People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’"Hamed BOUGARA - Boumerdes

Université de Boumerdes
University of Boumerdes

Institute of Electrical and Electronic Engineering

Department of Power and Control

Final Year Project Report Presented in Partial Fulfilment of
the Requirements for the Degree of the:

‘MASTER’

In:

Control Engineering
Computer Engineering

Title:

Indoor Obstacle Avoidance System Design And
Evaluation Using Deep Learning And SLAM based
Approaches

Presented by:
BENBEKHMA Abdelwadoud
TAIBI Houssam Eddine

Supervisor:

Dr. BENZAQOUI Messaouda

Registration Number:........./2023

Dedication 1

With profound gratitude and utmost appreciation, I humbly dedicate this remarkable
achievement to my esteemed father. Your unwavering love, invaluable guidance, and
selfless sacrifices have been the driving forces behind my resounding success. I am

eternally grateful for the invaluable virtues you have instilled within me.

To my beloved mother, the epitome of love, strength, and boundless selflessness, I extend
my heartfelt gratitude. Your unwavering faith in my potential, nurturing presence, and
unconditional love have served as the bedrock of my journey. Your countless sacrifices,
unwavering encouragement, and heartfelt prayers have propelled me forward. May Allah

shower His blessings upon you, dear mother.

To my beloved sisters, Ghofrane, Iman, and Roumaissa, I want to express my heartfelt
appreciation for the immense joy and blessings your presence brings to my life. The
moments we have cherished together are etched in the depths of my heart for eternity. To
my dear brother Ayoub, your presence fills my life with immeasurable happiness, even
in the moments of silence we share. The unspoken connection that binds us transcends

words, and your mere existence brings me profound joy and gratitude.

To my esteemed friends Bilel, Houssam, Zakaria, and all my other companions who have
journeyed alongside me. Your unwavering presence and unwavering camaraderie have

made the challenges more conquerable and the triumphs more meaningful.

In remembrance of our dear friend Salah Chelbi, who departed from this ephemeral
world far too soon, I offer my heartfelt prayers. May Allah, the Most Merciful, grant him

forgiveness and mercy, and may He grant him an abode in Jannah, the eternal paradise.

May Allah bestow His blessings upon all my cherished loved ones, safeguarding them
with unending happiness, robust health, and resounding success. May He keep them in His

divine embrace, guiding and protecting them under His infinite grace.

Dedication 2

To my beloved father and mother,

With utmost reverence, deep gratitude, and boundless love, I dedicate this project to you.
Your unwavering love, steadfast support, and countless sacrifices have been the bedrock of
my journey. Your guidance, encouragement, and unwavering belief in my abilities have
been a constant source of inspiration. Without your enduring love and unwavering support,

this significant milestone would have remained beyond reach.

To my dear brothers, Abdelmounaim, Nadjib, lil Iyad, and my little sister, Marwa, |
offer this heartfelt tribute. You have been my constant companions, confidants, and sources

of joy. Together, we have shared laughter, tears, and countless unforgettable moments.

To my childhood friends, Mimou, Azeddin, and Mahdi, I express my heartfelt gratitude.
Through thick and thin, you have stood as pillars of strength, unwavering in your support,
and a source of invaluable camaraderie. Your presence has indelibly shaped my academic

journey.

I extend my sincere appreciation to my esteemed friends, Doudou, Zaki, Nasro, Bilel,
and Adam. You have become an extended family to me. Your unwavering support and
camaraderie have served as constant sources of motivation and encouragement throughout
my endeavors. This dedication reflects my profound gratitude and acknowledges the
indelible influence they have had on my journey.

In loving memory of Salah Chelbi, whose spirit continues to inspire, this thesis is dedicated

to his lasting impact on our lives.
May Allah bestow His blessings upon all my cherished loved ones, safeguarding them

with unending happiness, robust health, and resounding success. May He keep them in His

divine embrace, guiding and protecting them under His infinite grace.

il

Acknowledgments

In the pursuit of knowledge and the completion of this project, We would like to express our
deep gratitude and thanks to Allah, the Most Gracious and Most Merciful. His guidance,
blessings, and unwavering support have been the driving force behind every step of this
journey.

We are profoundly grateful for the wisdom and enlightenment bestowed upon us throughout
this project. We acknowledge that every accomplishment is a reflection of Allah’s infinite
grace and mercy.

We extend our heartfelt appreciation to our supervisor Mrs Benzaoui Messaouda for her
invaluable guidance, unwavering support, and expert advice throughout the duration of this
project. Her extensive knowledge and encouragement have been instrumental in shaping
and refining the direction of our research.

We are also deeply grateful to the faculty and staff of The Institute Of Electrical And
Electronics Engineering for providing the necessary resources, facilities, and opportunities
that have facilitated the progress of this project. Their commitment to academic excellence
has created an environment conducive to learning and exploration.

We extend our thanks to our colleagues and classmates for their collaboration, stimulating
discussions, and willingness to share their knowledge. Their diverse perspectives and
contributions have enriched our understanding and enhanced the quality of this project.
We are indebted to the participants who willingly volunteered their time and effort to
contribute to the data collection process. Their cooperation and enthusiasm have been
crucial in generating the empirical evidence necessary for this study.

Finally, we would like to acknowledge the support and encouragement from our family
and friends. Their unwavering belief in our abilities and their continuous encouragement
have been a source of inspiration throughout this project.

Although it is not possible to mention everyone individually, please accept our heartfelt
appreciation for the assistance and support provided by each and every person who has
contributed to this project.

Thank you all for your invaluable contributions.

il

Abstract

This project aims to contribute to the vibrant field of obstacle detection and safe au-
tonomous navigation by designing a robust and cost-efficient system for indoor mobile
robot obstacle avoidance. The system combines 2D LiDAR-based SLAM with the state-of-
the-art RRT algorithm for effective path planning. In addition, a pioneering deep learning
approach addresses challenges in SLAM-RRT-based obstacle avoidance, including un-
certain sensor measurements, complex environments, generalization, planning efficiency,
and non-geometric information. The deep learning model is trained using data from a
simulated environment with a 2D LiDAR sensor, serving both SLAM and data acquisition
purposes. Comparative analysis between odometry-based and SLAM-based pose compu-
tation methods provides insights into successful deep learning-based obstacle avoidance.
Implemented within ROS2, this project represents a significant stride in exploring cutting-

edge techniques for robust and cost-efficient indoor mobile robot obstacle avoidance.

v

List of Abbreviations and Terms

Al

IoT
AMRs
Industry 4.0
SLAM
2D
ROS2
RRT
SLAM
LiDAR
GPS
IMU
API
GUI
PID
CpPU
GPU
RGB-D
CNN
RNN
Lidar
3D
RBPF
ROS
Rviz
LiDAR
XML
RPLidar
Hz

Artificial Intelligence

Internet of Things

Autonomous Mobile Robots
Fourth Industrial Revolution
Simultaneous Localization and Mapping
Two-Dimensional

Robot Operating System 2

Rapidly Exploring Random Trees.
Simultaneous Localization and Mapping
Light Detection and Ranging
Global Positioning System

Inertial Measurement Unit
Application Programming Interface
Graphical User Interface
Proportional-Integral-Derivative
Central Processing Unit

Graphics Processing Unit
Red-Green-Blue Depth
Convolutional Neural Network
Recurrent Neural Network

Light Detection and Ranging
Three-Dimensional
Rao-Blackwellized Particle Filter
Robot Operating System

ROS visualization

Light Detection and Ranging
Extensible Markup Language
Rotating Planar Lidar

Hertz

deg
URDF
RNN
LSTM
GAN
RL
FNN
SGD
OHE

degrees

Unified Robot Description Format
Recurrent Neural Networks

Long Short-Term Memory
Generative Adversarial Networks
Reinforcement Learning
Feedforward Neural Networks
Stochastic Gradient Descent

One hot encoding

vi

Contents

Listof Figures ix
Listof Tables X
General Introduction Lo xi
1 Problem Description and Literature Review 1
1.1 Problem Description, 2

1.2 Overview of mobile robot obstacle avoidance 3

1.3 Differential Drive Mobile Robots 6
1.3.1 Odometry e 9

1.3.2 Challenges of Odometry Computation for Localization 11

1.4 SLAM and Path Planning in Robotics 13
1.4.1 Simultaneous Localization and Mapping (SLAM) 13

1.4.2 Path Planning Techniques 16

1.5 Deep Learning-Based Obstacle Avoidance 18
1.5.1 Introduction to Deep Learning 18

1.5.2 Brief Overview of Deep Learning Principles 19

2

1.5.3 Methods of Deep Learning for Obstacle Avoidance and Path Planning 21

Lidar-Based Obstacle Avoidance 23
2.1 State-of-the-art techniques and advancements in lidar-based obstacle avoid-
ANCE . o . v e e e e e e e e e e e e e e 24
2.2 LIDAR based obstacle-detection methods 25
2.3 Integration of Lidar and SLAM for Obstacle Avoidance - Lidar Data
Processing and Feature Extraction 28
23.1 KartoSLAM 28
2.3.2 Rao-Blackwellized Particle Filter (RBPF) 30
233 ScanMatching 30
2.3.4 Graph Optimization 31
2.3.5 Data Associationo 32
2.4 2D LiDAR-based Deep Learning for Obstacle Avoidance and Path Planning 32
2.4.1 Neural Networks 0. 32
24.2 feed-forward Neural Networks 33
2.4.3 Data Pre-processing in Feed Forward Neural Networks 33

vii

Contents

3 Simulation Environment And virtual hardwaresetup 37
3.1 Software Components 38
3.1.1 Robotic Operating System(ROS) 38

3.1.2 Gazebosimulator L L 41

3.1.3 2DLIDARsSensor 43

3.1.4 3D Indoor Environment Setup 44

3.2 SLAM Algorithm Selection and Implementation 45

3.3 Path Planning and Obstacle Avoidance Strategy 46

3.4 Deep Learning Approach Lo oL 48
34.1 DataCollection 48

342 DataPre-processing 50

3.4.3 Model Architecture o 52

344 Training Process, 53

4 Results And Discussion L. 55
4.1 SLAM-Based Map Construction Results 57
4.2 Comparison of Pose Estimation Results 58
4.2.1 Odometry-Based Pose Estimation 59

4.2.2 SLAM-Based Pose Estimation 59

4.2.3 Comparison and Discussion 60

4.3 RRT-Based Obstacle Avoidance Results 61
4.4 Deep Learning ApproachResults 63
44.1 Results Analysis 64

442 Conclusion 65

4.5 DiscussionofResultso L L. 65
4.6 Limitations and Future Work 66
477 Conclusion L 67
General Conclusion Lo 68
References 69

viii

~N O L AW

10
11
12
13
14
15
16
17
18
19

20
21

22
23
24
25
26

List of Figures

Types of sensors for obstacle detection
Principle of mechanical spinning LIDAR [11].
A geometry of a 3-wheel differential drive mobile robot [14].
Example of the SLAM problem [21]
Forms of the SLAM problem [27]
Hllustration of RRT path planning [31].
Flowchart of the Deep Learning Process

An example of occupancy grid representation of the environment[51].

Architecture representation of a 3-layer feed-forward neural network [67].

The publisher/subscriber ROS communication
The server/client ROS communication
The structure of Gazebo simulator components [78]
URDF model of the designedrobot
Robot Model Designed in Gazebo
[lustration of Joints in the Robot Model
Simulated indoor environment with static obstacles
the communication flow among the three nodes.
Example of a sample of the collecteddata.

Model architecture. e e

Mapping initialization.o L L
Progressive stages of map construction. The figures demonstrate the grad-
ual updates in the map as the robot explores the environment.
Comparison of odometry-based pose estimation with the real pose.
Comparison of SLAM-based pose estimation with the real pose.
Different initial robot poses with the same goal coordinates.
Different goal coordinates with the same initial robot pose.

Performance metrics of the trained obstacle avoidance model.

X

14
15
18
20

26
33

List of Tables

1 Comparison of the three main categories of SLAM algorithms [30]. . .. 16

2 The measurement performance of RP-Lidar 43

General introduction

The increasing demand for autonomous mobile robots across various sectors, such as
hospitals, institutions, agriculture, companies, and homes, has led to significant advance-
ments in their capabilities [1]. These robots offer a promising solution for automation and
efficiency in diverse environments, both indoors and outdoors. The emergence of Industry
4.0, with its focus on creating "smart factories" heavily reliant on automation and system

interconnection [2, 3], has further accelerated the adoption of autonomous mobile robots.

However, this shift towards autonomous mobile robots poses new challenges, especially
in terms of real-time responsiveness and safety requirements. In uncertain and dynamic
environments, the ability to detect obstacles accurately and rapidly is crucial for these
robots to perceive and navigate their surroundings [4]. Despite limited prior knowledge

and potential dynamism, they must effectively detect obstacles while on the move.

Differential mobile robots are affordable and robust, making them an ideal choice for
various applications. With efficient locomotion capabilities, they can traverse diverse
terrains and maneuver effectively in tight spaces. LiDAR sensors, widely employed in
autonomous mobile robots, offer advantages in distance measurement. They provide high
scanning precision, a large detection range, and are insensitive to lighting conditions [5]. In
this project, our focus is on utilizing 2D LiDAR sensors to obtain reliable 2D point-cloud

measurements for detecting material obstacles in the surroundings.

To ensure accurate localization and mapping in unknown indoor environments, we employ
SLAM techniques that leverage LiDAR data for real-time position estimation and map
updates. This enables safe and efficient navigation, even in environments with limited or
no pre-existing maps. Additionally, our project includes a deep learning-based obstacle
avoidance algorithm, which uses deep neural networks to train the robot in making real-
time decisions when faced with obstacles. This adaptive approach enhances the robot’s

navigation performance and behavior adaptation in different environments.

X1

List of Tables

Our project’s goal is to design a mobile robot system that combines the cost-efficiency
and effectiveness of a differential robot platform with the accuracy and reliability of
LiDAR sensors for obstacle detection and avoidance. This integrated system will enable
autonomous mobile robot navigation in unknown environments with dynamic obstacles,

addressing the challenges of real-time responsiveness and safety requirements.

To facilitate seamless communication between different components of the robot system,
we integrate it with ROS 2, a popular robot operating system. This integration enhances
system interoperability and simplifies the development process. Furthermore, simulation-
based evaluation allows us to comprehensively analyze and assess the system’s performance
under various scenarios and environments, providing insights into its robustness and

reliability.

By addressing the research questions related to obstacle detection, SLAM algorithms,
deep learning-based obstacle avoidance, integration with ROS 2, and simulation-based
evaluation, this project aims to contribute to the development of an efficient, affordable, and
capable mobile robot system. In conclusion, this report presents a comprehensive approach
to address the challenges of real-time obstacle detection, navigation, and avoidance in
unknown environments with dynamic obstacles. By combining the strengths of differential
mobile robots, LiDAR sensors, and deep learning techniques, we aim to create an efficient
and affordable mobile robot system capable of operating autonomously in diverse and

challenging environments.

xii

CHAPTER 1

Problem Description and Literature
Review

Chapter 1: Problem Description and Literature Review

1.1 Problem Description

Mobile robot navigation in unknown environments with dynamic obstacles presents several
challenges that need to be addressed for efficient and safe operation. The ability to
detect and avoid obstacles in real-time is critical to ensure the robot’s safe navigation
and to prevent collisions. Additionally, accurate mapping and localization are essential
for effective path planning and autonomous operation in complex environments. The
integration of these techniques into the Robot Operating System 2 (ROS2) framework,

which offers modularity and scalability, has not been extensively explored.

This project aims to address these challenges and develop an efficient and cost-effective
solution for obstacle detection and avoidance in differential mobile robot navigation.
By leveraging the strengths of differential robots and LiDAR sensors, the project will
focus on developing algorithms and techniques for real-time obstacle detection, accurate
localization, efficient path planning, and deep learning-based obstacle avoidance. The
proposed project will investigate state-of-the-art techniques in obstacle detection, mapping,
and localization for mobile robot navigation. It will explore algorithms that effectively
process and analyze data from LiDAR sensors to detect and classify obstacles in real-time.
Additionally, advanced SLAM algorithms will be researched to enable accurate mapping
and localization in dynamic environments. The implementation of these algorithms,
including the deep learning-based obstacle avoidance trained in indoor environments, on
the ROS?2 framework will provide a robust and scalable platform for testing and evaluation.
The deep learning-based obstacle avoidance component will be a crucial part of the
developed system. By training the robot in indoor environments using diverse obstacle
scenarios, the deep learning model will learn to identify and respond to obstacles in real-
time. This approach will enhance the robot’s ability to make precise decisions based on its
position, orientation, and the presence of obstacles, thereby improving overall navigation

safety and efficiency.

The significance of this project lies in the development of an efficient and cost-effective
mobile robot system capable of navigating in unknown environments with dynamic obsta-
cles. By leveraging the advantages of differential robot platforms, LiDAR sensors, and
deep learning techniques trained in indoor environments, the project aims to address the
challenges of real-time obstacle detection while considering cost-efficiency and practicality
for real-world applications. The findings of this research will contribute to the field of
robotics and autonomous systems by providing insights into effective obstacle detection
and avoidance techniques, including the incorporation of deep learning trained in indoor

environments, and their integration into the ROS2 framework.

