

Registration number :………./2023

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of the

MASTER

In Electronics

Option: Computer Engineering

Title:

DESIGN AND IMPLEMENTATION OF

A STUDENT COMMUNICATION PLATFORM

“IGEE SPACE”

Presented by:

- RAHALI Fares

Supervisor:

 Mr. ZITOUNI Abdelkader

I

Dedication

With genuine honor and gratitude, I dedicate this work to:

First and foremost, His Majesty Allah, whose guidance made everything possible.

My beloved family —my parents, my brothers Yakoub and Abd Al-Raouf— who are an

integral part of me and deserve to share in my achievements.

My friends and my teacher of the Qur'an whom have been a major source of motivation and

encouragement for me during my journey. Your assistance will live on in my memories

forever.

Thank you all. Your unwavering support will never be forgotten.

II

Acknowledgment

Praise to Allah, the almighty, for providing me with everything I needed to reach this

significant milestone. Alhamdulillah for granting me the patience, wisdom, strength, and

unwavering support of the people that enabled me to successfully complete this project.

It is my privilege and deep pleasure to express my sincerest gratitude to my respected

supervisor, Mr. Zitouni, for his support and patience. I am genuinely grateful for the

invaluable assistance he provided during a challenging phase.

My profound gratitude goes to all the teachers who dedicated themselves to their students,

guiding us and contributing to our journey to this point. Additionally, I am thankful to all my

colleagues who offered their assistance throughout this entire period.

Thank you.

III

Abstract

 In recent years, social media platforms have become one of the main communication

tools between students and faculty. However, because of its side effects including

distractions, privacy, data security, and fake news, a new Student Communication Platform

has been designed and implemented to provide students, teachers, and administrations with a

reliable, and safe environment to communicate, collaborate, and interact with each other. The

project's aim is to create a dedicated space that is free from the distractions of social media

platforms and keep the students’ information private. This platform offers features such as

creating posts, sharing files, group chat, notifications, project proposals, and personalized

profiles making it an all-in-one solution for student communication. The Student

Communication Platform is a web-based application, that makes it accessible through many

different devices and browsers. The process of building this platform went through two

phases, the system design phase is demonstrated through the use of UML and entity-

relationship diagrams, while the implementation showcases the utilization of Next.js,

Tailwind CSS, and Supabase as programming tools. The Student Communication Platform

project fulfilled all requirements, delivering a dependable, focused, and protected space for

student communication.

IV

Table of contents

Dedication.. I

Acknowledgment .. II

Abstract .. III

Table of contents ... IV

List of Figures ...VIII

List of Tables ... X

List of Abbreviations .. XI

General Introduction ... 1

Chapter one: General Background ... 2

1.1 Introduction .. 3

1.2 Subject ... 3

1.3 Problem statement .. 3

1.4 Objectives .. 4

1.5 Concepts .. 4

1.5.1 Web application .. 4

1.5.2 Single-Page Application .. 5

1.5.3 Multi-Page Application ... 5

1.5.4 Front-end .. 5

1.5.5 Back-end ... 5

1.5.6 Serverless .. 6

1.5.7 Framework .. 6

1.5.8 State Management ... 6

1.5.9 HTTP Protocol and Status code ... 6

1.5.10 URL .. 7

1.5.11 Database & Database Management Systems .. 8

V

1.5.12 Object-Relational Mapping.. 8

1.5.13 Application Programming Interface ... 8

1.5.14 Authentication ... 9

1.5.15 Authorization .. 9

1.5.16 Hashing and Salting... 9

1.6 Conclusion ... 10

Chapter Two: Used Tools and Technologies ... 11

2.1 Introduction .. 12

2.2 Programming Languages .. 12

2.2.1 HTML ... 12

2.2.2 CSS ... 12

2.2.3 JavaScript .. 12

2.2.4 TypeScript... 13

2.3 Development Tools .. 13

2.3.1 Visual Studio Code ... 13

2.3.2 Tabby Terminal ... 13

2.3.3 React ... 13

2.3.4 Nextjs.. 14

2.3.5 Tailwindcss ... 15

2.3.6 Supabase ... 15

2.3.7 Prisma ... 16

2.3.8 TRPC .. 16

2.3.9 Zustand ... 16

2.3.10 JWT .. 17

2.4 Designing Tools ... 17

2.4.1 Figma .. 17

2.4.2 Draw.io ... 17

VI

2.5 Conclusion ... 18

Chapter Three: System Design .. 19

3.1 Introduction .. 20

3.2 Unified Modeling Language ... 20

3.3 Use case diagram .. 20

3.3.1 Definition .. 20

3.3.2 Student use case diagram ... 23

3.3.3 Teacher use case.. 24

3.3.4 IGEE admin user case ... 25

3.3.5 Textual description of use cases .. 26

3.4 Class diagram ... 36

3.4.1 Definition .. 36

3.4.2 Visibility of attributes and operations .. 36

3.4.3 Class graphical description .. 37

3.4.4 Multiplicity ... 37

3.4.5 Relationships between classes ... 37

3.4.6 Class diagram .. 39

3.5 Sequence diagram .. 40

3.5.1 Definition .. 40

3.5.2 Sequence diagram notations .. 40

3.5.3 Sequence diagrams .. 41

3.6 Entity Relationship Diagram... 49

3.6.1 Definition. ... 49

3.6.2 Database schema tables ... 51

3.6.3 Database schema diagram ... 54

3.7 Conclusion ... 56

Chapter Four: System Implementation .. 57

VII

4.1 Introduction .. 58

4.2 Platform User Interface .. 58

4.2.1 Interface of Landing page .. 58

4.2.2 Interface of Authentication page .. 58

4.2.3 Interface of Posts page .. 60

4.2.4 Interface of Profile page .. 60

4.2.5 Interface of Chat page ... 61

4.2.6 Interface of Courses page .. 62

4.2.7 Interface of Project proposals page .. 62

4.2.8 Interface of Registrations page .. 63

4.3 Code Implementation ... 64

4.3.1 Converting Database tables into Prisma code: 64

4.3.2 Querying from database using Prisma.. 66

4.3.3 Inserting into database using Prisma .. 66

4.3.4 Implementing the Sign in function using TRPC 67

4.3.5 Handling the Authorization ... 69

4.4 Conclusion ... 70

General Conclusion ... 71

Future works ... 71

References .. 72

VIII

List of Figures

Figure 1: JavaScript frameworks ranking .. 14

Figure 2: Types of UML diagrams .. 21

Figure 3: Student use case diagram ... 23

Figure 4: Teacher use case diagram .. 25

Figure 5: IGEE admin use case diagram ... 25

Figure 6: Class notation .. 37

Figure 7: Platform class diagram .. 39

Figure 8: Sequence diagram notations... 41

Figure 9: Authentication’s sequence diagram .. 42

Figure 10: General posts sequence diagram... 43

Figure 11: Post’s sequence diagram .. 44

Figure 12: Chat's sequence diagram .. 46

Figure 13: Profile's sequence diagram ... 47

Figure 14: Project proposals and project applications sequence diagram 48

Figure 15: Courses' sequence diagram .. 49

Figure 16: Entity relationship diagram symbols .. 50

Figure 17: Database schema diagram .. 55

Figure 18: Landing page ... 58

Figure 19: Student registration page.. 59

Figure 20: Teacher registration page ... 59

Figure 21: Login page... 59

Figure 22: Posts page .. 60

Figure 23: Profile page ... 61

Figure 24: Chat page .. 61

Figure 25: Courses page ... 62

Figure 26: Student project proposals page ... 63

Figure 27: Teachers project proposals page... 63

Figure 28: Registrations page ... 64

Figure 29: From SQL table to Prisma ... 65

Figure 30: Querying posts using SQL ... 66

Figure 31: Querying posts using Prisma .. 66

Figure 32: Registering a new student using SQL ... 66

file:///C:/Users/Hamada%20Salim%20G-Trd/Downloads/FYP%20IGEE%20SPACE.docx%23_Toc137984683
file:///C:/Users/Hamada%20Salim%20G-Trd/Downloads/FYP%20IGEE%20SPACE.docx%23_Toc137984684
file:///C:/Users/Hamada%20Salim%20G-Trd/Downloads/FYP%20IGEE%20SPACE.docx%23_Toc137984685
file:///C:/Users/Hamada%20Salim%20G-Trd/Downloads/FYP%20IGEE%20SPACE.docx%23_Toc137984687
file:///C:/Users/Hamada%20Salim%20G-Trd/Downloads/FYP%20IGEE%20SPACE.docx%23_Toc137984693
file:///C:/Users/Hamada%20Salim%20G-Trd/Downloads/FYP%20IGEE%20SPACE.docx%23_Toc137984709

