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Abstract 

This dissertation explores the critical importance of defect detection in pipelines and 

advocates for the integration of artificial intelligence (AI) to enhance inspection 

capabilities. Traditional methods of pipeline inspection are prone to human error and 

lack scalability. By employing machine learning models, this study proposes a novel 

approach to pipeline inspection. 

The integration of AI offers numerous advantages, including increased efficiency, 

accuracy, and scalability in defect detection. Through rigorous experimentation and 

evaluation, this research demonstrates the effectiveness of AI-driven approaches in 

enhancing pipeline integrity management. 

Furthermore, the study emphasizes the sensitivity of AI-based defect detection 

systems and underscores the significance of feature engineering using deep learning 

techniques. By extracting rich features from pipeline images, the VGG architecture 

combined with machine learning models facilitates more robust and discriminative 

representations, enhancing the model's ability to detect subtle defects with high 

precision and recall. 

This dissertation contributes to the advancement of pipeline inspection practices, 

highlighting the potential of integrating advanced technologies to ensure safer, more 

reliable, and cost-effective maintenance strategies in the industrial sector. 

Keywords: pipeline inspection, artificial intelligence, machine learning, VGG16, support 

vector machine, random forest, YOLOv8. 
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Résumé:  

Ce mémoire explore l'importance critique de la détection des défauts dans les 

pipelines et plaide en faveur de l'intégration de l'intelligence artificielle (IA) pour 

améliorer les capacités d'inspection. Les méthodes traditionnelles d'inspection des 

pipelines sont sujettes à l'erreur humaine et manquent d'évolutivité. En employant des 

modèles d'apprentissage automatique, en particulier des architectures d'apprentissage 

profond comme le VGG (Visual Geometry Group), cette étude propose de nouvelles 

approches de l'inspection des pipelines. 

L'intégration de l'IA offre de nombreux avantages, notamment une efficacité, une 

précision et une évolutivité accrues dans la détection des défauts. Grâce à une 

expérimentation et une évaluation rigoureuse, cette recherche démontre l'efficacité des 

approches basées sur l'IA pour améliorer la gestion de l'intégrité des pipelines. 

En outre, l'étude met l'accent sur la sensibilité des systèmes de détection des défauts 

basés sur l'IA et souligne l'importance de l'ingénierie des caractéristiques à l'aide de 

techniques d'apprentissage profond. En extrayant des caractéristiques riches des images 

de pipelines, l'architecture VGG facilite des représentations plus robustes et 

discriminatives, améliorant la capacité du modèle à détecter des défauts subtils avec une 

précision et un rappel élevés. 

Cette thèse contribue à l'avancement des pratiques d'inspection des pipelines, en 

soulignant le potentiel de l'intégration des technologies avancées pour garantir des 

stratégies de maintenance plus sûres, plus fiables et plus rentables dans le secteur 

industriel. 

Mots-clés : inspection des pipelines, intelligence artificielle, apprentissage automatique, 

VGG16, machine à vecteurs de support, forêt aléatoire, YOLOv8. 
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لملخصا  

الاصطناعي الذكاء دمج إلى وتدعو الأنابيب خطوط في العيوب عن للكشف الحاسمة الأهمية الأطروحة هذه تستكشف  (AI) 

  هذه تقترح .التوسع قابلية إلى وتفتقر البشري للخطأ عرضة الأنابيب خطوط لفحص التقليدية الطرق .الفحص قدرات لتعزيز

العميق التعلم بنيات وخاصةًً الآلي، التعلم نماذج اماستخد خلال من الأنابيب خطوط لفحص جديداً نهجًا الدراسة  

  من .العيوب اكتشاف في التوسع وقابلية والدقة الكفاءة زيادة ذلك في بما المزايا، من العديد الاصطناعي الذكاء تكامل يوفر

  خطوط سلامة إدارة تعزيز  في الاصطناعي الذكاء على القائمة الأساليب فعالية البحث  هذا يوضح الدقيق، والتقييم التجريب خلال

 .الأنابيب

  المتقدمة التقنيات دمج إمكانات على الضوء وتسلط الأنابيب، خطوط فحص ممارسات تطوير في الأطروحة هذه تساهم

الصناعيً القطاع في التكلفة حيث من وفعالية وموثوقية أمانًا  أكثر صيانة استراتيجيات لضمان  

العشوائية الغابة الدعم، ناقلات آلة الآلي، التعلم الاصطناعي، الذكاء الأنابيب، خطوط فحص :المفتاحية الكلمات  
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General Introduction:  

  

    Transportation pipelines are a critical component in any industry and their safety 

affects the well-being of people and the progress of society. 

      For this particular reason we notice that the research methods of their maintenance 

improve day by day, and the competition in the market increases. We can even notice 

the start of the implementation of various and well advanced deep learning models to 

have more precise inspection results.  

       In the light of this technological evolution, this subject caught my attention, the 

intrigue and thirst in me to get to know more about the field combined with my interest 

in all what concerns artificial intelligence and its applications on various domains, drove 

me to take the step and make this dissertation to open a wider research axis in the future.  

        This project was realised in collaboration with a Tunisian startup Industry X.0. It 

is  founded in 2019 that aims to accelerate the digital transformation of various industries 

and businesses that are active in different domains, by increasing the potential and 

efficiency of teams through technological solutions. It provides them with real-time 

information on their quality, safety and customer service for a more efficient, connected 

and collaborative market. 

Contributions: The goal from this project, is to integrate machine learning specifically 

computer vision in the oil & gas industry. Since it is a very sensitive research field and 

work area, the project’s main focuses are:  
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1. Develop different approaches and algorithms to detect defects in the external 

surface of the pipeline.  

2. Evaluate the robustness of support vector machines and random forest on low 

data number with a challenging quality.  

3. Finally take the previously mentioned evaluation into consideration and work 

on optimising the outcomes and illuminating the issues faced.  

Summary:  

This dissertation is split into 5 chapters:  

Chapter 1: pipeline inspection, you will find in this very first chapter a general 

overview about pipeline inspection and how did it evolve through history and an 

insinuation of the importance of artificial intelligence in this field; 

Chapter2: Related work, in this part we will be talking about the previous researches 

and efforts that were put into developing new technics to detect and classify defects in 

sewer pipelines and a study case on a petrochemical one.  

Chapter 3: Dataset preparation, you will dive into the first step taken in building any 

AI model, which is the data related part, starting by the data collection, data cleaning 

and pre-processing to the data augmentation and feature engineering. The tools and 

methods used will be explained and mentioned in detail. 

Chapter 4: Machine learning model building, this chapter talks about the different 

algorithms and different approaches taken in developing each algorithm. Their 

respective results and their interpretation will be brought up alongside the issues and 

constraints faced.  
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Chapter 5: Optimisation and deployment, in this very last chapter an optimisation 

architecture will be proposed with the method used to deploy the model and make I 

available for users to use.  And we finish by a general conclusion. 
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1. Chapter 1: Pipeline Inspection 

 

 

 

1.1. Introduction 

In this first chapter we will be diving into the pipeline inspection. We will firstly go 

through its history and how did it develop to talking about photographic inspection and 

going through its aspects and applications.  

1.2. The Evolution of Pipeline Inspection Through History 

 To transport vital resources like oil, gas and water over extensive distances, it is 

imperative that pipelines are operated safely and efficiently. This has led to a revolution 

of pipeline inspection methods over the years, aimed at enhancing accuracy, efficiency 

and safety. 

●  Early Days: Relying on the Human Eye (1920s-1940s): 

In those early days when pipes were first used for this purpose, inspections were 

mainly visual exercises done by human beings who inspected pipe surfaces for leaks 

and cracks. This was the simplest form of pipeline inspection but its shortcomings were 

glaring due to its incredibility and missing crucial part of the inside of the pipes due to 

the lack of tools and the imprecise human eye.  
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●  The Rise of Non-Destructive Testing (NDT) and In-Line Inspection (1950s-1970s): 

Developments in this area such as radiography and ultrasonics were a major step 

forward. This meant that internal checks could be carried out by methods that would 

not cause damage, making it possible to have a more precise reflection on issues such as 

corrosion, cracks or blockages. 

