obstacles,

terrain characteristics, and other constraints, enabling the algorithm to make informed

decisions on the most suitable and efficient paths to navigate through the environment.

Various path planning algorithms have been developed, each with its own strengths and

limitations. Among the most widely used algorithms are Dijkstra’s algorithm, and A-star

algorithm.

Dijkstra’s algorithm,is a classic path planning algorithm,which explores the entire

graph, considering all possible paths and their associated costs [25]. While this ensures

finding the shortest path but can be computationally expensive, for that reason the A*
(A-star) algorithm was developed improving upon Dijkstra’s algorithm by incorporating a

heuristic to guide the search process, the heuristic approach uses special knowledge about

the domain of the problem being represented by a graph to improve the computational

efficiency of solutions to particular graph-searching problems. During the exploration,

the algorithm updates the f-scores and parent pointers of the nodes to keep track of the

optimal path. It uses a heuristic function, such as the Euclidean distance or Manhattan

distance, to estimate the remaining cost from each node to the goal [26].

The cost of A start is given by:

f (v)= h(v)+ g(v) (2.1)

where h is the heuristic and g is the cost that already incurred from initial state to ’n’

state. A good heuristic function provides approximate cost that is close to actual cost.

In terms of algorithmic complexity, Dijkstra’s algorithm exhibits a time complexity of

Θ(V 2), but it can be optimized by using adjacency lists and efficient priority queues

such as binary heaps, pairing heaps, or Fibonacci heaps, resulting in a time complexity

of O((E +V ) logV ) where E - number of edges, V - number of vertices. While A-Star

algorithm has a time complexity that depends on the chosen heuristic[27], but it is

generally considered more efficient than Dijkstra’s algorithm.[28] [27]

Overall, A-star algorithm balances efficiency and optimality; making it widely applicable

in various real-world scenarios. For this, A-Star algorithm was chosen over Dijkstra’s

algorithm to plan the path for our navigation system implementation.
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Table 2.2: Efficiency Comparison: A* Algorithm vs Dijkstra’s Algorithm

Comparison A* Algorithm Dijkstra’s Algorithm

Basic Idea Informed search algorithm using heuristics Uninformed search algorithm
Optimality Optimal (when heuristic is admissible) Optimal
Memory Usage More memory-efficient Less memory-efficient
Time Complexity Depends on the heuristic O((E+V ) logV )

Heuristic Function
Requires admissible heuristic No heuristic function required
Considers both cost and estimated remain-
ing cost

Considers only the cost

2.2.3 Navigation stack

The Navigation Stack is a set of software packages in ROS that provides a complete

solution for robot navigation.

The Navigation Stack includes several built-in packages that provide essential function-

ality for autonomous robot navigation. These packages are:

map_server: This package provides a map server that reads a map from a file and serves

it to other ROS nodes in the Navigation Stack.

amcl: This package provides Adaptive Monte Carlo Localization (AMCL), which is a

probabilistic algorithm for estimating the robot’s position in the map.

move_base: This package provides a high-level interface for commanding the robot to

move to a target location while avoiding obstacles. It uses the map, AMCL, and a path

planner to generate a collision-free path to the target.

costmap_2d: This package provides a 2D costmap that represents the obstacles and free

space in the robot’s environment. It is used by the path planner to generate a collision-free

path for the robot.

global_planner and local_planner: These packages provide path planning algorithms

that generate a global and local path, respectively, for the robot to follow. The global

planner generates a path from the robot’s current location to the goal location, while

the local planner generates a path that is optimized for the robot’s current position and

velocity.

base_local_planner: This package provides a low-level interface for generating velocity

commands that move the robot along a path while avoiding obstacles.[29]

The diagram in Figure 2.12 illustrates the overview of navigation stack configuration.

The white components are required components that are already implemented, the gray

components are optional components, and the blue components must be created for each

robot platform.[30]
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Figure 2.12: Navigation Stack Configuration[31]

The Navigation Stack relies on several input sources, including:

Map: In order to navigate in an environment, the navigation stack needs a map of

the environment. This map is usually published in the map section. However, if no map

is available, the navigation stack may still work, but it may not be able to avoid obstacles

or plan optimal paths.

Odometry: The robot should publish its odometry data, which describes its position

and orientation over time. This information is usually published in odom.

Sensor data: The robot should publish the sensor data that is used by the navigation

stack to build a map of its environment. This data is usually published to a topic specific

to the type of sensor used, such as a lidar or laser data topic.

Transformations: The robot must publish transformations that define the relation-

ship between its various links on the tf topic. This information is usually generated by a

tool such as robot_state_publisher.

The following sequence denotes the key stages of information transformation:

map -> odom -> base_footprint -> base_link -> laser

Figure 2.13: Frames of Navigation Stack
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In the context of our robot configuration, it is noteworthy that the terms "base_footprint"

and "base_link" are identical or refer to the robot chassis. So, In our implementation,

the term "base_link" will be exclusively utilized to refer to the fundamental component

within the robot configuration.

In the transform sequence(see Figure 2.13), the initial mapping data ("map") is subse-

quently processed through odometry ("odom"), leading to the movement reference frame

("base_link"). Finally, this chain culminates in the laser sensor ("laser"), which enables

the robot to accurately perceive its environment.

