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Intelligent multi-fault identification
and classification of defective bearings
in gearbox

Ali Damou , Azeddine Ratni and Djamel Benazzouz

Abstract
Bearing faults in gearbox systems pose critical challenges to industrial operations, needing advanced diagnostic tech-
niques for timely and accurate identification. In this paper, we propose a new hybrid method for automated classification
and identification of defective bearings in gearbox systems with identical rotating frequencies. The method successfully
segmented the signals and captured specific frequency components for deeper analysis employing three distinct signal
processing approaches, ensemble empirical mode decomposition EEMD, wavelet packet transform WPT, empirical wave-
let transform EWT. By decomposing vibration signals into discrete frequency bands using WPT, relevant features were
extracted from each sub-band in the time domain, enabling the capturing of distinct fault characteristics across various
frequency ranges. This extensive set of features is then served as inputs for machine learning algorithm in order to iden-
tify and classify the defective bearing in the gearbox system. Random forest RF, decision tree DT, ensemble tree ET clas-
sifiers showcased a notable accuracy in classifying different fault types and their localizations. The new approach shows
the high performance of the diagnostic gearbox with a minimum of accuracy (Min = 99.95 %) and higher stability (stan-
dard deviation = 0.1).
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Introduction

Bearings are an essential component used in a broad
range of industries, including automotive, wind turbine
power generation, agriculture, manufacturing, and
many others. They are widely employed in rotating
machinery1 and gearboxes2,3 and being crucial trans-
mission devices. In some situations, rotating machinery
and gearbox systems may need to operate in conditions
that are not ideal. These conditions may include situa-
tions where the system is subjected to high levels of
stress, such as when it is overloaded or required to work
at variable speeds. Additionally, the system may also
have to work in environments with high ambient tem-
peratures, which can further increase the stress placed
on the system. A defective in a bearing, if it is not

detected in time, this can lead to catastrophic machin-
ery failure, prolonged machine downtime, and higher
maintenance costs, resulting in significant financial loss.
Further, the statistics that have been made show that
the bearings defects represent about 76% in wind tur-
bine gearbox.4 In order to ensure the safety of the sys-
tem and to avoid damage, condition monitoring refers
to the process of monitoring the condition of a system
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to identify any changes or abnormalities. On the other
hand, fault diagnosis identifies the cause of a fault in a
system. Applying the concepts of condition monitoring
and fault diagnosis can improve the reliability and per-
formance of a system, and the key challenge is to detect
any defects at an early stage.

Signal processing approach can be employed to diag-
nose the bearing fault by utilizing the motor current,5

acoustic emission,6 and thermal image.7 However,
numerous research studies have shown that the vibration
signal is the most practical method to identify the bearing
fault.8–10 In modern industry with rapid development of
sciences and technologies, Artificial Intelligence (AI)
becomes a powerful tool for diagnosing faults. Therefore,
essentially, two crucial steps have to be developed in AI
tool: Features extraction, and fault recognition.

Several studies have been developed to improve fea-
ture extractions and to describe the bearing conditions.
Most of frequency methods applied for nonstationary
signals,11 allow the extraction of the most relevant
information from the raw vibration signal. To decom-
pose the signal into an intrinsic mode function (IMF),
some authors12,13 use the empirical mode decomposi-
tion (EMD) method. However, this method has a dis-
advantage called mode mixing,14 which occurs when
the intrinsic mode functions (IMFs) obtained from the
decomposition process are contaminated by compo-
nents from other modes. To mitigate the issue of the
mixing mode, several techniques have been proposed,
such as ensemble empirical mode decomposition
(EEMD),15–17 these technique use various methods,
such as adding white noise to improve the accuracy
and robustness of the decomposition.

