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ABSTRACT

Although classical control is still the workhorse in the majority of control engineering applications, it

is well recognized that this linear control method is not always the optimum way to deal with the

typical highly nonlinear complex plants. For such systems, the control problem is very complicated

and becomes even more difficult to deal with when parameters are unknown or uncertain.

Backstepping can be used to relax the matching condition, which blocked the traditional Lyapunov-

based design. A major advantage of backstepping is that it has the flexibility to avoid cancellations of

useful nonlinearities and achieve regulation and tracking properties. The tuning functions avoid the

overparametrization problem and reduce the dynamic order of the controller to its minimum.

This report presents new extension for the design and analysis of nonlinear system via backstepping

with tuning functions presented in (Krstic et al., 1995).In the new extension the system presents an

unknown virtual control which not constant. The control law is derived and the stability and

boundedness of the system is proved .The proposed scheme is applied in an area of engineering

systems that is one of the most challenged in nonlinear control systems, i.e. electro-hydraulic

actuators , it is used to track the load position and ensure a good transient performance .A single rod

electro-hydraulic servo actuator is used to demonstrate the effectiveness of the proposed controller.

Keywords: Adaptive backstepping control, tuning functions, electro-hydraulic servo system.
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RESUME

Bien que, le contrôle classique est le plus utilisé dans la majorité de contrôle des applications

d'ingénierie, il est bien reconnu que cette méthode de contrôle linéaire n'est pas toujours la meilleure

façon de commander les systèmes complexes non linéaire. Pour ces systèmes, le problème de contrôle

est très complexe et devient encore plus difficile à traiter lorsque les paramètres sont inconnus.

L’approche Backstepping peut être utilisée pour détendre l'état correspondant, qui étais bloqué par la

conception traditionnelle à base de Lyapunov. Un avantage majeur de backstepping, c'est qu'il a la

possibilité d'éviter les annulations de non-linéarités utile et améliorer les  propriétés de régulation et

de poursuite.

Cette thèse présente une nouvelle extension pour le design et l'analyse de système non-linéaire via

backstepping avec des fonctions de réglage présentées dans (Krstic et al., 1995). Dans la nouvelle

extension le système présente un contrôle virtuel inconnu et non constant. La loi de commande est

développée  et la stabilité est prouvée. Le plan proposé est appliqué dans un secteur des systèmes

d'ingénierie qui est un du plus défié dans des systèmes de commande non-linéaires, les actionneurs

électro-hydrauliques, il est utilisé pour suivre la trajectoire de la position de la masse et assurer une

bonne performance transitoire. Un actionneur  en simple tige électro-hydraulique est utilisé pour

démontrer l'efficacité du contrôleur proposé.

Mots-clés: Commande adaptative par backstepping, les fonctions de réglage, Systèmes électro-

hydraulique.
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Introduction

Engineering is concerned with understanding and controlling the materials and forces of

natures for the benefits of humankind. Control system engineering is concerned by understanding and

controlling segments of their environments (system) to provide useful products to society. The two

objectives of understanding and control are complementary because effective system requires that the

system be understood and modelled . Perhaps, the most characteristics quality of control engineering is

opportunity to control machines and industrial and economic processes for the benefit of the society.

Control engineering is based on the foundation of feedback theory and linear system analysis.

Therefore its applications are not restricted to any engineering area but it can be equally used

aeronautical, chemical, environmental, civil and electrical engineering, etc. Due to the increasing of

complexity of the system under control and the interest of achieving optimum performance, the

importance of the control system engineering has grown in the past decades. Furthermore as the

system becomes more and more complex, the interrelationship between variables must be considered

in control scheme. One of the reasons of the emergency of the adaptive control is its capability to build

systems capable to control unknown plants or adapting unpredictable changes in environment.

It  is  widely known that  the cost  of  computers  has dramatically dropped.  This  fact  has given arise  to

their integration as a part of the control systems. Therefore, the research in adaptive control algorithms

has increased and the application of the modern control theory are not strictly related to the

engineering, even with application in different sciences such a biology, biomedicine and economy.

While in this report we will be preoccupied with nonlinear systems, we must not forget that the control

of linear plants with unknown parameters was a formidable problem which took almost twenty years

to solve. By early 1980’s, several types of adaptive schemes were proven to provide stable operation

and  asymptotic  tracking.  We  refer  to  the  results  from  that  period  to adaptive linear control or

traditional adaptive control. Traditional adaptive schemes are classified as “direct” and “indirect” and

as “Lyapunov-based” and “estimation-based”. They involve parameter identification with “parameter

estimators” or “identifiers”. The vital part of identifier is parameter adaptation algorithm, commonly

referred us to “the parameter update law”. The direct-indirect classification reflects the fact that update
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parameters  are  either  those  of  the  control  (direct)  or  those  of  the  plant  (indirect).  According  to  this

classification all the schemes in the thesis are indirect.

The distinction between Lyapunov-based and estimation-based schemes is more substantial

and is dictated in part by the type of parameter update law and the corresponding proof of stability and

convergence. Lyapunov-based design is one of the oldest results of adaptive control. Until recently,

however, its applicability was restricted to linear plants with relative degree one or two. This

limitation has been removed by the recursive design procedures presented in [1], commonly referred to

as backstepping.

An important feature of traditional adaptive control is its reliance on "certainty equivalence"

controllers.  This  means  that  a  controller  is  first  designed  as  if  all  the  plant  parameters  were  known.

The controller parameters are determined as functions of the plant parameters. Given the true values of

the plant parameters, the controller parameters are calculated by solving design equations for model-

matching, pole-zero placement, or optimality. When the true plant parameters are unknown, the

controller parameters are either estimated directly (direct schemes) or computed by solving the same

design equations with plant parameter estimates (indirect schemes). The resulting controller, which is

either estimated (direct) or designed for the estimated plant (indirect), is called a certainty equivalence

controller. Such an approach has been studied extensively and a number of results have been

established [2-8]. Certain schemes have also been proposed to study the robustness issues in the

context of both single loop control [9-16] and decentralized control of multi-loop systems[17-

25].However, transient performance is difficult to be ensured with this approach.

 It is not at all obvious that a certainty equivalence controller will work inside an adaptive feedback

loop  and  achieve  stabilization  and  tracking.  Even  when  the  plant  is  stable,  bad  parameter  estimates

may yield a destabilizing controller. The situation is more critical when the plant is unstable, because

then the controller must achieve stabilization in addition to its tracking task. It is therefore significant

that certainty equivalence controllers have been proven to be satisfactory for adaptive control of linear

systems.

In spite of major advances in the development of adaptive control schemes for linear systems, they

have not yet become tools for systematic engineering design. Each adaptive scheme leaves up to the

designer the choice of various filters, design coefficients, initialization rules, and so on. It is still

unclear how the adaptive system's performance, especially its transient performance, depends on these

design choices. Certain research activity is aimed at providing the designer with clearer choices and

trade-offs between transient performance and robustness.

In the beginning of 1990s, a new approach called “backstepping” was proposed for the design of

adaptive controllers. Backstepping is a recursive Lyapunov-based scheme for the class of “strict
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feedback” systems.  In  fact,  when  the  controlled  plant  belongs  to  the  class  of  systems  transformable

into the parametric-strict feedback form, this approach guarantees global or regional regulation and

tracking properties. An important advantage of the backstepping design method is that it provides a

systematic procedure to design stabilizing controllers, following a step by-step algorithm. With this

method the construction of feedback control laws and Lyapunov functions is systematic. Another

advantage of backstepping is that it has the flexibility to avoid cancellations of useful nonlinearities

and achieve stabilization and tracking. A number of results using this approach has been obtained[26-

31].Research on decentralized adaptive control using backstepping approach has also received great

attentions, certain decentralized control results using such technique has been addressed [32-36]. Due

to a number of its advantages such as improving transient performance [1].Several applications have

been investigated in different industry fields [37- 41].

Electro-hydraulic actuator system has become one of the most important actuators in the recent

decades. It offers many advantages such as good capability in positioning, fast and smooth response

characteristics and high power density. Due to its capability in positioning, it has given a significant

impact in modern equipments for position control applications. Its applications in position control can

be found in production assembly lines, robotics, aircrafts equipments and submarine operations.

However, excellent positioning in these applications requires an accurate electro-hydraulic actuator.

Position tracking performance of an electro-hydraulic actuator can be assured when its robustness and

tracking accuracy are guaranteed. Therefore, the development of a suitable controller which could

reflect  robustness  and tracking accuracy is  very significant.  There are number of  problems appear  in

the position tracking performance of the system such as the highly nonlinear dynamics of hydraulic

systems [42]. The system may be subjected to non-smooth and discontinuous nonlinearities due to

control input saturation, directional change of valve opening, friction, and valve overlap. Valves also

contain non-measurable states (position and velocity). Aside from the nonlinear nature of hydraulic

dynamics, EHSS also have large extent of model uncertainties, such as the external disturbances and

leakage that cannot be modelled exactly; and the nonlinear functions that describe them may not be

known.