Chapter 1: Problem Description and Literature Review

1.2 Overview of mobile robot obstacle avoidance

Mobile robot navigation is a fundamental aspect of autonomous robotics, enabling robots to
move and operate in unknown or dynamic environments. It involves the ability to perceive
the surroundings, plan optimal paths, and execute motion control to avoid obstacles
and reach desired destinations. Effective navigation is crucial for various applications,
including industrial automation, logistics, surveillance, search and rescue, and service
robotics. Mobile robots can navigate in both indoor and outdoor environments, each

presenting unique challenges and requirements.

1. Indoor Navigation:
Indoor navigation typically involves structured environments such as warehouses,
hospitals, or factories. Robots operating in indoor environments often rely on
predefined paths or maps. They utilize sensors like encoders, gyros, or cameras for
localization and navigation. Obstacle avoidance in indoor environments primarily
focuses on static objects such as walls, furniture, or machinery.

2. Outdoor Navigation:
Outdoor navigation poses additional challenges due to unstructured and dynamic en-
vironments. Robots operating outdoors need to handle uneven terrains, unpredictable
obstacles (both static and dynamic), and changing lighting conditions. Outdoor mo-
bile robot navigation requires advanced sensing and perception capabilities to handle

these challenges effectively.

In the context of mobile robot navigation, several challenges and requirements arise.
Robots must navigate safely and efficiently in environments where obstacles, both static
and dynamic, may be present. They should possess the capability to sense and perceive
the environment, accurately detect obstacles, and make informed decisions in real-time.
Various sensors can be employed for obstacle detection, Figure 1 illustrates the different

types of sensors commonly used for obstacle detection.

Ao

(a) kinect depth camera (b) Ultrasonic sensor (c) RP-LiDAR sensor

Figure 1. Types of sensors for obstacle detection

Chapter 1: Problem Description and Literature Review

Subfigure (a) shows vision sensors such as cameras, which provide detailed visual informa-
tion about the robot’s surroundings [6]. Subfigure (b) displays ultrasonic sensors that emit
sound waves and measure the time it takes for the waves to bounce back after hitting an
object [7]. Finally, subfigure (c) presents LiDAR sensors that use laser beams to generate

3D point clouds of the environment [8, 9].

1. Vision Sensors: Vision sensors, such as cameras, provide detailed visual informa-
tion about the robot’s surroundings. In-depth vision sensors, also known as depth
cameras or depth sensors, provide not only detailed visual information but also depth
information about the robot’s surroundings. These sensors capture the 3D structure
of the environment by measuring the distance between the sensor and objects in the
scene. One popular example of an in-depth vision sensor is the Microsoft Kinect
sensor, which combines an RGB camera with an infrared depth sensor.

Unlike traditional vision sensors that rely solely on 2D images, in-depth vision
sensors enable the estimation of object distances and create a depth map of the scene.
This additional depth information enhances the understanding of the environment,
allowing for more accurate object detection, segmentation, and scene reconstruction.
It also provides valuable input for tasks such as 3D mapping, object tracking, and
gesture recognition.

However, in-depth vision sensors have their limitations. They require more process-
ing power compared to regular cameras due to the additional depth data processing.
They can also be sensitive to lighting conditions, as variations in lighting can affect
the accuracy of depth measurements. Additionally, the complexity of object recogni-
tion and classification algorithms increases when incorporating depth information,
requiring sophisticated techniques to leverage the full potential of the sensor data.
Despite these challenges, in-depth vision sensors offer valuable insights into the 3D
structure of the environment, making them suitable for applications that require a
more detailed understanding of the scene and precise obstacle detection in mobile
robot navigation, augmented reality, robotics, and computer vision tasks.[10]

2. Ultrasonic Sensors: Ultrasonic sensors emit sound waves and measure the time it
takes for the waves to bounce back after hitting an object. They are cost-effective,
require less power, and can detect objects within a certain range. However, ultrasonic
sensors have limited accuracy and resolution compared to other sensing technologies.

3. LiDAR Sensors:

Lidar, which stands for "Light Detection and Ranging" or "Laser Imaging, Detection,
and Ranging," is a device used to measure distances by emitting laser pulses and
analyzing the reflected light. It provides precise 3D spatial information about the
surrounding environment. A Lidar system typically consists of a laser emitter,

scanning mechanism, receiver, and data processing unit. The emitted laser beam

Chapter 1: Problem Description and Literature Review

Tilting mirror

Optical rotary

encoder = | — Objects
Servo motor -

Optical rotary

encoder
Laser source

Receiver

Figure 2. Principle of mechanical spinning LiDAR [11].

reflects off objects in its path, and the receiver detects the reflected light. By
measuring the time it takes for the laser pulses to return, Lidar can calculate accurate
distances to objects. This technology is widely used in various applications, including
autonomous vehicles, robotics, mapping, and remote sensing.Figure 2 shows the
LIDAR mechanism [6, 8, 12, 7, 9]..

Numerous approaches and techniques have been developed to address the challenges of
mobile robot navigation. These include traditional methods such as sensor fusion, path
planning algorithms, and control systems based on classical robotics principles. Recent
advancements in perception technologies, including computer vision, LiIDAR, and depth
sensors, have further improved the ability of mobile robots to perceive and understand

their surroundings.

Obstacle detection and avoidance play a critical role in mobile robot navigation. Real-time
identification and classification of obstacles are essential for safe and efficient movement.
Various techniques, such as sensor-based approaches, probabilistic methods, and machine
learning algorithms, have been employed for obstacle detection. These techniques rely
on data from sensors such as LiDAR, cameras, ultrasonic sensors, or a combination of

multiple sensors to accurately perceive and interpret the environment.

The literature on mobile robot navigation provides valuable insights into the challenges,
techniques, and advancements in this field. Researchers have explored different algorithms,
sensor configurations, and control strategies to improve the navigation capabilities of
mobile robots. Additionally, the integration of simultaneous localization and mapping
(SLAM) techniques, which enable robots to build maps of their environment while simul-

taneously estimating their position, has significantly enhanced navigation performance in

Chapter 1: Problem Description and Literature Review

unknown environments.

Overall, understanding the state-of-the-art in mobile robot navigation is crucial for the
successful implementation of the proposed project. It provides a foundation for exploring
innovative solutions, developing efficient algorithms for obstacle detection, and integrating
SLAM techniques to enable the robot to navigate autonomously and safely in unknown
environments. By leveraging the existing knowledge and advancements, this study aims
to contribute to the field by addressing the challenges of mobile robot navigation and

developing an efficient and cost-effective solution for obstacle detection and avoidance.

1.3 Differential Drive Mobile Robots

Differential mobile robots utilize a differential drive mechanism, where each wheel is
independently controlled. This design allows the robot to rotate in place by spinning its
wheels in opposite directions. Differential robots are known for their simplicity, robustness,
and cost-efficiency. They are well-suited for applications requiring tight maneuverability

and can traverse various terrains effectively.

Kinematics: The Differential Drive Wheeled Mobile Robots (DDWMRs) usually have
two independently driven wheels and one or more empowered wheels at the rear as a
balance. An important issue of the differential driving of mobile robots which needs
considering is that their motion controller design is mostly based on kinematic models.
The main reason is that dynamic models are more complex than kinematic models and

mobile robots usually use only the low speed of the motor to control the loop [13].

Chapter 1: Problem Description and Literature Review

-

0 X

Figure 3. A geometry of a 3-wheel differential drive mobile robot [14].
Figure 3 illustrates the geometry of a 3-wheel differential drive mobile robot, where:

m v is the linear velocity of the DDWMR (m/s),

m 0 is the orientation of the DDWMR (rad),

m w, is the angular velocity of the right wheel (rad/s),

m w; is the angular velocity of the left wheel (rad/s),

m v, is the linear velocity of the right wheel (m/s),

m v; is the linear velocity of the left wheel (m/s),

m 7 is the radius of the right and the left wheels (m),

m b is the distance between the right and the left wheels (m),

= () is the center of the axis between the right and the left wheels,
m (5 is the center of gravity of the DDWMR,

m a is the distance between () and G (m).

The kinematic model equations depend on the geometrical structure of the DDWMR.
However, most of the 3-wheel DDWMRs have the same kinematic equation which is
constructed as follows [15, 16, 17, 18, 14]:

re = xg — acos(h) (1.1)
Yo =Yg — asin(f) (1.2)

Chapter 1: Problem Description and Literature Review

We assume that:
m The wheels are rolling without slipping,
m The center of gravity G coincides with the point (),

m The guidance axis is perpendicular to the robot plane.

Based on Fig.3 we get:

vr:v+§9 (1.3)
b .
o :v—éﬁ (1.4)

Adding and subtracting Eqgs. (1.3) and (1.4), we get:

v==(v, +) (1.5)

.
I
S =N

(v, — vy) (1.6)

Due to the non-slipping assumption, we have v, = rw, and v; = rw;.

From Fig.3, we get:

= tg = vcos(f) (1.7)
Y = yg = vsin(f) (1.8)
0=w (1.9)

Equations (1.7), (1.8), and (1.9) describe the kinematics of the DDMR, providing essential

information for motion control and trajectory planning.

Differential drive mobile robots offer several advantages over other types of mobile robots:

= Simplicity and Cost-effectiveness: The differential drive mechanism is relatively
simple and straightforward to implement. It requires fewer components and actuators
compared to other drive systems, making it cost-effective and easily maintainable.

m Agility and Maneuverability: Due to the independent control of each wheel,
differential drive robots can exhibit high maneuverability and agility. They can

perform tight turns and navigate through narrow spaces effectively. This makes them

Chapter 1: Problem Description and Literature Review

suitable for applications that require precise and intricate movements.

m Energy Efficiency: Differential drive robots are efficient in terms of power con-
sumption. They require fewer actuators and mechanisms compared to other mobile
robot types, resulting in improved energy efficiency. This advantage is particularly
important for battery-powered robots or robots operating in resource-constrained
environments.

= Robustness and Stability: Differential drive robots are inherently stable and ro-
bust. They can handle uneven terrains and variations in the ground plane without
compromising their performance. This robustness makes them suitable for outdoor
applications or environments with challenging surfaces.

m Versatility and Adaptability: Differential drive mobile robots can be designed
and adapted for various applications. They find applications in exploration, surveil-
lance, industrial automation, and even in hobbyist robotics due to their versatility.
Their simple and modular design allows for easy customization and integration of

additional sensors or tools.

These advantages make differential drive mobile robots popular in many fields, where their
simplicity, agility, energy efficiency, robustness, and versatility are highly valued. They
provide an effective solution for tasks that require precise maneuvering, flexibility, and

adaptability in different environments.

1.3.1 Odometry

Odometry is a technique used to estimate the position and orientation of a moving object
by analyzing its self-generated motion data, such as wheel rotations or inertial sensor
readings. It plays a crucial role in navigation and localization systems, providing real-
time information about the object’s movement in its environment. However, odometry
measurements are prone to errors and cumulative drift, requiring integration with other

sensing modalities for accurate positioning.

""ros control' Overview

"ros control" is a powerful framework within ROS (Robot Operating System) that provides
a standardized interface and architecture for controlling robot hardware. It offers a com-
prehensive set of libraries and tools designed for developing robust robot controllers and

seamlessly integrating them with hardware components [19].

At the core of "ros control" are several essential components:

Chapter 1: Problem Description and Literature Review

» Hardware Interface: Serving as a vital link between low-level hardware and higher-
level controllers, the hardware interface defines the necessary commands and states
required to effectively control robot actuators and retrieve sensor data.

s Controller Manager: The controller manager handles the lifecycle management
of robot controllers. It is responsible for loading, starting, stopping, and seamlessly
switching between controllers as needed. By interfacing with the hardware interface,
the controller manager can send commands and receive valuable feedback from the
robot’s sensors and actuators.

m Controllers: Controllers play a pivotal role in executing control algorithms and
strategies for the robot. They utilize sensor feedback and generate appropriate
control commands to achieve desired robot behavior and motion.

= Joint State Controller: The joint state controller collects crucial information such
as joint position, velocity, and effort from the hardware interface. This data is then
published as ROS topics, providing a standardized way to access and utilize joint
state information.

= Robot State Publisher: By combining joint state information with the robot’s
kinematic model, the robot state publisher computes and publishes the robot’s pose,
which includes both position and orientation, as a ROS topic. This pose information

is valuable for various higher-level tasks, such as localization and mapping.

Odometry Computation in ''ros control''.

In "ros control”, odometry for a differential drive robot is computed by utilizing the wheel
velocities provided by the hardware interface. Through a process called dead reckoning,
these wheel velocities are integrated over time to estimate the robot’s pose, which consists

of its position and orientation.

The mathematical description for integrating the wheel velocities over time to estimate the

robot’s pose is as follows:

Let v; represent the linear velocity of the left wheel, v, denote the linear velocity of the
right wheel, L indicate the fixed wheelbase of the robot, and At represent the time interval
between successive updates of the wheel velocities. We can calculate the incremental

displacement Az, Ay, and change in orientation Af over this time interval.

The incremental displacement is given by:

Uty

A
§ 2

- At (1.10)

10

Chapter 1: Problem Description and Literature Review

Az = As - cos(0) (1.11)

Ay = As -sin(6) (1.12)

The change in orientation is determined by:

Uy — g

Al =
L

At (1.13)

Starting from an initial pose (g, 3o, 0o), we can obtain the updated pose by integrating

these incremental values over time:

Ty = X1 + Ax (1.14)

Starting from an initial pose (zo, o, 0o), we can obtain the updated pose by integrating

these incremental values over time:

Ty =T+ Ax (1.15)
Y = Y1 + Ay (1.16)
0, = 0,1+ A0 (1.17)

where x4, ¥4, and 0, represent the updated pose of the robot at time ¢, while (x;_1,y;—1,0;—1)
represent the previous pose. where x4, v;, and 6; represent the updated pose of the robot at

time ¢, while (x;_1,v;_1, ;1) represent the previous pose.

It’s important to note that these equations provide a basic estimation of the robot’s pose
based solely on the wheel velocities. However, errors can accumulate over time due to
factors such as wheel slip and uneven terrain. Therefore, additional techniques like sensor
fusion with external localization systems can be employed to enhance the accuracy and

reliability of pose estimation [19].

1.3.2 Challenges of Odometry Computation for Localization
Odometry computation, which relies on measuring wheel movements and rotations, is

commonly used for robot localization. However, it faces several challenges that can lead

to inaccuracies and drift over time. Some of the common problems include:

11

Chapter 1: Problem Description and Literature Review

Wheel slippage: When a robot encounters slippery surfaces or uneven terrains, the wheels
may slip, causing discrepancies between the expected and actual robot movements. This

can result in inaccurate odometry estimates and subsequent localization errors [20].

Wheel calibration: Imperfections in wheel manufacturing or variations in terrain condi-
tions can lead to variations in wheel diameter or slippage characteristics. These discrepan-

cies can introduce biases in odometry computations, affecting localization accuracy.

Cumulative errors: Odometry computations are prone to cumulative errors that accumu-
late over time. Each small error in measuring wheel movements can lead to significant

drift in the estimated robot pose as the robot moves along its trajectory [20].

Simultaneous Localization and Mapping (SLAM) Solution: To overcome the limita-
tions of odometry-based localization, Simultaneous Localization and Mapping (SLAM)
algorithms are employed. SLAM combines sensor measurements, such as laser scans
or camera images, with odometry information to simultaneously construct a map of the

environment and estimate the robot’s pose within that map.

SLAM addresses the challenges of odometry computation for localization in the following

ways:

Data fusion: By fusing data from multiple sensors, such as LIDAR or cameras, SLAM
algorithms can compensate for the limitations of odometry. Sensor data provides additional
information about the environment, allowing the algorithm to better estimate the robot’s

pose and reduce the impact of odometry errors [20].

Loop closure detection: SLAM algorithms incorporate loop closure detection techniques
to identify previously visited locations. By detecting loops in the robot’s trajectory, SLAM
algorithms can correct accumulated odometry errors and align the estimated map with the

real-world environment [21, 22].

Map refinement: SLAM algorithms continuously refine the constructed map based on new
sensor measurements and odometry updates. By iteratively optimizing the map and the
robot’s pose estimates, SLAM algorithms can improve localization accuracy and mitigate

drift caused by odometry errors [21].

By leveraging sensor data and advanced algorithms, SLAM provides a robust solution

to address the challenges of odometry computation for localization. It enables accurate

12

Chapter 1: Problem Description and Literature Review

mapping of the environment while simultaneously estimating the robot’s pose within that
map, resulting in more reliable and precise localization capabilities for autonomous robots
[23, 20].

Including SLAM in the navigation system enhances the overall accuracy and reliability
of the robot’s localization, making it an essential component in autonomous navigation

systems operating in complex indoor environments [23, 24].

1.4 SLAM and Path Planning in Robotics

This section provides the theoretical background and mathematical descriptions for both
SLAM and path planning problems, as well as discusses the methods that will be used in
this project.

1.4.1 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) is a fundamental technique in mobile
robot navigation that addresses the challenge of estimating the robot’s position (local-
ization) while simultaneously building a map of the environment. SLAM algorithms
combine sensor measurements, such as odometry, LiDAR scans, or camera images,
with probabilistic models to estimate the robot’s pose and create a representation of the
environment. SLAM techniques are critical for mobile robots operating in unknown or
unexplored environments, as they enable the robot to create maps on-the-fly and localize
themselves without relying on pre-existing maps. Advanced SLAM algorithms, such
as GraphSLAM or FastSLAM, have been developed to handle dynamic environments,

large-scale mapping, and the presence of dynamic obstacles[25] .

