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Steel metal is an important product in ferrous manufacturing, and the manufacturing process
has to be improved so that hot-rolled strip flaws may be correctly identified. Machine-learning-
based automated visual inspection (AVI) systems have been created, however they lack crucial
components, such as inadequate RAM, resulting in complexity and sluggish implementation.
Long execution times also result in delays or incompleteness. A scarcity of faulty samples
further complicates steel defect diagnosis due to the disparity between mon-defective and
defective pictures. To overcome these difficulties, a deep CNN model is built using the pre-
trained NasNet-Mobile backbone architecture. The model, which uses 26 times less data than
other papers datasets, recognizes steel surface pictures with six foults with 99.30% accuracy,
outperforming previous methods. This study is beneficial for surface fault classification when the
sample size is small, the software is less effective, or time is limited. Avoiding these issues will
improve safety and end product quality in the steel industry, saving time and money

Keywords: Image recognition, Steel surface, Visual Inspection, CNN, small dataset, Deep learning,
Defect Classification.

I. INTRODUCTION

Hot-rolled strip steel is an important product in the steel industry [1, 2], with
applications in vehicle manufacture, acrospace, and light industries. Surface quality is an
important measure of market competitiveness since it varies according on raw materials,
rolling process, and external environment. Imperfections such as oxide scale, inclusions,
scratches, and other flaws can impair appearance and fatigue resistance[3]. However,
perfecting the approach over time will not totally eliminate these flaws. Surface fault
classification can be used as a reference throughout the manufacturing process to improve
output and save costs.

Real-time evaluation of steel surfaces involves various problems, including hazardous
locations, fast working speeds, and a wide range of surface fault types. These defects are
not controlled by standards and might differ between plants and operators [43]. Hot roll coil
(HRC) is the most prevalent completed steel form and a critical raw material for producers,
needing accurate spot pricing and analysis. Raw material costs, worldwide trade agreements,
macroeconomic indicators, and mill treatments all have an impact on pricing.
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Steel surface examination is now divided into two categories: traditional and deep
learning approaches. Traditional approaches extract features using SVM[4], Random
Forest[5], KNN [6], and GAN [44]. However, extracting characteristics from photos is
difficult due to the absence of established criteria for fault distribution. Deep learning
methods based on convolutional neural networks are used to classify faulty surfaces on
steel products, yielding great accuracy, speed, and flexibility.

Enhancing surface defect recognition precision in hot-rolled strips can reduce the need
for human involvement in defect classification, which benefits both quality inspectors and
steel factories. Quality inspectors may avoid working late, which is good for their health,
and mistakes caused by tiredness and other factors can be considerably reduced, improving
strip steel performance and productivity [7, 8].

To summarize, enhancing surface fault classification accuracy in hot-rolled strips can
result in considerable economic and societal benefits, such as decreased human intervention
and increased performance and output. In brief, the paper's contributions are as follows:

e The dataset comprises about 87000 digital photos of steel flaws; however, in this
study, we choose to utilize only a small number of images (300 images per class)
to evaluate the efficacy of our proposed technique.

e The NasNet-Mobile CNN model is used to classify six types of faults in steel flats,
with improvement strategies outlined in section 2. NasNet-Mobile was chosen
because it is a basic transfer learning model with just 5.3 million parameters,
making it computationally inexpensive and quick to run. In addition, it strikes a
nice mix between acceptable performance and low-cost computations, making it
an easy transfer learning model to utilize.

e  We evaluate our method's feasibility by varying hyper-parameters. In section 3, we
provide the experiments and analyze the data. Section 4 summarizes the
conclusions.

1L RELATED WORK

Experts often identified issues manually, which was inaccurate and error-prone [9].
Furthermore, as a result of the same faults, different expert judgments will be generated,
resulting in inaccurate types and classes of strip steel flaws and reducing defect detection
reliability. Recognition findings based on researchers' subjective evaluations are typically
insufficient [10, 11]. To address the limits of manual identification, academics have
proposed a variety of machine learning-based alternatives.