The outputs of the navigation stack include: cmd_vel message, which is a geome-

try_msgs Twist message containing speed commands for the robot. These commands are

typically sent to the robot’s actuators, such as motors, and are received on the cmd_vel
topic. By receiving these velocity commands, the robot can move through its environment

and navigate to its goal.

Figure 2.14 illustrates the navigation process:

Figure 2.14: navigation System Architecture

The navigation stack can be customized and configured for better design and imple-

mentation of robotic systems that can effectively navigate their environment with greater

efficiency and effectiveness.
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2.3 Conclusion

In conclusion, this chapter has provided a comprehensive overview of the methodology

employed in setting up the robotic system. By thoroughly addressing the essential aspects

of the robot setup, encompassing mechanical design, hardware configuration, and software

components, this chapter establishes a solid foundation for the subsequent chapter, which

will focus on setting up the navigation system.
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NAVIGATION SYSTEM

The objective of this chapter, is to examine the development of a navigation system for

a robot. The first step towards creating a functional navigation system is the setup of the

robot. This involves the careful configuration of both hardware and software components

to ensure that they work together seamlessly, enabling autonomous navigation. The setup

process includes connecting sensors, actuators, and other hardware components to the

robot and configuring essential software packages, such as SLAM and the navigation

stack. By completing this process, the navigation system can be customized to meet the

specific requirements of the robot’s intended application. A well-executed robot setup is

critical in ensuring consistent and accurate navigation, enabling the robot to navigate its

environment safely and efficiently.

3.1 Network Configuration and Communication
Setup

The network configuration between the user’s PC and the Raspberry Pi involves

establishing a connection for remote access and control. Both devices need to be connected

to the same network, either through a wired Ethernet connection or a wireless connection.

The Raspberry Pi should be assigned a valid IP address within the network . This IP

address acts as the unique identifier for the Raspberry Pi, enabling the PC to locate and

communicate with it. Once the network connection is established, the user can utilize

network protocols such as Secure Shell (SSH) which is a cryptographic network protocol

that provides a secure and encrypted method for remote login, command execution, and

data communication, it can be utilized to establish connection between the user’s PC and

the Raspberry Pi, allowing remote access and execution of commands. OR for graphical

interface-based remote control and improved monitoring capabilities, the Virtual Network

Computing (VNC) protocol is employed. By installing VNC Server on the Raspberry Pi

and VNC Viewer on the user’s PC, a connection can be established to remotely access and
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control the Raspberry Pi’s graphical user interface. This network configuration, which

combines SSH and VNC, facilitates secure remote management, control, and enhanced

monitoring of the Raspberry Pi from the user’s PC.

The diagram shown in Figure 3.1 illustrates the connection between a PC and Raspberry

Pi and its physical connection to the hardware used:

Figure 3.1: PC , Raspberry Pi and Hardware interfacing

3.2 Raspberry Pi Setup for ROS Application

To set up the Raspberry Pi for software development and efficient data processing, the

Raspbian operating system is typically installed. Raspbian, being the official operating

system for Raspberry Pi, is a preferred choice due to its compatibility and extensive

community support. It is based on the Debian distribution, providing a stable foundation

for managing files, executing programs, and processing data. By installing the Raspbian

operating system, the Raspberry Pi becomes equipped with a reliable platform that

facilitates software setup and enables efficient data processing capabilities. Once the

setup is complete, the Raspberry Pi is connected to the internet, either through an

Ethernet cable or Wi-Fi. At this stage, ROS can be installed on the Raspberry Pi by

following the official ROS installation instructions for the specific desired ROS version.

This typically involves adding the ROS repository to the package sources, installing the

necessary dependencies, and then installing the ROS packages. Once ROS is successfully

installed, the Raspberry Pi is ready to be utilized for developing and running ROS

applications, enabling the integration of robotic systems and the execution of various

ROS-based functionalities.
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3.3 Navigation Setup

3.3.1 ROS environment

In ROS, a workspace is a directory where you can build and manage your ROS

packages. A workspace can contain one or more packages, each of which consists of one

or more nodes, libraries, or other components that perform specific tasks within a robot

system.

A workspace provides an isolated environment for your ROS packages, allowing you

to manage dependencies and build your packages independently of other packages or

system libraries. Within a workspace, you can use ROS tools and commands to build, run,

and test your packages, as well as manage their dependencies and build configurations.

The workspace in ROS is named catkin by convention, this folder contains the following

3 folders (as shown in 3.2):

Devel space: space: contains setup files for the project ROS environment.

Build space: contains the compiled binary files.

Src space: contains source code, and is the main work folder which contains all the

packages, launch files, scripts,...

Figure 3.2: Catkin work space file

In order to execute a node successfully, it is essential to include the corresponding

node package within the source file of the catkin_ws. By doing so, the necessary depen-

dencies, libraries, and configurations associated with the node can be properly resolved

and accessed during run time. This ensures that the node is integrated seamlessly into

the ROS (Robot Operating System) environment, enabling its execution and interaction

with other nodes within the system.
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3.3.2 Map building

To enable the robot to navigate its environment, a static map must be created, this is

done by using SLAM (Simultaneous Localization and Mapping) which allows the robot

to build a map of an unknown environment while simultaneously estimating its own

position within that environment

Although several SLAM algorithms are available, the Hector SLAM was selected for

this project since it delivered good results and an accurate map.

