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Abstract
In this thesis, we investigate the development process of chaos-based image encryption

algorithms from various perspectives, including the serious challenge of generating secure ran-
dom number sequences for use as dynamic encryption keys. First, at the aim of improving
the randomness and non-periodicity qualities of the basic pseudo-random number genera-
tors (PRNG) used as key-stream generators, we exploit the unique attributes of the logistic
map (LM), logistic-sine system(LSS), linear feedback shift registers (LFSR), and nonlinear
feedback shift register (NLFSR) to design new key-stream generators (namely: LSS-LFSR-
PRNG, LM-NLFSR-PRNG, and LSS-NLFSR-PRNG). Therefore, our generators succeed in
generating unlimited, random, and nonlinear sequences by passing the totality of the Na-
tional Institute of Standard and Technology (NIST) statistical tests, and displayed strong
cryptographic security, resulting in high entropy, high key sensitivity, and large key space
exceeding 2100.

The second goal highlights the importance of selecting an appropriate chaos-based archi-
tecture for confusion and diffusion. The dimensions of the chaos-based confusion-diffusion
architecture vary depending on the specific chaotic map being used. Hence, we design
three confusion-diffusion algorithms of various levels (1D LM-based cryptosystem, 1D LM-
Chebyshev-based cryptosystem, and 3D intertwining logistic map-cosine (ILM) based cryp-
tosystem), to discuss and demonstrate the impact of choosing the appropriate dimension of
the chaotic map on the vulnerability of a cryptosystem. It has been proven that higher-
dimensional chaotic maps, such as 3D-ILM, can enhance the ability to resist exhaustive and
statistical attacks by achieving desirable values of the number of pixels change rate (NPCR)
and unified average changing intensity (UACI), while these maps are unable to maintain
encryption speed.

The third goal of this thesis is to improve the core of the mathematical model of chaos-
based cryptosystems by boosting the chaotic complexity and chaotic range of basic one-
dimensional chaotic maps. Where, we propose a new nonlinear chaotification system capable
of producing 1D enhanced discrete chaotic maps (enhanced tangent-Logistic map T-LM, en-
hanced tangent-Sine map T-SM, and enhanced tangent-Chebyshev system T-CH), by apply-
ing tangent nonlinear transforms to the outputs of the existing chaotic maps. This strategy
improves the performance of basic 1D chaotic maps by exhibiting better dynamical behavior,
Lyapunov exponent, bifurcation, and larger chaotic intervals across [0-4].

Key words: cryptosystem, key-stream, chaotic system, image encryption, random se-
quence, statistical test.
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Résumé
Dans cette thèse, nous étudions le processus de développement d’algorithmes de chiffre-

ment d’images basés sur le chaos à partir de différentes perspectives, y compris le sérieux défi
de générer des séquences de nombres aléatoires sécurisés pour une utilisation comme clés de
chiffrement dynamiques. Dans un premier temps, dans le but d’améliorer les qualités d’aléa-
toire et de non-periodicité des générateurs de nombres pseudo-aléatoires de base (PRNG)
utilisés comme générateurs de flux clés, nous exploitons les attributs uniques de la carte lo-
gistique (LM), du système logistique-sinusoïdal (LSS), des registres de décalage de rétroaction
linéaire (LFSR), et registre de changement de rétroaction non linéaire (NLFSR) pour conce-
voir de nouveaux générateurs de flux clés (à savoir : LSS-LFSR-PRNG, LM-NLFSR-PRNG
et LSS-NLFSR-PRNG). Par conséquent, nos générateurs réussissent à générer des séquences
illimitées, aléatoires et non linéaires en passant la totalité des tests statistiques du National
Institute of Standard and Technology (NIST), et ont affiché une sécurité cryptographique
forte, entraînant une entropie élevée, sensibilité élevée des touches et grand espace pour les
touches dépassant 2100.

Le deuxième objectif souligne l’importance de choisir une architecture appropriée basée
sur le chaos pour la confusion et la diffusion. Les dimensions de l’architecture de confusion-
diffusion basée sur le chaos varient en fonction de la carte chaotique spécifique utilisée. Par
conséquent, nous concevons trois algorithmes de confusion-diffusion de différents niveaux (1D
LM-based cryptosystem, 1D LM-Chebyshev-based cryptosystem, et 3D intertwining logistic
map-cosine (ILM) based cryptosystem), pour discuter et démontrer l’impact du choix de
la dimension appropriée de la carte chaotique sur la vulnérabilité d’un cryptosystème. Il a
été prouvé que les cartes chaotiques de dimension supérieure, telles que 3D-ILM, peuvent
améliorer la capacité de résister à des attaques exhaustives et statistiques en atteignant des
valeurs souhaitables du taux de changement du nombre de pixels (NPCR) et de l’intensité
de changement moyenne unifiée (UACI), alors que ces cartes sont incapables de maintenir la
vitesse de cryptage.

Le troisième objectif de cette thèse est d’améliorer le cœur du modèle mathématique
des cryptosystèmes basés sur le chaos en augmentant la complexité chaotique et la gamme
chaotique des cartes chaotiques unidimensionnelles de base. Où, nous proposons un nouveau
système de chaotification non linéaire capable de produire des cartes chaotiques discrètes
1D améliorées (carte tangente-logistique améliorée T-LM, carte tangente-sinus améliorée T-
SM et système tangent-Chebyshev amélioré T-CH), en appliquant des transformations non
linéaires tangentes aux sorties des cartes chaotiques existantes. Cette stratégie améliore les
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performances des cartes chaotiques 1D de base en présentant un meilleur comportement
dynamique, un exposant de Lyapunov, une bifurcation et des intervalles chaotiques plus
grands sur [0-4].

Mots clés :cryptosystème, key-stream, système chaotique, cryptage d’image, séquence
aléatoire, test statistique.
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General introduction

Motivation
In recent decades, an increasing amount of digital data has been generated and transmit-

ted in all types of networks [1]. The majority of these data are in the form of images; thus,
their availability, confidentiality, and integrity must be protected during transmission via a
cryptosystem, which involves converting plain images to cipher images at the sender’s end
using an encryption algorithm and a key.

One of the serious challenges in image encryption is to generate sequences of random num-
bers by mean of pseudorandom number generators (PRNGs), for use as dynamic encryption
keys; hence, ensuring a high quality of randomness and a secure key becomes mandatory for
those security modules aimed at providing and strengthening the security level of a system
[2].

Traditional encryption methods, such as the Data Encryption Standard (DES), Advanced
Encryption Standard (AES) [3], and Blowfish [4], cannot fulfill the requirements for image
encryption because of their inefficiency and lack of security.

To address these challenges, researchers have proposed novel encryption algorithms that
utilize techniques such as chaos [5], deoxyribonucleic acid (DNA) encoding, and compres-
sive sensing [6]. These algorithms provide high information entropy, a large keyspace, and
resistance against various types of attacks. By combining different encryption methods and
techniques, these algorithms offer improved security and efficiency in image encryption.

Chaos theory is considered one of the most practical and outstanding PRNG methods
and a source of randomness. Its simple structure can lead to extremely complex and unpre-
dictable behavior. In addition, its sensitivity to the initial conditions, that is, the observed
output, changes dramatically, even when the original parameters are slightly altered. Other
significant properties of chaos include mixing, ergodicity, unpredictability, nonperiodicity,
and pseudorandomness. These properties are linked to confusion and diffusion by separating
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General introduction

adjacent pixels and spreading random substitutions through all encrypted images.
However, most one-dimensional (1D) chaotic maps are unsuitable for image encryption

owing to their small chaotic parameter range, uneven distribution of chaotic behavior, lack
of strong uncertainty, and insufficient key space [7]. However, new solutions have to be de-
veloped to address these issues and enhance the overall security of image encryption systems.

The first approach is to integrate chaotic generators with other random number generator
(RNG) techniques, such as cellular automata (CA), linear congruential generators (LCGs),
block ciphers [8], hash functions, elliptic curve methods, and feedback shift registers (FSRs),
to enhance their randomness and security properties [9]. This approach may boost the
effectiveness of these methods and yield promising results in terms of randomness, security,
and applicability in various fields.

The second approach aims to solve the problems of uneven distributions of conventional
chaotic behavior, insufficient key space, and small amounts of key change in a single chaotic
system [10]; this approach involves the use of modified forms of chaotic maps. Thus, new
techniques for creating new chaotic systems with remarkable qualities, such as cascading
[11], switching, perturbing maps, time parameter control of chaotic systems, and nonlinear
combination of chaotic systems [12], have been proposed. These improvements effectively
compensate for the defects of simple 1D chaotic systems.

The confusion-diffusion architecture of a cryptosystem is also another challenging task
in ensuring the security and robustness of the encryption process. The security of the cryp-
tosystem depends strongly on the confusion and diffusion architecture. An insufficient level
of confusion and diffusion may cause inefficiency [13]. Apart from security, high speed, which
is the other main requirement of a secure cryptosystem, may be affected by choosing an
appropriate confusion-diffusion architecture.
Contributions

This thesis is based on three major contributions. In the first contribution, the inte-
gration of chaotic maps with two types of feedback shift registers(FSR) was explored based
on random properties and the ease of implementation of feedback shift registers to design a
new secure key-stream generators: LSS-LFSR-PRNG, LM-NLFSR-PRNG, and LSS-NLFSR-
PRNG, these systems are effective at overcoming the limitations of simple one-dimensional
chaotic maps and eliminating the linearity and periodicity of the FSR output, resulting in a
good random number generator.

In the second contribution, we discuss the impact of choosing the appropriate remote
chaotic map for confusion-diffusion in affecting factors such as time complexity, space com-

2



General introduction

plexity and resistance to several attacks, during the encryption and decryption processes.
Where, we compare and demonstrate the effectiveness of three proposed confusion-diffusion
algorithms, 1D LM-based cryptosystem, 1D LM-Chebyshev based cryptosystem, and 1D
intertwining LM- based cryptosystem. These systems have different confusion-diffusion ar-
chitectures that vary from simple to complex architecture.

In the last contribution, we propose a tangent nonlinear transformation that has the
ability to generate completely different new chaotic systems (enhanced tangent-Logistic map
T-LM, enhanced tangent-Sine map T-SM, and enhanced tangent-Chebyshev system T-CH),
which typically possess more parameters and more intricate chaotic behaviors and produce
more random and unpredictable output sequences. This approach can significantly expand
the chaotic ranges of an established chaotic map and offer users great flexibility in selecting
seed maps to produce numerous new chaotic maps.
Thesis organization

The thesis is organized as follows:
Chapter 1 provides the necessary details and background of the thesis subject. It covers

basic digital image concepts, image encryption approaches, and a theoretical foundation for
developing safe PRNG systems.

Chapter 2 introduces the basis of nonlinear dynamics of chaotic systems, and provides a
comparative analysis based on the randomness of two coupled maps (a logistic-sine system
(LSS) and a logistic-tent system (LTS)). The evaluation measures include the National In-
stitute Statistical Test (NIST), and the performances of the chaotic maps are analyzed on
specific parameters to assess their ability to produce random sequences valid for use as secret
keys.

Chapter 3 investigates a new coupling method for PRNG designs based on chaotic maps
and FSR, where different coupling combinations are proposed: LSS-LFSR-PRNG, LM-
NLFSR-PRNG, and LSS-NLFSR-PRNG.

Chapter 4 covers the proposed cryptosystems based on different confusion-diffusion ar-
chitectures (1D LM-based cryptosystem, 1D LM-Chebyshev based cryptosystem, and 1D
intertwining LM- based cryptosystem), with the most important security analysis and re-
sults compared to those of previous works.

Finally, Chapter 5 presents a new nonlinear chaotification system capable of producing
new 1-D discrete-chaotic maps that exhibit improved dynamical behavior. We also propose a
new encryption algorithm in which the optimal sequences generated by the designed systems
T-LM and T-CH are used as secret keys for the confusion-diffusion process.

3



Chapter 1
Theoretical background of digital data
encryption

1.1 Introduction

The significance of data encryption in current digital environments cannot be emphasized.
Regardless of their rampant usage for end-to-end secret information sharing across networks
in several fields, hence, an attacker may have a substantial chance to steal sensitive informa-
tion. The primary goal of protecting these data, which are mostly in the form of images, is to
use an algorithm that makes it impossible for an adversary to access any information. This
chapter outlines the essential concepts of digital images, cryptography, and image cryptogra-
phy. We review and summarize the development of the current image encryption algorithms,
analyzing their suitability for different scenarios and expounding their advantages and disad-
vantages. Evaluation metrics to measure security and performance of encryption algorithms
is also highlighted. At last, theoretical concepts of generating random numbers are reviewed.

1.2 Digital image concepts

A digital image is a spatial representation of objects, scenes, or other images in a digital
format[14]. It is composed of x, y elements having an exact location and value and often
referred as pixels[15]. It can be written as a mathematical function f(x, y) that is divided into
x rows and y columns. The coordinate ranges are X = 0, 1, ..., m − 1 and Y = 0, 1, 2, ..., n − 1
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Figure 1.1: Digital image as a matrix of numerical values represents pixel’s brightness [16]

as given below by Equation 1.1:

f(x, y) =


f(0, 0) f(0, 1) f(0, 2) ... f(0, y − 1)
f(1, 0) f(1, 1) f(1, 2) ... f(1, y − 1)

...

f(m − 1, 0) f(m − 1, 1) f(m − 1, 2) ... f(m − 1, n − 1)

 (1.1)

A sample digital image and its equivalent matrix are shown in Figure 1.1. The matrix’s
elements are shown as either 0 or 255, which represents the value of the function f(x, y), and
each element is known as a pixel. They represent the discrete data of any digital image, and
serve as the actual building blocks of digital images. The value of the function f(x, y) at
every point indexed by a row and a column is a number and has no units, and it is known
as the gray value of intensity of the image at that point [17].

1.2.1 Types of digital images

Classification of images can be performed on the basis of various criteria like attributes, color,
dimension, and data types.

1. Classification of images on the basis of attributes
Based on the attributes of any image, it is classified as raster or vector graphic images.

(a) Vector graphics: vector graphics uses graphic primitives to describe an image.
Hence, the notion of resolution is practically not present in graphics. SVG (Scal-
able Vector Graphics) is a common vector image format that enables to describe
two-dimensional graphics using graphical primitives like lines, circles, and poly-
gons [18].
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(b) Raster graphics: raster images, also called bitmap images, are pixel-based which
mean a collection of pixels arranged on a rectangular grid, hence, their quality is
dependent on the number of pixels[19].

2. Classification of images on the basis of color
On the basis of color, the images can be classified into the following categories:

(a) Monochrome images: are the images where the color component is absent, they
are further classified as gray-scale and binary images.

(b) Gray-scale images: the spectrum of shades between white and black, or vice versa,
is referred to as grayscale, such images have many shades of gray, and eight bits
(28 = 256) are enough to represent the gray-scale [20].

(c) Binary images: the binary images are just special case of grayscale images, where
the process of thresholding is applied, they are actually Bi-level images where the
pixels assume the values of 0 or 1 [21] [22].

(d) True color (or full color) images: are the images where the pixel has a color that
is obtained by mixing the primary colors red, green, and blue[20].

(e) Pseudo color images: are in fact false color images, their color component is
manipulated artificially.

3. Classification of images on the basis of dimensions
Images can be classified on the basis of dimensions also. Normally, digital images
are a 2D rectangular array of pixels. If another dimension, of depth or any other
characteristic, is considered [20], which may be necessary to use, then a higher-order
stack of images like 3D images are produced. A good example of a 3D image is a
volume image, where pixels are called voxels [20]. By 3D images, it is meant that the
dimension of the target in the imaging system (may be a scene or an object) is three
dimensional (x,y, depth).

4. Classification of images on the basis of data types
Images may be classified based on their data type. For example, image processing
operations may produce images with decimal fraction, or negative number, and maybe
complex number [20].
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1.2.2 Image characteristics

A digital image can be described with respect to several characteristics or fundamental
parameters[23], these ones help to assess its quality at the aim to improve the quality of
an image including intensity, contrast, brightness, noise, resolution, and the bit depth.

1. Intensity
The term intensity refers to the amount of light or the numerical value of a pixel, it is
the measure of energy of a wave, which is directly proportional to square of amplitude
of the signal. From the point of view of image processing it is a numerical value which
represents a pixel.

2. Contrast
The term contrast of an image [23] relates to recording of the differences in the mag-
nitude of the intensity at the surface of an object. It can be described as a product of
the sensor signal contrast and detector contrast. But, a common measure of contrast
(C) as given by Equation 1.2 involves intensity of foreground (Iobject) and background
(Ibackground) objects, i.e.

C = Iobject − Ibackground

Iobject + Ibackground

(1.2)

Where, Iobject is the average pixel intensity of the object pixels and Ibackground is the
averaged pixel intensity of the background. Another useful contrast measure using the
same parameters Iobject and Ibackground is given by Equation 1.3.

C = log10
Iobject

Ibackground

(1.3)

3. Brightness
Brightness resolutions expresses brightness quantization accuracy. Brightness resolu-
tion is also a kind of relative resolution because it refers to the average pixel intensity
of the image.

4. Noise
Noise is an unwanted disturbance that causes fluctuations in the pixel value. It is a
random or stochastic process, and hence its true value cannot be predicted accurately
[23].

5. Resolution
Resolution refers to the quantity of pixels present in an image[23].
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Figure 1.2: Main classification of information security methods

6. Bit-depth
Bit-depth refers to the shades of gray used to characterize each pixel. This is often
quantified in terms of the number of bits.

1.3 Information security and cryptography essentials

Security and privacy touch on various applications, ranging from safe commerce and payments
to private conversations and preserving health care information. One key feature of safe
communication is cryptography. In this section, we cover the fascinating area of data security.
We clarify some of the terms and principles underlying fundamental cryptographic approaches
and provide a tool to compare the numerous cryptographic algorithms currently in use.

1.3.1 Information security

In today’s world, humans are more dependent on computer networks to communicate with
one another. Communication over the Internet is efficient, but intruders can steal private
information. Vulnerabilities and security breaches occur due to poor layout, misuse by the
user, or defects of the system. Protecting this shared information in potentially hostile
environments is crucial for the growth of information-based processes in industry, business,
and administration. Hence, many authors have proposed various approaches to enhance
the security of confidential data transmission. From this perspective, the three techniques,
cryptography, steganography, and watermarking with their main methods (see Figure 1.2)
are widely used to hide the original transmitted data for secure communication.

Steganography, regarded as the art of clandestine communication [24], is defined as the
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art or practice of hiding information, concealing a file, message, image, or video.
Watermarking may be described as the art of injecting the concealed stream of bits

(the watermark) into a component (a file)[25], or digitally sent data that can be detected
by a computer program to confirm the authenticity and integrity of the component or the
transmitted data. The file may be audio, text, pictures, or video[26]. Digital watermarking
is now used for a variety of purposes, including owner identification, broadcast monitoring,
copy control, content authentication, transaction tracking, owner identification, and proof of
ownership [27].