Also, the advent of intelligent pigs transformed pipeline inspection activities. These 

robots moved in the pipes using various sensors and techniques to identify something 

unusual. This development has drastically increased productivity and made an overall 

assessment of inner conditions of the pipeline possible. 

●  Progress and Advancements (1980-present) 

It was in these decades that Pipeline inspection gained steady advancements: 

- Better Evaluation Techniques for Oil Pipelines:  Existing methods like ultrasonography 

and radiography were enhanced while new ones like Magnetic Flux Leakage (MFL) 

and Electromagnetic Acoustic Transduction (EMAT)were developed. These 

improvements enabled more accurate and sensitive defect detection. 

-  Digitization and Automation: This meant that computerised data acquisition, analysis 

or interpretation was merged with the NDT and In-Line inspection, thereby 

improving on data management, response time as well as decision making process 

during inspection exercises. 

- Remote Sensing Inspection and Monitoring: The development of remote sensing 

technologies such as drones and fibre optic sensors has facilitated non-destructive 

testing of inaccessible or dangerous environments which further promotes safety 

together with efficiency. 
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1.3. Photographic Pipeline Inspection 

1.3.1. Closed Circuit Television Video (CCTV) inspection 

1.3.1.1. General overview 

CCTV is becoming the most used defect detection technique in engineering domains. 

It involves using a small crawling robot to take pictures within the metal pipe and 

identify the flaws seen in the footage.  

CCTV is used to inspect and assess the conditions of the pipes to identify and 

determine if the existing concrete pipe is suitable for rehabilitation or replacement. 

Performance requirements and qualification criteria of the new pipe were set in 

specifications. The use of CCTV during the conditions assessment determined that the 

pipes were still structurally sound. The concrete liner inside the pipes showed some 

areas with concrete spalling; however, it was determined that the cracks were not 

detrimental to the hydrologic performance of the pipes. Furthermore, existing 

deteriorated concrete pipes have a total of 35 joints (grouted spigot and socket but no 

rubber O-ring), with a maximum separation of six feet. 

The use of closed-circuit television (CCTV) equipment dates back to the early 1960s 

when it first appeared as a means for security. The device proved useful and made it a 

business in which the demand for the said equipment grew rapidly worldwide. Based 

in Milton Keynes, UK, writer and director Tony Scott of TVS Ltd. in 1973 led a team of 

engineers to design the world's leading pipeline CCTV inspection vehicles. This was the 

company that invented CCTV for water inspection, and later several other companies 

started to be in the same field. The world's leading pipeline CCTV inspection vehicles 

came to be known as 'Renovator'. In production, more than 1700 'Renovators' have been 

manufactured and are operating worldwide as a direct result of Tony Scott's pioneering 

efforts to create TVS as a successful, well-respected company in the CCTV pipeline 

inspection industry. 
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Figure 1-1: industriel pipe inspection crawler 
camera robot 

 

 

 

Figure 1-2:HVAC Duct Inspection 
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1.3.1.2. CCTV uses:  

This inspection method is a more cost-effective and suitable substitute for the 

hazardous and conventional method of using humans to inspect pipelines, particularly 

in cases when the pipeline is too narrow or risky for humans to enter. CCTV cameras 

continuously capture images and video of the pipeline's interior above the flow-line. 

Experts typically utilise the films and recordings they have obtained to inform their 

interpretation and determination of the pipeline's condition [8]. 

Unlike methods that require digging or breaking the pipeline, CCTV is a non-

destructive way to assess its health. This minimises disruption and keeps repair costs 

lower. 

Defects such as various forms of cracks and fractures, settled deposits, deformation 

in the pipeline cross section, wall collapses, misplaced joints, polished aggregates or 

surface abrasion, and tree root penetration can all be found with CCTV. Every pipeline 

is evaluated and assigned a rating according to the frequency of fault occurrences as well 

as the seriousness of each fault. 

The operator scores each pipeline according to this rating, typically on a five-point 

scale [24]; nevertheless, numerous researchers have identified a number of drawbacks 

with this approach. According to Tuccillo et al. (2010), CCTV is limited to providing data 

above the flow-line. More significantly, it doesn't put a number on the identified flaws, 

which include surface damage, settling deposits, and deformation.  

As a result, the researcher came to the conclusion that CCTV inspection is solely used 

as proof to find flaws. 
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1.3.1.3. Practical use domains of CCTV:  

CCTV pipeline inspection is used in a number of different industries: 

● Oil and Gas Pipelines: To guarantee the secure and effective transportation of oil and 

gas, routine CCTV inspections are essential. They are able to identify obstructions, 

leaks, and corrosion that can cause harm to the environment or interfere with 

operations; 

● Chemical Pipelines: Because the contents they transport are toxic, chemical pipelines 

need to be carefully inspected. CCTV aids in the detection of leaks, obstructions, and 

deterioration of internal linings to stop environmental contamination and safety risks; 

● Water Pipelines: It's critical to have clean water sources available. Water pipeline 

corrosion, mineral accumulation, and leaks that may affect the quality of the water 

are found through CCTV inspections. 

1.3.2. Halliburton’s visual inspection of pipelines and processing plants 

1.3.2.1. General overview:  

Before containment can be broken, inspecting the inside surfaces of pipelines and 

processing plants typically necessitates complete decontamination, which adds time and 

the price of upkeep tasks. The initial inspection process can be optimised by using 

cameras, which lessens or eliminates the need for mechanical involvement [11]. 

 Cameras can be moved around corners, across long distances, and have several 

camera heads to give a 360-degree picture of interior surfaces.  

1.3.2.2. Applications:  

● Heat Exchanger tubing and shell inspection; 

● Small vessel and tank inspection; 
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● Pipework and duct inspection; 

●  Flexible and rigid riser inspection; 

● Caisson, cavity and machinery inspection.  

1.3.2.3. Features:  

● Can be used in both hazardous and non-hazardous areas; 

● Suitable for use in live process plants; 

● Digital recording for immediate playback;  

● Annotation and voiceover of video and still footage; 

● Files compatible with Halliburton Integrity Management Software. 

1.3.2.4. Benefits:  

● Requires little mechanical preparation and offers evidence of cleanliness prior to 

beginning operations; 

● Provides location and severity details, improving repair work and preparations 

Monitoring and assessment of cleaning and remediation in real time.  

1.3.2.5. Inspection cameras types:  

● Push Rod Cameras:  There is a "stiff fibre rod" 

attached to these cameras. The rod is rigid 

enough to allow it to be pushed a considerable 

distance down a pipeline, but it is flexible enough 

to be stored on a reel, uncoiled, and then 

deployed into the pipeline.  A rod counter is built 

into the camera systems so we can precisely track 

the location and distance of the camera. In 

addition, the cameras allow for easy digital recording for later playback and record 

Figure 1-3: Push Rod Cameras: 
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keeping, as well as direct sight of the interior surfaces. Because the "camera heads" 

are waterproof, they can be utilised in liquid-filled systems.  

● Endoscope Cameras: When the item or entry 

point has to be inspected has a small diameter, 

Halliburton offers cameras that are suitable for 

these kinds of circumstances. There are two 

types of camera heads available: radial and 

forward-facing. This kind of camera features 

articulation functionality that enables us to look 

both upstream and downstream while 

conducting localised inspections of bigger pipelines using small bore instrument 

connections.  

 

● Hal-Vision Camera: This camera inspection 

system was created to examine the flexible risers' 

interior surfaces. The camera head can be pulled 

down and has sealing discs installed. fluid-

pressurised riser or pipeline (similar to an 

inspection or cleaning pig). Through the use of 

fibre optic connections, the unit's high-definition 

camera may be controlled remotely. A single 

point of entry can be used to investigate an area up to three kilometres away. 