Wavelet transforms analyze signals at different scale
or resolution through a wavelet basis.18,19 It is used to
decompose signals into series of signal-components.
This technique is a powerful tool for signal denoising,20

but its weakness is the split of the high-frequency band
which does not occur when the fault information
exists.21 To conquer this issue, wavelet packet trans-
form22 enable detection of both high and low frequency
components with varying levels of decomposition.23 By
decomposing the signal into sub-bands using the wave-
let packet transform, we can effectively separate the sig-
nal into different frequency components, allowing us to
analyze and understand the signal in more detail. The
decomposed signal is widely employed in fault diagno-
sis, particularly in extracting significant feature for the
identification and analysis of fault.24

Now, the challenge for researchers is to build an
automatic fault diagnosis system, so that it is able to
detect the defect in an early stage, identify and classify
fault. The recent work on automatic fault diagnosis have
focused on improving accuracy to the fault identification

and localization. A variety of studies have been success-
fully employ artificial intelligent technique for bearing
fault classification. Different machine learning algo-
rithms are used such as: Artificial Neuron Network
(ANN),25 Fuzzy Logic System (FLS),21 Support Vector
Machine (SVM),26 and Random Forest (RF).27

The structure of this paper is as follows: Section
‘‘Introduction’’ provides an introduction to the study
and concise the overview of the existing literature. In
Section ‘‘Gearbox System Description,’’ the mathemati-
cal model of the examined gearbox is presented. Section
‘‘Methodology and Fault Scenario,’’ we delve into the
signal decomposition of both healthy and faulty modes,
achieved by employing wavelet packet transform to
extract pertinent signal features. Section ‘‘Results and
Discussions’’ encompasses the outcomes and discourse
on fault classification. Finally, the paper is ended with a
conclusion and references.

Gearbox system description

In this paper, a new Gearbox system that has been rea-
lized in the laboratory is used to validate the fault detec-
tion and classification performance of the data-based
methods versus different rolling bearings faults modes.

In this study, a Gearbox system was proposed, the
physical model given in Figure 1, is described by the
laws of physics to obtain the mathematical model.
Hence, the major assumptions of the dynamic model
are based upon28–30 and are as follows:

1. Neglect the resonances of the gear case and the
shaft transverse resonances;

2. Inertia and shaft mass are lumped at the
bearings;

3. Ignore the shaft torsional stiffness (because the
flexible coupling torsional stiffness is very low)
and inter-tooth friction;

4. Gear teeth profiles are perfect involutes curves,
with no geometrical, pitch or run out errors.

The system is presented in order to simulate the effects
of the bearings faults, over the dynamical behavior of
our model. The corresponding mathematical model has
been developed.

With 10 degrees of freedom and 10 generalized
coordinates the physical model has four angular vari-
ables U1,U2,U3,U4, the motor rotational angle, the
pinion and the wheel rotational angles and the load
rotational angle. We have also six displacement vari-
ables x1, x2, x3, x4, x5, x6, which are the radial displace-
ment of 1st bearing, 2nd bearing, 3rd bearing, and
4th bearing respectively, and the radial displacement
of pinion and wheel respectively. The mathematical
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equation describing the system to be diagnosed is
given in equations (1) to (10).

Gearbox mechanical equations

First, it is necessary to write the gear model system in
state space representation. In such a way that each
second-order differential equation is written in the form

of two first order differential equations. Thus, 10 non-

linear first order differential equations with time varying

coefficients are obtained. These equations are written

such that each equation contains the time derivative of

only one variable. Thus, the obtained equations are

simulated under Matlab software. The main notation

used in the obtained equations are given in Table 1.

Figure 1. Considered gearbox system: (a) real gearbox system and (b) physical gearbox system.
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Vibration in bearings can stem from different ori-
gins, each of which can be distinguished by specific
force factors. The primary culprits are bearing flaws,
imbalances, and misalignments. Table 2 outlines the
distinctive force factors linked to the prevailing causes
of vibrations.

Table 3 provides the principal symbols employed to
describe the functions related to bearing defects.

