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Abstract: We study the two-stage stochastic infinity norm optimization problem with
recourse based on the Jordan algebra. First, we explore and develop the Jordan algebra

structure of the infinity norm cone, and utilize it to compute the derivatives of the
barrier recourse functions. Then, we prove that the barrier recourse functions and the

composite barrier functions for this optimization problem are self-concordant families
with reference to barrier parameters. These findings are used to develop interior-point
algorithms based on primal decomposition for this class of stochastic programming

problems. Our complexity results for the short- and long-step algorithms show that
the dominant complexity terms are linear in the rank of the underlying cone. Despite
the asymmetry of the infinity norm cone, we also show that the obtained complexity

results match (in terms of rank) the best known results in the literature for other
well-studied stochastic symmetric cone programs. Finally, we demonstrate the efficiency
of the proposed algorithm by presenting some numerical experiments on both stochastic

uniform facility location problems and randomly-generated problems.

Keywords: Jordan algebras, Infinity norm optimization, Stochastic programming,
Interior-point methods, Polynomial-time complexity
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1. Introduction

The core aim of this paper is to study, based on a Jordan algebraic treatment, the

two-stage stochastic infinity norm programming (SINP for short) problem with K

scenarios:

∗ Corresponding Author
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min cTx +
K∑
k=1

ρ̄(k)(x) where ρ̄(k)(x) , min d(k)Ty(k)

s.t. Ax = b, s.t. W (k)y(k) = q(k) + T (k)x, k = 1, 2, . . . ,K,

x ∈ In; y(k) ∈ Im+ , k = 1, 2, . . . ,K.

(1)

Here, In is the nth-dimensional infinity norm cone of the first-stage decision variable

x ∈ Rn, and Im+ is the mth-dimensional infinity norm cone of the second-stage decision

variable y(k) ∈ Rm for k = 1, 2, . . . ,K. The function ρ̄(k)(x) is called the recourse

function. We also assumed that A,W (k) and d(k), k = 1, 2, . . . ,K, have already

absorbed the scenario probabilities.
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Figure 1: Graphs of the infinity norm cone (in light red) and the second-order cone

(in light blue) in R3. The picture to the left shows the graphs of two-dimensional unit

spheres in infinity and 2-norms.

Many authors studied deterministic conic optimization problems including those over

the infinity norm cone (see, for example, [12, 14, 15, 17–19, 22, 23]). Despite the

need for studying the optimization problems in stochastic environments, there are

no algorithmic methods to specifically solve infinity norm optimization problems in

the stochastic setting. Taking this literature gap into account, we study in this paper

two-stage stochastic optimization problems over the infinity norm cone (also called

the infinity-order cone), which is defined as

In ,
{
x ,

[
x0

x̄

]
∈ R× Rn−1 : x0 ≥ ‖x̄‖∞

}
, where ‖x̄‖∞ , max

1≤i≤n−1
|xi|,

and x̄ , (x1, x2, . . . , xn−1)T ∈ Rn−1. The dual cone of In is the nth-dimensional
first-order cone, which is defined as

Cn1 ,
{
x ,

[
x0

x̄

]
∈ R× Rn−1 : x0 ≥ ‖x̄‖1

}
, where ‖x‖1 =

n−1∑
i=1

|xi|.
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The cone Cn1 is a special case of the p-th order cone of order n, which is defined as

Cnp ,
{
x ,

[
x0

x̄

]
∈ R× Rn−1 : x0 ≥ ‖x̄‖p

}
, p ≥ 1, where ‖x̄‖p ,

(
n−1∑
i=1

|xi|p
)1/p

.

Note that when p = 2, Cnp reduces to the well-studied second-order cone Cn2 . Like

any p-th order cone Cnp , the infinity norm cone In is solid (i.e., its interior, int(In), is

nonempty), pointed (i.e., In ∩ −In = {0}), closed convex cone in Rn (see Figure 1).

Unlike the second-order cone Cn2 , the infinity norm cone is non-self-dual and hence is

asymmetric.

Benders’ decomposition has long been employed in the development of solution

methodologies for both two-stage stochastic linear and nonlinear programs [1–3, 5, 6, 8–

10, 13, 16, 20, 24, 25]. The L-shaped method, for example, uses this strategy to

construct cuts by taking into account subgradients of the recourse function. Later on

in the last two decades, decomposition interior-point algorithms have been developed to

find solution methodologies for different classes of two-stage stochastic conic programs.

These algorithms can be summarized as follows. Zhao [24] derived logarithmic barrier

interior-point methods for solving two-satge stochastic linear programming using

Benders’ decomposition. Alzalg [1] (see also [2, 5, 9]) derived decomposition-based

interior-point methods for two-stage stochastic second-order cone programming by

generalizing the work of Zhao [24]. Mehrotra and Özevin [20] (see also Ariyawansa

and Zhu [13]) generalized the work of Zhao [24] for two-stage stochastic semidefinite

programming. The work of Alzalg and Ariyawansa [8] generalizes the results in

[1, 20, 24] to derive logarithmic barrier decomposition-based interior-point algorithms

for stochastic programming on all symmetric cones. Finally, Chen and Mehrotra [16]

(see also Zhao [25]) derived a prototype interior-point algorithm for stochastic convex

programming.

To analyze the proposed algorithm, we develop a novel Jordan algebra associated

with the undelying cone and discuss its characteristics in great detail. We exploit

this algebra to derive a logarithmic barrier primal interior-point algorithm for the

two-stage stochastic infinity norm programming (SINP) problem via a utilization of

the work of Chen and Mehrotra [16] for stochastic convex programming. While the

explicit expressions for the derivatives of the barrier function in [16] are not available,

the merit of this work is sufficiently evinced by explicitly computing such derivatives.

These derivatives are used to prove the self-concordance properties (see Nesterov and

Nemirovskii [21]) of the barrier recourse function that guarantee nice performance

of Newton’s method used for the proposed algorithms. These findings are used to

develop short- and long-step interior-point decomposition algorithms for the two-stage

SINP problem.

We will see that, for a two-stage stochastic program with K number of realizations

over infinity norm cones with ranks O(n+Km), the short-step algorithm restores the

proximity condition in one step, while the long-step algorithm may perform several

inner iterations. Let ε be the desired accuracy of the final solution, we will also see that

we need at most O((n+Km)1/2ln(µ0/ε)) outer iterations in the short-step algorithm
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to follow the central path from a starting value of the barrier parameter µ0 to the

terminating value ε, and we need at most O((n+Km) ln(µ0/ε)) outer iterations in the

long-step algorithm for this recentering. We will see that the above complexity results

agree in terms of rank the best known results in the literature for two-stage stochastic

linear programming in [24], two-stage stochastic second-order cone programming in

[1], and two-stage stochastic semidefinite programming in [20]. This agreement is in

spite of the fact that the infinity norm cone is asymmetric.

The following is how the paper is structured. In Section 2, we study and establish

algebraic structure of the infinity norm cone. In Section 3, we introduce the barrier

function associated with the infinity norm cone, compute its derivatives, and prove

its self-concordance complexity. Section 4 is devoted to explicitly computing the

derivatives of the composite barrier function and establishing its self-concordance

analytical properties. In Section 5, we state path-following interior-point algorithms

for solving our problem and present their complexity results. We present numerical

experiments to show the efficiency of the proposed algorithms in Section 6. Sections

7 draws some closing conclusions. The proofs of the complexity results are given in

Appendix A.

2. The algebraic structure of the cone

In this section, we dive into the algebraic structure of the infinity norm cone. We will

see that the algebra that we construct and associate with this cone is a Jordan algebra.

To review some preliminaries of Jordan algebras, see [4, Section 2] and [11, Appendix

2].
Let x and y are vectors in Rn, we write

[
x

y

]
= (xT,yT)T = (x;y),

where “,” is used to adjoin vectors and matrices in a row, and “;” is used to adjoin

them in a column. For each vector x ∈ Rn indexed from 0, we denote x̄ the sub-vector

comprising entries 1 through n− 1; therefore x = (x0; x̄) ∈ R× Rn−1.

By En we mean the nth-dimensional real vector space R×Rn−1. We use In to denote

the identity matrix of order n and I
〈i〉
n to denote a matrix of order n such that all its

entries are zeros except the (i, i)th-entry which is a one. By en , (1; 0) we mean the

identity vector of En, by u
〈i〉
n we mean the vector in En such that all its entries are

zeros except the ith-entry, which is a one for i = 1, 2, . . . , n− 1, by O we mean the

zero matrix of appropriate size, and by 0 we mean the zero vector of appropriate

dimension.

We introduce the following matrices in Rn×n:

Jn ,

[ 1
n−1

0T

0 In−1

]
, J
〈i〉
n ,

[
1

n−1
0T

0 I
〈i〉
n−1

]
, Rn ,

[
1 0T

0 −In−1

]
, R
〈i〉
n ,

[
1 0T

0 −I〈i〉n−1

]
, i = 1, 2, . . . , n−1.
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Note that In =
∑n−1
i=1 J

〈i〉
n and Rn = Jn

∑n−1
i=1 R

〈i〉
n .

For each x ∈ En, we associate the vectors x〈1〉, x〈2〉, . . . ,x〈n−1〉, where each vector
x〈i〉 ∈ En is defined as

x〈i〉 ,


x0

0
xi
0

 ←− the zero vector in Ri−1,
←− (i+ 1)th-entry,

←− the zero vector in Rn−i−1,

for i = 1, 2, . . . , n− 1. Note that each vector x ∈ En can be uniquely written as

x = Jn

n−1∑
i=1

x〈i〉 =

n−1∑
i=1

J
〈i〉
n x〈i〉.

The spectral decomposition of each vector x〈i〉 ∈ En is defined as

x〈i〉 = (x0 + xi)︸ ︷︷ ︸
λ+(x〈i〉)

(
1

2

)[
1

u
〈i〉
n−1

]
︸ ︷︷ ︸

c+(x〈i〉)

+ (x0 − xi)︸ ︷︷ ︸
λ−(x〈i〉)

(
1

2

)[
1

−u〈i〉n−1

]
︸ ︷︷ ︸

c−(x〈i〉)

.

We call λ∓(x〈i〉) and c∓(x〈i〉) the eigenvalues and eigenvectors of x〈i〉, respectively.
The trace and determinant of x〈i〉 are defined respectively as

trace
(
x〈i〉

)
, λ+

(
x〈i〉

)
+ λ−

(
x〈i〉

)
= 2x0, and det

(
x〈i〉

)
, λ+

(
x〈i〉

)
λ−
(
x〈i〉

)
= x2

0 − x2
i .

Note that any x ∈ En can be decomposed as

x =

[
x0

x̄

]
= Jn

n−1∑
i=1



λ+(x〈i〉)︷ ︸︸ ︷
(x0 + xi)

c+(x〈i〉)︷ ︸︸ ︷

(
1

2

)


1
0
...

0
1

0
...

0


+

λ−(x〈i〉)︷ ︸︸ ︷
(x0 − xi)

c−(x〈i〉)︷ ︸︸ ︷

(
1

2

)


1
0
...

0
−1

0
...

0





←− the (i+ 1)th-entry.

This leads us to define the spectral decomposition of each vector x ∈ En as

x = Jn

n−1∑
i=1

(
(x0 + xi)︸ ︷︷ ︸
λ+
i (x)

(
1

2

)[
1

u
〈i〉
n−1

]
︸ ︷︷ ︸

c+
i (x)

+ (x0 − xi)︸ ︷︷ ︸
λ−i (x)

(
1

2

)[
1

−u〈i〉n−1

]
︸ ︷︷ ︸

c−i (x)

)
.
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We call λ∓i (x) and c∓i (x) the eigenvalues and eigenvectors of x, respectively. Note

that λ∓i (x) = λ∓(x〈i〉) and that c∓i (x) = c∓(x〈i〉) for all i = 1, 2, . . . , n− 1. We also

call rk(In) , 2(n− 1) the rank of the cone In.