 In the past,  much of  the work in the control  of  hydraulic  systems uses linear  control  theory [43,  44,

45] and feedback linearization techniques (FL) [46, 47]. In [48], nonlinear adaptive control is applied

to the force control of an active suspension driven by a double-rod cylinder where only the parametric

uncertainties of the cylinder are considered. Adaptive sliding method has been also used, in [49] an

adaptive sliding mode controller combined with novel-type Lyapunov function has been developed to

compensate nonlinear uncertain parameters caused by the various original control volumes.

In [50] novel approach has decomposed the system into subsystems using graph theoretic

decomposition then back integrating to construct the Lyapunov function .
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 During the last decade, backstepping based design have emerged as powerful tools for stabilizing

nonlinear systems for tracking and regulation purposes [1]. An integrator backstepping is used to

construct a controller which includes the friction compensation. The exponential stability of the

resulting closed-loop system for the trajectory tracking is proved in the absence of both parametric

uncertainties and uncertain nonlinearities. Simulation and experimental results show that the proposed

nonlinear controller outperforms a PID controller [51, 52]. Zeng and Sepehri in [53, 54] presented an

adaptive backstepping control of hydraulic manipulators with friction compensation. A third-order

nonlinear dynamic model is used for the controller design while LuGre dynamic friction model

characterizes the friction forces. Choux in [55] has addressed an adaptive backstepping controller with

considering valve dynamics, the results show that this controller achieves significantly better tracking

performance than the PI controller, while handling uncertain parameters related to internal leakage,

friction, the orifice equation and oil characteristics.

In our work, we develop an adaptive backstepping controller for a complete fifth order dynamic model

of electro-hydraulic servo system, which includes the valve dynamics to handle internal leakage and

unknown friction in a cylinder, unknown volumes in the orifice equation and temperature dependent

oil characteristics in nonlinear hydraulic mechanical system. The friction force is assumed nonlinear

and the same as the practical assumption presented in [48, 52]. The developed controller handles

internal leakage and unknown nonlinear friction in the cylinder, unknown volumes in the orifice

equation and temperature dependent oil characteristics.

This report is organized as follows:

the first chapter presents a brief review of Lyapunov stability and its requirements,the idea of

backstepping is emphasized, then;  the adaptive backstepping with tunning function design is

discussed .

In the second chapter, the backstepping with tuning functions design for tracking  is presented in

detail. The advantage of tuning functions design over traditional certainty equivalence adaptive design

is emphasized, the issue of tracking performance is also discussed.

A new extension of the tuning function design is presented in the third chapter. The system considered

is frequent in various ranges of applications from electric motors and manipulator robots to flight

dynamics. The tracking objective is achieved as well as the stability and boundedness of states.

The fourth chapter presents an application of the new extension presented in previous chapter. The

model of electro-hydraulic servo system (EHSS) is described at first, then the adaptive backstepping

controller (ABC) is designed to achieve tracking performance. Simulation results demonstrate the

effectiveness of the proposed controller.
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In  the  last  chapter,  the  results  are  summarized  and  special  topics  are  discussed.  The  foreseen  future

improvements that can be done to the proposed controller and its applications are also discussed.
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Contents

Preliminaries

1.1 Stability

The concept of stability is concerned with the investigation and characterization of the behavior of

dynamic systems. Stability plays a crucial role in system theory and control engineering, and has been

investigated extensively in the past century. Some of the most fundamental concepts of stability were

introduced by the Russian mathematician and engineer Alexander Lyapunov in [57]. The work of

Lyapunov was extended and brought to the attention of the larger control engineering and applied

mathematics community by Krasovskii [58], Kalman and Bertram [59], and many others.

1.1 Stability…………………………………… 6
1.2 Control Lyapunov functions (clf)……….. 9
1.3 Backstepping………………………………. 10
1.4 Structural constraints…………………….. 13

Chapter 1

Control systems have one main goal to achieve, and that is the stability of the controlled

system. There are different kinds of stability problems which occur when studying dynamical

systems. Here we are concerned with stability of equilibrium points. Let us first briefly review

Lyapunov stability and formalize this requirement.
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In control systems, we are concerned with changing the properties of dynamic systems so that they can

exhibit acceptable behavior when they are perturbed from their operating point by external forces.

Stability is the primary requirement for adaptive control Systems. Stability concepts that are widely

used in control theory are Lyapunov stability and input-output stability. This chapter deals with

Lyapunov stability, which now briefly reviews [1, 56].

1.1.1 Lyapunov Stability [1]

Consider the time-varying System

																																																					 = ( ) 																																																																																																					(1.1)

where , and :	  is piecewisecontinuous in t and  locally  Lipschitz  in . The

solution of (1.1) which starts from the point  at time 0  is  denoted  as ( ; , ) with

( ; , ) 	 = . Lyapunov stability concepts describe continuity properties of ( ; , )with

respect to . If the initial condition  is perturbed to , then, for stability, the resulting perturbed

solution ( ; , )	 is  required  to  stay  close  to ( ; , ) for all > . In addition, for asymptotic

stability, the error ( ; , ) ( ; , ) is required to vanish as .So, the solution ( ; , )

of (1.1) is

bounded, if there exists a constant ( , ) > 0 such that

																																																	| ( ; , )| < ( , )	,							 																																																									(1.2)

stable, if for each > 0 there exists a ( , ) > 0 such that

																																						| | < | ( ; , ) ( ; , )| < 	 																															(1.3)

attractive, if there exist an ( ) > 0 and, for each > 0, a ( , ) > 0 such that

																											| | < | ( ; , ) ( ; , )| < 	 + 																											(1.4)

asymptotically stable, if it is stable and attractive;

unstable, if it is not stable.

The stability properties of ( ; , ) in generaldepend on the initial time . For different , different

values of ( , ), ( , ), ( ), and ( , ) may be needed to satisfy (1.2), (1.3) and (1.4). When

these constants are independent of , the corresponding properties are uniform. For adaptive systems,

uniform stability is more desirable than just stability
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1.1.2 Uniform Stability [1]

Let = 	0  be an equilibrium point of (1.1) and = { 		| | < . Let : be  a

continuously differentiable function such that 0, , such that

(| | ( , (| |)

+ 	 ( , ) (| |)

Then the equilibrium = 0 is

uniformly stable, if  and  are class  functions on [0, ) and (. ) 0 on [0, ).

uniformly asymptotically stable, if ,  and  are class  functions on[0, );

exponentially stable, if ( ) =  on [0, ), > 0, > 0, = 1, 2, 3;

globally uniformly stable, if , and  are class  functions, and (. ) 0 on ;

globally uniformly asymptotically stable, if ,  and  are class  functions, and

is a class of  function on ; and

globally exponentially stable ,if  and ( ) =  on 0 > 0, = 1, 2, 3.

1.1.3 LaSalle-Yoshizawa Theorem [1]

Let = 0 be an equilibrium point of a time varying system (1.1) and suppose  is locally Lipschitz in

uniformly in . Let : be a continuously differentiable function such that

																																																													 (| |) ( , ) (| |)																																																																(1.5)	

																																															 = +	 ( , ) ( ) 0																																																														(1.6)	

0,  where and are class  functions and is a continuous function. Then, all

solutions of (1.1) are globally uniformly bounded and satisfy

																																																																				 ( ( )) = 0																																																																											(1.7)	
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In addition, if ( )  is positive definite, then the equilibrium = 	0  is globally uniformly

asymptotically stable.

Proof. The proof of the above theorem is found in [1].

Now that we laid the foundation of Lyapunov stability the main question appearing is how to find

these functions. The theorems above do not offer any systematic method of finding these functions. In

the case of electrical or mechanical systems there are natural Lyapunov function candidates like total

energy functions. In other cases, it is basically a matter of trial and error.

The backstepping approach is so far the only systematic and recursive method for constructing a

Lyapunov function, along the design of the stabilizing control law. Yet, the system must have a lower

triangular structure in order to apply the method, as we will see later. Before we can explore this state-

of-the-art technique in adaptive control of nonlinear systems, we have to extend the systems handled

so far to those including a control input.

1.2 Control Lyapunov functions (clf)

Let us now add a control input and consider the system

																																																															 = ( , )																																																																																												(1.8)

Our main objective of this thesis is the design of a closed-loop system with desirable stability

properties, rather than to analyze the properties of the system itself. Therefore we are interested in an

extension of the Lyapunov function concept. This concept is called control lyapunov function and

labelled (clf) for convenience. Given the stability results from the previous section, we want to find a

control law

																																																																								 = ( )																																																																																							(1.9)

such that the desired state of the closed-loop system

																																																										 = , ( ) 																																																																																								(1.10)

is a globally asymptotically stable equilibrium point. Once again we consider the origin to be the goal

state  for  simplicity.  We  can  choose  a  function ( ) as a Lyapunov candidate, and require that its

derivative along the solutions of (1.10) satisfy ( ) 	 ( ), where ( )  is positive definite

function. Then closed loop stability follows from LaSalle’s theorem. We therefore need to find ( )

to guarantee that for all
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																																																										 ( ) = 	 , ( ) ( )																																																						(1.11)

The pair and must be chosen carefully otherwise (1.11) will not be solvable. This motivates the

following definition, which can be found in [1].