Methodology and fault scenario

Our objective is to diagnose the bearings in the gearbox
and classify the defective bearings using vibration sig-
nal. The study focuses on two bearings positioned
within the shaft that is linked to the motor. As a result,
both bearings rotate at the same speed and have identi-
cal dimensions. In order to improve feature extraction
and create meaningful attributes for training classifiers,
the vibration signal is decomposed.

The developed approach is based on two methods:
signal processing technique versus Hybrid signature
method. In the first step, we utilize the Autogram to
extract the AM-FM modes from the vibration

Table 1. Gearbox data parameters.

Parameter Description

Im Moments of inertia for electric motor (Im).
Ip Moments of inertia for pinion (Ip).
Ig Moments of inertia for output gear (Ig).
Ir Moments of inertia for driven machine (Ir).
m Mass of the bearing and part of the shaft (m)
mp Mass of the input pinion (mp).
mg Mass of the gear (mg).
Tem Output torque from load (Tem).
Kc Torsional stiffness of the flexible coupling (kc).
Cc Viscous damping coefficient of flexible coupling (cc).
Rp Base circle radius of pinion (Rp).
Rg Base circle radius of output gear (Rg).
Kb Radial stiffness of the bearing (Kb).
Cb Viscous damping coefficient of the bearing (Cb).
Ks Shaft transverse stiffness (Ks).

Number of teeth on pinion and gear.
Tr Rotor time constant (Tr).
p Number of poles pair (p).

Table 2. Fault functions parameters.

Vibration source Force function
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signatures. This technique allows us to precisely decom-
pose the signal into a fixed number of modes. This will
show significant results for detecting defects in bear-
ings. The second step, consists of our developed study
where we combine between the wavelet packet trans-
form, the statistical feature extraction, and the feature
classification by using Random Forest algorithm.
Firstly, we decompose the signal using wavelet packet
transform into high-frequency band and low frequency
components to select the effective modes capture the
characteristics of the vibration signatures. Then we cal-
culate the set of features listed in Table 4 for 15 modes,
resulting in 180 attributes. Hence, we obtain a more
detailed understanding of the underlying characteristics
of the vibration signature, which enables us to identify

subtle changes and patterns that may be indicative.
Finally, using the Random Forest classifier for faults
identification and classification.

Signal processing technique using Autogram

However, the proposed signals processing method,
namely Autogram method developed by Moshrefzadeh
and Fasana31 has proven to be more efficient than wave-
let analysis in many applications.32–34 The Autogram is
released fourth-order spectral analysis tool for the detec-
tion and characterization of transients in a signal. The
paradigm is based on the affirmation that each type of
transient is combined with an optimal frequency and fre-
quency resolution (dyad {f, Bw}) that maximizes its kur-
tosis, and therefore its detection. This could describe the
Autogram in the following steps:

Step 1: data signal is filtered and divided in fre-
quency bands and center frequencies using deci-
mated wavelet packet transform (MODWPT).
Step 2: using periodicity of the autocovariance func-
tion, we calculate the unbiased autocovariance AC
of the squared envelope for each node from signal
filtered in step 1.
Step 3: find the most suitable frequency band for
demodulating signal to have the successful diagnosis
of bearings faults.

Diagnostics using Autogram is one of the most relevant
methods; it demonstrated significant results for the detec-
tion of defects in bearings.31,35 We will apply Autogram
on the signal to shows the squared envelope spectrum for
different states of rolling element bearing (healthy/faulty)
in the gearbox. The healthy envelope signal is show in
Figure 2. There is no frequency that characterizes the
rolling element bearing failure in this figure; which means
that the system is in a healthy state. The meshing fre-
quency fmesh is the only frequency that appears.

Furthermore, in order to ensure the information
provided by Autogram the squared envelope spectrum
of the signal with fault for three type of defects of the
rolling element bearing (ball, inner race, and outer race
faults) are presented in Figures 3 to 5 respectively. This
is done under three different cases: case 1: defect in
bearing 1, case 2: defect in bearing 2, and case 3: defect
in both bearings at faith.

