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Enhancing air compressors multi fault
classification using new criteria for
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Abstract
The evolution of industrial systems toward Industry 4.0 presents the challenge of developing robust and accurate mod-
els. In this context, feature selection plays a pivotal role in refining machine learning models. This paper addresses the
imperative of accurate fault diagnosis in industrial systems, focusing on air compressors. These systems, vital for efficient
operations, demand early fault detection to prevent performance degradation. Conventional methods often encounter
challenges due to the occurrence of similar failure patterns under comparable conditions. To address this limitation, our
approach delves into a more complex scenario, where air compressors operate under diverse fault conditions. This
study introduces novel feature selection criteria achieved through a fusion of the Maximal Overlap Discrete Wavelet
Packet Transform (MODWPT), the Harris Hawks Optimization (HHO) algorithm, and the Least Squares Support Vector
Machine (LSSVM) classifier. The synthesis of these components aims to bolster the multi-fault diagnosis accuracy and
stability for each fault class. The evaluation focuses on key statistical metrics—minimum, maximum, mean, and standard
deviation. Experimental outcomes underscore the method’s superiority over traditional feature selection techniques.
The approach excels in accuracy and stability, particularly across various fault categories, affirming the efficacy and
resilience of the new criteria. The symbiotic integration of MODWPT, HHO, and LSSVM within our framework
highlights its potential to elevate classification performance in the realm of industrial fault diagnosis.
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Introduction

Air compressors are an essential tool in many indus-
tries, such as manufacturing, construction and chemical
processing. They produce compressed air or gas that
powers many machines, tools and equipment. However,
air compressors can develop faults and breakdown, as
can any mechanical system, which can lead to reduced
performance and expensive downtime.1
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In order to maintain peak performance, increase the
compressor’s lifespan, and reduce maintenance costs,
problems in the compressor must be quickly identified
and corrected. Visual inspections, manual monitoring,
and routine maintenance programs are examples of tra-
ditional approaches that are labor- and time-intensive.
Also, they might miss some defects, especially those
that are still developing.2

Modern technologies like vibration analysis,3 ther-
mal imaging,4 and acoustic monitoring5 have been
developed to get around these constraints. These meth-
ods continuously check the compressor’s status and
immediately detect any anomalies using a variety of
sensors and equipment. These reducing technologies
ensure that the compressor stays in excellent working
condition for a longer period of time by identifying
deficiencies early, which prevents the emergence of
more serious and expensive problems.1

The use of signal processing techniques has made it
possible to quickly and precisely identify compressor
faults.6 These methods entail examining the acoustic
signal from the compressor to spot distinct patterns or
features connected to various kinds of faults. First, the
signal is divided into smaller, easier-to-manage signals
that can be examined more quickly. Then, different
algorithms are used to evaluate these signals to find
traits that point to particular faults. Eventually, the
features are categorized into several kinds of faults by
machine learning algorithms.

In the last years, many methods for signal processing
have been introduced for feature extraction, such as dis-
crete wavelet transform (DWT),7 recursive Empirical
Mode Decomposition (REMD),8 Empirical Mode
Decomposition,9 Variational Mode Decomposition
(VMD),10 Empirical Wavelet Transform (EWT)11 and
Wavelet Packet Transform,12 can be used to find com-
pressor faults, but these techniques have a certain draw-
back, especially in acoustic signals of different faults
categories. This paper proposed, the Maximal overlap
discrete wavelet Package transform (MODWPT) for
feature information, the MODWPT is an improved ver-
sion of the Discrete Wavelet Transform (DWT),13 it is a
multi-resolution analysis has the ability to analyze the
signals at different levels of localization by levels in the
decomposition of acoustic signals in the time and fre-
quency domains and also has the property of shift-
invariance and is very highly capable of decomposing
the approximate and detailed signals in the time-
frequency analysis.14 Nevertheless, the obtained results
from the MODWPT are complex and too large due to
different faults categories in our case, thus, in order to
enhance the robustness and efficiency of the feature
classification, many methods can be employed for
dimensionality reduction and feature selection.

Nowadays, many researchers have been task chal-
lenge to develop methods that helps to increase the
accuracy of the classification by the decreased in the
number of feature entries that have a direct impact on
the classification results. In order to obtain these
results, many optimization algorithms have been intro-
duced to enhance feature classification through feature
selection of the most pertinent and informative fea-
tures,15 several optimization algorithms have been
applied for feature selection such as Artificial Bee
Colony (ABC),16 Genetic Algorithm (GA),17 Slime
Mould Algorithm (SMA),18 Generalized Normal
Distribution Optimization (GNDO),19 Manta Ray
Foraging Optimization (MRFO),20 has been devel-
oped, which overcomes the limitations of dimensionally
reduction algorithms that suffering from higher compu-
tational complexity and helping to find the optimal fea-
tures considering parameters for selection, and it gives
satisfactory results in terms of global accuracy without
stability calculation. By contrast, our proposed method
are based on Harris Hawks algorithm (HHO)21 to
improve the performance, accuracy and stability of
each class, and generalization of a machine learning
model, as well as to reduce the time and resources
required for training and testing the model through the
measuring the four keys of each class (Min, Max,
Mean, and Standard deviation).