Formulation of SLAM Problem

SLAM is a fundamental problem in robotics that was first introduced in 1986 at the IEEE
Robotics and Automation Conference in San Francisco by researchers Peter Cheeseman,
Jim Crowley, and Hugh Durrant-Whyte [21]. The primary goal of SLAM is to place a
mobile robot in an unknown environment and simultaneously build a model map while
determining the robot’s location within that map using different sensors. A significant
challenge in SLAM is dealing with noise in sensor measurements and uncertainties in

robot motion.[26]

13

Chapter 1: Problem Description and Literature Review

Mathematical Description of SLAM

Let X1 = {xg, 21, 29, ..., zr} represent the robot path, where z is known. The relative
motions of the robot are given by Ur = {ug, u1, us, . . ., ur }, where u; represents the robot
motion between time steps ¢ — 1 and t. My = {mg, my, ma,...,m,_1} represents the
true map of the environment, where n is the number of landmarks, and m; are the vectors
representing the positions of the landmarks. Zr = {2, 21, 29, . . ., 27} represents the robot

measurements at each time step.

SLAM can be defined as the problem of recovering the map M and robot path X, from

the odometry U7 and observations Z.

Landmark

Zia N
O " True — > o

Estimated P

Figure 4. Example of the SLAM problem [21]
The full SLAM problem estimates the posterior probability over the full data X and M

and is given by:
p(X, M| Zy, Ur) (1.18)

The online SLAM problem estimates the posterior probability over the current pose x; and

map M given the observations and odometry up to time ¢:

p(xe, M| Zy, Uy) (1.19)

Solutions to the SLAM Problem

14

Chapter 1: Problem Description and Literature Review

/O unknown variables\
O known variables

variables held
in state vector
online SLAM full SLAM

Figure 5. Forms of the SLAM problem [27]

Solving the SLAM problem requires finding a representation for both the observation and
motion model that allows for efficient computation of the prior and posterior distributions.

Various algorithms have been developed to tackle the SLAM problem.

SLLAM algorithms

s EKFSLAM (Extended Kalman Filter SLAM) is a well-known and widely used
algorithm. It uses the Extended Kalman Filter to estimate the robot’s position
and map the environment. EKFSLAM has easy implementation and is suitable
for small-scale maps. However, it has limitations in handling large maps due
to its computational complexity, which grows quadratically with the number of
landmarks[28].

n FastSLAM is a particle filtering-based algorithm that represents the posterior belief
by a set of particles, each of which carries a map and a pose hypothesis. It can handle
non-linearities and uncertainties in the robot’s motion and measurement models.
FastSLAM is more flexible than EKFSLAM and can use negative information,
improving map accuracy. It is particularly useful in scenarios where the environment
is highly dynamic[29]. However, FastSLAM requires a large number of particles to
be robust, making it computationally demanding.

m GraphSLAM is a graph-based algorithm that models the environment as a graph,
with nodes representing robot poses and landmarks as well as edges representing
constraints between them. It solves the SLAM problem by optimizing the graph,
estimating the robot’s trajectory and the map simultaneously. GraphSLAM offers

15

Chapter 1: Problem Description and Literature Review

excellent flexibility and scalability, making it suitable for large-scale mapping. It
can handle loop closures and re-linearize the graph to incorporate new information.
GraphSLAM is known for its robustness and ability to scale well with the size
of the environment. Additionally, GraphSLAM provides the flexibility to handle
both Gaussian and outlier distributions, allowing for more accurate and robust
map estimation. It can incorporate negative information and effectively deal with
loop closures by re-linearizing the graph. These characteristics make GraphSLAM
well-suited for complex and dynamic environments.

Moreover, GraphSLAM exhibits excellent scalability and parallelizability. It can
handle large-scale mapping tasks and efficiently utilize parallel computing resources.

This scalability and parallelizability are particularly valuable for your project, where

you may encounter large datasets or require real-time mapping capabilities.

based on the comparison in Table 1, the strengths of GraphSLAM in terms of flexibility,
scalability, and robustness make it the most suitable algorithm for this project. It can
effectively handle the challenges of mapping and localization in real-world environments,

providing accurate and reliable results. Here is the comparison of the three main categories

of SLAM algorithms, where:

Table 1. Comparison of the three main categories of SLAM algorithms [30].

Algorithm Complexity | Distribution Characteristics

EKFSLAM | O(n?) Gaussian Easy implementation,
limited scalability

FastSLAM O(k -logn) | Any Can use negative infor-
mation, scalability

GraphSLAM | O(e) Gaussian+outlier rejection | Re-linearization, flexi-
bility, scalability

n is the number of landmarks.

k is the number of particles.

e is the number of edges.

1.4.2 Path Planning Techniques

Path planning is a fundamental task in robotics that involves finding an optimal path for a
robot to navigate from its current position to a desired goal while avoiding obstacles in

the environment. Various path planning techniques have been developed to address this

problem. Here are some commonly used path planning techniques:

16

Chapter 1: Problem Description and Literature Review

1. Grid-Based Methods: Grid-based methods discretize the environment into a grid
of cells. They represent obstacles as occupied cells and free space as unoccupied
cells. The robot’s path is planned by searching through this grid using algorithms
such as RRT algorithm to find the shortest path.

2. Potential Field Methods: Potential field methods model the environment as a
potential field, where attractive forces pull the robot towards the goal and repulsive
forces push it away from obstacles. The robot plans its path by following the gradient
of the potential field toward the goal while avoiding high-repulsive regions.

3. Sampling-Based Methods: Sampling-based methods, such as Rapidly-exploring
Random Trees (RRT) and Probabilistic Roadmaps (PRM), build a roadmap or tree
structure in the configuration space of the robot. These methods randomly sample
the configuration space, connect the samples to form a graph, and then search for a
feasible path through this graph.

4. Visibility Graphs: Visibility graphs construct a graph by connecting visible points in
the environment. The vertices of the graph represent points of interest, and the edges
represent straight-line paths between visible points. Path planning is performed by
finding a path in this graph using algorithms like Dijkstra’s algorithm.

5. Optimization-Based Methods: Optimization-based methods formulate path plan-
ning as an optimization problem. They define an objective function that balances
criteria such as path length, clearance from obstacles, and smoothness. Algorithms
like the A* algorithm or genetic algorithms can be used to search for the optimal

path that minimizes the objective function.

These are just a few examples of path planning techniques used in robotics. The choice
of technique depends on factors such as the environment complexity, computational
resources, and specific requirements of the robot’s task. Researchers continue to develop
new algorithms and improve existing techniques to achieve more efficient and robust path

planning for various robotic applications.

Rapidly Exploring Random Trees (RRT)

Rapidly Exploring Random Trees (RRT) is a widely used algorithm in robotics for path
planning. Its primary objective is to explore the state space efficiently by incrementally
constructing a tree of connected nodes. RRT generates random nodes within the state
space and connects them to form a path toward the goal position, ensuring collision-free
paths based on map constraints. Although the resulting path may not be optimal, RRT is

renowned for its ability to explore large state spaces quickly [31].

The RRT algorithm follows the steps outlined below:

17

Chapter 1: Problem Description and Literature Review

1. Set up a graph with the initial pose gy, as the only vertex.
2. For each iteration, randomly sample a point ¢,,¢ Within the obstacle-free space Clee.

3. Find the nearest vertex ¢y, in the tree to the new sample ¢,e,, Within a specified distance
threshold e.

4. If there are no obstacles between ¢uear and Gpew, add grang to the vertex set and include

the edge (Guear, ¢rana) in the edge set.

Figure 6 provides an illustration of the RRT path planning process.

Figure 6. lllustration of RRT path planning [31].

By iteratively expanding the tree towards the goal position, RRT gradually constructs
a feasible path in complex environments. Although the resulting path might not be the
shortest or optimal, RRT’s efficiency and ability to handle high-dimensional state spaces

make it a valuable algorithm for robotic path planning tasks.

1.5 Deep Learning-Based Obstacle Avoidance

1.5.1 Introduction to Deep Learning

Deep learning is a specialized branch within the field of artificial intelligence that primarily
concentrates on developing expansive models of neural networks, enabling them to effec-
tively derive precise decisions based on data. This area of study is especially well-suited
for circumstances where the data exhibits intricate characteristics and substantial datasets

are readily accessible[32].

In the domain of robotics and autonomous systems, deep learning has shown great promise
in various applications, including perception and localization, object recognition, and

decision-making[33]. An essential application encompassing both obstacle avoidance

18

Chapter 1: Problem Description and Literature Review

and path planning lies in the domain of robotics and autonomous systems, wherein deep
learning techniques are employed. The objective of these techniques is to empower
robots and autonomous vehicles with the capability to discern obstacles present in their

environment and navigate around them in a proficient manner.

1.5.2 Brief Overview of Deep Learning Principles

Deep learning principles are rooted in the concept of artificial neural networks, which
consist of interconnected layers of artificial neurons or nodes. These networks are trained
using large data-sets, where the weights and biases of the network’s connections are
adjusted iteratively to minimize the difference between the predicted output and the actual
output [34].

The key principles underlying deep learning for collision-free trajectory generation include:

m Neural Network Architecture: Deep learning models for obstacle avoidance typi-
cally employ convolutional neural networks (CNNSs) or recurrent neural networks
(RNNs). CNNs are particularly effective in image-based perception tasks, as they
can automatically learn relevant features from raw sensor data, such as camera
images or LIDAR scans. RNNs, on the other hand, are well-suited for sequential
data, such as time-series sensor readings or trajectory information.

» Training Data Acquisition: The success of deep learning heavily relies on the
availability of large and diverse training datasets. In the context of obstacle avoidance,
this entails collecting labeled data that includes both obstacle-free and obstacle-rich
scenarios. The data may be acquired through sensors, such as cameras or depth
sensors, and annotated with corresponding obstacle labels or bounding boxes.

» Supervised Learning: In supervised learning, deep learning models are trained
using input-output pairs, where the inputs are sensor data representing the environ-
ment, and the outputs are the desired obstacle avoidance actions. By minimizing the
discrepancy between predicted and desired outputs, the network learns to associate
specific input patterns with appropriate obstacle avoidance responses.

m Transfer Learning: Transfer learning is a valuable technique in deep learning,
allowing models trained on large data-sets in related domains to be fine-tuned for
specific tasks with smaller data-sets. By leveraging pre-trained models on general
object recognition tasks, deep learning models for obstacle avoidance can benefit
from learned features and reduce the need for extensive training on limited obstacle-
specific data-sets.

» Model Evaluation and Validation: Deep learning models for obstacle avoidance

need to undergo rigorous evaluation and validation processes. This involves testing

19

Chapter 1: Problem Description and Literature Review

the trained models on unseen data or real-world scenarios, assessing their accuracy,
robustness, and generalization capabilities. Evaluation metrics such as precision,
recall, and F1 score can quantify the performance of the models and guide further

improvements.

By employing these deep learning principles, researchers and engineers strive to develop
effective obstacle detection and avoidance systems that can reliably navigate complex
environments. However, challenges such as data-set limitations, computational power
constraints, and model interpretation ability continue to be areas of active research and
development. Here’s a simple example of a flowchart illustrating the general process of

deep learning:

L Data Collection }

E Data Pre-processing }

{Neural Network Architecture}

E Model Training }

Model Evaluation

s 2

Model Deployment

(. J

Figure 7. Flowchart of the Deep Learning Process

The flowchart in Figure 7 depicts the typical steps involved in a deep learning process. It
begins with raw data, which undergoes pre-processing to transform it into a suitable format
for the neural network. The neural network is then trained using the pre-processed data,
and the trained model is evaluated using appropriate metrics. Finally, the validated model

is ready for deployment in real-world applications.

This flowchart provides a high-level overview of the deep learning process, showcasing

the sequential stages involved in training and deploying deep learning models.

20

Chapter 1: Problem Description and Literature Review

1.5.3 Methods of Deep Learning for Obstacle Avoidance and Path

Planning

Obstacle avoidance is a critical aspect of various applications, such as autonomous vehicles,
robotics, and surveillance systems. Deep learning techniques have shown great promise in
tackling this challenge by enabling the extraction of meaningful information from sensor
data for accurate obstacle detection and avoidance. In this section, we discuss several

widely employed methods in deep learning for obstacle avoidance.

m Convolutional Neural Networks (CNNs) have emerged as a powerful method
for image-based obstacle detection. Leveraging their ability to capture spatial
patterns and features from images, CNNs excel at tasks such as object detection
and segmentation. They can effectively process raw input images or transformed
representations of LiDAR point cloud data[35].

m Recurrent Neural Networks (RNNs) are particularly suitable for processing sequen-
tial data, making them valuable for obstacle avoidance tasks involving time-series
sensor data. RNNs can model temporal dependencies and capture dynamic patterns,
enabling tasks such as trajectory prediction and motion planning[36].

s Long Short-Term Memory (LSTM) networks, a type of RNN, excel in handling
long-term dependencies in sequential data. Their application to obstacle avoidance
scenarios is particularly advantageous when historical sensor data, such as LiDAR
point clouds or camera frames, need to be considered for accurate predictions or
decisions[37].

» Generative Adversarial Networks (GANs) have gained attention for their ability
to generate synthetic data that closely resembles real-world obstacles. GANs can be
leveraged to augment existing data-sets or generate synthetic training data, thereby
enhancing the robustness and diversity of obstacle avoidance models[38].

m Transfer learning techniques enable the utilization of pre-trained deep learning
models, which have been trained on large-scale data-sets for tasks such as image
recognition or object detection. By fine-tuning or adapting these models to obsta-
cle avoidance tasks, transfer learning can leverage their learned representations,
potentially reducing training time and data requirements[39].

» Reinforcement Learning (RL) is another method for obstacle avoidance that in-
volves an agent interacting with an environment and learning optimal actions through
trial and error. RL algorithms, such as Q-learning and Deep Q-Networks (DQN),
can learn to navigate complex environments by maximizing long-term rewards.
RL-based approaches have been successfully applied to obstacle avoidance tasks,

allowing agents to learn effective strategies for avoiding obstacles [40].

21

Chapter 1: Problem Description and Literature Review

m Feed-forward Neural Networks (FNNs), also known as multi-layer perceptrons,
have been widely employed for obstacle avoidance tasks. These networks, com-
prising an input layer, one or more hidden layers, and an output layer, are adept at
processing high-dimensional data. FNNs, including feed-forward neural networks,
have been successfully utilized for obstacle detection and decision-making based on
2D LiDAR data.

These methods offer a range of techniques for obstacle avoidance using deep learning,

providing flexibility and adaptability to various scenarios and data types.

Among these methods, the best methods for 2D LiDAR data in deep learning algorithms
for obstacle avoidance include Convolutional Neural Networks (CNNs) and Feed-forward
Neural Networks (FNNs). CNNs excel at processing images and can effectively extract
features from 2D LiDAR data representations, while FNNs provide a powerful tool for

real-time decision-making based on such data.

22

CHAPTER 2

Lidar-Based Obstacle Avoidance

23

Chapter 2: Lidar-Based Obstacle Avoidance

Lidar-based obstacle detection and avoidance, when combined with Simultaneous Local-
ization and Mapping (SLAM) and deep learning techniques, offers a powerful solution
for robust navigation in complex environments. Lidar sensors provide accurate distance
measurements and generate detailed 3D point clouds, enabling precise obstacle detection.
SLAM algorithms enhance localization accuracy and create environment maps, while
deep learning models trained on diverse obstacle scenarios improve real-time obstacle
recognition and response. This fusion of Lidar, SLAM, and deep learning enables efficient

and reliable obstacle detection and avoidance for autonomous systems.

2.1 State-of-the-art techniques and advancements in lidar-based ob-

stacle avoidance

LiDAR-based obstacle avoidance has witnessed significant advancements in recent years,
revolutionizing the field with cutting-edge techniques and technologies. One remarkable
development lies in the integration of deep learning algorithms, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), for highly accurate object
detection and classification within LiDAR point cloud data. These powerful algorithms
excel at identifying intricate patterns and features from vast training data-sets, enabling
robust obstacle detection even in challenging environments. By harnessing the potential of
deep learning, LiDAR-based systems have achieved remarkable precision and minimized

false positives, ensuring the safety and reliability of autonomous vehicles and robots.

Moreover, the fusion of LiDAR sensors with simultaneous localization and mapping
(SLAM) algorithms has propelled obstacle avoidance capabilities to new heights. SLAM
algorithms allow robots and vehicles to simultaneously create a map of their surroundings
while localizing themselves within that map. By integrating LiDAR data into SLAM frame-
works, obstacles can be accurately identified and localized in real-time. This integration
has proven invaluable, enabling autonomous systems to navigate dynamic environments,

avoid obstacles, and plan optimal paths effectively.

In addition to advanced deep learning and SLAM techniques, refined LiDAR data pro-
cessing and feature extraction methodologies have played a crucial role in enhancing
obstacle detection. Traditional LiDAR data processing involved computationally intensive
segmentation and clustering techniques. However, recent advancements have introduced ef-
ficient voxel-based or grid-based representations that facilitate real-time obstacle detection
and tracking. By organizing LiDAR point clouds into spatially structured voxel grids or
grids, these methods enable efficient processing and quicker response times, empowering

autonomous systems to make instantaneous decisions and avoid obstacles in real-world

24

Chapter 2: Lidar-Based Obstacle Avoidance

scenarios[41].