1.4. Photographic inspection limitations:  

Visual based inspection had its own limitations through the years due to some 

challenges such as: 

Figure 1-4: Endoscope Cameras view 
inside a pipeline 

Figure 1-5:Hal-Vision Camera 
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● lighting and Visibility: Achieving proper lighting conditions for clear and detailed 

photographs within the narrow and potentially dark space surrounding the buried 

pipeline is extremely difficult; 

● Image Interpretation: Even if captured, interpreting the images accurately is 

challenging due to factors like limited visibility, potential presence of debris, and the 

complexity of analysing external pipe conditions solely based on photographs; 

● Safety and Cost: The safety risks associated with excavating and manipulating 

machinery around buried pipelines, coupled with the high costs involved, make 

photographic In-line inspection a viable option. 

The previously stated issues faced in the vision-based pipeline inspection and with 

the development of technological optical or photographic tools combined with deep 

learning algorithms revived such methods and pushed the researchers to pursue such 

things.  

1.5. The urge for AI models integration in defect detection: 

Vision-based defect identification is a key component of industrial intelligence and is 

a necessary technology in contemporary production to ensure product quality. The 

advancements in industrial big data have made it possible for omnipresent sensors to 

gather defective photos. Furthermore, accuracy recognition has emerged as a popular 

area of study. 

Numerous vision-based defect identification algorithms have been offered in the last 

several years, and some recently developed methods like deep learning have gained 

popularity and successfully solved a number of difficult situations. 

As computer vision technology advances, industry and academic interest in vision-

based defect recognition has grown. Vision-based defect recognition is a quick, 

affordable, and reliable method using computer vision algorithms. As a result, it is 
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extensively used in a variety of industries, including steel, wood, ceramics, textiles, and 

architecture. 

The goal of vision-based defect detection is to determine whether the provided 

pictures contain any faults as figure 1-7 represents. This procedure typically includes 

data pre-processing, feature extraction, and recognition. The goal of data pre-processing 

is to gather, clean, and standardise the pictures of defects. Generally speaking, 

recognition involves matching, detection, segmentation, and classification. 

Classification identifies the different sorts of defects, segmentation separates regions 

with and without defects, detection indicates the defect's position, and matching locates 

the template that most closely resembles the original. The key to all of these recognition 

jobs is feature extraction. Defect recognition performance may be improved using a 

skilful feature extraction technique, statistical approaches, structural methods, filter-

based methods, and model-based methods that are the traditional categories into which 

vision-based defect identification techniques fall. 

 

 

 

 

 

 

 

 

 

Figure 1-6: Gas leakage detected by computer vision 
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1.6. Conclusion 

This chapter’s focus was mainly to highlight the pipeline inspection in general 

through history and how it did evolve.  

It tackled the development of different technologies and different methods to inspect 

precisely the transportation pipelines. One of the main methods that captured my 

interest and has a relation with the theme of this project is photogenic inspection.  

As previously described and shown, photographic inspection also had its portion of 

development and advancement from only human’s eyes view to well-developed robot 

ones. Even all the changesets that touched this sector still it has its own constraints, and 

by the inclusion of Ai in all aspects of life currently, the cruciality of developing new AIs 

in such domain is brought to light.  
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2.  

Chapter 2: Related work 

 

 

 

2.1. Introduction 

Automation and the application of machine learning techniques is becoming more 

and more common in industry, especially in the maintenance and inspection of different 

terrains. 

One of the latest researches and efforts made is to better the quality and the security 

of the subterranean infrastructure systems particularly, since they represent a crucial 

part in the human daily life and the ecosystem.  

On another hand, the oil & gas industry has also a huge role in countries economics 

and providing a better transportation of petrochemical substances not only will elevate 

the country’s economic and financial state but also grants a safer and a cleaner 

transportation on the environment, since hydrocarbons have been and still considered 

as the most pollutive.  

In this chapter multiple papers of different researches have been presented that have 

been published yet not most of them are being applied due to the sensitivity and the 

complexity of the pipes networks.  
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2.2. Pipeline technology inspection methods  

Several substitute technologies that can be used for pipeline inspections have 

surfaced: Sonar, laser, and closed-circuit television (CCTV) scans, among others. 

Pictures and videos gathered with very detailed condition information are provided 

during pipe inspections. 

 When combined with other pipe condition data, such as flow, gas information, and 

other quantitative measurements, municipalities can use these visual data as visual aids 

for maintenance decision-making, in addition to technicians or inspectors using them 

during and after pipe inspections. 

 As a result, the most often used technology for pipeline inspection is CCTV. In 

addition to single-sensor inspection methods like the traditional CCTV inspection 

described above, a number of smart pipe evaluation systems integrate numerous 

sensing technologies into the inspection process.  

Even though CCTV is currently the most often utilised visual inspection technique in 

industry, human operators still view the photos and videos taken during inspection in 

order to identify and categorise defects. According to the standard pipeline condition 

grading system, human operators must be taught and qualified in order to recognize 

pipe faults by watching inspection films and/or photographs. 

This current pipeline inspection and data interpretation practice is labour-intensive, 

error prone and time consuming. 
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2.2.1. Automated defect detection for sewer pipeline inspection and condition 

assessment from videos and images 

2.2.1.1. Research motive 

The state of automated pipeline inspection and condition assessment must be 

advanced in order to routinely and proactively evaluate the conditions of sewer 

infrastructure systems in order to guarantee their structural integrity and uninterrupted 

services. Addressing realistic flaw detection that works with actual sewer inspection 

data is currently a crucial concern. 

2.2.1.2. General overview 

The existing inspection methods limited the assessment of sewer pipeline conditions 

until recently. Numerous issues, including backups, leaks, and total loss of service, were 

brought on by the absence of frequent condition inspections and the delay in inspection 

cycles [4]. 

Such widespread degradation would have been detected, repairs would have been 

begun, and more serious and expensive damage would have been avoided with a 

prompt, accurate, and thorough inspection.  

Municipal authorities are mandated by the US EPA to evaluate the state of their 

collection systems in order to have a better understanding of issues related to 

maintenance and operation.  

The US EPA's requirement made it necessary to obtain current, trustworthy pipeline 

status data using appropriate and efficient techniques. It also made it necessary to 

evaluate the data efficiently, such as by identifying and categorising pipe faults. 

The term "defects" in this research refers to either those anomalies, like areas of 

corrosion and cracks, or important pipe patterns or landmarks, like couplings and 
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connections. The sewer pipeline inspection and condition assessment criteria published 

by NASSCO are consistent with this definition of a problem. 

2.2.1.3. Pipeline Internal Defect Detection Based on Computer Vision 

Several automated detection systems have been proposed for pipeline defect 

identification. Moselhi et al [20] proposed a system with four modules: image 

acquisition, image processing, feature extraction, and defect classification, laying the 

groundwork for a computer vision-based pipeline internal defect detection system. 

Yang and Su [26] combined OTSU thresholding with morphological opening operation 

to segment CCTV video frames and created models for common defects. However, their 

approach is limited by strict guidelines regarding lighting conditions and filming 

perspective. Myrans et al [21] collected GIST features and applied the random forest 

algorithm, supplemented by the Order Oblivious Filter (OOF) and Hidden Markov 

Model (HMM) to enhance prediction accuracy, albeit at the expense of time efficiency. 

Halfawy et al [6] utilized morphological, threshold segmentation, and median filtering 

techniques, focusing on specific flaw types such as tree root intrusion-related pipe faults. 

Guo et al [5] proposed a change detection method involving image alignment, histogram 

matching, and image filtering, achieving high accuracy despite a relatively high false 

detection rate. 

2.2.1.4. Pipeline Internal Defect Detection Based on Deep Learning: 

Several advancements have been made in pipeline problem identification using 

various deep learning techniques. Hassan et al [6] incorporated AlexNet into their 

approach, utilizing altered photos from CCTV footage of pipelines for training data. 

Wang and Cheng introduced DilaSeg-CRF, an end-to-end neural network combining 

deep convolutional neural networks (CNN) with fully connected conditional random 

fields (Dense CRF), with jointly trained segmentation and CRF layers parameters. 
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Subsequently, numerous CNN-based techniques have emerged. However, Kumar et al 

[19] observed limitations in structural flaw identification when comparing the Faster R-

CNN model with YOLO v3 and Single-Shot Multibox Detector (SSD). On the other hand, 

Rao et al [23] demonstrated improved detection accuracy by combining CNN with non-

overlapping windows, with findings indicating that deeper CNN models perform better 

albeit at the cost of longer inference times. These studies collectively contribute to the 

ongoing development of efficient and accurate pipeline defect detection systems. 