According to the obtained results based on the
squared envelope spectrum, this approach allows us the
detection of the fault in bearing whatever the type of
defect either for ball, inner race or outer race. The gear-
box system considered by this study contains four bear-
ings with identical dimensions (same frequency
characteristics of the defect) and the same rotation fre-
quency of each pair of bearings (the rotation frequency

Table 3. Notation of the fault functions.

Parameter Description

A1 Amplitude value created by the imbalance
Am

i , i= 1, 2, 3 Amplitude value for the mth harmonic
Ak

2, A
k
3

Initial magnitude value for the kth harmonic
fs Rotation frequency
fc Fault frequency associated with the bearing
;1 Phase angle appropriate
;m

i , i= 1, 2, 3 Value of the phase for the mth harmonic
Ni, i= 1, 2, 3 Harmonics number in the impulse train

Table 4. Features extracted from the WPT.
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of the motor shaft and the rotation frequency of the
load).

As a consequence, the current approach is not be able
to locate the fault. From these figures we can see that it
is not possible to determine the exact location of the
defect using envelope analysis, as this approach does not
provide information about whether the defect is present
in bearing 1, bearing 2, or both bearings simultaneously.

A hybrid signature methods

In this section, the decomposition process of the pro-
posed method starts by applying the wavelet packet

transform to the original signal and then dividing the
resulting into high-frequency band and low frequency
components until the desired level of decomposition is
reached. The proposed study-based wavelet packet
decomposition and machine learning are presented in
the following flowchart given in Figure 6.

Ensemble empirical mode decomposition. Empirical mode
decomposition serves as a self-adaptive approach for
analyzing nonlinear and non-stationary signals. It works
by breaking down complex signals into a set of intrinsic
mode functions (IMFs), which are determined based on
the signal’s local characteristic time scale. An IMF is

Figure 2. Healthy state of gearbox system.

Figure 3. Bearings fault in different scenario at ball fault: (a) bearing 1, (b) bearing 2, and (c) both bearings simultaneously.
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defined by two key conditions: firstly, within the entire
dataset, the count of extrema and zero-crossings must
be either equal or differ by at most one; secondly, at any
given point, the mean value between the envelopes
formed by local maxima and minima is zero. The EMD
process of a signal x(t) can be described as follows:

x tð Þ=
Xn

j= 1

cj � rn ð11Þ

Where rn is a residual of signal x(t)

(1) Identify the local maxima and local minima to
produce upper envelope and lower envelope.

(2) Obtain the first component h by calculated the
difference between the signal and local mean of
the two envelopes.

(3) Consider h as the dataset and iterate through
steps 1 and 2 until the envelopes achieve sym-
metry around zero mean according to specific
criteria. Repeat this process as many times.

The final result, denoted as cj, is the final output of the
sifting process. The process is considered complete
when the residue, rn, transforms into a monotonic func-
tion, indicating that no additional intrinsic mode func-
tions (IMFs) can be extracted.

To address mode mixing in EMD, Wu and Huang15

introduced ensemble empirical mode decomposition
(EEMD), an enhanced variant of EMD. EEMD
employs a noise-assisted approach by introducing finite
white noise to the signal under investigation. This addi-
tion effectively resolves the mode mixing issue across
all scenarios automatically. Consequently, EEMD
stands as a significant advancement over traditional
EMD methods.

Considering the characteristics of EMD, the pro-
posed EEMD is formulated as follows:

1. add a white noise series to the targeted data;
2. decompose the data with added white noise into

IMFs;
3. repeat step 1 and step 2 again and again, but

with different white noise series each time; and
4. obtain the (ensemble) means of corresponding

IMFs of the decompositions as the final result.