The determinant and trace of x are defined as

det(x) ,
n−1∏
i=1

λ∓i (x) =

n−1∏
i=1

det
(
x〈i〉

)
=

n−1∏
i=1

(
x2

0 − x2
i

)
,

and

trace(x) ,
n−1∑
i=1

λ∓i (x) =

n−1∑
i=1

trace
(
x〈i〉

)
= 2(n− 1)x0.

The square of x ∈ En is defined as x2 , Jn
∑n−1
i=1 x〈i〉

2

, where x〈i〉
2

,
(λ+(x〈i〉))2c+(x〈i〉) + (λ−(x〈i〉))2c−(x〈i〉). It can be seen that

x2 = Jn


(n− 1)x2

0 +
∑n−1
i=1 x2

i
2x0x1

2x0x2

...

2x0xn−1

 = Arw(x)x,

where Arw(x) denotes the arrow-shaped matrix of x defined as

Arw(x) , Jn


(n− 1)x0 x1 x2 · · · xn−1

x1 x0 0 · · · 0
x2 0 x0 · · · 0
...

...
...

. . .
...

xn−1 0 0 0 x0



for any x ∈ En. Note that Arw(x) can be also redefined as

Arw(x) = Jn

n−1∑
i=1

Arw〈i〉(x) =

n−1∑
i=1

J
〈i〉
n Arw

(
x〈i〉

)
,

where

Arw〈i〉(x) , Arw
(
x〈i〉

)
=

 x0 xiu
〈i〉T
n−1

xiu
〈i〉
n−1 x0I

〈i〉
n−1

 ,
for i = 1, 2, . . . , n− 1.

Let x ∈ En be such that det(x) 6= 0. We define the inverse of x ∈ En as

x−1 , Jn

n−1∑
i=1

x〈i〉
−1

, (2)
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where

x〈i〉
−1
,

1

λ+(x〈i〉)
c+
(
x〈i〉

)
+

1

λ−(x〈i〉)
c−
(
x〈i〉

)
=

1

det(x〈i〉)

[
x0

−xiu
〈i〉
n−1

]
=

1

det(x〈i〉)
R
〈i〉
n x〈i〉.

We define the Jordan multiplication � : En × En −→ En as

x � y , Jn

n−1∑
i=1

Arw〈i〉(x)y〈i〉

=

n−1∑
i=1

J
〈i〉
n Arw

(
x〈i〉

)
y〈i〉

= Jn


(n− 1) x0y0 +

∑n−1
i=1 xiyi

x0y1 + x1y0

x0y2 + x2y0

...
x0yn−1 + xn−1y0

 = Arw(x)y,

for x,y ∈ En. Therefore, x � en = x. We also have

x � x−1 = Jn

n−1∑
i=1

Arw〈i〉(x)x〈i〉
−1

= Jn

n−1∑
i=1

en = en = (1; 0; 0; . . . ; 0︸ ︷︷ ︸
(n−1)−times

),

and

x � x = Jn

n−1∑
i=1

Arw〈i〉(x)x〈i〉 = Jn

n−1∑
i=1

x〈i〉
2

= x2.

The quadratic representation of x ∈ En is denoted by Qx and is defined as

Qx , Jn

n−1∑
i=1

Q
〈i〉
x =

n−1∑
i=1

J
〈i〉
n Qx〈i〉 , (3)

where

Q
〈i〉
x , Qx〈i〉 = 2x〈i〉x〈i〉

T
− det

(
x〈i〉

)
R
〈i〉
n =

[
x2

0 + x2
i 2x0xiu

〈i〉T
n−1

2x0xiu
〈i〉
n−1

(
x2

0 + x2
i

)
I
〈i〉
n−1

]
, (4)

for i = 1, 2, . . . , n− 1. One can easily find that Qx〈i〉en = x〈i〉
2

, Qx〈i〉−1x〈i〉 = x〈i〉
−1

(hence Q−1
x〈i〉−1x

〈i〉−1

= x〈i〉), and Arw
(
x〈i〉

−1
)
Qx〈i〉x

〈i〉−1

= en, for i = 1, 2, . . . , n− 1.

Therefore Qxen = x2, Qx−1x = x−1 (hence Q−1x−1x
−1 = x),x−1� Qxx

−1 = en, and

x−1� Q−1x−1x
−1 = en. (5)
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We define the product � : En × En −→ R as

x � y ,
1

2
trace (x � y) = (n− 1)x0y0 + x̄Tȳ, for x,y ∈ En.

It is easy to find that

x � y = xTJ−1
n y =

n−1∑
i=1

(
x〈i〉

T
y〈i〉

)
, for any x,y ∈ En. (6)

Let x,y, z ∈ En, and α, β ∈ R. It is not hard to check that x� (αy + βz) =

α(x�y)+β(x� z), and (αx + βy) � z = α(x� z)+β(y� z), hence “� ” is a bilinear

map, and therefore the structure (E ,�) is an algebra. One can also prove the following

identities: x�y = y�x (Commutativity), and x�
(
x2�y

)
= x2� (x�y) (Jordan

identity), which in turn imply the result in the following proposition.

Proposition 1. The algebra (E ,�) is a Jordan algebra.

Table 1 compares between the Jordan algebraic structures associated with the infinity

norm cone and that with the second-order cone.
Finally, we define the Frobenius norm of x ∈ (En,�) as

‖x‖F ,

√√√√n−1∑
i=1

((
λ+
i (x)

)2
+
(
λ−i (x)

)2
)

=
√

2x � x.

Let also y ∈ (En,�), then

∥∥x2
∥∥

F
≤ ‖x‖2F and |x � y| ≤

1

2
‖x‖F ‖y‖F .

This can be seen by noting that

∥∥x2
∥∥

F
=

√√√√n−1∑
i=1

((
λ+
i (x)

)4
+
(
λ−i (x)

)4
)
≤
n−1∑
i=1

((
λ+
i (x)

)2
+
(
λ−i (x)

)2
)

= ‖x‖2F ,

and that
|x � y| =

∣∣∣xTJ−1
n y

∣∣∣
=

∣∣∣∣(J−1/2
n x

)T
J
−1/2
n y

∣∣∣∣
≤
∥∥∥J−1/2
n x

∥∥∥
2

∥∥∥J−1/2
n y

∥∥∥
2

=
√
xTJ−1

n x

√
yTJ−1

n y

=
√
x � x

√
y � y =

1

2
‖x‖F ‖y‖F ,

where the last inequality was obtained using the Cauchy–Schwarz inequality.
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Table 1: Comparing the Jordan algebraic notions and concepts associated with In and Cn2 .

Cone Infinity norm cone In Second-order cone Cn2 (see [7, Section 11.1])

Constraint x0 ≥ ||x̄||∞ x0 ≥ ||x̄||2
Inner product x � y , (n− 1)x0y0 + x̄Tȳ x • y , x0y0 + x̄Tȳ

Jordan multiplication x � y , Jn

[
x � y

x0ȳ + y0x̄

]
x ◦ y ,

[
x • y

x0ȳ + y0x̄

]
Jordan algebra (En,�) (En, ◦)

Identity e ,

[
1
0

]
e ,

[
1
0

]
Eigenvalues λ∓i (x) , x0 ∓ xi for all i = 1, . . . , n− 1 λ∓(x) , x0 ∓ ||x̄||2

Eigenvectors c∓i ,
1

2

[
1

∓ u
〈i〉
n−1

]
for all i = 1, . . . , n− 1 c∓ ,

1

2

 1

∓
x̄

||x̄||2


Rank rk(In) , 2(n− 1) ∈ O(n) rk(Cn2 ) , 2 ∈ O(1)

Trace trace(x) , 2(n− 1)x0 trace(x) , 2x0

Determinant det (x) ,
n−1∏
i=1

(
x2

0 − x2
i

)
det (x) , x2

0 − ||x̄||22

Spectral decomposition x , Jn

n−1∑
i=1

(
λ+
i (x)c+

i (x) + λ−i (x)c−i (x)

)
x , λ+(x)c+(x) + λ−(x)c−(x)

Square x2 , x � x =

[
x � x
2x0x̄

]
x2 , x ◦ x =

[
x • x
2x0x̄

]
Inverse x−1 , Jn

n−1∑
i=1

(
1

λ+
i (x)

c+
i (x) +

1

λ−i (x)
c−i (x)

)
x−1 ,

1

λ+(x)
c+(x) +

1

λ−(x)
c−(x)

Arrow-shaped matrix Arw(x) , Jn

[
(n− 1)x0 x̄T

x̄ x0In−1

]
Arw(x) ,

[
x0 x̄T

x̄ x0In−1

]
Quadratic representation matrix Qx , Jn

n−1∑
i=1

(
2x〈i〉x〈i〉

T
− det(x〈i〉)R

〈i〉
n

)
Qx , 2xxT − det(x)Rn

Logarithmic barrier ln det(x) ,
n−1∑
i=1

ln

(
x2

0 − x2
i

)
ln det(x) , ln

(
x2

0 − ||x̄||22

)
Gradient ∇x ln det(x) 2J−1

n x−1 =

n−1∑
i=1

(
2

det(x〈i〉)

[
x0

−xiu
〈i〉
n−1

])
2x−1 =

2

det(x)

[
x0

−x̄

]
Hessian ∇2

xx ln det(x) = −2J−1
n Qx−1

∑n−1
i=1

(
2(

detx〈i〉
)2
[

x2
0 + x2

i −2x0xiu
〈i〉T
n−1

−2x0xiu
〈i〉
n−1

(
x2

0 + x2
i

)
I
〈i〉
n−1

])
2(

detx〈i〉
)2 [ ‖x‖ −2x0x̄T

−2x0x̄ det(x)In−1 + 2x̄x̄T

]

3. The barrier function associated with the cone

In this section, we introduce the logarithmic barrier function associated with the

infinity norm cone, its derivatives, and its self-concordance properties.
Following the standard way in defining the logarithmic barriers in convex programming,
we define the logarithmic barrier associated with the infinity norm cone as `(x) ,
− ln det(x) for x = (x0; x̄) ∈ int(In). In our setting, we have

`(x) , − ln det(x) = − ln

(
n−1∏
i=1

(
x2

0 − x2
i

))
= −

n−1∑
i=1

ln
(
x2

0 − x2
i

)
=

n−1∑
i=1

`〈i〉(x),

where

`〈i〉(x) , − ln
(
x20 − x2i

)
, i = 1, 2, . . . , n− 1.

Note that `〈i〉(·) is a strictly convex function on int(In) for i = 1, 2, . . . , n− 1. Since

the sum of strictly convex functions is strictly convex, the logarithmic barrier function

`(x) is strictly convex.

The results in the following lemma are a handy tool for our subsequent development.

Lemma 1. Let x ∈ int(In). We have that

1. The gradient ∇x`(x) = −2J−1
n x−1, where x−1 is defined in (2).
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2. The Hessian ∇2
xx`(x) = 2J−1

n Qx−1 , and hence Dxx
−1 = −Qx−1 , where Q· is defined

in (3) and Dx is the Jacobian matrix with respect to x.

3. For any vector h ∈ (En,�), the third derivative ∇3
xxx`(x)[h,h,h] =

−4 s(x,h) � s2(x,h), where the vector s , s(x,h) = Jn
∑n−1
i=1 s〈i〉(x,h) ∈ (En,�),

and

s〈i〉 , s〈i〉(x,h) , Arw
(
x〈i〉

−1
)
h =

1

det (x〈i〉)

[
x0h0 − xihi

(x0hi − xih0)u
〈i〉
n−1

]
, i = 1, 2, . . . , n−1.

