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ABSTRACT Conventional methods for estimating porosity from core data are often limited by 
their spatial coverage, time-consuming nature, high cost, and inability to capture the 
entire underground reservoir. To address these challenges, this paper proposes a soft 
computing method using an Adaptive Neuro-Fuzzy Inference System (ANFIS) to estimate 
porosity in a conventional gas reservoir. The approach involves integrating well-logging 
data and the ANFIS model with a Particle Swarm Optimisation (PSO) training algorithm to 
predict the underground porosity model in the Hassi R’mel region of the Algerian Sahara. 
The choice of this hybrid method was based on its superior performance compared 
to other models. Although the Hassi R’mel reservoirs are of Triassic clay sandstones, 
originated by the fluviatile depositional environment that lay on top of the Hercynian 
surface, the characterisation of their properties still requires refinement to improve the 
reservoir performance and address the problems faced using appropriate technologies. 
With an average porosity of 15% and permeability ranging from 250 to 650 mD, the 
ANFIS method shows excellent accuracy compared to core data, and a reliability of 85%. 
Overall, the ANFIS-PSO hybrid model proves to be a dependable and efficient technique 
for porosity prediction, surpassing traditional methods.
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1. Introduction

The field of Hassi R’mel, in south Algeria, is one of the most important gas fields in the country 
and is considered a super-productive field (Boote et al., 1998), comprising most of the gas fields. 
The reservoirs of this field are mainly composed of clay sandstones of fluviatile deposits of the 
Upper Triassic. The geological analysis of these reservoirs has shown a porosity ranging from 10% 
to 16%, with a permeability exceeding 200 mD (Sonatrach and Schlumberger, 2007). Although 
this field reached maturity in terms of development long ago, there is still room for implementing 
new technologies, to address the problems of reservoir performance, and improvement.

Porosity estimation is one of the most challenging steps in reservoir characterisation. It is 
a crucial step in the workflow to ensure an optimum description of the state of the oil and gas 
reservoir, which plays a major role in the exploitation of the latter. Usually, due to underground 
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heterogeneity, the process for calculating porosity is empirical. Therefore, it mainly depends on 
the experts’ knowledge of the region and its properties. However, the rise of Machine Learning 
(ML) and soft computing methods, the long, complex nature of the classic methods of porosity 
estimation, as well as the vague relation between the actual porosity and the recordings of well-
logging tools, have pushed researchers to adopt these advanced methods in order to reduce the 
computational cost.

ML is the application of automated methods that mimic human thinking to calculate values 
that are either very complex or take a considerable amount of time to be calculated using the 
conventional method. Most researchers have proposed employing these methods in different 
aspects of reservoir characterisation. Aliouane et al. (2018) proposed using two algorithms for 
permeability prediction: the Backpropagation and the Hidden Weight Optimisation algorithms, 
and the implementation of a Multilayer Perceptron (MLP) Neural Network (NN) with the 
Levenberg-Marquardt algorithm (Aliouane, 2022) for the prediction of clay volume. For the 
prediction of porosity, permeability, and water saturation, Okon et al. (2021) used a Multiple-
Input and Multiple-Output (MIMO) Artificial Neural Network (ANN). Lithology classification had 
its share of applications. Extreme Gradient Boosting and Bayesian Optimisation showed great 
accuracy in identifying formation lithology (Sun et al., 2020). Within the same scope, fuzzy 
clustering showed great potential in lithology classification; its results are as accurate as the 
lithology classes identified using core data (Cherana et al., 2022).