Control Lyapunov function (clf): A smooth positive definite and radially unbounded function

	  is called a control Lyapunov function (clf) for (1.8) if for every 	0

																																																										 ( ) = ( ) ( , ) 	0												 																																	(1.12)

The significance of this definition is in establishing the fact that, the existence of a globally stabilizing

control law is equivalent to the existence of a clf. If we have a clf for the system then we can certainly

find a  globally stabilizing control  law.  The reverse is  also true.  This  is  known as Artestin’s  theorem

and  can  be  found  in  [6].  Now  that  we  defined  the  concept  clf,  we  can  move  on  and  explore  the

backstepping theory, which is the main tool have been utilized in this thesis.

1.3 Adaptive backstepping and tuning functions

The main deficiency of the clf concept as a design tool is that for most nonlinear systems a clf is not

known. The task of finding an appropriate clf may be as complex as that of designing a stabilizing

feedback law. The backstepping procedure solves these two problems for us simultaneously.

Backstepping is a recursive Lyapunov-based scheme proposed in the beginning of 1990s. The

technique was comprehensively addressed by Krstic, Kanellakopoulos and Kokotovic in [1]. The idea

of backstepping is to design a controller recursively by considering some of the state variables as

“virtual controls” and designing for them intermediate control laws. Backstepping achieves the goals

of  stabilization  and  tracking.  The  proof  of  these  properties  is  a  direct  consequence  of  the  recursive

procedure, because a Lyapunov function is constructed for the entire system including the parameter

estimates.

1.3.1 First Lyapunov based example

Let us start this section applying the Lyapunov-based approach to the adaptive control problem for

nonlinear plant
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																																																																		 = + 																																																																																				(1.13)

where  is control and  is unknown constant. In this procedure we seek a parameter update law for the

estimate

																																																																 = , 																																																																																									(1.14)

which, along the control law = , , will make the Lyapunov function

																																																													 , =
1
2

+
1
2

( ) 																																																												(1.15)

nonincreasing function of time

To this end, we express  as function of and seek ,  and ,  to guarantee that

with > 0, namely

																																																																						 = +

																																																																											= ( + ) +

																																																																											= + + 																																																				(1.16)

The requirement  impose the following condition of the choice of an update law  and a

control law for:

																																																			 + + 																																																																	(1.17)

To eliminate the unknown parameter , a possible choice of the update law is = , that is

																																																																							 = 																																																																																									(1.18)

So that (1.17) reduces to

																																																																						 + 																																																																						(1.19)

The condition allows us to select ,  in various way. One of them are, for example,

																																																																							 																																																																										(1.20)
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1.3.2 Backstepping preview with a generic third order system

Consider now, for example, the class of pure feedback system

																																																							 = + ( )

																																																							 = + ( , ) 																																																																													(1.21)

																																																							 = + ( , , ) 																																

Where  is constant and unknown.

The idea of backstepping is to design a controller for (1.21) recursively by considering some of the

states variables as virtual controls and designing for them intermediate control laws. In (1.21) the first

virtual control is . It is used to stabilize the first equation as a separate system. Since  is unknown,

this task is solved with an adaptive controller consisting of the control law ( ) and the update law

= ( ), as in the previous example.

In the next step the state  is the virtual control which is used to stabilize the subsystem consisting of

the first two equations of (1.21).

This is again an adaptive control task, and a new update law is to be designed.

However an update law = ( ) has already been designed in the first step and this does not seem to

allow any freedom to proceed further. We can treat this in two ways:

Adaptive backstepping with overparametrization. In  this  case the parameter  in the

second equation of (1.21) is treated as a new parameter and assigns to it a new estimate with a

new update law. As result, there are several estimates for the same parameter

(overparametrization).

Adaptive backstepping with tuning function. The overparametrization is avoided by

considering that in the first step = ( ) is not an update law but only a function ( ). This

tuning function is used in subsequent recursive steps and the discrepancy ( ) is

compensated with additional terms in the controller. Whenever the second derivative  would

appear, it is replaced by the analytic expression for the first derivative of ( ).
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1.4 Structural constraints

The main topic of this work is the design of feedback controllers for nonlinear systems with unknown

constant parameters. The most important design specification is to achieve asymptotic tracking of a

known reference trajectory with the strongest possible form of stability. Another key requirement is

that the designed controller should provide effective means for shaping the transient performance and

thus allow different performance robustness trade-offs. The stated design problem of the largest

classes of nonlinear systems is solvable with either state feedback or output feedback controllers.

1.4.1 Full State Feedback Form

Backstepping tools will now be employed to form systematic design procedures for general classes of

nonlinear Systems. In increasing order of complexity, the classes considered are strict-feedback

systems, pure-feedback systems, and block-strict-feedback systems.

State feedback solutions are given for the so-called class of “parametric pure-feedback Systems.” They

are  first  presented  for  the  subclass  of "parametric strict-feedback systems" for which the achieved

stability and tracking properties are global.

																																																										 = + ( )

																																																									 = + ( , )

																																																										 										

																																																							 = + ( , )

																																																							 = + ( ) 																																																																																			(1.22)	

where = [ , ] , the vector is constant and unknown, , = 1, … , are

known nonlinear functions, and the high frequency gain  is an unknown constant.

By analogy with linear systems, strict feedback systems are also called “triangular”.

1.4.2 Output Feedback Form

Output feedback solutions are restricted to a narrower class of minimum phase systems in which the

non-uncertainties depend only on the output variable.
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																																																											 = + ( )

																																																															

																																																										 = + ( )

																																																									 = + ( ) + 																																																																(1.23)

																																																											

																																																								 = + ( ) +

																																																								 = ( ) + 																																																													

																																																									 = 	

where , , 	and 	,	 are system states, output and input, the vector is constant and

unknown, ( , = 1, … , are known nonlinear functions ,and , are unknown

constants.

Both designs of backstepping achieve the goals of the stabilization and tracking. The proof of these

properties is a direct consequence of the recursive procedure during which a Lyapunov function is

constructed for the entire system, including the parameter estimates.

The tuning functions approach is an advanced form of adaptive backstepping. It has the advantage that

the dynamic order of the adaptive controller is minimal. The dimension of the set to which the states

and parameter estimates converge is also minimal.
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Tuning Functions Design

For Nonlinear Systems

However, the main advantage of tuning functions design over traditional certainty equivalence

adaptive design is in the transient performance. The nonlinear control law which incorporates the

parameter update law keeps the parameter estimation transient from causing bad tracking transients.

The performance bounds obtained for the tuning functions scheme are computable and can be used for

systematic improvement of transient performance.

2.1 Tuning Functions Design

The adaptive backstepping solution to the problem of nonlinear stabilization and tracking in the

presence of unknown parameters is a starting point for more elaborate adaptive designs which lead to

new properties of the designed controller and the resulting feedback system.

2. 1 Tuning Functions Design..………….....…… 15
2.2 Stability Analysis ………………………...… 27
2.2 Illustrative example ………………………… 28

We now present an approach of adaptive control of nonlinear system via backstepping tuning

functions control design. This design removes several obstacles from adaptive nonlinear

control. Since the design is based on single Lyapunov function incorporating both the state of

the error and the update law, the proof of global uniform stability is direct and simple.

Moreover, all the error states except for the parameter error converge to zero.

Chapter 2
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One of the improvements to be achieved with the tuning functions design in this chapter is the

reduction of the dynamic order of the adaptive controller to its minimum: The number of parameter

estimates is equal to the number of unknown parameters. This minimum-order design is advantageous

not only for implementation, but also because it guarantees the strongest achievable stability and

convergence properties

In the tuning functions procedure the parameter update law is designed recursively. At each

consecutive step we design a tuning function as a potential update law. In contrast to adaptive

traditional backstepping with overparametrization, these intermediate update laws are not

implemented. Instead, the controller uses them to compensate for the effect of parameter estimation

transients. Only the final tuning function is used as the parameter update law.

In this section, we will consider unknown parameters which appear linearly in system equations. An

adaptive controller is designed by combining a parameter estimator, which provides estimates of

unknown parameters, with a control law. The parameters of the controller are adjusted during the

operation of the plant. In the presence of such parametric uncertainties, the adaptive controller is able

to ensure the boundedness of the closed-loop states and asymptotic tracking. The following are

standard results and can be found in [1] and [61]. To illustrate the idea of adaptive backstepping, let us

first consider a class of nonlinear system as in the following parametric strict-feedback form ([1], sec.

4.3).

																																															 = + ( )

																																															 = + ( , ) 																																																																																							(2.1)

																																																					 						

																																															 = + ( , )

																																															 = ( ) + ( ) 																																												

where = [ , ] , the vector , is a vector of unknown constant parameters,

= [ , … , ] and ( )  are known smooth nonlinear functions taking arguments in , and

( 0, .