Cryptography is thus used to achieve three main security objectives: confidentiality, in-
tegrity, and authenticity [28]. It is described as the ability to create secret code to protect
the data sent between two communicating parties from an outside attack [29].

1.3.2 Image encryption terminology

Image encryption uses a mathematical algorithm to convert the original image into a form
that is hard to interpret [30]; it is used to safeguard sensitive image data in several sectors.
Recent applications of image encryption are depicted in Figure 1.3. These applications in-
clude internet and communication multimedia systems [31], telemedicine [32], and military
communication [33]. As instance, in telemedicine applications, image encryption aims to
ensure the confidentiality and integrity of medical images during storage and transmission,
and it plays a crucial role in military communication by ensuring the secure transmission and
storage of military maps and sensitive information.

Figure 1.3: Applications and use cases of image encryption

The fundamental components of every encryption cipher is defined by Shannon’s principle.
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The process involves converting a plain image into an unreadable encrypted image using
an encryption algorithm controlled by an encryption key[34], according to the two phases
"confusion" and "diffusion" (see Figure 1.4).

Figure 1.4: Confusion-diffusion architecture [35]

Here, we define terms that are a subset of image cryptology.
Cryptology: is a mathematical science, that support cryptography and cryptanalysis.
Cryptography: is the discipline incorporates ideas, tools, and procedures for the alteration
of data in order to conceal their semantic content, prohibit their illicit use, or avoid unde-
tected changes [36].
Cryptanalysis: is the examination of cryptographic systems to identify vulnerabilities or
information disclosure[37].
Cryptosystem: is the use of cryptography methods and a supporting framework to provide
information security services. A cipher system is another term used for a cryptosystem. A
simple cryptosystem comprises the following parts: plaintext, encryption-key, encryption/de-
cryption algorithm, cipher-text, and decryption key.
Plain-Text: is the original message that to be transmitted or stored, it feeds into the algo-
rithm as input [36].
Cipher-Text: is the scrambled or encrypted message produced as output [38].
Encryption: is a process that makes the information in a message or file unreadable to
unauthorized individuals [39].
Decryption: is the reverse process of encryption in which the intendent recipient can reveal
the encrypted message [40], it requires two things; a decryption algorithm and a key.
Key: it is a string of characters that appears random. Depending on the specific key the
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algorithm will produce a different output [41].
Confusion: is also called substitution, or permutation. Through permutation, the position
of the pixels can be modified, making the statistical link between the ciphertext and secret
key as complex as feasible [42].
Diffusion: is also called transposition, it modifies the value of a pixel, spreading the influ-
ence of a single byte/bit to subsequent bytes/bits [43]. Diffusion hides plaintext’s statistical
properties. For a robust cryptographic scheme, both confusion and diffusion are essential. If
a cipher is constructed with confusion or diffusion, it will not be able to withstand a crypt-
analytic assault [44].
Attack: an attack is any effort to penetrate a computer system, steal data, or use a hacked
computer system to launch another attack. A multitude of tactics, including malware, phish-
ing, ransomware, and man-in-the-middle attacks [45], are used by cybercriminals to initiate
attacks.

1.3.3 Image encryption approaches

Several image encryption approaches have been introduced so far including spatial, trans-
form, optical, and compressive sensing schemes. A comparison of the discussed techniques is
resumed in Table 1.1.

1. Spatial domain techniques
The spatial domain encryption technique operates directly on the image pixels. Famous
approaches are addressed as follows:

(a) Chaos based image encryption techniques
Chaos-based cryptographic models have been utilized to construct innovative and
efficient image encryption systems, demonstrating excellent qualities such as speed,
cost, computational power, computational overhead, complexity, and vulnerability
[30]. The two stages of a cryptosystem’s architecture are typically the confusion
and the diffusion phases. Therefore, the sequence produced by chaotic systems
sequentially modifies the values of all pixels in the image when the diffusion phase
is carried out with the aid of a chaotic map [46].

(b) DNA based image encryption techniques
The cryptographic approach based on deoxyribonucleic acid (DNA) converts each
letter of the alphabet into a unique combination of the four bases Adenine (A),
Cytosine (C), Guanine (G), and Thymine (T) [47].
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Researchers are interested in DNA based image encryption owing to its low power
consumption, high information density, and parallel processing capabilities[30].
The lack of random DNA rule implementation at each encryption level is a major
drawback of current DNA cryptography systems. This puts data encryption and
key generation security at risk. Because the approaches have static beginning
settings, they are readily exploited [48].

(c) Cellular automata based image encryption techniques
Cellular automata-based encryption algorithms have been applied to various im-
age encryption scenarios [49], due to its features of homogeneity, parallelism, un-
predictability, and ease of implementation in both hardware and software systems
[30]. These complex models offer a high degree of efficiency and resilience. Cellular
automata produce random sequences to spread pixel values in an image. However,
it is crucial to emphasize that the design and analysis of cellular automata-based
encryption methods need significant thought. Factors such as cellular automata
rule selection, key management, and security analysis are critical to assuring the
encryption scheme’s efficacy and resilience.

(d) Meta-heuristics based image encryption techniques
Metaheuristic approaches are mainly utilized in a situation where we need opti-
mized results and to provide near to optimal solutions. Recently, the use of such
approaches has been increased in the image encryption. Metaheuristic techniques
may be used for image encryption in two ways: generating numerous cipher im-
ages and selecting the best one, and optimizing chaotic map initially parameters
for efficient key generation. Researchers used metaheuristic techniques for image
encryption, taking into account many features [50]. There are many metaheuristic
approaches in the literature that yield optimum solutions, including GA, Multi-
swarm Intelligence Algorithm, Differential Evolution (DE), and the Bat algorithm.
GA belongs to the larger family of evolutionary algorithms (EA).

(e) Elliptic curve based image encryption techniques
Elliptic curve cryptography (ECC) has shown to be an efficient encryption system
[51], because it works on the least amount of memory with the small key size. In
general, elliptic curves are non-singular cubic equations having an elliptic form
over a finite field. The symmetry of these structures around the x−axis is crucial
for their functioning.

y2 = x3 + ax + b mod p (1.4)
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where a and b are integers which satisfy 4a3 + 27b2 ̸= 0( mod p) and p is a large
prime number.

Kumar et al.[?] suggested an improved asymmetric cryptosystem technique for
image encryption, combining Elliptic Curve and Fourier transforms. To construct
affine coordinates on the elliptic curve, pixel values were transferred to elliptic
curve coordinates and point multiplication was conducted using the ’G’ generator.
When decrypting the cipher image, a matching pixel value is created. The bigger
number cannot be more than the prime ’P’, one of the parameters in the finite
field equation of the elliptic curve, and we focused on scrambling at the time of
encryption and descrambling at the time of decryption in our algorithm.

Transform domain techniques
Transform-based techniques are commonly used for image encryption, where the data are
transformed from spatial to frequency using the appropriate following transforms.

1. Fractional Fourier transform based image encryption techniques
The Fractional Fourier Transform (FRT) is applied in various image encryption tech-
niques to enhance security and protect information. FRT, in an analogous way, can be
seen as a linear transformation that rotates the signal through any arbitrary angle into a
mixed frequency space domain. Equation 1.5 defines the FRT, which is an extension of
the ordinary Fourier transform (FT), with the addition of a fractional order to indicate
the domain of the signal being transformed [52].

F α(f(x))(u) =
∫ +∞

−∞
Kα(x, u)f(x)dx (1.5)

where Kα(x, u) is expressed as [51]:

Kα


A exp[iπ(x2 cot φ − 2xucscφ + u2 cot φ)], α ̸= nπ

δ(x − u), α = 2nπ

δ(x + u), α = 2(n + 1)π

(1.6)

A =
exp(−i(π φ

4 − φ
2 ))

√ sin(α))(1.7)

Where φ = απ
2 is the angle analogous to the transform order α along the x−axis.

2. Fresnel, wavelet and cosine transform based image encryption techniques
Fresnel, wavelet, and cosine transform-based image encryption techniques have been
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proposed in several papers. Fresnel transform (FST) represents free-space propagation,
which is a basic optical process. Every FST may be connected to an FRT of some order,
followed by a suitable magnification and further quadratic phase multiplication [52].
These techniques offer several advantages in the field of image encryption, and provide
high levels of security in the frequency domain, making them resistant to attacks and
statistically robust.

3. Gyrator transform based image encryption techniques
Rodrigo introduced the gyrator transform, a standard transform in image processing
that employs three lenses separated by a set distance [53]. The 2-D function f(x, y) for
GT can be mathematically expressed by Equation 1.8 as follows:

GT (u, v) = GT αf(xi, yi(u, v) =
∮ +∞

−∞

∫ +∞

−∞
f(xi, yi)Kα(xi, yi, u, v) dxi dyi (1.8)

Optical image encryption techniques
Optical techniques are often used in cryptography owing to their fast calculation and par-
allel processing capabilities. A double random-phase encoding (DRPE) method is used to
transform a simple image into stationary white noise. Two random-phase masks were used
in the input and Fourier planes. These random phase masks serve as keys to the DRPE [50].
This technology has been extensively investigated and many optical encryption schemes have
been developed.

Compressive sensing based image encryption techniques
Researchers have proposed numerous compressive-sensing-based image encryption techniques,
since it can simultaneously perform compression and encryption [54]. It employs a measuring
matrix and a reconstruction method. A measurement matrix was used for the compression.
The measurement matrix may be used as a secret key between the sender and recipient,
creating a cryptosystem.
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Table 1.1: Advantages and disadvantages of most common image cryptographic algorithms

Techniques Advantages Disadvantages

1D chaotic system Robustness against commonly known attacks.
Simple implementation.
High encryption efficiency.

Small key space.

HD chaotic system High security.
Large keyspace.
High speed.
Strong anti-attack ability.

Complicated and lengthy algorithm.

Cellular automata The dynamic structure of keyspace. The algorithm is too lengthy.

DNA Very low correlation coefficient.
High entropy.
High security.
Strong anti-attack ability.

Not a cost-effective process.

Elliptic curve Less use of storage.
Low consumption of CPU.
Strong short keys.

Using pre-computed tables.

Deep learning Nonlinear characteristics.
Large key space.
High security.
The use of multiple layers in neural networks.
Improves the algorithm’s performance.
Enhanced security without compromising image
quality.

The training time of the model is long
/computationally expensive/complex
in terms of implementation and
execution.

Fuzzy logic Increased security.
Imperceptibility.
Resistance to certain attacks.

Reduced visual
quality/complexity/resource-
intensive/vulnerable to brute force
attacks.

Metaheuristic Optimization of initial conditions improving the
performance of encryption algorithms.

Increased complexity and operation
time/ pixel expansion and image
quality degradation.

Compressive sensing Low-cost compression coding.
Reduces the bandwidth and storage demand.
Better computational speed.

Poor reconstructed image quality/
low compression ratios.

Optical Faster and suited to real-time applications. Frequency and spatial information are
not retained.

Neural network-based encryption algorithm
Neural network-based encryption algorithms have gained popularity owing to their ability
to recognize complex patterns and correlations in data [49]. These techniques use artificial
neural networks to encrypt images. Deep neural networks perform in computer vision and
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pattern recognition, among other applications.

1.3.4 Typical tests for image cryptography

The performance evaluation parameters used in majority of image cryptography methods
include four main groups of tests as schematized by Figure1.5, including visual, diffusion and
quality, valance effect, and computational processing analyzes [55].

Figure 1.5: Cryptographic evaluation metrics used for test

1. Visual analysis
The arrangement, color, and orientation of the pixels make up a large amount of in-
formation in a plain image. All of these details about the plain image must be hidden
by the cipher image once an encryption technique has been applied. Several evaluation
criteria are included in visual analysis, including the key sensitivity, the histogram, and
an analysis of the encryption and decryption procedures.

(a) Encryption/decryption visual analysis
One of the most important measures used to evaluate the durability and effec-
tiveness of the cryptography method is the visual encryption/decryption analysis.
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Where the primary information included inside the plain image should be able to
be concealed and disappeared by an excellent encryption technique. In parallel, it
should successfully recover and decipher image with high efficiency [56].

(b) Histogram security analysis
The histogram plot is used to demonstrate the pixel strength distribution and
rates of an image [57]. An effective image encryption technique should remove the
image’s features and provide a uniform histogram for the encrypted image [58].

(c) Key sensitivity analysis
Confusion is an essential feature of cryptography. This obscures the link between
the cipher image and the key. A slight modification of the key should produce
a completely different cipher image [59]. According to a key sensitivity study,
changing a single bit in the key causes a considerable change in the cipher image
[58].

2. Diffusion and quality analysis
The following four metrics are used to evaluate the quality and diffusion traits of an
image cryptography algorithms:

(a) Information entropy
The entropy H(S) of a source S defined by Equation 1.9 [60] is calculated to
determine the randomness of the pixel values in the image [61]. Consequently, the
entropy of an n − bit image is n when the pixel distribution is perfectly uniform,
for an 8 bit gray-scale image, it should belongs to [0, 8] [62].

H(S) = −
2n−1∑
i=0

P (Si) log2 P (Si) (1.9)

n is the number of bits needed to express a symbol [63]. Si and P (Si) represents
the probability of symbol Si [64].

(b) Correlation security analysis
The correlation coefficient is used to assess how closely an important pixel in an
encrypted image resembles its original state. The vertical, diagonal, and hori-
zontal orientations had a significant impact on the rate of neighboring pixels in
the original data. The strong image-ciphering technique minimizes the associa-
tions between pixels in the image [62]. According to the estimates, the correlation
coefficient value is calculated by Equation 1.10 as follows:
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

rx,y = Cov[x,y]√
D(x)D(y)

D(x) = 1
N

∑N
i=1[(xi − E(x))]2

E(x) = 1
N

∑N
i=1[xi]

Cov[x, y] = 1
N

∑N
i=1[xi − E(x)][yi − E(y)]

(1.10)

Where the gray-scale values of two neighboring image pixels are defined by x and
y. The total number of duplets (x, y) identified from the image is N [65].

(c) Peak signal-to-noise ratio (PSNR)
The PSNR [66] metric formulated by Equation 1.11 is used to measure the su-
periority of the encryption/decryption procedures [57]. It stands on the mean
square error (MSE) represented by Equation 1.12, where i, j, and k are the pixel
positions, and I and K are the pixel values of the original and encrypted images
[67].

PSNR = 20 log10
255√
MSE

(1.11)

MSE = 1
W × H × L

W∑
i=1

H∑
j=1

L∑
k=1

[I(i, j, k) − K(i, j, k)]2 (1.12)

3. Avalanche effect analysis
By carefully examining the connections between plain and ciphered image, a differential
attack is a form of attack that may be used to recover the input image from the
encrypted image without the secret key. This is measured using:

(a) Unified averaging changing intensity (UACI)
UACI is employed to analyze the differential attacks [68]. It calculates the average
intensity of divergence between encrypted and relevant plain images that vary by
one pixel as follows [62]:

UACI =
M∑

i=1

N∑
j=1

( |I1(i, j) − I2(i, j)|
W × H × L

) × 100 (1.13)

where W and H are the width and the height of the image, respectively, and L

is the maximum pixel value possible in an image [69]. Q is the number of bits
corresponding to the red, green, and blue channels [70].

(b) Number of pixels change rate (NPCR)
The value of NPCR is estimated as:

NPCR =
M∑

i=1

N∑
j=1

A(i, j)
W × H

× 100 (1.14)

18



Chapter 1. Theoretical background of digital data encryption

where A(i, j) =


0 if I1(i, j) = I2(i, j)

1 otherwise

W and H are the width and the height of the image, respectively, and L is the
maximum pixel value possible in an image [69].

4. Computational processing analysis
Owing to the vast amount of image data that must be processed, computational pro-
cessing analysis is crucial for image encryption and decryption techniques. It assists in
identifying potential areas for improvement and optimization, such as reducing useless
tasks or memory utilization.

(a) Run-time analysis
The execution time is measured as the time required before the encryption process
begins [62]. It is the sum of run and compile times. Minimum run-time , which
is measured in minutes, milliseconds, or seconds, influences the efficacy of the
approach [62].

(b) Memory analysis
Memory analysis is used to estimate the memory required by the algorithm [32].

1.4 Random number generators

The term "randomness" is often used in a variety of contexts, including computer program-
ming, simulations, numerical analysis, decision-making, sampling, and cryptography. Most of
the time, the overall notion underlying this generic phrase relates to distributions, sequences,
or homogeneous outputs produced by a particular entropy source. Given past history or any
other knowledge, a process is considered "random" if the known unconditional probability
and the known conditional probability of the subsequent occurrence are the same [71].

Usually, randomness is expressed in terms of complexity or probability. A random bit
sequence might be viewed as the result of unbiased "fair" coin flips with sides that are labeled
“0” and “1” [72], with each flip that are independent of each other and having a probability
of exactly 1/2 of producing a “0” or “1” [73].

Many cryptosystem algorithms rely on the process of generation random numbers [74], by
which one or more digits are arbitrarily produced. In most cases, a random number generator
algorithm can be given by Definition 1.4.1 (see also Figure 1.6).
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Definition 1.4.1 A random number generator algorithm is defined by a tuple (S, f, g, U, x0),
in which S is the state space of the generator, U is the random output space, f : S → S is the
transition mapping function, g : S → U is the output extractor function from a given state,
and x0 is the seed [74].

Figure 1.6: General architecture of a random number generator [75]

1.4.1 Classification of RNG

A well-known classification of the different types of random numbers generators [76], es-
tablishes three fundamental groups as illustrated by Figure1.7: the so-called true-RNG,
pseudo-RNG, and quasi-RNG.

Figure 1.7: Fundamental classification of random numbers generators [77]
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1. Pseudo-random number generators
The first class includes deterministic random number generators (DRNGs) [76], some-
times known as pseudorandom number generators (PRNGs). The word "pseudo-random"
is often used to characterize random numbers that are generated algorithmically on
computers by starting with a seed (see Definition 1.4.2). When the PRNGs can rapidly
generate a large number of numbers, they are considered efficient. For the most part,
modern PRNGs may be disregarded because of their lengthy duration [78].

Definition 1.4.2 (PRNG) A pseudo-random number generator G is a structure (S, µ, f, U, g),
where S is a finite set of states, µ is the probability distribution on S for the initial state
called seed, f : S → S is the transition function, U is the output space and g : S → U

is the output function.

As previously stated, pseudo-random numbers are distinguished by the fact that they
are created using an algorithms and are not truly random, even if they seem to be such
if the algorithm is unknown.

