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The purpose of this paper is to study an application of the 35NCD 16 steel by a model generalizing the 
isotropic and kinematic strain hardening laws. The model in question is represented by a field of strain 
hardening moduli corresponding to the introduction of the configuration of the flow surfaces. Each flow 
surface is characterized by its constant elastoplastic modulus, its normal unit vector, its radius and its 
center coordinates. For cases of uniaxial or multiaxial (complex) loading, in particular for cases of cyclic 
loading or unloading, the instantaneous configuration can be determined by the position and dimensions 
of the flow surfaces, determining the strain increment for each strain increment. 
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 Introduction  

The realization of structures in steel construction 
requires improvements in their use. In this case it’s 
mechanical C in the plastic field, this in order to 
increase its life. Several researches have been initiated 
in order to obtain more appropriate models to predict 
the physical phenomena description that intervene in 
the solid materials solicited to multiaxial cyclic 
phenomenological loads [1]. In the field of cyclic 
solicitations in steels there is an important research as 
much, at the level of the laws of behavior as well as 
the experimental determination of the mechanical 
characteristics and appropriate parameters [2, 3, 4, 5]. 
Many works have been carried out in this field related 
to the calculation models of plasticity, such as: Incre-
mental deformations and elastoplastic modulus by in-
troducing isotropic and kinematic strain hardening [6, 
7]. 

Plasticity models are numerous and varied. In the 
context of our work, we are interested in multisurface 
plasticity models, which consist of a set of surfaces, 
the last of which is called the threshold surface.  
The two-surface models presented by Dafalias & 
Popov [8], Krieg [9] or Yoshida & Uemori [10] are 
excluded. Compared to classical plasticity models, 
multisurface models show very good results in 
multiaxial under proportional loading. However, they 
have weaknesses under non-proportional loading, as 
pointed out by Montans & Caminero [11]. 

The Mróz model has been extensively studied 
from a mathematical point of view in the papers by 
Brokate et al.[12] and Brokate et al.[13]. Nevertheless, 

some limitations of this model were noted by Jiang & 
Sehitoglu [14], who observed its inability to describe 
ratchet effects correctly. They also noted that the 
response of this model depends on the number of 
threshold surfaces, and that the translation of each of 
these surfaces is affected by their number. Jiang & 
Sehitoglu [14] also concluded that, although Mróz's 
model seeks to avoid the intersection of threshold 
surfaces, this can occur in the case of large stress 
increments. To address this problem, Garud [15] 
proposed a modification to the Mróz model that adds 
a condition to make the translation of the threshold 
surfaces dependent on the stress increment.  
This modification prevents the threshold surfaces 
from intersecting even at large stress increments.  

A reciprocal theoretical research in plasticity was 
done simultaneously by Iwan [16] and Mroz [17].  
They showed how the flow could be represented by a 
nesting flow in the stress space. The notion in 
combination with isotropic and kinematic strain 
hardening laws can lead to a material representation of 
considerable power and flexibility. As for Mroz [17], 
he proposed a model generalizing the isotropic and 
kinematic strain hardening rules by introducing the 
notion of "strain hardening modulus, for any loading. 
The instantaneous configuration is calculated as a 
function of the translation, expansion or contraction 
of all flow surfaces. The material behavior can be 
determined by complex loading trajectories, especially 
for cases of cyclic loading [17].  

Seyed and Yannis [18] applied a two-surface 
constitutive plasticity model as an effective tool to 
simulate monotonic and cyclic material behavior.  
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The two surfaces evolve isotropically and 
kinematically in the stress space.  Compared to the 
infinitesimal plasticity of Von Mises, the multiaxial 
cyclic loading gave the idea proposed by the model of 
Mroz. As for Meijuan et al. [19] compared the 
Besseling type model to large deformations using 
hyperelasticity and classical Kröner-Lee multiplicative 
decompositions. Nobutada et al. [20] worked on the 
preloading resulting from the maximum plastic 
deformation. To evaluate the range of cyclic plastic 
deformation in the preloading presence, A set of 
evolution equations have been proposed.  
These extensions are verified by performing uniaxial 
cyclic experiments of 316 stainless steel at 600°C.  
The experiments are accurately simulated using a 
model. Changes Jisheng et al. [21] have qualitatively 
described the response to dual strain path changes in 
low carbon steels. Abdelmalek et al. [22] have 
demonstrated the buckling instability of a steel beam 
subjected to multiaxial loads using an approximate 
Ritz method under an ABAQUS code. Ritz method 
under an ABAQUS calculation code.Where the 
numerical implementation of a model that predicts 
directional hardening only for strain path changes 
involving unloading and reloading, was presented by 
Wang et al. [23]. 