For the development of control laws, the following assumption is made

Assumption 1: The reference signal and its first  order derivative areknown, piecewise

continuous and bounded.
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The control objective is to force  to asymptotically track the reference output ( ).

2.1.1 Design Procedure

We will start by adaptively stabilizing the first equation of (2.1) considering to  be  its  control.  At

each subsequent step we will augment the designed subsystem by one equation. At the ith step, an ith-

order subsystem is stabilized with respect to a Lyapunov function  by the design of a stabilizing

function  and a tuning function . The update law for the parameter estimate ( ) and the adaptive

feedback control  are designed at the final step. The third step is crucial for understanding the general

design procedure [1].

Step 1. Introducing the first two error variables

																																																																						 = 																																																																																			(2.2)

																																																																						 = ( )																																																																					(2.3)

We rewrite = + ( ) , the first equation of (2.1), as

																																																											 = + 1( ) 																																																																								(2.4)

where, for uniformity with subsequent steps, we have defined the first regressor vector as

																																																												 ( 1) = 1( 1)																																																																													(2.5)

Our task in this step is to stabilize (2.4) with respect to the Lyapunov function

																																																																									 =
1
2

+
1
2

																																																															(2.6)

where  is a positive definite matrix.

whose derivative along the solutions of (2.4) is

																									 =

																															= ( + + 1 ( 1 )											

																															 ( 1 ) + 																																																																																		(2.7)
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We can eliminate  from , with the update law = ,where

																																												 ( ) = 1( ) 																																																																																																	(2.8)

If  were our actual control, we would let 0, that is, . Then to make , we

would choose

																																																									 , 1( ) 																																																															(2.9)

Since  is not our control we have 0, and we do not use = , as an update law. Instead, we

retain as our first tuning function and tolerate the presence of  in :

																																												 + ( )																																																													(2.10)

The second term  in  will be cancelled at the next step. With , as in (2.9), the -system

becomes

																																																										 + + 1( ) 																																																														(2.11)

Step 2. We now consider that  is the control variable in the second equation of (2.1). Introducing

																																																															 = ( )																																																																										(2.12)

We rewrite = + ( , )  as

																																								 	 = + + 2 , , 																							(2.13)

where the second regressor vector  is defined as

																																																			 ( 1, 2, ) = 1

1
																																																									(2.14)

Our task in this step is to stabilize the ( , )-System (2.11), (2.13) with respect to

																																																																									 = +
1
2

																																																																										(2.15)
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whose derivative along the solutions of (2.11), (2.13) is

																			 + + + + 2

																															+ + 2 																																																																																													(2.16)	

We can eliminate from with the update law = , where

																																																													 , , = + 2 																																																																	(2.17)

If  were our actual control, we would let 0, we would achieve , we would

choose by designing  to make the bracketed term multiplying  in (2.16) equal to , namely

																															 , , = 	 + 2 		+ + 																			(2.18)

We retain  as our second timing function in the term , which replaces  in (2.18). However, we

do not use =  as an update law, so that: the resulting  is

																					 + + + 																														(2.19)

The first two terms in , are negative definite, the third term will be cancelled at the next step, while

the discrepancy between , and  in the last two terms remains. By substituting (2.18) into (2.13),

the ( , )-subsystem becomes

																				 = 1 + 1

2
+

0

+ 																																														(2.20)

Step 3. Proceeding to the third equation in (2.1) we introduce

																																																																	 = ( )																																																																								(2.21)

and rewrite = + ( , , )  as
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								 = + + + 3 , , , 								(2.22)

where the third regressor vector is defined as

																																												 ( 1, 1, 3, ) = 2

1

2

2
																																								(2.23)

Our task in this step is to stabilize the ( , , )-system with respect to

																																																																						 = +
1
2

																																																																													(2.24)

whose derivative along (2.22) and (2.23) is

																						 + + + + 3

																																		+ [ + + + ( + ) + 3 ]

																																																																																																																																																																(2.25)

We can eliminate from  with the update law = , where  is our tuning function

																																																	 , , , = + 3 = [ 1, 2, 3] 																								(2.26)

If  were our actual control, we would let 0, we would achieve , we

would choose by designing  to make the bracketed term multiplying  equal to , namely

																												 = 	 + + + ( ( ) + ( ))

																																							 3 + + 																																																																																											(2.27)

where  is a correction term yet to be chosen. Substituting (2.26) into (4.24), and noting that

																								 	 2 = 2 3 3

																																									= 3 3 																																																																																											(2.28)
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(2.24) is rewritten as

																					 +	+ 3 +

																														+ + + 																																													(2.29)

Step i, Repeating the procedure in a recursive manner, we derive the i-th tracking error for

																		 = + + 	 ( )
( ) 																										(2.30)

Where the i-th regressor is

																																																		 , , , ( 2) = 1
1

=1

																																										 (2.31)

We select the stabilizing function

																											 + + + ( )
( ) +

																																																																																																																																																											(2.32)

and tuning function

																																																									 	 = + 																																																																																					(2.33)

Our task in this step is to stabilize the ( , … , )-system with respect to

																																																																 = +
1
2

																																																																																(2.34)

Its derivative is given as
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																	 + +

																											+ + 																																																			(2.35)

and represent the ( , … , )-subsystem as

																											 =

1 0									 … 0 																			0
1 1 + … 	 															0

0

0
0 0

…
…

,
0

																		0
1 + , 0

							1
1 										

																																				+
1

2

+

0
,

,
+

0

0 +

0

																																									(2.36)

where

																																																																		 																																																																								(2.37)

Now the correction term is chosen as

																																															 , … , , = , 																																(2.38)

Because we do not use = , as an update law, the resulting  , is

																 + + ( ) +

																																																																																																																																																														(2.39)

and the ( , … , )-subsystem becomes
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																											 =

1 0									 … 0 																			0
1 1 + … 													0

0

0
0 0

…
…

,
0

																		0
1 + , 0

							1
1 										

																																					+
1

2

+
0

0 +

0

																																																															(2.40)

Step n. At the final step, we introduce

																																																					 = ( )																																																																										(2.41)

and rewrite = ( ) + ( )  as

																					 = ( ) + + ( )
( ) ( )

																																																																																																																																																																														(2.42)

where the last regressor vector is defined as

																																													 , , , ( ) = 1
1

=1

																																																		(2.43)

In this equation, the actual control input is at our disposal. We are finally in the position to design our

actual update law =  and feedback control  to stabilize the full z-system with respect to

																																																											 = +
1
2

=
1
2

+
1
2

																																												(2.44)

Our goal is to make  nonpositive:
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											 + + +

																						+ + + ( )
( ) 								(2.45)

To eliminate  from  we choose the update law

																																																		 = ( , ) = 1 +

																																																											= , 																																																																																		(2.46)

where the regressor matrix is composed of the regressor vectors , … , :

																																																											 , = [ 1, … , ]																																																																(2.47)

We choose the control  to make the bracketed term multiplying equal to	  :

																					 =
1

	 1 + + + )																								(2.48)

where  is a correction term yet to be chosen. With (2.48).  becomes

																									 + + 																																													(2.49)

Then, noting that

																											 	 1 = 1

																																																= 																																																																																																									(2.50)

We rewrite   as
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																										 + 																																																										(2.51)

Now the correction term  is chosen as

																																										 , = = , 																																																			(2.52)

We have thus reached our goal :

																																																													 																																																																																		(2.53)

The overall closed-loop system is

																																																										 = , + , 																																																															(2.54)

																																																					 	 = ( , ) 																																																																														(2.55)

where

																 =

1 0									 															… 									0
1 1 + …

0

0 … ,

1 + ,

																																																					(2.56)	

We can summarize the tracking tuning function design for nonlinear system as follows :

Coordinate transformation

																																																						 = ( )																																																																													(2.57)

Regressor

																						 , , , ( 2) = 1
1

=1

																													 = 1, … , 																								(2.58)
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Tuning functions:

																											 , , ( ) 	= + 	,																															 = 1, … , 																																				(2.59)

Stabilizing functions:

														 , , ( ) + + ( + ( )
( ))

																																												+ + 																																																																									(2.60)

						 = ( , … , ),				 ( ) = ( , , … , ( ))

Adaptive control law:

																																																					 =
1
( ) , , ( ) + ( ) 																																																					(2.61)

Parameter update law:

																																																		 = , , ( 1) 																																																																												(2.62)

Remark:

The design for set-point regulation is only a minor modification of the tracking procedure (see [1]; sec

4.2). As before, the first z-variable is the tracking error = .However, because the reference

signal  is a constant, its derivative disappears in the definition of the i-th error state , = 1, … , .

The only change this creates in the design is the elimination of the term ( )
( )  in the

definition of
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2.2 Stability Analysis

For the adaptive scheme developed in the previous subsection, we establish the following results.

Theorem 2.1 [1]:

The closed-loop adaptive system consisting of the plant (2.1), the controller (2.61), and the update law

(2.62) has a globally uniformly stable equilibrium , = 0 and ( ) = 0 which means, in

particular, that global asymptotic tracking is achieved :

																																																																				 [ ( ) ( )] = 0																																																																(2.63)

Moreover, if ( )( ) = 0,				 = 0, … , 1 and (0) = 0, then ( ) = 0.