-learning-based methodology. It trains a meta model to learn many tasks, similar to
Finn's Model-Agnostic Meta-Learning algorithm (MAML) and Ravi's Long Short Term
Memory network (LSTM). Existing meta-learning methods frequently incorporate an
LSTM or Recurrent Neural Network (RNN) structure into the model ; nevertheless, these
algorithms have high temporal complexity and slow running times. As a result, it is not
suitable for industrial application.The Grayscale Covariance Matrix (GLCM) and the
Discrete Shear Transform were utilized to propose a categorization strategy [14]. (DST). A
GLCM computation is performed once the images have yielded multi-directional shear
characteristics. It then does an important aspect analysis using high-dimensional feature
vectors before being fed into a support vector machine (SVM) to detect surface flaws in
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strip steel. The GLCM technique's main drawback is its huge matrix dimensionality, which
mandates the employment of highly competent software.

In their paper [15], the authors developed a novel multi-hyper-sphere SVM with
additional information (MHSVMH+) strategy for discovering hidden information in faulty
data sets using an additive learning model. It offers a greater classification accuracy for
faulty datasets, particularly damaged datasets. However, the SVM method underperforms in
big data sets with noise and overlapping target classes. It also underperforms when features
exceed training data samples.The authors [16] developed a one-class classification
algorithm using generative adversarial networks (GAN) [17] and SVM. It uses
characteristics generated by GANs to train an SVM classifier. It improves the loss function,
increasing the model's stability. Unfortunately, the aforementioned basic Machine Learning
approaches sometimes need extensive feature engineering, which significantly increases
costs [18].Traditional machine learning methods, as previously stated, are typically
influenced by defect size and noise. Furthermore, this method's accuracy is insufficient to
meet the practical requirements of automated flaw identification. Some parts must be built
by hand, and the application's scope is rather limited. Deep learning-based approaches,
particularly convolutional neural networks (CNN), have shown tremendous success in
image classification tasks in recent years [19, 20]. CNN has excellent characterisation
capabilities [21, 22] and is particularly effective in detecting strip surface faults [6, 8, 17].

The authors [23] built on GoogLeNet [24] and refined it slightly by integrating identity

mapping. To reduce overfitting, the dataset was expanded with the data augmentation
method.
SqueezeNet [25] was used in the study [26] to demonstrate an end-to-end effective model.
SqueezeNet now supports multiple receptive field scheduling, which might enable scale-
related high-level features. It is useful for low-level feature training and can identify strip
steel surface flaws quickly and reliably. One of SqueezeNet's major drawbacks is its low
accuracy when compared to larger and more complex models. The authors [27] presented a
modified AlexNet [28] and SVM-based intelligent surface defect detection system for hot-
rolled steel strip images. Because of receptive field constraints, CNN-based classification
models have good fitting capabilities but poor global representation. Obtaining a sufficient
number of fault samples in complex industrial circumstances is challenging, therefore
expanding the dataset has become an urgent issue that must be addressed. The attention
mechanism, on the other hand, has been proven to allow the model to focus on more
important information, resulting in improved recognition accuracy. In modern studies,
however, attention processes are rarely utilized to characterize strip steel surface flaws [29].
Traditional machine learning approaches sometimes need extensive feature engineering,
which considerably increases the cost.

I11. PROPOSED APPROACH

Our plan includes four major steps. Step 1: We preprocess the data and categorize it
into six types of defects: patches, crazing, pitted surface, scratches, rolling in size, and
inclusion. This dataset is accessible at the SEVERSTAL Steel Detection Competition
website [30].Step 2: We utilize the pre-trained CNN NasNet-Mobile as the model's
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backbone to extract picture features; the top layers are frozen to use the ImageNet stored
weights. The last block is then completely wiped and rebuilt with a brand new one (global
average pooling, dropout, exponential linear unit (ELU) to represent the dense layers, and a
Softmax function for the prediction and classification layer). Step 3: We fine-tune the
model using the new weights and switch between optimizers (ADAM optimizer,
ADAMAX optimizer) to achieve the best results. Step 4: We do a comparison to choose the
best fine-tuned model.