IX

Figure 33: Registering a new student using Prisma ... 67

Figure 34: The back-end side of TRPC ... 68

Figure 35: The front-end side of TRPC ... 69

Figure 36: Handling the authorization using Nextjs SSR ... 70

X

List of Tables

Table 1: Common status codes .. 7

Table 2: Summary of use case diagram arrows .. 22

Table 3: Actors and their use cases .. 22

Table 4: Sing in use case ... 26

Table 5: Sing up use case .. 27

Table 6: General posts use case ... 28

Table 7: Chat use case .. 30

Table 8: Notifications use case .. 30

Table 9: Profile use case ... 31

Table 10: Courses use case ... 32

Table 11: Project proposals use case ... 32

Table 12: Email use case ... 33

Table 13: My project proposals use case ... 34

Table 14: Registrations use case.. 35

Table 15: Uploaded courses use case .. 35

Table 16: Reported posts use case ... 36

Table 17: Class diagram relationships .. 38

Table 18: Database tables ... 54

XI

List of Abbreviations

API: Application Programming Interface

App: Application

CRUD: Create, Read, Update and Delete

CSS: Cascading Style Sheets

DB: Database

DBMS: Database Management System

DOM: The Document Object Model

ERD: Entity Relationship Diagram

FK: Foreign Key

HTML: HyperText Markup Language

HTTP: Hypertext Transfer Protocol

HTTPS: Hypertext Transfer Protocol Secure

ID: identifier

IDE: Integrated development environment

IGEE: Institut de Génie Electrique et Electronique

JS: JavaScript

JSON: JavaScript object notation

JWT: JSON Web Token

MPA: Multi Page Applications

ORM: Object-Relational Mapping

PK: Primary Key

SCP: Student Communication Platform

SEO: Search Engine Optimization

SPA: Single Page Applications

SQL: Structured Query Language

SSR: Server-side Rendering

TS: TypeScript

UI: User Interface

UML: Unified Modeling Language

URL: Uniform Resource Locator

UX: User experience

VS Code: Visual Studio Code

1

General Introduction

The internet evolution has impacted a significant role in various aspects of our lives,

and one of the most affected fields is the communication field, where the world has become

fully interconnected by the appearance of social media platforms, and people can now

connect, interact, and exchange information with ease across long distances.

Social media platforms, like Facebook, have gained huge popularity in the

educational environment. Students, teachers, and administrations started using them as a way

to share information, collaborate on projects, and receive announcements. However,

concerning the downside of these platforms from privacy, data security, and most

significantly distractions where a student starts wasting time after checking announcements

without him realizing that, or sometimes he even forgets his first intent because of the

persuasive design the social media use.

This project (Student Communication Platform) has been implemented to bridge the

gap between traditional social media platforms and the specific needs of educational

environments, by creating a reliable and dedicated space for students, teachers, and

administrations to communicate, collaborate, and share information. The SCP provides a

free-distraction space where students focus on their studies and connect with their classmates

in a meaningful way which increases their productivity, not to mention that the student's

information is secured and kept private. The SCP provides a range of features, including the

ability to create, update, and delete posts and comment on them, share files, engage in group

chat, receive real-time notifications, submit project proposals, and maintain personalized

profiles and more, which offers an all-in-one solution for student communication.

In this report, we cover the key aspects of our project. Chapter 1 identifies the

problems, and the objectives of the project, as well as explores the concept of web

development. Chapter 2 focuses on the essential tools and technologies used to build the

project. In Chapter 3, we dive into system design, utilizing UML and ERDs to create a visual

representation. Finally, Chapter 4 showcases the implementation phase by presenting the user

interface (UI) of our platform. The report concludes with a summary of the presented work

and offers suggestions for future works.

2

Chapter one:

General Background

3

1.1 Introduction

The World Wide Web has revolutionized our lives, work, and social connections,

particularly with the advent of social media platforms. This chapter provides a brief overview

of the project's subject, highlighting the issues arising from the integration of social media

into the education system. Furthermore, it outlines the objectives aimed at addressing these

problems. Finally, some of the main concepts are introduced.

1.2 Subject

Effective communication is essential in educational institutions, However, not any

communication approach is valid especially if we talk about social media. To address this,

our project focuses on developing a student communication platform, a centralized web

application that aims to make collaboration, information sharing, and engagement easier. We

aim to overcome the limitations and the downsides of social media platforms as an

educational environment by providing a user-friendly hub where students can connect,

communicate, and access specialized forums based on the year and specialties. By doing so,

we seek to enhance the educational experience, foster community, and empower students in

their learning journey.

1.3 Problem statement

The problem we address is the use of social media as an educational environment,

which poses the following challenges:

 Inadequate tools: Social media platforms lack the necessary tools for effective

educational communication and collaboration.

 Distractions and time wastage: Students are often distracted by unrelated content on

social media platforms, leading to wasted time that could be spent on educational

activities.

 Limited access: Not all students have social media accounts, hindering inclusive

communication and collaboration.

 Account Security and Shutdowns: Hacking or platform policies can lead to account

compromises or closures, disrupting communication and resource sharing.

 Lack of content supervision: There is inadequate oversight of shared content, raising

concerns about inappropriate or unreliable information.

4

 Use of fake names: Students may use fake names, compromising identity verification

and creating an untrustworthy environment.

 Exclusion of non-students: Educational groups may lack strict verification, allowing

unauthorized individuals to join.

1.4 Objectives

The project aims to solve the problems mentioned above, by providing a set of

solutions as follows:

 Develop a student communication platform: Create a user-friendly web application

that serves as a dedicated communication platform and free-distraction space for

students, teachers, and administrators, fostering interaction and collaboration.

 Minimize distractions: Develop a platform that solely caters to educational needs,

ensuring no irrelevant content that distracts students.

 Secure registrations: Implement a registration process where only institute students

can sign up using their student card ID. The admin will verify registrations to exclude

non-student accounts.

 Content supervision: Enable students to report posts, while granting the admin full

control to monitor and remove suspicious or unrelated content.

 Real names: Enforce the use of students' real first and last names on the platform,

promoting transparency and accountability.

1.5 Concepts

1.5.1 Web application

 Web application development refers to the process of creating dynamic applications

that are accessed through web browsers over the internet, it involves multiple components,

including front-end development, back-end development, and database integration, it’s built

using web technologies like HTML, CSS, and JavaScript, it offers cross-platform

compatibility and eliminating the need for installation, it enables seamless collaboration and

accessibility from anywhere, simplifying deployment and reducing maintenance efforts. [1]

5

1.5.2 Single-Page Application

 A Single-Page Application (SPA) is a type of web application that operates within a

single web page, where the content is dynamically updated without requiring reloading the

page, meaning instead of navigating to different pages, the application dynamically updates

specific sections or components based on user interactions, providing a smoother and more

responsive user experience. SPAs can offer fast and interactive web applications that feel

more like native desktop or mobile applications. Most JavaScript frameworks like React,

Angular, and Vue use SPAs. [2]

1.5.3 Multi-Page Application

 A Multi-Page Application (MPA) is a traditional type of website where each page

represents a separate HTML document. When you click on a link or interact with the website,

it loads a new page from the server. MPAs follow a more traditional web browsing

experience, where each page refreshes entirely, and the whole content is replaced. MPAs rely

on server-side rendering to generate and serve the HTML content to the user's browser. Each

page in an MPA can have its own HTML, CSS, and JavaScript, and the navigation between

pages involves a round trip to the server. MPAs are commonly used for simpler websites or

content-driven applications that don't require real-time updates or extensive interactivity. [3]

1.5.4 Front-end

 Front-end development involves creating and implementing web applications' UI

(user interface) and UX (user experience) using HTML, CSS, and JavaScript. It focuses on

designing and coding the visual and interactive elements that users see and interact with

directly in their web browsers. Front-end developers work to ensure a visually appealing

design, responsive layout, and interactive functionality, often utilizing frameworks like React,

Angular, or Vue.js. [4]

1.5.5 Back-end

Back-end development involves creating and maintaining the server-side logic,

databases, and infrastructure that power web applications. It includes writing code in server-

side programming languages like PHP, Python, Ruby, or Node.js, and using frameworks to

handle tasks such as data management, security, integration with external services, and

scalability. Back-end developers ensure the smooth functioning of the web application,

6

process user requests, interact with databases and implement security measures to protect

data and ensure optimal performance. [4]

1.5.6 Serverless

Serverless computing, or serverless, is a cloud computing model where developers

can build and run applications without managing the underlying server infrastructure. It

allows developers to focus on writing code while the cloud provider handles server scaling

and management. Serverless platforms execute code in response to events or triggers,

providing benefits like automatic scaling, reduced operational overhead, and cost efficiency.

It promotes agility and scalability for applications. [6]

1.5.7 Framework

Frameworks are pre-made structures or libraries that offer a foundation and a set of

tools for building applications. They offer functionalities, design patterns, and reusable

components to develop software. By using frameworks, developers can save time and effort

by leveraging pre-existing code and methods to optimize the development process and

promote best practices, they often include features such as database access, user

authentication, templating engines, and routing mechanisms, allowing developers to focus on

application-specific logic rather than reinventing the wheel. [7]

1.5.8 State Management

State management refers to how data is stored and managed within a web application.