Proof. Denote = min . The derivative of the Lyapunov function

																																																																					 =
1
2

+
1
2

																																																															(2.64)

along the solutions of (2.61) and (2.62) is

																																																													 	 |z| 																																																																				(2.65)

which proves that the equilibrium , = 0  is globally uniformly stable. From the LaSalle-

Yoshizawa theorem (Theorem 2.1), it further follows that, as , all the solutions converge to the

manifold 	 = 	0 . From the definitions in (2.57)-(2.58) we conclude that, if ( )( ) = 0, =

0, … , 1 and (0) = 0, then ( ) = 0.

The proof of Theorem 2.1 reveals the stabilization mechanism employed in the tuning functions

design. The update law is chosen so as to make the derivative of the Lyapunov function nonpositive.

The update law is fast because it does not use any form of normalization common in traditional

certainty equivalence adaptive control. The speed of adaptation is dictated by the speed of the

nonlinear behavior captured by the Lyapunov function. The tuning functions controller incorporates

the knowledge of the update law and eliminates the disturbing effect of the parameter estimation

transients on the error system. The controller and the update law designs are interlaced.
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2.3 Illustrative Example

We consider the following second order nonlinear system.

																																																	 = +

																																																		 = + 																																																																																																(2.66)

where = [ , 0], = [0, ],, = [ , ]  and = 1, = 2. The objective of the controller is

to make the first state 	track a desired reference and stabilize system (2.66). The controller (2.61) is

implemented

Our control objective is to asymptotically track a given reference 	( ) with the first state 	. We use

the error variables

																																																														 = 																																																																																									(2.67)

																																																														 = ( )																																																																											(2.68)

And derive the stabilizing functions

																																																						 																																																																																																		(2.69)

																																																						 + ( ( ))																																													(2.70)

The design procedure from Section 4.5.1 results in an adaptive controller consisting of the control law

																																																																			 = + ( )																																																																																	(2.71)

Tuning functions :

																																																											 	= 1 																																																																																															(2.72)

																																																											 	 = 1 + ( 2 + ) 																																																																		(2.73)

and the update law:
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																																																													 = 2																																																																																												(2.74)

The design parameters are chosen = 1	, = 1,2  . The tracking of the reference signal

	( ) = sin	(2 ) and its related control effort are presented in Fig 2.1 and Fig 2.2 respectively.
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The controller designed in this section achieves the goals of stabilization and tracking. The

proof of these properties is a direct consequence of the recursive procedure, because a Lyapunov

function is constructed for the entire system including the parameter estimates. The

overparametrization problem is overcomed by using tuning functions. The number of parameter

estimates are equal to the number of unknown parameters.
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Fig 2.3 controller input of the system using (2 ) as reference input
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In [1] an adaptive backstepping design was presented for the class of parametric strict-feedback

systems and it was extended to a three specific models strict-feedback systems with unknown virtual

control coefficients, block-strict-feedback systems and parametric pure-feedback systems. We extend

the design to a modified model of the first case. The description of the model considered for this

extension is presented in the next part.

3.1 Problem Formulation

The system presented is for the class of parametric strict-feedback with unknown virtual control and

has an unknown virtual function in the m-th order, the high frequency gain is considered and assumed

with known sign.

3. 1 Problem Formulation…...……………...… 31
3.2 Design procedure…..……………………… 32
3.3 Error System Calculation …..……..……. 35
3.4 Stability Analysis…………...…………….. 36

In this chapter, we develop a new extension of the adaptive backstepping design presented in

[1]. The specific model is presented at first, it is frequent in various range of applications from

electric motors and manipulator robots to flight dynamics. The tracking objective is achieved

as well as the stability and boundedness of states.

Chapter 3
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The new extension is applied to the system of the form:

																								 = + ( , ) ,																									 = 1, … , 1, + 1, … , 1

																								 = ( ) + ( , )

																							 = + ( ) 																																																																																																																(3.1)

where = [ , ] , the vector ,  is  a  vector  of  unknown  constant  parameters  ,

= [ , … , ] and ( )	; = [ , ]	are known smooth nonlinear functions taking arguments

in , and ( 0, .

In equation (3.1)  and , < .  are  the  two  unknown  coefficients.  From  step  , the design

procedure for this case differs considerably from the procedure in chapter 2.

For the development of control laws, the following assumptions are made

Assumption 1: The reference signal and its first  order derivative are known, piecewise

continuous and bounded.

Assumption 2: The sign of  and  are known.

Assumption 3: The nonlinear function ( ) is known, piecewise continuous, derivative and bounded.

3.2 Design Procedure

We now need ,  and  the estimates of , = 1 and = 1  respectively. The

estimate  and  are introduced to avoid the division by (t) or (t)which can occasionally take

value zero. The new complete design procedure is given by the following expressions (which

= 0, = 0, = 0):

Coordinate transformation:

																														 = ( ),																											 = 1, … , 																																																						(3.2)

																												 = 1 ( )
( 1),																	 = + 1, … , 																																													(3.3)
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Regressor:

																								 = 1
1

=1

,																																																																			 = 1, … , 																(3.4)

																							 = +1 (
( )

( ) + )
=1

																																							= 	 (
1
( )

) ( )

																									 	 =

1

=1

	 (
1
( )

) ( 1)
1

=1

,					 = + 1, … , 													(3.5)

Tuning functions for :

																													 	= + 	,																																																																								 = 1, … , 																						(3.6)

Tuning functions for :

																				 = 																																																																																																																																		(3.7)

																				 = (
( )

( ) + ) ( )

																										= ( )
1
( )

( ) ( ) 	

																																																																																																																																			 = + 1, … , 																(3.8)

Stabilizing functions:

																																																						 , , ( ) = ,																																		 = 1, … , 1																						(3.9)

																																								 , , ( ) , =
( )

,																																																																							(3.10)

																																						 , , ( ), , = ,																																			 = + 1, … , 																		(3.11)
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													 		 + +

																											+ + ( )
( ) ,																																							 = 1, … , 														(3.12)

														 			 ( ) + + ( )

																																	+ 	+
( )

( ) + + +1 + ( )
( )

																																		+ (
1
( ) + ( ) +

1
( ) )

																																				+
1
( )

( ) ( ) 																																																																																		(3.13)

																 							 + + + ( )

																																		+ ( )
( ) + + + (

( )

( ) + )

																															+ (
1
( ) +1 + +1

=1

( 1) +
1
( )

=1
+1)

																																			+
1
( )

( ) ( ) + ,	

																																																																																																																													 = + 2, … , 																				(3.14)

Adaptive control law :

																																																																												 = 	( + ( )
( ))																																																						(3.15)
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Parameter update law:

																																	 = 																																																																																																																										(3.16)

																																		 = = +1
1

= +1
+1 																																															(3.17)

																																				 ( )( + ( )) 																																																																												(3.18)

																																				 ( )( + ( )) 																																																																																(3.19)

3.3  Error System

In this subsection, we illustrate the error system results during the design of each step of the adaptive

backstepping controller (see Appendix A).

+ + +

																																																																																																																																	 = 1, … , 1																(3.20)

			 + ( ) + +

															 + ( ) + ( ) 																																																																																																					(3.21)

		 +1 	 +1 +1 , +1
=2

+2 + +1,
= +2

																					+ + (
1
( )

( ) ) ( ) 																																																																(3.22)

							 + + +

																	
1
( )

( ) ( ) 	,															 = + 2, … , 1													(3.23)



                                                                                3. New Extension Design

36

							 							 + + ( + ( )
( ))

																								
1
( )

( ) ( ) 	,																																																											(3.24)

where  is defined for = + 1, … ,  as

=

0, = 1

,							 = 2, … , + 1

+ 												 = + 2, … , 1

																																							(3.25)

3.4 Stability Analysis

A Lyapunov function for this system is

																											 =
1
2

+
1
2

+	
1

2
+

| |
2

+
| |
2

																																																	(3.26)

The derivative is:

																		 = + + + +
| |

+
| |

																																																			(3.27)

Its derivative along the solutions of (3.16)-(3.19) and (3.20)-(3.24),

																			 	 0																																																																																																																					(3.28)

From  the  La  Salle’s Theorem (chapter 1), this Lyapunov function provides the proof of uniform

stability, such that ,…, ,  , and  are bounded and , 	 0	, = 1, … , . This further implies

that lim ( ) = 0. Since = + ,  is also bounded from the boundedness of  and

. The boundedness of  follows from boundedness of  and and the fact that = + +

. Similarly, the boundedness of 	, ( = 3, … , )  can be ensured from the boundedness of
( ) , ,  and ( ) .Combining this with (3.15) we conclude that the control ( )  is also

bounded.Therefore boundedness of all signals and asymptotic tracking is achieved.
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Application to

Electro-Hydraulic Servo System

The proposed controller handles internal leakage and unknown nonlinear friction in the cylinder.