Based on the principle and observations above, the
EEMD algorithm can be given as follows:

(1) Set the initial values for the ensemble number
M , the amplitude of the white noise to be
added, and initialize m to 1.

Figure 4. Bearings fault in different scenario at inner race fault: (a) bearing 1, (b) bearing 2, and (c) both bearings simultaneously.
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Figure 5. Bearings fault in different scenario at outer race fault: (a) bearing 1, (b) bearing 2, and (c) both bearings simultaneously.

Figure 6. Flowchart of the proposed approach.
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(2) Execute the mth iteration by introducing white
noise to the signal.

(a) Add a white noise series with the given
amplitude to the investigated signal

xm tð Þ= xm(t)+ nm(t) ð12Þ

where nm(t) indicates the mth added white noise series,
and xm(t) represents the noise-added signal of the mth
trial.

(b) Apply the EMD method, as described earlier,
to decompose the signal xm(t) with added noise
into I (IMFs) intrinsic mode functions ci:m

(i= 1; 2; . . . , I), where ci:m denotes the ith IMF
of the mth trial, and I is the number of IMFs.

(c) If m\M then go to step (a) with m=m+ 1.
Repeat steps (a) and (b) again and again, but
with different white noise series each time.

(3) Compute the ensemble mean ci for each intrin-
sic mode function (IMF) across all M trials

ci = IM
XM

m= 1

ci,m, i= 1, 2, . . . , I ,m= 1, 2, . . . ,M ð13Þ

(4) Report the mean ci(i= 1, 2, . . . , I) of each of
the I IMFs as the final IMFs.

Empirical wavelet transform. Gilles36 recently introduced
the Empirical Wavelet Transform (EWT) within the
realm of non-stationary signal processing. The primary
aim of the EWT is to construct adaptive wavelets capa-
ble of effectively extracting amplitude modulation-
frequency modulation (AM-FM) components from a
signal. To achieve adaptability concerning the analyzed
signal, the selection of the wavelet filter bank is guided
by Fourier supports. The information extracted from
the processed signal spectrum is used to identify
Fourier supports. This involves locating local maxima
and defining the support boundaries vi as the middle
points between successive maxima.

We begin by partitioning the Fourier support 0,p½ �
into N consecutive segments. Each segment is denoted

Ln = vn�1,vn½ �, thus [
N

n�1
Ln = 0,p½ �. Centered around

each vn, there exists a transient phase Tn extending over
a range of 2tn (Figure 7). EWT are defined as bandpass
filters on each Ln.

Hence, establish the empirical scaling function and
empirical wavelets using the expressions provided in
equations (14) and (15), respectively.
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The function b xð Þ is given as follows:

b xð Þ=
0

b xð Þ+b 1� xð Þ= 18x 2 ½0, 1�
1

8<
: ð16Þ

Note that the most used function that satisfies this
property:

b(x)= x4 35� 84x+ 70x2 � 20x3
� �

ð17Þ

The detail coefficients W e
f n, tð Þ are obtained by the inner

products of the input signal with the empirical wavelets:

W e
f n, tð Þ= h f ,cni=

ð
f tð Þcn t � tð Þdt= f̂ vð Þĉn vð Þ

� �_
ð18Þ

The approximation coefficients with scaling function is
given:

W e
f 0, tð Þ= h f ,f1i=

ð
f tð Þf1 t � tð Þdt ð19Þ

Finally, the original signal is decomposed into various
empirical modes fk tð Þ, which is given by:

f0 tð Þ=W e
f 0, tð Þ � f1 tð Þ

fk tð Þ=W e
f k, tð Þ � ck tð Þ

	
ð20Þ

The signal can be reconstructed as follows:

f tð Þ=W e
f 0, tð Þ � f1 tð Þ+

XN

n= 1

W e
f n, tð Þ � cn tð Þ ð21Þ

Wavelet packet transforms. The wavelet transform has
been widely used in signal processing and signal denois-
ing.18 The wavelet method uses the time-frequency rep-
resentation of a signal through a set of wavelets.