Furthermore, the development of advanced filtering and noise reduction techniques has
significantly improved the quality of LiDAR data for obstacle avoidance purposes. Signal
processing approaches, such as adaptive filtering, outlier removal, and temporal filtering,
effectively mitigate noise, outliers, and spurious reflections in the point cloud data. These
techniques enhance the accuracy and reliability of LIDAR measurements, leading to more

precise obstacle detection and improved overall system performance.

LiDAR sensor technology has also witnessed notable advancements, offering sensors
specifically tailored for obstacle avoidance applications. Solid-state LiDARs, for instance,
provide enhanced reliability, compact form factors, and higher scanning speeds compared
to traditional mechanical spinning LiDARs. These technological strides enable faster
data acquisition, increased resolution, and wider field-of-view, empowering LiDAR-based
obstacle avoidance systems to perceive their surroundings with remarkable detail and

accuracy.

In summary, the rapid progress in LIDAR-based obstacle avoidance stems from a conver-
gence of advanced deep learning algorithms, SLAM techniques, refined data processing
methodologies, and state-of-the-art LiDAR sensor technologies. These developments
collectively equip autonomous systems with the ability to detect obstacles accurately,
localize themselves in dynamic environments, and plan optimal paths. By embracing these
advancements, LiIDAR-based obstacle avoidance has transformed autonomous vehicles
and robots into highly capable and safe entities, capable of navigating complex real-world

scenarios with confidence.

2.2 LIDAR based obstacle-detection methods

Detection methods based on 2D LiDAR often incorporate region segmentation or clustering
algorithms to divide distance measurements into correlated blocks from which different
practical properties can be derived [42]. Then, the shapes of obstacles can be estimated and
the stored data amount can be decreased. The segmentation process often compares two
subsequent laser scan points from the LiDAR measurements, where the distance threshold
is determined as constants or adapted to the scenarios. In a study by Authors et al., the
measurements were divided into segments and polygonal obstacles were constructed using
line fitting and corner extraction. A detailed comparison and explanation of some segment
extraction methods from 2D Lidar laser points are shown in [43]. Premebida discussed
some algorithms for segmenting 2D laser scans, as well as different approaches for feature

recognition and extraction of three geometric primitives, including lines, circles, and

25

Chapter 2: Lidar-Based Obstacle Avoidance

ellipses [44] . Clustering laser point clouds is used to extract ordered obstacle information
from cluttered point clouds and then intuitively obtain obstacle information [45] . In a
study by Ferndndez et al., a convolution operation was used to split the laser data into
clusters and detected lines in each previously detected cluster. The clustering process
helps the robot fully recognize obstacles and perceive the environment[46].In terms of
representing the surrounding spatial environment, the obstacle detection process using
LiDAR sensors can be mainly classified into two representation approaches: grid-based

and vector-based methods.

Grid-based obstacle detection method
Many techniques employ a 2D occupancy grid to represent the environment for obstacle
detection and tracking. Occupancy grid maps consist of evenly spaced grid cells, which

depict complex geometries when the grid resolution is sufficiently high.

In Figure 8, a sample occupancy grid map is shown, where black cells represent obstacles,
gray cells indicate unknown areas and white cells represent empty space. Each cell
represents a square area of the environment and stores a value indicating occupancy. Cells
can be labeled as "occupied," "unknown," and "free" or can represent occupancy probability
[47]. Grid-based methods have the advantage of not requiring prior knowledge of objects
in the scene, allowing for the detection of various types of elements [42]. For example, Vu
et al [48] updated occupancy grid maps incrementally, enabling the detection of dynamic
objects without prior knowledge. Mori et al. [49] utilized grid trajectories formed by
ordering laser points on the grid map to detect dynamic obstacles, aiding in segmentation
and providing information about the speed and size of dynamic objects. Chen et al [S0]
proposed a grid-based approach to identify real-time moving obstacles by comparing

sequential grid maps.

Figure 8. An example of occupancy grid representation of the environment[51].

26

Chapter 2: Lidar-Based Obstacle Avoidance

They achieved the state of the same grid cells over time. In [52], the local map stored in the
occupancy grid map was treated as a pixel map and merged into a CNN for road direction

determination.

Grid-based methods are suitable for environments where features are challenging to
identify and detect, making them well-suited for noisy sensors in outdoor settings. These
methods also provide a framework for integrating different sensor types while considering
the uncertainty of sensor data [48]. Grid maps help reduce point cloud data since densely
packed laser points can be mapped to the same grid cell. With an appropriate resolution,
the data can be easily searched while retaining sufficient information about detected
obstacles [53]. However, higher grid resolution requires more memory and computational
power for processing the divided grids. Additionally, establishing boundaries for the
environment can be challenging. For instance, in open spaces like parks, acquiring enough
free space becomes difficult. Grid-based methods may compromise accuracy to simplify

and reduce processing of bounded data [51].

Vector-based obstacle detection method

The vector-based method is another commonly adopted approach to represent the envi-
ronment, where obstacles are modeled using predefined geometric features such as lines,
circles, boxes, ellipses, and rectangles. This representation enables the use of analytical
geometry to calculate distances and similarities between objects [54]. [55] developed a
system to handle non-rigid objects like pedestrians or foliage. They identified stable fea-
tures, reasoned about occlusion geometry, and detected objects accordingly. Petrovskaya
and Thrun [56] modeled the geometric features of tracked vehicles, predicting their forms
and obtaining more stable vehicle reference points over time. MacLachlan and Mertz [57]
fitted rectangular models to laser points, considering the corners of the rectangle as features
based on laser scanner characteristics. In [40], the authors introduced a feature extraction
approach based on prediction, detecting lines and circles from LiDAR data without prior
knowledge of the surrounding environment. Similarly, in [40], they detected the legs of
people in an indoor environment by extracting fourteen features from the laser scan and

utilizing AdaBoost to create a classifier model.

Obstacle detection methods based on geometric features rely on each obstacle having
at least one major feature or defined shape. These methods require prior knowledge of
the elements to be detected and search for them in each frame. However, a drawback is
that the real shape of obstacles can be lost, limiting the information provided by knowing

the similarity between two obstacles [54]. Compared to grid-based methods, the vector-

27

Chapter 2: Lidar-Based Obstacle Avoidance

based approach offers a compact representation of the surrounding environment, making it
suitable for sparse scenarios with low memory usage [40]. The compact representation

allows for efficient processing and storage of the environment information.

In summary, the grid-based obstacle detection method utilizes a 2D occupancy grid to
represent the environment, dividing it into grid cells to detect and track obstacles. This
method does not rely on prior knowledge of objects and can detect various elements. On
the other hand, the vector-based obstacle detection method represents the environment
using predefined geometric features, enabling analytical calculations and detection of
specific shapes. This method requires prior knowledge of the objects to be detected. Both
methods have their advantages and limitations, and the choice depends on the specific

requirements of the application and the characteristics of the environment.

2.3 Integration of Lidar and SLAM for Obstacle Avoidance - Lidar

Data Processing and Feature Extraction

2.3.1 KartoSLAM

KartoSLAM, developed by Karto Robotics at SRI International, is a GraphSLAM algorithm
that has demonstrated excellent performance in real-world scenarios and is robust against
noise interference. One of the key strengths of KartoSLAM is its utilization of a highly
optimized and non-iterative Cholesky matrix decomposition solver for sparse linear systems
[58].It is a widely used Simultaneous Localization and Mapping (SLAM) algorithm
provided by the SLAM Toolbox package in ROS (Robot Operating System). It is designed
to effectively create 2D maps and estimate the robot’s pose in robotic systems. in the
ROS version of KartoSLAM, handling scan matching and loop-closure procedures [59].
Notably, KartoSLAM efficiently maintains a pose graph, making it suitable for large-scale
environments while minimizing memory. The Karto SLAM algorithm, based on the Rao-
Blackwellized Particle Filter (RBPF) framework, incorporates several unique features and
improvements for enhanced efficiency and accuracy. Let’s examine how Karto SLAM

performs each step of building a map:

1. Initialization: Karto SLAM starts with an initial set of randomly distributed particles
representing the robot’s pose and a rough estimate of the map.

2. Motion Update: Using odometry data, each particle’s pose is updated based on the
robot’s motion model. This step estimates the robot’s displacement and orientation
change.

3. Scan Matching: Karto SLAM employs scan matching techniques to align the

28

Chapter 2: Lidar-Based Obstacle Avoidance

current laser scan measurements with the map. It finds the best pose estimate
that minimizes the discrepancy between the observed scan and the expected scan
generated from the particle’s pose hypothesis. The scan matching algorithm in Karto
SLAM efficiently determines the robot’s position by comparing the laser scans with
the map and adjusting the particle poses accordingly.

4. Map Update: The laser scan measurements are used to update the occupancy grid
map representation. Karto SLAM adjusts the map based on the scan matching results
and particle weights. This step refines the map by incorporating new information
obtained from the laser scans and improves its accuracy over time.

5. Re-sampling: Re-sampling is performed based on particle weights to maintain
a representative set of particles. Higher-weighted particles have a higher chance
of being selected, ensuring an accurate approximation of the posterior probability
density. Re-sampling helps in adapting the particle distribution to reflect the most
likely robot poses and map hypotheses.

6. Map Optimization: Karto SLAM applies map optimization techniques to refine the
estimated map. It minimizes the error between observed laser scans and map predic-
tions by adjusting the map’s parameters. This optimization step further improves the
map’s accuracy and alignment with the environment.

7. Loop Closure Detection: Karto SLAM incorporates loop closure detection mecha-
nisms to identify previously visited locations and correct pose errors. Adjustments to
the map and particle weights improve map consistency and alignment. Loop closure
detection helps in detecting revisited areas and reducing the accumulation of pose

estimation errors over time.

The Karto SLAM algorithm employs particles to approximate the posterior probability
density of the robot’s pose and the map. Each particle 7 consists of a pose hypothesis xii)
and a map hypothesis m(?). The overall estimate of the posterior probability density is

approximated as a sum of weighted particles.

By leveraging scan matching techniques, Karto SLAM aligns laser scan measurements with
the map, iteratively adjusting the particle’s pose to minimize discrepancies. Additionally,

map optimization techniques refine the estimated map by adjusting its parameters.
Karto SLAM, available in the SLAM Toolbox package of ROS, provides a powerful tool

for mapping and localization in robotic systems, enabling effective obstacle avoidance and

navigation in dynamic environments.

29

Chapter 2: Lidar-Based Obstacle Avoidance

2.3.2 Rao-Blackwellized Particle Filter (RBPF)

In 2000, Murphy introduced the Rao-Blackwellized particle filter algorithm to integrate
LIDAR with SLAM for obstacle avoidance in dynamic environments [60]. The RBPF
algorithm combines LIDAR data processing, feature extraction, and SLAM techniques
to estimate the robot’s position, create an accurate map of the environment, and plan

collision-free paths.
The RBPF algorithm consists of the following stages:

1. Prediction stage: Given the previously estimated pose x;_1, the particle filter generates
a set of particles {xf] M | based on the state transition function p(x;|x;_1, u;), where u;
represents the control inputs. Each particle represents a possible pose hypothesis.

2. Correction stage: As new LIDAR observations arrive, the importance weights wtm for
each particle are calculated. These weights represent the probability of observing the
LIDAR measurements given the corresponding particle pose. The weights are computed

using the observation model p(z, |X7[j]), where z, denotes the LIDAR measurements.

3. Re-sampling stage: The particles are Re-sampled according to their weights, with
higher-weighted particles being more likely to be selected. This step ensures that particles
with higher probabilities are retained while discarding particles with lower probabilities,
maintaining a diverse set of particles representing the posterior distribution.

4. Map estimation: For each Re-sampled particle xy , the corresponding map estimate is
calculated from the trajectory and LIDAR observations. The map estimate captures the

environment’s structure and obstacles based on the accumulated information.

By efficiently combining LIDAR data processing and SLAM techniques, the RBPF algo-

rithm accurately estimates the robot’s pose and creates an environment map.

2.3.3 Scan Matching

Scan matching, utilizing LIDAR data, is a crucial component of obstacle avoidance systems.
It aligns acquired LIDAR scans with the reference map to detect obstacles accurately in

real-time. The scan matching process involves the following steps:

1. Feature extraction: The raw LIDAR data is processed to extract meaningful features that

30

Chapter 2: Lidar-Based Obstacle Avoidance

represent the environment’s structure, such as lines, corners, and planar surfaces. The ex-
tracted features, denoted as Z; = {zgj] jj‘il, capture specific environmental characteristics.
2. Scan matching algorithm: The Iterative Closest Point (ICP) algorithm, along with its
variants, is commonly used to align the current LIDAR scan with the reference map. The
algorithm iteratively minimizes the distance between corresponding points in the scans,
adjusting the robot’s pose estimation x; to align with the environment. The ICP algorithm
aims to find the transformation matrix T'cp that minimizes the error function, capturing

the discrepancy between the observed and reference scans.

Various matching methods, such as feature-to-feature matching, point-to-feature match-
ing, and point-to-point matching, can be employed to optimize the trade-off between

computational efficiency and accuracy.

By performing scan matching on LIDAR data, the system aligns the robot’s pose and

accurately detects obstacles, facilitating real-time obstacle avoidance.

2.3.4 Graph Optimization

Graph optimization is a widely used technique in SLAM to refine the robot’s pose estimates
and improve map accuracy. It formulates the SLAM problem as a graph, where the robot’s
poses are represented as nodes/vertices, and the relationships between poses are represented

as edges. The graph optimization process involves the following tasks[61]:

1. Graph construction: The graph is constructed by adding nodes for each estimated pose x;
and edges that capture the relationships between poses. The edges can be established based
on odometry information, visual features, or other sensor measurements. This front-end

process accumulates sensor information and establishes the initial graph representation.

2. Graph optimization: The goal of graph optimization is to adjust the robot’s pose
estimates to satisfy the constraints imposed by the edges as much as possible. This back-
end process refines the pose estimates and improves the overall consistency of the map.
Various optimization algorithms, such as Karto SLAM and Cartographer, are employed for
this purpose. Graph optimization aims to find the optimal set of poses {x; } that minimizes
the error function, capturing the deviation between estimated poses and the constraints

imposed by the edges.

Graph optimization enables the refinement of pose estimates and enhances the accuracy of

the environment map, leading to more robust obstacle avoidance in SLAM systems.

31

Chapter 2: Lidar-Based Obstacle Avoidance

2.3.5 Data Association

Data association is a critical step in SLAM that involves establishing correspondences
between sensor measurements obtained at different times and locations, or between map
features. In the context of LIDAR data processing and feature extraction, data association
refers to associating LIDAR measurements with map features to determine their correspon-
dence and origin in the environment. This process ensures accurate state estimation and
map update. The correctness of data association greatly impacts the performance of the
SLAM system [20].

The data association problem can be mathematically described as follows: Given a set of
LIDAR measurements Z; and a map representation M, the goal is to find the correspon-
dence between each measurement and the corresponding map feature. Mathematically,
data association aims to determine the correspondence function ¢(Z;, M) that establishes
the relationships between measurements and map features, ensuring the accurate update of

the map and state estimation.

Accurate data association is crucial for robust obstacle avoidance, as it enables the SLAM

system to correctly perceive the environment and make informed decisions.

2.4 2D LiDAR-based Deep Learning for Obstacle Avoidance and
Path Planning

Deep Learning techniques are emerging as a viable solution for addressing obstacle
avoidance challenges in autonomous mobile robots. When faced with stationary and
moving obstacles in real-world scenarios, it is imperative for mobile robots to navigate
towards a goal while ensuring collision avoidance and safety [62]. The integration of 2D
LiDAR sensors with deep learning techniques has revolutionized obstacle avoidance for
autonomous systems. Neural networks, particularly feed-forward neural networks (FNNs),
play a pivotal role in processing the rich point cloud data obtained from 2D LiDAR sensors.
FNNss excel at learning complex patterns and relationships within high-dimensional data,

enabling informed decision-making for safe real-time navigation [63].

2.4.1 Neural Networks

Neural networks are statistical models inspired by the structure of the brain. They possess
the ability to adapt and learn by estimating the parameters of a population using only

a limited number of examples[64].Fundamentally, a neural network comprises essential

32

Chapter 2: Lidar-Based Obstacle Avoidance

components, including input and output layers, as well as one or more hidden layers. The
input layer serves as the entry point for data, which subsequently undergoes propagation
through the hidden layers before reaching the output layer. Within these hidden layers,
each individual neuron conducts mathematical computations on the received data and
transmits the calculated outcomes to the subsequent neurons within the network [65].
This adaptability and learning capability make neural networks powerful tools in various
domains, as they can capture intricate patterns and relationships within data. In the context
of obstacle avoidance and path planning, neural networks offer promising solutions for

enabling autonomous systems to navigate safely and effectively in complex environments.

2.4.2 feed-forward Neural Networks

feed-forward neural networks (FNNSs), also known as multi-layer perceptrons, are a funda-
mental type of artificial neural network. They consist of an input layer, one or more hidden
layers, and an output layer, where information flows only in one direction without loops
or feedback connections[66]. FNNs are widely used for tasks such as pattern recognition,

classification, and regression.

Hidden
layer

Input
layer

Output
layer

Inputs
Outputs

Figure 9. Architecture representation of a 3-layer feed-forward neural network [67].

Several studies have showcased the effectiveness of FNNs in obstacle detection and
avoidance. Nejatbakhsh et al. [63] proposed an FNN-based approach for obstacle detection
in autonomous driving applications using LiDAR data. The FNN model successfully
classified LiDAR scans into obstacle and non-obstacle categories, enabling safe navigation

for autonomous vehicles.