Simulation results are presented verifying the effectiveness of the developed controller.

4.1 Introduction

When closed-loop hydraulic control systems first began to appear in industry, the applications were

generally those in which very high performance was required. While hydraulic servo systems are still

heavily used in high-performance applications such as the machine-tool industry, they are beginning to

gain wide acceptance in a variety of industries. Examples are material handling, mobile equipment,

plastics, steel plants, mining, oil exploration and automotive testing.
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4.2 Adaptive Backstepping Controller Design ....... 45
4.3 Stability Analysis……..…………………….... 50
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In this chapter the non-linear dynamic model of electro-hydraulic servo system is presented. A

complete fifth order nonlinear dynamic with considering the valve dynamics which achieves the

tracking performance is presented [55], the friction force is nonlinear. An adaptive

backstepping controller is developed that ensure the tracking error signals asymptotically

converge to zero despite the uncertainties in the system.

Chapter 4
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Closed loop servo drive technology is increasingly becoming the norm in machine automation, where

the operators are demanding greater precision, faster operation and simpler adjustment. There is also

an expectation that the price of increasing the level of automation should be contained within

acceptable limits.

4.1.1 What is a servo?

In its simplest form a servo or a servomechanism is a control system which measures its own output

and  forces  the  output  to  quickly  and  accurately  follow a  command  signal.  In  this  way,  the  effect  of

anomalies  in  the  control  device  itself  and  in  the  load  can  be  minimized  as  well  as  the  influence  of

external disturbances. A servomechanism can be designed to control almost any physical quantities,

e.g. motion, force, pressure, temperature, electrical voltage or current.

4.1.2 Technology comparisons

The potential for alternative technologies should be assessed in the light of the well-known capabilities

of electro-pneumatic and electro-mechanical servos. High performance actuation system is

characterized by wide bandwidth frequency response, low resolution and high stiffness. Additional

requirements may include demanding duty cycles and minimization of size and weight. The last

mentioned requirements are of special interests in aerospace applications. The most important

selection criteria can be summarized as follows:

Customer performance

  Cost

 Size and weight

Duty cycle

Environment: vibration, shock, temperature, etc.

The performance available with electro-hydraulic servos encompasses every industrial and aerospace

application. As indicated in Figure 4.1 electro-hydraulic servos will cover applications with higher

performance then electro-mechanical and electro-pneumatic servos. This is easily explained because

electro-hydraulic servo systems have been designed and developed to accomplish essentially every

task that has appeared.

The figure indicates that applications in the lower range of power and dynamic response may also be

satisfied  with  electro-pneumatic  servos.  However,  the  best  choice  is  always  determined  by

considerations, such as those selection criteria discussed above.
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In most applications the aspect of cost is generally dominant. Experience indicates that electro-

mechanical or electro-pneumatic actuators tends to have lower cost than electro-hydraulic actuators in

the low performance range. This cost difference rapidly dissipates for applications that require high

power and/or high dynamic response.

In comparing costs, one must be careful to consider the total cost of entire servo-actuation system. The

higher cost of an electro-hydraulic servo often results from the power conversion equipment needed to

provide high pressure fluid with low contamination level. It is also clear that the relative cost of an

alternative actuation system designed for a specific application will depend, primarily, on the actuation

power level.

4.1.3 Capabilities of electro-hydraulic servos

When rapid and precise control of sizeable loads is required an electro-hydraulic servo is often the best

approach to the problem. Generally speaking, the hydraulic servo actuator provides fast response, high

force and short stroke characteristics. The main advantages of hydraulic components are.

Easy and accurate control of work table position and velocity

Good stiffness characteristics

Zero backlash

Fig 4.1 Typical performance characteristics for different types of servo actuators
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Rapid response to change in speed or direction

Low rate of wear

There are several significant advantages of hydraulic servo drives over electric motor drives:

- Hydraulic drives have substantially higher power to weight ratios resulting in higher machine

frame resonant frequencies for a given power level.

- Hydraulic actuators are stiffer than electric drives, resulting in higher loop gain capability,

greater accuracy and better frequency response.

- Hydraulic  servos  give  smoother  performance  at  low  speeds  and  have  a  wide  speed  range

without special control circuits.

- Hydraulic systems are to a great extent self-cooling and can be operated in stall condition

indefinitely without damage.

- Both hydraulic and electric drives are very reliable provided that maintenance is followed.

- Hydraulic servos are usually less expensive for system above several horsepower, especially if

the hydraulic power supply is shared between several actuators.

4.1.4 Configuration of an electro-hydraulic servo

The basic  elements  of  an electro-hydraulic  servo are shown in Figure 4.2.  The output  of  the servo is

measured with a transducer device to convert it to an electric signal. This feedback signal is compared

with the command signal. The resulting error signal is then amplified by the regulator and the electric

power amplifier and then used as an input control signal to the servo valve. The servo valve controls

the fluid flow to the actuator in proportion to the drive current from the amplifier. The actuator then

forces the load to move. Thus, a change in the command signal generates an error signal, which causes

the  load  to  move  in  an  attempt  to  zero  the  error  signal.  If  the  amplifier  gain  is  high,  the  output  will

vary rapidly and accurately following the command signal.

External disturbances (forces or torque) can cause the load to move without any changes in the

command signal. In order to offset the disturbance input an actuator output is needed in the opposite

direction (see Figure 4.2).
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To provide this opposing output a finite error signal is required. The magnitude of the required error

signal is minimized if the amplifier gain is high. Ideally, the amplifier gain would be set high enough

that the accuracy of the servo becomes dependent only upon the accuracy of the transducer itself.

However,  since  the  control  loop  gain  is  proportional  to  the  amplifier  gain,  this  gain  is  limited  by

stability considerations. In some applications, stability may be critical enough that the desired

performance is not possible to reach.

The three common types of electro-hydraulic servos are:

Position servo (linear or angular)

Velocity or speed servo (linear or angular)

Force or torque servo

In this report the objective is to control the position of the load and force it to track a desired reference.

4.2 Dynamic Model of Electro-Hydraulic Servo System

In this part, the electro-hydraulic servo system shown in Fig 4.1 is considered [52]. The system

parameters used in the model description are tabulated in Table 4.1. The goal of the controller is to

make the mass position 	track the reference.

+ -

Output

Command
signal

+

( )Servo ampl
and

regulator
Servo
valve Actuator

External
disturbances

Mechanical
load

-

Feedback
transducer

Fig 4.2 Components in an electro-hydraulic servomechanism
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The differential equations governing the dynamics of the hydraulic actuator in Fig 4.3 are given in

[42]. The equation is divided in the following parts:

Dynamic pressure:

																														
4

+ 																																																																																											(4.1)

The load pressure is = .

Restriction flow:

The load flow  is related to the spool valve displacement of the servo valve , repressed by

																															 =
( )

= ( ) 																																											(4.2)

where 	 = / 		.

Valve dynamics:

In particular, the system that we have experimented with the valve dynamics can be considered to be a

second order system [44]:

																																		 2 + 																																																																															(4.3)

P1 P2

PL=P1-P2

PS

P1 Q1 P2 Q2

S

xL

PT

Servo valve

Fig 4.3 A hydraulic actuator with four-way valve configuration
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Mechanical coupling:

The dynamics of the inertia load can be described by

																																		 = + 																																																																																																																	(4.4)

We consider is an unknown nonlinear function, which is the combination of damping friction,

viscous friction, and the external disturbance.

Parameter  Description

Ram area of cylinder.

The total volume of the cylinder and the hoses between the cylinder and

servovalve.

The load pressure.

The effective bulk modulus.

The coefficient of the total internal leakage of the cylinder due to

pressure.

The  load flow.

Displacement  of the servo valve.

The  discharge coefficient.

The  spool valve area gradient.

The  supply pressure of the fluid.

Density of hydraulic oil.

The  total mass of the actuator and the load.

The load displacement.

Table 4.1.Description of parameters in electro-hydraulic servo system ( EHSS).

Equations.(4.1) (4.4) completely described the fifth order nonlinear dynamics of the system under

study. The corresponding state space representation of these dynamics follows. By defining

																																				 = [ , , , , ] = , , , ,

Then the system can write

=
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=
1

( , )

=
4

( )
4 4

																																																												(4.5)

=

= 2 									

With  respect  to  the  assumptions  made  in  the  new  extension  described  in  the  chapter  3,  certain

particular assumptions are also considered as follows:

Assumption 1: the  can  be  consider  as ( , ), and ( , ) = +  [48,52]. As

maximum value we can consider ( , ).