The wavelet packet transform is an extension of the
discrete wavelet transform (DWT).37 In the DWT the

Damou et al. 9



signal (S) is decomposed using two complementary filters,
high-pass and low-pass filter (Figure 8), can be extracted
in approximation signal A from low-pass filter (large-scale
and low frequency) and extracted in detailed signal D
from high-pass filter (small-scale and low frequency).

In practice, the Discrete Wavelet Transform (DWT)
can be realized using a set of low-pass and high-pass
wavelet filters, represented as h(k) and g(k) respectively,
where g kð Þ=(� 1)kh(1� k).

These filters are derived from the chosen wavelet
function c(t) and its associated scaling function f(t),
expressed as follows38:

f tð Þ=
ffiffiffi
2
p P

k

h(k)f(2t � k)

c tð Þ=
ffiffiffi
2
p P

k

g(k)f(2t � k)

8><
>: ð22Þ

Using the wavelet filters, the signal is decomposed into
a set of low and high frequency components as38

aj, k =
P

k

h(2k � m)aj�1,m

dj, k =
P

k

g(2k � m)aj�1,m

8<
: ð23Þ

Equation (23) defines aj, k as the approximation coeffi-
cient, representing the signal’s low-frequency compo-
nents, and dj, k as the detail coefficient, corresponding
to the signal’s high-frequency components. To compute
the approximation and detail coefficients at wavelet
scale 2j (where j indicates the level), we convolve the
approximation coefficients from the previous level
(j21) with the low-pass and high-pass filter coefficients,
respectively.

The WPT splits the approximations and details into
finer components. Therefore, it can decompose the high
frequency part.

To conduct Wavelet Packet Transform (WPT) of a
signal at a specific level (e.g. level 3), the functions
described in equation (22) are combined as follows:

U2n tð Þ=
ffiffiffi
2
p X

k

h(k)Un(2t � k)

U2n+ 1 tð Þ=
ffiffiffi
2
p X

k

g(k)Un(2t � k)

8>><
>>: ð24Þ

where U0(t)=f(t), and U1(t)=c(t). Correspondingly,
the signal is decomposed as39

Figure 7. Segmentation of the Fourier axis and construction of EWTwavelets.

Figure 8. (a) Decomposition signal using DWTand (b) tree decomposition of signal.
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dj+ 1, 2n =
X

m

h(m� 2k)dj, n

dj+ 1, 2n+ 1 =
X

m

g(m� 2k)dj, n

8>><
>>: ð25Þ

where dj, n denotes the wavelet coefficients at the j level,
n sub-band, dj+ 1, 2n and dj+ 1, 2n+ 1 denotes the wavelet
coefficients at the j+ 1 level, 2n and 2n+ 1 sub-bands,
respectively, and m is the number of the wavelet coeffi-
cients. As illustrated in Figure 9, a 3-level WPT gener-
ates a total of eight sub-bands, and each sub-band

covers one eighth of the frequency information
successively.

The vibration signals analyzed in this study covering
both bearings for the normal (Healthy H) operating
condition and three distinct bearing defects of each one:
Inner Race Fault (IRF), Outer Race Fault (ORF), and
Ball Fault (BF). In Figure 10, the vibration data corre-
sponding to various fault types, along with the healthy
state, is presented.

In this situation, we choose to decompose the signal
into three levels of decomposition, which means that

Figure 9. Illustration of wavelet packet transform.

Figure 10. Original vibration signals of different bearings health state.
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the resulting wavelet packet tree will have three levels
of sub-bands. Each sub-band in the tree represents a
different frequency range and resolution of the original
signal. By decomposing the signal into sub-bands using
the wavelet packet transform, we can effectively sepa-
rate the signal into different frequency components.
Signal decomposition with the Daubechies 4 mother
wavelet is given in Figures 11 and 12.