It involves keeping track of important information and the current state of the application. In

web development, state management techniques are used to ensure that data is preserved and

accessible across different pages. Effective state management is crucial for creating

responsive and interactive web applications. [5]

1.5.9 HTTP Protocol and Status code

1.5.9.1 HTTP Protocol

HTTP (Hypertext Transfer Protocol) is an application-layer protocol, it’s the main

protocol for communication between web browsers and servers. It enables the request-

response model where a client sends a request to a server, and the server responds with the

requested data or performs the requested action [8]. other web protocols are:

7

 HTML (Hypertext Markup Language): Standard markup language for creating

web pages and structuring content.

 HTTPS (Hypertext Transfer Protocol Secure): Secure version of HTTP that

encrypts communication for data confidentiality and integrity.

 DNS (Domain Name System): Protocol for translating domain names into IP

addresses, facilitating server location and communication.

 FTP (File Transfer Protocol): Protocol for transferring files between clients and

servers, enabling file management on remote servers.

 WS (Web Sockets): Protocol allowing real-time bidirectional communication

between clients and servers, facilitating interactive web applications.

1.5.9.2 Status codes

The following tables shows some of the most used HTTP status codes: [9]

1.5.10 URL

A URL (Uniform Resource Locator) is a web address that specifies the location of a

resource on the Internet [10]. Its components include:

 Protocol: Specifies the communication protocol used, such as HTTP or HTTPS.

 Domain: The domain name or IP address of the server hosting the resource.

 Path: The specific location or file path on the server where the resource is located.

 Query Parameters: Optional parameters that provide additional information to the

server.

An example of a URL is "https://www.example.com/blog/article?id=123":

 The protocol is “https://”.

Status code Description

100 Continue

200 OK

301 Moved Permanently

400 Bad Request

401 Not Authorized

404 Not Found

500 Internal Server Error

503 Service Unavailable

Table 1: Common status codes

8

 The domain is “www.example.come”.

 The path is “/blog/article”.

 The query parameter is “id=123”.

1.5.11 Database & Database Management Systems

1.5.11.1 Database

A database is a carefully organized collection of data that is designed to efficiently

store, retrieve, and manipulate information, they can be relational databases also known as

SQL databases, which organize data into tables with defined relationships, or NoSQL

databases that store data in a non-tabular format (document-oriented format) which is more

flexible than the SQL one. The role of databases in web applications is essential, ensuring

effective data storage, retrieval, and management. [11]

1.5.11.2 Database Management Systems

A DBMS (Database Management System) is a software application that helps users

store, organize, manage, and retrieve data efficiently. It serves as a bridge between users and

databases, enabling tasks such as data creation, modification, deletion, querying, and

reporting. Examples of popular DBMSs include Oracle Database, MySQL, Microsoft SQL

Server, and PostgreSQL for SQL databases. MongoDB, Redis, and Firebase for NoSQL

databases. [12]

1.5.12 Object-Relational Mapping

 ORM (Object-Relational Mapping) is a programming technique that connects object-

oriented code with relational databases. It enables developers to work with databases using

object-oriented concepts and eliminates the need for writing raw and complex SQL queries.

ORMs automate data mapping, retrieval, and manipulation, simplifying database interactions

and making application development more efficient. Examples of popular ORMS are

Mongoose and Prisma. [13]

1.5.13 Application Programming Interface

An API (Application Programming Interface) is a set of rules that allows different

software applications to talk to each other and share information. It provides a way for

developers to use specific features or data from one application in another application,

without needing to know all the details of how the first application works. [14]

9

1.5.14 Authentication

Authentication is the process of verifying the identity of a user. It involves validating

the provided credentials, to determine if the user is who they claim to be. Authentication

mechanisms include techniques like username/password authentication, biometric

authentication (fingerprint or facial recognition), and multi-factor authentication (combining

multiple authentication factors). By authenticating users, web applications can ensure that

only authorized individuals can access protected resources.

1.5.15 Authorization

Authorization is the process of determining a user's access rights and permissions

after authentication. It defines what actions and resources a user can access, such as reading,

writing, or modifying specific data.

1.5.16 Hashing and Salting

1.5.16.1 Hashing

Hashing is a way of taking an input (like a password) and converting it into a unique

string of characters. This resulting string (called a hash) has a fixed length and looks

completely different from the original input. Hashing is a one-way process, meaning you

can't obtain the original password from the hash. When a user creates an account, the

password is turned into a hash and saved in a database, when he wants to log in later, the

password he enters is turned into a hash and compared to the stored hash. If they match, the

login is successful. [15]

1.5.16.2 Salting

Salting is an extra security step used together with hashing. It involves adding a

random string of characters, called a salt, to a password before it gets hashed. The salt is

unique for each user and stored alongside the hashed password in the database. Salting

provides protection against attacks where hackers try to figure out the original password from

the hash. [15]

10

1.6 Conclusion

Through this chapter, the issues of integrating social media in the education system

were addressed, and how we could solve these problems using a web application. It also

introduces key concepts of the web that help to understand the next parts of this project.

11

Chapter Two:

Used Tools and Technologies

12

2.1 Introduction

Utilizing tools and technologies effectively has become crucial for success as software

development continues to advance at a rapid rate. This chapter explores the fundamental

components that form the development process, including programming languages and

development and design tools.

2.2 Programming Languages

2.2.1 HTML

HTML (Hypertext Markup Language) is the standard markup language for creating

the structure and presentation of web pages. It consists of tags and elements that define the

content and layout of a webpage. HTML documents use opening and closing tags to enclose

elements, such as headings (<h1></h1>), paragraphs (<p></p>), inputs (<input />), and

more. It also supports images, links, multimedia, and interactive elements. Web browsers

interpret HTML documents to display the visual layout of web pages. [16]

2.2.2 CSS

CSS (Cascading Style Sheets) is a style sheet language used to define the visual

styling of HTML (Hypertext Markup Language) documents. It allows web developers to

control the appearance of HTML elements on web pages by applying styles such as colors,

fonts, sizes, margins, paddings, borders, and more. It also enables advanced layout techniques

like positioning, floats, flexbox, and grid systems, which facilitate the creation of responsive

and dynamic web designs. It is an essential part of modern web development and is supported

by all major web browsers. [17]

2.2.3 JavaScript

JavaScript, or JS, is a versatile programming language used for creating interactive

behavior on websites. It works on both the client-side and server-side, allowing developers to

modify page elements, handle user interactions, and perform asynchronous operations (API

calls). JavaScript supports OOP (Object Oriented Programming) and has a rich ecosystem of

libraries and frameworks. Because JavaScript can be used for creating interactive web

applications, games, mobile apps, server-side applications, and much more, it’s considered

the foundation of modern web development. [18]

13

2.2.4 TypeScript

TypeScript (TS) is a typed superset of JavaScript developed by Microsoft. It adds

static typing and modern JavaScript features to enhance the development experience and

maintainability of large-scale applications. It seamlessly integrates with JavaScript codebases

and popular frameworks. TypeScript enables developers to catch type-related errors early in

the development process rather than the runtime, it also helps to add auto-completion to

enhance the development experience. TypeScript gets translated into plain JavaScript,

allowing it to be executed in any JavaScript runtime environment. [19]

2.3 Development Tools

2.3.1 Visual Studio Code

Visual Studio Code, or simply VS Code, is an integrated development environment

(IDE) developed by Microsoft. Because of its customizable interface, extensive plugin

ecosystem, and powerful features, VS Code is widely used by developers for writing, editing,

and debugging code efficiently, it offers a range of productivity tools, like terminal access,

and built-in support for various frameworks and technologies, making it the best choice for

many programmers and software engineers. [20]

2.3.2 Tabby Terminal

Tabby Terminal is a modern terminal emulator designed to enhance the command-

line experience. It provides a customizable interface that allows users to work with

command-line applications and shell environments efficiently. Tabby Terminal offers various

features such as multiple tabs, split panes, and session management, enabling users to

organize and switch between different terminal sessions easily. It also supports theming,

customization of keyboard shortcuts, and integration with external tools, which helps

improve developers’ productivity and optimize their workspace environment.

2.3.3 React

React, or React.js, is a popular and free front-end JavaScript library for building user

interfaces. It enables developers to create reusable UI components and write efficient code. It

14

uses a virtual DOM (Document Object Model) to update only the necessary parts of the user

interface, leading to fast and responsive applications. React.js has a vast ecosystem of

libraries and strong community support. It is suitable for developing single-page, mobile, or

server-rendered applications in combination with frameworks like Next.js. React.js is widely

used for building interactive and scalable web applications. [21]

Figure 1: JavaScript frameworks ranking

2.3.4 Nextjs

Next.js is an open-source React framework created by a private company called

“Vercel” for building server-rendered, static, and hybrid web applications, it provides a

powerful set of features that simplify the development process and enhance the performance

of web applications. [22]

2.3.4.1 Why Nextjs?

There are several reasons why Next.js is chosen for this project:

 Server-side rendering (SSR): Next.js supports server-side rendering out of the box,

allowing pages to be rendered on the server and delivered to the client. This improves

performance and SEO.