Many scholars saw the value of NNs in petrophysics as early as the 1990s. One of the first 
applications is the Backpropagation Neural Network (BNN) for predicting porosity (Wong et al., 
1995). The use of BNNs continued in the early 2000s and 2010s, to predict both permeability and 
porosity (Helle et al., 2001), and to estimate porosity only using an updated NN version (Singh et 
al., 2016). In 2009, Kraipeerapun et al. (2009) proposed the application of the bagging technique 
to feedforward BNN to predict porosity, and Aliouane et al. (2012) proposed using MLP and Radial 
Basis Function (RBF) to predict porosity permeability and water saturation. Conversely, another 
successful application in achieving reservoir properties from seismic attributes of 3D seismic 
data was proposed by applying Self-Organising Maps (SOMs) to classify reservoir lithology, and 
the backpropagation algorithm to predict porosity (Al Moqbel and Wang, 2011). Within the same 
scope, many comparative studies were performed on the different types of NN, among which 
MLP and RBF (Aliouane et al., 2012), for the prediction of porosity. In addition to ANNs, in the 
past two decades, fuzzy logic had its share of applications in predicting reservoir properties. One 
of the early applications is a linguistic paradigm based on fuzzy logic to predict both porosity and 
permeability (Fang and Chen, 1997). In the first applications of different neuro-fuzzy systems, for 
the prediction of reservoir properties, some authors compared combinations of hybrid systems 
and their advantages (Anifowose et al., 2013). Afify and Hassan (2010) tested the accuracy of a 
neuro-fuzzy system, in which fuzzy logic was applied to obtain the parameters best related with 
the reservoir properties, and NN to predict the properties from the training data.

Recent studies have demonstrated the efficacy of ML applications in geophysics, particularly 
in analysing well-logging and seismic data. For instance, Hadiloo et al. (2018) found that the 
unsupervised Gustafson Kessel method outperformed other methods in accurately detecting 
subtle patterns in seismic facies maps. Similarly, Laudon et al. (2021) utilised a Convolutional 
Neural Network (CNN) and an unsupervised SOM to improve the quality of reservoir structural 
and stratigraphic models by fault detection. Hybrid ML algorithms have also gained popularity 
in petrophysics due to the complexity of reservoir characterisation. Rajabi et al. (2021) and Hu 
et al. (2023) investigated fracture density and fracture porosity evaluations, respectively, and 
proved the benefits of using hybrid and deep learning methods. These studies highlight the 
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importance of using ML techniques in geophysics, and their potential to improve the accuracy 
and efficiency of various tasks.

Despite the recent advancements made in petrophysics, porosity prediction is still one of the 
main tasks in the steps of reservoir characterisation. Many recent works, introducing innovative 
approaches for predicting porosity, have been published. Erofeev et al. (2019) presented a 
comparative study of different ML methods, which are linear regression (simple, with L1 and L2 
regularisation), decision tree, random forest, gradient boosting (two different implementations, 
with and without regularisation), NN, and support vector machines, to compare their predictive 
power. A Particle Swarm Optimisation (PSO) - Support Vector Machine (SVM) method, with an 
integrated approach, was proposed to predict permeability and porosity in a heterogeneous 
dolomite reservoir (Zhang et al., 2021). Deep learning had its share in the application for the 
prediction of different parameters, among which the multilayer long short-term memory 
network (Chen et al., 2020) and a combination of one-dimensional CNN and Bidirectional Gated 
Recurrent unit (Bi-GRu) NN (Wang and Cao, 2021).

The successful applications of the Adaptive Neuro-Fuzzy Inference System (ANFIS) - PSO in 
various domains have convinced us of a promising application in predicting porosity. In their 
paper, Rini et al. (2013) showed the testing of the ANFIS-PSO in three different applications with 
enhanced prediction accuracy and reduced complexity. Shamshirband et al. (2019) proposed the 
application of this method for intelligent monitoring due to its acceptable accuracy in predicting 
mercury emission, which is one of the most perilous environmental contaminations. Another 
successful application was performed by Noushabadi et al. (2020) for estimating cetane numbers 
of biodiesel and diesel oils, where the ANFIS-PSO showed the highest prediction accuracy 
compared to the Nuclear Magnetic Resonance (NMR) model.

What made the ANFIS-PSO combination very useful in this work was the combination of 
the advantages of both methods to obtain a better optimised system. The ANFISs combine the 
advantages of both fuzzy logic and NNs, where the robustness and interpretability of fuzzy logic 
meets the generalisation and computational efficiency of NNs. The PSO enables the optimisation 
and tuning of the ANFIS to fit the data, as it efficiently handles non-linear data without the need 
for gradient data.