2.2.2. Automatic Defect Detection System for Petrochemical Pipelines 

2.2.2.1. General overview 

For the safety of industrial production, petrochemical pipeline defect identification is 

a crucial responsibility. Currently, the primary approach for pipeline defect detection is 

closed circuit television (CCTV), which records video of the pipeline's inner wall before 

manually identifying the problematic location. This method is labour-intensive and has 

a high false and missed detection rate [3]. 

2.2.2.2. Proposed methods 

2.2.2.2.1. Images shooting 

The pipe-climbing robot travels axially forward within the pipe to be investigated at 

a pace of three metres per minute. It is outfitted with a lighting source and camera 

equipment. At a frame rate of 15 frames per second, the robot can capture 180 metres of 

video in an hour, with a resolution of 2888 x 2888 pixels per frame. The inspection report 

provided by qualified pipeline maintenance staff is used to classify and label the pipeline 

inner wall fault area. The utilised pipeline video data mostly contains four types of 

surface faults; Figure 2-1 illustrates examples of the various categories. 
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In this paper, the original data set consists of 21 videos shot during the maintenance 

of the pipeline, including drainage pipes, distillation unit pipes, catalytic fractionation 

tower pipes, and reforming collection pipes. 

2.2.2.2.2. Image unfolding 

The original ring picture of the inner wall of the pipeline must first be unfolded in 

order to precisely identify the problematic area and restore the distorted image.  

The image of the pipeline's inner wall displays characteristics such as darker inner 

wall, brighter inner wall, and black corners because the pipeline's data are mostly lighted 

by its own light source during photography. The threshold segmentation method 

divides the pipeline's inner wall, centre, and four corners, while the morphological 

method partially eliminates noise. 

The Hough transform is used to identify the circular region and get the pipeline's 

centre coordinate 𝑂1(𝑢0,𝑣0). Given the properties of the shooting data, the outer 

circumference of the ring is tangent to the image's edge; so, the outer radius of the ring 

is 𝑟=𝐿/2, where L is the size of each image frame. 

2.2.2.2.3. Luminance correction and feature engineering  

Since there is no lighting inside the pipeline and the light is generally dim, the pipe-

climbing robot uses its auxiliary lighting device when taking images inside the 

 

 

Figure 2-1:images of different types of defects 

 

Figure 0-2: 
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petrochemical device's pipeline. This helps prevent uneven illumination and even 

serious reflection in some areas of the inner wall image that is taken. 

The image is initially unfolded circularly in order to address the issue of unequal 

illumination in the image. Next, the multi-scale Retinex with chromaticity preservation 

(MSRCP) is applied to address the image distortion problem brought on by the 

hemispherical camera firing in the pipeline.  

An image stitching method based on SIFT features is used to stitch consecutive 

frames to create a fully unfurled image of the pipeline inner wall in order to fully utilise 

the context information in the video.  

Since the dataset wasn’t sufficient for the deep learning model, in order to increase 

the sample size by 5.5 times and randomly produce the defect patches on the original 

data, a sample enhancement technique based on Cycle-GAN is suggested. 

2.2.2.2.4.   Defect Detection Based on YOLO v5 

After stitching the photos of the inner pipeline wall, a deep learning-based object 

identification algorithm is used to find and identify the pipeline inner wall fault. Object 

detection, which is frequently used in face identification, autonomous cars, and other 

domains, is the process of locating and classifying one or more objects of interest in 

images and determining their category and location. 

 In this research, they applied the YOLO v5 object detection method to the pipeline 

surface defect detection problem and obtained satisfying results. 
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2.2.2.2.5. Structure of YOLOv5 

The fundamental principle of YOLO is to directly regress the positions and categories 

of the bounding boxes at the output layer by feeding the full image into the network, 

which is akin to Faster-RCNN. Here is the precise procedure: 

(1) The picture is separated into cells in the grids, which are used to anticipate the 

objects when the centres land there.  

(2) B bounding boxes are projected for each grid cell, with a total of five values 

predicted for each bounding box, depending on (𝑥,𝑦,𝑤,ℎ) and confidence. 

(3) A total of C categories is anticipated for the category in each grid cell. The final 

output tensor, which predicts the locations and categories for B bounding boxes of 𝑆×𝑆 

grid cells, is the 𝑆×𝑆×(5×𝐵+𝐶) dimension. Figure 2-3 displays the YOLO v5 network 

structure. 

 

 

 

 

 

 

 

 

 

Figure 2-2:YOLOv5 network structure 
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2.3. Conclusion:  

In this chapter various methods and approaches found in literature for pipeline defect 

detection based on image classification were highlighted.  

However, literature is rich in various algorithms and datasets, yet none of them is 

applicable. The transportation and the piping field has a huge role in crucial industries, 

they are critical, very sensitive and can even be costly. It takes more intensive 

applications and deeper analysis for the realised models and techniques to be applied. 
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3. Chapter3: Dataset preparation 

 

 

 

3.1. Introduction 

In this chapter all that concerns dataset preparation is going to be mentioned. The 

dataset is a crucial part in any model building and training. In order to have the most 

refined and well-structured dataset you need to pass by multiple steps so it gets ready 

to be fed into your specific model as figure 3-1 shows. 

To begin, gather data from multiple sources, such as spreadsheets, databases, and 

APIs. 

The data is then cleaned by eliminating the unnecessary images and get reordered in 

folders of train, test and validation, split into their adequate classes. 

Next, in order to prepare the data for use with machine learning algorithms, you alter 

it using procedures like encoding and normalisation. 

Lastly, you use methods like dimensionality reduction or feature engineering to 

minimise the complexity of the data while retaining the information that it may offer the 

machine learning model.  
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3.2. Dataset creation constraints 

The project focuses on developing a new approach using computer vision to detect 

and classify various types of defects in the external surface of a transportation pipeline. 

However, it is important to shed light on the fact of the lack of data, computer vision 

is a domain that works with multidimensional data (2D images, 3D images, 

videos…Etc), that’s where the first challenge resides.  

Companies in the oil & gas industry don’t provide direct images of their pipelines 

and use mostly ultrasonic waves to inspect their health. This pushed me to using 

alternatives and creating a full database based on deep searches and collecting, more 

details will be provided in the following parts. 

3.3.  Image collection  

Collecting the adequate images to be fed into a machine learning model is a constraint 

itself, it takes deep searches into various sources and filtering to select the data that will 

give you the most optimal results. 

 

Figure 3-1: data preparation steps. 
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3.3.1. Image collection sources 

The images used to build this project were extracted from open sources:  

● Google search: it is the commonly used search engine, it helps users find information 

easily and quickly and orients you towards helpful and useful websites;  

● Shutterstock[17]: A leading platform offering millions of royalty-free stock photos, 

videos, and illustrations under subscription plans or individual purchases. Popular 

for commercial and creative use; 

● Istock[15]: Similar to Shutterstock, iStock offers a vast library of high-quality stock 

photos, videos, and illustrations. Known for a curated collection and focus on 

premium content; 

● Pexel[16]: Provides a large collection of high-resolution stock photos and videos 

available for free download under a permissive licence. Popular for personal and  

non-commercial use; 

● Flickr[12]: Primarily a social networking platform for photographers, but also 

contains a vast collection of images and videos uploaded by users. Some users offer 

their content for free use under specific licences, while others retain copyright. 

Requires careful licence checking before using content; 

● Gemini Generator[13]:  A new and emerging service that uses artificial intelligence 

to generate images based on text descriptions. Currently in beta testing, it allows users 

to create unique visuals based on their prompts; 

●  google scholar[14]: Provides a comprehensive search engine for academic research, 

targeting scholarly articles, theses, books, abstracts, and court opinions. 

3.3.2. The total number of the collected images 

Non defected: 100 images 

Defected:  
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▪ Cracked: 50 images; 

▪ Dented: 50 images; 

▪ Corroded: 50 images; 

Total: 250 images. 