As an alternative to performing and achieving super-
vised learning of early detection and complex classifica-
tion tasks, machine learning (ML) is proposed.22 This
type of technique typically consists of two main steps:
the first step is a key task for identification and diagnosis
based on the feature extraction information and feature
selection; the second step is to build a recognition and
categorization model of the air compressor health condi-
tion. K-Nearest Neighbors (KNN), Support Vector
Machines (SVM), Naive Bayes (NB), Extra Tree (ET),
Decision Trees (DT), Random Forests (RF), and Least
Squares Support Vector Machines are a few examples of
machine-learning classifiers (LSSVM).23,24 These tech-
niques have been proposed to extract the best classifier
in terms of accuracy and stability of each class.

This research proposes a reliable and improved multi-
fault diagnosis of air-compressor. This technique is com-
bined between the MODWPT, HHO, and LSSVM.

The paper is organized as follows: Section 2 intro-
duces the principal diagnosis and feature extraction.
Section 3 presents faults selection and performance
classification. Section 4 shows the experimental bench-
mark description. The last section presents the obtained
results with comments and conclusion. The contribu-
tions and innovations of this research is developing a
fault selection and classification approach based on
stability and accuracy of each class are as follows:
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� Firstly, statistical features are extracted from the
Maximal overlap discrete wavelet Package trans-
form (MODWPT) in time domain.

� During the training process, the features extrac-
tion is feed into multiple classifiers based on with
and without optimization algorithms by measur-
ing the mean, max, min, and standard deviation
to obtain the higher average accuracy and best
stability.

� Data processing with optimization algorithms,
which can reduce the computational time by
select the appropriate set of features to predict
air compressor state.

� Comparison study was done between proposed
approach and the existing typical methods in
terms of global accuracy and stability versus
accuracy and stability for each class.

Our proposed method for detecting air compressor
faults can be broken down into a series of steps, as out-
lined in the flowchart in Figure 1. First, the acoustic
signal is processed using MODWPT to extract the
various AM-FM modes. Next, time domain features
are extracted from these modes. To classify the faults, a
LSSVM classifier is used. To further improve the fea-
ture selection process, we compare the classification
results to those obtained using conventional methods
and apply the Harris Hawks optimization algorithm
(HHO) to eliminate unimportant parameters. Finally,

we train a model using the supervised learning method
‘‘LSSVM’’ to detect faults. Our method has been tested
on acoustic signal data, and the results indicate that it
has a high performance.

Signal processing and feature extraction

Maximal overlap discrete wavelet packet transform

Feature extraction is a technique used to reduce the
dimensionality of a dataset by generating new features
that can effectively summarize the existing ones. This is
typically done by combining the existing features in a
meaningful way, which can help to improve the accu-
racy of machine learning models.25

One popular method for signal decomposition is the
Maximal Overlap Discrete Wavelet Packet Transform
(MODWPT), which is based on the intrinsic frequen-
cies of the signal. This technique decomposes the origi-
nal signal into several modes, which are then used to
extract features that are combined into a global matrix
for machine learning analysis.26

MODWPT is an advanced version of the Discrete
Wavelet Transform (DWT), which is widely used for
analyzing signals in the time-frequency domain. The
DWT decomposes a signal into approximation and
detail coefficients using high-pass and low-pass filters,
which are then sampled by a factor of 2. This process is
repeated for the approximated signal at each decompo-
sition level until the desired tolerance is reached.

Figure 1. Flowchart of the proposed method.
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MODWPT is a time-invariant transformation that is
similar to DWT,27 but with some important differences.
In particular, the distances between peaks are made
equal, and the down-sampling process is removed,
resulting in coefficients of the same length as the input
signal. As a result, all of the decomposed coefficients
correspond to their time-series and are associated with
the original signal.28

To obtain the DWT of a sampled sequence of
continuous time data X = ½X0, X1, . . . , XN � 1� is
obtained by using the even-length scaling (low-pass)
filter [g1:1=0, L21] and the wavelet (high-pass) filter
[h1:1=0, L21], where L is a power of 2. The low-pass
filters satisfy the following equation:

g1 =(� 1)l+ 1hL�l�1 ð1Þ

Where gl represents the filter coefficients. The quadra-
ture mirror filter property, which states that the product
of the coefficients of the low-pass filter and high-pass
filter, shifted by an integer n, is zero, links the two filters
together. The following can be written:

Xl�1

l = 0
g2

l =
Xl�1

l= 0
glgl + 2n=

Xl = +‘

l =�‘
glgl + 2n= 0

ð2Þ

Where gh represents the coefficients of the high-pass
filter.