1. Steel Surface Defects Data set

SEVERSTAL surface defect database contains six different forms of hot-rolled steel
strip surface defects: rolled-in scale (RS), inclusion (In), patches (Pa), crazing (Cr), pitted
surface (PS), and scratches (Sc) [30]. The database has 1800 photographs (300 for each
surface fault category). Figure 1 shows representative photographs of numerous common
flaws. The dataset collection was selected because it comprises fewer photographs than
other databases, enabling us to evaluate the effectiveness of our approach with such a little
amount of data to datasets from other works (Table 1). The training data was created by
randomly selecting 80% of the data (240 images for each fault class) from the
SEVERSTAL dataset. The remaining twenty percent is utilized to confirm the network's
categorization. All data was enhanced with the Tensorflow [31] and Keras [32] libraries'
"Image-Data-Generator" function. Rotation (0, 45, 90, 180 degrees), horizontal flipping,
shearing (0.2), and zooming (0.2). Before feeding each picture into our network, the pixel
values were modified to lie within the range of [-1 ; 1].

Table 1. Summary of number of data in previous publications.

. . Number of
Proposed Algorithm Image Modality Images
Deep remdua[lzr;e]ural network Severstal: Steel Defect Detection 87704
DenseNet, ResNet,U- Net [33] Severstal: Steel Defect Detection 12568
Severstal: Steel Defect
ResNet-50, ResNet-152 [34] Detection, 9385
NEU steel database
Our dataset: NasNet-Mobile Severstal: Steel Defect Detection 1800
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Figure 1. Several steel surface fault samples. (a) Crazing. (b) Inclusion. (c) Patches. (d) Pitted surface.
(e) Rolled in scale. (f) Scratches [35].

2. Classification Model—Customized NasNet-Mobile:

Neural Architecture Search (NAS) is a technology that automates the development of
neural network architecture in order to get the best results on a certain project. The goal is
to create the architecture using as little resources and as little human intervention as feasible.
The NasNet architecture, devised by the authors of [36], is a neural architecture search
network that trains to acquire the most correct parameters from the produced architecture
using a recurrent neural network (RNN) and reinforcement learning. Designing a CNN
architecture takes a long time when the data is huge, such as the ImageNet dataset. They
then created a CNN framework capable of finding the optimal architecture in a small
amount of data and then transferring that architecture to be trained on large datasets; this
architecture is known as "learning transferable architectures". The NasNet-Mobile
architecture can be scaled according to data volume.

| Normal Cell ~ Reduction Cell

(a)

(d)
Figure 2. The NasNet was scaled for use with (b) the CIFAR10 database and (c) the ImageNet
dataset, as well as examples of an ordinary cell (a) and a reduction cell (d). [36]

a. Depthwise and pointwise convolutions:
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The NasNet-Mobile framework is built on depthwise separable convolutions [37], a
type of factorized convolution in which a standard convolution is split into a depthwise
convolution and a 1 x 1 convolution defined as a pointwise convolution. NasNet-Mobile
use depthwise convolution to apply a separate filter to each input channel. The pointwise
convolution then performs a 1 x 1 convolution on the depthwise convolution outputs. A
traditional convolution algorithm filters and mixes inputs in a single step to produce a new
set of outputs. The depth-wise separable convolution divides this into two layers: filtering
and combining. This factorization greatly decreases processing and model size. Depth-wise
separable convolutions are composed of two layers: depthwise and pointwise. We employ
depth-wise convolutions (input depth) to create a single filter for each input channel. The
depthwise layer output is then linearly combined using pointwise convolution, which is a
simple 1 x 1 convolution (Eq. (1)).

= S + -1, + -1, (1)

Here, is the depth-wise convolutional kernel with a size of Where the
filter in is applied to the channel in  to output the channel of the filtered output
feature map . As shown in (Figure 2), RNN merges two hidden layers to move on to the
following hidden layer.

- == (—
I

hidden layer A | hidden layer B |

| 3 x 3 conv ‘ |3x3maxpoow

| new hidden layer :

[

Figure 3. Convolution cell block obtained from RNN search.