 Automatic code splitting: Next.js automatically splits your JavaScript code into

smaller chunks, loading only what is necessary for each page. This speeds up initial

page loads and improves performance.

 API development: Next.js provides an easy way to create API endpoints within your

application. This simplifies backend development and enables seamless

communication between the client and server.

15

 Developer experience: Next.js offers features like hot module reloading and

automatic code rebuilding, enhancing the development experience. It also provides

helpful error reporting and debugging tools.

 Active community and ecosystem: Next.js has a vibrant community with extensive

resources, tutorials, and plugins available. This fosters collaboration, provides

support, and expands the capabilities of the framework.

 SEO and performance optimization: With built-in server-side rendering, Next.js

improves SEO by delivering pre-rendered HTML to search engines.

 Scalability: Next.js is designed to handle large-scale applications and offers features

like serverless deployment and support for edge networks. This enables your

application to scale effectively and handle high-traffic loads.

With its strong community support and extensive documentation, Next.js is widely adopted

for building modern, scalable, high-performance web applications.

2.3.5 Tailwindcss

Tailwindcss is a highly customizable CSS framework allowing developers to build

modern, responsive user interfaces. it provides a comprehensive set of pre-defined classes

that can be directly applied to HTML elements. These classes enable developers to quickly

style components by composing them together, rather than writing custom CSS. It also

includes advanced features like responsive design utilities, dark mode support, and a

powerful JIT (Just-In-Time) compiler for optimizing the final CSS bundle. Tailwindcss helps

developers create unique and efficient UIs while maintaining a consistent and scalable

codebase. [23]

2.3.6 Supabase

Supabase is an open-source, cloud-based database platform that offers developers a

set of tools and services for building scalable and real-time applications. It combines database

functionality with an API backend, providing features like data storage, authentication, and

real-time subscriptions. Supabase is built on PostgreSQL and offers a user-friendly interface

for managing data. It provides client libraries for various programming languages and

integrates well with frontend frameworks like React and Next.js. With Supabase, developers

can rapidly develop applications without worrying about complex infrastructure management,

enabling them to focus on building core functionality. [24]

16

2.3.7 Prisma

Prisma is a next-generation ORM (Object-Relational Mapping) for different databases

like PostgreSQL, MySQL, and MongoDB, it provides type safety, automated migrations, and

an intuitive data model. Developers can define database models using declarative schema,

and Prisma will automatically generate the corresponding database schema and the CRUD

(Create, Read, Update, Delete) operations [25]. It consists of the following parts

 Prisma Client: Auto-generated and type-safe query builder for Node.js & TypeScript.

 Prisma Migrate: Migration system.

 Prisma Studio: GUI to view and edit data in your database.

Prisma integrates well with popular front-end frameworks such as Nextjs, enabling efficient

and type-safe database operations. it helps developers to write cleaner, and more maintainable

code while improving productivity and reducing the potential for errors by abstracting away

the complexities of database interactions.

2.3.8 TRPC

TRPC (typed Remote Procedure Call) is an open-source library that simplifies

communication between a client and server in web applications. what makes TRPC powerful

is it uses TypeScript under the hood to expect the data type from the API endpoint, this

ensures strong typing and fewer communication errors between the client and the server. It

also supports features like server-side caching, authentication, and authorization, allowing

developers to build secure and efficient APIs. TRPC helps developers reduce the amount of

complex code needed for API communication and focus more on building the actual

functionality of their applications. It promotes code reusability, improves developer

productivity, and helps maintain a clean and scalable codebase. [26]

2.3.9 Zustand

Zustand is a lightweight state management library for React. It uses React context API

and the "useState” hook to create a store-like mechanism for managing states within

components. It supports features like derived state, middleware, and selective subscription for

efficient component re-rendering. Zustand has a minimalistic and declarative syntax,

reducing boilerplate code and improving performance. It integrates well with other React

libraries and is suitable for smaller to medium-sized applications as an alternative to more

extensive state management solutions like Redux. [27]

17

2.3.10 JWT

JWT (JSON Web Token) is an open standard that defines a compact and self-

contained method for sending securely encoded JSON objects between parties. [28]

JWT consists of three parts: a header, a payload, and a signature:

 The header: contains information about the type of token and the signing algorithm

used.

 The payload carries the claims or attributes about the user or other relevant

information.

 The signature is created by combining the encoded header, encoded payload, and a

secret key. It is used to verify the authenticity and integrity of the token.

When a user successfully authenticates, an authentication server will normally issue a JWT,

which can be used to send authentication data securely between a client (such as a web

browser) and a server. It is frequently used in web applications for authentication and

authorization.

2.4 Designing Tools

2.4.1 Figma

Figma is a cloud-based design and prototyping tool used for creating user interfaces

and interactive prototypes. It offers real-time collaboration, vector editing tools, component

libraries, and design system management. Figma supports remote teamwork, version control,

and design handoff for developers. Figma has gained popularity among designers and

developers for its ability to streamline the design process and improve collaboration between

designers and stakeholders. [29]

2.4.2 Draw.io

 Draw.io, now known as diagrams.net, is a lightweight diagramming software for

creating diagrams and flowcharts. It has a user-friendly interface and a set of tools for

designing software architecture diagrams, network diagrams, UML diagrams, and more.

Draw.io supports exporting diagrams in multiple formats and is widely used by professionals

and teams to communicate ideas and concepts effectively. [30]

18

2.5 Conclusion

This part defines the tools and technologies used to design and implement the project

and how they impact productivity and code quality. It highlights the importance of selecting

each tool and how they optimize the development workflow.

19

Chapter Three:

System Design

20

3.1 Introduction

This chapter explores the use of UML and Entity Relationship Diagrams (ERDs) in

system design. UML provides a standardized visual language for modeling system

architectures. We will discuss the principles, techniques, and practical applications of using

UML in particular we choose three diagrams to model these roles; use case, sequence and

class diagrams. We end the chapter by introducing ERDs and how we use them to depict

relationships in a database

3.2 Unified Modeling Language

Unified Modeling Language (UML) is a standardized modeling language in software

engineering. It offers a set of graphical notations and symbols to represent various aspects of

a software system. UML diagrams serve as visual representations that help in documenting,

analyzing, and designing software systems. UML enables a clear understanding and

visualization of complex systems, making it a perfect tool for software development projects

[31]. The UML can be in two types:

 Structural Diagrams: These diagrams focus on the static structure of a system and

represent the elements and relationships within it. Some of these diagrams are: class,

object, component, and deployment diagrams.

 Behavioral Diagrams: These diagrams emphasize the dynamic behavior and

interactions between different elements in a system. They depict how the system

functions and responds to events. Some of these diagrams are: use case, sequence,

activity, and state machine diagrams.

This project will be analyzed and designed using class, sequence, and use case diagrams.

3.3 Use case diagram

3.3.1 Definition

A use case diagram is a UML diagram that depicts the functionalities of a system

from the perspective of its users, known as actors. It shows how users interact with the

system and the specific actions it offers. Actors represent entities interacting with the system,

while use cases represent the system's functionalities. The relationships between actors and

use cases are shown using associations and dependencies [31]. We can summarize the main

components of the use case diagram as follows:

21

 Actors: Actors represent the external entities that interact with the system. They can

be users, external systems, or other software components.

 System Boundary: The system boundary is a box or boundary that encloses all the

actors and use cases within the system. It represents the scope of the system being

modeled.

Figure 2: Types of UML diagrams

 Relationships: They show how actors interact with specific use cases. The main

types of relationships are summarized in the table below:

Symbol Description

association Association: It indicates that an actor participates in a particular

use case. It’s shown as a solid line connecting the two ends.

include Include: It indicates that the base use case relies on the behavior

defined in the included use case. It’s shown as a dashed arrow

pointing from the base use case to the included use case.

extend Extend: It indicates that the extending use case can be optionally

invoked during the execution of the base use case. It’s shown as a

22

dashed arrow pointing from the extending use case to the extended

use case.

Generalization Generalization: It represents a parent-child relationship between

use cases, it allows for the classification of use cases into more

general and specialized categories. It’s shown as an arrow pointing

from the specialized use case to the general use case.

Table 2: Summary of use case diagram arrows

 Use Cases: Use cases represent the specific actions or functionalities provided by the

system. They describe a goal or task that the system performs for the actors.

The following table shows the Actors and their corresponding use cases used in this

project:

Actor Use case

Student - Sign in

- Sign up

- Posts page (General/Year/IGEE/Club)

- Chat page

- Profile page

- Courses page

- Project proposals page

- Notifications page

Teacher - Sign in

- Sign up

- Posts page (General/IGEE/Club)

- Email page

- Profile page

- My project proposals page

- Notifications page

IGEE Admin - Sign in

- Sign up

- Posts page (General/IGEE/Club)

- Profile page

- Courses page

- Registrations page

- Reported posts page

- Notifications page

Table 3: Actors and their use cases

23

3.3.2 Student use case diagram

Figure 3: Student use case diagram

24

3.3.3 Teacher use case

25

3.3.4 IGEE admin user case

Figure 4: Teacher use case diagram

Figure 5: IGEE admin use case diagram

26

3.3.5 Textual description of use cases

3.3.5.1 Sing in use case

3.3.5.2 Sing up use case

Description The Sign-Up use case allows a user to create an account by providing the

required information then it sends the information to the IGEE administrator

to check if they are valid and create a new account.