 The purpose of this study is to apply by modeling 
the flow surfaces characteristics for any loading or 
unloading point of an element of the structure to be 
considered. 

 Model description   

Mroz [9] considers that there are several 
interlocking flow surfaces. He assigns a plastic 
modulus to these surfaces and thus models the cyclic 
behavior of metals. Knowing that the surfaces are 
concentric circles, he explains how these surfaces 
evolve. The first flow surface is represented by the 
elastic domain where the loading point is located in 
the stress space.  

By activating the loading point on the first circle 
surface C0. The latter moves with it in the same way 
as in kinematic strain hardening, which determines the 
plastic modulus value H0. The direction of translation 
of the circle C0 is dictated by a normal vector ni to the 
surface. 

On reaching the stress point C1. It is activated and 
the plastic modulus is then H1. The direction of 
translation is given by a new loading point located on 
the circle C1 and so on. 

 Assumptions   

Assumptions must be made for an easier 
development of the constitutive relations and to limit 
the validity domain of the proposed model.  
Classically the assumptions made by a large number of 
authors are initial material homogeneities, the total 
deformation is the sum of a reversible elastic 

component and an irreversible plastic component, 
deformation of theoretical origin not taken into 
account and existence of an initial elastic domain. It is 
a question of defining in the constraints. a convex 
domain of elasticity inside which the irreversible 
plastic deformations are almost non-existent.  
The mathematical expression of this domain is given 
by the function which depends. For isotropic 
materials on the three invariants of the stress tensor, 
this domain translates, rotates grows and deforms 
during the deformation of the material. However, we 
will retain only its translation and expansion 
responsible respectively for kinematic and isotropic 
strain hardening, the first is characterized by a tensor 
quantity X and the second by a scalar R.  
These quantities are introduced as internal variables. 
Normality of the plastic strain rate and plastic 
incompressibility. 

 Modeling 

In a Cartesian system of orthogonal coordinates 
(1.2.3).  

We have: 

 (1) 

And the non-zero components in the (1.2) plane 
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[Mpa] (6) 
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Where: 

[mm] (8) 

[mm] (9) 

[mm] (10) 

According to the Von Mises criterion [3]. The flow function in the plane is expressed by the following relation: 

[mm] (11) 

From the above equation, we obtain flow surfaces 
in the form of ellipses.   

Assuming that the flow law is associated and that 
the normal vectors outside the flow surfaces are iden-
tical, this law is expressed by the following relation: 
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Where: 

[mm] (17) 

R …Radius of the flow surface. 
The incremental plastic deformations are calculated for each flow surface: 

[mm] (18) 

Keeping unchanged and proceeding to a change of 

axis 12σ . in 123σ  . We obtain circles which are con-

centric to the origin O. 

 Results 

      The model presents a large number of flows 
surfaces each flow surface is represented by an 
elastoplastic modulus H, the flow surfaces are 
contained in the boundary surface of size Rmax, Figures 
1, 2 and 3 illustrate perfectly two types of flow 
surfaces:  

• Non-active flow surfaces are surfaces that 
have never been reached or moved by the 
"current" stress points. The kinematic strain 
hardening can be said to depend on the deg-
radation parameters. But the direction of de-
formation is not especially in the path of the 
stress point. 

• Active flow surfaces are surfaces that have 
reached or moved by the "current" stress 
points. It can be said that the kinematic strain 
hardening depends not only on the degrada-
tion parameters, but also on the stress paths; 
and therefore, the translation of the flow sur-
face is indicated to use by the kinematic strain 
hardening rule. In their work, Iwan and Mroz 
confirmed the extension in the case of multi-
axial loading [16, 17]. 