The wavelet filter coefficients can be obtained from
the scaling filter coefficients using the following equation:

h1 =(� 1)lgL�l�1 ð3Þ

Where h1 : l represents the l � th coefficient of the
wavelet filter. The DWT is an effective tool for signal
processing that may be applied to a variety of tasks,
such as feature extraction and data compression.

Since both provide the quadrature mirror of any
non-zero integer, the two filters are related to one
another. The jth-level wavelet and scaling coefficients
for t= [0, N21] can be derived as follows:

Vj, t =
Xl�1

l= 0
glVj�1, 2t+ 1�lð ÞmodNj�1

( t= 0, . . . ,Nj�1)

ð4Þ

Wj, t =
Xl�1

l = 0
hlVj�1, 2t + 1�lð ÞmodNj�1

t = 0, . . . :,Nj�1
� �

ð5Þ

Where MOD stands for the modulus after division.
order to ensure energy conservation, the defining

filters can be scaled as follows, as shown in equations
(6) and (7):

egl =
glffiffiffi

2
p : ð6Þ

ehl =
hlffiffiffi

2
p ð7Þ

Equation (1) can be changed as illustrated in equation
(8) by using these scaling factors:

Xl�1

l = 0
~g2

l =
1

2
,

Xl�1

l = 0
~gl~gl + 2n ð8Þ

The expressions for the quadrature mirror filters can be
updated as per equations (9) and (10):

~hl =(� 1)l~gL�l�1 ð9Þ

~gl =(� 1)l~hL�l�1 ð10Þ

To address the down-sampling issue, MODWT uses
new filters that ensure 2j2121 zeros between the ele-

ments of ½~gl� and ½~hl�. The scaling coefficients ½V M
j, t � are

generated by the pyramid algorithm of MODWT, while

the MODWT wavelet coefficients ½MM
j, t � are produced

as per equations (11) and (12). Here, the summation is
over the range of l=0 to l21 and t=0 to N21.

Vj, t =
Xl�1

l = 0
~glVj�1, 2t + 1�lð ÞmodN t = 0, . . . :,N � 1ð Þ

ð11Þ

Wj, t =
Xl�1

l = 0
~hlVj�1, 2t + 1�lð ÞmodN ( t= 0, . . . :,N � 1)

ð12Þ

MODWPT is a further developed method that aims to
achieve perfect resolution at high frequencies. The
sequence of MODWPT coefficients at level j and
frequency-index n is denoted as Wj, n = ½Wj, n, t,
t = 0, . . . ,N � 1�, where ½Wj, n, t� is generated using
equation (13).

Here, the summation is over the range of i=0 to
l21 and t=0 to Nj�1. The scaling coefficients [Vj, t] are
generated using equation (14), where the summation is
over the range of l=0 to l21 and t=0 to Nj�1.

Wj,n,t=
Xl�1

i=0
~f n,lW

j�1,
n

2

h i
, t�2j�1l
� �

modN
t=0, ...,Nj�1

� �

ð13Þ

Vj, t =
Pl�1

l = 0 gLVj�1, 2t + 1�lð ÞmodNj�1
(t = 0, . . . ,Nj�1)

ð14Þ

Where ~fn, l = ~gl when nmod4=0 or 3, while ~fn, l = ~hl

when nmod4=1 or 2.13

Features selection and classification

Feature selection involves identifying the most relevant
input features for a machine-learning task, while
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ignoring those that are irrelevant or redundant. This
can enhance the accuracy of a model, simplify it, and
prevent over fitting.29 Feature selection methods may
include filter,30 wrapper,31 or embedded32 approaches.

Using techniques like decision trees, logistic regres-
sion, support vector machines, and neural networks,
classification involves grouping input data into prede-
termined classes.33 The task at hand and the features of
the data will choose which algorithm is being used.
Several machine learning applications, including image
analysis, processing of natural languages, and predic-
tive modeling, require on classification.

The method proposed in the article employs the Harris
Hawks Optimization (HHO) algorithm to optimize the
objective function of the least square support vector
machine (LSSVM) classification algorithm. The goal of
this approach is to improve the performance of the
LSSVM model through parameter optimization. The
HHO algorithm is based on the hunting behavior of
hawks and by integrating it with LSSVM, the proposed
method aims to enhance the accuracy of classification.