We investigate changes in the architectural design of each reference structure
experimentally (Section II). To forecast the steel defect class, we use transfer learning from
neural network models trained on ImageNet [38] in the simplified CNN framework,
removing the original block and replacing it with a new block with global average pooling,
dropout, dense, and a Softmax function for the final prediction layer (Figure 3). The whole
architecture is frozen for the initial phase of training (before fine-tuning), with the
exception of the final produced block. Following that, we unfreeze the model's top,
allowing it to train anew toward the intended objective (steel defect classification). This
prevents the network from overfitting during training and lets the model to learn faster and
for a longer length of time, resulting in better generalization. Using the light-weight NasNet
architecture has several advantages, including enhanced model training, reduced
susceptibility to short dataset overfitting, and portability to different embedded systems.

b. NasNet-Mobile for Fault Classification:
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There are three primary reasons for using this CNN as a cornerstone of our
model. The model is lightweight, using just 23 MB of RAM compared to comparable
models such as VGG16 (549 MB), ResNet52 (232 MB), and NASNetLarge (343 MB),
among others. Second, in terms of parameter count, this model has just 5.3 million
parameters, which is quite modest (for comparison, the VGG16 has 143.7 million
parameters, making it 27 times bigger than our NasNet-Mobile model). The last argument
is that this model requires just 27 ms per inference step in a CPU and 6.7 ms per inference
step on a GPU, which is 60 times less than the EfficientNetB7 (1578.9 ms per inference

step).
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Figure 4. General framework of the suggested approach.
c. Improved NasNet-Mobile :

The basic NasNet-Mobile model is pre-trained with 1,056 ImageNet [38] recognition
output channels. The main exploration in this design revolves upon the number of regular
cells in the model. We used three reduction cells and three standard cells in our modified
NasNet-Mobile architecture. The total amount of parameters is 4,376,022, with only
106,306 (2.42%) trainable and the rest being frozen. We develop the backbone using the
pre-trained NasNet-Mobile architecture, which consists of six cells (reduced and normal),
followed by a freshly designed defect classification block that contains a convolution layer,
dropout, dense, and global average pooling. The first dense layer uses "ELU" instead of
"ReLU" as the activation function. ELU, or Exponential Linear Unit, is a function that
converges cost to zero quicker and with higher accuracy [39]. In contrast to other activation
functions, ELU has an additional alpha constant that must be positive, as shown in Eq. (2).

>0
O={ @pO-1 <0 @

ELU is quite similar to RELU, except for the negative inputs. They are both in the
identity function form for non-negative inputs. In contrast, ELU smoothes gradually until it
reaches -a, whereas RELU smoothes significantly (see Figure 4). ELU is preferred over
ReLU as an activation function because it smoothes out gradually till reaching a, while
RELU smoothes out rapidly. In addition, unlike ReLU, ELU can generate negative
outputs.The ELU is a continuous and differentiable activation function that provides
quicker training durations than other linear non-saturating functions, such as ReLU and its
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several variants (Leaky-ReLU (LReLU) and Parameterized-ReLU). It does not suffer from
dying neurons, exploding or disappearing gradients, and achieves higher accuracy than
other activation functions like as ReLU, Sigmoid, and Hyperbolic Tangent. Steel surface
fault classifier parameters can be updated by lowering a multi-class loss function referred to
as Categorical cross-entropy (Eq. (3)).

= - log (3)

The model output is represented by yi (i scalar value), y; (equivalent target value), and
output size (number of scalar values).

20 X ’
1.5 | /
L0 y
o Vi

0.0r *

0.5

b =

T =

Figure 5. Graph demonstrating the distinction between ELU (green) and ReLU (red) activation
functions [39].

d. Optimized model for steel surface defects :

Following the creation of the fundamental NasNet-Mobile model for steel surface defect
detection, we present a number of possible solutions for increasing accuracy and lowering
execution time. First, data augmentation is utilized to increase the number of characteristics
that the model learns. Second, a new block, which we have previously specified, is added to
the bottom of the model for the prediction component ; this block will aid enhance accuracy
while reducing model parameters and execution time. Third, we try different optimizers to
see which one works best (ADAM and ADAMAX). Finally, we lower the learning rate
using exponential decay as described in (Eq. (4)), and we apply early halting when the
model accuracy cannot be improved further. The model recovers the optimal weights.

= 1-) 4)

where, defines the final value, is the initial value, represents the decay factor, in
addition to  refers to the value of time that has passed.