 Case 1: Bi-axial cyclic loading along the x and 
y axes 

When the biaxial stress (normal and tangential 
stress) lies within the smallest "threshold" surface, 
each described by the Von Mises criterion (surface f0 
in Fig. 1), the model's behavior is elastic. Each time 
the biaxial "threshold" stress is loaded by an increment 
of loading or unloading stress, it becomes active and 
reaches a new "threshold" surface. The plastic flow of 
the structure results in a new flow surface configura-

tion, which is described by the coordinates of its cen-
ter, the size of the flow surface, the components of its 
normal vector, which depends on the direction of 
flow, and by the value of its elastoplastic modulus.  
This new flow surface configuration is thus called a 
new reference group. During flow, the active surface 
always respects the flow surface condition f = 0. 

 
Fig. 1 Operation of the Mroz model Successive cyclic loading 

case: tensile stress then shear 

 

Fig. 2 Multiaxial cyclic loading (stress and tangential) 
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Figure 2 shows the stress-strain curve. It describes 
cyclic and biaxial loading, represented by segments of 
constant tangent modulus.  

It can be seen that the elastoplastic H modulus of 
the flow surfaces is inversely proportional to loading. 

They depend solely on the degradation parameter, 
while converging towards a zero value (the value con-
sidered as the elastoplastic modulus at  
rupture Hu). 

 

 
Fig. 3 Elastoplastic moduli as a function of equivalent plastic strain 

 
Tab. 1 Characteristics of the active surfaces of the 1st reference group 

R 11σ  21σ  0x 0y 

(mm) (Mpa) (Mpa) (mm) (mm) 

318.3349 190.1 141.2048 55.25619 27.62809 

330.6376 199.4 145.8548 44.25228 22.12614 

342.9404 208.7 150.5048 33.24837 16.62418 

355.2431 218 155.1548 22.24446 11.12223 

367.5459 227.3 159.8048 11.24055 5.620276 

380.1132 236.8 164.5548 0 0 
 

Tab. 2 Characteristics of the 1st reference group 

R σ 11 σ 12 0x 0y xn yn H 

(mm) (Mpa) (Mpa) (mm) (mm) - - (Mpa) 

380.1132 236.8 164.5548 0 0 0.622972 0.749822 711.7612 
 
During incremental loading of the biaxial stress, 

the results obtained in tables 1 and 2 of the first refer-
ence group show that the flow surface has increased 
in size and that the coordinates of the center of the 
active flow surface are increasingly close to the 

"threshold" flow surface. The components of the nor-
mal vector maintain flow normality, while determining 
the value of the elastoplastic modulus at the position 
of the "threshold" surface. 
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Tab. 3 Characteristics of the active surfaces of the 2nd reference group 

R σ 11 σ 12 0x 0y 

(mm) (Mpa) (Mpa) (mm) (mm) 

242.9619 -63.2 -135.445 122.6718 61.33592 

161.086 -15.2 -92.5881 56.5 9.185742 

Tab. 4 Characteristics of the 2nd reference group 

R σ 11 σ 12 0x 0y xn yn H 

(mm) (Mpa) (Mpa) (mm) (mm)   (Mpa) 

242.9619 -63.2 -135.445 122.6718 61.33592 0.355863 -0.93454 5755.13 
 

The results obtained in tables 3 and 4 of the second 
reference group, during biaxial stress unloading, show 
that the flow surface has undergone a significant re-
duction in size, and the coordinates of the center of 
the active flow surface are getting closer and closer to 
the threshold flow surface. The components of the as-
sociated vector always retain flow normality. 

 Case 2: Case of uniaxial cyclic loading along 
the x axis 

When the uniaxial stress (tensile or compressive 
normal stress) lies within the smallest threshold sur-
face described by the Von Mises criterion (surface f0 
in Fig. 4), the model's behavior is elastic.  
During loading or unloading of the uniaxial normal 
stress by an increment, the flow surface becomes ac-
tive and translates to become tangent with a new sur-
face. As a result, plastic flow and structure give rise to 
a new surface configuration, with new center coordi-
nates and a new flow surface size. The components of 
the direction-dependent vector retain the flow normal 

and the value of its elastoplastic modulus. The result 
is a new reference group. 