HectorSLAM is a mapping method that creates maps of the surroundings only from laser

scan data unlike Gmapping which requires the odometry information. It estimates the

robot’s movement and establishes its position in the environment by comparing the most

recent laser scan with the most recent scan using scan matching techniques. The robot’s

linear or angular displacement in HectorSLAM triggers the map update process, keeping

the map in syncronization with the robot’s movement.

HectorSLAM provides additional adjustable parameters includeing: map size, the num-

ber of particles utilized in the scan matching process, and the names of the ROS topics

employed for data communication, which enhance its configurability and adaptability to

different applications. With this flexibility, users may precisely tailor the mapping process

to meet their unique needs, guaranteeing that the desired map quality and performance

standards are reached.

In order to execute HectorSLAM, the HectorSLAM file was downloaded and placed

in the workspace directory. This file contains the necessary code and dependencies for

running the algorithm. Alongside this, the execution of HectorSLAM also requires the

presence of an RPLIDAR sensor. Figure 3.3 represents the block diagram of Hector Slam.

Figure 3.3: Block Diagram of Hector SLAM System[32]
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Construction of precise and trustworthy maps for the navigation system is made

possible by integrating the RPLIDAR sensor with the HectorSLAM algorithm.

3.4 Navigation implementation:

The first step to execute the navigation stack is to install the navigation stack pack-

ages within the ROS framework, it can either be cloned from official repositories or

conducting a direct installation from the terminal in an Ubuntu OS environment. The

navigation package comes with the necessarily tools to make the robot move, localize itself

and save and display the map, among other things. install Navigation Stack Packages

into src directory either by cloning the necessary Navigation Stack packages from the

official repositories ,or install it directly from the terminal if Ubuntu OS is installed into

the raspberry.

The creation of a Navigation Stack package involves a systematic process to ensure

compatibility and customization according to unique research requirements. This process

begins with the specification of navigation-related dependencies, ensuring that the pack-

age integrates seamlessly with the Navigation Stack framework. Moreover, meticulous

adjustments to the package’s XML and CMakeLists.txt files are necessary to precisely

tailor them to the specific research objectives. These modifications allow for the inclusion

of essential components and functionalities within the package.

The navigation file is comprised of three essential components, namely the launch file

that executes all launch files, the static map files stored in the map file, and the pa-

rameter files found in the param section. These parameter files determine the behavior

and performance of the robot’s navigation system and contain various settings, such as

obstacle avoidance, path planning, and goal selection, that dictate how the robot responds

to different situations in its environment.

The navigation launch file (as described in algorithm 1) is structured as follows:

1. Display the previously build map using map server node

2. RViz configuration file

3. The rplidar and the roboclaw nodes

4. Transform between the map frame and odom frame, as well as the transform from

base_link to laser

5. The move_base node
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Algorithm 1 Navigation Launch File Algorithm
1: Start
2: Set the value of the argument model to "$(find package_name)robot_model_file.urdf.xacro"

(default value).
3: Set the value of the argument gui to true (default value).
4: Execute the command "$(find xacro)/xacro $(arg model)" and store the output in the

parameter robot_description.
5: Set the value of the argument map_file to "$(find package_name)/maps/map_file.yaml"

(default value).
6: Start the map server node with the following specifications:
7: • Node name: map_server
8: • Package: map_server
9: • Node type: map_server

10: • Arguments: Use the value of the argument map_file as an argument for the node.
11: • Set the value of the parameter frame_id to map for the map server node.
12: Include and launch the rplidar.launch file from the package rplidar_node.
13: Include and launch the roboclaw.launch file from the package roboclaw_node.
14: Include and launch the move_base.launch file.
15: Include and launch the amcl.launch file.
16: Start the rviz node with the following specifications:
17: • Node name: rviz
18: • Package: rviz
19: • Node type: rviz
20: • Arguments: Use the "-d $(find package_name)/rviz_configuration_file.rviz"
21: End

The move_base node comes with pre-defined parameters. However, in order to address

the specific robot requirements, it is crucial to make adjustments to these parameters

and load the corresponding parameter files (as specified in algorithm 2). This process

is essential for customizing and finely tuning the move_base functionality to achieve

optimal performance.

The following algorithm snippet illustrates the launch file configuration for the move_base

package. This launch file sets up various parameters, including the choice of the local

planner and the configuration files for the global and local costmaps. Additionally, it

specifies the use of the dwa_local_planner, a popular choice for dynamic window-based

local planning. The launch file also defines the remapping of certain topics.

29



CHAPTER 3. NAVIGATION SYSTEM

Algorithm 2 move_base Launch File Algorithm
1: Start
2: Set the value of the argument cmd_vel_topic
3: Set the value of the argument odom_topic
4: Set the value of the argument move_forward_only to false.
5: Start the base_laser_broadcaster node with the following specifications:
6: • Package: tf
7: • Node type: static_transform_publisher
8: • Arguments: "x y z roll pitch yaw parent frame child frame time stamp"
9: tf: map odom

10: tf: base_link laser
11:
12: Start the move_base node with the following specifications:
13: • Package: move_base
14: • Node type: move_base
15: • Respawn: false
16: • Arguments: Output to the screen
17: • Set the parameter
18: base_local_planner to dwa_local_planner/"DWAPlannerROS"
19: • Load the parameters from the file:
20: "costmap_common_params" for the namespace "global_costmap"
21: "costmap_common_params" for the namespace "local_costmap"
22: Load: rosparam "local_costmap_params"
23: Load: rosparam "global_costmap_params"
24: Load: rosparam "move_base_params"
25:
26: • Remap the topic "cmd_vel" to "(arg cmd_vel_topic)"
27: • Remap the topic "odom" to "(arg odom_topic)"

28: End

The tuned parameters for the Move Base component are presented in the Tables 3.1,

3.2, 3.3, 3.4 and 3.5. A comprehensive overview is provided by these tables, showcasing

the various configurations and settings that have been carefully determined to ensure

optimal performance of the navigation system.