2. True random number generators True random numbers (TRNGs), which make
up the second class, are created with an unexpected input. Using the entropy of a
random phenomena, such photoelectric fluctuations or computer clocks. They are par-
ticularly helpful in encryption systems since they are unpredictable. Physical TRNGs
(PTRNGs) and non-physical TRNGs (NPTRNGs) [79] are the two subclasses of TRNG.
Physical TRNGs use non-deterministic effects of electronic circuits. NPTRNGs exploit
non-deterministic events [72]. The generation of such number sequences is influenced
by an unpredictable resource in the sense of having high entropy [76].

3. Quasi random numbers generator
Quasi-random numbers, named also as low-discrepancy points [76]. These numbers are
not meant to be a random sequence, although they do have statistical characteristics
in common with random sequences. They are produced by a numerical algorithm
that attempt to evenly fill an n-dimensional space with points, without clustering or
grouping of points, but are not intended to look random; rather, they are dispersed as
evenly as possible to lower errors in Monte Carlo integration. They are employed in
the numerical evaluation of integrals, yielding, instead of numbers, a series of points in
a chosen dimension that meet an equidistributional requirement [76].
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1.4.2 Techniques for generating pseudo random numbers

There are currently several basic techniques in common use for generating uniform random
numbers, in this section, most common PRNGs are covered.

1. Linear congruential generators
Linear congruential generator is a source of random numbers. Where, each single
number determines its successor. The form of the generator is defined by Equation
1.15.

xi+1 = (axi + c) mod m (1.15)

a is called the "multiplier"; c is called the "increment"; and m is called the "modulus" of
the generator [71]. A linear congruential PRNG enters a readily observable cycle, the
duration of which is termed a period, with a maximum period of m. The period m can
be achieved by certain values of the pair (a, c) [80]. The most frequent LCGs have m

values of m ≤ 264; that is why they doesn’t exhibits good statistical properties. As a
result, their applications in simulations (such as Monte Carlo) are restricted. This prob-
lem may be handled in situations where m can be configured to be several hundred or
even thousands of bits in size. However, even though increased precision integer arith-
metic can now be implemented in hardware due to significant advancements in modern
microprocessor technology, for such values of m, arbitrary precision integer arithmetic
must be implemented in software libraries, which may be prohibitively expensive for
practical purposes.

2. Ranrot generators
Initially, the Monte Carlo methods were developed using the Ranrot generator class.
They are based on the Fibonacci sequence, with the addition of a bit shifting operation
[80]. There are more types of Ranrot generators defined by Equation 1.16-1.19 [81].
Type A:

xn = ((xn−j + xn−k) mod 2b) ≫ r (1.16)

Type B:
xn = ((xn−j ≫ r1) + (xn−k ≫ r2))( mod 2b) (1.17)

Type B3:

xn = ((xn−i ≫ r1) + (xn−j ≫ r2) + (xn−k ≫ r3))( mod 2b) (1.18)
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Type W: 
zn = ((yn−j ≫ r3) + (yn−k ≫ r1)( mod 2 b

2 )

yn = ((zn−j ≫ r4) + (zn−k ≫ r2)(mod2 b
2 )

xn = yn + zn2 b
2

(1.19)

3. Feedback shift register generators
Linear Feedback Shift Register generators (LFSR) or Tausworthe are linear recurrent
generators [74]. The diagram of the general shift register with feedback is given in
Figure 1.8, each of the square labeled xi, xi+1, ..., xn is a binary storage element like
Flip-flop, position on a delay line, or other memory device.

Figure 1.8: General diagram of the feedback shift register

At periodic intervals determined by a master clock, the content of x2 is transferred
into xi+1. However, to obtain a new value for location x1, we compute some function
f(x2, x2, ..., xn) of all the present terms in the shift register and use this in x1.

4. Blum–Blum–Shub generators
Blum–Blum–Shub generator (BBS) is a nonlinear and cryptographically secure PRNG
[75]. It is based on the quadratic residue problem x2 = q mod w, where q is the
"quadratic residue".

It works as follows: consider n = p × q, where p and q are prime numbers that are
congruent to 3 mod 4. Let x0 be an integer lower than w, which operates as a seed
of the BBS generators [75]. Consider now the recurrent sequence xt+1 = (xt)2 mod w,
and j =

⌊
log2(log2(w))

⌋
, where

⌊
x

⌋
is the integral part of x. Then, at iteration t, the

BBS generator outputs the j least significant bits of xt [74].

5. Chaotic generators
Chaotic generators, named also as chaotic pseudo random number generators (CPRNGs),
are non-linear generators of the form x0 ∈ R : xt+1 = f(xt), where f is a chaotic map
[74].

23



Chapter 1. Theoretical background of digital data encryption

John von Neumann [82] initially presented the idea of a pseudo-random number gen-
erator based on chaos in 1946. Although it produces a poor pseudo-random sequence,
it is nonetheless regarded as a significant turning point in the development of pseudo-
random generators. A generalized scheme for producing pseudo-random numbers using
an iterated function f and a control parameter k is shown in Figure 1.9. Chaotic series
modification may be necessary when a chaotic map exhibits periodic or predictable
behavior.

Figure 1.9: Pseudo-chaos generator based on an iterated function f with control parameter
k

1.4.3 Statistical tests of random number generators

The security of a cryptographic system can be compromised by feeble or predictable random
numbers; therefore, the quality of the random number generator is critical [83]. It is mathe-
matically challenging to establish significant aspects of a generator’s quality [83]. Therefore,
the ultimate evaluation of PRNG quality is empirical [83].

There are numerous methods for assessing the quality of a random number generator,
such as hardware evaluation and statistical tests. Statistical tests comprise the examination
of the RNG’s output to ascertain whether it demonstrates specific statistical properties that
are intrinsic to numbers that are genuinely random. Approximations of unpredictability,
independence, and uniformity can be incorporated into these tests. Hardware evaluations
comprise a physical inspection of the hardware utilized in the generation of random numbers
to ascertain its proper operation, and the absence of any defects or vulnerabilities that could
compromise the security of the RNG [84]. Famous statistical tests are: the Diehard Battery
of tests, PractRand, ENT test, RaBiGeTe, and the NIST test suite.

NIST test is a statistical package that tests the randomness of (arbitrarily long) binary
sequences [85]. It consists of 15 tests, each of which evaluates the necessary condition for
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randomness in probabilistic terms. The test suite calculates Pvalue, the probability that a
perfect random number generator would have produced a sequence less random than the
sequence that was tested. A significance level (α) can be chosen for the tests. If Pvalue ≥ α,
then the null hypothesis is accepted, otherwise null hypothesis is rejected [86]. In Figure
1.10, a flow diagram for the randomness assessment of RNGs when using the NIST is shown
for the case in which α = 0.01 [84].

Figure 1.10: Flow diagram for randomness assessment using NIST test suite for a significance
level of α = 0.01 [84]

1.5 Conclusion

The need for image security stems from protecting the data contained in the image, including
preventing accidental loss and damage, preventing unauthorized access or deliberate alter-
ation of data, and encryption is generally considered to be the core method of protecting
images from passive and active attacks. In this chapter, we have reviewed a number of con-
temporary methods of image encryption. We also discussed methods for generating random
numbers.
In the next chapter, the nonlinear dynamics of basic chaotic systems are reviewed, and we
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explore the unique attributes of some chaotic maps, such as sensitivity to initial conditions
and pseudorandomness, for improving RNG quality.
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Chapter 2
Chaos-Based Random Number
Generator

2.1 Introduction

Random numbers are needed in a wide variety of commercial and scientific calculations, such
as Monte Carlo computation and simulation, industrial testing and labeling, hazard games,
gambling, statistical research, randomized algorithms, lotteries, and cryptography. Genera-
tors based on chaos have shown promising results in terms of security and unpredictability,
these techniques have exhibited superior performance compared to traditional methods. The
generation of pseudorandom numbers based on chaos theory is the subject of this chapter.
A rich and current list of chaotic maps is presented at first, along with complete technical
information on their definitions and classifications. A comparison of the statistical proprieties
of two coupled chaotic maps via the usual NIST batteries of tests is then outlined in order
to select the appropriate and extremely nonlinear pseudorandom number generator for use
as secret key in the encryption process .

2.2 Fundamentals of nonlinear dynamics and chaotic
systems

The chaotic behavior of nonlinear systems was one of the most productive contributions to
physics and applied mathematics in the latter half of the twentieth century. It has matured
into a mature field that keeps researchers engaged in many areas of science. In this section,
we focus on the fundamentals of chaotic systems.
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2.2.1 Dynamical system

The term “dynamical system” can describe a wide range of processes and can be applied to
seemingly all areas of science [87]. Dynamics is defined as the study of the time-evolutionary
process, and a dynamical system is a set of variables, functions (rules, equations), or quan-
tities, whose values change with time according to some predefined rules [88].

Dynamical systems can be classified according to the nature of time into continuous and
discrete-time processes.

• Continuous time system
Let x = x(t) ∈ Rn, t ∈ I ⊆ Rn be the vector representing the dynamics of a continuous
time system. Continuous systems are defined by a set of coupled ordinary differential
equations (ODEs) [88], defined by Equation 2.1.

ẋ ≡ dx

dt
= f(x, t) (2.1)

The variable t is usually interpreted as time, and f(x, t) is a sufficiently smooth function
that takes the current state and returns the rate of change of the state.

• Discrete time system
The discrete-time systems are usually given by iterated maps as in Equation 2.2.

x(n+1) = f(xn) (2.2)

f is the dynamic rule or equation of motion specifying the temporal evolution of the
system. Here time is a discrete quantity, like steps, iterations, generations or other
similar concepts. The state xn is plugged into f to yield the state at the next step
xn+1, e.g., x1 = f(x0), x2 = f(x1) [87].

2.2.2 Nonlinear systems

Linear systems can be characterized by a set of ordinary differential equations or difference
equations, and closed-form formulations for their solutions can be constructed [89]. A system
is linear if it displays the traits of superposition and homogeneity (occasionally, superposition
is understood to include homogeneity) as defined by Equation 2.3 as follows:

f(αx + βy) = αf(x) + βf(y) α, β ∈ R (2.3)

Therefore, any function that does not fulfill superposition and homogeneity is nonlinear
[89].
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Nonlinear dynamics pertain to systems whose dynamics are regulated by nonlinear al-
gebraic or nonlinear differential equations [90]. A nonlinear system may display chaotic
dynamics if its dynamics are on average exponentially sensitive to changes in its starting
state [90].

2.2.3 Fundamentals of chaotic dynamics

Chaos theory is centered on the development of encryption sequences as opposed to algo-
rithms, and it generates extremely random sequences depending on the appropriate choice of
a chaotic system. Compared to traditional encryption techniques, chaotic image encryption is
more effective and safer [91]. Chaos theory is a mathematical topic of study that asserts that
seemingly random nonlinear dynamical systems are predictable based on simpler equations.

Chaos is derived from the Greek word "Khaos", which means "gaping void" [92]. In other
words, chaos refers to a condition of complete bewilderment or predictability in the behavior
of a complex natural system.

Chaotic systems are physical system that exhibit high sensitivity to initial conditions
[93], they are unstable because they do not resist external disruptions, and instead react in
important ways [94]. In general, and according to the Devaney, chaotic systems have the
following superior qualities resumed in Table 2.1 [95].

Table 2.1: Properties of chaotic dynamics

Chaotic
properties

Meaning

Randomness Chaotic systems produce chaotic sequences that resemble
random.

Initial condition
sensitivity

Their behavior may alter noticeably even with the smallest
disturbance or change. A high sensitivity to the initial
value is one of the key characteristics of these systems.

Ergodicity All states in the phase space are evenly represented by each
state variable.

Nonlinearity There is no linear link between the input and output.
Deterministic Mathematical equations may be used to represent and

regulate the process quantitatively, and they can also be
used to approach it quantitatively to some degree [96].
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These systems are deterministic and can be mathematically modeled.

2.2.4 Classification of chaotic maps

Despite advancements in cryptography, the encryption of sensitive data using chaotic maps
(the architecture of which is described in Figure 2.1) remains an efficient and popular process.
Discrete and continuous chaotic systems are two basic categories of chaotic processes. The
core of a chaos-based cryptosystem is labeled as chaotic maps [97]. The dimensions of the
chaotic maps, are further classified as one-dimensional or multidimensional.

Figure 2.1: Chaotic map structure diagram

Its sensitivity to the initial circumstances, that is, the observed output, changes drasti-
cally even when the original settings are barely tweaked, making it an ideal choice for many
cryptography applications. Other important characteristics of chaos include mixing, ergod-
icity, and nonperiodicity as well as unpredictability and pseudorandomness. Thus, several
types of chaotic systems with varied dimensions have been proposed [98].

1. One dimensional chaotic maps
One-dimensional chaotic systems are advantageous for practical applications because
they have a simple chaotic structure, are easy to implement using hardware and soft-
ware, and have good data characteristics [99]. However, they also have the drawbacks
of limited vulnerability ranges of chaotic behaviors, nonuniform data distributions of
output data sequences [100], and vulnerability to attacks.

The tent mapping method, logistic mapping, and the Chebyshev algorithm are typical
examples of low-dimensional chaotic encryption algorithms.

(a) Logistic map: logistic map came under the category of the easiest and popular
maps [101], developed by Robert May [102] in 1976, and defined by Equation 2.4
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[103]. Where Xn ∈ [0, 1] for n = 0, 1, 2, ... and r ∈ [3.5699456, 4] is a control
parameter to present the chaotic behavior. Parameters of logistic map (r, Xn)
represents the initial conditions.

Xn+1 = rXn(1 − Xn) (2.4)

(b) Tent map: one of the most well-known and utilized chaotic maps for generating
pseudorandom numbers is the tent map [104] defined by Equation 2.5 [103]. Where
µ is in the range of (0, 4].

Xn+1 =


µXn

2 for Xn < 0.5

µ1−Xn

2 for Xn ≥ 0.5
(2.5)

(c) Sine map: the sine map defined by Equation 2.6 is based on the sine iteration
function [105]. Where 0 ≤ a ≤ 1, Xn ∈ [0, 1]. The produced series has a tendency
to be chaotic when a = 1, but it may or may not be chaotic for other values of a

[104].
Xn+1 = a sin (πXn) (2.6)

(d) Piecewise linear map: Piecewise linear chaotic map described by Equation 2.7
may provide a large random sequence that is suitable for information encryption,
because it has extremely good ergodicity, confusion, and determinacy, as well as
a uniform invariant distribution.

Xn+1 =



Xn

p
for Xn ∈ [0, p]

Xn−p
0.5−p

for Xn ∈ [p, 0.5]

F (1 − Xn, p) for Xn ∈ [0.5, 1]

(2.7)

Where the initial value of X ∈ [0, 1] and p ∈ [0, 0.5]. The values of p and X, which
act as secret keys, can be specified by the users [106].

(e) Chebyshev map: Chebyshev map is a symmetrical region map that generates
chaotic sequence [107] defined by:

Xn+1 = cos ρ arccos Xn (2.8)

where ρ > 0, and Xn ∈ [−1, 1].

2. Multidimensional chaotic maps
High-dimensional systems with complex dynamical properties, such the Chen system,
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Lorenz system, and 3D LM, have been presented by researchers to get beyond the
drawback of low-dimensional schemes. Phase-space reconstruction and other decryption
attacks can be successfully countered by expanding the dimensions of chaos systems,
but these systems are vulnerable to plaintext assaults.

(a) Arnold’s cat map: the 2D Arnold’s cat represented by Equation 2.9, is a well-
known discrete chaotic map that uses P repeated shear mapping on the input
image to scramble image pixels in order to recover the original image. The pe-
riodicity of the transformation map is specified as the parameter P . N is the
dimensional value of the image, and a and b are two positive integers that act as
control parameters. x′

y′

 =
1 a

b ab + 1

 x

y

 mod N (2.9)

(b) Henon map: Henon mapping is the simplest two dimensional nonlinear map-
ping that has chaotic attractors [108], its mathematical expressions are defined by
Equation 2.10, where α and β are parameters, when α ∈ [1.07, 1.4], β = 0.3.

Xn+1 = 1 + βYn − αX2
n

Yn+1 = Xn

(2.10)

(c) Lorentz: Lorentz system is traced by Equation 2.11 [107], where, r and b are
control parameters to bring chaotic behavior with σ = 10.

dx
dt

= σ(y − x)
dy
dt

= −zx + rx − y

dz
dt

= xy − bz

(2.11)

(d) 3-D logistic map: A 3D logistic map defined by Equation 2.12 with superior
chaotic properties compared with a 1D logistic map has recently been investigated.

xi+1 = γ(1 − xi) + β(y2
i xi) + αz3

i

yi+1 = γ(1 − yi) + β(z2
i yi) + αx3

i

zi+1 = γ(1 − zi) + β(x2
i zi) + αy3

i

(2.12)

This system of equations exhibits chaotic behavior in 3.53 < γ < 3.81, 0 < β <

0.022, 0 < α < 0.015 [109].
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2.2.5 Tests for chaos detection

Chaos theorists have developed multiple chaos detection techniques to examine the behavior
of dynamic systems in several dimensions.

1. Bifurcation diagram
The bifurcation diagram detects periodic cycles between chaotic and periodic orbits
as functions of system control settings [110]. In brief, a bifurcation diagram like the
one down in Figure 2.2a means that as we increase the parameter r, the steady-state
behavior of the system changes in the following way (see Figure 2.3):

(a) (b)

Figure 2.2: Testing chaotic maps (LM) via: (a)Bifurcation diagram; (b)Lyapunov exponent

Here, "complex oscillations" refer to the oscillatory behavior with higher periods, af-
ter one or more period-doubling bifurcations have occurred. Recall that the change
from equilibrium to oscillations is a "Hopf bifurcation", and the change from regular
oscillations to complex oscillations is a "period-doubling bifurcation".

Figure 2.3: Period-doubling route to chaos

Also, within the region of complex oscillations, infinitely many more period-doubling
bifurcations occur, closer and closer together. This is sometimes referred to as a "period-
doubling cascade", which then leads to chaotic behavior.
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2. Lyapunov exponent
The Lyapunov exponent (LE) is the principal criterion of chaos and represents the
growth or decline rate of small perturbations along each main axis of the phase-space
system [111]. The LE of the discrete chaotic map f(an) is defined as follows:

Definition 2.2.1 (Lyapunov exponent) Consider a differentiable map f : R → R.
The Lyapunov exponent (LE) of f for an orbit an is defined by Equation 2.13 [112]

σ(a1) = lim
n→∞

( 1
n

n−1∑
i=0

|f ′(ai)|) (2.13)

Provided this limit exists.

According to Theorem 2.2.1, a positive value of the Lyapunov Exponent indicates that
the chaotic map has excellent chaotic properties.

Theorem 2.2.1 If at least one of the average Lyapunov exponents is positive, then
the system is chaotic; if the average Lyapunov exponent is negative, then the orbit is
periodic and when the average Lyapunov exponent is zero, a bifurcation occurs [113].