 
Fig. 4 Operation of the Mroz model cyclic uniaxial loading 

case normal tension-compression stress

Tab. 5 Characteristics of the active surfaces of the 1st reference group 

R σ 11 σ 12 0x 0y 

(mm) (Mpa) (Mpa) (mm) (mm) 
318.3 318.3 0 61.7 0 
330.6 330.6 0 49.4 0 
342.9 342.9 0 37.1 0 
355.2 355.2 0 24.8 0 
367.5 367.5 0 12.5 0 
380 380 0 0 0 

Tab. 6 Characteristics of the 1st reference group 
R σ 11 σ 12 0x 0y xn yn H 

(mm) (Mpa) (Mpa) (mm) (mm)   (Mpa) 

380 380 0 0 0 1 0 712.919573 
 

During incremental loading of the uniaxial stress 
(tensile or compressive stress), the results obtained in 
tables 6 and 7 of the first reference group showed that 
the flow surface increased in size and the coordinates 

of the center of the active flow surface increasingly ap-
proached the threshold flow surface. The components 
of the normal vector maintain the normality of the 
flow, while determining the value of the elastoplastic 
modulus at the position of the "threshold" surface. 
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Tab. 7 Characteristics of the active surfaces of the 2nd reference group 

R σ 11 σ 12 0x 0y 

(mm) (Mpa) (Mpa) (mm) (mm) 

260 -260 0 120 0 

157.6 -157.6 0 17.6 0 

Tab. 8 Characteristics of the 2nd reference group 

R σ 11 σ 12 0x 0y xn yn H 

(mm) (Mpa) (Mpa) (mm) (mm)   (Mpa) 

260 -260 0 120 0 -1 0 9247.43525 
 
The results obtained in tables 7 and 8 of the second 

reference group show that, under uniaxial stress 
unloading (tensile or compressive stress), the flow 
surface undergoes a significant reduction in size, and 
the coordinates of the center of the active flow surface 
move closer and closer to the "threshold" surface.  
The components of the associated vector always 
maintain flow normality. 

 Case 3:  Case of uni axial cyclic loading along 
the y-axis 

When the uniaxial stress (tangential stress) lies wi-
thin the smallest threshold surface described by the 
Von Mises criterion (surface f0 in Fig.5), the model's 
behavior is elastic. Each time we load or unload the 
uniaxial normal stress by an increment, it becomes ac-
tive and translates, where it becomes tangent with a 
new "threshold" surface. Plastic flow and structure 
give rise to a new threshold surface configuration, new 
center coordinates and a new flow surface size.  
The components of the associated direction-depen-
dent vector maintain the flow's normality, with a new 

value for its elastoplastic modulus. The result is a new 
reference group. 

 
Fig. 5 Operation of the Mroz model case of uniaxial cyclic 

stress-shear loading

Tab. 9 Characteristics of the active surfaces of the 1st reference group 

R σ 11 σ 12 0x 0y 

(mm) (Mpa) (Mpa) (mm) (mm) 

318.33 0 183.787586 0 61.8342138 

330.63 0 190.887586 0 49.5366531 

342.92 0 197.987586 0 37.2390924 

355.22 0 205.087586 0 24.9415316 

367.52 0 212.187586 0 12.6439709 

380.16 0 219.487586 0 0 
 

Tab. 10 Characteristics of the 1st reference group 

R σ 11 σ 12 0x 0y xn yn H 

(mm) (Mpa) (Mpa) (mm) (mm) - - (Mpa) 

380.16365 0 219.487586 0 0 0 1 711.245269 
 
From the results obtained in tables 9 and 10 of the 

first reference group, we can see that the uniaxial 
stress (tensile or compressive stress) and the flow sur-
face have increased in value and size respectively.  
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The coordinates of the center of the active flow  
surface are increasingly close to the threshold surface. 
The components of the vector maintain flow  

normality, while determining the value of the  
elastoplastic modulus at the position of the  
"threshold" surface.

Tab. 11 Characteristics of the active surfaces of the 2nd reference group 

R σ 11 σ 12 x0 y0 

(mm) (Mpa) (Mpa) (mm) (mm) 

278.015657 0 -160.512414 0 102.147994 

183.990041 0 -106.2267 0 8.12237834 

Tab. 12 Characteristics of the 2nd reference group 

R σ 11 σ 12 0x 0y xn yn H 

(mm) (Mpa) (Mpa) (mm) (mm)   (Mpa) 

278.015657 0 -160.512414 0 102.147994 0 -1 16381.316 
 

The results obtained in tables 11 and 12 above for 
the second reference group, during uniaxial stress un-
loading (tangential stress) show that the flow surface 
has undergone a significant reduction in size, and the 
coordinates of the center of the active flow surface 
converge towards the center of the "threshold" flow 
surface. The components of the associated vector still 
maintain flow normality. 