Actor Student, Teacher

Preconditions The user does not have a registered account.

Description The Sign-In use case allows a registered user to log in to the platform by

providing valid credentials, then verifying them and giving it access.

Actor Student, Teacher, IGEE admin

Preconditions The user must have a registered account.

Postconditions The user is successfully signed in and redirected to the “General posts”

page.

An access token (JWT) is generated for the user, allowing him to navigate

through the platform.

Main Flow 1. The user visits the login page of the web app (“/login”).

2. The web app requests the user to enter his credentials (email and

password).

3. The user enters his credentials (email and password).

4. The user clicks the “Login” button.

5. The web app sends a request to the server to verify the submitted

credentials against the database.

6. If the credentials are valid, the server responds with an access token

(JWT) allowing the user to access the platform.

7. The web app redirects the user to the “General Posts” page.

Alternative

Flows

If the user enters invalid credentials (email or password), An error message

is displayed indicating that one of the login credentials is incorrect.

The user is prompted to re-enter the credentials or recover their account

through the “Forgot password” option.

Table 4: Sing in use case

27

Postconditions The user is registered and a verified message is sent to his email

Main Flow 1. The user visits the registration page of the web app “/register”.

2. The web app requests the user to enter the required information.

3. The user enters the required information.

4. The user clicks the “Register” button.

5. The web app sends a request to the server to verify if the email is not

available.

6. If the email is not available, the server creates a new account in the

database as a not verified account.

7. The IGEE admin checks the new account information if they are valid.

8. The IGEE admin sends an email to the user telling him that his account is

verified.

9. The user can log in to the platform.

Alternative

Flows

If the user enters a used email, an error message is displayed indicating that

the email account has already been taken.

If the user did enter specific information, an error message is displayed

indicating the information that hasn't been entered.

Table 5: Sing up use case

3.3.5.3 General posts use case

Description The General Posts use case allows a user to view, like, and comment on

other users’ posts or create and manage (edit, delete, hide ...etc.) his posts

within the communication platform, it’s called “General” because all

different years can share posts.

Actor Student, Teacher, IGEE admin

Preconditions The user must be logged in to the platform.

Postconditions The user can interact and use all the functionalities provided by the

“General” page

Main Flow 1. The user navigates to the General posts page.

2. The web app displays a list of existing posts (excluding the hidden ones).

3. The user can view the content and details of specific posts.

4. The user can like, comment, or reply to a comment (sub-comment) on a

specific post).

28

5. The user can scroll down to fetch and view more posts.

6. The user can manage his post using the post options (edit, delete, save,

share, disable comments).

7. The user can hide, report, share, or save other users’ posts.

8. The user can create a new post by providing content, attachments (image,

video, or file), or even creating a poll for voting.

9. A notification is generated depending on the user’s action (for example:

“student created a new post on the general page”, “a teacher liked your

post”, …etc.)

10. The notification icon in the navbar is highlighted with the number of sent

notifications.

Alternative

Flows

None

Table 6: General posts use case

3.3.5.4 Year posts use case

The year posts page is the same as the General use case except that on the 2nd step of

the main flow, the server checks if the student is on the same year the page requires. For

example, L1 students can navigate to the “/l1” path and view only posts posted by other L1

students. If he navigates to the “/l2”, “/l3”, “/m1”, or “/m2” path, the server will check his

year and redirect him automatically to “/l1”, meaning he cannot view other years' posts.

Teachers and IGEE admin can access any year path freely.

3.3.5.5 IGEE posts use case

The IGEE posts page is the same as the General use case except that on the 2nd step

of the main flow, the server checks if the user role is “IGEE admin”, then it will show the

create post option; meaning only the IGEE admin who has the privileges to create posts on

this page, the other user roles (Students and Teachers) can only view the content and interact

with it by commenting, liking …etc.

3.3.5.6 Club posts use case

The Club posts use case is also the same as the General use case. However, on the 2nd

step of the main flow, the server checks if the user role is “Student” and is “Club admin”,

then it will show the create posts option; meaning the only user who can create posts is the

29

club admin. Teachers, IGEE admin, and other students can just view the content and interact

with it.

3.3.5.7 Chat use case

Description The Chat use case enables students to engage in real-time messaging

conversations within the communication platform. It allows them to send

and receive text messages or files, and each group or specialty has its student

members

Actor Student

Preconditions The student must be logged in to the platform.

The student must be assigned to a year/group like (L1-Group#02) or a

year/specialty like (M2-Computer)

Postconditions The student successfully interacts and uses all the functionalities provided by

the Chat page.

Main Flow 1. The student navigates to the Chat posts page.

2. The server checks if the user role is “Student”.

3. The web app displays the interface of the Chat page, previously

exchanged messages, sent Files, and Online/Offline members.

4. The student views messages and scrolls up to fetch a view more messages.

5. The student types and sends a text message or a file.

6. The student replies to a specific message by clicking on the reply icon.

7. The student creates a poll to vote.

8. The student deletes a wrongly sent message.

9. The student calls a specific member by mentioning him on the chat.

10. Each action from sending, replying, voting, or deleting a message is sent

as a request to the server.

11. The server broadcasts the message to all chat members and saves it on

the database.

12. The other students receive the message in real-time, view it, and reply in

their chat interface.

Alternative If a user receives a new message while not actively viewing the

30

3.3.5.8 Notifications use case

Flows conversation, the web app highlights the number of unread messages on the

chat icon in the navbar.

Table 7: Chat use case

Description The Notifications use case handles the process of notifying users about new

activities, messages, or updates within the communication platform. It

ensures that users stay informed about important activities and events.

Actor Student, Teacher, IGEE admin

Preconditions The user must be logged in to the platform.

Postconditions The user receives notifications for relevant activities and updates.

Main Flow 1. The web app continuously monitors and tracks activities and actions that

are done by any user (Student, Teacher, or Admin).

2. If the user does any action, like creating, commenting, or liking a post,

sending a message, or mentioning a user, the web app generates a

notification base on that specific action, for example: “Student liked your

post”, “Student mentioned you in a post”, …etc.

3. The user navigates to the notification page.

4. The user views the notification content, by who it’s sent, and how long

ago it was sent.

5. The user scrolls down to fetch and view more previous notifications.

6. The user clicks on a notification and navigates to the source of that

notification, for example, the notification “Student mentioned you in a post”

takes to the post when the user is mentioned.

Alternative

Flows

None

Table 8: Notifications use case

31

3.3.5.9 Profile use case

3.3.5.10 Courses use case

Description The Profile use case allows users to manage and view their personal profile

information within the communication platform.

Actor Student, Teacher, IGEE admin

Preconditions The user must be logged in to the platform.

Postconditions The user profile information is successfully updated and maintained.

Main Flow 1. The user navigates to his profile.

2. The user can view his profile information, including first/last name,

picture, headline, bio, and any other relevant details.

3. The first name and last name are read-only, meaning the user cannot

change them.

4. The user can select an editable option on their profile to update, like

uploading an image or changing the username.

5. The user views three types of posts: 1- posts he created. 2- posts he

commented on, replied to, or liked. 3- posts he saved.

Alternative

Flows

If the user uploaded a picture profile that has a size bigger than the required

size, an error message is displayed.

Table 9: Profile use case

Description The Courses use case allows users to access the available courses within the

communication platform.

Actor Student, Teacher, IGEE admin

Preconditions The user must be logged in to the platform.

Postconditions The user uploads or downloads courses.

Main Flow 1. The user navigates to the course page.

2. The web app displays a list of all years from L1 to M2.

3. The user selects a specific year page and navigates to it.

4. The user views all the courses available on that page (pdfs, links, ...etc.).

5. The user can search, select, or download a course.

6. The user can upload a course for a specific year.

32

3.3.5.11 Project proposals use case

7. The user gives a valid title for the course along with an optional

description.

8. The uploaded file is checked by the IGEE admin.

9. The file is added to the course collection.

Alternative

Flows

If the user uploads an invalid course, the admin rejects the course, and the

file is not added.

Table 10: Courses use case

Description The Student Project proposal use case allows students (only L3, and M2) to

access the project proposals created by teachers, in order to apply for them.

Actor Student

Preconditions The student must be logged in to the platform.

The student must be License 03 or Master 02.

Postconditions The student applies for a project proposal.

Main Flow 1. The student navigates to the project proposals page.

2. The web app displays a list of project proposals created by teachers.

3. The student can view, search, filter, or scroll through the project

proposals.

4. The student clicks “apply” for a project proposal if the proposal is still

valid (did not reach the deadline).

5. An application window pops up, asking the student to write a letter and

click send.