3. 0-1 Test
0-1 test is chaos detection test that is used to distinguish between chaotic and regular
behavior [114]. It uses 1D time series ϕ(n) for n = 1, 2... as the input. We use the data
ϕ(n) to drive the 2-dimensional system and Cn ∈ (2, 2π).

p(n + 1) = p(n) + ϕ(n) cos Cn

q(n + 1) = q(n) + ϕ(n) sin Cn

(2.14)

Under general conditions, the limits M(n) in Equation 2.15 defines the (time-averaged)
mean square displacement [115], and the growth rate K described by Equation 2.16 is
either 0 signifying regular dynamics or 1 signifying chaotic dynamics [114].

M(n) = lim
n→∞

1
N

N∑
j=1

([p(j + n) − p(j)]2 + [p(j + n) − p(j)]2) (2.15)

K = lim
n→∞

log M(n)
log n

(2.16)

The system trajectories are usually constrained in the regular case (periodic or quasi-
periodic dynamics), but they often behave roughly like a two-dimensional Brownian
motion with zero drift in a chaotic situation, evolving diffusively [116]. One easy way
to identify whether these growth rates are diffusive or bounded is to use the mean
square displacement M(n), which increases linearly or is limited [116][114].
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4. 3-State test
The 3 state test (3ST) is based on data series pattern analysis. The approach determines
whether the dynamics are chaotic or regular by looking at the properties of periodic and
quasi-periodic signals [117]. The 3ST looks at how a data series distribution of system
states changes over time[118]. It is aimed at discriminating between the three major
dynamics represented by the LE chaotic (> 0), quasi-periodic (< 0), and periodic (= 0)
dynamics [119].

5. Other chaos detection techniques
Other chaos detection techniques are described briefly in Table 2.2.
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Table 2.2: Chaos detection techniques

Detection
technique

Purpose

LD Lyapunov
dimension

Quantifies the dimension of the chaotic attractor[93].

PP Phase portrait Appreciate the complexity and dynamics of a dynamical system.
SE Simple entropy Characterize the degree of complexity of a time series set

without any prior knowledge of dynamic system that generated
the dataset.

PE Permutation
entropy

Provide a quantification measure of the complexity of a
dynamic system by capturing the order relations between the
values of a time series and extracting the probability
distribution of ordinal patterns.

AE Approximate
entropy

Determining the regularity of series of data based on the
existence of patterns.

KE Kolmogorov-Sinai
entropy

Measure the long-term unpredictability of a motion by testing
the degree of information loss in the motion.

JE Joint Entropy Characterizes the uncertainty and randomness of several signals.
CD Correlation

dimension
Measure the space dimensionality occupied by a time series.

TS Time series A statistical analysis of the dynamic system that represents the
features of the data series.

PCM Poincare map Studying the fow of a system near a periodic orbit or a chaotic
system.

FP Fixed points Reflect visually the dynamic properties of a nonlinear system.

2.3 Randomness evaluation of coupled chaotic maps
via NIST tests

Coupled chaotic maps have been proposed as a method for generating pseudo-random num-
bers. The use of coupled map with the appropriate control parameters allows for the gener-
ation of independent and random sequences. The complexity of the generated sequences can
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be increased by using a several structure with coupling factors between these maps.
Given the example of the logistic-sine system (LSS) and the logistic-tent system (LTS)

proposed by Zhou et al.[12], which are a nonlinear mixture of a single logistic map, sine map,
and tent map. Their main structure is illustrated in Figure 2.4.

Figure 2.4: General structure of 1D coupled maps[12]

LSS and LTS are defined respectively by Equation 2.17 and 2.18 as follows:

Xn+1 = FLSS(r, Xn)

= L(r, Xn) + S((4 − r), Xn) mod 1
(2.17)

Xn+1 = GLT S(r, Xn)

= L(r, Xn) + T ((4 − r), Xn) mod 1

=


rXn(1 − Xn) + (4 − r)Xn

2 mod 1 Xn < 0, 5

rXn(1 − Xn) + (4 − r)(1 − Xn)/2 mod 1 Xn ≥ 0, 5

(2.18)

where r ∈ (0; 4]

They are used for random number generation purposes, providing confusion and diffusion
operations to improve security. These compound chaotic system exhibit more densely dis-
tributed chaotic behavior, larger key space, and key change, resulting in higher security and
resistance to attacks.

Where a vital requirement for any random number generator based on chaos is to en-
sure that the generated sequence always benefits from a significant level of randomness.
It is critical to examine such sequences by means of Lyapunov exponents, bifurcation dia-
grams, or other tests to accurately select the parameters of the dynamic system. However,
the sequence’s randomness quality varies depending on the generator’s design and must be
examined in different ways.
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In [120], the 0-1 test and the three -state tests were used to provide a thorough investiga-
tion of the behavior of the LSS and LTS. While Zhou et al. [12] have proven that the LSS and
LTS exhibit continuous chaotic behavior in the range r ∈ (0, 4], Muthu et al. [120] portray
stronger and weaker regions of chaos, with some regions exhibiting quasiperiodic behavior.

Therefore, we use of the National Institute of Standards and Technology (NIST) suite
test to evaluate and compare the randomness properties of these two coupled systems, to
demonstrate whether the system that has strong chaotic behavior is nominated to produce
high -quality randomness, and to select the best and the appropriate coupled map for use as
random number generator in our next contributions.

2.3.1 Analysis of the comportment behavior of the LSS and LTS
from the literature

In this section, we cover and analysis numerous tests that are applied in the literature to
evaluate the chaotic behaviors of the LSS and LTS. The results of each test is valuable for
the foundation of our study.

First, the output sequences X(n + 1) of the chaotic systems are analysed by [12] and
plotted along with the change in parameter r. Figure 2.5a and 2.5b compare the bifurca-
tion diagrams of the LSS and the LTS. From these figures, it is obvious that the chaotic
range of the LSS and LTS is inside (0, 4], and their bifurcation behavior is evenly dispersed
over the full space from 0 to 1. Visually, these findings are not sufficient for comparing and
determining zones of chaos and regularity; consequently, identifying these zones using only
bifurcation diagrams is difficult. Classification tests are useful allies for dealing with this
kind of situation more clearly [121]. In general, classification by Lyapunov exponents is the
most commonly used approach in the literature [122].
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(a) (b)

Figure 2.5: Bifurcation diagram: (a) logistic-sine system; (b) logistic-tent system

Thus, the Lyapunov exponents of the LSS and LTS are tested also in [12], as shown in
Figure 2.6. Visually, the LSS and LTS have more complex chaotic qualities, as evidenced by
their Lyapunov exponents, which are greater than 0 over the whole parameter setting range
r, and they consistently behave chaotically in the range r ∈ (0, 4] [120]. However, these
results are not sufficient for comparing their chaotic behavior, since the maximal Lyapunov
exponent of each system is not calculated.

(a) (b)

Figure 2.6: Lyapunov exponent diagram: (a) Logistic-sine system; (b) Logistic-tent system
[12]

Third, the 0-1 test was experimented by Muthu et al.[120] on the LSS and the LTS with
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parameters N = 5000 and X0 = 0.01. The K values obtained for the r values are shown in
Figure 2.7, which demonstrates a slope towards 1 for all values of r in the range [3.1, 4] for the
LSS and LTS, demonstrating that these maps do not have a consistently chaotic character
over the given range. Furthermore, Muthu et al.[120] demonstrate that the LSS possesses
the strongest chaotic nature in most areas of r.

Figure 2.7: 0-1 Test results: K values obtained for the r values

At last, Muthu et al. [120] performed 3ST on the LSS and LTS in the range r ∈ [3.1, 4].
Surprisingly, three types of behavior are clearly differentiated at various r values; periodic,
quasi-periodic, and chaotic, as shown in Table 2.3, which illustrate clearly that the LTS has
a wider chaotic region than the LSS. Furthermore, the chaotic behavior of these maps is not
uniformly distributed, and certain parts of the LSS and LTS are found to be quasiperiodic.
This conclusion refutes what is asserted in [12] that LSS and LTS are chaotic throughout.
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Table 2.3: Results of behavior comparison of the LSS and LTS using 3ST

r LSS LTS

[3, 1 − 3, 19] Chaotic Quasi-periodic
[3, 2 − 3, 29] Chaotic Quasi-periodic
[3, 3 − 3, 39] Chaotic Chaotic
[3, 4 − 3, 49] Quasi-periodic Chaotic
[3, 5 − 3, 59] Quasi-periodic Chaotic
[3, 6 − 3, 69] Chaotic Chaotic
[3, 7 − 3, 79] Quasi-periodic Chaotic
[3, 8 − 3, 89] Quasi-periodic Quasi-periodic
[3, 9 − 3, 99] Quasi-periodic Quasi-periodic

2.3.2 Experimental study and results

In order to further study and compare the random properties of the chaotic sequence gen-
erated by the LSS and LTS, the NIST test is used in this section to identify the areas of
randomness and lack of randomness of these two systems, and to confirm findings in [12] and
[120].

First, the LSS and LTS systems are utilized to construct the chaotic series X(n + 1) with
control parameters r in the range (0, 4] and X0 = 0.1 using the iterative procedures specified
in Equation 2.17 and 2.18, respectively. The bit length of each sequence n was set to 1000bits.
Then, the statistical tests were performed using NIST SP 800-22. The 15 subtests that make
up the NIST test may all be used to assess the randomness of the sequences. By analyzing
the sequence’s uniformity, the test results largely show the benefits and drawbacks of the
pseudorandom sequence [123], in which the probability value (Pvalue) reflects the regularity
of the sequence. The Pvalue of each subtest is compared to a tester-determined significance
threshold (which, for cryptography and in the case of NIST test suite version SP800-22, is
commonly set to = 0.01). If Pvalue is greater than α, the sequence is random; otherwise,
the sequence is not random [124]. Since we cannot determine which maps exhibit superior
randomness simply by performing one test for just one value of r, we have to repeat the test
according to r′s transitions from 3.15 to 3.95, and then we have calculated the probability
that a random sequence fails one or more tests for each testing process. Figure 2.8 depicts
the histogram plot of the uniformity test Pvalues at three values of r: 3.15, 3.65, and 3.95
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for the two maps LSS and LTS. Table 2.4 shows the results of failed tests for all r values
mentioned.

Table 2.4: Failed tests relatively to 15 tests for r listed values

r value LSS LTS

[3, 1 − 3, 19] 4/15 ⇒ Random 8/15 ⇒ NotRandom

[3, 2 − 3, 29] 3/15 ⇒ Random 7/15 ⇒ NotRandom

[3, 3 − 3, 39] 3/15 ⇒ Random 3/15 ⇒ Random

[3, 4 − 3, 49] 3/15 ⇒ Random 8/15 ⇒ NotRandom

[3, 5 − 3, 59] 3/15 ⇒ Random 7/15 ⇒ NotRandom

[3, 6 − 3, 69] 3/15 ⇒ Random 4/15 ⇒ Random

[3, 7 − 3, 79] 3/15 ⇒ Random 6/15 ⇒ Random

[3, 8 − 3, 89] 3/15 ⇒ Random 3/15 ⇒ Random

[3, 9 − 3, 99] 3/15 ⇒ Random 3/15 ⇒ Random

The LSS findings exhibit excellent randomness, where all Pvalues are much over greater
than the significance threshold for most r values, the expected binary matrix rank test, the
overlapping template matching test, and Maurer’s universal statistical test. It should be
noted that some of these sub-tests are not always appropriate. These sub-tests are run only
if the sequence meets certain criteria (for example, passes the frequency test, has more than
500 cycles [125], or has a sufficient bit-length). However, LSS remains regarded as random
even if it fails 3 to 4 tests, according to [125], where data may still be deemed random at the
significance level α = 0.01 if they fail fewer than 7 NIST statistical tests.

LTS fails multiple tests when r is in the quasi-periodic range [3.1 − 3.29] and in the
chaotic range [3.4 − 3.59]. This might be explained by the fact that the randomness of
the sequences does not rely only on the chaotic state of the underlying system but also on
the post-processing and generator design. It is obvious that the randomization qualities
of these maps in such a range have exposed major security needs, which make their usage
inappropriate for image encryption and demand a solid selection of chaotic system parameters
when employing them.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Pvalue of 15 statistical tests, the x axis lists the name of the statistical test in NIST
test suit: T1- Frequency, T2- Frequency within a Block,T3- Runs,T4- Longest run of ones,
T5- Rank,T6- Spectral,T7- Non-overlapping, T8- Overlapping, T9- Maurer’s Universal, T10-
Linear complexity, T11- Serial, T12- Approximate Entropy, T13- Cumulative sums, T14-
Random Excursions, T15- Random Excursions Variant

Finally, the results revealed a strong relationship between the NIST test results and the
chaotic metrics identified in the literature in the previous section. The seeds for which the
maps are chaotic, are the seeds that determine a low number of failed NIST tests, which
demonstrates the notion that a required criterion for a successful pseudo random number
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generator is that the development of the underlying system is chaotic. Thus, according to
[120], the LSS that has the strongest chaotic behavior in the range [0 − 4] is the one with the
fewest failed NIST tests, and has the ability to generate a highly random chaotic sequence.

2.4 Conclusion

The unique attributes of chaos, such as sensitivity to initial conditions, topological transitiv-
ity, and pseudorandomness, are conducive to designing and improving the output quality of
pseudorandom number generators.

In this chapter, we provided an introduction to chaotic systems, their characteristics, and
usual tests used for detecting their chaotic behavior. We also investigate the randomness of
chaotic sequences generated by the coupled LSS and LTS via the NIST test; where we have
reached that the LSS meet the strongest chaotic behavior that makes it capable of generating
high random number sequence. Based on these results, we propose an effective integration
of the best selected coupled chaotic map with the famous feedback shift register to improve
chaos-based image encryption methods in the next chapter.
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Chapter 3
Improved key-stream generator based
on feedback shift register and chaos
for image encryption

3.1 Introduction

Key-stream generators are methods or devices used to generate a sequence of random or
pseudo-random numbers, known as a key-stream, which is then used for encryption and
decryption purposes. These generators play a crucial role in ensuring the security and ran-
domness of cryptographic algorithms. Traditional one-dimensional maps are vulnerable to
attacks if they are not properly used as key stream generators. A coupled chaos map can
solve such issues. In addition, their integration with other emerging technologies can open
new avenues for practical application. However, the effective integration of these technologies
requires further study. Feedback shift registers remain as the popular choice for integration
with chaos due to their attractive feature and high efficiency when implemented in hardware
or software. In this chapter, we design new key-stream generators for image encryption pur-
poses built from feedback shift register and chaos, and we attempt to improve their output
quality by introducing several combination of linear feedback shift register (LFSR), non lin-
ear feedback shift register (NLFSR), logistic map (LM), and the coupled logistic-sine map
(LSS).
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3.2 Problem formulation and our contribution

One-dimensional coupled chaotic maps have been proposed as random number generators in
several previous works. These maps address the limitations of simple chaotic 1D maps by
offering a wider range of control parameters and exhibiting complex and diverse behavior.

However, they still vulnerable to several attacks due to their discontinuous range of chaotic
behavior as proved previously in chapter 2. Researchers have proposed various methods of
integration of these maps with other schemes such as DNA encoding, cellular automata,
and elliptic curve, at the aim of enhancing their security and making them suitable for
cryptography applications.

As instance, FSR offers several advantages in various applications. It is commonly used as
a pseudo-random number generator since it is capable to generate random and unpredictable
sequence of keys. Its designs have been optimized to fit inside silicon substrates, making
them suitable for tasks such as cryptographic keys, data whitening, and fast digital counters.
Additionally, FSR-based designs have been implemented in field programmable gate array
(FPGA) for Internet of things (IoT) and smart applications, providing effective results in
terms of delay, speed, and area. Overall, FSRs offer benefits such as randomness generation,
efficient implementation in complementary metal-oxide-semiconductor (CMOS) technology,
and suitability for various applications in the field of integrated circuits and digital equipment.
These characteristics makes it a worthy choice to integrate it with the used chaotic map.

In our contribution, we will focus on designing then improving a new key-stream gen-
erators based on the appropriate chaotic map with the appropriate feedback shift register.
Thus, our study is based on four sub-generators; the simple 1D logistic map, 1D coupled
LSS, LFSR, and NLFSR. Hence several combination are possible, three of them are chosen
for the designed PRNGs, named also key-streams: LSS-LFSR-PRNG, LM-NLFSR-PRNG,
and LSS-NLFSR-PRNG.

To ensure the quality of randomness of the proposed scheme, the NIST test suite is used
alongside other tests. At last, the implementation of the proposed key-streams for encryption
is investigated, showing suitability for secure image transmission.

3.3 Related studies

This section examines earlier efforts to generate pseudo-random number sequences using the
FSR and chaos.

Beginning with Rohith et al. [126], they proposed an image encryption and decryption
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technique based on a key sequence formed by a logistic map sequence and a second series of
states of a LFSR. To acquire the final key sequence, the generated sequences are multiplied by
255, and a bit-by-bit XOR operation is performed on the states of an 8 bit LFSR. Therefore,
the received key sequence is XORed with 8-bit grayscale image pixels to produce an encrypted
image.

To create a random key that is challenging for hackers to guess, a novel form of multi-
ple different generators, including LFSRs, NLFSRs, and feedback with carry shift registers
(FCSRs), were merged in [127].

In [128], the authors proposed a hybrid random number generator (HRNG) based on a
random signal generated by a chaotic oscillator and a LFSR using an XOR gate.

To boost the unpredictability of the produced sequences, Garcia et al.[64] has presented a
quick and reliable encryption system with a mixed architecture based on a Modified Logistic
Map (MLP) and a Linear Feedback Shift Register as a key stream generator.

The hardware implementation of a multibit and high-speed of RNG, LFSR-based PRNG
that produces uniform distribution numbers was presented by Datta et al.[129], where hard-
ware description languages (HDL) are used in the design of the PRNGs circuit.

3.4 Theoretical foundations of LFSR and NLFSR

Throughout this chapter, we use ⊕ and ”.” to denote addition and multiplication in GF (2)
respectively, and ”+” to denote arithmetic addition. The NLFSR of n binary storage elements
(represented by xi, i ∈ [0, n− 1]) is a generalised variant of the LFSR where the present state
is a nonlinear feedback function of prior states. It can be viewed as finite state automata,
as depicted in Figure 3.1. The bit values xi

t, i ∈ [0, n − 1] stored in all the stages form the
NLFSR’s internal state [130], as revealed by X t = x0

t, x1
t, ..., x(n−1)

t at clock t.

Figure 3.1: General diagram of the feedback shift register

There are two main ways in which an NLFSR can be constructed: the Fibonacci and
Galois configurations [131] (see Figure 3.2). In the Fibonacci setup, the feedback is applied
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at the final step, in contrast to the Galois setup, where feedback is applied at every step.