Each parameter plays a crucial role in defining the behavior and functionality of the Move

Base, including aspects such as obstacle avoidance, path planning, and motion control.
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Table 3.1: Common_costmap Parameters

Parameter Value
footprint [[0.225, 0.15], [0.225, -0.15]

[-0.225, -0.15], [-0.225, 0.15]]
robot_radius 0.2
observation_sources scan
scan { data_type: LaserScan,

topic: /scan,
marking: true,
clearing: true }

cost_scaling_factor 2.0
inflation_radius 0.05
obstacle_range 2.5
raytrace_range 3.0
observation_persistence 1.0

Table 3.2: Local_costmap parameters

Parameter Value
global_frame odom
robot_base_frame base_link
update_frequency 10.0
publish_frequency 10.0
rolling_window true
static_map false
width 6.0
height 6.0
resolution 0.05

Table 3.3: Global_costmap parameters

Parameter Value
global_frame map
robot_base_frame base_link
update_frequency 5.0
static_map true
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Table 3.4: DWAPlannerROS Parameters

Parameter Value
max_vel_x 0.05
min_vel_x -0.05
max_vel_y 0.0
min_vel_y 0.0
max_vel_trans 0.26
min_vel_trans 0.13
max_vel_theta 1.82
min_vel_theta 0.9
acc_lim_x 1.0
acc_lim_y 0.0
acc_lim_theta 3.2
xy_goal_tolerance 0.002
yaw_goal_tolerance 0.002
latch_xy_goal_tolerance false
sim_time 2.0
vx_samples 20
vy_samples 0
vth_samples 40
controller_frequency 25.0
path_distance_bias 32.0
goal_distance_bias 20.0
occdist_scale 0.02
forward_point_distance 0.325
stop_time_buffer 0.2
scaling_speed 0.25
max_scaling_factor 0.2
oscillation_reset_dist 0.1
publish_traj_pc true
publish_cost_grid_pc true

Table 3.5: Move_base Parameters

Parameter Value
shutdown_costmaps false
controller_frequency 10.0
planner_patience 5.0
controller_patience 15.0
conservative_reset_dist 3.0
planner_frequency 10.0
oscillation_timeout 10.0
oscillation_distance 0.2

To enable real-time visualization of the robot’s navigation and enhance the execution

of the navigation stack, the RViz configuration was customized to provide an improved
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representation of the robot’s navigation process.

Table 3.6T represents the key components incorporated into the RViz configuration.

Table 3.6: Rviz Configuration

Component Topic Visualization Type
LaserScan /scan LaserScan
Map /map OccupancyGrid
Planner Plan /move_base/NavfnROS/plan Path

Global Map
/move_base/global_costmap/costmap
/move_base/DWAPlannerROS/global_plan OccupancyGrid

Local Map /move_base/local_costmap/footprint Footprint
Polygon /polygon Polygon
Pose /pose Pose

The subsequent illustration presented in Figure 3.4 showcases the interconnection of

all utilized nodes via topics using the rqt_graph tool. It provides a visual representation

that allows for a comprehensive understanding of the communication flow within the

system.

Figure 3.4: Connection of nodes graph

This graphical representation illustrates the relationships and interactions among

the nodes, offering valuable insights into the coordination and exchange of information

between different components.

The ROS frame tree for the navigation system is illustrated in Figure 3.5, which is a

hierarchical structure that defines the spatial relationships between different frames in

the robot environment. It serves as a fundamental component to ensure accurate and

consistent data representation and transformation across nodes within a ROS system.
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Figure 3.5: Frames graph

By examining the ROS frame tree along with the rqt_graph visualization, a compre-

hensive understanding can be gained regarding how the nodes and frames are collectively

employed to enable effective navigation. The ROS frame tree provides a framework for

defining the spatial relationships between different frames, thereby facilitating seam-

less data exchange and transformation. A thorough comprehension of this hierarchical

structure is essential in order to ascertain the flow of information within the navigation

system and the manner in which the robot interacts with its environment.

3.5 Conclusion

This chapter examined the software implementation of navigation, highlighting the

set up of the work environment including setting up the remote control , creating the

catkin work space,and the mapping process. It also provided the algorithms and the move

base configuration used in the navigation system. The implementation of this work along

with a comprehensive analysis and discussion will be presented in the next chapter.
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RESULTS AND DISCUSSION

This chapter presents the results of the implementation of the ROS navigation stack

into a mobile robot platform in a real-world setting. The navigation system is evaluated

and tested for four key aspects: localization, obstacle avoidance, path following, and goal

reaching. A comprehensive analysis of the results is provided, as well as a discussion and

examination of the implications of the findings.

