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Computer numerical control
machine tool wear monitoring
through a data-driven approach
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Abstract
The susceptibility of tools in Computer Numerical Control (CNC) machines makes them the most vulnerable elements
in milling processes. The final product quality and the operations safety are directly influenced by the wear condition. To
address this issue, the present paper introduces a hybrid approach incorporating feature extraction and optimized
machine learning algorithms for tool wear prediction. The approach involves extracting a set of features from time-series
signals obtained during the milling processes. These features allow the capture of valuable characteristics relating to the
dynamic signal behavior. Subsequently, a feature selection process is proposed, employing Relief and intersection feature
ranks. This step automatically identifies and selects the most pertinent features. Finally, an optimized support vector
machine for regression (OSVR) is employed to predict the evolution of wear in machining tool cuts. The proposed
method’s effectiveness is validated from three milling tool wear experiments. This validation includes comparative results
with the Linear Regression (LR), Convolutional Neural Network (CNN), CNN-ResNet50, and Support Vector
Regression (SVR) methods.

Keywords
Predictive maintenance, CNC machines, tool wear monitoring, machine learning, OSVR

Date received: 18 September 2023; accepted: 11 January 2024

Handling Editor: Chenhui Liang

Introduction

Prognostic and health management (PHM) has
attracted a considerable amount of attention due to the
challenges involved and the development of fault detec-
tion, diagnosis and prognosis. Intelligent technologies
are applied to solve classification and regression prob-
lems with improved recognition and performance. For
future machine health prediction, different signal pro-
cessing, feature extraction, and artificial intelligence
(AI) techniques have been developed to ensure human
safety and system reliability.1–4 Degradation in dynamic
systems state is a completely normal (inevitable) phe-
nomenon, since such systems operate constantly under
severe conditions and in continuous (repetitive) tasks.5,6

Therefore, a fault presence is a matter of component
operating time. The objective in this domain is to
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monitor the system’s condition (to detect and diagnose
any occurring defects) and, more importantly, to track
the fault’s evolution for an accurate estimation of the
component’s future condition.

In today’s manufacturing systems, tool wear evolu-
tion refers to the progressive deterioration and changes
that occur in the cutting tool’s condition over time,
while performing machining tasks. During the cutting
process, the tool is subjected to various mechanical and
thermal stresses, leading to material degradation and
wear. Initially, tool wear may be minimal, but friction
and abrasion progressively wreak havoc as the tool
interacts with the workpiece, causing progressive dete-
rioration. As tool wear progresses, cutting edges may
become rounded, reducing the machined part’s preci-
sion and surface quality. Monitoring and understand-
ing tool wear evolution are crucial in machining
operations to optimize tool life, maintain product qual-
ity, and enhance process efficiency through timely tool
replacements or adjustments. Employing advanced tool
materials and coatings, as well as implementing effec-
tive cutting strategies, are essential for mitigating the
impact of tool wear in modern manufacturing pro-
cesses. It is therefore necessary to monitor and predict
cutting tool wear to avoid component deterioration
and rejected products.7

Basically, for tool wear monitoring (TWM), three
main methods are introduced: physics-based models,
data-driven based models and hybrid models. In
physics-based models, the physical phenomenon can be
expressed in a mathematical degradation model or
defects propagation. However, it is very difficult to
express a non-linear function which must correspond
to a very important system knowledge. In data-driven
models, prediction is based on historical data. Such
models are widely used, as no detailed knowledge of
the monitored components is required. The machines
are equipped with sensors and data collection systems
that continuously gather information during the
machining process. Above all, it generates very satisfac-
tory results with the integration of artificial intelligence
(AI) tools as a very powerful learning tool. In hybrid
methods, physics and data-based models are implemen-
ted to model the tool failure function.8,9 However, this
method requires a deep background knowledge and
some models are not upgradeable with online data,
which limits their application.10