 Discussions 

According to the results obtained in all the figures 
shown, we deduce that during loading, the elasto-
plastic modulus increases with small cumulative varia-
tions, unlike during unloading. We observe that the 
elastoplastic modulus increases significantly.  
This explains the phenomenon of isotropic strain-
hardening, as the size of the flow surface takes on a 
new dimension, providing a large elastic domain. Dur-
ing loading or unloading, the diagrams show transla-
tions of the flow surfaces, from which we deduce that 
the center of the flow surface takes on new coordi-
nates, which shows us the kinematic strain-hardening 
phenomenon [6, 7].   

However, we would point out that the steels used 
in this work do not show ratchet effects in cyclic load-
ing, as pointed out by Brokate et al. [12], and that heat 
treatment contributes to an adequate increase in 
residual service life, as reported by Petr Beneš, et al. 
[24]. Note that, for the case of loading or unloading 
according to the normal or tangential contraction of 
the structural element, the coordinates of the center of 
the active flow surface translate uniaxially as a function 
of the loaded or unloaded contraction. However, in 
the case of biaxial loading or unloading, the 
coordinates of the center of the active flow surface 
translate in the quadrant axes. In view of the results 
obtained, we observe that the yield stress at unloading 
is significant compared to loading. Plastic flow always 
obeys the rule of the associated flow law. 

Figures 1, 2 and 3 also illustrate the variation of 
elastoplastic modulus as a function of cumulative plas-
tic deformation. These variations are represented by 
hyperbolic curves. The results obtained give us the 
values of the elastoplastic modulus. We can see that 
the elastoplastic modulus H of the flow surfaces are 
inversely proportional to the loads and depend only 
on the degradation parameter while converging to-
wards a null value (Value considered as elastoplastic 
modulus at break Hu). Since the flow surfaces are de-
fined by their elastoplastic modulus (H), the areas out-
side two flow surfaces are therefore limited by Elasto-
plastic modulus (Ho), The boundary between the ac-
tive and the non-active zone (Hp)and Ultimate elasto-
plastic modulus (V). 

The work hardening rule of the original flow 
surface describes the loading of the material behavior. 
When plastic deformations are induced in the latter, 
we notice that there is a change of position (Xo and 
Yo) and of size R in the flow surface. 

 Conclusion 

In this work we have presented a program that 
determines the groups of flow surfaces of a structural 
element subjected to cyclic and multiaxial loading in 
the plastic domain by an elastoplastic model of Mroz. 
To achieve these possibilities, we proceeded to the 
modeling by incrementing the nonlinear part  
"by piece" of the curve "stress-strain" in a three-
dimensional case. For this purpose, we have 
considered the following points: Choice of a plasticity 
flow criterion according to the type of material to  
be used and its ease of use, choice of the plastic flow 
law, the model combines isotropic and kinematic 
properties to represent the idea of a plastic modulus 
field defined in the stress space by the relative 
configuration of the flow surfaces and definition  
of the groups whose material behavior is known  
by its mechanical characteristics following the  
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imposed loading.  
From the results obtained, we can conclude that 

we can update at each instant, for each flow surface, 
its size, its components of its normal unit vector and 
its elastoplastic modulus.  

On the other hand, the program also deals with the 
identification of the flow surface for any loading or 
unloading point. For this, we have established an 
algorithm that allows determining the characteristics 
of the flow surface to which the loading point belongs.  

The response of this model is dependent on the 
number of "threshold" surfaces; in particular,  
the translation of each surface is affected by its 
number. Compared with more conventional plasticity 
models, multi-surface models show very good 
multiaxial results under proportional or non-
proportional loading. This model was applied to the 
plasticity of soils, but for our purposes, we have 
integrated it into the plasticity of solid materials, in this 
case steels, as described in this work. 

The interest of this model lies in its very low 
number of parameters compared to other models of 
plasticity with work hardening.  

Given the complexity of nonlinear plasticity,  
we wish to continue this work with the Mroz model 
for multiaxial and cyclic loading and to see the 
possibility of integrating other factors that influence 
the deformation of the flow surface. 
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