Proof Note that

∇x ln det(x) = ∇x

(
n−1∏
i=1

ln ((x0 + xi)(x0 − xi))
)

= ∇x

n−1∑
i=1

(ln(x0 + xi) + ln(x0 − xi))

=

n−1∑
i=1

(
1

x0 + xi
∇x(x0 + xi) +

1

x0 − xi
∇x(x0 − xi)

)
=

n−1∑
i=1

(
1

(x0 + xi)

[
1

u
〈i〉
n−1

]
+

1

(x0 − xi)

[
1

−u〈i〉n−1

])

=

n−1∑
i=1

(
1

(x0 + xi)(x0 − xi)

[
2x0

−2xiu
〈i〉
n−1

])

= 2

n−1∑
i=1

(
1

det(x〈i〉)

[
x0

−xiu
〈i〉
n−1

])
= 2J−1

n x−1.

This proves item (1). To prove item (2), it suffices to show that Dxx
〈i〉−1

= −Qx〈i〉−1

for i = 1, 2, . . . , n− 1. Note that

Dxx〈i〉
−1

= Dx

(
1

2(x0 + xi)

[
1

u
〈i〉
n−1

]
+

1

2(x0 − xi)

[
1

−u〈i〉n−1

])

= Dx


x0

x2
0 − x2

i−xi
x2

0 − x2
i

u
〈i〉
n−1


=

−1(
detx〈i〉

)2
[

x2
0 + x2

i −2x0xiu
〈i〉T
n−1

−2x0xiu
〈i〉
n−1

(
x2

0 + x2
i

)
I
〈i〉
n−1

]

=
−1(

detx〈i〉
)2
([

2x2
0 −2x0xiu

〈i〉T
n−1

−2x0xiu
〈i〉
n−1 2x2

i I
〈i〉
n−1

]
−
(
x2

0 − x2
i

) [1 0T

0 −I〈i〉n−1

])
= −

(
2x〈i〉

−1
x〈i〉

−1T − det
(
x〈i〉

−1
)
R
〈i〉
n

)
= − Q

〈i〉
x−1 ,

where the last equality follows from (4).
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Finally, the following sequence of equalities proves item (3).

∇3
xxx`(x)[h,h,h] =

n−1∑
i=1

∇3
xxx`

〈i〉
(x)[h,h,h]

=

n−1∑
i=1

∇x

(
h
T∇2

xx`
〈i〉

(x)h

)
[h]

=

n−1∑
i=1

[h0 h̄T
]
∇x

 2(
det

(
x〈i〉

))2 (
(x

2
0 + x

2
i )(h

2
0 + h

2
i ) − 4x0xih0hi

)


=

n−1∑
i=1

 −4(
det

(
x〈i〉

))3
[
h0 h̄T

] 
(
h2

0 + h2
i

) (
x3
0 + 3x0x

2
i

)
− 2h0hi

(
x3
i + 3x2

0xi

)
−
((
h2

0 + h2
i

) (
x3
i + 3x2

0xi

)
− 2h0hi

(
x3
0 + 3x0x

2
i

))
u
〈i〉
n−1




=

n−1∑
i=1

 −4(
det

(
x〈i〉

))3 (
(x

3
0 + 3x0x

2
i )(h

3
0 + 3h0h

2
i ) − (x

3
i + 3x

2
0xi)(h

3
i + 3h

2
0hi)

)

=

n−1∑
i=1

 −4(
det

(
x〈i〉

))3
 x0h0 − xihi(
x0hi − xih0

)
u
〈i〉
n−1


T 

(
x2
0 + x2

i

) (
h2

0 + h2
i

)
− 4x0xih0hi(

2h0hi

(
x2
0 + x2

i

)
− 2x0xi

(
h2

0 + h2
i

))
u
〈i〉
n−1




= −4

n−1∑
i=1

(
s
〈i〉TArw

(
s
〈i〉

)
s
〈i〉

)

= −4

n−1∑
i=1

(
s
〈i〉T

s
〈i〉2

)
= − 4 s � s

2
.

The proof is complete. �

Now, we show that the function `(·) is a self-concordant barrier with complexity value

1.

Definition 1 (Definition 2.1.1 in [21]). Let V be a finite-dimensional real vector
space, G be an open nonempty convex subset of V , and let f be a C3, convex mapping from
G to R. Then f is called α-self-concordant on G with the parameter α > 0 if for every x ∈ G
and h ∈ V , the following inequality holds∣∣∣∣ ∇3

xxxf(x) [h,h,h]

∣∣∣∣ ≤ 2
√
α

(
∇2

xxf(x) [h,h]
)3/2

. (7)

An α-self-concordant function f on G is called strongly α-self-concordant if f tends to infinity
for any sequence approaching a boundary point of G.

Table 2: 1-self-concordant barriers for most well-known conic programs.

Linear program Second-order cone program Semidefinite program Infinity norm program

x ∈ Rn+ x ∈ Cn2 X ∈ Sn+ x ∈ In

`(x) = −
n∑
i=1

lnxi `(x) = − ln
(
x2

0 − ‖x̄‖
2
2

)
`(X) = − ln det(X) `(x) = −

n∑
i=1

ln
(
x2

0 − x2
i

)

The result in the following theorem is crucial to subsequent results in this paper. The

result in this theorem is the counterpart of very well-known results in the interior-point

theory of conic programming (see Table 2).
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Theorem 1. The logarithmic barrier function `(·) is 1-strongly self-concordant on In.

Proof Let h ∈ (En,�). From item (3) in Lemma 1, we have

∇3
xxx`(x)[h,h,h] = −4 s � s2,

where s = s(x,h) ∈ (En,�) is given by

s〈i〉 , Arw
(
x〈i〉

−1
)

h =
1

det
(
x〈i〉

) [ x0h0 − xihi
(x0hi − xih0)u

〈i〉
n−1

]
, i = 1, 2, . . . , n− 1.

Note that

(
λ+
i (s)

)2
+
(
λ−i (s)

)2
=

2(
det
(
x〈i〉

))2 (
(x0h0 − xihi)2 + (x0hi − xih0)2

)
, i = 1, 2, . . . , n− 1.

From item (2) in Lemma 1, we also have

hT∇2
xx`(x)h =

n−1∑
i=1

hT∇2
xx`
〈i〉(x)h

= 2

n−1∑
i=1

hTQ
〈i〉
x−1h

=

n−1∑
i=1

(
2(

det
(
x〈i〉

))2 [h0 h̄T
] [ x2

0 + x2
i −2x0xiu

〈i〉T
n−1

−2x0xiu
〈i〉
n−1

(
x2

0 + x2
i

)
I
〈i〉
n−1

] [
h0

h̄

])

=

n−1∑
i=1

(
2(

det
(
x〈i〉

))2 [h0 h̄T
] [ h0

(
x2

0 + x2
i

)
− 2x0xihi(

hi
(
x2

0 + x2
i

)
− 2x0xih0

)
u
〈i〉
n−1

])

=

n−1∑
i=1

(
2(

det
(
x〈i〉

))2 (h2
0

(
x2

0 + x2
i

)
− 2x0xih0hi + h2

i

(
x2

0 + x2
i

)
− 2x0xih0hi

))

=

n−1∑
i=1

(
2(

det
(
x〈i〉

))2 ((x2
0 + x2

i )(h
2
0 + h2

i )− 4x0xih0hi
))

=

n−1∑
i=1

(
2(

det
(
x〈i〉

))2 ((x0h0 − xihi)2 + (x0hi − xih0)2
))

=

n−1∑
i=1

(
λ2

1(s〈i〉) + λ2
2(s〈i〉)

)
= 2s � s = ‖s‖2F .

The result immediately follows from the following:

∣∣∇3
xxx`(x)[h,h,h]

∣∣ = 4
∣∣s � s2

∣∣ ≤ 2 ‖s‖F
∥∥s2
∥∥

F
≤ 2 ‖s‖3F = 2

(
∇2

xx`
〈i〉[h,h]

)3/2
.

Since `(x) tends to ∞ for any sequence approaching a boundary point of In, we

deduce that `(x) is 1-strongly self-concordant. This completes the proof. �
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4. The composite recourse function

In this section, we compute the derivatives of the Composite recourse function and its

self-concordance properties. The two-stage barrier SINP problem is defined as

min η(x, µ) , cTx− µ ln det(x) +

K∑
k=1

ρ(k)(x, µ) s.t. Ax = b, x ∈ int In,

ρ(k)(x, µ) , min d(k)Ty(k) − µ ln det
(
y(k)

)
s.t. W (k)y(k) = q(k) + T (k)x, y(k) ∈ int Im+ ,

k = 1, . . . ,K,

(8)

where int In and int Im+ are the interiors of the infinity norm cones In and Im+ , for

k = 1, 2, . . . ,K, the function ρ(k)(x, µ), for k = 1, 2, . . . ,K, is called the barrier

recourse function, η(x, µ) is called the composite barrier function, and µ is positive

scalar.
In the next sections, we study common properties of all barrier recourse functions
ρ(k)(x, µ), for k = 1, 2, . . . ,K. For this reason, we represent the barrier recourse
function as

ρ(k)(x, µ) , min

{
r

(
y(k), µ

)
: W (k)y(k) = q(k) + T (k)x

}
, where

r

(
y(k), µ

)
, d(k)Ty(k) − µ ln det

(
y(k)

)
.

(9)

For the rest of this paper, we define the feasibility sets

L(0) ,

{
x ∈ Rn : Ax = b

}
,

L(k)(x) ,

{
y(k) ∈ Rm : W (k)y(k) = q(k) + T (k)x

}
, for k = 1, 2, . . . ,K,

F(k) ,

{
x ∈ In ∩ L(0) : Im+ ∩ L(k)(x) 6= ∅

}
, for k = 1, 2, . . . ,K,

F ,
K⋂
k=1

F(k).

We also make the following assumptions.

Assumption 1. The matrices A and W (k), k = 1, 2, . . . ,K, have full row rank.

Assumption 2. The feasibility set F is nonempty.

Assumption 1 is a standard assumption in linear and convex programming. Assumption

2 is the Slater condition, and based on this assumption strong duality holds. We have

the following proposition.
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Proposition 2. Let x ∈ int In ∩ L(0). The barrier recourse function ρ(k)(x, µ), k =
1, 2, . . . ,K, is convex in x.

Proof Let α+ β = 1, α, β ≥ 0, and x, z ∈ int In ∩ L(0). Then

αρ(k)(x, µ) + βρ(k)(z, µ) = αd(k)Ty(k)? (x, µ)− αµ ln det

(
y(k)? (x, µ)

)
+ β d(k)Ty(k)? (z, µ)− βµ ln det

(
y(k)? (z, µ)

)
≥ d(k)T

(
αy(k)? (x, µ) + βy(k)? (z, µ)

)
− µ ln det

(
αy(k)? (x, µ) + βy(k)? (z, µ)

)
≥ ρ(k)

(
αx + βz, µ

)
,

where the first inequality follows from the convexity of the barrier function − ln det(·),
and the second inequality follows from the feasibility of αy(k)?(x, µ) + βy(k)?(z, µ) for

W (k)y(k) = q(k) + T (k)(αx + βz).

Based on Proposition 2, we conclude that is strictly convex in x.

Let x ∈ int In ∩ L(0), y(k)?(x, µ) be the optimal primal solution for (9), u(k)?(x, µ)
be the optimal Lagrange multiplier, and define

ϑ

(
x,y(k)(x, µ),u(k)(x, µ), µ

)
,

[
d(k) − 2µJ−1

m

(
y(k)(x, µ)

)−1
+W (k)Tu(k)(x, µ)

W (k)y(k)(x, µ)− q(k) − T (k)x

]
.