 

 

 

 

 

3.4. Image adaptation 

● Defect cropping: after the images were collected they were generalised images.  In 

order for our model to perform well on our classification task the specific defect in 

the image was cropped.  

  NB: this process was done manually so the cropped area would be precise. 

● Quality enhancement(image upscaling):  

Images collected from open sources aren't always ones of good quality. The credibility 

of the Ai model depends on how much it could learn the most important feature. If the 

images are of a low quality our model  won’t be able to detect the defect and this will 

lead to an inability to learn.  

 

Figure 3-2: examples of the collected 
images from each class 
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The technique of raising a digital image's resolution is known as image upscaling. To 

put it another way, it's about enlarging an image. However, expanding the image alone 

would only produce a jumbled, fuzzy image. The goal of upscaling approaches is to 

produce a crisper, higher-quality image with more detail by analysing the current pixels 

and creating new ones that fill in the gaps using different algorithms. 

There are many free websites that can be used in this process such as:  zyro / Fotor / 

AI.imagesenlarger / upscayl / image enhancer / M.image enhancer. 

The one used for this specific project is Fotor. It is a free website that allows various 

operations on the images, it is very easy to use and  it gives very good results as an 

output.  

 

  

 

 

 

3.5. Data ordering 

○ Based on classes: our images should be 

in a folder containing sub-files, named 

with their associated class.  

 

 

 

Figure 3-3: A dented pipeline image before and after upscaling 

 

 

Figure 3-4:class based ordering 

 

https://zyro.com/fr/outils/upscaler-dimages
https://www.fotor.com/fr/
https://imglarger.com/
https://www.upscayl.org/
https://www.upscayl.org/
https://www.cutout.pro/photo-enhancer-sharpener-upscaler
https://imgupscaler.media.io/app/upscaler
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○ Based on nature: the data collected should be 

split into training data, test data and 

validation data. The training data will be 

augmented in the next step so we generate  a 

larger number of images  meanwhile the test 

and validation ones shouldn’t be, the tes 

images  are used to evaluate the performance 

of our model and the validation ones to double check.  

■ Training: 160 image 

■ Test: 45 image 

■ Validation: 45 image. 

 

 

3.6. Data augmentation 

Having only 160 images for training was clearly not enough, which led me to apply 

data augmentation operations on my images to boost the number and have more varied 

data that my model will learn from.  For this, I have used the ImageDataGenerator 

library from TensorFlow keras API. 

○ ImageDataGen [18]: Data augmentation involves applying arbitrary transformations 

such as rotations, flips, shifts, zooms, and other effects to generate variations of 

training images artificially. This practice is instrumental in mitigating the overfitting 

issue by expanding the quantity and diversity of data encountered during training. 

Through exposure to a wider range of examples, the model learns to generalize better 

on unseen data, identifying underlying properties that remain consistent across 

various distortions or variations. Consequently, data augmentation enhances the 

 

Figure 3-5: nature based ordering 
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robustness and generalization capability of machine learning models, enabling them 

to perform more effectively on real-world datasets. 

 

○ Operations applied in this project:  

➢ Rotation_range: Rotates the image by a random number of degrees within the specified 

range (in degrees). This helps the model learn to recognize objects from different 

orientations; 

➢ brightness_range: varies the image brightness at random by a scaling factor that falls 

under the given range (tuple of two floats). This makes the model more resilient to 

changes in illumination; 

➢ Width_shift_range: Randomly shifts the image horizontally by a fraction of its total 

width within the specified range (float or tuple of two floats). Values can be less than 

1.0 to shift to the left or greater than 1.0 to shift to the right. This helps the model learn 

features that are not dependent on the object's position within the image; 

➢ Height_shift_range: same as width_shear_range except for height; 

➢ shear_range: Applies a shearing transformation to the image. This can distort the image 

slightly, helping the model learn features that are invariant to small geometric 

distortions. Specified as a float representing the shear angle in radians; 

➢ Zoom_range: Randomly zooms in or out on the image within the specified range (tuple 

of two floats). Values less than 1.0 zoom in, and values greater than 1.0 zoom out. This 

helps the model learn features at different scales; 

➢ Horizontal_flip: Randomly flips the image horizontally (mirroring the image left to 

right). This can help the model learn features that are independent of the object's 

orientation on the x-axis; 
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➢ Fill_mode: Specifies how to fill the pixels that become exposed due to random 

transformations like rotations or shifts. 

 

➔ After applying the methods mentioned above my built model was regulated to 

generate for each image 30 other ones. 

➔ Total number of images after augmentation: 7540 images.  

 

3.7. Image processing and feature engineering 

How do we unlock the information from images? This part is the answer to this 

question.  

Machine learning models have their own specific language, they are unable to read 

images as they are, that’s why we have to transform these images into numerical data 

and arrays in order for it to be read. The steps taken in these project are represented in 

the following figure 3-7 

 

 

 

Figure 3-6: representation of data augmentation process 
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3.7.1. Image processing 

This step concerns bringing images from visualised pixels and colours into floats and 

arrays.  

In this project I created a function called load_and_preprocess_images_with 

feature_engineering that operates all that is going to be explained, by calling this 

function on a certain image folder it directly applies all the necessary transformation and 

it stores the numerical information of the images in images array and labels in label 

array. This function is built as follow:  

3.7.1.1. Reading images from directory 

In this part my code will iterate over all the training images folder and each sub-file 

and read the images.  

The libraries that had a role in this step are:  

➔ Operating system module (OS): [27] This module offers an operating system-

dependent functionality in a portable manner. See open() if you only want to read 

or write a file; see the os.path module if you want to alter paths; and see the 

fileinput module if you want to read every line in every file on the command line. 

 

Figure 3-7: steps taken in image processing 
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See the tempfile module for producing temporary files and directories, and the 

shutil module for high-level file and directory operations. 

3.7.1.2. Operations on the image 

In this step the images get resized to a 224px by 224px to make them easy for the next 

step, and transformed into a normalised numpy array that holds values that vary from 

0 to 1. The libraries used are:  

➔ OpenCV (cv2): [10]  For real-time computer vision and image processing, cv2, 

sometimes referred to as OpenCV (Open Source Computer Vision toolkit), is a potent 

and extensively utilised open-source toolkit. Although it's mainly built in C++, it 

offers bindings for Python (via the cv2 module) and other languages.  

Its functionality is to execute a variety of image and video processing tasks, such 

as: Filtering (blurring, edge detection, noise reduction), transformations(resizing, 

rotating, converting colour space); 

➔ Numpy arrays: [9] A flexible data structure for storing and managing 

multidimensional arrays of homogeneous data types (e.g., all integers, all floats) is 

introduced by NumPy: the ndarray object. Compared to Python's built-in lists, which 

are less effective for numerical operations and can hold diverse data types, this is a 

major gain. 

3.7.2. Feature engineering with VGG16 (Visual Geometry Group from Oxford) 

VGG16 is a pre trained deep learning model, built by a group of Oxford experts,  

trained on the various dataset ImageNet. It can be used as a classifier on its own or as a 

feature extractor in transfer learning.  
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13 convolution layers are stacked together in the VGG16 architecture to create an 

image categorization system. A kernel of dimension 3×3 with parameters that are 

learnable W and b is used to conduct the convolution process, passing it over each 

image's pixel x to produce an output y. The stride determines whether the kernel moves 

pixel by pixel or skips multiple pixels at a time. The function that represents the 

convolution operation's simplified form is as follows: 

𝑌 =  𝑓 (𝜔 𝑥 + 𝑏)                                                                        (3-1) 

The automatic feature extractor that the convolution layers provide extracts patterns 

for classifying different defects. Simple characteristics like edges are learned by the 

initial convolution layers, and these features are combined to generate complex features 

in the subsequent convolution layers. Rectified Linear Unit (ReLU), a non-linear 

activation layer that adds uncertainty, usually comes after each convolution layer. The 

maxpooling layer is used for down sampling in order to minimise the size of the 

activation map. At the top of this convolution layer stack is a classifier. It is a fully linked 

layer with 4096 neurons in this instance. Three fully connected layers are present with 

four neurons, one for each class. In this project two approaches are used:  

➔ Feature extraction (transfer learning)  

▪ Pre-trained Model: For image classification, for example, we use ImageNet, a 

robust model that has been trained on a sizable dataset. This model has picked up 

useful general traits that it can use for a variety of tasks; 

▪ Feature Extractor: We just employ the pre-trained model's first layers, which are 

typically convolutional layers in image processing. These layers are useful for a 

variety of computer vision tasks since they capture generic and low-level 

properties like edges, forms, and textures; 
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▪ New work Data: For the particular work that interests us, such as dog breed 

classification, we have our own dataset. It's possible that this dataset is smaller than 

the pre-training one; 

▪ Feature extraction involves running the freshly acquired task data through the 

trained model, up to a selected layer. These first layers extract features (e.g., visual 

features from photos) pertinent to the general domain; 

▪ Benefits: 

- Leverages Pre-trained Knowledge: The pre-trained model is a useful place to 

start, particularly if there isn't much data available for the new task. Extracted 

features frequently contain important information that helps with the new 

assignment; 

- Shortens Training Time: Pre-trained features save computational resources by 

avoiding the requirement to train the entire model from scratch. 