Iv. EXPERIMENTS AND RESULTS

Our technique is built on the publicly accessible Python framework from Google
Colaboratory [40]. Tesnorflow [31], Keras, Matplotlib, NumPy, and Glob are the primary
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libraries utilized in this implementation. We used 80% of the photographs from the
Severstal (Severstal) collection as training data (240 images for each fault category) and
20% as validation data. Performance is measured both before and after the network has
been fine-tuned. Table 2 displays the values of the hyper-parameters used to train the CNN.
The experiments were carried out with Windows 10 Professional on the Intel® Core(TM) -
15 7200U, 64-bit platform with 8GB RAM and NVIDIA RTX 2070, taking use of the free
accessible GPU on Google Colab Platform.

The training using the surface defect data was really quick. The model was trained in
3414 seconds (56 minutes and 54 seconds) before fine-tuning, and in 528 seconds (8
minutes and 48 seconds) after.

Table 2. Hyperparameters for training NasNet-Mobile convolutional neural network.

Hyperparameters Before Fine-Tuning After Fine-Tuning
Number of epochs 15 110
Steps per epoch 6 6

Number of trainable 106,306 4,376,022
parameters

Learning rate mode Max Exponential decay

Restore best weights True True

Loss Categorical Crossentropy  Categorical crossentropy

Optimizer ADAM ADAMAX

Table 3. Metrics of performance for NasNet-Mobile in both training and validation datasets before to

fine-tuning.
Metrics Training Dataset Validation Dataset
Accuracy 99.30% 97.78%
Loss 0.029 0.063
Precision 99.50% 98.61%
Recall 99.50% 97.77%
Area under the curve AUC 100% 99.95%

1. Model evaluation before fine-tuning:

The model was evaluated twice, first without fine-tuning parameters and once with
them, using deep learning measures including accuracy, loss, recall, AUC, FP, FN, TP, TN,
and precision. Both the training and validation datasets yielded good results. However,
there was a minor loss in performance due to model learning from training data, which
improved reliability. The validation data, which comprises just 20% of the entire data, has
not been learnt from. To guarantee fair evaluation, the model was evaluated via held-out
sampling. Fine-tuning and dataset augmentation are two strategies for mitigating
performance discrepancies, ensuring that the model can learn new characteristics.
According to the findings, adding more elements to the model might increase its
performance significantly.
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Figure 7. Precision and accuracy before fine-tuning the NasNet-Mobile.

NasNet-Mobile was optimized using a dataset of 1800 photographs augmented using
Image Data Generator. The training lasted 20 epochs as shown in figure 6, and the training
loss decreased as the number of epochs rose. During the learning phase, the model
determined the visual prominence of the reference and candidate images, minimizing
training loss. During the testing phase, photos from a separate class were chosen at random
and given to the network for the first time during training. As training continued, the
accuracy of the test set matched that of the training set, with just a tiny difference. This
shows that the algorithm successfully anticipates instances that are not in the training
set.Precision is defined as the proportion of correctly identified examples (5), whereas
recall (also known as sensitivity) is the proportion of retrieved relevant cases (6). Relevance
thus governs precision and recall.

Precision = TP 5)
recision = TP + FP
TP
Recall = m (6)
TP + TN

(7

AcCUracy = o TN+ FP + FN

As seen in the prior curves (Figure 8) and (Table 3), the best-achieved accuracy is
around 99.51% in training and 98.6% in validation. The recall is around 99.30% for
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training and 97.78% for validation datasets. These findings were obtained prior to fine-
tuning.
2. Model evaluation before fine-tuning:

Table 4. Performance of the model after fine-tuning.

Metrics Training dataset Validation dataset
Accuracy 100% 98.06%
Loss 0.0243 0.0728
Precision 100% 98.03%
Recall 100% 97.51%
Area under the curve AUC 100% 99.41%

Training and Validation Loss.
Train Loss: 0.028803247958421707
Validation Loss: 0.06424172967672348
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Figure 8. Training and validation loss.
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Figure 10. Precision with recall in the fine-tuned Model.

The training procedure was terminated prematurely due to no progress in accuracy and
loss across three consecutive epochs. This instability is due to the lack of batch
normalization in the trials, which improves the training process by lowering internal
covariate changes, increasing stability, and optimizing the model. Batch normalization
increases generalization by normalizing layer activations, which reduces overfitting and
initial weight sensitivity. To address this issue, model fine-tuning should be performed by
adding different batch normalization layers and retraining the model.