The vibration acceleration signals of rolling bearing
in different conditions modes are shown in Figures 11
and 12, which represent the bearings in different modes

of faults, outer race, inner race, and ball faults. These
figures show that the vibration signals in the four condi-
tions mode are highly complex, which lead to the incap-
ability of making difference between the faults in each
case.

Features extraction based on signal processing. Feature
extraction is a critical step in data processing that
involves identifying and transforming relevant variables
from raw data. This technique is essential for preparing
data for further analysis, modeling, or visualization.

Figure 11. Signal decomposition results using WPT for bearing 1.

Figure 12. Signal decomposition results using WPT for bearing 2.
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Raw data often contains numerous variables that can
lead to increased computational complexity and mem-
ory usage. Feature extraction aims to reduce data
dimensionality while retaining essential information.

At this level of development, we focus our study by
determining 12 statistical feature parameters through
the approximation and detail of decomposition until
level 3. To calculate the statistical feature parameters, a
range of statistical measures are employed for both the
approximation and detail signals at each level of
decomposition. These measures encompass a variety of
statistical indicators, such as max, min, rms, mean, var-
iance, skewness, kurtosis, energy, entropy ., etc.

Feature selection and classification. In the last decay,
machine learning has produced considerable results in
a number of application areas, including Rolling bear-
ing problems. In this contribution, we have used a ran-
dom forest algorithm, which is a supervised machine
learning method adapted to both binary and multiclass
failures.40

This algorithm has been successfully used to solve a
number of complex applications and has several desir-
able features. The main features of this algorithm are:

� Ensemble method combined with several deci-
sion trees

� Each forest tree selects best prediction
� Random feature selection avoids over-fitting by

de-correlating trees
� Keeps track of incomplete data and non-linear

variables between features and target variable.

� Handle both binary-faults and multi-faults issue.

The standard equation employed in Random Forest
is the Gini impurity, which is designed to identify the
quality of the decision tree split. Gini impurity is a
probability a function of randomly selected compo-
nents in the data set being misclassified. It is defined as
follows:

Gini Index= 1�
Xn

i= 1

Pi
2 ð26Þ

Where Pi denote an element’s probability to be clas-
sified for a distinct class.

The random forest algorithm is an ensemble learning
technique that has been developed to combine several
decision trees to form a more robust model (Figure 13).
Several trees are trained on different subsets of data
and features, which reduces over-fitting and improves
accuracy.41

Results and discussions

This section presents the outcome achieved through
three signal processing techniques, namely ensemble
empirical mode decomposition (EEMD), wavelet
packet transform (WPT), and empirical wavelet trans-
form (EWT). For each technique, we generate a feature
matrix based on the time domain parameter listed in
Table 4, which is then prepared for classification defec-
tive bearing in gearbox.

Figure 13. Random forest flowchart.
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The classification process is performed using six dif-
ferent classifiers, which include random forest (RF),
decision tree (DT), k-nearest neighbors (KNN), sup-
port vector machine (SVM), ensemble tree (ET), and
Gaussian mixture models (GMM). The classifiers are
evaluated through a 10 iteration loop, while the stabi-
lity of the machine learning techniques is assessed using
the standard deviation formula (STD).

The used ML tools demonstrate the varying out-
comes regarding to the accuracy and stability. Where
the ML inputs are the time domain feature obtained
from EEMD, WPT, and EWT. Knowing that the out-
put are the bearing states which can be in healthy mode,
either defectivity in 1st or 2sd bearing, or defectivity in
both bearings. Then we locate the faults at the ball, in
the inner race or the outer race. Eighty percent of data
are used for training and 20% of data are used for test-
ing the model.

Table 5 shows the classification accuracy results and
the classifier stability of the model. We observe that sig-
nal processing with WPT gives the best classification
results compare to EEMD and EWT. This table, we
notice that it indicates only the global accuracy. There
is no credible indicator which allows us to conclude that
the model gave the best classification.