In the last decade, researchers have focused on the
development of AI techniques, which has led to an
increased focus on innovation ideas. Numerous studies
have presented new health indicators (HI) for better
extraction of monitored components.11,12 The main
problem with these improvement indicators is that their
applicability is very limited to certain signals, and it is
not possible to generalize this kind of indicator to other
signal categories (temperature, acceleration, acoustics,

etc.) under high noise background. The TWM process
is based primarily on feature extraction, using various
advanced signal processing techniques to isolate defects
from noise. Several approaches for signal decomposi-
tion, including empirical mode decomposition (EMD).
EMD decomposes complex data into intrinsic mode
functions (IMFs) using a filter that adapts to the signal.
Although the summation of these IMFs provides the
same information as the original vibration signal but at
different frequency levels, EMD has two main draw-
backs: mode mixing and inaccuracies in instantaneous
values. To address these issues, the improved EMD
(EEMD) introduces finite amplitude white noise to the
raw signal during decomposition, and this process is
repeated with several sets of white noise to obtain aver-
aged IMFs, reducing the risk of mode mixing and
improving accuracy.13–17

The biggest challenge in vibration signal monitoring
is the real background noise, often covering fault signa-
tures and making complex signals harder to analyze.
Local mean decomposition (LMD) was introduced as
an alternative method, decomposing non-stationary
signals into product functions (PFs) that consist of sig-
nal envelopes and frequency-modulated (FM) signals.
Unlike the EMD, LMD requires fewer iterative decom-
positions and can immediately produce instantaneous
frequency modulated (FM) and instantaneous ampli-
tude (AM) without Hilbert transform (HT). However,
LMD also shares limitations with EMD, including
mode mixing and end effect. To address these issues,
researchers proposed the Robust LMD (RLMD),
which optimizes the parameter selection process by
integrating boundary conditions, envelope approxima-
tion, and stopping criteria sifting. Unlike previous stud-
ies that focused on individual parameters separately,
RLMD employs three algorithms for optimization and
uses a heuristic solution to automatically determine the
optimal number of sieving iterations in the process.18

This enhanced approach considers both global and
local features of the target signal, aiming to improve
the performance of LMD in monitoring complex vibra-
tion signals more effectively.19,20

The major issue with big data for online monitoring
lies in efficiently handling the continuous data influx,
improving accuracy and reducing the time required for
analysis. The integration of signal processing techniques
can directly impact the results’ accuracy, especially con-
sidering the input signal diversity, such as vibration,
current, acoustics, temperature, etc. Therefore, research
in this area focuses on the machine learning aspect, in
particular on developing and extracting a robust and
satisfactory model.21–23 To address this, researchers
concentrate on feature selection and engineering to
identify relevant information from the varied input sig-
nals.24,25 Real-time model training is also indispensable
for constantly adapting the model as new data appears.

2 Advances in Mechanical Engineering



Furthermore, the model’s scalability to handle large
data sets and its ability to handle data imbalance are
key considerations. The research aims to achieve model
interpretability, enabling a better understanding and
reliability of the model’s predictions.26,27

Deep Learning (DL) methods have gained promi-
nence in Prognostics and Health Management
(PHM),28 including Tool Wear Monitoring (TWM).
The research efforts reflect a proactive exploration of
DL’s potential, with various studies highlighting
advantages, discussing opportunities, and addressing
challenges. Rezaeianjouybari et al.29 introduced a DL-
based PHM framework, emphasizing its capabilities.
As DL evolves, diverse network types are emerging to
address the specific PHM requirements. Zhang et al.30

proposed a compact Convolutional Neural Network
(CNN) to mitigate overfitting, enhancing model gener-
alizability for fault diagnosis. Wen et al.31 utilized a
residual CNN for estimating equipment remaining use-
ful life, leveraging residual connections for efficient
learning of complex patterns.32 Explores tool condition
monitoring in machining, collecting data on cutting
force, vibration, and surface texture. Signal processing
techniques extract time-domain, frequency domain,
and time-frequency features. Gray level processing
reveals synchronous changes in surface texture features
during cutting tool breakage. Subsequently, an intelli-
gent tool wear prediction model is constructed using
support vector regression (SVR), with kernel function
parameters optimized through grid search, genetic
algorithm, and particle swarm optimization.33

Cai et al.34 achieved progress in tool condition moni-
toring through a Stacked Bidirectional Long-Short
Term Memory Network (SBiLSTM), effectively captur-
ing temporal dependencies and improving monitoring
accuracy, especially for varying conditions. However,
as data structures become more complex, a singular net-
work type may prove insufficient. To address this,
researchers explore advanced DL architectures, incor-
porating multiple neural network types and attention
mechanisms to handle complex, multidimensional
information. Ensembling techniques, combining differ-
ent network architectures, are also being explored to
enhance overall model performance by leveraging indi-
vidual strengths.