2.4.3 Data Pre-processing in Feed Forward Neural Networks

When applying deep neural networks to lidar tasks, it is generally advised to input the data

directly into the network without performing dimensionality reduction or feature projection

33

Chapter 2: Lidar-Based Obstacle Avoidance

[34]. This recommendation is based on the belief that such projections may lead to the
loss of valuable information that could be essential for the task. Instead, it is preferred to
provide the raw data to the network, allowing it to learn and extract relevant features on
its own, given a sufficient number of examples. By avoiding premature feature extraction,
the network has the potential to capture intricate patterns and relationships within the data,

leading to improved performance in obstacle avoidance and other lidar-related tasks.

The first step in the FNN-based processing pipeline is data Pre-processing. This involves
transforming the raw LiDAR data into a suitable format for input to the FNN model.
Common Pre-processing techniques include down-sampling the point cloud, normalizing
the range measurements, and converting the data into a structured representation, such as a

grid or an image.

Data processing techniques In the context of 2D LiDAR-based deep learning for
obstacle avoidance and path planning, several data processing techniques are commonly
employed to prepare the raw LiDAR data for input to the feed-forward neural network
(FNN) model. These techniques include normalization, down sampling, and one-hot

encoding, each serving a specific purpose in data pre-processing.

= Normalization is a technique used to re-scale the range of numerical data to a
standard range. It ensures that different features or variables have a similar scale,
preventing one feature from dominating the learning process due to its larger magni-
tude. One common normalization method is max-min scaling, which transforms the
data to a range between 0 and 1[68].

Max-Min Scaling , also known as min-max scaling, is a normalization technique
that linearly re-scales the data to a specific range, typically between 0 and 1. The
formula for max-min scaling is given by:

KNcaled = ﬂ 2.1

Xnax — Xmin

where X is the original data, X ,;, is the minimum value in the data, and X,y is the
maximum value in the data. This transformation ensures that the data is within a
consistent range, which can be beneficial for the learning process of the FNN.

s Down Sampling is a technique used to reduce the number of data points in a data-set
while preserving important information. In the context of 2D LiDAR data, down
sampling can be employed to decrease the density of the point cloud, reducing com-
putational complexity and memory requirements without significantly sacrificing

critical feaeural networks are statistical models that draw inspiration from the intri-

34

Chapter 2: Lidar-Based Obstacle Avoidance

cate structure of the human brain. These models possess the remarkable capability
to adapt and learn, even when provided with a limited number of examples, enabling
them to estimate population parameters [64]. In the domain of obstacle avoidance
and path planning, neural networks have emerged as a promising solution for en-
abling autonomous systems to navigate complex environments with effectiveness
and safety.

When employing deep neural networks for lidar-related tasks, it is widely recom-
mended to feed the data directly into the network without undergoing any form of
dimensionality reduction or feature projection [34]. This approach aims to prevent
the loss of valuable information that may prove crucial for the task at hand. By
inputting raw data, the network gains the autonomy to learn and extract pertinent
features from an adequate number of examples,tures [69].

Down sampling techniques can include various methods such as voxelization or
grid-based sampling, where the point cloud is divided into a regular grid and only
one point per grid cell is retained. Another approach is random sampling, where a
subset of points is randomly selected from the original point cloud.

s One-Hot EncodingOne-hot encoding is a technique used to represent categorical
variables as binary vectors. In the context of obstacle detection and avoidance,
one-hot encoding can be applied to represent different classes or categories of
obstacles[70].

For example, if the LiDAR data needs to classify obstacles into three categories:
pedestrian, vehicle, and cyclist, one-hot encoding can represent each category as a
binary vector of length 3. The vector [1, 0, 0] would represent pedestrian, [0, 1, 0]
would represent vehicle, and [0, 0, 1] would represent cyclist.

One-hot encoding enables the FNN model to effectively learn and differentiate

between different obstacle categories by representing them as distinct binary patterns.

These data processing techniques, including normalization, down sampling, and one-hot
encoding, play a crucial role in preparing the 2D LiDAR data for input to the FNN model.
They contribute to enhancing the efficiency and effectiveness of the learning process,

enabling the FNN to make accurate predictions for obstacle detection and avoidance.

Once the data is pre-processed, it is fed into the FNN model for further processing. The
FNN architecture consists of an input layer, one or more hidden layers, and an output layer.
Each layer is composed of interconnected nodes or neurons, which perform computations

on the input data.

During the forward pass of the FNN algorithm, the pre-processed LiDAR data propagates

35

Chapter 2: Lidar-Based Obstacle Avoidance

through the network from the input layer to the output layer. At each layer, the neurons
apply a set of learned weights and biases to the input data, perform activation functions,
and produce intermediate representations. These intermediate representations capture the
complex relationships between the input LiDAR data and the desired output, which is

obstacle detection and avoidance in this case.

The output layer of the FNN model produces the final predictions, indicating the presence
or absence of obstacles and the corresponding actions to avoid them. The FNN is trained
using labeled data, where the ground truth obstacle information is known. The training
process involves adjusting the network’s parameters (weights and biases) to minimize
the difference between the predicted obstacle labels and the ground truth labels. This
optimization is typically performed using techniques like stochastic gradient descent (SGD)

or more advanced algorithms such as Adam.

By training on a diverse data-set that captures different obstacle scenarios, FNNs can learn
to generalize and make accurate predictions in real-time obstacle avoidance scenarios using
2D LiDAR data.

In summary, processing 2D LiDAR data with FNNs involves Pre-processing the raw point
cloud, feeding it into the FNN model for forward pass computations, and training the FNN
using labeled data to make accurate predictions for obstacle detection and avoidance. The
effectiveness of this approach has been demonstrated in various studies, highlighting the

potential of FNNs in ensuring safe and efficient navigation of autonomous systems.

36

CHAPTER 3

Simulation Environment And virtual
hardware setup

37

Chapter 3: Simulation Environment And virtual hardware setup

This section presents an in-depth overview of the simulation environment and the virtual
hardware setup utilized in this project. The simulation phase was carried out leveraging the
Robot Operating System (ROS) and Gazebo simulator, which provided a robust framework
for testing and evaluating the obstacle avoidance capabilities. By emulating real-world
conditions, we were able to subject the robot to various challenging scenarios and evaluate
its performance in a reliable and repeatable manner. The following subsections delve into

the software components and virtual environment construction in detail.

3.1 Software Components

The successful implementation of the simulation environment relied on the utilization of
various software components, each serving a specific purpose in the development process.
These components are seamlessly integrated within the ROS framework, enabling efficient
communication and coordination. his section aims to provide a comprehensive overview
of three essential aspects of robotics development: ROS communication mechanisms,
the Gazebo simulator for robot simulation, and LiDAR (Light Detection and Ranging)
configuration. These concepts are fundamental to understanding the intricacies of robotics

engineering.

3.1.1 Robotic Operating System(ROS)

The Robotic Operating System (ROS) is an open-source framework that has garnered
extensive adoption within the robotics domain. It serves as a comprehensive platform
comprising a multitude of tools, libraries, and standardized conventions[71], all aimed
at facilitating modular development and enabling the construction of sophisticated robot
systems. The framework encompasses a wide array of functionalities, encompassing
hardware abstraction, low-level device control, inter-process communication via message-

passing, package management, visualization tools such as RViz2, and more.

The critical components of ROS implementation are nodes, messages, topics, and ser-
vices[72]. Nodes are independent processes responsible for performing computations or
tasks. Each node is designed to handle specific functions within a system. For example,
one node may gather sensory data from a LiDAR sensor, process it, and transmit it to
another node. The receiving node can then utilize the data for tasks like detection or
navigation algorithms, and may subsequently send commands to a third node to provide
feedback for robot control. Nodes communicate with each other through topics, which
define the format of the messages transmitted. Messages are structured data formats

including primitive types, constants, or arrays. There are two main modes of message

38

Chapter 3: Simulation Environment And virtual hardware setup

communication between nodes in ROS: the topic-based asynchronous publisher/subscriber
mode and the service-based synchronous server/client pattern. In the publisher/subscriber
mode, publisher nodes directly send messages to topics, and any node can retrieve data
from it simply by subscribing to those topics via subscribers. Topics enable one-way
communication and are particularly useful for the continuous transmission of sensor data.

An example of publisher/subscriber communication in ROS is depicted in Figure 10.

Y

publish subscribe
/Nodel Topic - /Nodel
message message

Figure 10. The publisher/subscriber ROS communication

On the other hand, the server/client pattern involves a node advertising a service and
waiting for requests from service clients. After receiving a request, the node responds
accordingly. Unlike topics, services facilitate one-time message communication. Once the
request and response exchange is completed, the connected nodes disconnect [73]. Figure

11 illustrates an example of service-based communication in ROS.

requesie _ response
/Nodel) TTTTTTTTTTTTTTT ™ service [® INode2
+—— = feememmeeeeeiieoees »!
response ; [Equeste

Figure 11. The server/client ROS communication

39

Chapter 3: Simulation Environment And virtual hardware setup

The decision to utilize the publisher/subscriber communication pattern instead of the ser-
vice/client pattern for receiving data from the LiDAR sensor in the autonomous navigation
map construction employing SLAM in ROS 2 was made based on careful consideration of
the application’s requirements.By employing publisher/subscriber, a continuous stream
of LiDAR sensor data can be efficiently delivered to the SLAM algorithms in real-time,
ensuring a constant and up-to-date representation of the environment. This continuous
stream facilitates the construction of an accurate and timely map while concurrently esti-
mating the robot’s pose.

To visualize the results of the obstacle avoidance robot simulation, ROS provides a power-
ful and versatile visualization tool called rviz. Rviz is an acronym for ROS visualization,
serving as a versatile 3D visualization platform designed for robots, sensors, and algo-
rithms. Similar to other ROS tools, it possesses the capability to adapt to various robotic

systems and swiftly tailor its configuration to suit specific applications [74].

One of the standout features of rviz is its ability to render realistic 3D models of the robot
and the environment it operates in. This feature allows researchers and developers to
import and visualize detailed models of the robot, including its sensors, chassis, and other
components. It provides a visually immersive representation of the robot in the simulated
environment, making it easier to understand its physical characteristics and interactions

with the surroundings.

In addition to visualizing the robot model, Rviz has the capability to display different
types of data that flow through a standard ROS system, with a particular focus on the
three-dimensional aspects of the data. Within ROS, all types of data are associated with
a specific frame of reference [74]. Users can display data from various sensors used in
the obstacle avoidance system, such as LiDAR point clouds, camera images, or ultrasonic
sensor readings. This visualization capability is invaluable for gaining insights into how the

robot perceives its environment and assessing the accuracy and quality of sensor readings.

By utilizing the rich visualization capabilities of rviz, researchers and developers can
gain valuable insights into the performance of their obstacle avoidance system. The
combination of realistic robot models, visualized sensor data, interactive controls, overlays,
and debugging information empowers users to thoroughly analyze and evaluate the robot’s
behavior, make informed adjustments to the algorithms, and enhance the overall navigation

capabilities of the robot.

40

Chapter 3: Simulation Environment And virtual hardware setup

3.1.2 Gazebo simulator

Gazebo simulator functions as a sophisticated 3D open-source dynamics simulator with
the capability to accurately simulate a multitude of robots, sensors, and objects in both
indoor and outdoor environments. In a manner akin to game engines, Gazebo simulator
offers a higher degree of fidelity in physical simulation, a comprehensive range of sensors,
and interfaces that cater to user and program requirements. It also ensures the faithful
representation of physical interactions between objects, including precise simulation of
rigid body physics [75]. The Gazebo simulator is predominantly employed by academics
and developers for indoor simulation. Its emphasis lies in creating a realistic world for
robots, relying heavily on physics-based features [76]. The Gazebo simulator offers several
significant advantages, such as a robust physics engine, open-source code, and user-friendly
graphical interfaces. Users have the option to import pre-existing simulated robots or
construct new models using geometrical primitives. By utilizing odometry and sensor
data, the simulation model can replace the actual robots while performing robot movement

calculations [77].

Figure 12 the general architecture of Gazebo simulator components. A Gazebo simulator
world encompasses a collection of robots and objects within the simulated environment,
including the robot model, the created environment, and global parameters such as ambient
conditions, lighting, and physics properties. In the middle hierarchy, the model comprises
a combination of joints, sensors, and bodies. Libraries interact with the Gazebo simulator
at the lower level, ensuring that the model remains unaffected by changes in specific tools.
Lastly, models employ the shared memory interface to receive commands from clients and
return data [78].

Sensor

Figure 12. The structure of Gazebo simulator components [78]

41

Chapter 3: Simulation Environment And virtual hardware setup

When undertaking the design of a mobile robot, our objective is to construct a model
that possesses the requisite capabilities, including accuracy and speed, while ensuring
the desired levels of reliability and maneuverability to stabilize the mechanical structures.
The analysis process heavily relies on the morphology of the robot and can be employed
to determine the optimal arrangement of components such as actuators and sensors to
fulfill the robot’s intended purpose [76].URDF (Unified Robot Description Format) is a
file format for specifying the geometry and organization of robots in ROS.

The URDF (Unified Robot Description Format) serves as a file format within the ROS
framework, providing a means to define the geometry and structure of robots. The primary
building blocks of URDF are the "joint" and "link" elements. The "link" element defines
the physical structure of the robot, encompassing properties such as form, mass, friction,
bounce factors, and visual characteristics like color, texture, and transparency. On the other
hand, the "joint" element establishes connections between the links of the robot’s body and
imposes motion constraints. Figure 13 visually presents the URDF model of the developed
robot, featuring multiple links and joints, with a LiDAR sensor integrated into the main

body, and the illustration of the 3D model of the same URDF is presented in Figure 14 and

Figure 15.
base link
xyz = 3%400 0
ey = ="00.175 0"
xrﬁ' = "-${pif2} 0 0,
xyz =
rpy =
Y
caster_joint | left wheel joint l chassis_joint } éht wheel jo@ C laser joint)
y Y ' y
caster link left wheel chassis ’ right wheel ‘ laser frame

Figure 13. URDF model of the designed robot

Figure 14. Robot Model Designed in Figure 15. Illustration of Joints in the
Gazebo Robot Model

42

Chapter 3: Simulation Environment And virtual hardware setup

3.1.3 2D LiDAR sensor

In the preceding chapter, an extensive exploration was undertaken to elucidate the signifi-
cance of LiDAR sensors in our obstacle avoidance system. LiDAR, an abbreviation for
Light Detection and Ranging, encompasses a remote sensing technology that leverages
rotating beams to emit pulsed light in a 360-degree direction. By calculating the distance
between the LiDAR sensor and surrounding obstacles through analysis of the reflected
light, a comprehensive distance map of the environment is generated. Two main categories
of LiDAR sensors exist: 2D and 3D. Whereas 2D LiDAR lacks depth information and
functions within a flattened two-dimensional space, 3D LiDAR sensors capture height
information, yielding voluminous point cloud data, necessitating augmented computational
resources and incurring higher costs [79]. For this project, our focus is on a 2D LiDAR

SENSOor.

The selection of the RP-Lidar [80] sensor for our project was predicated on meticulous
evaluation of several decisive factors. Recognized for its dependable performance, cost-
effectiveness, and seamless integration with the ROS framework, the RP-Lidar emerged
as the preferred choice. Its ability to furnish precise distance measurements, expansive
field of view, and real-time obstacle detection capability rendered it ideal for our intended
application. Moreover, the RP-Lidar strikes an optimal balance between affordability,
computational efficiency, and obstacle detection accuracy, aligning aptly with our specific

requirements.
Table 2 presents a comprehensive overview of the measurement performance of the

RP-Lidar sensor. This table highlights key parameters that are crucial for our project’s

SUcCcCess.

Table 2. The measurement performance of RP-Lidar

Parameters Values

Sampling Frequency | 5000 Hz
Scanning Frequency | 10Hz-20Hz
Range 0.1m - 12m
Angular Range 360 deg

Distance Resolution | 0.1% of the range
Angular Resolution | 1 deg

43

Chapter 3: Simulation Environment And virtual hardware setup

The Sampling Frequency refers to the rate at which the RP-Lidar sensor samples the
environment, with a typical value of approximately 5,000 Hz, determines the rate at which
the RP-Lidar sensor samples the environment. A higher sampling frequency ensures a more
comprehensive representation of the surroundings, allowing for accurate mapping and
timely detection of obstacles.The Scanning Frequency, typically around 20 Hz, represents
the number of complete scans performed by the RP-Lidar sensor per second. This parameter
directly influences the system’s ability to perceive and respond to dynamic changes in
the environment. A higher scanning frequency enables more frequent updates of the
obstacle map, providing real-time information for safe navigation.The Angular Range of
360 degrees provides a complete field of view, allowing the RP-Lidar sensor to capture
data from all directions. This wide coverage is vital for detecting obstacles in the entire
environment and ensuring comprehensive situational awareness.The Range parameter, with
a maximum measurement distance of approximately 12 meters, determines the sensor’s
capability to detect objects within a considerable range. This extended range allows for
early detection of obstacles, providing the robot with sufficient time to plan appropriate
avoidance maneuvers.The Distance Resolution, typically set at 1 centimeter, represents the
minimum distance that the RP-Lidar sensor can differentiate. This parameter influences
the system’s ability to perceive fine details in the environment, enabling accurate detection
and avoidance of small objects or obstacles located in close proximity.Lastly, the Angular
Resolution, with a value of 1 degree, defines the smallest angular increment between two
adjacent measurement points. This parameter ensures a high level of detail in the generated
point cloud, enabling precise mapping of the environment and accurate localization of
obstacles [80]. Within the Gazebo simulator simulator, this sensor is integrated into
the robot and accessed through the Gazebo simulator laser scan plugin interface, which

provides point cloud data via the "'libGazebo simulator ros ray sensor.so' module.