In this study, the application of a hybrid system was discussed to better define the relationship 
between the well-logging recordings and the underground porosity for a better prediction of 
the latter. This method is based on a Sugeno fuzzy system combined with BNN and least mean 
square estimation (Abraham, 2005), which is a high-performing system that is computationally 
expensive. To overcome such computational cost, the system is combined with PSO, which also 
guarantees the success of the learning process with an optimal solution, due to its ability to 
prevent the system from being trapped in a local solution, and to distribute the computational 
load on several parallel processors.

2. Theory and methods

The proposed algorithm combines the ANFIS and PSO.

2.1. The Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS is a hybrid combination between a fuzzy system and the node functions of an 
adaptive network. This model is a multilayer feedforward and adaptive network (Jang, 1993). 
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It is an integrated neuro-fuzzy system with the advantage of data structures and knowledge 
representation from ANN and fuzzy logic. The need for these systems originated from their 
compatible and complementary natures. Hence, they combine the advantages of both methods.

The performance of the model was improved using different parameters, chosen on the basis 
of trial and error, so as to define the best-constructed model. Ultimately, the best-estimated 
results were chosen based on the output with the minimum error. The different metric models 
used to investigate the system performance are the coefficient of correlation (CC), the coefficient 
of determination (R2), the mean square error (MSE), and the root mean square error (RMSE):

(1)

(2)

(3)

(4)

where n is the number of data points, xi
core is the i-th value, and xi

pred. is the corresponding 
prediction of each value.

To simplify the architecture description of the ANFIS, we assume that it only has two inputs 
and one output. It is a Sugeno model with a set of two different if-then rules as follows:

Rule 1: if x is A1 and y is B1, then: f1 = P1x + Q1y + r1;
Rule 2: if x is A2 and y is B2, then f2 = P1x + Q2y + r2.
The choice of the Takagi-Sugeno (TS) system was based on its ability to model complex 

nonlinear relationships between input and output variables. This is due to the fact that the 
TS system adopts a set of linear models able to capture different local system behaviours. 
Additionally, TS systems require less computational time, and present a simplified rule base, 
which leads to a reduced number of rules. This simplifies the modelling process and makes the 
interpretation of the results more straightforward.

The reasoning mechanism is shown in the architecture of the ANFIS model (Fig. 1), which 
consists of five layers.

Layer one is for defining the x and y inputs to the nodes and the linguistic labels associated with 
each of these nodes. Each of these inputs is mapped to the fuzzy sets through the membership 
functions. This process is called fuzzification. These functions are defined as indicated in Eqs. 5 
and 6:

(5)

(6)
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In layer two, the firing strengths of each input are used after combining all the inputs. The 
T-norm is applied as the node function to obtain the layer output. Layer three, where the ratio of 
the firing strength of the i-th rule is calculated in conjunction with the sum of the firing strengths 
of all the rules. In layer four, the output of layer three of the ‘normalised firing strengths’ are 
multiplied by the Sugeno fuzzy rule to obtain the ‘consequent parameters’. Ultimately, all 
the outputs of the previous layers are summed in layer five, which is a single node layer. The 
defuzzification process is, then, performed to obtain a neat output from the fuzzy outputs.

The model chosen in this work is more complicated than the one described above, and 
presents seven inputs and one output. Hence, an adequate optimisation method is needed to 
overcome the issues arising during the calculation process.

Despite the superiority of this model, compared to the Fuzzy Inference Systems (FISs) and to 
the ANNs, separately, the need for an optimisation method for the ANFIS model persists. This 
need originates from the difficulty of curing a problem in the event of unsatisfactory results, as 
the parameters of the adaptive systems cannot be exploited.

The system optimisation process is based on determining the loss function by maximising the 
gains and minimising the losses, by trying to calculate the best model predictions and finding 
the optimum solution. For the model in this work, PSO was used. This optimisation method was 
chosen on the basis of its superiority compared to other optimisation methods. Its advantages 
were proved in the application in different domains, with a comparison between PSO and genetic 
algorithms (Ceylan et al., 2018), Ant Colony Optimisation (Moayedi et al., 2019), and Differential 
Evolution algorithms (Elzain et al., 2021). The steps of this optimisation model are shown in the 
diagram in Fig. 2. Further explanations are presented in the following section.