Harris Hawks optimization algorithm

The HHO algorithm was first proposed in 201921 as a
new Meta heuristic optimization algorithm inspired by
the hunting behavior of Harris Hawks in the wild. The
algorithm is designed to solve a wide range of
optimization problems, including continuous, discrete,
and combinatorial problems.34

The HHO algorithm uses a population of hawks
that hunt for prey in a search space. The population of
hawks is randomly initialized with each hawk’s position
and velocity.35 The population of hawks is randomly
initialized in the search space. Let N be the number of
hawks in the population, and D be the dimension of the
search space. Then, the position and velocity of each
hawk i are initialized as follows:

� Position:

x i = ½x i1, x i2, . . . , x iD�, where x ik

= lb k + rand() � (ub k � lb k)
ð15Þ

Here, lb k and ub k are the lower and upper bounds of
the k-th dimension of the search space, respectively.
rand() is a random number between 0 and 1.

� Velocity:

v i = ½v i1, v i2, . . . , v iD�, where v ik

= rand() � (ub k � lb k)
ð16Þ

Based on its own experience and the experience of other
hawks in the population, each hawk adjusts its location
and velocity during the hunting phase. Equations (17)
and (18) update the location and velocity of each hawk
by taking into consideration the hawk’s current posi-
tion, velocity, and the positions of other hawks in the
population. The objective is to investigate the search
space and identify a viable solution.

� Position update:

x i(t+ 1) = x i(t) + v i(t+ 1) ð17Þ

Here, x i(t) and x i(t + 1) are the positions of hawk i at
time steps t and t + 1, respectively.

v i(t+ 1) is the updated velocity of hawk i at time
step t+ 1.

� Velocity update:

v i(t+ 1) = A � v i(t) + C1 � rand() � (p i � x i(t))

+ C2 � rand() � (p g � x i(t))

ð18Þ

The velocities of hawk I at time steps t and t + 1 are
shown here as v i(t) and v i(t + 1), respectively. The
best hawk in the local group of hawk I is in position p
i, while the best hawk overall in the population is in
position p g. Scaling factors A, C1, and C2 regulate the
impact of each term in the equation. rand() returns a
value between 0 and 1.

Note that the update equation also includes a
chaotic term to introduce randomness into the search
process. The chaotic term is given by:

r � (rand() � 0:5) ð19Þ

Where r is a chaotic parameter that controls the degree
of randomness, and rand() is a random number between
0 and 1.

The best solutions are chosen from the current popu-
lation during the updating phase, while the worst solu-
tions are replaced with fresh hawks. The top M% of
hawks in the population, where M is a predetermined
number, are referred to as the elite group of hawks. The
placements of a few randomly chosen hawks in the pop-
ulation are used in a mathematical calculation to create
new hawks to replace the population’s worst hawks.36

In general, the HHO algorithm is a recent optimiza-
tion technique that has demonstrated promising out-
comes in a number of optimization problems.21 The
algorithm is simple to implement, and its mathematical
equations are easy to understand and modify and the
summary of the HHO algorithm’s procedures is pre-
sented as the follows pseudo-code.

Rahmoune et al. 5



Least square support vector machine (LSSVM)

The LSSVM algorithm is a variation on the support
vector machine (SVM) technique that reduces classifi-
cation error by using a least squares method. Due to its
ability to handle huge datasets and nonlinear classifica-
tion issues with flexibility and computational efficiency,
the LSSVM algorithm has grown in prominence in
recent years.37

The conversion of the input data into a higher-
dimensional feature set via a linear combination of ker-
nel functions is one of the key components of the
LSSVM method.38 The kernel function can be any
function that turns the input data into a new space,
such as a polynomial kernel or a radial basis function
(RBF) kernel.39 As a result, nonlinear classification
problems that cannot be solved by a linear classifier
can be handled by the LSSVM algorithm. Cross-valida-
tion can be used to discover the best kernel function
based on the problem’s nature.40

The LSSVM model can be defined as follows:

f (x) = sign(wT̂ f(x) + b) ð20Þ

Where:

f (x) is the output of the model for input x.
sign is a sign function that maps the output to a bin-

ary classification (e.g., 21 or 1).
w is a weight vector that determines the orientation

of the hyperplane.
f(x) is a feature vector obtained by applying a kernel

function to the input x.
b is a bias term that shifts the hyper plane.
The LSSVM algorithm works by minimizing the

classification error while also minimizing the complexity
of the model. This is achieved by solving the following
optimization problem:

minimize (1=2) jjwjj2̂ + C (
X

j) ð21Þ

subject to y i (wT̂ f(x i) + b) ø 1 � j i, j i ø 0

ð22Þ

Where:
||w||^2 is the L2 norm of the weight vector w, which

penalizes large values of w.
C is a regularization parameter that controls the

trade-off between the classification error and model
complexity.

j i is a slack variable that allows for some misclassi-
fication of the data points.

y i is the label of the i-th data point (+1 or 21).
The optimization problem can be solved using the

dual formulation, which leads to a set of linear
equations that can be solved efficiently. The solution of
the dual problem involves only the inner products of
the feature vectors, which are computed using the ker-
nel function. This makes LSSVM computationally effi-
cient even for large datasets.