Support Vector Machines (SVM) and Deep
Learning (DL) are powerful machine learning tech-
niques, each with distinct advantages. SVM offers
training efficiency, simplicity and interpretability mak-
ing it well suited to small datasets and scenarios in
which understanding the model’s decision is crucial. It
handles outliers more effectively and requires less data
to be efficient. SVM’s explicit feature engineering
through kernel functions enhances its capability to
capture non-linear relationships.35 On the other hand,
DL excels in complex, high-dimensional data,

automatically learning intricate patterns without man-
ual feature engineering. It thrives on abundant data
and has achieved remarkable success in image
recognition, natural language processing, and speech
recognition.

Support vector regression (SVR) represents the algo-
rithm’s basic implementation, suitable for simple
regression tasks with linearly separable data. It is
designed to find an optimal hyperplane within a prede-
fined margin which best fits the training data. However,
its performance may be restricted in complex or non-
linear regression problems, requiring feature engineer-
ing or kernel transformation. The conventional SVR
model’s inherent transparency and control require a
thorough grasp of the algorithm, allowing for manual
fine-tuning of hyperparameters based on domain exper-
tise. However, this method faces challenges in terms of
computational intensity, especially when dealing with
large datasets or complex kernel functions.36

The Optimized SVR (OSVR) is an advanced version
that incorporates various techniques to address those
drawbacks and boost performance.37 It includes using
different kernels for nonlinear regression, adjusting
hyperparameters to improve generalization and utiliz-
ing model selection techniques for optimal parameter
configuration.38 OSVR implemented capitalizes on effi-
ciency and optimization, harnessing optimized func-
tions for faster training. The automatic hyperparameter
tuning streamlines the modelling process, potentially
enhancing predictive performance.39 Additionally, it
provides a parallel computing support and facilitating
preprocessing tasks. OSVR excels in handling non-
linear regression tasks and complex datasets, offering
enhanced predictive accuracy and robustness.36

Consequently, this paper presents an innovative
approach that leverages optimized machine learning
algorithms to predict tool wear in machining processes.
The proposed method involves several essential stages.
First, it extracts a set of features from time-series sig-
nals. Next, it integrates an automatic feature selection
process, utilizing Relief and intersection feature ranks
to automatically select the most relevant features.
Finally, an optimized support vector machine is utilized
to forecast the wear evolution in cutting tools.

The present manuscript is organized as follows:
Section ‘‘Mathematical background’’ introduces the fun-
damental methodologies encompassing feature extrac-
tion, automatic feature selection and OSVM. The
proposed method framework is outlined in section
‘‘Proposed approach methodology,’’ followed by the
experimental study presentation in section ‘‘Experimental
setup of CNC machine tool wear.’’ The proposed meth-
od’s application results are presented in section ‘‘Results
and discussion,’’ followed by the study’s conclusions in
section ‘‘Conclusion’’ and future work in section ‘‘Future
work.’’
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Mathematical background

Feature extraction

In signal analysis, scalar feature extraction involves
examining the signal to obtain numerical parameters
that characterize different aspects of time series sig-
nals.40 These features serve as essential inputs for a
variety of analyses, including fault detection, condition
monitoring, and machine learning algorithms. Some
scalar features commonly used in vibration signal anal-
ysis are listed below41:

1. Mean: This represents the average value of the
vibration signal, providing an indication of its
central tendency.

Xmean =
1

n

Xn

i= 1

xi ð1Þ

2. Standard deviation (SD): A measure of the
dispersion or spread of the signal values around
the mean, offering insights into its variability.