(a) (b)

Figure 3.2: 4bit-NLFSR configurations: (a) Fibonacci; (b) Galois [130]

The feedback function or connection polynomial are additional names for the feedback
path [132], and the degree of the feedback function utilized to create a series of keys is vital
to the system security and must be properly set.

The feedback function f(x1, x2, ..., xn), computed from the content of the n stages, deter-
mines the next value of xn. The output of an NLFSR is the sequence of bits appearing in its
stage 1 [133].

The feedback function f induces the mapping F : {0, 1}n → {0, 1}n of type:

(x1, x2, ..., xn) → (x2, x3, ..., xn, f(x1, x2, ..., xn)). (3.1)

The state of an n-stage register is a vector of values S = (s1, s2, ..., sn) ∈ {0, 1}n of its state
variables x1, x2, ..., xn [133].

A cycle of length m of an n−stage register is a vector of states (S0, S1, .., Sm−1) such that
F (Si) = Si+1, for i ∈ {0, 1, .., m − 2}, and F (Sm−1) = S0.

The period of a register is the length of its longest cycle [133]. The maximum possible
period for an n-bit NLFSR is 2n [134]
A necessary and sufficient condition for an NLFSR to be branchlessis that its feedback func-
tion f can be written in the form

f(x1, x2, ..., xn) = x1 ⊕ gi(x2, ..., xn) (3.2)

where g is a Boolean function which does not depend on the variable x1.
Implementation of the feedback shift register algorithms begins with the selection of a

primitive polynomial.
The set of n − bit Fibonacci NLFSRs with the period 2n−1 can be partitioned into 4

subsets: (1) basic, (2) reverse of basic, (3) complement of basic, and (4) reverse complement
of basic. If the basic NLFSR has the feedback function of type (1), then reverse, complement,
and reverse complement NLFSRs have the following feedback functions:
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
fr(x0, xn−1, ..., xn) = x0 ⊕ gi(xn−1, xn−2, ..., x1)

fc(x0, xn−1, ..., xn) = x0 ⊕ 1 ⊕ gi(x1, x2, ..., xn−1)

frc(x0, xn−1, ..., xn) = x0 ⊕ 1 ⊕ gi(xn−1, xn−2, ..., x1)

(3.3)

These NLFSRs generate sequences which are reverse, complement, or reverse complement
of the basic sequence, correspondingly. Figure 3.3 below show an example list of feedback
functions of n bit Fibonacci NLFSRs with the period 2n−1 and with the algebraic degree two
(extended list is available on [134]).

Figure 3.3: List of feedback functions of NLFSR for n=5,6,7,8,9 [134]

3.5 Design of secure key-stream generators based on
FSR and chaos

In this section, we discuss different combinations possible for designing our key stream based
on the feedback shift register and chaotic iteration as illustrated by Figure 3.4.
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Figure 3.4: Possible combinations of key stream generators

3.5.1 Key-stream generator based on chaotic iterations

In the first step, two generators based on a simple one-dimensional chaotic map (LM) and
a one-dimensional coupled map (LSS) are employed, and their properties are investigated to
design our proposed generators LM-PRNG and LSS-PRNG. The choose of the appropriate
chaotic maps is based on the comparative study of two coupled maps presented in chapter
2. These maps are the logistic map and the LSS presented respectively by Equation 2.4 and
2.17. By using their iterative equations, it is possible to build an endless sequence of random
numbers.

The initial conditions and control parameters of the system are not set randomly, noting
that little perturbation on the initial condition and control parameter may completely impact
the random behavior of the system. The control parameter should be set within the chaotic
range. For example, according to literature, the control parameter r of the logistic map
that contributes to the excellent chaotic behavior of the function should belong to [3.54 − 4].
The same case with LSS, where the r value that we designate secret key1 is set according
to a microscopic analysis of its chaotic behavior in the range [3 − 4] done by Muthu et
al.[120]. Based on [120], the best chaotic behavior of the LSS was observed in the range
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r ∈ [3.6 − 3.69]. Therefore, we can utilize the starting value X0 = 0.1 and r in that range to
produce a sufficiently lengthy chaotic sequence.

Before that, an enhancement of the chaotic maps behavior is necessary. Since the chaotic
sequence generator generates values between 0 and 1 with 10−15 decimals, we use Equation
3.4 to convert each value of the chaotic sequence Xn to an 8-bit integer.

Xi = round(Xi × 255) (3.4)

3.5.2 Key-stream generator based on FSRs

In this stage, two generators are designed based on an 8-bit Fibonacci LFSR (named LFSR−
PRNG) and the Galois- NLFSR (of degree two then three)(named the NLFSR2 − PRNG

and NLFSR3 − PRNG) specified by the following basic polynomial respectively.
fLF SR−P RNG(x0, x1, .., xn−1) = x8 ⊕ x7 ⊕ x6 ⊕ x5 + 1

fNLF SR2−P RNG(x0, x1, .., xn−1) = x0 ⊕ x1 ⊕ x6 ⊕ (x1.x2)

fNLF SR3−P RNG(x0, x1, .., xn−1) = x0 ⊕ x6 ⊕ x7 ⊕ (x1.x2.x3)

(3.5)

The generated random sequences are periodic with a period of 28 − 1 = 255. Note that in
Equation 3.5 the XOR(⊕) operation is a linear function whereas the AND (.) is a non-linear
function.

The two feedback shift registers are initiated with a random value called a seed. The
register’s past state may be used to determine its upcoming state deterministically. The tap
arrangement and the seed value are the only factors that determine how long the cycle lasts.
Therefore, in order to guarantee a very long cycle when using FSRs for random number
generation, it is crucial to choose an adequate set of tap points and seeds. Hence, since the
number of zeros and ones in the used feedback shift register initial states should be as equal
as feasible, the default state of the shift registers is set to [10101101]. The output sequence
is taken from the seventh register’s tap.

3.5.3 The combined key-stream generators

The final sequence is achieved by carrying out a bitwise XOR operation between the random
output of the LM − PRNG, LSS − PRNG, LFSR − PRNG, and NLFSR − PRNG of
equal lengths. Thus, we choose three combinations to be evaluated: LSS −LFSR−PRNG,
LM − NLFSR2 − PRNG, and LSS − NLFSR3 − PRNG.
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3.6 Performance analysis of the proposed key-stream
generators

The security of an entire cryptosystem is significantly affected by the used key-stream, there-
fore, it is important to guarantee the security of the generated numbers used in these appli-
cations. In this part, we investigate and compare the randomness quality of our proposed
key-streams, via the National Institute of Standards and Technology (NIST), which has set
rules for random number generation. Then, the key sensitivity of the suggested key sequence
is assessed by the Pearson’s correlation coefficient and the Hamming distance.

3.6.1 Randomness evaluation via NIST

Table 3.1 and 3.2 list the NIST SP-800 test results obtained after processing 1000 binary
sequences. The satisfactory findings from the NIST tests reveal that:

The simple generators based on LM − PRNG, LSS − PRNG, LFSR − PRNG, and
NLFSR − PRNG, does not meet the randomness level requirements, since the majority
of Pvalue for the 15 tests was < 0.01. In contrast to the sequence generated by LSS −
LFSR − PRNG, LM − NLFSR2 − PRNG, and LSS − NLFSR3 − PRNG is indeed a
highly randomness properties, and does not have any statistical defects since Pvalue for the
15 tests are totally > 0.01.
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Table 3.1: Results of the NIST test of randomness tested from the enhanced generated sequences

LFSR-PRNG LSS-PRNG LSS-LFSR-PRNG

n0 Test Pvalue Conclusion Pvalue Conclusion Pvalue Conclusion

1 Frequency Test (Monobit) 0.20050 Pass 0.96011 Pass 0.13618 Pass
2 Frequency Test within a Block 2.07625 e228 Fail 2.18769e − 14 Fail 0.24424 Pass
3 Run Test 0.26771 Pass 2.62724e − 131 Fail 0.47077 Pass
4 Longest Run of Ones in a Block 4.13916e − 119 Fail 2.96302e − 56 Fail 0.03632 Pass
5 Binary Matrix Rank Test 1.24995e − 55 Fail 0.03760 Pass 0.54427 Pass
6 Discrete Fourier Transform Test 5.04413e − 68 Fail 2.32810e − 05 Fail 0.52656 Pass
7 Non-Overlapping Test 2.11149e − 07 Fail 5.14249e − 116 Fail 0.86930 Pass
8 Overlapping Test 1.098560e − 10 Fail 5.86466e − 28 Fail 0.20111 Pass
9 Maurer’s Universal Statistical test -1.0 Fail -1.0 Fail -1.0 Fail
10 Linear Complexity Test 0.0 Fail 0.67773 Pass 0.09001 Pass
11 Serial test 0.0 Fail 2.11547e − 23 Fail 0.21153 Pass
12 Approximate Entropy Test 0.0 Fail 2.74079e − 63 Fail 0.50091 Pass
13 Cumulative Sums (Forward) Test 0.39379 Pass 0.41493 Pass 0.09313 Pass
14 Cumulative Sums (Reverse) Test 0.34748 Pass 0.38013 Pass 0.22585 Pass
15 Random Excursions Test 0.55150 Pass 0.07219 Pass 0.12375 Pass
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Table 3.2: Continued

NLFSR-PRNG LM-PRNG LM-NLFSR-PRNG LSS-NLFSR-PRNG

n0 Pvalue Conclusion Pvalue Conclusion Pvalue Conclusion Pvalue Conclusion

1 2.14427e − 10 Fail 7.17529e − 05 Fail 0.76415 Pass 0.589159 Pass
2 0.99999 Pass 3.47372e − 10 Fail 0.37932 Pass 0.921522 Pass
3 0.0 Fail 4.00730e − 121 Fail 0.55484 Pass 0.476752 Pass
4 3.55113e − 08 Fail 1.32771e − 91 Fail 0.12164 Pass 0.671805 Pass
5 0.405550 Pass 0.69244 Pass 0.69244 Pass 0.419681 Pass
6 2.67766e − 47 Fail 0.22926 Pass 0.77602 Pass 0.741104 Pass
7 3.81760e − 14 Fail 8.69254e − 41 Fail 0.94259 Pass 0.165002 Pass
8 8.05656e − 08 Fail 2.79215e − 35 Fail 0.17493 Pass 0.232730 Pass
9 -1.0 Fail -1.0 Fail -1.0 Fail -1.0 Fail
10 0.64701 Pass 0.59279 Pass 0.86082 Pass 0.415656 Pass
11 0.08374 Pass 9.02224e − 09 Fail 0.08374 Pass 0.756912 Pass
12 0.0 Fail 3.67830e − 63 Pass 0.14597 Pass 0.049818 Pass
13 3.52703e − 10 Fail 0.00012 Fail 0.82356 Pass 0.499073 Pass
14 3.30387e − 10 Fail 6.49393e − 05 Fail 0.88208 Pass 0.931289 Pass
15 0.71348 Pass 0.18615 Pass 0.46045 Pass 0.761365 Pass
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3.6.2 Key sensitivity evaluation

Correlation tests based on Pearson’s correlation coefficient and the Hamming distance defined
respectively by Equation 3.6 and 3.7 were used to examine the consistency between two
generated sequences str = [x1...xi] and str1 = [y1...yj], and to measure the strength of linear
association between sequences in order to guarantee the sensitivity of the keys.

R(str, str1) =
∑n−1

i=0 (xi − x̄) − (yi − ȳ)
[∑n−1

i=0 (xi − x̄)2]1/2.[∑n−1
i=0 (yi − ȳ)2]1/2

(3.6)

d(str, str1) =
m−1∑
j=0

(xj ⊕ yj) (3.7)

x̄ and ȳ represent the mean values of str and str1 respectively.
In the Hamming distance test, three major binary key-stream sequences, K1, K2, and

K3, were generated using slightly different starting values. Given the example of LM-LFSR-
PRNG, (the same test is applied for other generators), where:

K1 was obtained using the following initial values:
r0 = 3.999000000000011, X0 = 0.100000000000011, LFSR = 10101101.

K2 was obtained using the following initial values:
r0 = 3.999000000000099, X0 = 0.100000000000099, LFSR = 10101100.

K3 was obtained using the following initial values:
r0 = 3.999000000000059, X0 = 0.100000000000067, LFSR = 10101001.

The correlation results explained by Pearson correlation coefficients with the Hamming
distance test of the three key sequences were constructed as described in Table 3.3.

Table 3.3: Results of Pearson correlation and the Hamming distance

Correlation test Generator K1 vs K2 K1 vs K3 K2 vs K3

Pearson correlation coefficients
LSS − LFSR − PRNG -0,0030 0,00306 0,00023

LM − NLFSR2 − PRNG -0,0038 0,0043 0,00043
LSS − NLFSR3 − PRNG 0.00209 0,00106 0,00170

Hamming distance
LSS − LFSR − PRNG 0.9953 0.99571 0.9953

LM − NLFSR2 − PRNG 0.9933 0.99581 0.9959
LSS − NLFSR3 − PRNG 0.99615 0.99594 0.99606

In our case, the relationship between K1, K2, and K3 is assigned a value between −1 and
1, which might imply that the three sets of keys are uncorrelated, and can be interpreted as
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the three sequences of keys having different information contents. The suggested key-stream
generators appears to be highly sensitive to the system parameters and initial values (keys),
and they have the capacity to create uncorrelated and large number of key sequences. This
capability may be helpful for many cryptographic applications.

3.7 Design of symmetric encryption algorithm based
on the proposed key-stream generators

In this section, we describe the application of the developed generators for image encryption.
General architecture of the proposed system based on the FSR and chaos is illustrated by
Figure 3.5.

Figure 3.5: Proposed cryptosystem architecture

The procedure of encryption/decryption comprises two stages. In first, a key arrangement
is performed to adapt the produced key-stream to a size similar to the source image, where
we reshape the generated pseudo sequence vector to an M × N matrix named K by flowing
the row-major ordering. The encryption and decryption mechanisms are outlined in the
following steps: For encryption, the input image P is joined with the designed key-stream
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matrix K of equal length through XOR operation to get the encrypted image E = K ⊕ P ,
that may be safely transmitted in a secure communications scheme.

The decryption process is performed using the reverse technique of the encryption phases,
in which we perform E ′ = E ⊕ K on the encrypted image E to obtain the decrypted image
E ′.

3.8 Experimental tests and security analysis

An effective image encryption technique can withstand numerous regularly used attacks, such
as the brute-force attack and differential attack. This section includes thorough numbers,
tables, and explanations to assess the performance and compare the implementation of the
proposed cryptosystem. We used MATLAB R2018a to run a simulation experiment on a PC
with a Pentium (R) Dual Core T4500 CPU running at 2.30 GHz and 2 GB of RAM under
Microsoft Windows 7.

3.8.1 Statistical analysis

First, histogram analysis, the correlation coefficient tests in three directions, along with the
entropy analysis, are the three metrics used to assess the efficacy of the proposed image
encryption algorithm against statistical assaults.

1. Histogram analysis
Figure 3.6 shows the histograms plot of the 256 × 256 standard Lena image, encrypted
image, and decrypted image. The flat histogram distributions of the pixel values in an
encrypted images is achieved through the three schemes based on the LSS − LFSR −
PRNG, LM −NLFSR2−PRNG, and LSS−NLFSR3−PRNG. These results refers
to a uniform distribution of pixel intensities in the encrypted image. This means that
all intensity values occur with equal frequency, resulting in a histogram that appears
flat. Hence, we ensure that the encrypted data is indistinguishable from random noise,
providing a higher level of security.
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(a) (b)

(c)

Figure 3.6: Histograms of plain, ciphered, and decrypted Lena images based on:(a)LSS-
LFSR-PRNG; (b) LM-NLFSR-PRNG; (c) LSS-NLFSR-PRNG

2. Correlation analysis
The statistical properties of the encryption results in correlation between neighboring
pixels of Lena image, have been tested listed, and shown in Figure3.7 and Table 3.4.
Our cryptosystem based on the three designed key-streams achieve near-zero correla-
tion, indicating a high level of randomness and security in the encrypted images with
resistance to statistical attacks.
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(a) (b)

(c)

Figure 3.7: Correlation plot of plain (right) and ciphered images (left) based on:(a)LSS-
LFSR-PRNG; (b) LM-NLFSR-PRNG; (c) LSS-NLFSR-PRNG
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Table 3.4: Horizontal, vertical, and diagonal corr values of 2048 pairs of original, encrypted
and decrypted images based on LSS-LFSR-PRNG; LM-NLFSR-PRNG; and LSS-NLFSR-
PRNG

Original Encrypted Decrypted

LSS-LFSR-PRNG
H 0.96663 - 0.02191 0.95839
V 0.97026 0.01824 0.97074
D 0.93935 0.00922 0.93859

LM-NLFSR-PRNG
H 0.9438 0.0019 0.9346
V 0.9700 -0.0133 0.9675
D 0.9152 -0.0205 0.9125

LSS-NLFSR-PRNG
H 0.945365 0.014755 0.9320
V 0.945365 0.014755 0.9320
D 0.908599 0.015830 0.911418

3. Entropy analysis
The entropy of encrypted images varies depending on the key-stream used. The in-
formation entropy values are listed in Table 3.5 and remain tightly close to 8. Conse-
quently, it is exceedingly difficult to extract visual information from ciphered images in
the three cases. In particular, the cryptosystem based on the proposed LSS-NLFSR-
PRNG attains maximum information entropy, this means this scheme has a random
pixel value distribution, making it nearly impossible to obtain visual information from
encrypted images, which confirm its security against entropy attacks.

Table 3.5: Shannon entropy results

Original Encrypted Decrypted

LSS-LFSR-PRNG 7.24322 7.99744 7.24322
LM-NLFSR-PRNG 7.24322 7.9970 7.24322
LSS-NLFSR-PRNG 7.24322 7.997453 7.24322
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3.8.2 Differential analysis

We computed the NPCR, UACI, and PSNR to evaluate the strength of image encryption
algorithm against differential attacks. Results are resumed in Table 3.6.

The NPCR is shown to have a maximum predicted value of 99.6% when two random
images are considered, while the UACI’s maximum anticipated value is approximately 33%.

The proposed algorithm based on the LSS-NLFSR-PRNG achieved best result of NPCR
and UACI, which are close to the aforementioned predicted values. This result guarantees
necessary resistance to any type of differential cryptanalysis.