4.1 Mapping

Executing the HectorSLAM package and connecting the RPLIDAR sensor, allow the

start of the mapping process .Using scan matching algorithms, the RPLIDAR continually

processes laser scan data to build and update the map. The generated map can be

visualized and monitored using RViz, the displaying on Rviz shows the constructed map

along with the trajectory of a moving robot.

To create a map of the environment, the robot is driven around using a joystick or

keyboard. This allows the robot to explore the surrounding area and create a map. Once

the mapping is complete, the resulting map is saved using the map server package.

The saved map is in the form of an occupancy map, which represents the occupied and

unoccupied areas of the environment represented as:

-An image showing the blueprint of the environment.

-A configuration file (yaml) that gives meta information about the map (origin, size of a

pixel in real world).

Figure 4.1 represents the constructed maps of the space in which the robot will

navigate. The map provides a visual representation of the environment, including walls,

obstacles, and other features.
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Outdoor Environment Map Indoor Environment Map

Figure 4.1: Maps Constructed using Hector SLAM

During the map construction process, it was observed that certain objects were not

detected due to the low placement of the LIDAR sensor on the robot. Consequently, certain

areas were mistakenly considered unoccupied or empty, despite the presence of objects at

elevated positions. This limitation highlights the importance of careful consideration of

sensor location and its impact on the accuracy and comprehensiveness of the generated

map.

Moreover, the suitable position to place the LIDAR is near the robot’s center of mass

which minimizes blind spots closer to the ground and higher up providing a balanced

perspective covering a wider area of the environment. This reduces the possibility of

missing an obstacle or misjudging available space.

4.2 Evaluation of Implemented Navigation System

Subsequently, we will proceed with launching the navigation stack. With the move_base

and RViz parameters configuration specified in subsection 3.4 and setting the necessary

nodes. Launching the navigation file opens Rviz with the map , costmaps, and displays

the robot model . This comprehensive representation in Rviz shows that all the necessary

components have been set up correctly and the robot is ready to start traversing the

environment autonomously, and reach the set goals.

The navigation process begins by setting an approximate initial position for the robot

needs to be set using the “2D Pose Estimate” in Rviz to facilitate self-localization within

the map and match its sensor data with the static map. The navigation process starts

with setting the goal position using the “2D Nav Goal” feature with specified position and

orientation; these inputs are published to the /move_base_msgs/MoveBaseActionGoal

36



CHAPTER 4. RESULTS AND DISCUSSION

topic. The move_base package receives the approximate location of the robot through

particle filtering from the amcl package and the goal data . After that, it plans a path to

the goal using the global_planner, which generates a global plan and the local_planner

which generates a local plan to follow the global plan, taking into account the robot's

current pose as estimated by amcl. Then, The move_base node sends motor commands to

the robot's motors using the /cmd_vel topic to follow the planned path, while the costmap

and obstacle_detector nodes detect and avoid obstacles in the robot's environment.

4.2.1 Motion Control:

The desired velocities are published as velocity commands on "/cmd_vel"ROS topic.

These velocity commands are represented as linear and angular velocities, in the form of

Twist messages. Roboclaw generates PWM signals to encode information of the desired

linear and angular velocities received from the move base in the form of a varying pulse

width. These signals are sent to the appropriate motor channels in Roboclaw. Which then

interprets its PWM signal and activates the appropriate H-bridge circuit incorporated in

the roboclaw, to control the rotation of the motor.

The H-bridge selectively turns its four switches on or off, applies a positive or negative

voltage to the motor terminals, resulting in forward or backward motion.

In case of the desired velocity is positive, indicating forward motion, Roboclaw responds

by generating a high duty cycle PWM signal. This high duty cycle signal activates the

upper switches in the H-bridge circuit, allowing current to flow in a particular direction

through the motor, resulting in forward rotation. Conversely, when the desired velocity

is negative, indicating reverse motion, the Robolaw generates a PWM signal with a low

duty cycle. This low duty cycle signal activates the bottom switch of the H-bridge, causing

current to flow in the reverse direction through the motor. To rotate the robot, Roboclaw

modulates the left and right motor PWM signals separately. By lowering the duty cycle of

one motor and keeping the duty cycle of the other motor high, Roboclaw will actuate the

appropriate switches in the H-bridge circuit accordingly. This creates a speed difference

between the left and right wheels, causing the robot to turn.

By adjusting the duty cycle of the PWM signal, Roboclaw controls the direction and speed

of the motors, allowing the robot’s motion to be precisely controlled.

On the other hand, feedback control is needed to provide information about the actual

movement of the robot to fine-tune its performance. Encoders serve as the source of this

feedback by measuring the real-time velocity of the robot, and according to that robot

movements can be precisely controlled and regulated using PID control algorithms. A

PID controller that produces a control output. This control output is typically applied as

a motor command to the wheels of the robot, adjusting the motor command to the desired

speed. This iterative control loop is executed continuously with feedback from the encoder

and recalculation of the control output at each iteration.
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Figure 4.2: System Architecture for Robot Motion Control with Feedback Loop

4.2.2 Localization Performance

As discussed before the ROS Navigation Stack requires the use of AMCL (Adaptive

Monte Carlo Localization). AMCL is used to track the pose of a robot against a known

map. It takes as input a map, LIDAR scans; transform messages, and outputs an esti-

mated pose. In executing the ROS navigation stack, RViz displays the particle cloud used

by the robot's localization system. The particle cloud represents the probability distribu-

tion of the robot's position; the spread of the cloud represents the localization system's

degree of certainty about the robot's position: a cloud that is very spread out reflects high

uncertainty, while a condensed cloud represents low uncertainty. As the robot navigates

through the environment, the particle cloud undergoes dynamic changes; initially, when

the robot starts its motion, the particle cloud is typically spread out across the entire map.