Assumption 2: Assuming a symmetrical valve, where only positive spool displacement ( )  can  be

studied the valve flow equation can now be simplified as =

Under the above assumption the system (4.5) can be written as

																																																	 =

																																																 = + ( , )

																																																 = ( ) + ( , ) 																																																																									(4.6)

																																																 =

																																																 = + ( , ) 																	

with the  nonlinear function ( ) =  , the vector of unknown parameters is :

= [ , , , , , ] = , 2 ;

and the nonlinear functions are = [ , , 0,0,0,0], = [0,0, , , 0,0], = [0,0,0,0, , ];
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4.3  Adaptive Backstepping Controller Design

Now, we pass to the construction of controller. The nonlinear system described by (4.6) is in so-called

strict  feedback  form and  it  has  the  same  form as  the  system presented  for  the  new extension  in  the

previous chapter (3.1). Therefore, the new extension design can be used for controlling the single rod

electro-hydraulic servo system; the results are presented as follows

4.3.1 Design Procedure

Coordinate transformation:

from Esq. (3.2) and (3.3) the coordinate transformation is

																																																																				 = 																																																																																					(4.7)

																																																																				 = ( )																																																																							(4.8)

																																																																				 = ( )																																																																					(4.9)

																																																																				 =
( )

( )																																																											(4.10)

																																																																					 =
( )

( )																																																										(4.11)

Regressor:

from Esq. (3.4) and (3.5) the controller’s regressors are

																																															 = 0																																																																																																																		(4.12)

																																															 = = 																																																																											(4.13)

																																														 = = 																																																									(4.14)
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= 	 (
1
( )

) ( ) =	 	 (
1
( )

) ( )

							= 	 	 +
2 ( )

( ) 																																																																																												(4.15)

= 	 (
( )

( )) = 	 	 (
1
( )

) ( )

							= 	 	 +
2 ( )

( ) 																																																																																				(4.16)

Tuning functions for :

We use Eq. (3.6) to derive the tuning functions of the parameters

																																								 	 = 0																																																																																																																									(4.17)

																																								 	 = + 																																																																																																								(4.18)

																																								 	 = + 																																																																																																								(4.19)

																																									 	 = + 																																																																																																							(4.20)

																																									 	 = + 																																																																																																							(4.21)

Tuning functions for  :

The tuning functions for the virtual control coefficient is calculated by Eq. (3.7)

																													 	 = 																																																																																																																													(4.22)

																													 	 = ( ) +
2 ( )

( ) 																																																													(4.23)

																													 	 = ( ) +
2 ( )

( ) 																																																													(4.24)

Stabilizing functions:

The stabilizing functions are calculated based on the Esq. (3.9)-(3.14)
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																																																																															 = 																																																																																(4.25)

																																																																															 = 																																																																																(4.26)

																																																																															 =
( )

																																																																						(4.27)

																																																																															 = 																																																																																(4.28)

																																																																															 = 																																																																																(4.29)

with

																																																																																																																																																								(4.30)

+ + ( )																																																																																								(4.31)

+ ( + ( )
( ) + 																																													(4.32)

( ) + + ( ) + + (
( )

( ) + )

																+ + ( )
( )

2 ( )
( ) 																																																							(4.33)

+ + + ( ) +

																	+ ( )
( ) + + +

( )

( ) +
2 ( )

( ) 																													(4.34)

Adaptive control law:

The adaptive control law of the entire system is

																																																										 = 	( + ( )
( ))																																																																									(4.35)
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Parameter update law:

																																																																	 = 																																																																																														(4.36)

																																																																	 = 																																																																																												(4.37)

																																																																 ( ) ( ) + 																																																			(4.38)

																																																															 ( )( + ( )) 																																																							(4.39)

4.3.2 Calculation of the Error System

The error system results during the design of each step of the adaptive backstepping controller are

illustrated as follows:

=

= ( )

					= ( )

					= +

				 + 																																																																																																																																																	(4.40)

= ( )

= ( )

						= + ( )

						= + + +

						= + + ( ) + +

					= + ( ) + + ( ) +
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	= + ( ) + + + ( ) +

							= + + ( ) + + + ( )

								= + 																																																																																																																								(4.41)

From Eq. (3.22)

+ ( ) + + ( + ( )) + ( )

and

= 0

Then

																	 + ( ) + + ( ) + ( ) 																												(4.45)

From Eq. (3.23) :

	 , + , + + (
1
( )

( ) ) ( )

	 , , + , + + (
1
( )

( ) ) ( )

	 + +
2 ( )

( ) ( )

																																																																																																																																																																																		(4.46)

From Eq(3.25):
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							 + + ( + ( )
( ))

																	
1
( )

( ) ( ) 	,													

							 + + ( + ( )
( ))

																	
1
( )

( ) ( ) 						

							 , , , + ( + ( )
( ))

																		
1
( )

( ) ( ) 																																																																																	(4.47)

with

= 0

4.4  Stability Analysis

A Lyapunov function for this system is

																												 =
1
2

+
1
2

+	
1

2
+	

1
2

+
| |
2

+ +
| |
2

																											(4.48)

Its derivative is:
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= + + +
| |

+
| |

																				= + + + + + + + +
| |

+
| |

= + ) + ( + ) + + ( ) +

																									 + ( ) + ( ) ) 	+ , +

																									+ (
1
( )

( ) ) ( ) ) + , ,

																									+ + ( )
( ) 1

( )
( ) ( )

																									+ 	+
| |

+
| |

	 + ( + + + )

																+ + ( ) +
| |

+
1
( )

( ) ( )

																				+(
1
( )

( ) ) ( ) ) 	+ ( + ( )
( )) +

| |

Using Eqs. (4.37)-(4.39) the derivative of   becomes

																																																					 																																																																																													(4.49)

4.5 Simulations Results

Results of simulations are presented in this section, the model dynamics of the valve is represented by

a second order transfer function, the friction in the cylinder is nonlinear and moreover the

compressibility of the fluid is not neglected inside the load and thus can the cylinder accumulate fluid.

The values of the system parameters used in the model are illustrated in Table 4.2.
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Parameter Value Parameter Value

0.002 m2 255 rad/sec

0.001 m3 21 Mpa

1.0457 900 kg/ m3

700 Mpa 3.3 kg

0.1 0.6

 mm 1.5×10-4

10 0.3

Table 4.2.Values of the parameters of electro-hydraulic servo system (EHSS).

The model used to develop the backstepping controllers contains the following uncertainties

(refereed by the *-superscript): = 0.9 , = 0.9 	, = 1.1 , = 0.8 , = 0.9

= 0.8 , = 1.1	 .

To verify the efficiency of the proposed controllers, we considered the following two cases:

Case 1:we  seek  to  track  a  step  response  of  0.1m,  the  controller  gains  in  this  case  are  equal

[ , , , , , ] 	 = [100,100,50,50,50]and = 1.

Case 2:In this case the same controller gains are used. The reference to track is sinusoidal

= 0.1sin	( ).

At the first case:

As shown in Fig 4.4 (a), which represents the entire response (blue) against the reference step (red), it

can be seen that the mass position tracks the reference input very fast,  Fig 4.4 (b)  is zoomed at the

transient response , we can see that the response track the reference in 0.23 sec.
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 Fig 4.5 represents the error between response system and the step reference, we can see that the error

is small and tends to zero, which means a perfect tracking of the proposed controller.

Control effort delivered by the system is shown in Fig 4.6.
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Fig 4.2 Position tracking of the system with a step
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Fig 4.4 Tracking error of the system with a step (zoomed)
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Fig 4.5 Tracking error of the system with a step
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In second case:

The Figs 4.7-4.9 show the tracking of the system against a sinusoidal reference. In Fig 4.7 the

response system (bleu) tracks the sinusoidal reference (red) quickly.  The error is also very small in

this case Fig 4.8 and change sinusoidally according to the reference changes. Control law is also

changed in the same way as shown in Fig 4.9.
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4.5.1 Effect of Design Parameters

In this part, the ABC is designed with different values of  and  in order to see the effect of those

design parameters in the states.

Effect of

To see the effects of changing design parameters , we fix = 1. The position tracking and the error

for  the  two  references  (step  and  sinusoidal)  are  given  in  Figs  4.10  -4.114  with = 1,10,100 for

= 1,2,3,4,5 . As shown in Figures below the change of  values affect the response of the states.

Figure 4.10 and 4.12 show the position tracking for three values of  , we can remark that increasing

make  the  tracking  smoother,  in  other  side  it  decrease  the  time  response,  the  system  follow  the

reference faster when the  is greater. This result can be checked by the tracking error represented in

Fig 4.11 and 4.13.
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Effect of

To see the effects of changing design parameters ,we fix = 10  for = 1,2,3,4,5 .The position

tracking  and  the  error  for  the  two  references  (step  and  sinusoidal)  are  given  in  Figs  4.9  -4.13with

= 0.1,0.5,1

As shown in Figures below the change of  values affect the response of the states. Position tracking

for  three  values  of are given in Figs 4.14 and 4.16, for the two references tracking we see that

increasing  reduce  the  pick  values  and  yield  the  system  to  achieve  the  tracking  task  faster.  The

response becomes smoother and the tracking error also decreases by this increase as shown in Fig 4.15

and 4.17.

As conclusion, the change of design parameters   and  affect  directly  the  response  time  and  the

tracking performance, the smoothness of response is also affected.
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A systematic methodology for the design of a nonlinear adaptive backstepping controller for single rod

electro-hydraulic servo actuator has been presented in this work. The model used for the controller

design is a nonlinear fifth-order system model which takes into account the valve dynamic system.