Table 3.6: NPCR, UACI, and PNSR values

NPCR UACI PSNR

LSS-LFSR-PRNG 0.91585 0.27941 45.02431
LM-NLFSR-PRNG 0.996231 0.278690 45.10937
LSS-NLFSR-PRNG 0.996566 0.278823 45.024871

3.8.3 Key sensitivity analysis

To verify the scheme against the sensitivity of the key, a key is taken and an image is
encrypted. The value of the key, or more specifically, one bit from the bit-stream used for
encryption is changed, and an image is encrypted again. The same analysis was performed
during the decryption process. The output images were compared to determine if there were
any matches. To perform this analysis on the three schemes by the same manner, the first
key set (referred as K1) is:

r0 = 3.999, X0 = 0.1, FSR0 = 10101101
K1 was used to encrypt the original image in Figure 3.9b. The encrypted image is E1 in

Figure 3.8b.
To create a different key set designated as K2, we apply a small change to r0 = 3.999000000000001

while maintaining X0 unchanged. The same manner with K2 to obtain (E2) in Figure 3.8c.
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(a) (b)

(c) (d)

Figure 3.8: Key sensitivity analysis (example of the scheme based on the LSS-NLFSR-
PRNG): (a) Original image; (b) Encrypted image E1 using K1; (c) Encrypted image E2
using K2; (d)|E1 − E2|

The simulation results and the pixel-to-pixel difference |E1 −E2| (Figure 3.8d) clarify that
the encrypted image changes significantly as a consequence of tiny changes in the original
image and key.

62



Chapter 3: Improved key-stream generator based on FSR and chaos for image encryption

(a) (b)

Figure 3.9: Key sensitivity analysis (example of the scheme based on the LSS-NLFSR-
PRNG):(a) Decrypted with K1; (b) Decrypted with a wrong key K2

Figure 3.9 show the decryption results, where only the correct key (K1) allows for full
reconstruction of the plain image. However, even a slight modification in the security key
(K2) leads to image decryption failure.

3.8.4 Key space

To evaluate the cipher’s security, a brute-force assault, known as a chosen-plaintext attack,
is used. Since the approach uses double precision floating point numbers in representing
real numbers on computers, the cost to estimate r is 10−15, in accordance with IEEE-754
standards. The total number of keys used as a component of the key generator system is
represented by the key space employed in the proposed work. For our three schemes, we
have:

The 8-bit LFSR/NLFSR generated sequences are key1 = (28 − 1) ≈ 255. Thus, total
key-space of the LFSR/NLFSR is 28.

The precision of the initial value X0 variation along with bifurcation parameter r of the
used chaotic maps is 10−15. The key-space for X0 is key2 ≈ 1015 and for the bifurcation
parameter r is key3 ≈ 1015.

The iterations number depend on the used image, if we take the example of the Lena
image of 256 × 256, so the iteration number n = 65536 is key4 ≈ 65.103.

If the length of each parameter and the initial value are set to 15 decimals, the key space
of the proposed algorithm is 2126 for LM-NLFSR and 2224 for the LSS-LFSR and LSS-NLFSR
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proposed systems.
To fight brute force attacks, the key space of the image encryption technique should be

greater than 2100. Consequently, the integration of the coupled LSS map greatly improves
the key space available for the proposed cryptosystem to fend against brute-force attacks
compared to conventional LM.

3.9 Conclusion

In this chapter, we presented a method for constructing a high-quality key-stream based on
the feedback shift registers of two types (linear and nonlinear) and chaotic maps (simple
and coupled) to boost the security level compared to existing simple generators. The LSS
and NLFSR are the core aspects of our proposed generator; therefore, they have many
more benefits than simply using the logistic map or the basic LFSR. By construction, the
sequence of bits generated by the LSS-NLFSR-PRNG is aperiodic because the sequence
of numbers generated by the LSS is aperiodic. Additionally, the use of Galois NLFSRs
in encryption algorithms allows high-quality pseudo random number generation with good
statistical properties, high throughput, high speed, ease of implementation, and increased
immunity to statistical attacks. Thus, our cryptosystem provides a balance between security
and computational complexity, making them more efficient for real-time applications. In
the next chapter, we will discuss the impact of diffusion-confusion complexity on improving
cryptosystem security.
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Efficient confusion-diffusion structures
for image encryption

4.1 Introduction

The complexity of encryption algorithms has a significant impact on their performance and
effectiveness in ensuring data security especially when we manipulate images. The compu-
tational speed of algorithms is essential for high-speed computing devices, and the efficiency
of algorithms directly influences the overall performance of cryptosystems. Hence, the choice
of the best confusion-diffusion architecture may affects factors such as, time complexity, and
space complexity during encryption and decryption processes. In this chapter, we compare
the performance of three chaos based image encryption algorithms of different confusion-
diffusion architecture, in term of computational speeds, memory usage, and resistance to
several attacks.

4.2 Proposed approaches

The notable nonlinear features of chaos make it an appropriate candidate for several cryp-
tographic applications. However, the dimension of the chaotic map affects the encryption
reliability and resistance to attacks. Therefore, the choice of the appropriate chaotic maps
with the appropriate dimension in the confusion and diffusion steps is crucial in achieving
excellent encryption quality and ensuring the robustness of the encryption system.

In this section, three scenarios are proposed to study the impact of the confusion-diffusion
complexity in improving security and robustness of a cryptosystem.
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In the first scenario, we design our image cryptosystem based on the sequence produced
by the simple 1D logistic map and XOR operation. In second, we upgrade the complexity of
the confusion-diffusion architecture, where, we use the 1D logistic map for confusion and the
Chebyshev system in the diffusion. At last, the 3D intertwining logistic map which exhibit
more robust hyperchaotic behavior across a broader range of chaos is investigated. The
details of the three algorithms are discussed in the provided subsections.

4.2.1 Algorithm 1: 1D LM-based cryptosystem

In this algorithm, we expand on the two encryption levels used in this study. Our construction
method consists of two steps.

- Design of a key generator based on LM.
- Design of the image encryption algorithm based on the sequence produced by the above

generator and XOR operation.
An encryption key is required to encrypt the image. To achieve this, we utilize the LM,

which may construct a pseudo-random number generator using Equations 2.4. The generated
sequence is converted to an 8-bit integer through multiplication by 255 the rounding to the
nearest decimal value.

Using the constructed remote sequence of keys after conversion to binary, we apply a
bitwise XOR operation between each pixel of the plain image and the corresponding bit of
the proposed key matrix of equal size.

During the decryption step, the encryption process is reversed by selecting the same
secret key used to encrypt the plain image and performing an XOR operation between every
element of the encrypted image matrix and every element of the secret key matrix.

4.2.2 Algorithm 2: 1D LM-Chebyshev based cryptosystem

This algorithm presents an efficient cryptosystem for image security that exploits the advan-
tages of chaotic maps. In the proposed approach, the logistic map and Chebyshev system
are employed. The optimal sequence generated by the LM is used to scramble the image
pixels, whereas the Chebyshev system is employed to generate a secret key for diffusion. P

represents the plain image, E represents the ciphered image, X represents the chaotic vari-
ables, C represents the permuted vector, K represents the diffusion key, and G represents
the secret matrix. Steps of confusion and diffusion are as follows:

1. Load the image P of size M × N to be encrypted and convert it into a vector of pixel
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values by applying a row major alignment.

P = {P (1), P (2), ..., P (M × N)} (4.1)

2. Iterating the LM for M × N times, and then obtaining a vector of sequences XLM with
M × N chaotic variables.

XLM = {XLM(1), XLM(2), ...XLM(M × N} (4.2)

3. Generating the permutation vector V by sorting X in ascending order.

V = {V (1), V (2)...V (M × N)} (4.3)

4. Apply permutation operations on the image pixels P with the permutation vector V .

C(i) = P (V (i)) (4.4)

5. Iterating the Chebyshev system for M ×N times, and then obtaining a second sequence
XCH with M × N chaotic variables.

XCH = {XCH(1), XCH(2), , XCH(M × N)} (4.5)

6. Rounding to the nearest decimal value then quantizing XCH .

K1(i) = round(X(i) × 255) (4.6)

7. Converts K1(i) vector to a binary matrix Kb(i, j).

8. Circshift the elements of the binary matrix in a circular manner along one dimension.

R(i, j) = Circlhift(Kb(i, j), 1) (4.7)

9. Converts R(i, j) to a decimal vector K2(i).

10. Perform K1(i) ⊕ K2(i) to get secret matrix G sized M × N . Where ⊕ represents the
XOR operation of the corresponding elements.

11. Transposition of the permuted vector C(i) is performed by swapping the X and Y

indices of its array representation.

12. Encryption process is performed by calculating the vector E

E = C ′(i) ⊕ G (4.8)

13. Reshape the vector E to a matrix of M × N size.

14. Decryption process is a reverse process of our encryption scheme.
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4.2.3 Algorithm 3: 3D intertwining LM-based cryptosystem

The principles of the 3D ILM-cosine, which were used to produce keys for the proposed image
encryption scheme, along with the confusion-diffusion steps are annotated in this section.

Intertwining logistic map (ILM)
In 2014, Wang and Xu [135] proposed an intertwining relation between different LM

sequences[136], which indicates that the ILM has more dynamic behavior than the LM[136].
The equations for the ILM sequence are as follows:

xi+1 = (ησyi(1 − xi) + zi) mod 1

yi+1 = (ηϑyi + zi(1 + x2
i+1)) mod 1

zi+1 = (η(yi + 1 + xi + 1 + κ) sin zi) mod 1

(4.9)

This system of equations exhibits chaotic behavior for η in the range of [0, 4), η > 33.5,
ϑ > 37.9, and κ > 35.7.

Intertwining logistic map-cosine (ILM-Cosine)
The ILM-cosine expressed by Equation 4.10 is the result of combining the ILM with a

cosine function with the aim of improving the ILM output nonlinearity. This system of
equations exhibits chaotic behavior when η is in the range of [0, 4), σ > 33.5, ϑ > 37.9 , and
κ > 35.7. 

xi+1 = cos ((ησyi(1 − xi) + zi) mod 1 + ϑ)

yi+1 = cos ((ηϑyi + zi(1 + x2
i+1)) mod 1 + ϑ)

zi+1 = cos ((η(yi + 1 + xi + 1 + κ) sin zi) mod 1 + ϑ)

(4.10)

The proposed image encryption scheme based on the ILM-cosine is shown in Figure 4.1.
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Figure 4.1: Encryption steps based on 3D Intertwining LM-Cosine

To create a cryptosystem strong enough to encrypt images, the following five crucial
procedures are needed:

1. Key generation
In this step, we use Equation 4.10 to generate a pseudorandom bit sequence based on
the 3D ILM-cosine chaos sequences. The initial conditions and parameter values are
considered keys to the cryptosystem.

x(1) = 0.2350, y(1) = 0.3500, z(1) = 0.7350, η = 3.7700,σ = 33.6, ϑ = 39.69, κ =
36.58.

2. Histogram normalization
The generated values and histogram generation of the 3D ILM-cosine chaotic sequence
x, y, and z obtained using Equation 4.10 are depicted in Figure 4.2a. The resulting
chaotic sequence histogram has a nonuniform distribution, which may affect the security
of the system. Consequently, we use a normalizing (equalization) technique for x, y, and
z using Equation 4.11 to further strengthen the security of the resulting histograms by a
sufficiently large number because the map only generates floating-point values between
1 and -1. 

x = int(x × N1) mod N

y = int(y × N3) mod M

z = int(z × N5) mod 256

(4.11)

where N1, N3 and N5 are large random numbers that are chosen to be equal to or
greater than 100,000 for simplicity, while M and N are chosen to be equal to the image
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dimension (256 × 256). It is clear from Figure 4.2b that after applying the above
constraints, we obtain an equalized histogram for x, y, and z.

(a) (b)

Figure 4.2: Histograms of generated sequences x,y, and z:(a) original histograms;(b) normal-
ized histograms

3. Row rotation
The steps used to rotate a gray image of M × N dimensions are as follows:
- Applying an offset value N2,
- Choosing M elements of the chaos sequence x starting from the offset value N2,
- The chaos value x, obtained using Equation 4.11 is used to rotate the row.

4. Column rotation
The steps used to rotate the column are similar to those of row rotation and can be
applied as follows:
- Applying an offset value N4,
- Choose N elements of the chaos sequence y starting from the offset value N4.

5. XOR operation
The sequence acquired from the row and column rotations is finally subjected to an
XOR operation to produce new pixel values that are distinct from the original values.
The XOR operation is performed using the following steps.
- Converting the M × N image to a new 1 × MN image,
- XOR the chaos sequence z starting from N6.
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4.3 Simulation results and analysis

(a) (b) (c)

Figure 4.3: Images used for the analysis:(a) Heart MRI Scan Image (M1); (b) Abdomen
sonography image (M2); (c) Chest X-ray Image (M3)

In this section, various tests often used to analyze the statistical metrics and security of
cryptosystems are employed to evaluate the performance of the proposed scheme. The tests
for the performance analysis of the proposed scheme were conducted on a PC of Core (TM)
i3-4030U CPU @ 1.90 GHz with 4 GB of RAM.

In analyzing the proposed solution, all of the standard test images were obtained from The
Intramural Research Program of the NClinical Center and the National Library of Medicine.
The collection in Figure 4.3 comprises X-ray images (chest X-ray images), sonography images
(abdominal sonography images), and MRI images (heart MRI images). These images are .png
images with 256 × 256-pixel resolution.

In this section, numerous tests were performed on the tested images to assess and compare
the security and statistical capabilities of the three proposed chaos based image-encryption
algorithms.

The histograms of the plain images and encrypted images generated by the three schemes
shown respectively in Figure 4.4a, 4.4b, and 4.4c share no similarity. The encrypted images
by algorithm 2 and 3 has a more uniform histogram and and evenly distributed. However, the
histogram of the encrypted image by algorithm 1 which use a simple cryptosystem and 1D LM
is slightly flat. This signifies that the choice of complex confusion-diffusion architecture based
on chaos has a significant impact in obtaining uniformly distributed pixel values, and the use
of high dimensional chaotic maps makes it difficult for attackers to predict the relationship
between neighboring pixels, thereby increasing the security of the encryption algorithm.

Second, the entropy of images with 8-bit pixel values should be close to 8. With a mean
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entropy value of 7.99, the 3rd algorithm based on the 3D ILM is more entropy-rich than the
aforementioned methods. That makes it more resistant to ciphertext-only attacks.

When subjected to differential analysis, the scheme based on the 3D ILM yielded good
results, with a mean score comparable to those theory. Thus, high dimensional chaotic
maps is more advantageous in enhancing resistance to differential attacks by introducing
randomness and complexity into the encryption process.

When analyzing computational processing results, it is clear that the execution time of
the encryption algorithm and the memory usage are influenced by the complexity of the
chaotic map used. The schemes based on 1D chaotic map uses the least amount of memory
and encrypts a 256 × 256 image in less than 0.2 seconds.

3D ILM chaotic map achieving the highest execution time observed, this can be explained
by the fact that the 3D chaotic maps are extremely sensitive to the initial values of their
parameters, and even a minor change in these parameters can result in a big change in the
output, this sensitivity can potentially slow down the encryption process as more calcula-
tions and iterations may be required. This demonstrate that the choice of chaotic map can
significantly impact the execution time of the encryption algorithm.

As results, the dimension of the chaotic map used in a cryptosystem has an impact on
its performance and security. Higher dimensional chaotic systems, such as the used 3D
ILM, exhibit better dynamical behavior and superior performance in terms of ergodicity,
complexity, and randomness. They are capable of generating unpredictable keystreams,
which are highly suitable for encryption and may enhances security and efficiency of the
cryptosystem. However, while these systems are able to enhance the abilities of resisting
exhaustive and statistical attacks, they fail in maintaining encryption speed in comparison
to simple 1D maps.

1D chaotic map with a wider and continuous chaotic range, larger Lyapunov exponent,
and more complex behavior such as the used Chebyshev system also improves the security
of an image cryptosystem.
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(a)

(b)

(c)

Figure 4.4: Histogram results of plain, encrypted, and decrypted images based on:
(a)Algorithm 1;(a)Algorithm 2;(a)Algorithm 3
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Table 4.1: Comparison of the three algorithms

Metrics Ideal value Image used Algorithm 1 Algorithm 2 Algorithm 3

Entropy Equal to 8
Heart MRI Scan image 7.9730 7.98784 7.9974

Abdomen Sonography image 7.9730 7.98087 7.9968

NPCR Equal to 99.609375%
Heart MRI Scan image 99.020385742 99.588012 99.6047

Abdomen Sonography image 99.020385 99.4537353 99.6551

UACI Equal to 33.463541%
Heart MRI Scan image 33.249912 33.748551 33.9776

Abdomen Sonography image 35.90232101 36.672303 36.9822

PSNR High as much as it can be
Heart MRI Scan image 40.1368 40.652935 40.6106

Abdomen Sonography image 37.8826 38.89886 38.6624
Run-Time (Mean) Small as much as it can be - 0.074915 0.245006 0.5599

Memory usage (Mean) Low as much as it can be - 0.155648 0.352256 0.88064

Contrast analysis High
Heart MRI Scan image 11131.75 11109.54 10917.88

Abdomen Sonography image 11787.86 10924.73 10953.55
Key space Large as much as it can be - 1034 1064 10135
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4.4 Conclusion

Chaos based image encryption plays a critical role in protecting sensitive information in
different domains. In this chapter, we discussed the practical implications of image encryp-
tion based on different chaotic maps. The dimension of the used chaotic map affects the
encryption reliability and resistance to attacks, and the choice of the appropriate chaotic
map should be carefully considered to ensure efficient and timely encryption. In addition,
the complexity of the confusion-diffusion architecture has a direct impact on its security. A
more complex algorithm generally provides a higher level of security, as it makes it more dif-
ficult for attackers to decipher the encrypted data. In the next chapter, a new chaotification
framework for enhancing chaotic behavior of 1D chaotic map is proposed.
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5.1 Introduction

The most frequently used image encryption based on chaotic systems paves the way to-
ward the efficient transfer of data through the cloud network. However, it presents several
shortcomings, such as the uneven distribution of conventional chaotic maps, narrow and in-
sufficient key space, and a small amount of key change in a single one-dimensional chaotic
system. In this chapter, we propose a new nonlinear chaotification system capable of pro-
ducing new 1-D discrete-chaotic maps that exhibit better dynamical behavior, Lyapunov ex-
ponent, bifurcation, and larger chaotic interval compared with their seed maps, by applying
tangent nonlinear transforms to the outputs of the existing chaotic maps. To illustrate this,
we analyzed the chaotic complexity of three proposed chaotic maps: the enhanced tangent
logistic map(T-LM), enhanced tangent sine map(T-SM), and enhanced tangent Chebyshev
system(T-CH). Second, we propose a new encryption algorithm in which the optimal se-
quence generated by the T-LM system is used to scramble the image pixels, whereas T-CH
is employed to generate a secret key for diffusion.
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5.2 Basic chaotification schemes: Related works

Several studies have been conducted to reduce the downsides of 1D chaotic maps. In this
section, we review basic chaotification methods that are developed in the literature to enhance
1D chaotic map behavior.