Figure 4.3 (a), representing a wide range of potential robot poses. As the robot moves

and receives sensor measurements, the particles are updated based on the observations,

leading to a refinement of their spatial distribution Figure 4.4 (b). By the end of the robot’s
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journey, the particle cloud becomes significantly concentrated around the true robot pose,

indicating a high level of confidence in the localization accuracy as shown in Figure 4.4 (c).

(a) Initial Particle Distri-
bution

(b) Refinement of Particle
Distribution

(c) Converged Particle Dis-
tribution

Figure 4.3: Evolution of AMCL Particle Distribution during Robot Path Movement

The accuracy of localization was evaluated by comparing the actual position of the

robot in the environment with the estimated position displayed in Rviz. Then the RMSE

is calculated and the results are represented in Figure 4.4:

Figure 4.4: Robot position RMSE error

The Root Mean Square Error (RMSE) was utilized as a metric to quantify the robot

position error. As the robot traversed from its initial position to the goal, the RMSE

value was computed at regular intervals of the positional deviations at different stages

of the navigation process. These results are represented in Figure 4.3 to illustrate the

relationship between the traveled distance and the corresponding RMSE values. This

representation enables a visual understanding of how the localization error changes as
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the robot covers different distances along its path.

The observation of the results demonstrates a pattern: the localization error exhibits

an apparent decrease as the robot progresses over greater distances during its movement.

This observation strongly suggests that the accuracy of the Adaptive Monte Carlo Local-

ization (AMCL) algorithm, implemented in the navigation stack, significantly enhances

the localization performance as the robot explores the environment. This can be explained

by the fact that as the robot moves further away from its initial position, the accumulation

of sensor data and the integration of multiple observations over time contribute to a

more accurate estimation of its actual position. The AMCL algorithm utilizes a particle

filter-based approach that dynamically adjusts the belief of the robot’s pose based on

sensor measurements and motion updates. As the robot explores the environment and

collects more information, the algorithm can refine its estimate, leading to a reduction in

localization error.

4.2.3 Path Execution

In Section 2.2.2; the path planing was discussed. In this section, we aim to evaluate

the efficiency of two path planning algorithms: A* and Dijkstra’s algorithms; within

the implemented navigation stack. The objective is to provide evidence that supports

the earlier statement regarding the choice of path planning algorithm. Moreover, the

execution of the path planned in the real environment is evaluated. By analyzing these

performance measurements, it is possible to assess the system’s ability to find optimal

paths and successfully execute it.

In order to evaluate the performance of the path planing algorithms within the naviga-

tion stack, a comparative analysis is conducted. The navigation stack is executed twice,

with each run starting from the same initial point and aiming for the same goal. In one

execution, the A* algorithm is employed, while in the other, the Dijkstra’s algorithm is

utilized. This allows for a direct comparison between the two algorithms in terms of their

efficiency and effectiveness in generating the optimal path as illustrated in Figure 4.5.
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Dijkstra Algorithm A* Algorithm

Figure 4.5: Path Planning Comparison: A* Algorithm vs Dijkstra’s Algorithm

During the conducted testing of implementing the navigation stack using A* and

Dijkstra algorithms, it was observed that the A* algorithm exhibited comparatively

faster execution times, ranging between 3 to 6 seconds, while Dijkstra’s algorithm took

approximately 5 to 9 seconds to complete. However, it is important to note that these

observed execution times may include not only the computation time of the algorithms

but also the potential time delay caused by data transmission between the master PC and

the Raspberry Pi. The navigation stack heavily relies on efficient data exchange between

these components, and any delays in data transmission can impact the overall execution

time.

While Dijkstra’s algorithm guarantees the discovery of the shortest path. The con-

ducted experiments revealed it typically generates straighter paths in comparison to

A*. On the other hand, A* has the ability to dynamically adjust its path based on the

changing environment. By considering the heuristic and incorporating it into the cost

estimation, A* algorithm can adapt to obstacles and make more informed decisions for

path planning, resulting in better obstacle avoidance capabilities.

Overall, despite the slightly less short paths generated by Dijkstra’s algorithm compared

to A*, the improved time response and adaptive nature of A* make it a favorable choice for

our implementation, especially in scenarios where real-time responsiveness and obstacle

avoidance are crucial.

Subsequently, an analysis and evaluation are conducted on the execution of the path that

has been planned using the A* algorithm.

The evaluation of the robot’s path-following capabilities yielded a high level of ad-

hering to the desired trajectory in linear movement; however, the robot occasionally

exhibits fast and aggressive rotations which cause the robot to slightly deviate from its
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intended trajectory; notwithstanding the efforts to ensure smooth rotation transition.

This deviation is primarily attributed to the instability of the robot’s wheels used in the

robot model, which was observed to slip on the ground. This inherent instability leads to

slight variations in the robot’s movements, resulting in deviations from the planned path.