XSD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i= 1

xi � �x½ �2
s

ð2Þ

3. Skewness (Skw): This feature quantifies the
asymmetry of the signal distribution, helping to
identify any skewed patterns.

XSkw=

Pn
i= 1 xi � �x½ �3

n� 1½ �X 3
SD

ð3Þ

4. Kurtosis (Kur): Describing the shape of the
signal compared to a normal distribution, kurto-
sis indicates whether it is peaked.42

XKur =

Pn
i= 1 xi � �x½ �4

n� 1½ �X 4
SD

ð4Þ

5. Peak to peak (P2P): P2P indicator is a measure
in signal processing that represents the ampli-
tude difference between the maximum positive
and maximum negative peaks in a signal or
waveform. It provides information about the
overall range or magnitude of the signal.

Xp2p = max xið Þ �min xið Þ ð5Þ

6. Variance (Var): Variance is the average of the
squared differences from the mean of a values
set. It quantifies the amount of variability or
scatter in the data. A higher variance indicates
greater variability in the data which indicates a
faulty state in acquired signal.

X
1

n

Xn

i= 1

xi � �xð Þ2 ð6Þ

7. Root Mean Square (RMS): The RMS provides
a measure of the effective or root mean square
value of a signal, it is particularly useful for
quantifying the amplitude of varying signals.

XRMS =
1

n

Xn

i= 1

xið Þ2 ð7Þ

Automatic feature selection

Relief feature selection is a technique used in both clas-
sification and regression tasks. It selects relevant fea-
tures from a dataset by evaluating their importance in
distinguishing instances in the feature space. The
method involves comparing each instance with its near-
est neighbours and computing feature importance
scores based on the differences in feature values. The
top-k features with the highest scores are then selected
for building the predictive model, leading to improved
performance and reduced dataset dimensionality.43

A brief overview of relief feature selection is given
below:

1. Nearest Neighbor Approach: For each instance
in the dataset, Relief compares its feature values
with those of its nearest neighbors from the sim-
ilar target values (for regression). The number
of nearest neighbors is a parameter that must be
specified using the following equation:

Wi =
1

k

Xk

j= 1

yi � y near�hit½ �j
�� ��� 1

l

Xl

j= 1

yi � y near�miss½ �m
�� ��

ð8Þ

- Where Wi represents the weight assigned to the i-
th feature.

- yi is the target value for the i-th instance.
- y[near-hit]j is the target value of the j-th instance

among the k nearest instances with similar fea-
ture values to the i-th instance.

- y[near-miss]m is the target value of the m-th instance
among the l nearest instances with dissimilar fea-
ture values to the i-th instance.

2. Feature Importance Scores: Relief computes an
importance score for each feature based on the
differences between the feature values of the
instance and its nearest neighbors. These feature
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scores indicate how much they correlate with
the target variable (regression).

3. Selecting Top Features: Once the importance
scores of all the features have been calculated,
the top-k features with the highest scores accord-
ing to fixed threshold (Thresholdrank=0.5).

In our research, a comprehensive feature selection
strategy is used to improve the robustness and generaliza-
tion capabilities of our predictive models. This approach
involves the use of three distinct learning method types
(C14, C16, and C46), using various machine learning
algorithms or models (Figure 1).

First, each of these learning methods is applied inde-
pendently to our dataset. For each method, specific fea-
ture selection criteria or techniques are used to identify
the most relevant features.

Next, the intersection of the ranking of features
selected by the three learning methods is performed. This
step allows to isolate the subset of features that are con-
sistently important in the different learning techniques.
These selected features are referred to as ‘‘stable fea-
tures’’ and ensure that the predictive models are based
on the most significant and reliable information, thereby
enhancing their performance and accuracy. Secondly,
this approach is used to avoid the data over-fitting issue,
which can affect estimated TWM results.