3.1.4 3D Indoor Environment Setup

In the Gazebo simulator, an indoor environment with static obstacles was created to test the
functionality of the obstacle avoidance system. The environment was carefully designed,

taking into consideration the distribution, shapes, and sizes of the initial obstacles.

One of the advantages of using the Gazebo simulator is the flexibility to add obstacles at any
time during the path planning process. This dynamic feature allowed for on-the-fly obstacle
insertion, simulating real-world scenarios where obstacles may appear unexpectedly. The
ability to modify the environment during the planning process provided a realistic and

challenging testing environment for the obstacle avoidance system.

44

Chapter 3: Simulation Environment And virtual hardware setup

Figure 16. Simulated indoor environment with static obstacles

Figure 16 showcases the initial environment used for testing the obstacle avoidance
system. With the simulator’s capability to add obstacles dynamically, new obstacles
could be introduced at any point in the path planning process. This feature allowed for
a comprehensive evaluation of the system’s adaptability and responsiveness to changing

environments, enhancing the robustness and reliability of the obstacle avoidance algorithm.

The ability to add obstacles during the path planning process simulated real-world sce-
narios more accurately, where the environment is subject to changes and the robot must
continuously adapt to its surroundings. This capability in the Gazebo simulator facilitated
thorough testing and fine-tuning of the obstacle avoidance system, ensuring its effectiveness

in dynamic environments.

3.2 SLAM Algorithm Selection and Implementation

In the process of selecting a suitable SLAM algorithm for our implementation, various
factors such as computational efficiency, accuracy, and ease of integration were carefully
considered. After comprehensive evaluation and analysis, we have determined that Karto-
SLAM is the optimal choice for our project, primarily due to its compatibility with the
SLAM Toolbox within the Robot Operating System (ROS) framework.

One of the primary reasons for choosing Karto slam is its compatibility with ROS. ROS
provides a comprehensive framework for robot development, offering a wide range of tools,
libraries, and packages that facilitate the implementation process. Karto slam seamlessly
integrates with ROS’s sensor and actuator interfaces, enabling effortless integration of lidar

sensors and robot control. This compatibility simplifies the overall system architecture and

45

Chapter 3: Simulation Environment And virtual hardware setup

ensures smooth data exchange between different components.

Another key advantage of selecting KartoSLAM is its efficient performance, particularly
in scenarios where computational resources are limited. A comparative study conducted
by[81] evaluated the performance of Gmapping, Cartographer, and KartoSLAM algorithms.
The results demonstrated that while KartoSLAM may generate slightly less accurate maps
compared to Cartographer, it significantly outperforms in terms of computational cost.
This aspect played a crucial role in our decision-making process as we sought an algorithm

that could run efficiently on our hardware with limited computing power.

Moreover, the modular architecture of ROS opens up possibilities for advanced func-
tionalities in conjunction with Karto slam. ROS’s navigation stack, for instance, offers
components like global and local planners, enabling autonomous navigation based on the
generated maps. By utilizing these capabilities, the mobile robot can navigate efficiently,

avoiding obstacles and reaching target locations effectively.

In summary, the selection of KartoSLAM within the SLAM Toolbox of ROS was motivated
by its computational efficiency, compatibility with our limited computing resources, and
the wealth of resources available within the ROS community. These factors ensure a

cost-effective, well-supported, and reliable SLAM solution for our project.

3.3 Path Planning and Obstacle Avoidance Strategy

The Rapidly-exploring Random Tree algorithm is widely used in robotics for its ability
to efficiently explore state spaces and generate feasible paths. By incrementally adding
nodes and connecting them, RRT explores the space in a randomized manner, avoiding
exhaustive exploration and reducing computational complexity. It is particularly useful in

high-dimensional and complex environments, where finding an optimal path is challenging.

The RRT algorithm incrementally builds a tree by randomly sampling nodes and connecting
them to the existing tree structure. The resulting tree represents a feasible path from the

initial pose to the goal position[31].

The implementation of the RRT algorithm in ROS for autonomous navigation involved the

following steps:

Firstly, a dedicated ROS package was created to encapsulate the RRT algorithm imple-
mentation and related nodes, ensuring a structured and modular design. Custom ROS

messages were defined to establish a standardized communication interface between the

46

Chapter 3: Simulation Environment And virtual hardware setup

Algorithm 1: RRT Algorithm

Graph T' = (V, E), initial pose g Tree T' = (V, E)
Function RRT (7, qgar) ¢

Initialize tree: V < {qyar }» £ <+ 0;

for each iteration do

Grand < SampleRandomNode();

Gnear < Nearest(1" = (‘/7 E)’ Qrand);

Gnew — Steer (Qnear’ Qrand);
if NoObstacle(quear, Qrew) then

V+« VU {Qnew};
E+— FU {(Qneara QHeW)};

return I = (V| E);

nodes, facilitating seamless data exchange within the ROS ecosystem.

A ROS node was developed to subscribe to the map topic, which received the map data
generated by SLAM algorithm. This same node encompassed the implementation of the
RRT algorithm, utilizing the received map data. The RRT algorithm, executed within
this node, incrementally constructed the RRT tree while integrating effective obstacle
avoidance strategies, resulting in the generation of feasible paths. Subsequently, this node

published the generated path on the path topic.

The planned paths generated by the RRT algorithm were seamlessly integrated with the
robot’s control system. To accomplish this, a separate ROS node was created or modified
to establish an efficient interface with the robot’s control hardware. By incorporating the
RRT-generated paths, the robot achieved accurate navigation within the environment while

effectively avoiding obstacles.

Consequently, another ROS node was developed to subscribe to both the pose and path
topics. This node received the robot’s current pose or position information from the pose
topic and acquired the generated path from the path topic, which was published by the
RRT algorithm node. Leveraging this information, the node performed calculations to
determine the linear and angular velocities required for the robot to navigate towards the

goal. These computed velocities served as control commands to govern the robot’s motion.

To simplify the initialization process and facilitate testing, a launch file was developed.
This launch file orchestrated the startup of all the necessary nodes for the RRT algorithm,
including the map subscriber/publisher, path subscriber, and robot control nodes. By
executing this launch file, the behavior of the robot in a simulated or real-world environment

could be observed and analyzed.

47

Chapter 3: Simulation Environment And virtual hardware setup

By following these systematic steps, the RRT algorithm was successfully implemented in
ROS, empowering autonomous robots with efficient path planning and obstacle avoidance

capabilities in complex environments.

3.4 Deep Learning Approach

In this section, we present a detailed methodology for the implementation of Feedforward
Neural Networks (FNNs) in the detection and avoidance of obstacles using a data-set of
2D LiDAR scans. Our proposed methodology aims to leverage the inherent capabilities of
FNNss to address the critical task of obstacle detection and avoidance specifically within

indoor environments.

3.4.1 Data Collection

To ensure the acquisition of high-quality data for our obstacle avoidance and path planning
system, we conducted a meticulous data collection process. This process involved a manual

approach that prioritized the selection of optimal actions at each step.

The inputs to our model comprise the z-coordinate, and y-coordinate of the displacement
vector between the position of the robot and its goal, along with the robot orientation around
the z axis obtained from pose estimation data. Additionally, we incorporate comprehensive
lidar scan data. The lidar scan captures 360 distance measurements in a 180-degree range,
resulting in a 363-element input vector. This rich sensory information enables our system
to perceive the surrounding environment, including obstacles and their distances from the
robot. By leveraging this detailed input data, our system effectively maps the environment,

plans optimal paths, and successfully avoids obstacles during real-time navigation.

In our approach, we devised an action space consisting of 11 discrete actions, each denoted
by a specific index m ranging from O to 10. These indexes correspond to the output
generated by our model, allowing for a seamless mapping between the model’s output and
the corresponding angular velocities. All actions in this space share a consistent linear

velocity (v), while their angular velocities (w,,) vary based on the equation:

w(m) =—08+0.16 - m 3.1)

This formulation facilitates a comprehensive exploration of angular movement while

maintaining a constant linear velocity across the action set.

48

Chapter 3: Simulation Environment And virtual hardware setup

In order to ensure the collection of a high-quality and well-organized dataset, our data
collection process involved the coordination of three essential nodes, which communicated
with each other using the publisher/subscriber communication paradigm, as previously
described. This approach facilitated efficient and reliable data transfer among the inter-
connected nodes, ensuring seamless coordination and data synchronization throughout the

data collection process.

1. Motion Control Node
The motion control node serves as the primary component for controlling the robot’s
motion. It issues velocity commands and signals the selection of an action through
the publication of a boolean variable triggering the other nodes. This node ensures
precise control over the robot’s movement, accurately executing the chosen actions
during the data collection process.

2. Lidar Data Capture Node
The lidar data capture node plays a crucial role in perceiving the robot’s surroundings.
It subscribes to two topics: the "scan" topic, which provides lidar scan data, and
the "action selection" topic, where the motion control node publishes the selected
actions. By subscribing to the "action selection" topic, the lidar node acquires the
relevant lidar data for each selected action.

3. Pose Estimation Node
The pose estimation node collects data for determining the robot’s position and
orientation. It subscribes to the "odom" topic, which contains the robot’s pose
calculated using wheel odometry, as well as the "action selection" topic. This allows
the node to retrieve odometry data whenever an action is selected. Upon initialization,
the pose estimation node requests information about the goal coordinates, computing
the distance between the robot and the goal, then publishes the resulting x-coordinate,

y-coordinate along side the robot’s orientation around the z-axis.

The manual approach, coupled with the coordinated functioning of the nodes, enables us
to effectively capture the necessary information and lay a solid foundation for subsequent

stages of system development.

49

Chapter 3: Simulation Environment And virtual hardware setup

In Figure 17, we present the communication flow among the three nodes engaged in
the data-set collection process. The diagram showcases the publisher/subscriber ROS
communication mechanism employed to establish effective coordination and data exchange.
This communication framework ensures the synchronization of data acquisition and plays a
crucial role in facilitating the collection of essential information required for the subsequent

stages of our obstacle avoidance and path-planning system.

message (velocity command) message
/Control node : »| /cmd vel jros control
publish § -
subscribe

velocity command

message (action_selection)

action selection o | /action_selection
publish
message message subscribe
¢ subscribe subscribe ¢

/Lidar node /Pose estimation

message
-
subscribe -if: action selected
recieve pose data
estimate distance to goal

save data

-if: action selection
recieve data

-save data

Figure 17. the communication flow among the three nodes.

The experimental environment utilized in this study was a custom-built simulation environ-

ment specifically designed within the Gazebo simulator as shown in Figure 16.

3.4.2 Data Pre-processing

In the data pre-processing phase, a range of techniques were applied to ensure the optimal
preparation of input and output data for our obstacle avoidance and path planning system.

The following methods were employed:

1. Normalization of Lidar Data: The lidar scan data was subjected to normalization
using the max-min scaling approach. This technique standardized the data range, en-
abling more effective training and modeling processes. It enhanced the convergence
of lidar data by bringing it within a consistent and manageable scale.

2. Normalization of Coordinates: The x and y coordinates underwent max-min
scaling as well. This normalization process harmonized the scales of the coordinates,
promoting better convergence during training and enabling the model to generalize
effectively across various scenarios.

3. Normalization of Robot Angle: To account for the robot’s orientation, the robot
angle was also normalized using max-min scaling. By normalizing the angle values,

we achieved a uniform distribution, effectively capturing the complete range of

50

Chapter 3: Simulation Environment And virtual hardware setup

possible orientations.

4. Combining Data in a Single Data-Frame: The normalized lidar data, coordinates,
and robot angle were combined into a single, cohesive Data-Frame. This integration
of data facilitated streamlined data handling and simplified subsequent stages of the
pipeline, ensuring efficient processing and utilization of the combined information.

5. One-Hot Encoding for Output: Since the desired output involved an action index,
which functions as a categorical variable, OHE was employed. This encoding
technique transformed the output labels into a binary vector format. By doing so, we
avoided any potential disturbances in the output and ensured that the model returned

an integer value representing the intended action.

A B C D A B C D

1 input Sample 1 Sample 2 Sample 3 1 output Sample 1 Sample 2 Sample 3

2 input 0.31265046150.3172570769 0.5439832308 2 0 0 0 1
3 y_to_goal 0.49808726150.31657715380.5416149231 3 1 0 0 0
4 theta 0.49809007690.31592420770.5393082308 4 2 0 0 0
5 Angle=-90 0.4981310538 0.315298 0.537062 5 3 0 0 0
6 Angle =-89.50.49821015380.3146983308/0.5348751692 6 4 0 0 0
7 Angle =-89 0.49832736150.31412495380.5327466462 7 5 0 0 0
8 Angle = -88.50.49848276920.3135775769 0.5306754615 8 6 0 0 0
9 Angle =-88 0.4986764846 0.3130560.5286605385 9 7 1 1 0
10 Angle = -87.5 0.4989084846 0.3125600462 0.5267010769 10 8 0 0 0
11 Angle=-87 0.49917892310.3120894769 0.5247960462 11 9 0 0 0
12 Angle = -86.5 0.49948792310.31164415380.5229446308 12 10 0 0 0

(a) Input dataset (b) Output/Targets dataset

Figure 18. Example of a sample of the collected data.

By diligently applying these data pre-processing techniques, we have attained optimal
scaling, integration, and encoding of the input and output data. Figure 18 shows an
example of the processed data, demonstrating the input features (LIDAR scans and pose

information) and the corresponding output action.

51

Chapter 3: Simulation Environment And virtual hardware setup

3.4.3 Model Architecture

The model architecture encompasses a feed-forward neural network (FFNN) implemented
using the Keras framework, adhering to best practices in deep learning. The FFNN

comprises an input layer, two hidden layers, and an output layer.

The input layer is a dense layer with 64 neurons, matching the dimensionality of the input
data, specifically (363). It serves as the entry point for the neural network, receiving
the input data and propagating it forward through the subsequent layers. Two hidden
layers follow the input layer, each consisting of 128 neurons. The inclusion of two hidden
layers enhances the model’s ability to learn intricate relationships within the data. To
introduce non-linearity and facilitate comprehensive feature extraction, the rectified linear
unit (ReLU) activation function is employed in both hidden layers. ReLU is defined
mathematically as :

f(z) = max(0,z) (3.2)

where x represents the input to the activation function. ReLU maps all negative input
values to zero while leaving positive input values unchanged. This activation function
introduces non-linearity into the model and helps address the vanishing gradient problem

commonly encountered in deep neural networks.

n the domain of multi-class classification, the output layer of the neural network comprises
a dense layer consisting of 12 neurons, which corresponds to the number of classes involved
in the classification problem. The softmax activation function is employed in this layer
to acquire class probability distributions. By design, the softmax function ensures that
the output values remain non-negative and sum up to unity, thereby enabling the model to

furnish probabilistic predictions for multi-class classification tasks.

Mathematically, the softmax activation of an input vector x, possessing a dimensionality

of n, is defined as follows:

e'zm

Tk

softmax (z[i]) = fori =1ton, (3.3)
Here, ¢l represents the exponential of the i-th element of the input vector, and ()
denotes the summation of the exponential values across all elements within the vector.
The softmax function transforms the input values into a probability distribution over the
classes, wherein each output value represents the probability of the corresponding class
being the correct class. This attribute empowers the model to make confident predictions

by assigning higher probabilities to the most probable classes.

52

Chapter 3: Simulation Environment And virtual hardware setup

/\ '/1\|
{ "/] r _J]
N N
O/ _/

¥

O

()

Output Layer

()

Input Layer

Hidden layer 1 Hidden layer 2

Hidden
Layers(2)

Figure 19. Model architecture.

Figure 19 presents a schematic representation of the model’s architecture, illustrating
its sequential configuration. This diagram elucidates the sequential flow of information,
commencing from the input layer, traversing through the hidden layers, and culminating at
the output layer.

3.4.4 Training Process

The model training process was conducted with utmost precision and meticulousness to
optimize performance and foster effective learning. The dataset was diligently partitioned
into two distinct subsets: a training subset comprising approximately 75% of the data
and an independent testing subset containing the remaining 25%. This careful division
facilitated a comprehensive assessment of the model’s generalization capabilities, providing
valuable insights into its efficacy and dependability when confronted with previously
unseen data. Essential hyper-parameters, such as the learning rate and batch size, were

carefully determined to balance convergence speed and resource efficiency.

During the training phase, the Adam optimizer algorithm was employed. Adam combines
the advantages of adaptive learning rates from AdaGrad and efficient gradient-based
optimization from RMSProp. By leveraging adaptive learning rates and efficient parameter
updates, the Adam optimizer promoted the model’s optimization performance [82]. This
choice was particularly advantageous for our model, as it required capturing intricate

relationships and exhibiting robust generalization capabilities.