However, the navigation system continuously monitors these deviations and employs

corrective measures to minimize their impact and realign the robot with the desired

trajectory. Despite the challenges posed by wheel instability, the system endeavours to

achieve dependable path following, enhancing the robot’s overall navigation capabilities.

4.2.4 Obstacle Avoidance

In this section, the focus is on studying the system’s capability to detect and avoid

dynamic obstacles. The navigation stack is designed to automatically avoid static obstacles

that are present in the preloaded map. When initially given a goal; The system plans

a path that avoids these static obstacles. However, this behavior differs when it comes

to dynamic obstacles. In this case, if an obstacle is relatively distant from the robot,

beyond the specified obstacle range defined in the move base parameters, the initial

path planning does not consider the obstacle. Only when the obstacle comes within close

proximity to the robot that will be detected, prompting the robot to re-plan its path

dynamically. This adaptive behavior enables the robot to avoid obstacles and reach its

intended goal safely as shown in Figure 4.6.

Initial path planning without consider-
ing distant obstacle

Dynamic path re-planning upon detect-
ing close obstacles

Figure 4.6: Path planning and obstacle detection in the navigation system
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Figure 4.7: Obstacle Encountered in the Robot's Pathway

The experiment was conducted in two different scenarios, an indoor environment and

an outdoor environment, to assess the robot’s adaptability and performance in varying

conditions. In the indoor scenario, the robot encountered known obstacles that were

strategically placed ahead of its path (Figure 4.7), simulating controlled conditions for

obstacle detection and avoidance. On the other hand, the outdoor scenario introduced the

challenge of a dynamic obstacle, represented by a human being standing in the robot’s

path, as depicted in Figure 4.11. This scenario aimed to assess the robot’s ability to detect

and respond to unexpected obstacles in a real-world setting. By conducting experiments in

both scenarios, a comprehensive evaluation of the robot’s obstacle avoidance performance

was achieved, taking into account various challenges and potential limitations.

(a) (b) (c)

Figure 4.8: Simulated Obstacle Avoidance in RViz (Indoor Environment)

(a) (b) (c)

Figure 4.9: Real-Time Obstacle Avoidance in Dynamic Indoor Environment
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(a) (b) (c)

Figure 4.10: Simulated Obstacle Avoidance in RViz (Outdoor Environment

(a) (b) (c)

Figure 4.11: Real-Time Obstacle Avoidance in Dynamic Outdoor Environment

In the controlled indoor environment, the robot demonstrated efficient obstacle avoid-

ance capabilities by successfully detecting and navigating around predetermined obstacles

without any instances of collision as shown in Figure 4.8 and 4.9. However, the outdoor

scenario presented a more dynamic and demanding setting, featuring a human obstruct-

ing the robot’s path. The results indicated that the robot effectively detected the presence

of the human and promptly halted its motion to prevent potential collisions. However, due

to the continuous movement of the human, which affected the path re-planning process,

the robot exhibited slight deviations and rotations in its trajectory. Nonetheless, the

robot demonstrated its adaptability by effectively adjusting its trajectory to circumvent

obstacles and ultimately reaching its intended destination as demontrated in Figure 4.11

and 4.10.

By observing the behavior of the robot, it was able to detect the presence of an obstacle

and promptly stop as it approached it. However, the robot encountered challenges in

re-planning the path when the robot encounters a sudden obstacle positioned very close

to its current location. This proximity restricts the robot’s ability to re-plan its path

smoothly in real-time. To compensate for this, the robot initiates a rotation in place to

explore alternative paths and avoid immediate collisions.

when the obstacle is relatively close, the robot stops when approach it; the act of stopping

the robot in place when encountering a dynamic obstacle is a deliberate strategy employed
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to adapt to the changing dynamics of the environment. This pause allows the robot to

update its local map, providing an opportunity to explore alternative paths and make

informed decisions for safe path planning. By stopping and re-evaluating the situation,

the robot ensures that it can navigate around obstacles effectively and choose the most

secure path.

The successful avoidance of the obstacle indicates that the transformation between the

laser sensor and the robot’s base was accurately established. The precise alignment and

calibration of the sensor’s position relative to the robot’s base ensures that the sensor

readings correspond to the robot’s actual position and orientation, enabling reliable ob-

stacle detection. Another crucial aspect is the real-time updates of the sensors data ; this

ensures that the LIDAR is continuously inquiring the data at a sufficiently high rate,

allowing dynamic detection. Furthermore, the results shows that the ROS navigation

stack employs reactive path planning techniques that dynamically adjust the robot’s

trajectory based on real-time sensor data. This allows the robot to respond promptly to

obstacles and navigate around them effectively.

4.2.5 Evaluation of Goal Reaching Effectiveness

The primary objective of the navigation system is to allow the robot to reach its

desired goal with utmost accuracy and precision. Achieving this objective necessitates

the three key factors evaluated before. First, the robot must maintain continuous and

reliable localization within the map, ensuring it has an accurate understanding of its

own position in relation to the goal and surrounding environment. Second, the navigation

system should enable effective collision avoidance, allowing the robot to dynamically

respond to obstacles and navigate around them to reach the goal safely. Lastly, the robot

should closely adhere to its planned path, minimizing deviations and executing the in-

tended trajectory as closely as possible. By emphasizing these aspects, the navigation

system aims to optimize the robot’s goal-reaching capabilities and enhance its overall

performance in its environment.