Optimized support vector regression

The optimization problem described can be solved
more easily in its Lagrange dual formulation. The solu-
tion to the dual problem provides a lower bound for
the solution of the primal problem. However, the opti-
mal values of the primal and dual problems may differ,
creating a ‘‘duality gap.’’ In convex problems satisfying
a constraint qualification condition, the optimal solu-
tion of the primal problem can be determined by sol-
ving the dual problem.44 To obtain the dual formula
(L), a Lagrangian function is constructed from the pri-
mal function, introducing nonnegative multipliers for
each observation. The goal is then to minimize this
dual formula.

L að Þ= 1

2

XN

i= 1

XN

j= 1

ai � a�i
� �

aj � a�j

� �
xi

0
xj + e

XN

i= 1

ai +a�i
� �

+
XN

i= 1

yi a�i � ai

� �
ð9Þ

In nonlinear SVM regression, the dual formula replaces
the inner product of the predictors (xi, xj) with the cor-
responding element of the Gram matrix (gi, j). The goal
of nonlinear SVM regression is to find the coefficients
that minimize a certain objective function.45

Figure 1. Feature selection steps.
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L að Þ= 1

2

XN

i= 1

XN

j= 1

ai � a�i
� �

aj � a�j

� �
G xi, xj

� �

+ e
XN

i= 1

ai +a�i
� �

+
XN

i= 1

yi a�i � ai

� � ð10Þ

Subject to

8n : 0 ł an ł C, 8n : 0 ł a�n ł C :
XN

n= 1

an � a�n
� �

= 0

ð11Þ

The function used to predict new values f(x) in non-
linear SVM regression is typically equal to:

f xð Þ=
XN

n= 1

an � a�n
� �

G xn, xð Þ+ b ð12Þ

The minimization problem in nonlinear SVM regres-
sion can be expressed in the standard quadratic pro-
gramming form and solved using common quadratic
programming techniques. However, the computational
cost can be high, especially when dealing with large
Gram matrices that cannot fit into memory. To over-
come this, decomposition methods, also known as
chunking and working set methods, can be employed.

Decomposition methods involve dividing the obser-
vations into two separate sets: the working set and the
remaining set. By modifying only the elements within
the working set during each iteration, these methods
reduce the storage requirements. This is achieved by uti-
lizing only a subset of columns from the Gram matrix
in each iteration.

One popular approach for solving SVM problems,
including nonlinear SVM regression, is the sequential
minimal optimization (SMO) method. SMO performs
a series of two-point optimizations. In each iteration, a
working set of two points is chosen based on a selection
rule that incorporates second-order information. The
Lagrange multipliers for this working set are then ana-
lytically solved using a specific approach described in
Fan et al.46,47

In SVM regression, the gradient vector (rL) for the
active set is updated after each iteration. The decom-
posed equation for the gradient vector can be expressed
as follows:

8L½ �n =

XN

i= 1

ai � a�i
� �

G xi, xnð Þ+ e� yn, n ł N

XN

i= 1

ai � a�i
� �

G xi, xnð Þ+ e+ yn, n.N

8>>>><
>>>>:

ð13Þ

Figure 2. Diagram of proposed approach.
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The iterative single data algorithm (ISDA) is an
approach in which one Lagrange multiplier is updated
in each iteration.48 ISDA is commonly used without
the bias term, denoted as b, by incorporating a small
positive constant, typically denoted as a, into the kernel
function. By omitting the bias term, the constraint
related to the sum of Lagrange multipliers is no longer
considered. XN

i= 1

ai � a�i
� �

= 0 ð14Þ

Each of the solver algorithms iteratively computes until
a specific convergence criterion is satisfied. There are
several options for convergence criteria, including:

- After each iteration, the software assesses the fea-
sibility gap. If the feasibility gap is found to be
smaller than the specified value defined by Gap
Tolerance (GT), then the algorithm has satisfied
the convergence criterion. At this point, the soft-
ware returns a solution. The feasibility gap refers
to the measure of how close the current solution
is to satisfying all constraints and optimality con-
ditions. By comparing the feasibility gap against
the GT threshold, the algorithm determines
whether the solution has converged adequately.