6. The student application is sent to the teacher who created the proposal.

7. The student receives a notification about the teacher's decision (accepted

or rejected).

Alternative

Flows

The student can cancel the application.

Table 11: Project proposals use case

33

3.3.5.11 Email use case

Description The Email use case allows the teacher to send direct emails to students’ chat

page in real-time, where each email is associated with a specific year/group

(for L1, L2, and L3) or year/specialty (for M1 and M2)

Actor Teacher

Preconditions The teacher must be logged in to the platform.

Postconditions The teacher creates an email and sends it.

Main Flow 1. The teacher navigates to the email page.

2. The web app displays all emails sent to each year.

3. The teacher can view the emails and filter them based on year, group, and

specialty.

4. The teacher clicks “create new email”.

5. A new window pops up asking the teacher to type a title, a content and

selects year/group or year/specialty.

6. The teacher fills out the email form and clicks send.

7. The new email is sent instantly to the selected chat room.

Alternative

Flows

The teacher can close the “create email” window.

Table 12: Email use case

3.3.5.12 My Project proposals use case

Description The Teacher Project proposal use case allows teachers to create project

proposals for L3 and M2 students, and accept or reject their applications.

Actor Teacher

Preconditions The teacher must be logged in to the platform.

Postconditions The teacher creates a project proposal.

The teacher makes a decision about the students’ applications.

Main Flow 1. The teacher navigates to the project proposal page.

2. The web app displays only the list of project proposals created by a

specific teacher.

3. The teacher can view, search, filter, or scroll through his project

34

proposals.

4. The teacher clicks “Create new project proposal”.

5. A form window pops up asking the teacher to type in a title, an abstract, a

decision date and which year or specialty is concerned with this project.

6. The teacher fills out the form and clicks “create”.

7. The project proposal is sent to all students of L1 and M2 as “OPEN” so

that 8. they can apply for it.

9. The teacher clicks on the project proposal.

10. The web app displays all the applications related to this project.

11. The teacher selects students and clicks accept.

12. The non-selected students are set as rejected and the project is set as

“CLOSED”

13. A decision notification is sent to all students who sent an application.

Alternative

Flows

The teacher cancels the project proposal.

Table 13: My project proposals use case

3.3.5.13 Registrations use case

Description The registrations use case allows the IGEE admin to view and verify the

students' and teachers requested registrations, then accept or reject them. It

also gives him the option to create pre-made accounts so the students or

teachers can log in directly.

IGEE admin.

Actor IGEE admin

Preconditions The IGEE admin must be logged in to the platform.

Postconditions The IGEE admin can accept or reject the registrations

The IGEE admin can create accounts.

Main Flow 1. The IGEE admin navigates to the registrations page through

“/registrations”

2. The server checks if the user role is “IGEE admin”

3. The web app displays a list of requested registrations.

4. The IGEE admin can filter them by students or by teachers.

5. The IGEE admin scrolls down to fetch more registrations.

6. The IGEE admin verifies each registration information.

35

7. The IGEE admin accepts the registration.

8. An acceptance email is sent to the user’s email address telling him his

registration has been accepted.

Alternative

Flows

The IGEE admin rejects the registration.

A rejection email is sent to the user’s email address telling him his

registration has been rejected.

Table 14: Registrations use case

3.3.5.14 Uploaded courses use case

Description The uploaded courses use case allows the IGEE admin to view and verify the

courses uploaded by the students, then accept or reject them. He can delete

previously uploaded courses.

Actor IGEE admin

Preconditions The IGEE admin must be logged in to the platform.

Postconditions The IGEE admin can accept or reject the uploaded course.

The IGEE admin can delete previously uploaded courses.

Main Flow 1. The IGEE admin navigates to the uploaded course page through

“/uploaded-courses”.

2. The server checks if the user role is “IGEE admin”

3. The web app displays a list of newly uploaded courses.

4. The IGEE admin scrolls down to fetch more courses.

5. The IGEE admin verifies each course information.

5. The IGEE admin accepts the course.

6. The course is added to the student's courses page

Alternative

Flows

The IGEE admin rejects the course.

The IGEE admin deletes a previous course.

Table 15: Uploaded courses use case

3.3.5.15 Reported posts use case

Description The Reported posts use case allows the IGEE admin to view and verify the

posts reported by students, then he can delete the post or ignore the report.

Actor IGEE admin

Preconditions The IGEE admin must be logged in to the platform.

36

Postconditions The IGEE admin deletes the reported post.

The IGEE admin ignores the reported post.

Main Flow 1. The IGEE admin navigates to the reported posts page through “/reported-

posts”.

2. The server checks if the user role is “IGEE admin”

3. The web app displays a list of reported posts.

4. The IGEE admin scrolls down to fetch more posts.

5. The IGEE admin verifies each post.

5. The IGEE admin deletes the post.

6. The post is not available for all students.

Alternative

Flows

The IGEE admin ignores the course.

Table 16: Reported posts use case

3.4 Class diagram

3.4.1 Definition

A class diagram is a visual representation in UML (Unified Modeling Language) that

depicts the structure and relationships among classes in a system. It illustrates the classes,

their attributes, methods, and associations with other classes. Class diagrams are commonly

used in software development to design and document the static structure of object-oriented

systems. [31]

3.4.2 Visibility of attributes and operations

 In UML class diagrams, the visibility of attributes (variables) and operations

(methods) within a class can be indicated using different symbols. The visibility determines

the accessibility and scope of these class members. The following symbols are commonly

used to represent visibility:

1. Public: Denoted by the '+' symbol. It indicates that the member is accessible and can

be accessed by any other class or object.

2. Private: Denoted by the '-' symbol. It indicates that the member is only accessible

within the class itself and cannot be accessed by other classes or objects.

3. Protected: Denoted by the '#' symbol. It indicates that the member is accessible

within the class itself and its subclasses (inherited classes), but not from other classes

outside the inheritance hierarchy.

37

4. Package: Denoted by the ‘~’ symbol. It indicates that the member is accessible within

the same package or module.

3.4.3 Class graphical description

The following figure shows how a class should be represented on a UML class

diagram:

Figure 6: Class notation

3.4.4 Multiplicity

 Multiplicity specifies the allowed number of instances of a class that can be

associated with another class in a particular relationship. Some commonly used multiplicity

notations:

 Single instance: 1

 Zero or more instances: 0..*

 One or more instances: 1..*

 Zero or one instance: 0..1

 Fixed number of instances: 1, 2, 3 …etc.

3.4.5 Relationships between classes

 Relationships between classes are used to depict how classes are connected or related

to each other. The following table shows the common types of relationships between classes:

Relationship Description Graphical representation

38

Association It indicates that objects of one class

are connected to objects of another

class.

Aggregation It indicates that a class contains or is

composed of other classes.

Composition It indicates that a class exists only if

another class exists.

Inheritance It indicates that a child class inherits

all attributes and methods of its

parent class.

Table 17: Class diagram relationships

39

3.4.6 Class diagram

Figure 7: Platform class diagram

40

3.5 Sequence diagram

3.5.1 Definition

Sequence diagram illustrates the interactions and flow of messages between objects or

actors over a specific period of time. It represents the dynamic behavior of a system,

showcasing the sequence of actions and the order in which they occur. Sequence diagrams

are commonly used to visualize the interactions between various components, classes, or

objects within a system [31].

3.5.2 Sequence diagram notations

 Sequence diagram uses several notations to represent the different elements and

interactions. Here are the commonly used notations in sequence diagrams:

 Actor: An actor represents a role played by an external entity (such as a user, system,

or another component) that interacts with a system.

 Lifeline: A lifeline represents an object or actor participating in the sequence

diagram.

 Activation bar: Activation bars represent the period of time during which an object

or actor is actively processing a message.

 Messages: Messages depict the interactions and communications between objects or

actors. They represent the exchange of information, requests, or responses. Messages

can be of different types:

o Synchronous Message: It indicates a synchronous call, where the sender

waits for the response from the receiver before proceeding.

o Return Message: It represents the return of a response from the receiver to

the sender.

o Self-Message: It indicates an interaction within the same object or actor.

 Loop Fragment (loop): The loop fragment is used to depict a repetitive sequence of

interactions.

 Alternative Fragment (alt): The alternative fragment is used to represent alternative

paths or conditional behavior.

 Reference Fragment (ref): The reference fragment is used to reference another

sequence diagram within the current sequence diagram.

41

Figure 8: Sequence diagram notations

3.5.3 Sequence diagrams

 The following sequence diagrams show the most important scenarios that occur in the

presented project:

3.5.3.1 Authentication and authorization sequence diagram

 After the user visits the platform, the web app checks if the user is already logged in,

meaning he has an access token, and he will access the platform directly. If not, a login page

would be displayed asking him to enter his credentials. If the user enters a valid email and

password, he will have access to the platform; otherwise, an error message will appear.

42

Figure 9: Authentication’s sequence diagram

3.5.3.2 General posts sequence diagram

 Once the user is logged in, he can now visit one of the posts pages provided by the

platform; in this case, it’s the general posts page. The student can create a new post or view

and interact with all posts created by other users.