V. COMPARATIVE STUDY

The study compares a model for steel surface inspection using various methodologies,
considering accuracy, executing time, model lightness, and data size. The model achieves a
higher accuracy rate of 99.51% compared to other models. The NasNet-Mobile model is
lighter and requires less data, with 5.3 million parameters compared to DeCAF and residual
neural network models. The network runs faster than other models, with a three-fold lower
executing time and 2.5-fold lower executing time. The model's error rate is the lowest, with
a 0.029 error rate, 22 times less than CNN methods with LU's activation function. This
suggests the model can learn better with less errors and better accuracy.

Table 5. The classification accuracy (%) for some state-of-the-art steel surface fault classification
algorithms taking into consideration the triplet model lightness vs. running time vs. data size.

Model Lightness Time (ms) Per Data

Method Accuracy (nbr of prmtrs) Inference step Size
[34] 96.91% 25.6 million 58.2 87704
[33] 98.56% 25.6 million 77.1 12568
[41] 97.27% 60 million 10.3 26334
Our method
(Developed NasNet- 99.30% 5.31 million 27.5 1800
Mobile)
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Table 6. Evaluation of the classification errors depending on several activation functions, the model
used the name of the activation function wrapped into parenthesis.

Method Error Rate (%)
CNNs (Sigmoid) 12.8721
CNNs (Hyperbolic Tangent) 18.1129
CNNs (ReLUs)
9.5018
Recall
Our method (ELUs) 0.029

VL CONCLUSIONS

In this study, we proposed a new approach for classifying flaws in steel sheets using a
pre-trained NasNet-Mobile CNN. The following are the key conclusions of the research:

The issue of accurate classification when memory is limited is addressed with the
NasNet-Mobile network, which contains less parameters than other CNNs (5.3 million
parameters). The top layers of this CNN were frozen, which allowed for less memory and
calculations while maintaining weights. The problem of long execution times is solved by
utilizing Google Colab Platform's free accessible GPU.

The problem of dataset shortage is addressed in this study and overcome owing to the
potency of this CNN, which can acquire the essential features of the picture due to its large
depth (389 layers), which can extract more features even if the dataset quantity is little.

When hyperparameters were fine-tuned, the model improved. We discovered that the
ADAMAX optimizer outperformed the ADAM optimizer in our modified NasNet-Mobile
architecture. As a result, we saw a small improvement in both accuracy and error rate. The
Adam optimizer modifies weights in inverse proportion to the scaled L2 norm of prior
gradients, whereas AdaMax extends this to the infinite norm of previous gradients.

The model has been rationalized, and the last block has been completely eliminated and
replaced with a new one. As a result, various alterations were made to meet the needs of the
steel image characteristics. The convolution layers included an ELU activation function.
We intended to apply this activation function in order to benefit from its advantages. This
activation function aids in the solution of the dying RELU issue, which occurs when the
gradient value on the graph's negative side is 0. As a result, the weights and biases of
specific neurons do not change during the backpropagation process. This can lead to dead
neurons that never fire. The RELU dying problem can be addressed by incorporating a log
curve for negative input values. It then helps the network to modify weights and biases in
the right direction. The ELU activation function improves model performance and network
robustness. It progressively smoothes until the output equals -a, while RELU smoothes
substantially.

A dropout (0.2) was introduced after each fully connected layer, and a global average

64



Y KATEB et al: Classifying Surface Fault in Steel Strips Using a Customized NasNet-Mobile CNN and
Small Dataset

pooling is put before the dense layer, which helped to minimize time and memory
throughout the model construction. Learning rate scheduling allows us to employ bigger
steps for the first few epochs before progressively reducing the number of steps as the
weights approach their optimum value.

More improvements can be accomplished by obtaining more training data,
strengthening the network's architecture, and fine-tuning its hyper-parameters rather than
increasing the training epochs under the current structure, which may result in overtraining.
In overall, we can infer that the proposed approach may be used in image processing tasks
such as classification to solve the three major challenges: time consumption, memory
inadequacy, and limited data encountered in small factories and less-powerful operators.
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