D=
J bð Þ+ L að Þ

J bð Þ+ 1
ð15Þ

- After each iteration, the software evaluates the
gradient vector (rL). It checks whether the dif-
ference in the gradient vector values between the
current iteration and the previous iteration is
smaller than the specified value defined by delta
gradient tolerance (DGT). If this condition is
met, the algorithm is considered to have satisfied
the convergence criterion, and the software
returns a solution. The DGT criterion ensures
that the gradient vector has converged suffi-
ciently, indicating that the optimization process
has reached a stable point.

- After each iteration, the software calculates the
karush-kuhn-tucker (KKT) violation for all the an

and a�n values. It checks whether the largest viola-
tion among these values is smaller than the speci-
fied threshold defined by KKT tolerance. If this
condition is met, the algorithm is considered to
have satisfied the convergence criterion, and the
software returns a solution. The KKT violation
measures the extent to which the KKT conditions,
which characterize optimality in constrained opti-
mization problems, are violated. By comparing

the largest violation against the KKT tolerance
threshold, the algorithm determines whether the
solution has converged adequately.

Evaluation criteria

Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) are both widely used performance metrics
for evaluating regression models in machine learning.
They provide a measure of how well the model’s predic-
tions match the actual target values. However, there are
some differences between these two metrics49:

� The RMSE calculates the square root of the
average of the squared differences between the
predicted values and the actual target values. By
squaring the errors before averaging them,
RMSE gives higher weight to larger errors, mak-
ing it more sensitive to outliers compared to
MAE. RMSE also has the advantage that it rep-
resents the standard deviation of the prediction
errors, which is useful for understanding the
spread of the errors. However, because of the
squaring operation, RMSE penalizes large errors
more heavily, which might not be desired in cer-
tain applications.

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i= 1

ŷ� yð Þ2
vuut ð16Þ

� MAE measures the average absolute difference
between the predicted values and the actual tar-
get values. It provides a simple and interpretable
metric that directly represents the magnitude of
the prediction errors. MAE is less sensitive to
outliers since it considers the absolute values of
the errors, which means that large errors do not
have a disproportionately large impact on the
overall metric. However, MAE does not penalize
larger errors as strongly as RMSE does, which
can be a drawback if you want to give more
weight to larger errors.

MAE=
1

N

XN

i= 1

ŷ� yj j ð17Þ

Where, ŷ is the output generated by the model, while y

is the target (goal) of input data. N is the length samples
data.

Proposed approach methodology

The proposed methodology comprises essentially three
parts as shown in Figure 2:
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(a) Feature extraction: The initial phase involves
the extraction of a diverse features set from
time-series signals obtained during milling
processes. This meticulous process captures
essential characteristics reflecting the dynamic
signals behavior. These features serve as crucial
input variables for subsequent analyses, provid-
ing a nuanced understanding of the underlying
patterns in the machining data.

(b) Feature selection: Following feature extraction, a
refined feature selection process is introduced.
This process is characterized by its meticulous
nature and employs Relief and intersection fea-
ture ranks (described in section ‘‘Automatic fea-
ture selection’’). By doing so, the approach
automatically identifies and prioritizes the most
relevant features among the extracted set. This
strategic selection ensures that only the most
informative features contribute to the subsequent
modeling, optimizing the analysis efficiency and
effectiveness.

(c) ML regression: The final phase integrates an
optimized support vector machine into the
machine learning regression framework
(described in section ‘‘ Optimized support
vector regression’’). This sophisticated
algorithm is specifically tailored to predict the
wear evolution in machining tool cuts.

Experimental setup of CNC machine tool
wear

The data set corresponds to a computer numerical con-
trol (CNC) cutting tool is introduced in the prognosis
and health management (PHM) challenge provided by
Simtech Institute in Singapore.50 The experimental
setup consists of six cutter tools used to cut an identical
piece over identical cycle. Total cycles number is equal
to 315, in which a cycle represents a single cutting oper-
ation of a workpiece (315 cuts). Table 1, shows the
detail of CNC cutting tool.