2.2. Particle Swarm Optimisation (PSO)

PSO was first proposed by Kennedy and Eberhart (1995). As presented by the authors, it is a 
simple paradigm based on the simulation of organisms in flocks of birds and schools of fish. It can 

Fig. 1 - Scheme of the intelligent ANFIS.
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Fig. 2 - Diagram of the applied PSO algorithm workflow. 

be implemented in various fields, requires simple mathematical concepts, and is computationally 
inexpensive.

The optimisation problem concerns the minimisation or maximisation of the cost function, 
which depends on the proposed optimisation formulation of the f(X) function, where X is the 
position vector representing the variable model. The f(X) function is also known as the ‘fitness 
function’ or ‘objective function’.

The details of this method are thoroughly described in the works of Clerc (2006), who defines 
PSO as a movement towards a promising area to obtain a global optimum. When travelling, each 
particle of the swarm dynamically adjusts its velocity according to its flying experiences and 
group members. It keeps track of its best result, also known as Personal Best (Pb), and the best 
value of any particle, known as Global Best (Gb). Ultimately, each particle modifies its position 
according to its current position, velocity, distance between its current position and Pb, and 
distance between its current position and Gb.

PSO is based on moving towards a promising area to find the global optimum, Gb. To build 
the PSO algorithm, initially, a population (A) of agents (particles), uniformly distributed over X, is 
created. Then, the position of each particle (Xi) is evaluated, by means of the objective function:

(7)

where f is the objective function.
The position is updated if the present position of the particle is better than its previous best 

position, Pb. Accordingly, the location of the best particle is based on the last best place of the 
particle. Next, the particle velocities are updated through the following equation:

(8)

The optimum value of
antecedent and consequent
parameters is obtained, and

will be used by ANFIS-PSO for
the testing process
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where: Vi = velocity of the particle or agent, W = inertia weight, c1 = cognitive constant, U1, U2 = 
random numbers, c2 = social constant.

Furthermore, the particles are moved to their new positions:

.                              (9)

These steps are repeated until the stopping criteria are satisfied.
Despite its weak optimum local searchability, PSO is very efficient for a global search when 

in the presence of few algorithm parameters. In addition, it is easily parallelised for concurrent 
processing, which allows the distribution of the processing on all the available nodes. Moreover, 
this optimisation method is derivative-free, and, in the case of well-logging data, it is an advantage 
because the relation between the measured parameters and the underground porosity is 
unknown as a result of underground heterogeneity. A detailed description of this optimisation 
model can be found in the work of Clerc (2006).

The PSO algorithm was used to optimise the membership function parameters of the ANFIS 
model. Such parameters are crucial in determining the accuracy of the model and for finding 
the optimal values in the parameter space of the ANFIS model. The PSO algorithm starts with 
a set of randomly generated candidate solutions, called particles. These move in the search 
space on the basis of their current position and velocity. The fitness of each particle is evaluated 
according to the objective function, and the best particle and its corresponding parameters are 
updated during each iteration. This process continues until a satisfactory solution is found or the 
predefined stopping criterion is met. This solution represents the optimal value that minimises 
the objective function.

A simplified workflow of the ANFIS-PSO algorithm is presented in Fig. 3. A more thorough 
description was given by Juang (2010) and Basser et al. (2015).

3. Data and geological concepts

The study area includes one of the gas fields in the Algerian Sahara (Fig. 4). It is one of the 
largest and most renowned gas fields in Algeria. This paper discusses the application of an ANFIS 
to predict porosity from well-logging data. The data set in this study derives from six wells in the 
Hassi R’mel field. Training and testing of the model were performed with 365 points from Well 1, 
201 from Well 2, 552 from Well 3, 411 from Well 4, 277 from Well 5, and 315 from Well 6.