43

Figure 10: General posts sequence diagram

3.5.3.3 Post sequence diagram

 While the student is on the general posts page, he can interact with a post using the

post options. In this case, if the post is created by the student, he can save, delete, edit, share,

or disable the comments. If the post is created by another student, he can save, hide, report or

share it. The common functionality between both cases is liking and commenting.

44

Figure 11: Post’s sequence diagram

45

3.5.3.4 Chat sequence diagram

 The chat page allows the student to view the group’s messages, online/offline

members, and all the sent files. The student can send a message or files in real-time; meaning

the message will reach all the online members instantly. The student can delete his messages

or reply to another student’s message.

46

Figure 12: Chat's sequence diagram

3.5.3.5 Profile sequence diagram

 When the student visits his profile page, the web app will display his profile picture

and information (first name, last name, bio, …etc.). The student can then change the profile

picture by uploading a new one, or updating his information; the first and last names are read-

only, meaning he cannot change them.

47

3.5.3.6 Project proposals and project applications sequence diagram

When the teacher opens the project proposals page, he will view all of his created

proposals along with the students' applications for each proposal; then he will accept or reject

students based on their applications letter and their profiles. The teacher can also create a new

project proposal or delete old ones. On the other hand, when the student visits the project

applications page, he will see all proposals created by all teachers; and then he can apply for

each project proposal.

Figure 13: Profile's sequence diagram

48

Figure 14: Project proposals and project applications sequence diagram

3.5.3.7 Courses sequence diagram

 When the student visits the courses page, a list of all years will be displayed from L1

to M2; then when he selects a specific year, the web app will display all the courses related to

that year. The user can then search, download, or upload courses. When the courses are

uploaded for the first time, they are set as not verified until the IGEE admin verifies and

accepts them; the courses will be accessible to all students.

49

Figure 15: Courses' sequence diagram

3.6 Entity Relationship Diagram

3.6.1 Definition.

An Entity Relationship Diagram (ERD) is a visual representation of the relationships

between entities (or objects) in a database. It is a widely used modeling tool in database

design and depicts the logical structure of a database system [32]. Here are the main

components and symbols used in an ERD:

1. Entities: Entities represent the objects or concepts in the database. They are typically

depicted as rectangles with their names inside. For example, in a university database,

entities could be Student, Course, and Faculty.

50

2. Attributes: Attributes are the characteristics or properties of an entity. They provide

further details about the entity. Attributes are shown as ovals connected to their

respective entities. For instance, a Student entity may have attributes such as Student

ID, Name, and Age.

3. Relationships: Relationships illustrate the associations between entities. They

describe how entities are connected to each other. Relationships are represented by

diamond shapes connecting related entities. Examples of relationships include:

 One-to-Many.

 Many-to-Many.

 One-to-One.

4. Cardinality: Cardinality represents the number of instances of one entity that can be

associated with another entity in a relationship. It is indicated using numbers or

symbols near the relationship lines. Common cardinality notations include:

 One instance.

 Zero or One instance.

 Zero to Multiple instances.

 One to Multiple instances.

5. Primary Key: A primary key uniquely identifies each instance of an entity. It is

denoted by underlining the attribute in the entity. For example, in a Student entity, the

Student ID attribute may serve as the primary key.

Figure 16: Entity relationship diagram symbols

51

3.6.2 Database schema tables

 The following table demonstrates all the database tables used in this project. Each

table has a primary key “PK” that uniquely identifies each row within that table; whereas

relationships between tables are established using foreign keys “FK(column, table)”.

Table Column

User id PK

first_name

last_name

email

password

notification_seen_at

role

Profile user_id PK FK(id, User)

username

headline

year

group

specialty

bio

picture

cover

club

club_role

Post id PK

user_id FK(id,User)

post_content

created_at

comments_disabled

type

page

PostLike user_id PK FK(id, User)

post_id PK FK(id, Post)

52

SavedPost user_id PK FK(id, User)

post_id PK FK(id, Post)

HiddenPost user_id PK FK(id, User)

post_id PK FK(id, Post)

ReportedPost user_id PK FK(id, User)

post_id PK FK(id, Post)

Comment id PK

user_id FK(id, User)

post_id FK(id, Post)

comment_content

created_at

CommentLike user_id PK FK(id, User)

comment_id PK FK(id, Comment)

SubComment id PK

user_id FK(id, User)

post_id FK(id, Post)

comment_id FK(id, Comment)

sub_comment_content

created_at

SubCommentLike user_id PK FK(id, User)

sub_comment_id PK FK(id, SubComment)

File id PK

post_id FK(id, Post)

name

url

type

Poll id PK

post_id FK(id, Post)

poll_content

Voter id PK

poll_id FK(id, Poll)

voter_id

53

Message id PK

sender_id FK(id, User)

content

year

group

specialty

sent_at

MessageFile id PK

message_id FK(id, Message)

name

url

type

year

group

specialty

MessagePoll id PK

message_id FK(id, Message)

poll_content

MessageVoter id PK

message_poll_id FK(id, MessagePoll)

voter_id

Notification id PK

user_id FK(id, User)

subject_id

reference

type

year

group

specialty

created_at

MentiondUser user_id PK FK(id, User)

notification_id PK FK(id, Notification)

54

ProjectProposal id PK

user_id FK(id, User)

title

abstract

posting_date

accepting_date

decision_date

year

status

Application id PK

user_id FK(id, User)

project_id FK(id, ProjectPorposal)

letter

applaying_date

decision

Course id PK

title

description

year

status

url

type

Table 18: Database tables

3.6.3 Database schema diagram

 In order to depict the database schema tables in a more readable diagram, EDR

methods are utilized. The following figure shows the database schema diagram of the

platform.

55

Figure 17: Database schema diagram

56

3.7 Conclusion

In this chapter, we utilized UML diagrams to design the platform system. We defined

the platform needs through the use case diagram, followed by sequence diagrams to illustrate

component interactions. Then we designed our application using a class diagram, defining

class relationships. Finally, we introduced Entity Relationship Diagram (ERD) and used its

methods to depict the database schema.

57

Chapter Four:

System Implementation

58

4.1 Introduction

In this final chapter, we shift our focus to system implementation after completing the

application design and defining user roles. Here, we present an overview of the application

and its functionalities along with the user interfaces and some main coding parts to provide a

solid representation of the system.

4.2 Platform User Interface

4.2.1 Interface of Landing page

The landing page is the entrance of the platform; it’s the first page the user faces when

he visits the platform. The landing page has a header that shows the platform name “IGEE

SPACE”, a sub-header that gives a brief explanation of the platform, and two buttons for

registration.

Figure 18: Landing page

4.2.2 Interface of Authentication page

The authentication page has three main pages, two for the registration part and one for

the login part. The registration part includes both student and teacher registration pages where

each one has to fill up the form and then click register, the login part includes entering valid

credentials to gain access to the platform; whether it is a student, teacher, or an admin.

59

Figure 19: Student registration page

Figure 20: Teacher registration page

Figure 21: Login page

60

4.2.3 Interface of Posts page

There are four types of posting pages, General, Year, IGEE, and Club pages, each one

serves a different purpose. However, they all share a common functionality, they allow the

user to share posts, managing, commenting, or liking them.

Figure 22: Posts page

4.2.4 Interface of Profile page

The profile page is like a resume paper because students or teachers can share their

information, pictures, bio, skills …etc. Teachers can view students' profiles when it comes to

choosing project proposals. There the profile should be clean, readable, and looks more

professional. It also shows the posts the user created, interacted with, or saved..

61

Figure 23: Profile page

4.2.5 Interface of Chat page

The chat page is where students can send messages, upload files, or create polls. It has

all the necessary features that make collaborations and interaction between students much

easier. When teachers send emails, it goes directly to the chat page which makes sure that all

chat members read the email.

Figure 24: Chat page

62

4.2.6 Interface of Courses page

The course page provides the user with all the uploaded courses and resources along

with a simple and clean UI. Students can view a specific year course like the M2 courses,

search for a course title, download or upload a new course.

Figure 25: Courses page

4.2.7 Interface of Project proposals page

Teachers can create project proposals for M2 and L3 students and students can view

these proposals through the project proposals page, this makes it much easier than sending

emails to teachers and waiting for responses. This page shows the title, the abstract, the

related dates, the status (OPEN or CLOSED) of each project, filtering, or searching for a

project title. After students apply, teachers start selecting the qualified students based on their

letters and even the profiles.

63

Figure 26: Student project proposals page

Figure 27: Teachers project proposals page

4.2.8 Interface of Registrations page

When teachers and students complete the registration process, the admin checks the

form information of each user on the registrations page, then he accepts or rejects based on

the validity of the information. The admin can register a group of students by uploading a

64

.csv file this will speed up the process of registration because students will gain access

directly without registering manually.