Then the first-order KKT conditions ϑ(x,y(k)(x, µ),u(k)(x, µ), µ) = 0 hold true for
y(k) = y(k)? and u(k) = u(k)? . That is, we have

d(k) − 2µJ−1
m

(
y(k)? (x, µ)

)−1
+W (k)Tu(k)? (x, µ) = 0,

W (k)y(k)? (x, µ)− q(k) − T (k)x = 0.
(10)

The solution y(k)?(x, µ) is unique because the map r(y(k), µ) is strictly convex of y(k)

for a given (x, µ).

Now, we compute the gradient, Hessian and partial derivatives of the barrier recourse

function ρ(k)(x, µ) and the composite barrier function η(x, µ) associated with infinity

norm cone In. These derivatives will be used to prove fundamental properties of these

functions.
Throughout this section and the rest of this paper, let g

(k)
y (x, µ) and H

(k)
y (x, µ)

represent the gradient and Hessian of the barrier function − ln det(y(k)) with respect
to y(k) at y(k)?(x, µ). Then, using Lemma 1, we have

g
(k)
y (x, µ) , −2J−1

m

(
y(k)? (x, µ)

)−1
, and H

(k)
y (x, µ) , 2J−1

m Q(y(k)? (x,µ))−1 , k = 1, 2, . . . ,K.

(11)
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Note that H
(k)
y (x, µ) is positive definite since logarithmic barrier is strictly convex.

Furthermore, the matrix W (k) H
(k)−1

y (x, µ) W (k)T is invertible since W (k) has a full
row rank (Assumption 1). In the rest of this paper, we also let

S
(k)
y (x, µ) , W (k) H

(k)−1/2

y (x, µ), k = 1, 2, . . . ,K,

P
(k)
y (x, µ) , S

(k)T

y (x, µ)

(
S

(k)
y (x, µ) S

(k)T

y (x, µ)

)−1

S
(k)
y (x, µ), k = 1, 2, . . . ,K.

(12)

By applying the implicit function theoremto the KKT system (10), we conclude that
the Lagrange multiplier u(k)?(x, µ) can be uniquely determined. Particularly, we have

u(k)? (x, µ) , −
(
W (k) H

(k)−1

y (x, µ) W (k)T
)−1

W (k)H
(k)−1

y (x, µ) ∇
y(k)r

(
y(k)(x, µ), µ

) ∣∣∣∣
y(k)=y(k)? (x,µ)

= −
(
S
(k)
y (x, µ)S

(k)T
y (x, µ)

)−1
S
(k)
y (x, µ)H

(k)−1/2

y (x, µ)

(
d(k) + µg

(k)
y (x, µ)

)
.

(13)

For the second-stage problem (9), the Lagrangian function is given by

=
(
x,y(k),u(k), µ

)
= d(k)Ty(k)−µ ln det

(
y(k)

)
+u(k)TW (k)y(k)−u(k)Tq(k)−u(k)TT (k)Tx. (14)

From (10), we have

∇y(k)=
(
x,y(k),u(k), µ

) ∣∣∣∣
y(k)=y(k)? (x,µ), u(k)=u(k)? (x,µ)

=

(
d(k) − 2µJ−1

m y(k)−1
+W (k)u(k)

) ∣∣∣∣
y(k)=y(k)? (x,µ), u(k)=u(k)? (x,µ)

= d(k) − 2µJ−1
m

(
y(k)? (x, µ)

)−1

+W (k)u(k)? (x, µ) = 0.

(15)

and

∇u(k)=
(
x,y(k),u(k), µ

) ∣∣∣∣
y(k)=y(k)? (x,µ), u(k)=u(k)? (x,µ)

=

(
W (k)y(k) − q(k) − T (k)x

) ∣∣∣∣
y(k)=y(k)? (x,µ)

= W (k)y(k)? (x, µ)− q(k) − T (k)x = 0.

(16)

Due to strong duality, we have

ρ(k)(x, µ) = =
(
x,y(k)? (x, µ),u(k)? (x, µ), µ

)
. (17)

Throughout the rest of this paper, we let y(k) , y(k)(x, µ),u(k) , u(k)(x, µ),H
(k)
y ,

H
(k)
y (x, µ), and S

(k)
y , S

(k)
y (x, µ). We need the following intermediate lemma.
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Lemma 2. Let x ∈ int In∩L(0), and y(k)?(x, µ) and u(k)?(x, µ) be the optimal solutions
of (9) and (14), respectively. Then

Dxy
(k)? (x, µ) = H

(k)−1/2

y S
(k)
y

(
S

(k)
y S

(k)T

y

)−1

T (k), (18)

Dxu
(k)? (x, µ) = −µ

(
S

(k)
y S

(k)T

y

)−1

T (k), (19)

∂

∂µ
y(k)? (x, µ) = −

1

µ
H

(k)−1/2

y

(
I − P

(k)
y

)
H

(k)−1/2

y g
(k)
y , (20)

∂

∂µ
u(k)? (x, µ) = −

(
S

(k)
y S

(k)T

y

)−1

S
(k)
y H

(k)−1/2

y g
(k)
y , (21)

where g
(k)
y and H

(k)
y are defined in (11), S

(k)
y and P

(k)
y are defined in (12).

Proof Note that the Jacobian of ϑ(x,y(k),u(k), µ) with respect to (x,y(k),u(k)) is

D(x,y(k),u(k)) ϑ

(
x,y(k),u(k), µ

) ∣∣∣∣
y(k)=y(k)? ,u(k)=u(k)?

=

[
D(y(k),u(k)) ϑ

(
x,y(k),u(k), µ

) ... Dx ϑ

(
x,y(k),u(k), µ

)] ∣∣∣∣
y(k)=y(k)? ,u(k)=u(k)?

=

µH(k)
y (x, µ) W (k)T

... O

W (k) O
... −T (k)

 .

The matrix D(y(k),u(k)) ϑ

(
x,y(k),u(k)

)
is invertible since H

(k)
y (x, µ) positive definite

and W (k) has a full rank. In particular, one can verify that

[
D(y(k),u(k)) ϑ

(
x,y(k),u(k), µ

)]−1 ∣∣∣∣
y(k)=y(k)? ,u(k)=u(k)?

=


1
µ
H

(k)−1/2

y

(
I − P

(k)
y

)
H

(k)−1/2

y H
(k)−1/2

y S
(k)T

y

(
S

(k)
y S

(k)T

y

)−1

(
S

(k)
y S

(k)T

y

)−1

S
(k)
y H

(k)−1/2

y −µ
(
S

(k)
y S

(k)T

y

)−1

 .

Since the hypotheses of the implicit function theorem are satisfied at (x,y(k)? ,u(k)?)
in (10), we have

Dx

[
y(k)?

u(k)?

]
= −

[
D(y(k),u(k)) ϑ

(
x,y(k),u(k), µ

)]−1 ∣∣∣∣
y(k)=y(k)? ,u(k)=u(k)?

× Dx ϑ

(
x,y(k),u(k), µ

) ∣∣∣∣
y(k)=y(k)? ,u(k)=u(k)?

,

giving us the desired results in (18) and (19).



B. Alzalg, K. Tamsaouete 671

To obtain the results in (20) and (21), note that the Jacobian of ϑ(x,y(k),u(k), µ)
with respect to (y(k),u(k), µ) is

D(y(k),u(k),µ) ϑ

(
x,y(k),u(k), µ

)
=

[
D(y(k),u(k)) ϑ

(
x,y(k),u(k), µ

) ... Dµ ϑ

(
x,y(k),u(k), µ

)] ∣∣∣∣
y(k)=y(k)? ,u(k)=u(k)?

=


µH

(k)
y (x, µ) W (k)T

.

.. g
(k)
y (x, µ)

W (k) O
... O

 .

Again, by the implicit function theorem, the mapping from (x, µ) to y(k)?(x, µ) and
that from (x, µ) to u(k)?(x, µ) are differentiable in µ with

∂

∂µ

[
y(k)? (x, µ)

u(k)? (x, µ)

]
= −

[
D(y(k),u(k)) ϑ

(
x,y(k),u(k), µ

)]−1 ∣∣∣∣
y(k)=y(k)? ,u(k)=u(k)?

× Dµ ϑ

(
x,y(k),u(k), µ

) ∣∣∣∣
y(k)=y(k)? ,u(k)=u(k)?

,

giving us the desired results in (20) and (21). �

Lemma 3. Let x ∈ int In∩L(0), and y(k)?(x, µ) and u(k)?(x, µ) be the optimal solutions
of (9) and (14), respectively. Then

∇xη(x, µ) = c− 2µJ−1
n x−1 +

K∑
k=1

(
T (k)T

(
S

(k)
y S

(k)T

y

)−1

S
(k)
y H

(k)−1/2

y

(
d(k) + µg

(k)
y

))
, (22)

∇2
xxη(x, µ) = 2µ J−1

n Qx−1 + µ
K∑
k=1

(
T (k)T

(
S

(k)
y S

(k)T

y

)−1

T (k)

)
, (23)

∂

∂µ
(∇xη(x, µ)) = −2J−1

n x−1 +
K∑
k=1

(
T (k)T

(
S

(k)
y S

(k)T

y

)−1

S
(k)
y H

(k)−1/2

y g
(k)
y

)
, (24)

∂

∂µ

(
∇2

xxη(x, µ)
)

= 2J−1
n Qx−1 +

K∑
k=1

(
R

(k)T

y

(
H

(k)
y +

(
∇y(k)H

(k)
y

)
H

(k)−1/2

y

×
(
I − P

(k)
y

)
H

(k)−1/2

y g
(k)
y

)
R

(k)
y

)
, (25)

where g
(k)
y and H

(k)
y are defined in (11), S

(k)
y and P

(k)
y are defined in (12), and

R(k)
y (x, µ) , H(k)−1

y (x, µ)W (k)T
(
S(k)
y (x, µ) S(k)T

y (x, µ)
)−1

T (k), k = 1, 2, . . . ,K. (26)

Proof Using (8) and (18), and applying the chain rule, we have

∇xρ
(k)(x, µ) =

(
Dxy

(k)? (x, µ)
)T
∇y(k)ρ

(k)(x, µ)

∣∣∣∣
y(k)=y(k)?

= T (k)T
(
S

(k)
y S

(k)T

y

)−1

S
(k)
y H

(k)−1/2

y

(
d(k) + µg

(k)
y

)
. (27)
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Using (14), (15), (16), (17) and (19), and by applying the chain rule, we have

∇2
xxρ

(k)(x, µ) = ∇2
xx=

(
x,y(k)? ,u(k)? , µ

)
= ∇x

(
∇x=+∇y(k)=Dxy(k) +∇u(k)=Dxu(k)

)∣∣∣∣
y(k)=y(k)? ,u(k)=u(k)?

= ∇x

(
− T (k)Tu(k)? (x, µ)

)
= −T (k)T × Dxu(k)(x, µ)

∣∣∣∣
u(k)=u(k)? (x,µ)

= µT (k)T
(
S

(k)
y S

(k)T

y

)−1

T (k).

(28)

The gradient and Hessian in (22) and (23) are immediately obtained by plugging

the results in (27), (28) and Lemma 1 into the gradient and Hessian of the function

η(x, µ) = cTx− µ ln det(x) +
∑K
k=1 ρ

(k)(x, µ).

Next, we obtain the partial derivative in (24). Differentiating (22) with respect to µ,

and applying the chain rule, we get

∂

∂µ
(∇xη(x, µ)) = −2J−1

n x−1 +
K∑
k=1

∂

∂µ

(
∇xρ

(k)(x, µ)

)
= −2J−1

n x−1 −
K∑
k=1

T (k)T ∂

∂µ
u(k)? (x, µ).

(29)

The partial derivative in (24) is now immediately obtained by plugging (21) into (29).