Figs. 5, 6, and 7 are a representation of the input and output values of three of the six 
wells (Well 1, Well 4, and Well 6) used for the algorithm training. The data selected as system 
input are the gamma ray (GR), neutron porosity (NPHI), density (RHOB), deep resistivity 
(LLD), shallow resistivity (LLS) logs, and microspherically focused resistivity log (MSFL), plus 
the core driven porosity obtained from the laboratory analysis and used as the output of the 
supervised algorithm. The algorithm inputs were chosen on the basis of the direct impact of the 
formation porosity on these logs, despite the lack of a mathematical or linear representation 
of the relation between them. These logs are all valuable tools in assessing porosity in the 
reservoir as each provides different pieces of information that can be combined to provide a 
comprehensive understanding of the reservoir porosity distribution and fluid content, which are 
crucial for reservoir characterisation and hydrocarbon exploration. The GR log enables lithology 
identification and estimation of shale content, which significantly influences effective porosity, 
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whereas the porosity log provides a direct measurement of the formation porosity, offering 
information of utmost importance on the potential storage of fluids, such as hydrocarbons. 
Conversely, the density log assesses the bulk density of the formation, offering indirect inferences 
about porosity as it relates to the presence of fluid. An increase in porosity leads to a reduction 
in bulk density due to fluid filling the pore spaces. Additionally, resistivity logs play a pivotal role 
in analysing the electrical resistivity of the formation, thus providing insights into fluid presence 
and rock mineralogy. As porosity rises, electrical resistivity decreases due to increased fluid 
conductivity relative to the solid rock matrix. Altogether, these logs collectively contribute to a 
comprehensive understanding of the reservoir porosity distribution and fluid content, crucial for 
effective reservoir characterisation and hydrocarbon exploration.

The statistical description of each log containing input points used in this study, i.e. maximum, 
minimum, mean, and standard deviation, is represented in Table 1.

Fig. 3 - Diagram of the optimised ANFIS using the PSO algorithm.
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Fig. 4 - Geological map of Hassi R’mel, northern Sahara, Algeria (Sonatrach and Schlumberger, 2007).

Table 1 - Statistical properties of the well-logging parameters.

	 Parameters	 Minimum	 Maximum	 Mean	 ST	deviation

 GR (GAPI) 20.654 150 64.89292 38.54801

 DT (US/F) 42.375 97 77.94184 8.964971

 RHOB (g/cm3) 2.125 2.771 2.421625 0.131828

 NPHI (V/V) 0.011 0.366 0.153108 0.055639

 LLD (Ω·m) 0.475 217.829 14.72156 25.04013

 LLS (Ω·m) 0.316 181.216 12.73062 22.4931

 MSFL (Ω·m) 0.202 400.248 5.050762 16.9622
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Fig. 5 - The petrophysical recordings of the Triassic reservoir of Well 1: a) GR log, b) sonic log, c) RHOB log, d) NPHI log, 
e) LLD log, f) LLS log, g) MSFL, and core driven porosity log.
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Fig. 6 - The petrophysical recordings of the Triassic reservoir of Well 4: a) GR log, b) sonic log, c) RHOB log, d) NPHI log, 
e) LLD log, f) LLS log, g) MSFL, and core driven porosity log.
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Fig. 7 - The petrophysical recordings of the Triassic reservoir of Well 6: a) GR log, b) sonic log, c) RHOB log, d) NPHI log, 
e) LLD log, f) LLS log, g) MSFL, and core driven porosity log.
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3.1. Conventional porosity estimation methods

Conventional methods used to evaluate and estimate porosity are core data or well logs. 
The well-logging measurements can never measure the porosity directly as they depend 
on other reservoir properties. Therefore, porosity is usually deduced using theoretical and 
empirical equations. This renders the task complex and time-consuming, given the non-linearity 
and heterogeneity of the reservoirs. In addition, due to the different formation and wellbore 
conditions, many log corrections are needed, and the logs are evaluated together for better 
porosity estimation.

