Abstract

This article reports on research into the use of solid alkalis (Na ₂CO₃ and K₂CO₃) as activators to obtain hybrid cement (cement whose hydration generates a mix of C-A-S-H and (N,C)-A-S-H gels) from a blend of 20% clinker + 40% blast furnace slag + 40% metakaolin. More specifically, the study aimed to determine the effect of activator dosage (5 and 8 wt%) and type of alkaline cation (Na⁺ or K⁺) on the 2- and 28-d mechanical strength of the end materials. The findings showed that the highest mechanical strength values were obtained with 5% Na₂CO₃. According to the XRD, NMR, and SEM/EDX analyses conducted on the reaction products, the alkalinity and solubilized chemical species generated by adding 5% Na₂CO₃ to the system yielded a mix of (N,C)-A-S-H and C-A-S-H cementitious gels as the main reaction products. The secondary reaction products included metastable (3CaO·Al₂O₃·CaCO₃·11H ₂Otype) carboaluminates that evolved into the calcite or vaterite forms of calcium carbonate. When used K₂CO₃was (instead of $Na_2CO_3),$ а (3CaO·Al₂O ₃·0.5Ca(OH)₂·0.5CaCO₃· 11H₂O-type) hemicarboaluminate also formed. The study also revealed that Na⁺ favors coagulation/precipitation more effectively than K⁺, generating gels with a wider range of Qⁿ species. © 2013 The American Ceramic Society