Figure 3 shows the experimental set-up platform. A
microscope was used after each cut to measure tool
flank wear, and these values are taken as target sam-
ples. A tri-component force transducer was installed
between the workpiece and the machining table to mea-
sure cutting force, while the acceleration and acoustic
emission sensors are mounted on the workpiece to col-
lect vibration and acoustic emission signals using a
National Instrument (NI) PCI1200 card with a sam-
pling frequency of 50 kHz. The signals collected are
then amplified using a Kistler multi-channel load.51

The data for a single cut contains the measured wear
value for the target and the seven signals collected for

the inputs, of which the first three signals are the X, Y
and Z dimensions of the force (N), the second three sig-
nals X, Y and Z of the vibration (mm/s2) and the last
for the acoustic emission (V). Only three out of six
milling cutters (C1, C4, and C6) are labelled with a
wear measurement.

The wear of each individual flute was assessed
through manual inspection utilizing an optical micro-
scope (LEICA MZ12). The elements of CNC machines
and tool degradation are presented in the Figure 4.

In the context of our research, Figure 5 illustrates
the process through which experimental data is system-
atically acquired. This particular illustration provides
an overview of the sequential steps and methodologies
involved in collecting essential information for our
study. Additional information regarding the material
of cutters and experimental specifications can be found
in reference.52

Results and discussion

The tool wear of the three cutters (C1, C4, and C6) are
measured from the degraded blade after each cutting
operation in three different flutes (Figure 6). The black
curve represents the average of the degraded flute wear.

Table 1. CNC machine tool parameters.

Sampling frequency 50 kHz

Spindle speed 10,400 rpm
Feed speed 1555 mm/min
Radial cutting depth 0.125 mm
Axial cutting depth 0.2 mm

Figure 3. Experimental setup.
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The average is used to estimate the overall average wear
degradation on any material type. The objective of this
study is to avoid incorporating material characteristics
into the AI-based prediction model.

Figure 7 illustrates wear degradation within the cut-
ting tool process. In this display, the specific values
associated with wear degradation are presented as a tar-
get, facilitating recognition and understanding within
the model framework.

Table 2 provides the data size, with the training set
comprising 630 samples from the two cutting machines:
C1–C4 for case 1, C1–C6 for case 2 and C4–C6 for case
3. Meanwhile, the test set consists of 315 samples
distributed as follows: C6 for case 1, C1 for case 2 and
C4 for case 3.

A specific feature set is subsequently derived from
the first six signals. These features play a crucial role in
capturing the distinct characteristics of defect degrada-
tion. Using these features, the objective is to closely
monitor the evolution and propagation of wear in cut-
ters. This analytical approach allows a comprehensive
understanding of wear progress as a function of the cut
number, and how it propagates through the machine
components.

Figure 8 illustrates a set of features extracted from
the input signals of three distinct cutters: C1, C4, and
C6. These features, characterized by their monotonic
behavior, serve as effective indicators for monitoring
wear degradation. Among these indicators, those with
the highest correlation with outputs are considered

Figure 4. (a) The workpeace and cutter and (b) cutter degradation after 315 cuts.51

Figure 5. Platform of experimental data acquisition.10

Gougam et al. 9



particularly valuable. From the Figure 8, it is clear that
the main extracted features exhibit a monotonic trend.
The standard deviation (STD) of the initial signal is
particularly noticeable, while the other features are
unnoticed due to their extremely low values. These val-
ues are derived from signals 1 to 6.

The obtained feature matrices consist of three initial
matrices, each containing 315 rows and 42 columns,
and these matrices are divided between the three scenar-
ios or cases mentioned above. These three matrices are
subsequently fused in the feature selection section, in
order to select only those features relevant to the predic-
tion of cutter wear degradation. The regression relief
function is used to select the optimal features based on
the correlated inputs–outputs for each individual case.
This is achieved by selecting features that are consistent
across the corresponding cases. This selection process is
crucial for establishing normalization among the chosen
features, guaranteeing uniform representation across all
scenarios. This approach allows prioritizing features
that demonstrate stability and reliability in distinct sce-
narios, reinforcing our analysis’s robustness.

The selected features serve as inputs for our
optimized vector regression (OSVR), and the wear

Figure 6. Wear degradation flutes of three cutters.