The LSSVM algorithm has been applied to a variety
of applications, including image classification, text clas-
sification, and bioinformatics. It has also been extended
to handle multiclass classification and regression prob-
lems. One of the advantages of LSSVM is its ability to
handle high-dimensional data with a small number of
samples. However, it also has some limitations, such as
the need to choose an appropriate kernel function and
regularization parameter.41

Results and discussion

Dataset

The proposed methodology consists of a single stage
reciprocating air compressor of collected acoustic mea-
surements. These data sets have been obtained from a
compressor that has an air pressure range of 0–35 kg/
cm3, driven by an induction motor with a power rating
of 5HP, 5Am, 415V, 50Hz and a speed of 1440 rpm
and pressure switch type PR-15, range between 100 and
213PSI. The data sets from this study covered eight air

Algorithm 1. Harris Hawks optimization algorithm

Initialize population of hawks with random solutions
Calculate fitness of each hawk using objective function
Sort hawks in descending order of fitness
Set the global best hawk as the first (i.e., highest fitness) hawk
in the population
While stopping criterion is not met:

For each hawk in the population:
If the hawk is not the global best:

Choose a random hawk in the population as the
leader
Update the position of the hawk using the following
equation:
hawk position = hawk position + rand() * (leader
position - hawk position)
If the hawk goes outside the search space:

Bring it back inside the search space
Calculate the fitness of the hawk’s new position

If the hawk’s new position is better than its
previous position:

Set the hawk’s new position as its current
position

If the hawk’s new position is better than the
global best:

Set the hawk’s new position as the global
best

end If
end If

end If
end If

end For
end While
Sort hawks in descending order of fitness
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compressor conditions which includes the healthy state
and seven faulty states. These faults contain check valve
(NRV) fault, leakage outlet valve (LOV) fault, leakage
inlet valve (LIV) fault, driver belt fault, piston ring
fault, bearing fault and flywheel fault.42 These data sets
were acquired for period of 5 s at a sampling rate of
50 kHz using a microphone and a NIDAQ. The total
number of data sets was 1800. Figure 2 shows the 24
positions of microphone placements at air compressor
from which the acoustic data sets were acquired.

Nishchal K. Verma et al.42 recorded acoustic data
from all 24 sensor positions, and after analyzing the
recordings using EMD, SPA, and specific time domain
features, they determined that the 8th position was the
most sensitive for all compressor states. Subsequently,
the researchers took 225 measurements from the
chosen position (position 8) for each compressor health
condition, with acoustic recordings captured at air
compressor pressures ranging from 10 to 150PSI.

Signal processing and feature extraction

In this subsection, we task challenge between many
newest signal decomposition techniques. Therefore, the
eight operations condition are decomposed the acoustic
signals into set modes using Empirical Mode
Decomposition (EMD), Recursive Empirical Mode
Decomposition (REMD), Empirical Wavelet Transform
(EWT), Variational Mode Decomposition (VMD) and
Maximal Overlap Discrete Wavelet Packet Transform
(MODWPT).

These methods allowed for the decomposition of the
complex signals into simpler components, generating
matrices that represented the extracted features from
the signal. The number of matrices produced by each
decomposition technique varied depending on the mode
used.

As an example, firstly, the MODWPT are decom-
posed the acoustics signal into 16 modes (see Figure 3),
each modes consists frequency and temporal informa-
tion. Secondly, thirteen statistical features are then
extracted from the time domain as fault signatures for
each mode, resulting in a total of 208 features. The
mathematical formulas for these features can be found
in Table 1.

Feature optimizations and classifications:

Feature selection is the process of reducing the dimen-
sionality of input parameters during the construction
of a predictive model. It is in order to reduce the

Figure 2. The positions from which acoustic signals were
extracted in the air compressor were: (a) the top of the piston,
(b) the side of the NRV, (c) the opposite side of the NRV, and
(d) the opposite side of the flywheel.42

Table 1. The statistical feature extraction.