This section examines the navigation system’s accuracy in achieving the designated goal.

This is accomplished by comparing the intended goal assigned to the robot within the

map to its actual stopping position indicating "Goal Reached" in the move base status

topic.
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Figure 4.12: Reaching the Targeted Goal

To evaluate the preformance; a series of experiments were conducted, and the outcome

of the experiments is visually presented in the accompanying figures.

Deviation of Actual Positions from Designated Goals Designated Goals and Actual Positions on the Map

Figure 4.13: Evaluation of Navigation System Accuracy in Reaching Designated Goals

Overall, the robot demonstrated a high level of success in reaching its intended goal

during the conducted tests; the total error resulting from summing the root mean square

error (RMSE) for each measurement of the ten goal positions analyzed in indicates a

value of RMSE= 0.1813.

It is important to note that the goal reaching results heavenly depend on the model of

the robot defined in the URDF and the footprint dimensions set in the parameter files.

The precise representation of the real robot’s dimensions and characteristics within the

simulation is essential to ensure the congruity between the simulated and actual robot

movements.

In the presence of dynamic obstacles, such as humans or objects placed in front of

the robot , the navigation system demonstrated its capability to detect and respond

promptly. Nevertheless, the process of re-planning the robot’s path necessitated rotational

adjustments, which introduced an average time delay of 4 seconds. Despite this delay;
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the robot presented safe and efficient collision avoidance. Throughout the experiments,

the robot successfully followed the planned trajectory, although small oscillations were

detected when the robot tried to adhered its trajectory consistently. Where the oscilla-

tion in our case where augmented due to the wheels instability of our robot mechanical

design,however in case of a more stable structure; the slight oscillations in the path

execution process is normal result of the robot’s adaptive behavior to maintain a good

overall planning performance.

Overall, the assessment of the navigation system’s performance highlights several note-

worthy strengths pertaining to its robustness, adaptability, and efficacy in various critical

aspects. The system consistently exhibited the capability to adhere to the designated

path and effectively implement both global and local planning strategies, thereby ensur-

ing reliable collision avoidance. These findings offer valuable insights into the system’s

capabilities and lay a foundation for future research and development efforts aimed at

further enhancing and optimizing its performance.

4.3 Conclusion

In conclusion, this chapter has presented the implementation of the ROS navigation

stack in a real-world mobile robot platform. The navigation system was subjected to

rigorous testing and in-depth analysis, with a focus on critical aspects such as localiza-

tion, obstacle avoidance, path following, and goal reaching. The results of these tests

were thoroughly examined and discussed, providing insights into the performance and

effectiveness of the navigation system. Additionally, the implications of the findings were

carefully considered, highlighting both the strengths and limitations of the implemented

solution.
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CONCLUSION AND FUTURE WORK

The aim of this project was to develop a robust and reliable navigation system for a

mobile robot, It has reported the research carried out in order to accomplish this objective

presenting the implementation of the navigation system on a mobile robot. The intri-

cacies of mapping and navigation were thoroughly explored and deployed. The system

underwent a rigorous and comprehensive evaluation covering a wide range of aspects,

and the results of implementing the system real mobile robot were thoroughly discussed

and carefully analyzed. The results demonstrated reliable localization, accurate path

execution, efficient obstacle avoidance, and effective goal-reaching capabilities. These out-

comes validate the feasibility and potential of using ROS as a framework for developing

advanced navigation systems for unmanned ground vehicles.

Overall The mobile robot successfully navigated from its initial position to the goal posi-

tion. Moreover, this research prioritized the implementation of the navigation stack with

reduced complexity and minimal parameter adjustment, led to satisfactory outcomes

through precise testing and tuning.

The findings of this work demonstrate the potential of ROS as a framework for de-

veloping efficient navigation systems for unmanned ground vehicles. These findings

provide valuable insight into the capabilities of the system and lay a foundation for future

research and development aimed at further improving and optimizing its performance.

While this research primarily focused on the application of the navigation system for

surveillance purposes. The proposed system has important implications for integration

into various industrial applications such as warehouses, exploration and transportation.

This work holds significant potential for future expansion and enhancement. One area

with potential for development is the exploration of perception challenges. By addressing

these challenges, the system can improve its ability to understand and respond to dy-

namic environments. A specific approach to consider is the utilization of the visual SLAM

enabling the robot to navigate using the camera, resulting in more precise localization

and mapping. To achieve this, the powerful Intel RealSense (RGBD) camera can be

employed for perception, depth-sensing, mapping, and SLAM navigation.

Furthermore, the incorporation of the NVIDIA Jetson Nano is being considered to provide

enhanced computational capabilities. This integration would enable the incorporation
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of machine learning-based perception into the developed navigation system. This en-

hancement would empower the system to make informed decisions, navigate effectively

in complex environments, improve safety, and deliver a more efficient and reliable navi-

gation experience.

Additionally, we aim to integrate a local monitor to facilitate human-robot interaction

and simplify the goal-selection process. By doing so, we eliminate the need for remote

access from the master PC. The local board will directly display the simulation, enabling

the navigation process to be entirely managed at the robot level. This addition seeks

to enhance the efficiency of goal picking and improve the overall interaction between

humans and the robot.
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