Finally, we obtain the partial derivative in (25). Differentiating (23) with respect to µ,

using the first equation in (12), and applying the chain rule, we get

∂

∂µ

(
∇2

xxη(x, µ)
)

=
∂

∂µ

(
2µJ−1

n Qx−1 +

K∑
k=1

µ T (k)T
(
S

(k)
y S

(k)T

y

)−1

T (k)

)
= 2J−1

n Qx−1

−
K∑
k=1

T (k)T

(
1

µ
S

(k)
y S

(k)T

y

)−1 ∂

∂µ

(
1

µ
S

(k)
y S

(k)T

y

)(
1

µ
S

(k)
y S

(k)T

y

)−1

T (k)


= 2J−1

n Qx−1

−
K∑
k=1

(
T (k)T

(
1

µ
S

(k)
y S

(k)T

y

)−1

W (k) ∂

∂µ

(
µH

(k)
y

)−1

W (k)T
(

1

µ
S

(k)
y S

(k)T

y

)−1

T (k)

)

= 2J−1
n Qx−1 +

K∑
k=1

(
R

(k)T

y
∂

∂µ

(
µH

(k)
y

)
R

(k)
y

)

= 2J−1
n Qx−1 +

K∑
k=1

(
R

(k)T

y

(
H

(k)
y + µ

∂

∂µ
H

(k)
y

)
R

(k)
y

)

= 2J−1
n Qx−1 +

K∑
k=1

(
R

(k)T

y

(
H

(k)
y + µ∇y(k)H

(k)
y

∂

∂µ
y(k)?

)
R

(k)
y

)
.

(30)

The partial derivative in (25) is then immediately obtained by plugging (20) into

(30). �
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The following corollary is a direct consequence of Lemma 3.

Corollary 1. The derivatives ∇2
xxη(x, µ) and ∂

∂µ
(∇xη(x, µ)) can be written as

∇2
xxη(x, µ) = Î B1(x, µ)B1

T(x, µ) ÎT and
∂

∂µ
(∇xη(x, µ)) = Î B1(x, µ)B2(x, µ)gy(x, µ),

where gy(x, µ) , (−2J−1
n x−1; g

(1)
y (x, µ); g

(2)
y (x, µ); . . . ; g

(K)
y (x, µ)), Î ,

[
In In · · · In

]
∈

Rn×(Kn+n), and B1(x, µ) and B2(x, µ) are the block diagonal matrices given by

B1(x, µ) ,
√
µ



(
2J−1
n Q

x−1

)1/2
O · · · O

O T (1)T
(
S
(1)
y S

(1)T
y

)−1/2
· · · O

.

.

.

.

.

.

.
.
.

.

.

.

O O · · · T (K)T
(
S
(K)
y S

(K)T
y

)−1/2


,

B2(x, µ) ,
1

√
µ



(
2J−1
n Q

x−1

)−1/2
O · · · O

O

(
S
(1)
y S

(1)T
y

)−1/2
S
(1)
y H

(1)−1/2

y · · · O

.

.

.

.

.

.

.
.
.

.

.

.

O O · · ·
(
S
(K)
y S

(K)T
y

)−1/2
S
(K)
y H

(K)−1/2

y


.

Now, we are ready to state and prove the self-concordant properties of the family of

composite barrier functions {η(k)(x, µ) : µ > 0}. We have the following definition.

This definition uses R++ to denote the set of all positive real numbers.

Definition 2 (Definition 3.1.1 in [21]). Let G be an open nonempty convex subset
of Rn. Let also µ ∈ R++ and fµ : R++ ×G→ R be a family of functions indexed by µ. Let
α1(µ), α2(µ), α3(µ), α4(µ), α5(µ) : R++ −→ R++ be continuously differentiable functions on
µ. Then the family of functions fµ∈R++ is called strongly self-concordant with the parameters
α1, α2, α3, α4, α5, if the following conditions hold:

(i) The function fµ is continuous on R++ × G, and for fixed µ ∈ R++ , fµ is convex
on G and has three partial derivatives on G, which are continuous on R++ × G and
continuously differentiable with respect to µ on R++.

(ii) For any µ ∈ R++, the function fµ is strongly α1(µ)-self-concordant.

(iii) For any (µ,x) ∈ R++ ×G and any h ∈ Rn,

∣∣∣∣ ∂∂µ
(
hT∇xfµ(x, µ)

)
− ∂
∂µ

(lnα3(µ)) hT∇xfµ(x, µ)

∣∣∣∣ ≤ α4(µ)(α1(µ))1/2
(
hT∇2

xxfµ(x, µ)h

)1/2
,∣∣∣∣ ∂∂µ

(
hT∇2

xxfµ(x, µ)h

)
− ∂
∂µ

(lnα2(µ)) hT∇2
xxfµ(x, µ) h

∣∣∣∣ ≤ 2α5(µ) hT∇2
xxfµ(x, µ) h.

The following theorem contains a fundamental result because it specifies appropriate

barrier parameters to comprise a self-concordant family from the set of compos-

ite barrier functions. This enables us to prove the polynomiality of the proposed

algorithms.
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Theorem 2. The family {η(., µ) : µ > 0} is a strongly self-concordant family with the
following parameters

α1(µ) = µ, α2(µ) = α3(µ) = 1, α4(µ) =

√
2((n− 1) +K(m− 1))

µ
, α5(µ) =

1 + 23/2
√
m− 1

2µ
.

The proof of Theorem 2 depends on a sequence of some intermediate lemmas that we

state and prove below.

Lemma 4. For any fixed µ > 0, the barrier recourse function ρ(k)(x, µ) is strongly
µ-self-concordant on F (k) for k = 1, 2, . . . ,K.

Proof Let µ > 0 be fixed, y(k) = y(k)(x, µ) ∈ Em, and h ∈ Rm. Then

∣∣∣∇3
xxxρ

(k)(x, µ)[h,h,h]
∣∣∣ =

∣∣∣∇3
xxx

(
d(k)Ty(k)(x, µ)− µ ln det

(
y(k)(x, µ)

))
[h,h,h]

∣∣∣
=
∣∣∣∇3

y(k)y(k)y(k)

(
d(k)Ty(k) − µ ln det

(
y(k)

)) [
Dxy

(k)h,Dxy
(k)h,Dxy

(k)h
]∣∣∣

= µ
∣∣∣∇3

y(k)y(k)y(k)`
(
y(k)

) [
Dxy

(k)h,Dxy
(k)h,Dxy

(k)h
]∣∣∣

≤ 2µ
(
∇2

y(k)y(k)`
(
y(k)

) [
Dxy

(k)h,Dxy
(k)h

])3/2

=
2
√
µ

(
∇2

y(k)y(k)

(
d(k)Ty(k) − µ ln det

(
y(k)

)) [
Dxy

(k)h,Dxy
(k)h

])3/2

=
2
√
µ

(
∇2

xx

(
d(k)Ty(k) − µ ln det

(
y(k)

))
[h,h]

)3/2

=
2
√
µ

(
∇2

xxρ
(k)(x, µ)[h,h]

)3/2
,

where the inequality holds since `(·) is a self-concordant barrier of complexity value

1 (see Theorem 1). Therefore, the inequality in (7) holds for ρ(k)(x, µ). Finally, for

any sequence {xi}∞i=1 in F (k) approaching a point from boundary of F (k), the map

ρ(k)(xi, µ) approaches infinity. Thus, ρ(k)(x, µ) is strongly µ-self-concordant on F (k)

for k = 1, 2, . . . ,K. �

Lemma 5. For any fixed µ > 0, the composite barrier function η(·, µ) is strongly µ-self-
concordant on F .

Proof Recall that η(x, µ) = cTx−µ ln det(x) +
∑K
k=1 ρ

(k)(x, µ). It is trivial to show

that the linear map cTx is strongly µ-self-concordant on In ∩ L(0) (both sides of the

inequality in (7) are simply zeros). Theorem 1 shows that the barrier −µ ln det(x) is

strongly µ-self-concordant on In ∩ L(0), and Lemma 4 shows that the map ρ(k)(x, µ)

is strongly µ-self-concordant on F (k). The result then immediately follows from [21,

Proposition 2.1.1(ii)]. �
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Lemma 6. For any µ > 0,x ∈ F and h ∈ Rn, we have

∣∣∣∣ ∂∂µ
(
hT∇xη(x, µ)

)∣∣∣∣ ≤
√

2((n− 1) +K(m− 1))

µ

√
∇2

xxη(x, µ)[h,h], (31)∣∣∣∣ ∂∂µ
(
∇2

xxη(x, µ) [h,h]

)∣∣∣∣ ≤ 1 + 23/2
√
m− 1

µ
∇2

xxη(x, µ)[h,h]. (32)

Proof This proof uses the block vector gy , gy(x, µ), the block-diagonal matrices Î,

B1 , B1(x, µ) and B2 , B2(x, µ) defined in Corollary 1, and the orthogonal projection

matrix P
(k)
y defined in (12). To prove (31), by using Corollary 1, we have

∣∣∣∣ ∂∂µ (hT∇xη(x, µ)
))∣∣∣∣ =

∣∣∣∣hTÎ B1B2gy

∣∣∣∣
≤
√

hTÎ B1(x, µ)B1
T(x, µ) ÎTh

√
gTy(x, µ)B2

T(x, µ)B2(x, µ)gy(x, µ)

=
√

hT∇2
xxη(x, µ)h

√
gTy(x, µ)B2

T(x, µ)B2(x, µ)gy(x, µ)

≤
√
∇2

xxη(x, µ)[h,h]

×

√√√√ 1

µ

(
2
(
J−1
n x−1

)T (
(Qx−1 )−1 x−1

)
+

K∑
k=1

(
g

(k)T

y

(
H

(k)−1

y g
(k)
y

)))

=
√
∇2

xxη(x, µ)[h,h]

×

√√√√ 1

µ

(
2x−1 �

(
(Qx−1 )−1 x−1

)
+

K∑
k=1

((
Jmg

(k)
y

)
�

(
H

(k)−1

y g
(k)
y

)))

=
√
∇2

xxη(x, µ)[h,h]

√√√√ 1

µ

(
trace(en) +

K∑
k=1

trace(em)

)

=

√
2((n− 1) +K(m− 1))

µ

√
∇2

xxη(x, µ)[h,h],

(33)

where the second inequality follows from the fact that P
(k)
y is an orthogonal projection

matrix, and the third and forth equalities follow from (6) and (5), respectively. This

proves (31).

To prove (32), let h ∈ Rn and R
(k)
yy , R

(k)
y h where R

(k)
y is the matrix defined in (26).

Then, using the last equality in (30) and (20), one can show that
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∣∣∣∣ ∂∂µ
(
hT∇2

xxη(x, µ)h

)∣∣∣∣ :=

∣∣∣∣2hTJ−1
n Qx−1h

+

K∑
k=1

(
R

(k)T

yy H
(k)
y R

(k)
yy + R

(k)T

yy

(
µ∇y(k)H

(k)
y

∂

∂µ
y(k)?