We know that generally, sometimes we may have a
high global accuracy, which may contain classes with a
low precision. To enhance the performance accuracy
and stability of the system, we have implemented four
key metrics which are the mean, max, min, and stan-
dard deviation. By doing, this we can appreciate better
the performance of the RF classifier’s. This RF classi-
fier yields us to the best outcome in terms of stability
(Std=0.01) and mean accuracy (99.99%). Even
though, the RF, DT, and ET, also show best classifica-
tion in terms of accuracy and stability.

To assess the capability of fault prediction detection
we have provided various types of fault to test the pro-
posed approach. The obtained prediction confusion

matrixes for different considered faults are given in
Figures 14 to 16. Through these figures we can see the
accuracy from classifiers RF, DT, and ET of each class
for fault classification of bearing defect.

Figure 14 shows the WPT in tandem with the RF
algorithms, that the vast existing numbers of sample for
the considered bearing faults in the proposed approach
are predicted successfully with highest percentage scales
between 99.76% and 100%.

We can conclude that the proposed approach based
on WPT in tandem with RF classifier, enables us to
improve the system performance in terms of reliability,
stability, and accuracy.

Conclusion

In this study, the dynamic model of a gear-box bear-
ings defective system was developed to examine the

Table 5. Classification results using WPTwith different classifiers.

RF DT KNN SVM ET GMM

EEMD Max 20.58 32.35 5.88 5.88 26.47 20.58
Min 11.76 14.70 0 0 11.76 8.82
Mean 16.17 20.29 2.94 2.94 18.82 14.70
Std 2.49 5.08 1.96 2.40 4.42 4.38

WPT Max 100 100 14.79 17.51 100 69.50
Min 99.97 99.95 13.98 15.36 99.95 68.32
Mean 99.99 99.98 14.41 16.63 99.97 68.98
Std 0.01 0.02 0.26 0.59 0.01 0.34

EWT Max 22.50 22.5 20 20 27.50 25
Min 17.50 15 5 5 15 10
Mean 20.25 18.75 13.25 13.75 20.50 18
Std 1.84 2.94 4.57 5.17 3.68 4.83

Figure 14. Prediction confusion matrix for fault diagnosis
based WPT-RF.

14 Advances in Mechanical Engineering



vibration behaviors in presence of bearings faults.
We modeled these two faults by an amplitude reduc-
tion and phase change in gear stiffness. Firstly, the
fault diagnosis of bearings is performed using the
squared envelope spectrum obtained from Autogram.
The analysis was conducted for healthy bearings
showing only the gear mesh frequencies (Figure 2).
These frequencies happen to appear also in the first
bearing or the second bearing or for both bearing
defects (Figure 3). Nevertheless, we see the appear-
ance of new frequencies providing information about
the fault types (ball fault, inner race fault, and outer
race fault). As a result, the obtained spectrums based
on Autogram cannot differentiate between these
bearing defects

Secondly, the proposed approach based on hybrid
method for bearing fault diagnosis is based on wavelet
packet decomposition and machine learning.
Moreover, the vibration signal is decomposed into dif-
ferent frequencies bands with WPT. The decomposition
at each level provides a set of sub-bands that allows us
capturing specific frequencies components of the signal.
From the time domain, relevant features are extracted
from each sub-band to capture the fault characteristics
at different frequencies ranges. Furthermore, the
extracted features are then used as inputs to the
machine learning algorithm to train the different classi-
fiers to build the model for defective bearing classifica-
tion in the gearbox.

The obtained results from the random forest (RF),
decision tree (DT), and ensemble tree (ET) classifiers
show that the approach is highly sensitive and efficient
method for locating and differentiating defective bear-
ings in gearbox systems. The classifiers enhance the
accuracy in identifying the faulty bearings. This
approach can help modern industries to diagnose the
gearbox system and enable timely maintenance, and
reduce the risk of catastrophic failure.
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