➔ Finetuning:  

▪ Pre-trained Model (Akin to Feature Extraction): On a similar task, we apply a pre-

trained model. The pre-training work should be as near to our new task as possible; 

▪ Unfreeze Certain Layers: We let the layers—often completely connected layers—

to be fine-tuned rather than freezing all of the pre-trained layers as we would in 

feature extraction. Usually, these layers capture more information unique to a 

given activity; 

▪ New Task Data: We train using our newly acquired task data; 

▪ Fine-tuning: We train the entire model, but the pre-trained layers learn at a 

significantly slower pace than the final layers. This lets the model adjust to the new 

task while guaranteeing that the previously learned information isn't entirely 

replaced; 

▪ Benefits: 
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- Adapts to New tasks: By enabling the model to modify its pre-trained features 

for a given job, fine-tuning can possibly outperform feature extraction, 

particularly for tasks with greater variability; 

- Leverages Pre-trained Knowledge: It makes use of the pre-trained model's 

knowledge, just like feature extraction does.  

➔ Choosing between feature extraction and fine-tuning:  

▪ Data Size: Feature extraction may be preferable to overfitting if you have a very 

small dataset for the new task. More data is needed for fine-tuning to enable 

effective adaptation; 

▪ Task Similarity: Feature extraction may be sufficient if the new task and the pre-

training task are substantially similar. Fine-tuning is perhaps more advantageous 

for more different jobs because it enables the model to adjust the features that have 

already been trained; 

▪ processing Resources: Compared to fine-tuning, feature extraction often uses less 

processing resources and is faster. 

3.7.3. Data visualisation 

In this project's case, 4133 features were extracted in order to have an overview on my 

data. I had to pass it through a relevant features selection process. I extracted 10 features 

using the chi-squared statistical method and visualised only two.  

●  How chi-squared helps in feature selection for visualisation:  

➔ Chi-squared equation:  

𝒙𝟐 =  ∑  𝒊
(𝑶𝒊 − 𝑬𝒊)𝟐

𝑬𝒊
                                                                                  (3-2) 

➔ Assesses Dependency: 
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 Chi-square evaluates the statistical relationship between a target variable (the 

variable you're attempting to forecast) and a categorical characteristic; 

Strong reliance is shown by a high chi-square value, which implies the characteristic 

may be informative for the prediction job; 

Weak reliance is indicated by a low chi-square value, which reduces the feature's 

informativeness. 

➔ Ranking of Features: 

You can order the characteristics according to how dependent they are on the target 

variable by computing the chi-square statistic for each feature and its p-value 

(significance level); 

Features that exhibit low p-values, which signify statistical significance, and high chi-

square values are deemed to be more pertinent. 

➔ The threshold for selection: 

To choose a subset of features, you can choose a threshold for the p-value or chi-

square value; 

Features that are deemed informative and kept for model training are those that are 

above the threshold (top k features with highest chi-square, for example). Features that 

fall short of this cut off are ignored. 

● Visualisation:  

➔ Class 0: corrosion;  

➔ Class1: crack; 

➔  Class2: dent; 
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➔ Class3: non defected. 

Figures 3-8 and 3-9 show the visualisation of this project’s features fine tuned 

visualised all together and separately, while the figures 3-10 and 3-11 show the raw 

features without any fine tuning.   

 

 

 

 

 

 

  

 

Figure 3-8 fine tuned features 
representation (each class separately) 

 

 

Figure 3-9 fine tuned features 
representation (all classes together) 

 

 

Figure 3-11: fine tuned features 
representation (each class separately) 

 

 

Figure 3-10: fine tuned features 
representation (all classes together) 
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3.7.4. Storing data in arrays 

Storing your processed images in arrays is a crucial step in order to jump to the next 

one.  

In machine learning projects numpy is the one widely used. Why use numpy 

specifically?  

➔ NumPy arrays provide a small and effective means of storing numerical data, such as 

pre-processed picture data. 

➔ They make it possible for the data to be mathematically processed efficiently, which 

is essential for machine learning algorithms. 

➔ They offer a uniform format that many machine learning libraries and tools can 

readily load and work with. 

3.8. Conclusion 

Data processing is a basic step in the field of machine learning that allows your data 

to reach its full potential. In conclusion, the following highlights its significance: 

● Extracts Useful Information: Unprocessed data is frequently unstructured and 

devoid of the organisation required for machine learning models. Techniques for 

processing data that convert unprocessed data into a format that models can 

comprehend and use efficiently include feature extraction, normalisation, and 

cleaning. 

● Enhances Model Performance: Accurate models that learn patterns and relationships 

are those that use clean, well-processed data. Better predictions, classifications, or 

other intended outputs from your machine learning system will result from this. 
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● Reduces Training Time: Data processing lowers the complexity of the data a model 

must handle by removing inconsistent and unnecessary information. This can greatly 

reduce the amount of computational resources needed and training timeframes. 

● Facilitates Feature Engineering Done Right: Processed data is frequently used in 

feature engineering, the process of developing new features from pre-existing ones. 

The ability of a model to learn and generalise can be improved by identifying 

informative characteristics with the aid of processing techniques. 

● Improves Generalizability: Properly handled data can aid models in learning from 

the training set and improving their ability to generalise to new examples. For real-

world applications, where models must function well on data other than the training 

set, this is essential. 

Data processing essentially serves as a link between strong machine learning models 

and unprocessed data. Through the act of converting data into an appropriate format 

and fixing errors, data processing enables models to learn efficiently and produce 

insightful predictions. In the next chapter we will be reviewing how this data and its 

types of pre-processing affect the model robustness.  
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4. Chapter4: Machine learning model building 

 

 

4.1. Introduction:  

Machine learning and data mining methods are traditionally designed to tackle the 

problems separately. These algorithms are used for training the model separated on the 

same distribution and particular feature space.  

A machine learning algorithm is used to train a model for a particular task, depending 

on the business case. The idea that training and test data must have feature spaces that 

are equal to the underlying distribution is a common one in the machine learning 

community.  

However, in practice, this presumption might not remain true, necessitating the 

rebuilding of models in the event that characteristics and distribution change. Rebuilding 

the models and gathering relevant training data is a laborious task.  

As it was stated in the previous chapter features were extracted and engineered using 

VGG16. This method is called transfer learning. It is commonly used in classification 

projects. It helps augment the robustness of the model and eliminates overfitting issues.  

In this specific project the primary approaches and algorithms are going to be mentioned 

in the upcoming parts. It is important to mention that the trials and the search for the 

optimal model is never a stable study to make, yet the algorithms used can give us. 
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 an overview about how our classification behaves and what are the missing details 

needed. 

4.2. Support vector machine (SVM):  

Vapnik et al.'s [25] statistical learning theory served as the foundation for the support 

vector machine, a novel learning technique that builds on a small number of samples from 

the data in the available training text to produce the best classification outcomes.   

The foundation of SVM classification is the concept of decision hyperplanes, which 

provide decision boundaries in high-dimensional feature space or input space. SVM 

structures linear functions from a set of labelled training datasets (hyperplanes in either 

feature space or input space). The goal of this hyperplane is to separate the positive and 

negative samples.  