)
R

(k)
yy

)∣∣∣∣
≤
∣∣∣∣2hTJ−1

n Qx−1h

∣∣∣∣
+

K∑
k=1

(∣∣∣∣R(k)T

yy H
(k)
y R

(k)
yy

∣∣∣∣+

∣∣∣∣∇3
y(k)`

(k)
y

[
µ
∂

∂µ
y(k)? (x, µ),R

(k)
yy ,R

(k)
yy

]∣∣∣∣)

≤ 2hTJ−1
n Qx−1h +

K∑
k=1

R
(k)T

yy H
(k)
y R

(k)
yy

+

K∑
k=1

2

√
∇2

y(k)`
(k)
y

[
µ
∂

∂µ
y(k)? (x, µ), µ

∂

∂µ
y(k)? (x, µ)

])
R

(k)T

yy H
(k)
y R

(k)
yy

≤ 2hTJ−1
n Qxx−1h

+

K∑
k=1

(
R

(k)T

yy H
(k)
y R

(k)
yy + 2

√
g

(k)T
y H

(k)−1

y g
(k)
y R

(k)T

yy H
(k)
y R

(k)
yy

)
.

where we used [21, Proposition 9.1.1] to obtain the second inequality.
Now, using (6) and (5), respectively, it follows that∣∣∣∣ ∂∂µ

(
hT∇2

xxη(x, µ)h

)∣∣∣∣ = 2hTJ−1
n Qx−1h

+

K∑
k=1

((
1 + 2

√(
Jmg

(k)
y

)
�
(
H

(k)−1

y g
(k)
y

))
R

(k)T

yy H
(k)
y R

(k)
yy

)
= 2hTJ−1

n Qx−1h

+

K∑
k=1

((
1 + 2

√
2y(k)−1 � Q−1

y(k)−1y
(k)−1

)
R

(k)T

yy H
(k)
y R

(k)
yy

)
= 2hTJ−1

n Qx−1h

+
K∑
k=1

((
1 + 2

√
trace(y(k)−1 � Q−1

y(k)−1y
(k)−1

)

)
R

(k)T

yy H
(k)
y R

(k)
yy

)
= 2hTJ−1

n Qx−1h

+

K∑
k=1

((
1 + 2

√
trace(em)

)
R

(k)T

yy H
(k)
y R

(k)
yy

)

= 2hTJ−1
n Qx−1h +

K∑
k=1

((
1 + 2

√
2(m− 1)

)
R

(k)T

yy H
(k)
y R

(k)
yy

)
.

Note that by (26) and the fact that W (k)H
(k)−1

y W (k)T = S
(k)
y S

(k)T

y , we have

R
(k)T

yy H
(k)
y R

(k)
yy = hTT (k)T

(
S

(k)
y S

(k)T

y

)−1

W (k)H
(k)−1

y W (k)T
(
S

(k)
y S

(k)T

y

)−1

T (k)h

= hTT (k)T
(
S

(k)
y S

(k)T

y

)−1

T (k)h. (34)
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Using (23), it follows that

∣∣∣∣ ∂∂µ (hT∇2
xxη(x, µ)h

)∣∣∣∣ = hTJ−1
n Qx−1h

+
K∑
k=1

((
1 + 2

√
trace(2(m− 1))

)
hTT (k)T

(
S

(k)
y S

(k)T

y

)−1

T (k)h

)

≤
1 + 2

√
2(m− 1)

µ
hT∇2

xxη(x, µ)h. 2

Proof of Theorem 2. Condition (i) in Definition 2 is satisfied. Lemma 5 satisfies

Condition (ii), and Lemma 6 shows that Condition (iii) holds. 2

5. The algorithm and its complexity

In this section, we present a path-following primal interior-point algorithm for the

two-stage SINP problem and see that the short- and long-step versions of the proposed

algorithm obtain an ε-optimal solution in polynomial number of first-stage Newton

iterations. This analysis assumes that the second stage barrier problems are solved

exactly, and hence ∇xη(x, µ) and ∇2
xxη(x, µ) are computed exactly as shown earlier

in Lemma 3.
The first-stage Newton step 4x is defined at a feasible solution x of the problem
{min η(x, µ) | Ax = b} as

4x ,− (∇2
xxη(x, µ))−1∇xη(x, µ)

+ (∇2
xxη(x, µ))−1AT

(
A (∇2

xxη(x, µ))−1AT

)−1

A (∇2
xxη(x, µ))−1 ∇xη(x, µ), (35)

where (35) is a closed solution of the system:

∇2
xxη(x, µ)4x +AT4v = −∇xη(x, µ),

A4x = 0.
(36)

We also define

δ(x, µ) ,

√
1

µ
4xT∇2

xxη(x, µ)4x. (37)

The algorithm is formally stated in Algorithm 1 and is graphically visualized in

Figure 2.

Algorithm 1 starts with (x0, µ0), where x0 satisfies δ(x0, µ0) < κ , (2 −
√

3)/2. It

generates a sequence of (xk, µk) with µk+1 = $µk until µk < ε. The algorithm needs

to ensure that the proximity condition of xk to x?(µk) is maintained by using the

criteria δ(xk, µk) < κ. The process of updating (xk, µk) to (xk+1, µk+1) is called an

outer iteration. The value µN = $µ0 < ε is achieved after N outer iterations, where

N ≤ ln

(
µ0

ε

)/(
ln$−1

)
+ 1.
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Algorithm 1: The primal interior-point decomposition algorithm for two-stage

SINP problem.

1 Initializei = 0,x0, µ0, $, ε; Ensureµ0, $ ∈ (0, 1), ε ∈ (0, 1),x0 is feasible, δ(x0, µ0) ≤ κ;

while µi > ε do

2 µi+1 , $µi;

3 j , 0, xi0 , xi;
4 for k = 1, 2, . . . ,K do

5 solve subproblems ρ(k)(xij , µi+1) to obtain y(k)? (xij , µi+1) and u(k)? (xij , µi+1);

6 compute ∇xη(xij , µi+1) using (22) ;

7 compute ∇2
xxη(xij , µi+1) using (23) ;

8 compute the Newton direction 4ijx using (35) ;
9 compute δ(xij , µi+1) using (37);

10 while δ(xij , µi+1) > κ do
11 perform line search θ(≥ 0) to minimize η(xij + θ4ijx) ;

12 xi(j+1) , xij + θ4ijx ;
13 for k = 1, 2, . . . ,K do

14 solve subproblems ρ(k)(xij , µi+1) to obtain y(k)? (xij , µi+1) and

u(k)? (xij , µi+1);

15 compute ∇xη(xij , µi+1) using (22);
16 compute ∇2

xxη(xij , µi+1) using (23) ;

17 compute the Newton direction 4ijx using (35) ;

18 compute δ(xij , µi+1) using (37) ;

19 j , j + 1 ;

20 xi+1 , xij ;

21 i , i+ 1;

Table 3: Comparison of some features between the short- and long-step algorithms for SINP.

Feature Short-step algorithm Long-step algorithm

Factor $ $ = 1− ι/
√
n+Km, ι ≤ 0.0755 Constant rate $ ∈ (0, 1)

Inner iterations Single inner iteration Several inner iterations

Outer iterations O(
√
n+Km ln(µ0/ε)) O((n+Km) ln(µ0/ε))

Let xk0 = xk. The long-step algorithm generates a sequence xkj , j = 1, 2, . . . ,M ,

till xkM satisfies the desired condition δ(xkM , µk+1) < κ. The process of updating

(xkj , µk+1) to (xkj+1, µk+1) is called an inner iteration. After updating kµk, the short-

step algorithm restores the proximity condition in only one step, but the long-step

algorithm may perform many steps to restore this proximity. The following theorem

states the complexity result for the short-step algorithm.

Theorem 3. Let µ0 be the initial barrier parameter, µk+1 = $µk, and ε be the target
precision. If δ(x0, µ0) ≤ κ = (2−

√
3)/2, $ = 1− ι/

√
n+Km, where 0 < ι ≤ 0.0755, then

the short-step algorithm terminates with (xN , µN ) satisfying δ(xN , µN ) ≤ κ, and µN ≤ ε in
O(
√
n+Km ln(µ0/ε)) outer iterations. Each inner iteration requires calculation of a single

Newton direction by solving (36).
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Figure 2: A flowchart of Algorithm 1.

Proof: See Sub-appendix A.1. �

The long-step algorithm takes a constant value for $, say $ = 0.1, and may perform

several inner iterations to restore the condition δ(xiM , µi+1) < κ. The following

theorem states the complexity result for the long-step algorithm.
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Theorem 4. Let µ0 be the initial barrier parameter, µk+1 = $µk, and ε be the target
precision. If δ(x0, µ0) ≤ κ = (2−

√
3)/2, and the long-step algorithm reduces µk at a constant

rate $, where 0 < $ < 1, then the long-step algorithm terminates with (xN , µN ) satisfying
δ(xN , uN ) ≤ κ, and µN ≤ ε in O((n+Km) ln(µ0/ε)) inner iterations. Each inner iteration
requires calculation of a single Newton direction by solving (36).

Proof: See Sub-appendix A.2. �

Table 3 compares some features between the two variants of the algorithm. From
Theorems 3 and 4, it is clear that the dominant terms in the complexity expressions
are given in terms of the number of realizations, and, most notably the ranks of the
underlying infinity norm cones. The complexity results in Theorems 3 and 4 are
the counterparts of those in Theorems 1 and 2 in [24] for two-stage stochastic linear
programs with recourse those in Theorems 4.1 and 4.2 in [1] for two-stage stochastic
second-order cone programs with recourse, and those in Theorems 4.1 and 4.2 in [20]
for two-stage stochastic semidefinite programs with recourse. It is interesting to note
there is a complete matching in terms of rank between our complexity results and
their counterpart’s complexity results found in [1, 20, 24] for other stochastic conic
programming (see Table 4). This matching is despite that the asymmetry of the
infinity norm cone when it is compared with the symmetry of the three other cones
shown in Table 4.

Table 4: Comparing long-step algorithm complexities of some two-stage stochastic

conic programs with K number of realizations.

Two-stage stochastic conic program Cone rank Complexity of the long-step algorithm

Nonnegative orthant cone: x ∈ Rn+,y(k) ∈ Rm+ rk(Rn+) = O(n) O
(
(rk(Rn+) +K rk(Rm+ )) ln(µ0/ε)

)
Second-order cone: x ∈ Cn2 ,y(k) ∈ Cm2 rk(Cn2 ) = O(1) O

(
(rk(Cn2 ) +K rk(Cm2 )) ln(µ0/ε)

)
Semidefinite cone: X ∈ Sn+, Y (k) ∈ Sm+ rk(Sn+) = O(n) O

(
(rk(Sn+) +K rk(Sm+ )) ln(µ0/ε)

)
Infinity norm cone: x ∈ In,y(k) ∈ Im rk(In) = O(n) O

(
(rk(In) +K rk(Im)) ln(µ0/ε)

)

6. Numerical results

In order to see how the algorithm proposed in this paper works, it has been implemented

to solve numerical examples. In this section, we present two numerical examples to

show the computational performance of the long-step algorithm. In Example 1, we

test the proposed algorithm on the two-stage stochastic facility location problem.

In Example 2, we test the proposed algorithm on randomly-generated problems.

Numerical results were obtained using MATLAB R2018a (Version: 9.4.0.813654) and

on Windows XP Enterprise 64-bit operating system.