Figure 28: Registrations page

4.3 Code Implementation

4.3.1 Converting Database tables into Prisma code:

Prisma uses a term called model to describe a table. If we take the User and Profile

tables, we can convert them into models as shown below.

65

Figure 29: From SQL table to Prisma

66

When this mode gets executed, it will be converted into SQL syntax. Note that the foreign

key is indicated using the “@relation” keyword. The “?” means that the property (column)

can be null.

4.3.2 Querying from database using Prisma

Prisma makes it easy to query from a database. Let’s say we want to query the first 10

posts of the general page ordered based on the created time; in SQL we would type the code

like this:

Figure 30: Querying posts using SQL

In Prisma, we would write the code the like this:

Figure 31: Querying posts using Prisma

4.3.3 Inserting into database using Prisma

Let’s say we want to create a new student account when the user fills out the

registration form and clicks register. The SQL code would look like this:

Figure 32: Registering a new student using SQL

67

However, using Prisma we would still work with our programming language, in this case it is

TypeScript, and we would write the code like this:

Figure 33: Registering a new student using Prisma

4.3.4 Implementing the Sign in function using TRPC

The TRPC library helps make API calls easy and safe, in this case, we will see how

we make an API request from the front-end to the back-end in order to sign in the user. First,

we define back-end TRPC schema along with the sign-in function as shown in the following

figure:

68

Figure 34: The back-end side of TRPC

The schema definition forces the request coming from the front-end to include both email and

password, if one of them is missing an error would be thrown. The mutation function is

where we put our logic function, and in this case, it is the sign-in function. After we verify

that the credentials are valid, we respond with an access token that will be used in the

authorization part.

69

Moving on to the front-end part, the following figure showcases how it’s implemented:

Figure 35: The front-end side of TRPC

When the user enters his email and password and then clicks the “sign-in” button, the mutate

function gets invoked. This sends an API request to the back-end and waits for the response.

If the server responds with “UNAUTHRIZED”, the “onError” method gets called and it

prints out the error. However, If the server responds with the access token, the “onSuccess”

method gets called and here we save the access token in the browser as a cookie in order to

use it in the authorization part.

4.3.5 Handling the Authorization

To handle the authorization, we use a function provided by Nextjs called

“getServerSideProps”; when this function is imported, the page turns into an SSR mode,

meaning we get to use the server properties.

70

Figure 36: Handling the authorization using Nextjs SSR

Every time the user requests the page, this function gets executed. First, we grab the access

token out of the request header then we check if the token does not exist, we redirect the user

to the login page. If the token exits, we check if it’s valid (not expired or modified) and then

redirect the user to the requested page, else redirect to the login page.

4.4 Conclusion

In conclusion, this chapter has covered the implementation phase of the platform. We

provided a comprehensive presentation of the application, highlighting its properties, offering

user interfaces for visualization, and explaining some of the important coding functions. By

transitioning from design to implementation, we have taken a significant step towards

bringing the software system to life, ready for deployment and actual usage.

71

General Conclusion

This report outlines the process of designing and developing a web application that

facilitates student communication and collaboration. The project idea came out of the issues

that students face when using social media for educational purposes.

The web-based Student Communication Platform presented in this project is an all-in-

one solution tailored specifically for IGEE educational environments. It aims to create an

optimal space for students to focus on their studies, collaborate effectively, and cultivate a

rich learning experience through meaningful interactions and shared knowledge.

Designing and implementing this project was an incredible experience that provided

me with an opportunity to explore new concepts and enhance my knowledge and skills in the

field of programming.

Future works

 After successfully completing the initial version of the Student Communication

Platform (SCP), the next version aims to incorporate video meetings directly within the

platform, eliminating the need for external meeting applications. Additionally, the focus will

expand to include the administration ecosystem, streamlining and automating various

paperwork processes directly through the platform. These enhancements will significantly

reduce time wastage and improve overall efficiency.

72

References

[1] https://www.britannica.com/topic/Web-application. Consulted (14-06-2023)

[2] https://geekflare.com/single-page-applications. Consulted (14-06-2023)

[3] https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-

application-2591588efe58. Consulted (14-06-2023)

[4] https://www.geeksforgeeks.org/frontend-vs-backend. Consulted (14-06-2023)

[5] https://www.techtarget.com/searchapparchitecture/definition/state-management. (18-

06-2023)

[6] https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless. Consulted

(14-06-2023)

[7] https://en.wikipedia.org/wiki/Software_framework. Consulted (14-06-2023)

[8] https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview. Consulted (14-06-

2023)

[9] https://developer.mozilla.org/en-US/docs/Web/HTTP/Status. Consulted (14-06-2023)

[10] https://developer.mozilla.org/en-

US/docs/Learn/Common_questions/Web_mechanics/What_is_a_URL. Consulted (14-06-

2023)

[11] https://www.techtarget.com/searchdatamanagement/definition/database. Consulted

(14-06-2023)

[12] https://www.geeksforgeeks.org/dbms. Consulted (14-06-2023)

[13] https://www.freecodecamp.org/news/what-is-an-orm-the-meaning-of-object-

relational-mapping-database-tools. Consulted (15-06-2023)

[14] https://aws.amazon.com/what-is/api. Consulted (15-06-2023)

[15] https://www.okta.com/blog/2019/03/what-are-salted-passwords-and-password-

hashing. Consulted (15-06-2023)

[16] https://en.wikipedia.org/wiki/HTML. Consulted (15-06-2023)

[17] https://en.wikipedia.org/wiki/CSS. Consulted (15-06-2023)

[18] https://developer.mozilla.org/en-

US/docs/Learn/JavaScript/First_steps/What_is_JavaScript. Consulted (15-06-2023)

https://www.britannica.com/topic/Web-application
https://geekflare.com/single-page-applications/
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://www.geeksforgeeks.org/frontend-vs-backend
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://en.wikipedia.org/wiki/Software_framework
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/What_is_a_URL
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/What_is_a_URL
https://www.techtarget.com/searchdatamanagement/definition/database
https://www.geeksforgeeks.org/dbms/—
https://www.freecodecamp.org/news/what-is-an-orm-the-meaning-of-object-relational-mapping-database-tools.
https://www.freecodecamp.org/news/what-is-an-orm-the-meaning-of-object-relational-mapping-database-tools.
https://aws.amazon.com/what-is/api.
https://www.okta.com/blog/2019/03/what-are-salted-passwords-and-password-hashing.
https://www.okta.com/blog/2019/03/what-are-salted-passwords-and-password-hashing.
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/CSS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript

73

[19] N. Black, "Boris Cherny on TypeScript," in IEEE Software, vol. 37, no. 2, pp. 98-

100, March-April 2020, doi: 10.1109/MS.2019.2958155.

[20] https://en.wikipedia.org/wiki/Visual_Studio_Code. Consulted (15-06-2023)

[21] Sanchit Aggarwal et al. International Journal of Recent Research Aspects ISSN:

2349-7688, Vol. 5, Issue 1, March 2018, pp. 133-137.

[22] https://nextjs.org/docs. Consulted (15-06-2023)

[23] https://blog.hubspot.com/website/what-is-tailwind-css. Consulted (15-06-2023)

[24] https://blog.logrocket.com/firebase-vs-supabase-choosing-right-tool-project.

Consulted (15-06-2023)

[25] https://www.prisma.io/docs/concepts/overview/what-is-prisma. Consulted (16-06-

2023)

[26] https://betterprogramming.pub/build-full-stack-typescript-applications-using-trpc-

eef8588979d8?gi=ac57e1660cad. Consulted (16-06-2023)

[27] https://www.frontendmag.com/insights/zustand-vs-redux-

comparison/#What_is_Zustand. Consulted (16-06-2023)

[28] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519,

DOI 10.17487/RFC7519, May 2015, <https://www.rfc-editor.org/info/rfc7519>.

[29] https://help.figma.com/hc/en-us/articles/14563969806359-What-is-Figma. Consulted

(16-06-2023)

[30] https://www.computerhope.com/jargon/d/drawio.htm. Consulted (16-06-2023)

[31] https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language.

Consulted (16-06-2023)

[32] https://www.lucidchart.com/pages/er-diagrams. Consulted (18-06-2023)

https://en.wikipedia.org/wiki/Visual_Studio_Code
https://nextjs.org/docs
https://blog.hubspot.com/website/what-is-tailwind-css
https://blog.logrocket.com/firebase-vs-supabase-choosing-right-tool-project.
https://www.prisma.io/docs/concepts/overview/what-is-prisma
https://betterprogramming.pub/build-full-stack-typescript-applications-using-trpc-eef8588979d8?gi=ac57e1660cad
https://betterprogramming.pub/build-full-stack-typescript-applications-using-trpc-eef8588979d8?gi=ac57e1660cad
https://www.frontendmag.com/insights/zustand-vs-redux-comparison/#What_is_Zustand
https://www.frontendmag.com/insights/zustand-vs-redux-comparison/#What_is_Zustand
https://help.figma.com/hc/en-us/articles/14563969806359-What-is-Figma-
https://www.computerhope.com/jargon/d/drawio.htm
https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language