Conversely, with the presence of core data, well-logging measurements are calibrated 
for better porosity estimation. After retrieving the core samples, many methods are used to 
determine porosity after estimating bulk, grain, and pore volumes.

4. Results and discussion

The model used in this application is a PSO algorithm applied to an initial FIS. The code is a 
modified version of the code of Gilardi (2021).

The membership functions are the tuning parameters optimised using the PSO algorithm. 
70% of the data is used for training, while the remaining 30% is left for testing. This random split 
of the training and testing data is to provide an unbiased evaluation of the model as the split is 
not influenced by any specific patterns or data characteristics. This also allows more flexibility 
as any data subset can be used for either training or testing. Furthermore, this data split can be 
scalable to data of any size, as well as reproducible, making this approach replicable by other 
researchers, thus helping to ensure valid results.

The parameters of the PSO are: K, the average size of each agent’s group of informants; 
Phi, the coefficient to calculate the two confidence coefficients; vel_fact, the velocity factor for 
calculating the maximum and minimum velocities allowed; conf_type, the confinement type (on 
the velocities); IntVar, the list of indexes specifying which variables should be treated as integers; 
Normalise, to specify if the search space should be normalised (to improve convergence); Rad, 
the normalised radius of the hypersphere centred on the best particle.

The parameters of the ANFIS-PSO are: mu_delta, the variation allowed for the mean, expressed 
as a fraction of the corresponding data range; s_par, the centre value and variation allowed for 
the standard deviation in the premise function, where the centre value is scaled based on the 
corresponding feature data range; c_par, the range of allowed values for the exponent in the 
premise functions; A_par, the range of values allowed for the coefficients in the consequent 
functions; N_mf, the number of premise functions of each feature, having the same length as 
the number of features; N_Pop and epochs, the number of agents (population) and number of 
iterations, respectively.

The network training process was reiterated several times to ensure consistent model results. 
The developed five-layer ANFIS combines the BNN to minimise output errors.

The ANFIS-PSO method was applied to six wells in Hassi R’mel on the readings of conventional 
Triassic gas reservoirs. The input data fed to the system were the GR log, the sonic log, the RHOB 
log, the NPHI log, and the resistivity logs. In addition to these, the PS log was fed for wells 4, 5, and 
6. The algorithm was separately applied to every well, and, then, to the whole of the data available 
for comparison purposes. As previously mentioned, 70% of the data was used for training the 
model, and the remaining 30% was used for testing it. This random split of data for training and 
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testing is preferred over a more structural method as it offers each data sample the possibility to 
be selected for either purpose, ensuring fairness and giving credence to the results. The results, 
given in Fig. 8, show an excellent correlation between the predicted and core porosity for all wells.

The output of the testing data was compared to the core data porosity to evaluate the 
precision of this algorithm. The results are displayed in Fig. 9, where the values show a significant 

Fig. 8 - Testing performance of the ANFIS-PSO using target and predicted porosity values. The graphs represent the 
predicted and core porosity values against the sample indexes of: a) Well 1, b) Well 2, c) Well 3, d) Well 4, e) Well 5, 
and f) Well 6.

Fig. 9 - Regression derived between the core data and estimated porosity values of the six wells.

a c

e

b

d f
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correlation between the output of the ANFIS-PSO model and the targeted values. The error in 
the training data is MSE = 0.041 and RMSE = 0.20, and MSE = 0.045 and RMSE = 0.21 in the 
testing data. The related CC values are 85% and 84% for the training and testing, respectively. 
Alternatively, the squared correlation coefficient is 0.73 for the training and 0.71 for the testing. 
This reflects a rather high correlation between the core porosity values and those predicted 
using the ANFIS-PSO.

For a better representation of the efficiency of this method, the algorithm was individually 
applied to each well. The comparison of the results, represented in Tables 2 and 3, shows that 
the performance of the model was better in some wells compared to others. From the results of 
Well 2 (PS log absent) and Well 4 (PS log available), we observe that the PS log had no significant 
impact on the porosity prediction. For this reason, the absence of the PS log has no effect on the 
application and efficiency of this method in predicting porosity.