Example 1 (Stochastic uniform facility location problems). We consider in-
stances of the stochastic uniform facility location problem formulated as an SINP problem.
One way of classifying facility location problems is based on the distance measures. There
are three distance measures: Manhattan distance (measured by l1-norm), Euclidean distance
(measured by l2-norm), and Chebyshev distance (measured by l∞-norm). In this paper, we
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are interested in the so-called uniform facility location problem which uses the Chebyshev
distance (see Figure 3).
Assume that we are given f existing fixed facilities with coordinates represented by fixed
points, say a1,a2, . . . ,af ∈ Rn, and r random fixed facilities with coordinates represented by
random points, say b1(ω), b2(ω), . . . , br(ω) ∈ Rn, whose realizations depend on underlying
outcomes ω in an event space Ω with a known probability measure P . In the two-stage
stochastic uniform facility location problem, we plan to add a new facility in Rn among the
existing (fixed and random) facilities so that the sum of its weighted Chebyshev distances
to the fixed facilities and the sum of its weighted expected Chebyshev distances to the
realizations of the random facilities are both minimized.
Assume that we do not know the realizations of r random facilities at present time, and that
these realizations become known at some point in the future. Assume also that the location
of the new facility is to be determined so that the total sum is minimized. This decision must
be made before the random facility realizations become available. Consequently, when the
random facility realizations do become available, the new facility location that has already
been determined, say by the point x(0) ∈ Rn, may or may not minimize the sum of its
weighted expected distances to the realized random facilities. In order to make the location
of the new facility minimizing the total sum of all weighted distances described above, we
are allowed to change its location, say to the point x(0) + x(ω) ∈ Rn, depending on the
realized outcome ω ∈ Ω, if necessary. Given this, we are interested in a two-stage stochastic
model of the form

min
x(0)

f∑
i=1

ξi ‖x(0) − ai‖∞ + E[Q(x(0), ω)], (38)

where E[Q(x(0), ω)] ,
∫
ω∈Ω

Q(x(0), ω) P (dω), and Q(x(0), ω) is the minimum value of the
unconstrained minimization problem

min
x(ω)

r∑
j=1

ζj(ω) ‖x(0) + x(ω)− bj(ω)‖∞, (39)

where ξi ≥ 0 is the weight associated with the distance between the new facility and the
ith existing facility for i = 1, 2, . . . , f , and ζj(ω) ≥ 0 is the weight associated with the
expected distance between the new facility and the realization of the jth random facility for
j = 1, 2, . . . , r.

x

y Chebyshev distance: d∞(x,y) = max{|x1 − y1|, |x2 − y2|}.

Manhattan distance: d1(x,y) = |x1 − y1|+ |x2 − y2|.

Euclidean distance: d2(x,y) =
√

(x1 − y1)2 + (x2 − y2)2.

Figure 3: A geometric representation of Chebyshev, Manhattan and Euclidean dis-

tances.

The two-stage stochastic facility location model (38, 39) with K scenarios is written as

min

f∑
i=1

ξi ui +

K∑
k=1

ρ̂(k)(x(0))

s.t. ui ≥
∥∥∥x(0) − ai

∥∥∥
∞
, i = 1, 2, . . . , f,

(40)
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where ρ̂(k)(x(0)), k = 1, 2, . . . ,K, is the minimum value of the constrained minimization
problem

min

r∑
j=1

ζ
(k)
j v

(k)
j

s.t. v
(k)
j ≥

∥∥∥x(0) + x(k) − b
(k)
j

∥∥∥
∞
, j = 1, 2, . . . , r.

(41)

Algorithm 1 is performed with an accuracy ε = 10−5 for a number of two stage SINP
problems. By “Iter” we denote the required inner iteration numbers, and by “CPU(s)” we
denote the CPU time (in s) required to obtain an ε-approximate optimal solution of the
underlying problem.
We run Algorithm 1 to solve the SINP problem (40) and (41), where the dimensions of
this problem take the values n = 4; 12; 20, the numbers of scenarios take the values K =
5; 10; 15; 20, the number of fixed facilities take the values f = 3; 10; 20, and the number of
random facilities take the values r = 2; 10; 20. For each quadruple (n, f, r,K), we generate

36 instances each with ai and b
(k)
j chosen at random from the standard normal distribution.

Finally, we choose the distance weights ξi and ζ
(k)
j randomly from a uniform distribution

on [0, 1]. The numerical results of Algorithm 1 are displayed in Table 5 and are graphically
visualized in Figure 4.

Table 5: The numerical results of Algorithm 1 for the stochastic uniform facility location problem.

n f r f + r K Iter. CPU(s) n f r f + r K Iter. CPU(s)

4 3 2 5 5 5 1.1719 12 10 10 20 15 53 102.0140

4 3 2 5 10 5 1.2125 12 10 10 20 20 55 152.500
4 3 2 5 15 6 1.3344 12 20 20 40 5 29 120.6250

4 3 2 5 20 17 2.4219 12 20 20 40 10 49 128.8281
4 10 10 20 5 13 7.1719 12 20 20 40 15 56 93.2031

4 10 10 20 10 23 7.6250 12 20 20 40 20 60 99.0091

4 10 10 20 15 22 17.7656 20 3 2 5 5 57 91.1871
4 10 10 20 20 23 17.8938 20 3 2 5 10 65 23.1406

4 20 20 40 5 23 26.0781 20 3 2 5 15 44 93.2031

4 20 20 40 10 24 26.7355 20 3 2 5 20 84 98.7813
4 20 20 40 15 23 45.2188 20 10 10 20 5 45 107.2656

4 20 20 40 20 33 52.6406 20 10 10 20 10 10 112.6520

12 3 2 5 5 27 7.0625 20 10 10 20 15 61 120.5010
12 3 2 5 10 31 6.8281 20 10 10 20 20 77 140.4008

12 3 2 5 15 35 13.1563 20 20 10 30 5 75 100.0101

12 3 2 5 20 41 96.4036 20 20 10 30 10 56 119.9630
12 10 10 20 5 28 58.3906 20 20 20 40 15 56 130.2250

12 10 10 20 10 48 78.3594 20 20 20 40 20 88 135.3012

Example 2 (Randomly-generated problems). We run Algorithm 1 on random
instances of K scenarios of the SINP problem (1) with values K = 5; 15; 25; 35. We assume
that c ∈ Rn,d(k) ∈ Rm, b ∈ Rs, q(k) ∈ Rl and q(k) ∈ Rs, where the dimension of the problem
takes the values n = 10; 20; . . . ; 120, m = 5; 10; . . . ; 60, s = 5; 10; . . . ; 60, and l = 6; 12; . . . ; 72.
The parameters of Algorithm 1 are given as ε = 10−5, µ0, $ ∈ (0, 1), with µ0 > ε. For each
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Figure 4: Dot plots of the numerical results obtained for the stochastic uniform

facility location problem.

quintuple (m,n, s, l,K), we generate 48 instances each with A, c, b,W (k), T (k),d(k) and q(k)

chosen at randomly generated values for k = 1, 2, . . . ,K.
Algorithm 1 is performed with an accuracy ε = 10−5 for a number of two stage SINP
problems. By “Inn. Iter” we denote the required inner iteration numbers, by “Out. Iter”
we denote the required outer iteration numbers, and by “CPU(s)” we denote the CPU time
(in s) required to obtain an ε-approximate optimal solution of the underlying problem. The
numerical results of Algorithm 1 are displayed in Table 6 and are graphically visualized in

Figure 5. The initials of x0 and y(k)0 , for k = 1, 2, . . . ,K, were taken to be the unit vectors.

The implementation in Examples 1 and 2 shows Algorithm 1 is simple and efficient.

From the numerical results displayed in Tables 5 and 6 and visualized in Figures 4

and 5, we notice that the number of iterations and the CPU(s) using Algorithm 1 are

increasing when the number of scenarios K increases. We also find that the increase

in the number of iterations is not only influenced by the number of scenarios, but

also by dimensions of the underlying infinity norm cones. This totally agrees with the

theoretical findings stated in Theorems 3 and 4.

Finally, we point out that we have also used the solver CVX to solve Examples 1
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Table 6: Numerical results of Algorithm 1 for randomly-generated problems.

(m,n) (s, l) K Out. Iter. Inn. Iter. CPU(s)

(5,10) (5,6) 5 4 2 0.0312
(5,10) (5,6) 15 6 4 0.3125

(5,10) (5,6) 25 7 6 0.5000

(5,10) (5,6) 35 9 7 0.6468
(10,20) (10,12) 5 13 10 0.2806

(10,20) (10,12) 15 16 12 0.7343
(10,20) (10,12) 25 18 13 1.6406

(10,20) (10,12) 35 24 15 4.6718

(15,30) (15,18) 5 25 11 0.3906
(15,30) (15,18) 15 31 17 2.9062

(15,30) (15,18) 25 38 17 5.3750

(15,30) (15,18) 35 39 21 11.2812
(20,40) (20,24) 5 21 15 2.8280

(20,40) (20,24) 15 30 19 5.8106

(20,40) (20,24) 25 35 13 12.4610
(20,40) (20,24) 35 38 21 14.7969

(25,50) (25,30) 5 32 30 1.3562

(25,50) (25,30) 15 40 36 6.7975
(25,50) (25,30) 25 48 39 15.2818

(25,50) (25,30) 35 50 41 32.1023
(30,60) (30,36) 5 46 41 2.2904

(30,60) (30,36) 15 49 43 7.7344

(30,60) (30,36) 25 53 46 16.0625
(30,60) (30,36) 35 56 47 33.0156

(35,70) (35,42) 5 50 43 3.5625

(35,70) (35,42) 15 58 48 10.1406
(35,70) (35,42) 25 60 53 25.2969

(35,70) (35,42) 35 67 56 36.8125

(40,80) (40,48) 5 58 52 3.4219
(40,80) (40,48) 15 57 58 13.6531

(40,80) (40,48) 25 58 63 27.9250

(40,80) (40,48) 35 63 67 40.0190
(45,90) (45,52) 5 65 59 7.5938

(45,90) (45,52) 15 75 61 15.9956
(45,90) (45,52) 25 80 71 40.8125

(45,90) (45,52) 35 83 80 62.0750
(50,100) (50,58) 5 78 63 11.1875
(50,100) (50,58) 15 89 69 29.7969

(50,100) (50,58) 25 93 75 53.7813
(50,100) (50,58) 35 110 84 114.4688
(55,110) (55,64) 5 80 79 17.8125

(55,110) (55,64) 15 93 84 33.9375
(55,110) (55,64) 25 98 84 52.4063
(55,110) (55,64) 35 121 89 117.6875

(60,120) (60,72) 5 104 82 29.8594

(60,120) (60,72) 15 116 95 66.7813
(60,120) (60,72) 25 129 96 109.2031

(60,120) (60,72) 35 136 87 126.6250

and 2. We have found that Algorithm 1 has no remarkable superiority to CVX in



B. Alzalg, K. Tamsaouete 685

Figure 5: Three-dimensional plots of the numerical results obtained for

randomly-generated problems. The number of iterations results are shown to the left

(inner iter. is in light blue, and outer iter. is in light red). The CPU(s) results are

shown to the right.

terms of number of iterations or running time. It is our belief that this does not lower

the academic and practical value of this paper. Furthermore, when the number of

realizations and the ranks of the underlying cones are large (typically, more than 50

each), we have found that the results show a small tendency toward Algorithm 1.

Since the observed tendency is small and because we are keen to be cautious, we have

decided not to include these results in this section.
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7. Conclusions

In this paper, we have studied the two-stage stochastic infinity norm optimization

problem. We have developed a novel Jordan algebra specialized and associated

with the infinity norm cone. This allowed us not only to give explicit expressions

for the derivatives of the logarithmic barrier functions associated with the cone,

but also to specify the explicit barrier parameters for the self-concordant family

of the composite barrier functions. These properties opened the door to develop

primal decomposition-based interior-point algorithms for solving our optimization

problem. We have shown that the worst case iteration complexity of the developed

algorithms is the same as that for the short- and long-step interior-point algorithms

applied to the two-stage stochastic linear programming. More specifically, we have

found from our complexity results that the dominant complexity terms are linear in

the number of realizations and linear in the ranks of the underlying infinity norm

cones. We have seen that this exactly matches in terms of rank the best known

results in the literature for stochastic second-order cone programming and stochastic

semidefinite programming. Numerical experiments on stochastic uniform facility

location problems as well as randomly-generated problems have demonstrated that

the proposed algorithm not only has efficient worst case theoretical complexity, but

also gives a good performance in practice. Future work may be devoted to study the

two-stage stochastic first-order cone programming problem in which the underlying

cone is Cn1 .
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Appendix A: Complexity proofs

In this appendix, we present proofs for the complexity results stated in Section 6 that

bound the number of iterations. The general scheme of our proofs follows the lines of

the proofs from [16] and [5]. The proof of Theorem 3 for the short-step algorithm is

given in Sub-appendix A.1, and the proof of Theorem 4 for the long-step algorithm is

given in Sub-appendix A.2.