53

Chapter 3: Simulation Environment And virtual hardware setup

The choice of loss function is a critical aspect of the model training process. For this
study, the categorical cross-entropy loss function was employed, which is widely used
in multi-class classification tasks. This loss function quantifies the disparity between the
predicted class probabilities and the true class labels. Mathematically, the categorical

cross-entropy loss can be expressed as:

N C
Categorical Cross-Entropy Loss = — Z Z vi; log(pij) (3.4)

i=1 j=1

Here, N represents the number of samples, C' is the number of classes, y;; denotes the true
probability of class ¢ for sample j, and p;; is the predicted probability of class ¢ for sample
j. The loss is calculated as the sum of the logarithmic differences between the predicted
and true class probabilities. By utilizing the categorical cross-entropy loss function, the
model training process aims to minimize the discrepancy between predicted probabilities,

which in our approach are described by the OHE representation of the 11 integer outputs.

By methodically incorporating rigorous deliberations into the segregation of data, the
selection of crucial hyper-parameters, and the utilization of the widely acclaimed Adam op-
timizer algorithm, the process of training the model was meticulously devised with the aim

of augmenting learning, optimizing performance, and fostering dependable predictions.

54

CHAPTER 4

Results And Discussion

55

Chapter 4: Results And Discussion

This chapter presents the outcomes of map construction using the Simultaneous Localiza-
tion and Mapping (SLAM) technique and obstacle detection using the Rapidly-Exploring
Random Trees (RRT) algorithm in the simulated environment of the Gazebo simulator
within ROS2. The Karto SLAM algorithm was employed to generate a precise and compre-
hensive map of the environment, allowing for an accurate representation of the unknown
indoor space. Additionally, the RRT algorithm was utilized to effectively detect and avoid

obstacles during autonomous navigation.

The results obtained from the map construction process using SLAM will be showcased
and extensively discussed, highlighting the algorithm’s performance and efficiency in
gradually updating and accurately representing the environment. Furthermore, the obstacle
detection and avoidance capabilities enabled by the RRT algorithm will be presented,

demonstrating its effectiveness in ensuring safe navigation.

In addition, this chapter includes a comparison of pose computation results, where the
advantages of SLAM-based pose estimation over odometry-based estimation are discussed.
The findings emphasize the suitability of SLAM for accurate localization and mapping in

real-world scenarios.

Moreover, the chapter presents the outcomes of training a deep learning model for obstacle
avoidance using a collected data-set. The limitations in terms of accuracy attributed to
odometry pose computation errors and challenges in data-set collection due to compu-
tational constraints are discussed. Future work is proposed to address these limitations
by incorporating SLAM pose data, which is expected to enhance the obstacle avoidance

model’s performance and the agent’s ability to navigate complex environments.

The comprehensive presentation and discussion of the obtained results in map construction,
obstacle detection, pose computation comparison, and deep learning model training provide
valuable insights into the performance, limitations, and potential improvements of the
implemented algorithms. These findings contribute to the development of autonomous

robotic systems and pave the way for future enhancements and real-world applications.

56

Chapter 4: Results And Discussion

4.1 SLAM-Based Map Construction Results

The Karto SLAM algorithm was employed to construct a map of the unknown indoor
environment in Gazebo. This algorithm effectively generated a detailed and accurate map
by combining sensor data from the mobile robot with odometry information. The resulting
map provided a comprehensive representation of the environment, enabling further analysis

and navigation planning.

Mapping Initialization:

The robot is initially placed at the coordinate (0.0) within the unknown indoor environment,

and it starts generating the map within a range of 360 degrees and 12 meters.

Figure 20. Mapping initialization.

Map construction and final mapping result:
As the robot moves in the environment, it matches the previous LIDAR scans with the new
ones and updates the map. This process continues until the final mapping of the entire

environment is achieved, differentiating between obstacles and free spaces.

The SLAM-based map construction process described has successfully generated a highly
accurate and detailed map of the unknown indoor environment. The algorithm begins
with mapping initialization, gradually updating the map by matching previous and new
LIDAR scans. The progressive stages of map construction demonstrate the algorithm’s
effectiveness, culminating in a comprehensive representation of the entire environment.
The SLAM approach proves reliable for mapping unknown indoor spaces with high

accuracy.

57

Chapter 4: Results And Discussion

(a) Intermediate map construction. The map
is gradually updated as the robot explores the
environment.

(b) Intermediate map construction. The robot
continues to map the environment, distin-
guishing between obstacles and free space.

(d) Final map construction. The robot com-
pletes the mapping process, creating a com-
prehensive map of the environment.

(c) Intermediate map construction. The map-
ping process provides a detailed representa-
tion of the environment.

Figure 21. Progressive stages of map construction. The figures demonstrate the gradual
updates in the map as the robot explores the environment.

Figure 21 illustrates the various stages of map construction, showing the progressive up-
dates in the map as the robot explores the environment. Figure 21a depicts an intermediate
stage, capturing the evolving map with increasing detail. Finally, Figure 21d represents the

final map, which provides a comprehensive representation of the entire environment.

4.2 Comparison of Pose Estimation Results

The comparison of pose estimation results provides insights into the accuracy and reliability
of different methods in determining the robot’s pose. In this evaluation, we compare the
pose obtained from odometry, SLAM, and the ground truth (real pose) resulting from a

complete path generation and obstacle avoidance command .

58

Chapter 4: Results And Discussion

4.2.1 Odometry-Based Pose Estimation

The odometry-based pose estimation relies on wheel encoders and motion models to
estimate the robot’s position and orientation. However, due to inherent errors in the
odometry measurements and accumulated uncertainties over time, the estimated pose
may deviate from the actual robot’s pose. Figure 22 shows the comparison between the
odometry-based pose and the real pose. It can be observed that the odometry-based pose

exhibits noticeable deviation (3.25 meters) from the ground truth, resulting in less accurate

localization.

s

Figure 22. Comparison of odometry-based pose estimation with the real pose.

4.2.2 SLAM-Based Pose Estimation

The SLAM-based pose estimation leverages simultaneous mapping and localization tech-
niques to estimate the robot’s pose while constructing a map of the environment. By
integrating sensor measurements such as laser scans and odometry, SLAM algorithms

provide more accurate and robust pose estimates. Figure 23 illustrates the comparison

Figure 23. Comparison of SLAM-based pose estimation with the real pose.

between the SLAM-based pose and the real pose. It can be observed that the SLAM-based
pose closely aligns with the ground truth, indicating a higher level of accuracy compared

to odometry-based estimation.

59

Chapter 4: Results And Discussion

4.2.3 Comparison and Discussion

Comparing the pose estimation results, it becomes evident that the SLAM-based pose
estimation outperforms odometry-based estimation in terms of accuracy and closeness
to the real pose. The SLAM algorithm’s ability to incorporate sensor measurements and
update the map in real-time enables it to compensate for odometry errors and environmental

changes, resulting in more reliable pose estimates.

The superior accuracy of SLAM-based pose estimation has significant implications for
various robotic applications, such as autonomous navigation, mapping, and object manipu-
lation. By providing a more precise estimation of the robot’s pose, SLAM enables robots

to navigate complex environments with greater efficiency and reliability.
Overall, the comparison results highlight the advantages of SLAM-based pose estimation

over odometry-based estimation, demonstrating its suitability for tasks that require accurate

localization and mapping in real-world scenarios.

60

Chapter 4: Results And Discussion

4.3 RRT-Based Obstacle Avoidance Results

The RRT-based obstacle avoidance approach demonstrates effective navigation in the
simulated indoor environment. The algorithm successfully generates feasible paths that
avoid obstacles, allowing the robot to reach its goal while maintaining a safe distance from
the detected obstacles.

First scenario: The robot’s goal coordinates were set to (-5.0 ; 4.0), and the robot was
initially posed at different places: (7.0 ; 1.0) in Figure 24a , and (2.3 ; -4.2) in Figure 24b.

Figure 24 illustrates the results of the RRT-based obstacle avoidance approach in the first

scenario:

(a) Robot initially posed at (7.0, 1.0).

(b) Robot initially posed at (2.3 ; -4.2).

Figure 24. Different initial robot poses with the same goal coordinates.

61

Chapter 4: Results And Discussion

Second scenario:

The initial coordinates were set to (0.0 ; 0.0), and the robot’s goal coordinates were set to
different places: (-6.0 ; 5.0) in Figure 25a and (8.0 ; -5.0) in Figure 25b.
Figure 25 illustrates the results of the RRT-based obstacle avoidance approach in the

second scenario:

L - -
B A
=l |
4 L
o-r =1
l =

(a) Goal set at (-6.0 ; 5.0).

(b) Goal set at (8.0 ; -5.0).

Figure 25. Different goal coordinates with the same initial robot pose.

These results cover all possible scenarios for the mobile robot’s autonomous navigation. In
all scenarios, the robot successfully reached its goal while avoiding obstacles, demonstrat-

ing the effectiveness of the RRT-based obstacle avoidance approach. The RRT algorithm

62

Chapter 4: Results And Discussion

proves to be a highly accurate path planning algorithm, providing reliable paths that enable

the robot to navigate autonomously.

The RRT algorithm efficiently explores the state space and generates feasible paths by
dynamically adapting to the obstacle configuration. The algorithm maintains a safe distance
from obstacles by considering the robot’s kinematic constraints and the environment’s
obstacles throughout the navigation process. This capability enhances the robot’s autonomy

and enables it to navigate through complex environments effectively.

4.4 Deep Learning Approach Results

This section presents the outcomes of the deep learning approach for training the obstacle
avoidance model. The model underwent 50 epochs of training using a small data-set
comprising 700 samples. The evaluation of the model’s performance was based on

essential metrics, including loss and accuracy.

To illustrate the effectiveness of the trained obstacle avoidance model, Figure 26 provides
a graphical representation of the performance metrics. The graph presents the training and
validation accuracy as well as the corresponding loss over the course of the 50 training

epochs.

Model Loss Model Accuracy
12 12

—— Train —— Train
validation Validation

1.0 A 1.0 ,__/-’_J

0.8 4 0.8

% 06
#o

Accuracy
o
o

0.4+ 0.4

o d\\‘\ N

0.0 T T 7 T 0.0 T T T T
0 10 20 30 40 50 0 10 20 30 40 50

Epoch Epoch

Figure 26. Performance metrics of the trained obstacle avoidance model.

Initially, both the training and validation accuracy showed a positive trend, indicating
the model’s ability to learn from the training data. However, after a certain point, a
noticeable gap emerged between the training and validation accuracy, suggesting the onset

of overfitting.

In terms of the loss metric, we observed variations throughout the training process, reflect-
ing the model’s dynamic adjustments. The initial loss was recorded at 0.2145, with an

accuracy of 0.9435 in the training set. In the validation set, the corresponding values were

63

Chapter 4: Results And Discussion

0.2833 for loss and 0.8914 for accuracy.

As the training progressed, the loss and accuracy values exhibited fluctuations. While the
loss metric showed variations, indicating shifts in the model’s performance, the accuracy
metric consistently improved, reaching a peak value of 1.0000 at the conclusion of the

training.

Overall, the deep learning approach exhibits promising results in training the obstacle

avoidance model, showcasing the potential for further optimization in future iterations.

4.4.1 Results Analysis

The training of our deep learning model on the collected data (700 samples) after yielded
results: as can be seen in figure 26 the model shows a decreasing trend in both training and
validation loss, which is desirable. It indicates that the model is learning and improving
over time. Similarly, the training and validation accuracy shows an increasing trend,
which suggests that the model is able to classify the data correctly. However, the accuracy
achieved was not as high as desired. Additionally, there is a slight gap between the training
and validation accuracy. This indicates the possibility of over-fitting, where the model may
have memorized the training data too well and is not generalizing well to unseen data. This
can be attributed to two main factors.

First, the uncertainty in the pose estimation based on odometry as seen in figure 22.
Inaccurate pose information can adversely affect the model’s ability to make precise

decisions based on the agent’s position and orientation.

Another factor contributing to the limited accuracy is the computational power limitations
that constrained the collection of a large amount of data. Gathering a comprehensive
data-set for training requires significant time and computational resources. Given the
constraints, it was challenging to collect a sufficiently diverse and representative data-set,

which could have contributed to the sub-optimal performance of the trained model.

64

Chapter 4: Results And Discussion

4.4.2 Conclusion

In conclusion, the deep learning approach employed for training the obstacle avoidance
model has yielded promising results. The accuracy of the model consistently improved
throughout the training process, culminating in a peak value at the conclusion of the
training. However, it is worth noting that a discernible disparity emerged between the

training and validation accuracies, suggesting the presence of potential overfitting concerns.

Several factors contributed to the observed outcomes. The inherent uncertainty associated
with pose estimation based on odometry exerted an influence on the model’s decision-
making capabilities. Moreover, the limited availability of computational resources posed

constraints on the acquisition of a more extensive and diverse dataset.

4.5 Discussion of Results

This chapter presents the outcomes of map construction using SLAM and obstacle detection
using the RRT algorithm in the simulated environment of the Gazebo simulator within
ROS2. The Karto SLAM algorithm was employed to generate a precise and comprehensive
map of the environment. Additionally, the RRT algorithm was utilized for effective obstacle

detection and avoidance during autonomous navigation.

The results obtained provide compelling evidence of the performance and efficiency of the
implemented algorithms in the simulated environment. The SLAM-based map construction
process exhibited remarkable accuracy and detail in generating maps of unknown indoor
environments. The algorithm’s ability to incrementally update the map as the robot
explored the environment enabled it to differentiate between obstacles and free spaces
effectively. These findings confirm the reliability and accuracy of the SLAM approach for

mapping unknown indoor spaces.

Likewise, the RRT-based obstacle avoidance approach proved to be highly successful in
navigating the simulated indoor environment. The algorithm efficiently generated feasible
paths that avoided obstacles, allowing the robot to reach its destination while maintaining a
safe distance from detected obstacles. The RRT algorithm’s adaptability to various obstacle
configurations and its ability to explore the state space contributed to its effective and

efficient navigation capabilities.

Furthermore, the comparison of pose estimation results revealed the superiority of SLAM-

based pose estimation over odometry-based estimation in terms of accuracy and closeness

65

Chapter 4: Results And Discussion

to the real pose. By incorporating sensor measurements and dynamically updating the map
in real-time, the SLAM algorithm compensated for odometry errors and environmental

changes, resulting in more reliable pose estimates.

However, it is important to acknowledge the limitations observed during the deep learning
model training for obstacle avoidance. Due to the limited accuracy and quantity of the
collected data, the model experienced over-fitting, impacting its performance. To address
this limitation, future work should focus on collecting and training the model with a more
extensive data-set, potentially incorporating SLAM pose data to enhance accuracy and
reliability. By leveraging SLAM, it is anticipated that the obstacle avoidance model will
achieve improved performance and enhance the agent’s ability to navigate through complex

environments.

4.6 Limitations and Future Work

The development and evaluation of the obstacle avoidance system highlighted several

limitations and areas for future work. Some of the key limitations include:

m Computational power constraints hindered the collection of a large and diverse
data-set, affecting the model’s performance.

m The reliance on odometry poses computation introduced errors that impacted the
accuracy of the trained model.

m The current training algorithm may not generalize well to unseen scenarios and

obstacle configurations.

To overcome these limitations and further enhance the obstacle avoidance system, the

following future work is proposed:

m Collection and training the obstacle avoidance model using SLAM pose data for
improved accuracy and reliability.

m Investigation techniques to improve the generalization capabilities of the trained
model, enabling it to adapt to unseen scenarios and obstacles.

m Conduction of extensive real-world testing and evaluation to validate the system’s

performance in different environments and conditions.

By addressing these limitations and pursuing the proposed future work, it is anticipated
that the obstacle avoidance system can be further refined and optimized, making it more

effective and reliable in real-world applications.

66

Chapter 4: Results And Discussion

4.7 Conclusion

In conclusion, the implemented SLAM and RRT algorithms demonstrated their effective-
ness in map construction and obstacle avoidance, respectively, in the simulated environment.
The Karto SLAM algorithm successfully generated a precise and comprehensive map of
the unknown indoor environment, while the RRT algorithm enabled the robot to navigate

autonomously while avoiding obstacles.

The results obtained provide valuable insights into the performance and efficiency of these
algorithms in the simulated environment. The SLAM-based map construction process
showcased the algorithm’s ability to gradually update the map and accurately represent the
environment. The RRT-based obstacle avoidance approach demonstrated its capability to
generate feasible paths that ensured safe navigation.

However, the deep learning algorithm for obstacle avoidance exhibited limitations in
terms of accuracy due to errors in odometry pose computation and constraints in data-set
collection.

Future work should focus on addressing these limitations by incorporating SLAM pose
data, which offers higher accuracy and reliability. By leveraging SLAM, it is expected that
the obstacle avoidance model will achieve improved performance and enhance the agent’s
ability to navigate through complex environments. The comparison of pose estimation
results highlighted the advantages of SLAM-based pose estimation over odometry-based
estimation, indicating its suitability for accurate localization and mapping in real-world

scenarios.

Overall, the results and discussion presented in this chapter provide valuable insights into
the performance and limitations of the implemented algorithms. These findings contribute
to the development of autonomous robotic systems, paving the way for further enhance-
ments and real-world applications. Future research directions may involve testing the
algorithms in physical environments, considering additional sensor inputs, and optimizing
their performance for specific tasks and constraints, thereby addressing the limitations

highlighted in this chapter.

67

General Conclusion

In conclusion, this project aimed to design a cost-efficient and robust obstacle avoidance
system by integrating Simultaneous Localization and Mapping (SLAM) with Rapidly-
exploring Random Trees (RRT) and exploring the use of deep learning for obstacle
detection and avoidance. The SLAM and RRT methodologies consistently demonstrated
high accuracy in mapping the environment and generating collision-free paths.