The training results presented in Table 2 show that the CC values for all wells range from 0.845 
to 0.918, indicating a relatively strong positive correlation between the training well-logging data 
and the output data or core porosity. The R2 values for all wells range from 0.713 to 0.842, 
indicating that the input well-logging data explain a good portion of the variance in the core 
porosity. The MSE and RMSE values for all wells range from 0.032 to 0.099 and from 0.179 to 
0.315, respectively. These measurements indicate the average magnitude of the error between 
the predicted values and the actual values of the training data. Lower values indicate greater 
accuracy. Overall, the ANFI-PSO algorithm seems to perform similarly across all wells, with the 
combined analysis of all wells showing slightly better performance (higher CC, R2, and lower MSE 

Table 2 - Performance analysis of the ANFIS-PSO in the training data.

	 Training	well	 	 	 	 	 	 	 	 	 	 	 	 Statistical	tools

  CC R2 MSE RMSE

 Well 1 0.886 0.785 0.032 0.179

 Well 2 0.918 0.842 0.045 0.212

 Well 3 0.877 0.769 0.070 0.265

 Well 4 0.914 0.835 0.056 0.236

 Well 5 0.845 0.713 0.099 0.315

 Well 6 0.850 0.722 0.073 0.270

 All wells 0.855 0.730 0.042 0.204

Table 3 - Performance analysis of the ANFIS-PSO in the testing data.

	 Training	well	 	 	 	 	 	 	 	 	 	 	 	 Statistical	tools

  CC R2 MSE RMSE

 Well 1 0.884 0.781 0.027 0.164

 Well 2 0.941 0.885 0.043 0.207

 Well 3 0.881 0.775 0.075 0.274

 Well 4 0.914 0.835 0.054 0.233

 Well 5 0.813 0.660 0.118 0.343

 Well 6 0.834 0.696 0.072 0.269

 All wells 0.841 0.708 0.045 0.213
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and RMSE values) compared to individual well analyses.
In general, the results in Table 3 are slightly lower than those in Table 2, which is expected 

since the model is being tested on unseen data. In observing the statistical tools, the CC values 
for all wells, in both tables, are above 0.8, indicating a strong correlation between the predicted 
and actual values. The R2 values are also relatively high, indicating a good fit of the model to the 
data. In terms of error metrics, the MSE and RMSE values in Table 3 are slightly higher than those 
in Table 2, indicating a slightly worse performance on the testing data. However, the values for 
all wells are still relatively low, indicating good predictive performance of the ANFIS-PSO model. 
Overall, the ANFIS-PSO model appears to perform well in both the training and testing data, with 
strong correlations and low error metrics.

Based on the predicted results, the efficiency of the ANFIS-PSO in estimating porosity is 
relatively high compared to the core values.

We proposed a neuro-fuzzy model to predict the porosity of a gas reservoir in the gas field 
of Hassi R’mel. Our findings suggest that the ANFIS-PSO technique enhanced the porosity 
prediction in these wells. The relationship between well-logging data and reservoir properties 
is complex and nonlinear, but neuro-fuzzy systems can deal with this. In ideal situations, 
the estimation of reservoir properties is direct and straightforward. However, it is not easy 
to run petrophysical inversion to address the challenges of the underground heterogeneity. 
Therefore, the application of hybrid ML methods is effective and practical in estimating 
reservoir properties.

5. Conclusions

The ANFIS using PSO enhanced the learning cost saving and minimising the system processing 
time, optimised the cost function, and enhanced the overall performance of the system. Porosity 
predicted using the ANFIS-PSO, in comparison with the core data porosity, shows a good correlation. 
Applying these types of hybrid systems to petrophysical data is a good practice and can be applied 
to predict and classify other underground parameters.

PSO has proven its advantages when combined with the ANFIS. This combination opens the 
way for more applications of this hybrid system, in predicting other reservoir properties, such as 
permeability and saturation. However, a comparative study with other optimisation methods, 
i.e. gradient methods, may prove the superiority of this optimisation method when applied 
to these types of problems or the possibility to deliver an even better approach for predicting 
underground properties.
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