Feature Equation

Root mean square
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i= 1 xij j2

q
Crest factor jjxjj‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i= 1
xij j2

p
Peak to peak Max (x)–Min (x)

Skewness E x�m

s

� �3
h i

Kurtosis E x�m

s4

� �4

Entropy �
P

i pilog2(pi)

Mean m= 1
N

PN
i= 1 Ai

Std
s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

PN
i= 1 Ai � mj j2

q
Var 1

N

PN
i= 1 xi � ~xð Þ3

Root sum square
Xrss =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n= 1 xnj j2

q
Max Max xij j
Min Min xij j
Mean square value 1

n

Pn
i= 1 xij j2
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number of input parameters that can confuse the
results both to reduce the cost of modeling computa-
tion and, in some instances, to enhance the perfor-
mance of the model, the optimization step is performed
in order to select the efficient information and remov-
ing the overlapping parameters.43

To demonstrate the effectiveness and robustness of
this step, a simulation with and without optimization
methods is performed and is presented in this subsection.

Unprocessed data without optimization methods. The statis-
tical feature extraction from differ signal processing
technique are feed into several machine learning classi-
fiers, such as K-Nearest Neighbors (KNN), Support
Vector Machines (SVM), Naive Bayes (NB), Extra Tree
(ET), Decision Trees (DT), Random Forests (RF), and
Least Squares Support Vector Machines (LSSVM).
These classifiers were trained using the extracted fea-
tures to detect and identify patterns and faults state in
the acoustic signal for each classes.

The classification results obtained for each decom-
position technique in tandem with classifiers were
recorded in a Table 2. As we can see, these compari-
sons illustrate the performance of different classifiers
combined with decomposition methods that lead to the
selection of the most effective accuracy combination
for different faults occurring in the air compressor.

It can be seen from this table that, the highest level of
overall accuracy are the combinations (EWT-LSSVM)
and (MODWPT-LSSVM). However, to ensure the
accuracy and reliability of the results, further analysis
was required. To accomplish this, a detailed analysis for
each combination was implemented, which allowed for
a more accurate assessment of the predictive perfor-
mance model. By measuring the mean, maximum, mini-
mum, and standard deviation for each class.

To assist in the decision making process, the results
for each class were tabulated for both (EWT-LSSVM)
and (MODWPT-LSSVM). The Table 3 present a more
comprehensive details of the performance of each class,
which makes it clearer, which combination is optimal to
achieve the desired result.

To validate results obtained from the previous table
that LSSVM-MODWPT is the better combination for
achieving high classification accuracy and stability com-
pared to EWT-LSSVM. The detailed analysis of eight
conditions states, as showing from confusion matrix
that LSSVM-MODWPT consistently outperforms
EWT-LSSVM for different states of air-compressor.

Moreover, as illustrated, form the Figure 4 the accu-
racy of each class is successfully predicted with higher
percentage ranges between 96.6% and 100%. This indi-
cates that the degree of fault differentiation in the same
class mode versus the other class fault modes is the
highest. On the other hand, we can see that the std

Figure 3. Acoustic signal decomposition using MODWPT for 16 modes.
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Table 2. Classification results using several classifiers with several signal decomposition techniques.

Used algorithm KNN DT RF ET NB SVM LSSVM

EMD 104 features MAX 70,7407 80,3703 87,4074 84,6296 36,6666 97,4074 99,0740
MIN 64,8148 74,4444 83,1481 79,6296 24,4444 95,3703 96,6666
MEAN 68,3518 76,9629 84,7962 81,9259 30,6296 96,4259 98,3703
STD 1,7512 1,6864 1,3451 1,5815 3,8934 0,8191 0,7240

REMD 104 features MAX 55,0793 71,9841 83,3333 76,2698 51,0317 95,7936 98,1746
MIN 51,0317 63,2539 77,9365 72,5396 34,1269 93,3333 95,7936
MEAN 53,3333 67,3968 79,7222 74,7936 44,3095 94,6587 97,3492
STD 1,2515 2,5224 1,8025 1,3063 4,9539 0,8391 0,8839

VMD 130 features MAX 59,8412 72,6190 86,5873 81,5873 64,0476 97,4603 98,6507
MIN 56,1904 69,0476 80,6349 78,0952 59,1269 95,3174 97,1428
MEAN 58,4285 70,7857 83,8730 80,6190 61,4206 96,2619 97,9126
STD 1,3591 1,0166 1,8776 1,0065 1,71303 0,7542 0,4762

EWT 130 features MAX 61,6666 70,5555 89,8148 83,5185 63,7037 99,2592 99,6296
MIN 56,2962 64,0740 86,2962 79,2592 56,8518 97,2222 98,5185
MEAN 58,9259 68,2407 87,9629 81,1296 60,7962 98,4444 99,0740
STD 1,5635 2,2123 0,9876 1,0813 2,2050 0,6246 0,4000

MODWPT 208 features MAX 88,1481 91,6666 98,1481 97,4074 81,1111 98,8888 100
MIN 82,7777 86,4814 95,7407 95 77,4074 97,2222 99,0740
MEAN 86,2777 89,0185 97,0185 96,4629 79,1111 97,8148 99,5555
STD 1,5406 1,5979 0,7830 0,6843 1,2912 0,6806 0,3724

Table 3. Classification results for each class using EWT and MODWPTwith LSSVM.