1. Complexity proof of the short-step algorithm

In this part, we show that the short-step algorithm takes only one inner iteration

when $ = 1 − ι/
√
n+Km where 0 < ι ≤ 0.0755. This value for $ is derived by
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using the parameter functions α1(µ), α2(µ), . . . , α5(µ) of the self-concordant family

{η(x, µ) : µ > 0} established in Theorem 2.
Let v be a positive parameter. Let also {fµ}µ∈R++

be a family of strongly self-
concordant functions with the parameters α1(µ), α2(µ), . . . , α5(µ). The v-metric
function associated with the family {fµ}µ∈R++

is denoted by ϕv(f ; t, τ) and is defined
as [21]

ϕv(f ; t, τ) , max
u,v∈[t,τ ]

∣∣∣∣∣ln
√
α1(u)α2(u)α3(v)√
α1(v)α2(v)α3(u)

∣∣∣∣+ 1

v

∣∣∣∣ ∫ τ

t
α4(w) dw

∣∣∣∣∣+

∣∣∣∣∫ τ

t
α5(w) dw

∣∣∣∣ .
Proof of Theorem 3. In the short-step algorithm, we update µi using µi+1 = $µi,
where $ = 1 − ι/

√
n+Km, and ι is a small positive constant. Firstly, we show

that if 0 < ι ≤ 0.0755, then the proximity condition can be restored with only one
inner iteration. By Theorem 2, the 2κ-metric function associated with the family
{ρ(x, µ) : µ > 0} is

ϕ2κ

(
η;µi, µi+1

)
=

1

2κ

∣∣∣∣ ∫ µi+1

µi

√
2((n− 1) +K(m− 1))

w
dw

∣∣∣∣+

∣∣∣∣ ∫ µi+1

µi

1 + 23/2
√
m− 1

2w
dw

∣∣∣∣
=

(√
2((n− 1) +K(m− 1))

2κ
+

1 + 23/2
√
m− 1

2

) ∣∣∣∣ ∫ µi+1

µi

1

w
dw

∣∣∣∣
=

(√
2((n− 1) +K(m− 1))

2κ
+

1 + 23/2
√
m− 1

2

)
ln

(
µi

µi+1

)

=

(√
2((n− 1) +K(m− 1))

2κ
+

1 + 23/2
√
m− 1

2

)
ln

(
1

$

)

=

(√
2((n− 1) +K(m− 1))

2κ
+

1 + 23/2
√
m− 1

2

)
ln

( √
n+Km

√
n+Km− ι

)
.

Assume we have that

δ
(
xi, µi

)
≤ κ, or equivalently

1

2
≤ 1−

1

2κ
δ
(
xi, µi

)
. (A1)

By [21, Theorem 3.1.1], we deduce that

ϕ2κ(η;µi, µi+1) ≤ 1− δ (xi, µi)

2κ
, which implies that δ(xi, µi+1) ≤ 2κ. (A2)

From the right-hand side inequality in (A2) and [21, Theorem 2.2.2(ii)], we have

δ
(
xi+1, µi+1

)
≤ 1

2
δ
(
xi, µi+1

)
. (A3)

Note that one Newton step can give δ(xi+1, µi+1) ≤ κ again if (A3) is combined with
the right-hand side inequality in (A2). Note also that the right-hand side inequality
in (A1) and

ϕ2κ

(
η;µi, µi+1

)
=

(√
2((n− 1) +K(m− 1))

2κ
+

1 + 23/2
√
m− 1

2

)
ln

( √
n+Km

√
n+Km− ι

)
≤

1

2

(A4)
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ensure that the left-hand side inequality in (A2) is satisfied. As a result, the inequality
in (A4) can give us an upper bound of ι. It is clear from (A4) that

ι ≤
√
n+Km

1− exp

 −1√
2((n− 1) +K(m− 1))

κ
+ 1 + 23/2

√
m− 1


 ≥ ψ(n+Km), (A5)

where ψ(·) is defined as

ψ(t) ,
√
t

1− exp

 −1

2

(
1 + 2

√
t− 1 +

√
t

2κ

)

 , for t ∈ [2,∞).

After a lengthy but not complex computation, one can find that ψ′′(t) < 0 on

[2,∞), ψ′(2) > 0, and limt→∞ ψ(t) = 0. This means that ψ(t) is an increasing

function on [2,∞), and hence ψ(t) ≥ ψ(2) > 0.0755, for any t ∈ [2,∞). In

particular, ψ(n + Km) ≥ ψ(2). Thus, for ι ≤ 0.0755, the left-hand side inequality

in (A5) is met ensuring that the number of inner iterations equals one. Because

ln$−1 = − ln(1 − ι/
√
n+Km) ≈ ι/

√
n+Km and due to the fact that the

number of outer iterations is given by N ≤ ln(µ0/ε)/ ln$−1, we conclude that with

O(
√
n+Km ln(µ0/ε)) outer iterations we can reduce µ0 to ε or less. The proof is

complete. �

2. Complexity proof of the long-step algorithm

The complexity proof of the long-step algorithm makes use of Theorems 2.1.1(i) and

2.2.3 in [21] and Lemma A.3 in [16]. We also define

φ(x, µ) , η(x, µ)− η(x?(µ), µ), (A6)

δ̃(x, µ) ,

√
1

µ
4̃xT∇2

xxη(x, µ)4̃x, where 4̃x , x− x?(µ). (A7)

The self-concordance family property of {η(x, µ) : µ > 0}, an upper bound on φ(x, µ),

and lower bound on the decrement of η(x, µ) per inner iteration are all employed in

the complexity analysis of long-step algorithm. We give some technical lemmas that

shall be used to derive the complexity result for the long-step algorithm.

Lemma 7. Let δ̃ , δ̃(x, µ) < 1 and φ(x, µ) be defined in (A6) and (A7). Then

∣∣∣∣ ∂∂µφ(x, µ)

∣∣∣∣ ≤ −√2((n− 1) +K(m− 1)) ln
(

1− δ̃
)
.



B. Alzalg, K. Tamsaouete 689

Proof By using the KKT condition for the first-stage problem, and applying the
fundamental theorem of calculus to ∂

∂µφ(x, µ), we have

∣∣∣∣ ∂

∂µ
φ(x, µ)

∣∣∣∣ =

∣∣∣∣ ∂

∂µ
η(x, µ)−

∂

∂µ
η(x(µ), µ)−

(
∇xη(x(µ), µ)

)T ∂

∂µ
x(µ)

∣∣∣∣
=

∣∣∣∣ ∂

∂µ
η(x, µ)−

∂

∂µ
η(x(µ), µ)

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

(
∂

∂µ
∇xη

(
x(µ) + α4̃x, µ

))T

4̃x dα

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ ( ∂

∂µ
∇xη

(
x(µ) + α4̃x, µ

))T

4̃x

∣∣∣∣ dα
≤
∫ 1

0

√
2((n− 1) +K(m− 1))

µ

√
4̃xT∇2

xxη

(
x(µ) + α4̃x, µ

)
4̃x dα

≤
∫ 1

0

√
2((n− 1) +K(m− 1))

µ

√
µδ̃

1 + (α− 1)δ̃
dα

= −
√

2((n− 1) +K(m− 1)) ln
(

1− δ̃
)
,

The second equality is founded on the fact that x(µ) is the optimal solution for the

first stage, it fulfills the optimality condition η(x(µ), µ) = 0. The second inequality

used Lemma 6, and we used Theorem 2.1.1(i) in [21] to obtain the third inequality.

The proof is complete. �

Lemma 8. If δ̃ , δ̃(x, µ) ≤ ζ, for ζ ∈ (0, 1), then

φ
(
x, µi+1

)
= η

(
x, µi+1

)
− η

(
x
(
µi+1

)
, µi+1

)
≤ O(n+Km)µi+1.

Proof By differentiating (A6), we have

∂2

∂µ2
φ(x, µ) =

∂2

∂µ2
η(x, µ)−

∂2

∂µ2
η(x(µ), µ)− (∇xη(x(µ), µ))T

∂

∂µ
x(µ)

≤ −
∂2

∂µ2
η(x(µ), µ)

= −
K∑
k=1

∂2

∂µ2
ρ(k)(x(µ), µ)

=

K∑
k=1

(
g

(k)T

y
∂

∂µ
y(k)? (x, µ)

)
=

1

µ

K∑
k=1

(
g

(k)T

y H
(k)−1/2

y

(
I − P

(k)
y

)
H

(k)−1/2

y g
(k)
y

)
≤

1

µ

K∑
k=1

(
g

(k)T

y H
(k)−1

y g
(k)
y

)
=

1

µ

K∑
k=1

((
Jmg

(k)
y

)
�

(
H

(k)−1

y g
(k)
y

))
=

1

µ

K∑
k=1

trace(em) =
2K(m− 1)

µ
.
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From Lemma A.3 in [16], we have φ(x, µi) ≤ (δ̃/(1− δ̃) + ln(1− δ̃))µi. It follows that

φ(x, µi+1) = φ
(
x, µi

)
+
(
µi+1 − µi

)
+

∂

∂µ
φ(x, µ)

∣∣∣∣∣
µ=µi

+

∫ µi

µi+1

∫ µi

α

∂2

∂t2
φ(x, t) dt dα

≤
(

δ̃

1− δ̃
+ ln

(
1− δ̃

))
µi −

(
µi − µi+1

)√
2((n− 1) +K(m− 1)) ln

(
1− δ̃

)
+ 2K(m− 1)

∫ µi

µi+1

∫ µi

α

1

t
dt dα

≤
(

δ̃

1− δ̃
+ ln

(
1− δ̃

))
µi −

(
µi − µi+1

)√
2((n− 1) +K(m− 1)) ln

(
1− δ̃

)
+ 2K(m− 1)

(
µi − µi+1

)
ln$.

The desired result is obtained since δ̃ ≤ ζ, µi+1 = $µi, and ζ and $ are constants.�

Now, we are ready to prove Theorem 4. The focus of this complexity proof is on

bounding the number of inner iterations.

Proof of Theorem 4. We use an arbitrary constant factor $ ∈ (0, 1) to decrease the
barrier parameter µ in the long-step variant of the algorithm. Each outer iterate
(xk, µi) satisfies (xk, µk) ≤ κ. Since $ is a constant, the number of outer iterations
required to reduce µ0 to ε is equal to ln(µ0/ε)/ ln$−1. We bound the number of inner
Newton iterations. We assume that after updating µk to µk+1, δ(xk, µk) > κ, and

that we start the inner loop by letting xk0 , xk. From [21, Theorem 2.2.3], at any
inner iterate xkj , if δ(xkj , µk+1) > 2κ, then

η
(
xkj , µk+1

)
− η

(
xk(j+1), µk+1

)
≥ µk+1

(
δ
(
xkj , µk+1

)
− ln

(
1 + δ

(
xkj , µk+1

)))
> 0.03µi+1.

That is, the difference is decreased by at least 0.03µk+1 at each inner Newton

iteration. On the other hand, Lemma 8 shows that η(xk, µk+1)− η(x?(µk+1), µk+1) ≤
O(n + Km)µk+1. When the difference is equal to or less than 2κ, by [21, Theorem

2.2.3], one Newton iteration will produce xkM with δ(xkM , µk+1) ≤ κ, then xk+1

is taken to be xkM and the inner loop is thus terminated. Thus, each inner loop

takes only O(n+Km) Newton iterations. This therefore bounds the total number of

Newton iterations at the order O((n+Km) ln(µ0/ε)). �
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