5.2.1 Modular chaotification framework

Hua et al.[137] developed a simple yet effective modular chaotification framework that use
modular operations to increase the dynamic complexity of a 1D chaotic map. In particular,
the control value of the 1D chaotic map is initially increased before utilizing the modular
operation to transform the output states into a set range.

M(xn) = xn+1 = G(xn, p) mod θ (5.1)

This process is illustrated in Figure 5.1 and described by Equation 5.1, where G(xn, p)
denotes a 1D chaotic map, p is a parameter of G(xn, p), and θ is the modulus coefficient. It
is clear that xn is within the range [0, θ).

Figure 5.1: Modular chaotification structure

Additionally, a two-dimensional modular chaotification system represented by Equation
5.2 is suggested in [138] to address the shortcomings of the current 2D chaotic maps, in areas
of discontinuous, constrained chaotic ranges, and incomplete output distributions. The 2D

generated sequence can significantly increase the chaotic complexity of a 2D chaotic map
by using a modular operation as a bounded transformation and applying it to the map’s
outputs.

M(x, y) = F (x, y) mod N (5.2)

x and y are two variables, the modulus coefficient N is a positive integer, and F (x, y) is a
2D chaotic map.

5.2.2 Fusion chaotification framework

By combining the dynamics of two seed maps in a nonlinear manner, Zhou et al.[12] suggested
a fusion operation that could create new chaotic maps. Its definition is given by Equation
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5.3, and its structure is illustrated in Figure 5.2. The input was simultaneously fed into two
seed maps throughout each iteration and the outputs of the two seed maps were subsequently
merged via modular arithmetic.

xi+1 = f(x) ⊕ g(x) = (g(xi) + f(xi)) mod 1 (5.3)

Figure 5.2: Fusion chaotification model structure

5.2.3 Cascade chaotification framework

Motivated by cascade structures in electronic circuits, this technique was tested and sub-
sequently applied before by Hua et al. [139] under the title of series-wound framework on
logistic, sine and Gaussian maps, then generalized as a cascade structure framework by Zhou
et al.[12].

Figure 5.3: Cascade chaotification model structure

It can create new 1 − D chaotic maps by combining two already-existing 1 − D chaotic
maps. Figure 5.3 shows the cascade structure, where G(x) and F (x) are two seed maps that
connect the two seed maps in series. The output of G(x) is fed into F (x)’s input, and F (x)’s
output is then fed back into G(x)’s input for recursive iterations, as defined mathematically
by Equation 5.4, where G(x) and F (x) are two seed maps.

xn+1 = F (G(xn)) (5.4)

By repeatedly cascading a chaotic map with itself, the cascade operation may also be
applied to many chaotic maps; this framework is known as the scalar cascade [140] proposed
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later by Zhou et al.[141]. Its structure is shown in Figure 5.4. The scalar cascade operation
exhibits all cascade operation characteristics.

Figure 5.4: Scalar cascade chaotification model structure

5.2.4 Cosinus chaotification framework

The cosine function is a trigonometric real value function. It has been extensively utilized in
several fields, including geometry, geodesy, and navigation, and has been used to investigate
periodic events because it is a periodic function [142]. Researchers [143],[142] have leveraged
the properties of the cosine function to enhance the chaotic behavior of different chaotic
maps. Thus, cosine chaotification approaches have been proposed to improve the chaotic
behavior and complexity of current discrete chaotic systems via several models.

Model 1
The cosine function is applied as a nonlinear transform to the outputs of three different

examples in this model, this approach is simple but effective compared with other tech-
niques that use two or more existing chaotic maps as seed maps and have complex nonlinear
frameworks [144]. The technique proposed by Natiq et al.[144] is defined by Equation 5.5:

x1(n + 1) = b cos (F1(x1(n), x2(n).., xm(n))),

x2(n + 1) = b cos (F2(x1(n), x2(n).., xm(n))),

x3(n + 1) = b cos (F3(x1(n), x2(n).., xm(n))),

xm(n + 1) = b cos (Fm(x1(n), x2(n).., xm(n)))

(5.5)

Model 2
Hua et al.[143] proposed a cosine-transform-based chaotic system for generating chaotic

maps with complex behaviors. In addition to providing a fundamental foundation, this
scheme can combine any two existing chaotic maps, known as seed maps f(a, xi) and g(b, xi),
with a shifting constant β and then perform a cosine transform to create new maps. a and
b are their control parameters, and the variable β is a shifting constant. This framework is
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defined by Equation 5.6. As indicated in Figure 5.5, the combination operation can effectively
reduce the chaotic dynamics of two seed maps, and the cosine transform exhibits a complex
nonlinearity.

xi+1 = (π(f(a, xi) + g(b, xi) + β)) (5.6)

Model 3
The chaotification model proposed by Alawida et al.[145] uses an existing chaotic map

rather than a linear function and introduces a new control parameter as part of an exponential
function, as defined by Equation 5.7, to invoke large differences in seed values. This can be
directly formulated as a cascade system to increase the chaotic complexity of a cosine-based
system, where F is the seed map, and G is the cosine function. K was selected in the range
of [10, 24] for two reasons. First, when the angle of the cosine function is sufficiently large,
even small differences in F (xn) will lead to widely diverging outputs.

Xi+1 = cos(2((k+F (xn)))) (5.7)

Figure 5.5: Cosine/Sine chaotification framework structure

5.2.5 Sinus chaotification framework

The sine function has restricted orbits and complex nonlinear features. In a wide parameter
range, this approach can significantly improve the chaotic performance of existing 1D chaotic
maps. The first model, as shown in Figure 5.6 is a simple framework designed by [146] to
enhance the chaos complexity of existing 1D chaotic maps (F (p, xi) where p is a control
parameter and xi is the input) by using a sine function as a nonlinear transform and applying
it to the outputs of 1D chaotic maps.

The sine chaotification structure described by Equation 5.8 can significantly increase the
chaotic complexity of these maps.

xi+1 = sin(πF (p, xi)) (5.8)
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Figure 5.6: Sinus chaotification framework structure

Like in the case of the cosine chaotification framework, an extended version of the 2D

sine chaotification framework was proposed in [147] to enhance the chaotic complexity of
2D chaotic systems, because of the ability of 2D chaotic systems to reconcile the trade-off
between the implementation cost and chaotic performance.

xi+1 = N(xi) = sin(π(f(a, xi) + g(b, xi)) (5.9)

The model described by Equation 5.9 uses the sine transform as a chaotification framework
and applies it to each output of 2D chaotic systems, in addition to the combination operation,
which is used to linearly combine the outputs of the two seed maps, whereas the sine transform
performs a nonlinear transformation to the combination results, as shown in Figure 5.5.
Because sine transform is a bounded function for any input, this method can generate chaos
over a large parameter range. Here, the input xi is fed concurrently into f(a, xi) and g(b, xi)
in each iteration, and the outputs of f(a, xi) and g(b, xi) are subsequently subjected to the
sine transform. The seed maps may be any 1D chaotic maps that are already in existence.
The seed maps f(a, xi) and g(b, xi) may be configured by the user as identical or dissimilar
chaotic maps.

5.3 Proposed chaotification system

1D chaotic systems such as the logistic map (LM), sine map (SM), and Chebyshev system
(CH) are the most common low-dimensional chaotic map categories that are excellent for
practical applications, because they have a straightforward chaotic structure, are simple to
implement using hardware and software, and have good chaotic properties. However, they
also have drawbacks such as constrained chaotic behavior ranges, uneven output distributions,
and attack susceptibility.

Based on the related studies presented above, this section discusses the proposed chaoti-
fication method to address improving chaotic map properties with an evaluation of the chaos
performance of the newly obtained chaotic maps.
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We aim to exploit cascading, modular, sine and cosine chaotification scheme pros to design
a new chaotification scheme based on a new tangent nonlinear transform, able to enhance the
chaotic map properties and produce new systems. We choose the tangent function which is
a real-valued trigonometric function due to the fact that it is a periodic function, it has been
widely employed in many disciplines, including geometry, geodesy, and navigation, and is not
investigated and not exploited in previous researches. As a result, three chaotic maps are
designed; the enhanced tangent logistic map (T-LM), enhanced tangent sine map (T-SM),
and enhanced tangent Chebyshev system (T-CH), which are capable of generating highly
random sequences and might be used for cryptography applications. Second, based on the
two maps exhibiting better performance, we propose a new encryption algorithm in which the
T-LM system is used to scramble the image pixels, whereas T-CH is employed for diffusion.

In the first stage of our new chaotic system shown in Figure 5.7, the reciprocal function
of the tangent (cotangent) function is applied as a nonlinear transform to the outputs of
the chaotic seed map f(r, xn), which is then fed into the quantization function G(k)’s input,
where the K range has been experimentally confirmed by bifurcation and LE(k = 8 in this
study). The modular chaotification step is then applied to the output of G(k), where " mod "
denotes the modular operation, and is used to ensure that the generated chaotic sequence
is contained within the [0, 1] range. The seed map f(r, xn) may be any 1-D chaotic system
with control parameter r that currently exists. The new chaotic system is described using
Equation 5.10.

Xn+1 = T (r, k, Xn) = tan−1(f(r, Xn))G(k) mod 1 (5.10)

Where G(k) = 2k, 8 ≤ G(k) ≤ 16

Figure 5.7: Proposed tangent chaotification system structure

Equation 5.10 is used to illustrate the enhanced tangent logistic map (T-LM), enhanced
tangent sine map (T-SM), and enhanced tangent Chebyshev system (T-CH) presented in
Table 5.1.
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Table 5.1: Standard and proposed enhanced chaotic maps

Chaotic map Name Iteration function Parameter

Standard Logistic map LM Xn+1 = rXn(1 − Xn) r ∈ [0, 4], Xn ∈ [0, 1]

Enhanced Tangent
logistic map T-LM Xn+1 = tan−1(rXn(1 − Xn))28 mod 1 r ∈ [0, 4], Xn ∈ [0, 1]

Standard Sine map SM Xn+1 = r sin(πXn) r ∈ [0, 4], Xn ∈ [0, 1]

Enhanced Tangent
Sine map T-SM Xn+1 = tan−1(r sin(πXn))28 mod 1 r ∈ [0, 4], Xn ∈ [0, 1]

Standard Chebyshev
system CH Xn+1 = cos(r arccos Xn) r > 0, Xn ∈ (−1, 1)

Enhanced Tangent
Chebyshev system T-CH Xn+1 = tan−1(cos(r arccos Xn))28 mod 1 r > 0, Xn ∈ (−1, 1)

5.4 Behavior analyses of the proposed chaotic systems

To demonstrate the excellent performance of the proposed chaos system, we present and
analyze the chaotic behavior through several chaos tests.

5.4.1 Bifurcation diagram

In first, the relationship between the control parameter r and the chaotic behavior of the
standard logistic, sine, Chebyshev system and their enhanced maps is represented by the
bifurcation diagrams depicted in Figure 5.8, which provide details of the system dynamics,
as follows:

The only range in which the logistic, sine maps and Chebyshev system may exhibit chaotic
behavior is [3, 4]. However, even within this range, several characteristics prevent these maps
from exhibiting chaotic behavior. The blank zone in their bifurcation diagrams provides
evidence of this. Second, the data range of chaotic sequences is less than [0, 1], indicating a
nonuniform distribution in that range. The bifurcation diagrams of the enhanced T − LM ,
T − SM and T − CH. Within the range of [0, 4] display uniform distributions.
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(a)                                                                                                                                         (b)  

(c)                                                                                                                                           (d)  

(e)                                                                                                                                        (f)  

Figure 5.8: 1D/3D Bifurcation diagram plot visualization: (a) Logistic map;(b) Enhanced T-LM;(c) Sine map; (d) Enhanced
T-SM; (e) Chebyshev system; (f) Enhanced T-CH84
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5.4.2 Lyapunov Exponent

Second, according to Figure 5.9, the LE of the three enhanced maps with their seed maps
were estimated using the system parameters (r, X0) = (3.99, 0.1). It is clear that the T −LM ,
T −SM and T −CH systems obtain positive LEs in every parameter setting, while their seed
maps have positive LEs in only a few parameters (the LE of the standard logistic and sine
mapping is positive when r > 3.5, and when r > 1 for the Chebyshev system). This indicates
that our proposed model can generate new chaotic maps that have wider chaotic ranges with
more complex chaotic behaviors than their seed maps. The LE of the enhanced maps and
their seeds may also be computed for a sample of points near the attractor to obtain an
average LE. Table 5.2 lists the average LE computed for the standard and enhanced chaotic
maps for two values of the parameter r. The numerical results agree quite well with the
Definition 2.2.1.

(a) (b) (c)

Figure 5.9: Lyapunov exponent:(a) LM and T-LM; (b) SM and T-SM; (c) CH and T-CH

Table 5.2: Average LE computed using the first derivative method

Maps r = 1.99 r = 3.99

LM -4.60486 0.640111
T-LM 0.0000935538 0.000128085
SM -4.3936 0.649876
T-SM 0.000165365 0.0000871103
CH -0.000130063 -0.0000927121
T-CH 7.62308 7.84133
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5.4.3 Time series

Figure 5.10 shows the time responses of the standard logistic map, sine map, and Chebyshev
system with their enhanced versions of iterations for parameter values: r = 3.99, X0 = 0.1.
The results reveal that the conventional logistic map iterated fewer than 350 times before
entering a period (the same situation for the sine map and Chebyshev system, which iterated
less than 200 times). The sequence formed by the improved chaotic map did not enter a
cycle despite more than 5000 iterations. These results indicated that the improved approach
successfully delayed the entry of the map into the cycle which proves its nonperiodicity.

(a) (b) (c)

Figure 5.10: Time series plot: (a) T-LM and LM;(b) T-SM and SM; (c) T-CH and CH

5.4.4 Phase diagram

The phase diagram of the discrete dynamical system xn+1 = f(xn) defines the discrete sets
generated by successive iterations of xn and xn+1. Figure 5.11 shows the mapping diagrams
of the standard logistic map, sine map, Chebyshev system, and their enhanced maps. The
phase diagrams of the original logistic, sine, and Chebyshev maps are a fixed upside-down U

with an extremely low density that does not traverse the entire diagram space, whereas those
of the improved maps (T −LM , T −SM , and T −CH) have no fixed shape, are much denser
than the original, and present a full mapping. The full mapping of the proposed systems
corresponds to a stronger chaotic intensity and larger iteration interval. In conclusion, the
improved maps exhibit better chaotic performance than the original maps.
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(a) (b) (c)

Figure 5.11: Phase diagram (Mapping diagram) for growth rate parameter values r = 3.99
and initial condition X0 = 0.1 of:(a) Standard logistic map and T-LM;(b) Standard sine map
and T − SM ; (c) Standard Chebyshev system and T-CH

5.4.5 Sensitivity to initial conditions

We produced two sequences using the proposed enhanced chaotic maps with the same pa-
rameters alongside initial values that differ by 10−6 to demonstrate their sensitivity. Focusing
on the first 100 numbers, Figure 5.12 shows the output sequences, in which the first iter-
ations are slightly similar, but the values of the output sequences significantly differ after
approximately 20 iterations, proving the high sensitivity to the initial value of the proposed
enhanced T-LM, T-SM and T-CH.

(a) (b) (c)

Figure 5.12: Sensitive dependence of initial conditions for growth rate parameter values
r = 3.99 and variable initial condition X0 = 0.1 of: (a) T − LM ; (b) T − SM ; (c) T − CH
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Table 5.3: Results of the NIST test of randomness of the enhanced generated sequences

T-LM T-SM T-CH

Test Pvalue Conclusion Pvalue Conclusion Pvalue Conclusion

Frequency Test (Monobit) 0.527089 Pass 0.849515 Pass 0.100096 Pass
Frequency Test within a Block 0.999644 Pass 0.045894 Pass 0.690441 Pass

Run Test 0.1108407 Pass 0.128740 Pass 0.817046 Pass
Longest Run of Ones in a Block 0.3394374 Pass 0.146969 Pass 0.745521 Pass

Binary Matrix Rank Test -1.0 Fail -1.0 Fail -1.0 Fail
Discrete Fourier Transform (Spectral) Test 0.383988 Pass 0.383988 Pass 0.561657 Pass
Non-Overlapping Template Matching Test 0.850728 Pass 0.850728 Pass 0.987271 Pass

Overlapping Template Matching Test nan Fail nan Fail nan Fail
Maurer’s Universal Statistical test -1.0 Fail -1.0 Fail -1.0 Fail

Linear Complexity Test 0.029634 Pass 0.919688 Pass 0.985608 Pass
Serial test 0.938168 Pass 0.778440 Pass 0.900023 Pass

0.996920 Pass 0.570425 Pass 0.926785 Pass
Approximate Entropy Test 0.994387 Pass 0.999706 Pass 0.999174 Pass

Cummulative Sums (Forward) Test 0.941731 Pass 0.508615 Pass 0.200192 Pass
Cummulative Sums (Reverse) Test 0.823132 Pass 0.676714 Pass 0.133271 Pass

Random Excursions Test 0.422512 Pass 0.656029 Pass 0.720532 Pass
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5.4.6 NIST statistical test

Table 5.3 lists the NIST SP-800 test results obtained after processing 1000 binary sequences.
Each value in the Pvalue column represents the results of the uniformity testing of the Pvalue

computed for a given test. In conclusion, the sequence generated by the enhanced T − LM ,
T − SM and T − CH are accepted as random because the majority of Pvalue for each of
the 15 tests were ≥ 0.01, indicating that our proposed system is indeed a highly effective
implementation of a random number generator.

5.4.7 01- test

Table 5.4: 0-1 test results: k values obtained for the r values mentioned

Maps r = 0.99 r = 1.99 r = 2.99 r = 3.99

LM -0.460023996545 -0.154134859472 -0.166985740582 0.996279819756
T-LM 0.999268180600 0.999247856285 0.999131880504 0.997458644034
SM -0.171583740804 -0.127622977572 0.998154669423 0.999438040534
T-SM 0.995856794258 0.998731524058 0.996521827130 0.996790949789
CH -0.112821072653 0.998385881096 0.995745765214 0.999097442215
T-CH 0.997264092579 0.998744686251 0.996919721000 0.993903370223

In the first step of the 0-1 test, and for c ∈ (0, π), we compute and plot the translation
variables p and q. Typical plots of p and q for regular and chaotic dynamics are shown
in Figure 5.13. It rigorously shows that p and q are bounded when r = 1.99 in the case
of standard logistic and sine maps, indicating that the underlying dynamics are regular
(periodic or quasiperiodic). When r approaches 3.99, p and q behave asymptotically similarly
to Brownian motion for all maps.