Used algorithm Accuracy/class

Healthy Bearing Flywheel LIV LOV NRV Piston Rider belt

EWT—LSSVM MAX 100 100 100 100 100 98,5074 100 100
MIN 94,8717 96,7213 97,4683 93,1506 96,7741 95,5882 94,7368 98,3870
MEAN 97,3904 99,5332 99,1415 96,8456 99,3393 97,3222 98,2819 99,6998
STD 1,3696 1,0801 0,9971 2,0789 1,1444 1,1563 1,8685 0,6350

MODWPT—LSSVM MAX 100 100 100 100 100 100 100 100
MIN 100 98,6301 97,1428 96 96,7213 100 98,3606 96,5517
MEAN 100 99,8630 98,5432 99,3101 99,4108 100 99,8360 99,5102
STD 0 0,4331 1,1359 1,4773 1,0910 0 0,5184 1,1349

Figure 4. Classification results using MODWPT-LSSVM versus EWT-LSSVM.
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stability in the damage cases (flywheel) and (Rider belt)
is 1.1359, 1.1349 respectively.

We observed that, while achieved the best accuracy
classification result, the stability classification results
for each class can be significantly different.

For that reason, to improve rating of accuracy and
stability simultaneously for each class, the feature selec-
tion techniques can be used to identify the most rele-
vant features.

Processed data with optimization methods. To overcome the
previous results, the optimization step is suggested to
identify the appropriate components and remove the
irrelevant alternatives. Therefore, to improve the robust-
ness and efficiency of the proposed model, a comparison
was made between several optimization algorithms
(GNDO, MRFO, GA, SMA, ABC, and HHO) to
identify the subset of features that provide the highest
classification accuracy and also the best stability.

With the implementation of feature selection tech-
niques with previous optimization algorithms, the
LSSVM-MODWPT model can be homogeneity and
improved. This Refinement lead to even higher classifi-
cation accuracy and more stability, which can make the
LSSVM-MODWPT combination a more powerful tool
for classification tasks in various fields.

As we can see from this table that, the best results
obtained after optimization step and can be considered
as valuable information for future experiments to
improve the performance of the classifier. The results
presented in the Table 4 indicate a clear improvement
in classification accuracy and stability through the suc-
cessful application of optimization algorithms on the
LSSVM classifier.

An important observation in this table is the varia-
tion in the standard deviation values, where lower values
signify more stability in the classification. These results
highlight the crucial role of optimization techniques in
order to facilitate reliable and accurate classification
results with the LSSVM classifier.

In order to identify the optimal results obtained
among different optimization algorithms, a detailed
study of four key measurements (mean, max, min, and
standard deviation) was implemented for each class. By
analyzing these metrics, we can obtain a thorough
understanding of the performance of the LSSVM clas-
sifier and identify the most efficient optimization algo-
rithm for each class. The inclusion of these four metrics
facilitates a more thorough evaluation of the classifier’s
performance, allowing us to make informed decisions
regarding the optimization process.

It is clear from the results presented in the Table 5
that the HHO optimization algorithm significantly out-
performs the other optimization algorithms in terms of
the four key measurements - mean, max, min, and stan-
dard deviation—for each class. This leads to the con-
clusion that the HHO algorithm is the most effective
approach to optimizing the performance of the LSSVM
classifier, as it consistently provides the best results on
all four measurements for each class.

To carry out an evaluation of the fault recognition
capability of the proposed method for eight different
fault modes, a set of fault predictions on eight fault
modes of the test set is performed. The confusion
matrix of the prediction results is shown in Figure 5.

It can be observed from figure LSSVM-HHO that,
the huge majority of samples for eight fault modes (pro-
posed approach) are successfully predicted with higher
percentage ranges between 98.5 % and 100%. This
means that the degree of fault differentiation in the
identical class mode from other class fault modes is the
highest.

We concluded the optimization algorithm that gives
the best overall performance for the LSSVM classifier,
allowing us to improve its performance and reliability.

Conclusion

The comprehensive exploration of feature selection has
unequivocally demonstrated its pivotal role in elevating
the accuracy and stability of fault classification. This

Table 4. Classification results using several optimization algorithms with MODWPT signal decomposition method.