The friction force is considered nonlinear which has enhanced the modeling and as result the transient

performance.

Finally, the simulations confirm that the new proposed control law is effective and robust against

parametric uncertainties and achieve perfectly the tracking task in different inputs.
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Conclusions & Future Work

In  this  part  some  conclusions  are  derived  from  this  work.  A  brief  summary  of  this  thesis  is  also

presented. Finally, some recommendation for future work and improvements is also given.

Conclusions

The thesis has dealt with the problem of controlling nonlinear uncertain systems.

The backstepping approach was employed to control the nonlinear systems. The advantage of

backstepping design technique is that the controller and the adaptive update laws can be designed at

the same time, and this can improve the system transient performance. Tuning functions approach was

introduced completely remove the overparametrization problem presented by the classical

backstepping approach. It has the advantage that the dynamic order of the adaptive controller is

minimal.  The  dimension  of  the  set  to  which  the  states  and  parameter  estimates  converge  is  also

minimal.

Future work

Research is always considered as an iterative as well as exhaustive process. The work on the proposed

controller  and  this  topic,  by  a  true  measure,  cannot  be  considered  complete.  There  will  always  be

points to improve upon and more problems to tackle.

This, when accompanied by the eagerness to excel in this field, gives rise to several recommendations.

Rest assured, ample time and energy will be invested to further work on this vast topic and positively

contribute to science. The many possible suggestions that come to mind in this regard are as follows:

Developing an output feedback version of the proposed adaptive backstepping scheme  used

either the Kresseilmeier filter developed in [1] or the MT-filters which proposed in [63,64] to

estimate  the  state  of  the  system we  can  also  compare  the  simplicity  as  well  as  the  ability  to

compensate several type of disturbances in these two kinds of filters.
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The sensitivity analysis of adaptive backstepping design: the backstepping-based adaptive

tuning functions design is a control of nonlinear uncertain systems that ensure reasonably

good stability and performance properties of the closed loop system. Then, the issue of

numerical sensitivity of the adaptive tuning functions can be discussed[62]. Also, various

nonlinear optimization techniques such as the Particle Swarm Optimization (PSO) ,Neural

Networks (NN) ,Genetic Algorithm (GA), etc. can be used to tune the optimal gains that can

unsure the best transient performance.

Extend the backstepping approach to systems with non-triangular forms : some encouraged

researches are made like the combination of the backstepping and sliding mode control

proposed in [65]

The complexity in backstepping design: In order to reduce the explosion of complexity in

traditional backstepping design several techniques are introduced once utilizes the

differentiation of the first-order filter to replace the quantity of the differentiation of the virtual

control in determining the next virtual control at each step of recursion [66].

The presented scheme can be applied to other practical systems.

Use another modeling of the friction force compensation as the LuGre dynamic friction model

[53.54], it presents extra states but it can well modeling the friction.

Implementation of the proposed controller on an experimental setup
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APPENDICES

Appendix A

Error System Calculation

Calculation of error system for ( , … , )-subsystem

The error variable is

																																											 = ( )																																								 = 1, … , 1																									(A. 1)	

Its derivative is written as

								 = ( )

													= + + ( )

									 = + + +

with replacing by its equation

													 		 + +

																											+ + ( )
( ) ,																																							 = 1, … , 																						(A. 2)
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The derivative becomes

																 	= + + 	+

																										+ ( )
( ) + + 																																																																											

				 = + + 	+

																				+ ( )
( ) + + +

													= + ( ) + + 	+

																		+ ( )
( ) +	 +

														= + + + 	+

																				+ ( )
( ) +	 + 																							(A. 3)

We note that

											 = + = 																																																																													(A. 4)

						= + + 	+

																		+ ( )
( ) +	 + ( +
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						= + + 	+

																+ ( )
( ) +	 + + 																

				 						= + ( 	) + +	 																																						(A. 5)

we know that

																				 																																																																																																																					 (A. 6)

then

				 = + +	

Finally the error system for the ( , … , )-subsystem is

+ + +

																																																																																																																																	 = 1, … , 1																							(A. 7)

The error system of the m-th step :

The error variable of the m-th order is

																 	= ( )																																																																																																																		(A. 8)

Its derivative is

		 		 = ( )

											= ( ) + + ( )

											= ( )( + + ( )
( )) + + ( )



73

												= ( )( + ) ( ) + + ( )																																												( . 9)

We note that

																									 = 						 						 = = 	 																																																							( . 10)

The Eq.(A.9) is now written as

			 = ( ) + ( )
( ) + +

										= ( ) + ( ) + + 																																										(A. 11)

with replacing  by its equation from (A.2) the derivative becomes

			 = ( ) + + ( + ( )
( )) +

												+ ( + ( )) + +

			 = ( ) + + ( + ( )
( )) +

												+ + + ( )

												+ + +

										= ( ) + ( + ( )
( )) + ( )

														+ + + ( ) + ( + )

															+ 																																																																																										(	A. 12)
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Noting that

												 																																																																																																																						 (A. 13)

the derivative is

			 = ( ) + +

											+ + ( )

Finally , the error system for the m-th step is written as :

			 + ( ) + +

															 + ( ) + ( ) 																																																																																								(4.14)

The error system of the (m+1)-th step

The error variable of the (m+1)-th order is

										 +1 = ( )
( ) 																																																																																																	(A. 15)

the derivative of (A.15) is :

				 +1 = ( ( )
( )

																= + ( )
( ) 1

( )
( )

( )
( )

																= + ( )
( ) + + ( )

( ) 1
( )

( )

																				 ( )
( )

														= + ( )
( ) ( ) + + ( )
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																			 	 + 	+
( )

( ) + + +1 + ( )
( )

																		+ (
1
( ) + ( ) +

1
( ) )

																		+	
1
( )

( ) ( ) + ( )
( ) 1

( )
( )

																				 	 ( )
( ) 																																																																																																												(A. 16	)

+1 			 = +2 +1 +1 ( ) +1 + +1

1

=1

+ ( ) +1

																				+ 	+ + +1 + ( )
( )

																		+ (
1
( ) + ( ) +

1
( ) )

																			+
1
( )

( ) ( ) + +

																	
1
( ) ( + + ) ( ) 	 																																																		(A. 17)

With noting that

1
( ) =

1
( ) × =

1
( ) =

1
( ) ( + + )

																																																																																																																																																																															(A. 18)

Equ.(A.17)  is now written as

+1 				 = +2 +1 +1 ( ) +1 + +1

1

=1

+ ( ) +1
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																			+ 	+ + +1 + ( )
( ) +

																		+ (
1
( ) + ( ) +

1
( ) ) +

																			
1
( ) ( + ) ( ) 1

( ) 																		

then,

+1 				 = +2 +1 +1 ( ) +1 + ( ) +1

																			+ ( ) 	+ +1 +

																		+ (
1
( ) + ( ) +

1
( ) )

																	+
1
( ) ( + ) ( ) 1

( ) 													( . 19)	

Finally the error system for the (m+1)-th step is

	 , + ,

																					+ + (
1
( )

( ) ) ( ) 																																																			(A. 20)

Calculate of the error system for ( , … , )-subsystem

The error variable is
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= 1 ( )
( 1)																																																																																																																		( . 21)

The derivative is

= (
( )

( 1)
1

						= +
( )

( ) 1
( )

( )

( )
( )

						= + +
( )

( ) 1
( )

( ) 																																																							( . 22)

with replacing  by its equation

															 							 + + + ( )

																																		+ ( )
( ) + + + (

( )

( ) + )

																															+ (
1
( ) +1 + +1

=1

( 1) +
1
( )

=1
+1)

																																			+
1
( )

( ) ( ) + ,	

																																																																																																																													 = + 2, … , 																				( . 23)

 The Eq.(A.22) becomes

				 = + + + ( ) 														

														+ ( )
( ) + + + (

( )

( )
+ )
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															+
1
( )

( ) ( ) +

														+
( )

( 1) 1
( )

( 1)
1

					 = +1 1 + 1 + 1
+1

1

=1

+ ( ) 1
+1

													+	 (
1
( ) +1 + +1

=1

( 1) +
1
( )

=1
+1) + 1

( 1)
( )

1

=1

																+ + + 	+ + +

															
1
( )

( +1 + +1 )
=1

( 1) 1
( )

=1
+1 1

							 + + +

																	
1
( )

( ) ( ) 	,															 = + 2, … , 1																		(A. 24)

The error system for the n-th step

The error variable of the (m+1)-th order is

					 = 1 ( )
( 1)																																																																																																										(A. 25)

after calculus the derivative is written as
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							 							 + + ( + ( )
( ))

																								
1
( )

( ) ( ) 	,																																																																(A. 26)

where  is defined for = + 1, … ,  as

		 =

0, = 1

,							 = 2, … , + 1

+ 												 = + 2, … , 1

																																											(A. 27)