However, even at r = 1.99 of their enhanced version, the p − q graph exhibits Brownian
motion in Figure 5.13(b),(d) and (f), symbolizing chaotic behavior in all ranges of r ∈ [0 − 4]
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Figure 5.13: Plot of p versus q for r = 1.99 and r = 3.99 of :(a) LM; (b) T-LM ;(c) SM; (d) T-SM; (e) CH; (f) T-CH
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Then, we computed the asymptotic growth rate K of the mean-square displacement
tabulated in Table 5.4. As presented in Figure 5.14, the asymptotic growth rate K of the
proposed enhanced maps approaches 1 for all ranges of r, proving the existence of chaos.

Finally, after computing M(n), the mean square displacement scales linearly with time
in the case of the enhanced chaotic maps (Figure 5.15). This indicates that the motion is
chaotic, while the oscillatory plot of the standard logistic and sine maps when r = 1.99 is an
indication of regularity.
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Figure 5.14: Plot of K versus c for r = 1.99 and r = 3.99 of :(a) LM; (b) T-LM ;(c) SM; (d) T-SM; (e) CH; (f) T-CH
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Figure 5.15: Mean square displacement for r = 1.99 and r = 3.99 of :(a) LM; (b) T-LM ;(c) SM; (d) T-SM; (e) CH; (f) T-CH
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5.5 Application to image cryptography

Selecting the most accurate chaotic map for permutation and diffusion is a very essential stage
for designing a cryptosystem. Through the results we previously obtained and demonstrated,
it seems that the enhanced T −CH is an excellent system that provides the broadest chaotic
range (proved through BD) with strong chaotic behavior in all ranges of r ∈ [0 − 4] (proved
through LE and 0-1 test), which makes it a suitable choice for diffusion phase. On the other
hand, T − LM and T-SM showed almost the same behavior for most tests; however, based
on the NIST test, T − LM showed decent performance in terms of randomization; thus, it
was selected for permutation.

In this section, we propose a novel image cryptosystem where the enhanced T −LM is used
to permute the plain image, and the enhanced T −CH system is used for the diffusion of the
permuted image. P represents the plain image, E represents the cipher image, X represents
the chaotic variables, C represents the permuted vector, K represents the diffusion key, and
G represents the secret matrix.

First, we iterate the T − LM M × N times to obtain a vector of sequences XT −LM with
M × N chaotic variables:

XT −LM = {XT −LM(1), XT −LM(2), .., XT −LM(M × N)} (5.11)

Then, as presented in Figure 5.16, we generate the permutation vector V by sorting XT −LM

in ascending order:
V = {V (1), V (2), ..., V (M × N)} (5.12)

Figure 5.16: Permutation vector generation block diagram

Second, we load the image P of size M × N to be encrypted and convert it into a vector
of pixel values by applying a row major alignment:

P = {P (1), P (2), .., P (M × N)} (5.13)
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We then apply permutation operations on the image pixels P with the permutation vector
V :

C(i) = P (V (i)) (5.14)

Figure 5.17 illustrates the operation.

Figure 5.17: Image pixel’s permutation block diagram

In the diffusion step, we iterate first the enhanced T-CH system for M × N times, and
then obtaining a second sequence X(T −CH) with M × N chaotic variables:

XT −CH = {XT −CH(1), XT −CH(2), ..., XT −CH(M × N)} (5.15)

Then, we quantize then rounding XT −CH to the nearest decimal:

K1(i) = round(XT −CH(i) × 255) (5.16)

In the second step, we convert the K1(i) vector into binary. Then, we circshift the elements
of the binary vector in a circular manner along one dimension R(i) = Circleshift(K1(i), 1)
as illustrated in Figure 5.16. We Convert R(i) to a decimal vector K2(i).

K1(i) ⊕ K2(i) is performed to obtain secret matrix G sized M × N , where ⊕ represents
the XOR operation of the corresponding elements.

Figure 5.18: Generation of the secret key for diffusion

In the encryption step, the permutated vector P (V (i)) is XORed with the secret key
vector and then reshaped to a matrix of M × N size (through a row major order) which
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represents the encrypted image E ( Figure 5.17). The decryption process is roughly the
reverse of the encryption process.

Figure 5.19: Final step of encryption processes

5.6 Tests and evaluation of the proposed cryptosystem

Simulation experiments of the proposed cryptography technique were performed using a
computer machine with Windows 10, Intel(R) Core (TM) i3-4030U CPU @1.90 GHz, and
4 GB RAM. The compilation software application employed is MATLAB R2023a. In this
section, the proposed cryptography method is analyzed against multiple metrics to test its
security and efficiency.

5.6.1 Visual analysis

One of the most significant metrics used to analyze the resilience and effectiveness of cryp-
tography algorithms is visual encryption/decryption analysis. Figure 5.20(c) and Figure
5.20(e) demonstrate the ciphering/deciphering findings of the proposed encryption algorithm
on standard Lena, Baboon, Baot, and Pepper. The proposed cryptography algorithm suc-
ceed in hiding images features, and can effectively and efficiently recover and decipher the
images.

The histogram plot is used also to demonstrate the pixel strength distribution and rates of
an image. According to Figure 5.20, the histogram distribution of the plain images fluctuates
substantially from that of the ciphered images, concealing the tangible form of the examined
images, showing that there are no barely identifiable arrangements/shapes in the consistently
encrypted images. Additionally, the histogram distributions of the deciphered images are
analogous to those of the plain images. Thus, with enhanced quality, our cryptography
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algorithm can effectively and profitably obtain the histogram distribution of the plain images.
Consequently, the histogram distribution results validate the trustworthiness of the proposed
cryptography algorithm.

To verify our proposed cryptosystem against the sensitivity of the key, a key is taken and
an image is encrypted (Baboon image as example); then, the value of the key is changed, and
an image is encrypted again. The same analysis is also performed in the decryption process.
The output images were compared to determine whether there was any match. To perform
this analysis, the first key set (referred as K1) is:

rT −LM = 3.699, X0 = 0.1

rT −CH = 3.699, X0 = 0.1
(5.17)

K1 is used to encrypt the original image (Figure 5.21(a)). The encrypted image is E1 (Figure
5.21(b)). To create a different key set designated as K2, we apply a small change to r0 =
3.699000000000001 while maintaining X0 unchanged. K2 is used to encrypt the original
image in Figure 5.21(a) and obtain another encrypted image (E2) in Figure 5.21(c).

The simulation results and the pixel-to-pixel difference |E1−E2| clarify that the encrypted
image changes significantly as a consequence of tiny changes in the original image and key.

Figure 5.21: Key sensitivity analysis: (a) Original image; (b) Encrypted image E1 using K1;
(c) Encrypted image E2 using K2; (d)|E1-E2|

Figure 5.22(a) and (b) represent the decryption results. Only the correct key (K1) allows
for full reconstruction of the plain image. However, even a slight modification in the security
key (K2) would lead to image decryption failure (Figure 5.22(b)). Hence, the proposed
technique has great key sensitivity in both encryption and decryption procedures.
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Figure 5.20: Visual result with histogram of: (a) Original images; (b) Histograms of original
images; (c) Encrypted images; (d) Histogram of encrypted images; (e) Decrypted images; (f)
Histograms of decrypted images

98



Chapter 5: Design of a new tangent chaotification model for improving chaotic maps
behavior with application to image encryption

Figure 5.22: Key sensitivity analysis: (a) Decrypted with correct key (K1); (b) Decrypted
with wrong key (K2)

5.6.2 Diffusion and quality analysis

The IE values of the original, encrypted and decrypted images using the proposed cryptosys-
tem are listed in Table 5.5 and remain tightly close to 8. As a result, it is exceedingly difficult
to extract visual information from ciphered images.

Table 5.5: Entropy score results

Entropy Size Original Encrypted Decrypted

Baboon (512 × 512) 7.358336 7.999130 7.358336
Peppers (512 × 512) 7.593654 7.999407 7.593654
Boat (512 × 512) 7.191370 7.999306 7.191370
Lena (256 × 256) 7.568278 7.997069 7.568278
Lena (512 × 512) 7.445567 7.999296 7.445567
House (256 × 256) 6.496137 7.996924 6.496137

The correlation distributions for Lena, Baboon, Boat, and Peppers are shown in Figure
5.23. The neighboring pixels of the original images clearly show a significant correlation,
whereas there is no association between the neighboring pixels of the ciphered image. The
correlation coefficients between neighboring pixels of the other images were then calculated in
the horizontal, vertical, and diagonal directions. It is evident that the correlation coefficients
of the encrypted images listed in Table 5.6 are very low and almost zero in all directions.
This demonstrates the effectiveness of our system against statistical attacks.
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(a) (b)

(c) (d)

Figure 5.23: Plot of 2048 pairs of original (left) and encrypted (right) images of :(a) Lena image; (b)Baboon image; (c) Boat
image;(d) Peppers image
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Table 5.6: Horizontal, vertical, and diagonal corr values of 2048 pairs of original, encrypted
and decrypted images

Images H V D

Baboon (512 × 512)
Plain image 0.877458 0.752179 0.688948

Encrypted image 0.006586 0.003231 0.014287
Decrypted image 0.857260 0.767713 0.688945

Peppers(512 × 512)
Plain image 0.978434 0.978598 0.969805

Encrypted image -0.01114 -0.015605 -0.006433
Decrypted image 0.974132 0.978476 0.959845

Boat (512 × 512)
Plain image 0.944906 0.969785 0.916866

Encrypted image 0.006929 0.004725 0.005771
Decrypted image 0.935935 0.972577 0.922063

Lena (256 × 256)
Plain image 0.941732 0.961876 0.921423

Encrypted image -0.009373 -0.000614 0.003381
Decrypted image 0.935019 0.974460 0.914812

Lena (512 × 512) Plain image 0.972887 0.988436 0.961178
Encrypted image 0.041911 -0.019721 0.003213
Decrypted image 0.978204 0.979625 0.962220

House (256 × 256) Plain image 0.980126 0.954224 0.940687
Encrypted image 0.041911 -0.019721 0.003213
Decrypted image 0.977627 0.945177 0.941592

5.6.3 Avalanche effect analysis

The rate of NPCR is shown to have a maximum predicted value of 99.61% when two random
images are taken into account, while the UACI’s maximum anticipated value is about 33%.
Table 5.8 shows that the values for the NPCR are close to the aforementioned predicted
values, obtained UACI values are nearly equal to the defined critical values. Hence, the
proposed encryption technique guarantees the necessary resistance to any kind of differential
cryptanalysis.

Second, the key space used by the proposed method represents the sum of the keys
utilized as part of the key-generator system (see Table 5.7 ). The total key-space is ≈
103 × 1015 × 1015 × 1015 × 1015 ≈ 1063 which is roughly superior 2100. Thus, the suggested
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approach has a large key space to fend against brute force attacks.

Table 5.7: Initial conditions and parameters that form the secret key

Keys Symbol Definition

Key 1 X0T − LM Initial condition of the enhanced T − LM map
Key 2 X0T − CH Initial condition of the enhanced T − CH map
Key 3 rT −LM Bifurcation parameter of the enhanced T − LM map
Key 4 rT −CH Bifurcation parameter of the enhanced T − CH map
Key 5 n Iteration number (depend on the input image size)

In general, as shown in Table 5.8, we compare the proposed cryptosystem in terms of
various performance metrics with recent literature in Ref [148], [149], [150] [151], and [152].
Our algorithm achieves the expected average of entropy, PSNR, NPCR and UACI since they
fit within the range of comparable research, with satisfactory comparable computational
execution time and can resist common attacks.
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Table 5.8: Performance comparison of various encryption schemes

Image Test Proposed Ref [148] Ref [149] Ref [150] Ref [151] Ref [152]

Lena

Entropy 7.999296 7.9989 7.9994 7.999355 7.9994 7.9994
PSNR 44.478900 45.621 - 9.1370 - -

NPCR(%) 99.601364 99.587 99.6124 - 99.6109 99.6136
UACI(%) 28.563031 30.701 33.4474 - 33.4779 33.4651

Elapsed time (s) 0.483554 1.5 - - - -

Baboon

Entropy 7.999130 7.9989 7.9992 7.999250 - 7.9994
PSNR 45.080905 44.636 - 8.8478 - -

NPCR(%) 99.588012 99.616 99.5983 - 99.6141 99.6071
UACI(%) 27.834538 27.886 33.4797 - 33.3760 33.4226

Elapsed time (s) 0.482553 1.5069 - - - -

Boat

Entropy 7.999306 7.9977 7.9993 - - -
PSNR 45.080905 44.636 - 8.8478 - -

NPCR(%) 99.600982 99.601 - - - -
UACI(%) 28.563031 28.482 - - - -

Elapsed time (s) 0.489511 0.56989 - - - -

Pepper

Entropy 7.999407 7.9989 7.9994 7.999301 - -
PSNR 43.723919 45.716 - 8.8439 - -

NPCR(%) 99.573898 99.601 99.6090 - 99.6170 -
UACI(%) 29.530711 31.036 33.4744 - 33.4168 -

Elapsed time (s) 0.479660 1.5813 - - - -
Key space 2210 2798 2212 - 2199 2425

5.7 Conclusion

To produce highly independent and uniformly distributed random chaotic sequences, this
chapter introduced a tangent nonlinear transformation technique for enhancing and resilient
chaotification in discrete-time chaotic systems. To demonstrate the excellent performance of
the proposed chaotic system, the chaotic characteristics of the proposed T-LM, T-SM, and
T-CH maps, along with wide-ranging dynamical tests, including the bifurcation diagram,
trajectory analysis, Lyapunov exponent, phase diagram, NIST, and 01 test, were used to
demonstrate the unpredictability and ergodicity of the three enhanced chaotic maps. Addi-
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tionally, compared with their seed maps, the proposed maps demonstrate a broader chaotic
range, more complicated behavior, and a more competitive complexity order. Following the
validation of its performance as an efficient chaotic system, the proposed enhanced T-LM
and T-CH maps were employed in permutation and diffusion to design a new encryption
scheme that facilitates the secure exchange of digital images via networks.
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Powerful cryptographic systems require a qualified random number generator. Most of these
random numbers are generated by chaotic generators that use chaotic maps. Traditional
one-dimensional maps are vulnerable to attacks if they are not properly used. A hybrid
chaos map can solve such issues. Thus, cryptographers must design schemes that have a
sufficiently large key space by employing different 1D chaotic map output sequences. In
addition, encryption algorithms should strike a balance between security and computational
efficiency.

In view of this topic, we have proposed the following contributions:
In the first contribution, new key-stream generators based on the feedback shift register

and chaos named LSS-LFSR-PRNG, LM-NLFSR-PRNG, and LSS-NLFSR-PRNG were pre-
sented and successfully applied and tested for image encryption after passing fifteen rigorous
NIST tests. These generators provide high cryptographic performance, fulfill statistical se-
curity requirements (high entropy, uniform distribution, and near-zero correlation between
ciphered images), and offer various intriguing characteristics, such as sufficient key space
reaches even 2224.

In the second contribution, three chaos-based image encryption algorithms (1D LM-based
cryptosystem, 1D LM-Chebyshev-based cryptosystem, and the 3D ILM-based cryptosystem)
were developed using several confusion-diffusion architectures, that provide robust security
while minimizing computational overhead. By discussing the impact of choosing the right
chaotic dimension in enhancing the security of the encryption algorithm, these cryptosystems
were tested and compared across key spaces, resistivity to several attacks, execution times,
and amounts of memory usage. Based on the good achieved results of entropy, correlation,
the NPCR, and UACI, we demonstrated that high -dimensional chaotic maps are capable
of generating unpredictable keystreams, that are highly suitable for encryption and may
enhance the security and efficiency of the cryptosystem; however, these maps fail to maintain
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computational complexity in terms of time execution and memory usage in comparison to
simple 1D maps.

In the last contribution, we presented a tangent nonlinear transformation method for
improving chaotification in discrete-time chaotic systems, with the aim of creating highly
independent and uniformly distributed random chaotic sequences. We have demonstrated
the excellent performance in terms of nonlinearity, unpredictability, and nonperiodicity of the
proposed chaotic system by means of several tests, such as a bifurcation diagram, trajectory
analysis, Lyapunov exponent, phase diagram, NIST, and 01 test. Additionally, compared
with their seed maps, the proposed maps (T-LM, T-SM, and T-CH) demonstrate a broader
chaotic range that extends over [0-4], and more complicated behavior. After validating its
performance as an efficient chaotic system, the proposed enhanced maps were employed in
permutation and diffusion to design a new encryption scheme that facilitates the secure
exchange of digital images via networks.
Challenges

Despite significant advancements in image encryption techniques, several challenges re-
main in the field to provide a foundation for future research. These challenges constitute
obstacles in reaching robust, secure, and efficient image encryption solutions. First, chaotic
maps can achieve low performance if the input parameters are not chosen wisely. This
problem should be solved by using metaheuristic techniques in image encryption to obtain
optimized initial conditions.

Second, some tested schemes based on newly designed chaotic maps have good statistical
results in terms of randomness, but fail when ciphertext and plaintext attacks are conducted.
Thus, the complete range of the chaotic and nonchaotic regions of the proposed schemes must
be presented, which is crucial for creating a highly secure nonlinear key for an encryption
algorithm that renders it impervious to several types of assaults.

Third, computational complexity and extensive hardware requirements are still open areas
of research in this field, and the majority of designed chaotic systems still suffer from digital
implementation, which makes real-world applications impractical.

Fourth, different image formats are available, such as JPEG, PNG, BMP, and TIFF, each
with its own characteristics. It is difficult to create image encryption algorithms that support
various image formats while maintaining their security features. Encryption methods must
possess the ability to adjust to various image structures and guarantee strong security for a
variety of image file formats.
Future directions
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Future research should focus on a wider range of topics. First, we can explore the integra-
tion of image encryption with other emerging technologies; for example, combining chaotic
systems with DNA coding, S-boxes, machine learning models, deep learning networks and
complex mathematical models, to solve the problem of image security and open new avenues
for research into practical application. However, the effective integration of these technologies
requires further study.

Chaotic maps may lead to erroneous findings since their encryption is very sensitive to the
initial conditions. Thus, we aim to explore metaheuristic techniques to provide a solution for
wisely selecting the input parameters to obtain optimized results. In addition, as multimedia
data, including images, audio, and video data, become more prevalent, we aim to develop
an encryption algorithm that handles multiple types of data simultaneously. This method
can synchronize and preserve the integrity of the whole multimedia stream while encrypting
multimedia material effectively and securely.

Additionally, hardware implementation of the designed algorithm is envisaged across
FPGA, and its ability to generate true random numbers for encryption purposes can overcome
issues related to security, key management, robustness, and scalability.

Finally, to keep up with the rapid development of quantum cryptography, which has
gained significant attention in recent years due to its potential for providing ultimate security
assurance, we may explore quantum-resistant images by leveraging quantum principles such
as entanglement and superposition to develop quantum-safe encryption algorithms.
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