However, the deep learning-based obstacle avoidance component faced challenges and
exhibited limitations in terms of accuracy. Despite these challenges, a thorough evaluation

was conducted to analyze the problem and identify potential solutions.

To address these limitations, future work should focus on improving the deep learning
component. This can be achieved by collecting a more diverse and accurate data-set ,
refining the model architecture to capture more intricate obstacle features, and optimizing

the training process to enhance the model’s performance.

Although the deep learning-based obstacle avoidance system did not meet the desired
accuracy level within the scope of this project, it serves as a valuable starting point for
further research. By addressing the identified challenges and incorporating advancements
in deep learning techniques, it is anticipated that the system’s accuracy can be significantly

improved.

In summary, this project successfully demonstrated the effectiveness of integrating SLAM
and RRT for accurate mapping and path planning in obstacle avoidance systems. While the
deep learning-based method faced challenges, it highlighted areas for improvement and
identified potential solutions for future work. By addressing the limitations and leveraging
advancements in deep learning, it is expected that a more accurate and reliable obstacle
avoidance system can be realized, further enhancing the cost-efficiency and robustness of

the overall system.

68

[1]

[7]

[8]

[10]

References

Mary B Alatise and Gerhard P Hancke. “A review on challenges of autonomous
mobile robot and sensor fusion methods”. In: IEEE Access 8 (2020), pp. 39830—
39846.

Jestis Hamilton Ortiz. “Industry 4.0: Current status and future trends”. In: (2020).

Shiyong Wang et al. “Towards smart factory for industry 4.0: a self-organized
multi-agent system with big data based feedback and coordination”. In: Computer
networks 101 (2016), pp. 158—168.

Maria Isabel Ribeiro. “Obstacle avoidance™. In: Instituto de Sistemas e Robotica,
Instituto Superio Técnico 1 (2005).

Angelo Nikko Catapang and Manuel Ramos. “Obstacle detection using a 2D LIDAR
system for an Autonomous Vehicle”. In: 2016 6th IEEE International Conference on
Control System, Computing and Engineering (ICCSCE). IEEE. 2016, pp. 441-445.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification
with deep convolutional neural networks”. In: Advances in neural information

processing systems. 2012, pp. 1097-1105.

Lucas Rausch and Cyrill Stachniss. “Robust and efficient obstacle detection for
autonomous driving in urban environments”. In: IEEE Robotics and Automation
Letters 6.2 (2021), pp. 1812-1819.

Jaesik Lim et al. “Real-time semantic segmentation for autonomous driving based
on LIDAR data”. In: 2020 IEEE Intelligent Transportation Systems Conference
(ITSC). IEEE. 2020, pp. 3773-3778.

Yusheng Zhang, Keqiang Xu, and Jun Wang. “Review of obstacle detection and
tracking for intelligent vehicles”. In: IEEE Transactions on Intelligent Transporta-
tion Systems 20.3 (2019), pp. 1103-1117.

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. “Fast point feature histograms
(FPFH) for 3D registration”. In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2009, pp. 3212-3217.

69

References

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Konrad Wenzl, Heinrich Ruser, and Christian Kargel. “Decentralized multi-target-
tracking using a lidar sensor network™. In: 2012 IEEE International Instrumentation
and Measurement Technology Conference Proceedings. IEEE. 2012, pp. 2492-2497.

Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 3.2. 2009, p. 5.

Robins Mathew and Somashekhar S Hiremath. “Development of waypoint tracking
controller for differential drive mobile robot”. In: 2019 6th International Conference
on Control, Decision and Information Technologies (CoDIT). IEEE. 2019, pp. 1121-
1126.

Alexandr Stefek et al. “Energy comparison of controllers used for a differential
drive wheeled mobile robot”. In: IEEE Access 8 (2020), pp. 170915-170927.

Mahesh Yallala and SJ Mija. “Path tracking of differential drive mobile robot using
two step feedback linearization based on backstepping”. In: 2017 International

Conference on Innovations in Control, Communication and Information Systems
(ICICCI). IEEE. 2017, pp. 1-6.

Diana Diaz and Rafael Kelly. “On modeling and position tracking control of the
generalized differential driven wheeled mobile robot”. In: 2016 IEEE International
Conference on Automatica (ICA-ACCA). IEEE. 2016, pp. 1-6.

Alexandr Stefek et al. “Differential drive robot: Spline-based design of circular
path”. In: Dynamical Systems: Theoretical and Experimental Analysis: £.6dZ, Poland,
December 7-10, 2015. Springer. 2016, pp. 331-342.

Spyros G Tzafestas. Introduction to mobile robot control. Elsevier, 2013.

ROS Wiki: RobotSetup/Odom. http :/ /wiki . ros.org/navigation/
Tutorials/RobotSetup/Odom. Accessed: <may 2023>.

Sebastian Thrun. “Probabilistic algorithms in robotics”. In: Ai Magazine 21.4 (2000),
pp. 93-93.

Hugh Durrant-Whyte and Tim Bailey. “Simultaneous localization and mapping:
part . In: IEEE robotics & automation magazine 13.2 (2006), pp. 99-110.

Raul Mur-Artal and Juan D Tardés. “Orb-slam2: An open-source slam system for

monocular, stereo, and rgb-d cameras”. In: IEEE transactions on robotics 33.5
(2017), pp. 1255-1262.

Cesar Cadena et al. “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age”. In: IEEE Transactions on robotics
32.6 (2016), pp. 1309-1332.

Michael Montemerlo et al. “FastSLAM: A factored solution to the simultaneous

localization and mapping problem”. In: Aaai/iaai 593598 (2002).

70

http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom
http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom

References

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

AbdelKarim ZIANI-KERARTTI. “Simultaneous Localization And Mapping”. PhD
thesis. Directeur; M. MOKHTARI Rida/CO-Directeur; M. ARICHI Fayssal, 2021.

Abu Bakar Sayuti HM Saman and Ahmed Hesham Lotfy. “An implementation of
SLAM with extended Kalman filter”. In: 2016 6th International Conference on
Intelligent and Advanced Systems (ICIAS). IEEE. 2016, pp. 1-4.

Luciano Buonocore, Cairo Lacio Nascimento Junior, and Areolino de Almeida Neto.
“Solving the Indoor SLAM Problem for a Low-Cost Robot using Sensor Data Fusion
and Autonomous Feature-based Exploration.” In: ICINCO (2). 2012, pp. 407-414.

Javier Civera et al. “1-point RANSAC for EKF-based structure from motion”. In:
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.
2009, pp. 3498-3504.

Michael Montemerlo. “FastSLAM: A factored solution to the simultaneous localiza-
tion and mapping problem with unknown data association”. In: PhD thesis, Carnegie
Mellon University (2003).

Michael Montemerlo and Sebastian Thrun. FastSLAM: A scalable method for the

simultaneous localization and mapping problem in robotics. Vol. 27. Springer, 2007.
Steven M LaValle et al. “Rapidly-exploring random trees: A new tool for path
planning”. In: (1998).

John D Kelleher. Deep learning. MIT press, 2019.

Sorin Grigorescu et al. “A survey of deep learning techniques for autonomous
driving”. In: Journal of Field Robotics 37.3 (2020), pp. 362-386.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), pp. 436-444.

Leon O Chua and Tamas Roska. “The CNN paradigm”. In: /[EEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications 40.3 (1993), pp. 147-
156.

Larry R Medsker and LC Jain. “Recurrent neural networks”. In: Design and Appli-
cations 5 (2001), pp. 64-67.

Alex Graves and Alex Graves. “Long short-term memory”. In: Supervised sequence

labelling with recurrent neural networks (2012), pp. 37-45.

Kunfeng Wang et al. “Generative adversarial networks: introduction and outlook™.
In: IEEE/CAA Journal of Automatica Sinica 4.4 (2017), pp. 588-598.

Chuangi Tan et al. “A survey on deep transfer learning”. In: Artificial Neural
Networks and Machine Learning—ICANN 2018: 27th International Conference on
Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part
111 27. Springer. 2018, pp. 270-279.

71

References

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Yilu Zhao and Xiong Chen. “Prediction-based geometric feature extraction for 2D
laser scanner”. In: Robotics and Autonomous Systems 59.6 (2011), pp. 402—409.

Maurice Quach et al. “Survey on deep learning-based point cloud compression”. In:

Frontiers in Signal Processing (2022).

Victor Vaquero, Ely Repiso, and Alberto Sanfeliu. “Robust and real-time detection
and tracking of moving objects with minimum 2D LIDAR information to advance

autonomous cargo handling in ports”. In: Sensors 19.1 (2018), p. 107.

Viet Nguyen et al. “A comparison of line extraction algorithms using 2D laser
rangefinder for indoor mobile robotics”. In: 2005 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE. 2005, pp. 1929-1934.

Cristiano Premebida and Urbano Nunes. “Segmentation and geometric primitives
extraction from 2d laser range data for mobile robot applications”. In: Robotica
2005 (2005), pp. 17-25.

Lanxiang Zheng et al. “The obstacle detection method of uav based on 2D lidar”.
In: IEEE Access 7 (2019), pp. 163437-163448.

Carlos Fernandez et al. “Clustering and line detection in laser range measurements”.
In: Robotics and Autonomous Systems 58.5 (2010), pp. 720-726.

Alberto J Alvares et al. “A navigation and path planning system for the Nomad
XR4000 mobile robot with remote web monitoring”. In: ABCM Symposium Series
in Mechatronics. Vol. 1. 2004, pp. 18-24.

Trung-Dung Vu, Olivier Aycard, and Nils Appenrodt. “Online localization and
mapping with moving object tracking in dynamic outdoor environments”. In: 2007
IEEE Intelligent Vehicles Symposium. IEEE. 2007, pp. 190-195.

Taketoshi Mori et al. “Moving objects detection and classification based on trajecto-
ries of LRF scan data on a grid map”. In: 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE. 2010, pp. 2606-2611.

Baifan Chen et al. “Real-time detection of dynamic obstacle using laser radar”. In:
2008 The 9th International Conference for Young Computer Scientists. IEEE. 2008,
pp- 1728-1732.

Rasoul Mojtahedzadeh. “Robot obstacle avoidance using the Kinect”. In: Master of
Science Thesis Stockholm, Sweden (2011).

Ran Sun. “Performance evaluation and improvement of LiDAR-based obstacle

detection algorithm”. In: ().

Eric N Willcox III. “Forward perception using a 2d lidar on the highway for intelli-
gent transportation”. PhD thesis. Thesis, Worcester Polytechnic Institute, 2016. 4,
2016.

72

References

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Martin Dekan et al. “Moving obstacles detection based on laser range finder mea-
surements”. In: International Journal of Advanced Robotic Systems 15.1 (2018),
p. 1729881417748132.

Christoph Mertz et al. “Moving object detection with laser scanners”. In: Journal of
Field Robotics 30.1 (2013), pp. 17-43.

Anna Petrovskaya and Sebastian Thrun. “Model based vehicle detection and tracking

for autonomous urban driving”. In: Autonomous Robots 26.2-3 (2009), pp. 123-139.

Rob MacLachlan and Christoph Mertz. “Tracking of moving objects from a moving
vehicle using a scanning laser rangefinder”. In: 2006 IEEE Intelligent Transportation
Systems Conference. IEEE. 2006, pp. 301-306.

Regis Vincent, Benson Limketkai, and Michael Eriksen. “Comparison of indoor
robot localization techniques in the absence of GPS”. In: Detection and sensing of
mines, explosive objects, and obscured targets XV. Vol. 7664. SPIE. 2010, pp. 606—
610.

Kurt Konolige et al. “Efficient sparse pose adjustment for 2D mapping”. In: 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2010,
pp- 22-29.

Kevin Murphy and Stuart Russell. “Rao-Blackwellised particle filtering for dy-
namic Bayesian networks”. In: Sequential Monte Carlo methods in practice (2001),
pp- 499-515.

Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. “Improved techniques
for grid mapping with rao-blackwellized particle filters”. In: IEEE transactions on
Robotics 23.1 (2007), pp. 34-46.

Pham Xuan Hien and Gon-Woo Kim. “Goal-oriented navigation with avoiding
obstacle based on deep reinforcement learning in continuous action space”. In: 2021
21st International Conference on Control, Automation and Systems (ICCAS). IEEE.
2021, pp. 8-11.

Amin Nejatbakhsh. Scalable Tools for Information Extraction and Causal Modeling
of Neural Data. Columbia University, 2022.

Hervé Abdi, Dominique Valentin, and Betty Edelman. Neural networks. 124. Sage,
1999.

Nissen Steffen. “Neural Networks made simple”. In: Fast neural network library
(Fann) (2005), pp. 14-15.

Murat H Sazli. “A brief review of feed-forward neural networks”. In: Communica-
tions Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and
Engineering 50.01 (2006).

73

References

[67]

[68]
[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Ramon Quiza and JP Davim. “Computational modeling of machining systems”. In:
Intelligent machining: modeling and optimization of the machining processes and
systems. London: ISTE (2009), pp. 173-213.

J Han. M. Kamber, and J. Pei, “Data Mining Concepts and Techniques”. 2011.

Arun A Ross and Rohin Govindarajan. “Feature level fusion of hand and face
biometrics”. In: Biometric technology for human identification I1. Vol. 5779. SPIE.
2005, pp. 196-204.

Francois Chollet. “The limitations of deep learning”. In: Deep learning with Python
(2017).

Lea Steffen et al. “Reactive neural path planning with dynamic obstacle avoidance
in a condensed configuration space”. In: 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 8101-8108.

Carol Fairchild and Thomas L Harman. ROS robotics by example. Packt Publishing
Ltd, 2016.

Mirco De Marchi et al. “Efficient ROS-Compliant CPU-iGPU communication on
embedded platforms”. In: Journal of Low Power Electronics and Applications 11.2
(2021), p. 24.

Morgan Quigley, Brian Gerkey, and William D Smart. Programming Robots with
ROS: a practical introduction to the Robot Operating System. " O’Reilly Media,
Inc.", 2015.

Wei Qian et al. “Manipulation task simulation using ROS and Gazebo”. In: 2014
IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). IEEE.
2014, pp. 2594-2598.

Zandra B Rivera, Marco C De Simone, and Domenico Guida. “Unmanned ground
vehicle modelling in Gazebo/ROS-based environments”. In: Machines 7.2 (2019),
p- 42.

Maxim Sokolov et al. “3D modelling and simulation of a crawler robot in
ROS/Gazebo”. In: Proceedings of the 4th International Conference on Control,
Mechatronics and Automation. 2016, pp. 61-65.

Nathan Koenig and Andrew Howard. “Design and use paradigms for gazebo, an
open-source multi-robot simulator”. In: 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3. IEEE.
2004, pp. 2149-2154.

74

References

[79] Deepali Ghorpade, Anuradha D Thakare, and Sunil Doiphode. “Obstacle detection
and avoidance algorithm for autonomous mobile robot using 2D LiDAR”. In: 2017

International Conference on Computing, Communication, Control and Automation
(ICCUBEA). IEEE. 2017, pp. 1-6.

[80] Ran Sun. “Performance evaluation and improvement of LiDAR-based obstacle

detection algorithm”. In: ().

[81] X Fan, Y Wang, and Z Zhang. “An evaluation of Lidar-based 2D SLAM techniques
with an exploration mode”. In: Journal of Physics: Conference Series. Vol. 1905. 1.
IOP Publishing. 2021, p. 012021.

[82] Zijun Zhang. “Improved adam optimizer for deep neural networks”. In: 2018
IEEE/ACM 26th international symposium on quality of service (IWQoS). leee.
2018, pp. 1-2.

75

	List of Figures
	List of Tables
	General Introduction
	Problem Description and Literature Review
	Problem Description
	Overview of mobile robot obstacle avoidance
	Differential Drive Mobile Robots
	Odometry
	Challenges of Odometry Computation for Localization

	SLAM and Path Planning in Robotics
	Simultaneous Localization and Mapping (SLAM)
	Path Planning Techniques

	Deep Learning-Based Obstacle Avoidance
	Introduction to Deep Learning
	Brief Overview of Deep Learning Principles
	Methods of Deep Learning for Obstacle Avoidance and Path Planning

	Lidar-Based Obstacle Avoidance
	State-of-the-art techniques and advancements in lidar-based obstacle avoidance
	LIDAR based obstacle-detection methods
	Integration of Lidar and SLAM for Obstacle Avoidance - Lidar Data Processing and Feature Extraction
	KartoSLAM
	Rao-Blackwellized Particle Filter (RBPF)
	Scan Matching
	Graph Optimization
	Data Association

	2D LiDAR-based Deep Learning for Obstacle Avoidance and Path Planning
	Neural Networks
	feed-forward Neural Networks
	Data Pre-processing in Feed Forward Neural Networks

	Simulation Environment And virtual hardware setup
	Software Components
	Robotic Operating System(ROS)
	Gazebo simulator
	2D LiDAR sensor
	 3D Indoor Environment Setup

	SLAM Algorithm Selection and Implementation
	Path Planning and Obstacle Avoidance Strategy
	Deep Learning Approach
	Data Collection
	Data Pre-processing
	Model Architecture
	Training Process

	Results And Discussion
	SLAM-Based Map Construction Results
	Comparison of Pose Estimation Results
	Odometry-Based Pose Estimation
	SLAM-Based Pose Estimation
	Comparison and Discussion

	RRT-Based Obstacle Avoidance Results
	Deep Learning Approach Results
	Results Analysis
	Conclusion

	Discussion of Results
	Limitations and Future Work
	Conclusion

	General Conclusion
	References