Figure 7. Averaged wear degradation of three cutters.

Table 2. Details of splitted data.

Case
number

Training
set

Sample
size

Testing
set

Sample
size

Case 1 C1, C4 630 C6 315
Case 2 C1, C6 630 C4 315
Case 3 C4, C6 630 C2 315

10 Advances in Mechanical Engineering



prediction results are depicted in Figure 9. In this fig-
ure, a good prediction can be observed for monitoring
the defect evolution and preventing part damage for
the three cutters evaluated: C1, C4, and C6. Further
insight into the accuracy of these predictions can be
gained from the data presented in Figure 10, which pre-
sents the associated prediction errors.

Table 3 provides a comprehensive comparison
between our proposed approach to tool wear monitor-
ing and several previous studies.10 The main objective

of this comparison is to evaluate and demonstrate the
effectiveness of our new methodology. The PAWO pre-
sents the proposed approach results without
optimization.

Table 3 clearly indicates a superior level of perfor-
mance achieved through the use of the proposed
approach. This result considerably reinforces the valid-
ity and effectiveness of the steps integrated within our
methodology. The obtained results highlight the perfect
complementarity of the combined elements and steps,
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Figure 8. Features of cutters 1, 4, and 6.

Table 3. Performance of implemented algorithms.

Model Experimental results (mm)

Case 1 Case 2 Case 3

RMSE MAE RMSE MAE RMSE MAE

CNN 22.9 25.3 31.5 24.9 29.4 18.6
LR 19.7 18.0 15.4 13.1 19.1 10.0
PAWO 14.41 11.566 15.12 12.82 16.68 13.795
SVR 12.3 9.3 12.7 10.6 13.3 8.6
ResNet 12.3 10.1 11.7 8.8 13.6 8.9
ResNet-SBILSTM 9.7 7.1 10.9 7.4 14.5 7.4
Proposed methodoly 8.7 7.0 10.1 7.1 10.4 7.3
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Figure 9. Wear estimation output.

Figure 10. Prediction errors.
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reaffirming the robustness and value of the proposed
approach compared to the alternatives presented in the
table.

Conclusion

The proposed approach, using optimized machine
learning algorithms, is a promising solution for predict-
ing tool wear. The process involves two critical steps:
feature extraction and automatic feature selection.
Feature extraction involves identifying relevant indica-
tors and characteristics in the machining data that can
assess the tool wear evolution. Automatic feature selec-
tion based on relief and features intersection for learn-
ing ensures that only the most informative features are
retained, reducing noise, and improving model accu-
racy. The optimized support vector machine is used to
train the wear tool model by introducing the selected
features as inputs. The efficiency of the proposed
approach is demonstrated by the results obtained in
tool wear estimation, comparing favorably to CNN,
LR, SVR, and Resnet-50 with respective values of 8.7,
7.1, and 10.4 for RMSE, and 7.7, 7.1, and 7.3 for
MAE. These results ultimately contribute to the
enhancement of maintenance decision-making for CNC
machines. In overall, this research provides valuable
insights into the data-driven approach applied to CNC
machining and predictive maintenance applications.

Future work

In this study, the data is constrained due to its limited
quantity, and an imbalance in the dataset is observed.
To solve this problem, our future work will investigate
the influence of unbalanced data on machine learning
models and implement strategies to mitigate its impact.
In addition, exhaustive data labeling requires consider-
able human effort and hardware resources. To address
this challenge, our plan is to explore both the potential
of the proposed approach and transfer learning tech-
niques, which have shown promise in solving such
problems.

Furthermore, as part of our methodology, we aim to
integrate emission acoustic signals into predictive wear
analysis, especially considering their limited utilization
in research due to white noise challenges. This integra-
tion will leverage cutting-edge signal processing tech-
niques, enhancing the precision and reliability of wear
prediction without imposing significant execution time
constraints on signal processing tools. By implementing
advanced signal processing methodologies, we antici-
pate a more nuanced and accurate evaluation of wear
patterns, thereby contributing to a comprehensive
understanding of material degradation over time.
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