OPT algorithm Max ACC Min ACC Mean ACC Stability Std No. of selected features

GNDO 99.6296 99.4444 99.5 0.08945 96/208
MRFO 99.8148 99.4444 99.5925 0.1171 47/208
HHO 100 99.6296 99.7593 0.125 23/208
GA 100 99.6296 99.8518 0.146 53/208
SMA 100 99.4444 99.6852 0.1962 2/208
ABC 100 99.2593 99.6481 0.2038 84/208
PSO 99.8148 99.2593 99.6296 0.2469 86/208
CS 100 99.0741 99.5 0.2767 79/208
ASO 100 99.2593 99.6296 0.2895 89/208
EO 100 99.074 99.574 0.303 21/208
MPA 99.4444 98.5185 98.9074 0.3202 71/208
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enhancement is particularly evident when assessing clas-
sification outcomes across distinct fault classes, further
emphasizing the significance of this strategic inclusion.
Notably, our investigation underscores the prominence
of the MODWPT-LSSVM fusion as an exceptionally
effective approach for fault classification, surpassing
alternative methods. Equally compelling is the discov-
ery of the HHO-LSSVM-MODWPT optimization
algorithm as the optimal strategy for bolstering both
classification stability and accuracy, reaffirming its pro-
found impact on fault diagnosis. The implications of
these findings reverberate across industries reliant on
air compressors, promising tangible benefits for mainte-
nance practices and operational efficiency. By offering
a dependable means of detecting and classifying faults,
our proposed approach holds the potential to revolutio-
nize maintenance regimes, mitigate operational risks,
and optimize resource utilization. Moreover, this study

transcends immediate applications, igniting the spark
for future advancements in signal processing. The hori-
zon of signal processing now beckons toward innova-
tive optimization algorithms and signal processing
techniques, poised to enhance not only air compressor
systems but also broader domains of industrial automa-
tion and predictive maintenance. The groundwork laid
by this research nurtures the fertile soil for burgeoning
developments, propelling decision-making efficiency to
new heights in diverse applications.

In summation, our investigation unfurls a new chap-
ter in the realm of signal processing methodologies for
air compressor fault detection, particularly in the context
of acoustic signal diagnosis. With its multidimensional
implications, this study encapsulates a transformative
approach that bridges academia and industry, thus illu-
minating a path towards more dependable, efficient, and
proactive fault diagnosis strategies.

Table 5. Classification results for each class using several optimization algorithms.

Used algorithm Modwpt—
LSSVM 208

Modwpt ABC
LSSVM 84 S.F

Modwpt HHO
LSSVM 23 S.F

Modwpt SMA
LSSVM 2 S.F

Modwpt
GA 53 S.F

Modwpt
MRFO 47 S.F

Modwpt
GNDO 96 S.F

Accuracy/stability
Healthy MAX 100 100 100 100 100 100 100

MIN 100 98,5074 100 100 100 100 98,5074
MEAN 100 98,8059 100 100 100 100 98,8059
STD 0 0,62930 0 0 0 0 0,62930

Bearing MAX 100 100 100 100 100 100 100
MIN 98,6301 100 100 100 100 98,5294 98,5074
MEAN 99,8630 100 100 100 100 99,8529 99,8507
STD 0,4331 0 0 0 0 0,4650 0,4719

Flywheel MAX 100 100 100 100 100 100 100
MIN 97,1428 100 98.5075 100 98,5294 100 98,5074
MEAN 98,5432 100 98.6567 100 99,7058 100 99,8507
STD 1,1359 0 0.4720 0 0,6200 0 0,4719

LIV MAX 100 100 100 100 100 100 100
MIN 96 100 100 100 100 98,5074 98,5294
MEAN 99,3101 100 100 100 100 99,8507 99,4117
STD 1,4773 0 0 0 0 0,4719 0,7594

LOV MAX 100 100 100 100 100 100 100
MIN 96,7213 98.5075 98.5294 100 98,5074 98,5294 98,5074
MEAN 99,4108 99.2537 99.4118 100 99,4029 99,5588 98,9552
STD 1,0910 0.7866 0.7594 0 0,7707 0,7103 0,7209

NRV MAX 100 100 100 100 100 100 100
MIN 100 98.5294 100 95,5223 98,5294 97,0149 98,5294
MEAN 100 99.8529 100 97,4626 99,7058 98,3582 99,5588
STD 0 0.4650 0 1,5811 0,6200 1,1012 0,7103

Piston MAX 100 100 100 100 100 100 100
MIN 98,3606 97,0588 100 100 100 98,5294 98,5294
MEAN 99,8360 99,2647 100 100 100 99,1176 99,5588
STD 0,5184 1.0399 0 0 0 0,7594 0,7103

Rider belt MAX 100 100 100 100 100 100 100
MIN 96,5517 100 100 100 100 100 100
MEAN 99,5102 100 100 100 100 100 100
STD 1,1349 0 0 0 0 0 0
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