The linear separator is typically built with the nearest negative and positive samples at 

a maximum distance from the hyperplane. This, intuitively, leads to accurate 

categorization for training data that is similar to yet distinct from the testing data.   

Nonlinear difficulties in SVM can be resolved, By translating the n-dimensional input 

space into a high-dimensional feature space. In this high-dimensional feature space, at 

last, a linear classifier that functions as a nonlinear classifier in the input space is built.   

4.2.1. Data linearity 

4.2.1.1. Linearly separable SVMs 

Think about a binary classification issue where there are N training samples (data) [2].  

A tuple (xi, yi) and (i = 1, 2,..., N) indicating each sample is present, where xi=(xi1, xi2,..., 

xin) is in line with the ith sample's attribute set. Let yi ∈{-1, 1}, which is traditionally 
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regarded as a class designation. A linear classifier's (separator's) decision boundary can 

be expressed as follows:  

𝑊𝑇𝑥 + 𝑏 =  0                                                                                                  (4-1) 

where b is a bias term and w is the weight vector. 

Although there are numerous linear separators, the SVM design objective is to specify 

a decision boundary that is as far away as possible 

distant from any given data point. The classifier's margin is determined by this distance 

between the nearest data point and the decision boundary. With this design method, a 

(usually small) fraction of the data points that determine the separator's position fully 

identify the decision boundary for an SVM. We refer to these sites as support vectors. The 

margin and support vectors for the two class problems are displayed in Figure 4-1.   

In the case that the training data exhibit linear separability, a pair (w, b) will exist 

whereby: wT 

 If yi = 1, then xi + b ≥ 1;                                                                                                        (4-2) 

 if yi = -1, then wT xi + b ≤ -1.                                                                                                   (4-3) 

The formula for the linear classifier is: 

f(x) = sign (wT x + b)                                                                                                        (4-4) 

 The functional margin of the ith sample xi with regard to a hyperplane (w, b) is defined 

as in (2-7) for a given dataset and decision hyperplane: 

yi (wT xi + b) = γi                                                                                                               (4-5)  
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Then, the functional margin of any sample in the dataset with minimal functional 

margin is twice the functional margin of the decision boundary dataset. 

The factor of two is derived by calculating the margin's entire width, as shown in 

Figure 2-18.  The shortest path between a point and a hyperplane is known to be parallel 

to w since it is perpendicular to the plane. w/║w║ is a unit vector in this direction. 

Geometric margin, denoted by ρ in Figure 2-18 , is the maximum width of the band that 

can be created to divide the support vectors of the two classes. Any xi sample's distance 

from the separator is equivalent to:  

 

 

 

 

 

  

 

γi /║w║ = 1/ ║w║                                                                                          (4-6) 

The best w and b are determined by maximising this geometric margin (2-8) while 

designing a linear separator, as stated below: 

ρ = 2 /║w║ maximised.  

When w is minimised, Φ(w) = ||w|| = wT.  

 

Figure 4-1:decision boundary and margin of 
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For any (xi, yi), i =1,..., N: s.t. yi (wTxi + b) = 1.                                                                    (4-7) 

To solve the aforementioned difficulties, one must create a dual problem in which each 

inequality constraint (yi (wT xi + b) >= 1) in the primary problem is coupled to a Lagrange 

multiplier, αi: 

Determine α1, …, αN so that:  

𝑄(𝛼) = ∑ 𝛼𝑖
𝑁
𝑖=1  −  

1

2
∑  𝑁

𝑖=1 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗                                                        (4-8)        

                                 

is maximised with respect to α subject to the following constraints: 

∑  𝑁
𝑖=1 𝛼𝑖𝑦𝑖  = 0   s.t   𝛼𝑖 ≥ 0  for  i = 1,2,3….,N                                                (4-9) 

The solution of the dual problem αi must satisfy the condition αi{yi (wT xi - b) -1)} = 0 for 

 i =1, 2, …, N. Then solution to the primal is: 

𝑤 = ∑  𝑁
𝑖=1 𝛼𝑖𝑦𝑖xi                                                                                             (4-10) 

𝑏 =  𝑦𝑖 − ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑇𝑥𝑖

𝑁
𝑖=1    for any  𝛼𝑖 >  0.                                                                  (4-11) 

In the solution above, most of 𝛼𝑖  are zero for data samples which do not support 

vectors. Each non-zero 𝛼𝑖  specifies that the equivalent xi is a support vector. So, the 

classification function is then as given below:  

𝑓(𝑥)  =  ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑇𝑥 +  𝑏                                                                                        (4-12) 

We don’t need w explicitly in (11) since it relies on an inner product between the test 

point x and the support vectors xi. Finding class labels for any data points xj involves 

computing the inner products xi T xj . 
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4.2.1.2. Non linearly separable SVM 

A support vector machine's (SVM) ideal hyperplane is defined to maximise 

generalisation. However, if the training set cannot be separated linearly, the intended 

classifier might not possess a strong capacity for generalisation, despite the fact that the 

hyperplanes are ideally selected. Therefore, the original input space is mapped into a high 

dimensional space called feature space in order to improve linear separability. [1] 

The kernel trick, which involves mapping to a higher dimensional space, is made 

simple and effective by SVMs [22]. The SVMs linear classifier relies on the dot product of 

the vectors representing the data points. 

Assume that the data are transformed using a mapping function Φ to some (potentially 

infinite dimensional) space H, where they take on the form Φ(xi)TΦ(xj). Non-linear 

operations in input space are similar to linear operations in H. In the event that x = (x1, x2) 

and \(x) = (x1^2, x2^2, √2x1x2). Fig.2 shows how this mapping is done.  [2] 

 

 

 

 

 

Let K(xi, xj)=Ф(xi) T Ф(xj) as kernel function, so we change all inner products to kernel 

functions for training data. 

Designing SVM is to find α1 ,…, αN such that:  

 

Figure 4-2: decision boundary of a nonlinear SVM. 
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𝑄(𝛼) = ∑ 𝛼𝑖
𝑁
𝑖=1  −  

1

2
∑  𝑁

𝑖=1 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗𝐾(𝑥𝑖, 𝑥𝑗)                                                      (4-13)        

is maximised under the following constraints with respect to α:  

∑ 𝛼𝑖𝑦𝑖  =  0,𝑁
𝑖=1   𝐶 ≥ 𝛼𝑖 ≥ 0  for all  𝛼𝑖,                                                             (4-14) 

Then the classifier is as below: 

𝑓(𝑥)  =  ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥𝑗) +  𝑏                                                                                        (4-15) 

4.2.2. Kernel regulation in SVMs 

A kernel, also known as a kernel function, is a machine learning function that accepts 

two data points as input and returns a value that indicates how similar the two data points 

are. In a higher-dimensional space, this similarity is frequently employed to quantify the 

non-linear interactions between the data points. 

What kernels do is take as input two data points (xi and xj). These data points could be 

characteristics (features) of a thing or instance and it outputs a scalar value (K (xi, xj)) that 

illustrates how comparable the two data points are. 

It exists four types of kernels:  

● Linear kernel:  

This kernel is the most basic one; it computes the dot product of the two original space 

data points. It takes the features to have a linear relationship. 

It has no additional parameters to adjust, is computationally efficient, and is simple to 

interpret (similarity based on dot product). 

Its function is:  
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K (xi, xj) = xi T xj                                                                    (4-16) 

● Polynomial kernel with degree d: 

Before applying the power, this kernel adds a constant c and elevates the dot product 

of the data points to a power d. In contrast to the linear kernel, it enables the learning of 

more intricate non-linear correlations. 

Compared to the linear kernel, it can capture a larger range of non-linear interactions. 

On another hand you must select specific and adequate degree d and constant C as 

hyperparameters, which can have a big effect on performance. You can experience the 

"curse of dimensionality" in high dimensions as a result of features growing 

exponentially. 

It is defined by the following function:  

K (xi, xj) = (xi 
T xj + 1)d                                      (4-17) 

● Radial basis function (RBF) kernel (σ is a positive parameter for controlling the radius)  

This kernel regulates the impact of neighbouring points by using the Euclidean 

distance between the data points and a parameter called sigma. It is useful for modelling 

non-linear connections with decision boundaries that are smooth. 

