Adsorptive removal of methyl orange from aqueous solution by hydrotalcite derived catalysts

Nadia Aider^{a,d,*}, Baya Djebarri^{b,d}, Fouzia Touahra^{c,d,*}, Djamila Halliche^d

^aLaboratoire de Chimie Appliquée et de Génie Chimique (LCAGC), Université Mouloud Mammeri, 150 0 0, Tizi-Ouzou, Algeria, email: nadia.aider@ummto.dz

^bLaboratory of Applied Chemistry and Materials (LabCAM), University of M'hamed Bougara of Boumerdes,

Avenue de l'Indépendance Boumerdes, 35000 Algeria, email: b.djebarri@univ-boumerdes.dz

^cCentre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail, RP42004, Tipaza, Algeria, email: tfafaze256@yahoo.fr

^dLaboratory of Natural Gas Chemistry, Faculty of Chemistry (USTHB), BP, 32, 16111, Algiers, Algeria, email: dhalliche@yahoo.fr

Received 16 August 2023; Accepted 19 November 2023

ABSTRACT

The objective of our work is to study the adsorption of methyl orange dye over ZnAl_2O_4 and ZnO-ZnAl_2O_4 derived from hydrotalcite in order to highlight their potential as low-cost adsorbents for the treatment of water. The materials ZnAl_2 , Zn_2Al were synthesized *via* co-precipitation method and were characterized using various characterization techniques, which showed that the obtained materials corresponds to the compounds of hydrotalcite. Different parameters were studied to optimize the process of methyl orange removal on samples derived from hydrotalcite, including the mass of the adsorbent, the contact time, the concentration, and pH. On the other hand, adsorption isotherms were studied using Langmuir and Freundlich models, as well as the effect of these solids on thermodynamic quantities. According to the results obtained, the ZnO-ZnAl_2O_4 has the greatest adsorption capacity compared to the ZnAl_2O_4. The interaction of these materials with the dye shows that the adsorption capacity determined by the Langmuir mathematical model is about 62.85 mg/g for ZnO-ZnAl_2O_4 and 46.24 mg/g for ZnAl_2O_4 and the thermodynamic study led to the conclusion that the adsorption is endothermic and that the adsorption process is spontaneous.

Keywords: Adsorption isotherms; ZnO-ZnAl₂O₄; Hydrotalcite; Methyl orange; Co-precipitation

* Corresponding author.

1944-3994/1944-3986 © 2023 Desalination Publications. All rights reserved.