It works well and is adaptable for a variety of non-linear issues. Smooth decision 

boundaries may result in improved generalisation. 

nonetheless, it might be more difficult to understand than the polynomial or linear 

kernels. 

It can be expressed by the following function:  



Chapter 4: machine learning model building 

 

53 | P a g e  

 

K(xi, xj) = exp (-║xi - xj ║2 / 2σ2)                                    (4-18) 

● Sigmoid kernel: 

The tanh function is used for non-linearity in this kernel, which is comparable to the 

polynomial kernel. It is less popular than the RBF kernel but can be helpful in certain 

situations. Some non-linear relationships can be modelled by it. 

although for some parameter values, it is susceptible to numerical instability. 

It is mathematically modelled by:  

K (xi, xj) = tanh (δxi 
T xj + r)                                                 (4-19) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3:  example of different kernels plotting 
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4.2.3. One vs One SVM 

● Description:  

The "one against one" technique, sometimes referred to as "round robin," "all pairs," or 

"pairwise coupling," entails creating one SVM for each pair of lessons. 

 Consequently, c(c-1)/2 SVMs are trained to separate the samples of one class from the 

samples of another class for a problem with c classes. When classifying an unknown 

pattern, the maximum voting method is typically used, with each SVM voting for one 

class.   

● Probability estimation:  

The task is to express the global posterior probabilities Pˆ (ωj| x) as functions of the 

local posterior probabilities Pˆ (ωj |f j, j' ((x)), where f j, j' (x) denotes the output of the SVM 

trained to distinguish class ω j from class ω j’. Each SVM's output is mapped into 

probability using a sigmoid function. Numerous approaches have been put out in the 

literature.   

● Advantage of OvO SVM:  

Possibility of improved handling of data imbalance: OvO may be more resilient to class 

imbalance in situations where certain classes have noticeably less data points than others 

than One vs all. This is so that minority classes may benefit from improved decision 

boundaries as a result of each SVM's concentration on a particular class pair. 
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4.2.4. Grid search 

In machine learning, grid search is a popular method for hyperparameter tweaking. It 

seeks to determine which model's hyperparameter combinations yield the greatest results 

for a certain task. 

The logic behind the grid search functionality:  

● You specify a range of possible values for each hyperparameter to be explored. This 

range can be defined as a list of discrete values or a continuous range with a certain 

step size;  

● The grid search will train your specified model on all the possible combinations 

between the hyperparameters, so it gives you the most optimal ones. It works in a 

probabilistic logic.  

Example:  

➔ Consider two hyperparameters  1 and 2 such as:  

Hyperparameter 1 = [a, b, c]  / hyperparameter 2 = [x, y, z]  

➔ We perform a grid search on this given data, we can visualise this process by the 

following figure:  

 

 

 

 

 

Figure 4-4Grid search 
initialization demonstration.: 
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➔ This will be having 9 combinations of both of our hyperparameters.  

➔ By next our predefined model (eg: SVM, Random Forest, Stochastic gradient 

descent. Etc) will be trained on all the previously provided combinations.  

➔ By the end only one combination will be outputted and it is considered as the 

optimal solution for our model.  

4.2.5. Approaches taken and their respective results 

In the following part four approaches are going to be introduced: 

➔ Transfer learning for feature engineering with a linear kernel for the SVM classifier  

➔ Transfer learning for feature engineering with an RBF kernel for the SVM classifier  

➔ Fine-tuned features for feature engineering with a linear kernel for the SVM classifier  

➔ Fine-tuned features for feature engineering with an RBF kernel for the SVM classifier   
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The evaluation matrices used are:  

➔ Precision: calculates the percentage of real positives compared to expected positives 

and more simply, it indicates the proportion of things that your model correctly 

identified as positive; 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                           (4-20) 

➔ Recall: calculates the percentage of real positives that were successfully detected, it 

indicates the percentage of all real positive cases that your model successfully 

recognized; 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                (4-21) 

➔ F1-score: balances the value of precision and memory by combining them into a single 

metric. An excellent balance between detecting genuine positives and averting false 

positives is indicated by a high F1-Score; 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2.𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
                                (4-22) 

➔ Accuracy: calculates the percentage of samples that are correctly identified (including 

positives and negatives). This straightforward metric may be deceptive in datasets that 

are unbalanced; 

➔ Macro average: determines the average F1-score, recall, and precision for each class. 

helpful in assessing performance on unbalanced datasets where accuracy may not 

always be dependable; 

➔ Weighted average: determines the precision, recall, and F1-score weighted average; 

the weights are determined by the class support (number of samples). assigns classes 

with more samples a higher weight; 
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➔ Support: shows how many data points there are overall for each class. It facilitates 

comprehension of how your data is distributed throughout the various classes; 

➔ Confusion matrix: a table that shows how well a categorization model performs with 

a given set of data. Actual class labels are shown in rows, and anticipated class labels 

are shown in columns. The number of instances where the model predicted the label 

in the relevant column and the true label fell in a certain row is displayed in each cell. 

 

A.  Transfer learning  X linear kernel: 

 

 

 

 

 

 

 

 

 

 

 

 

classes Precision Recall F1-Score Support 
Training 

Accuracy 

validation 

accuracy 

macro 

avg 

weighted 

avg 

corrosion 0.98 0.97 0.97 208 

98,36% 62,6% 0.98 0.98 

crack 0.96 0.98 0.97 167 

dent 0.98 0.98 0.98 173 

non 

defected 
0.99 0.99 0.99 486 

 
Table 4-1:SVM transfer learning X linear kernel results: 
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B. Transfer learning X RBF kernel: 

 

 

 

 

 

 

 

Figure 4-5: SVM transfer learning X linear kernel confusion 
matrix 

 

classes Precision Recall F1-Score Support 
Training 

Accuracy 

validation 

accuracy 

macro 

avg 
weighted avg 

corrosion 0 0 0 208 

47% 28% 0.17 0.33 

crack 0 0 0 167 

dent 0 0 0 173 

non 

defected 
0.47 1 0.64 486 

 

Table 4-2: SVM transfer learning X RBF kernel results 
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C. Fine tuning X linear kernel 

 

 

 

 

 

 

 

Figure 4-6:SVM transfer learning X RBF kernel confusion matrix 

 

 

 

classes Precision Recall 
F1-

Score 
Support 

Training 

Accuracy 

validation 

accuracy 

macro 

avg 

weighted 

avg 

corrosion 0.99 0.96 0.98 216 

98% 47,2% 0.98 0.98 

crack 0.97 0.97 0.97 213 

dent 0.97 0.98 0.97 212 

non 

defected 
0.99 1 0.99 606 

 
Table 4-3: SVM fine-tuning X linear kernel results 
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D. Fine tuning X RBF kernel: 

 

 

 

 

 

 

Figure 4-7: SVM fine-tuning X linear kernel confusion matrix 

 

classes Precision Recall F1-Score Support 
Training 

Accuracy 

validation 

accuracy 

macro 

avg 

weighted 

avg 

corrosion 0 0 0 216 

47% 20% 0.16 0.33 

crack 0 0 0 213 

dent 0 0 0 212 

non 

defected 
0.47 1 0.64 606 

 
Table 4-4:SVM fine-tuning X RBF kernel results 



Chapter 4: machine learning model building 

 

62 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

➔ General comparison between all the approaches:  

 

 

 

 

 

Figure 4-8: SVM fine-tuning X RBF kernel confusion matrix 
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4.2.6. observations 

The exploration of different types of training the SVM kernel led me to make general 

observations on different aspects that were set as variables and how changing them 

would change the performance of my model. The key observations and details are as 

follow: 

A.  How kernel tuning affected  the performance:  

● We have noticed a drastic change in both of the results where the linear kernel 

surprisingly performed better than the RBF one; 

● From the classification report as the tables show we can notice that the scores of the 

linear kernel for all classes are high whereas with the RBF kernel are zero except for 

non defected classes;  

 

Figure 4-9: general comparison between all the approaches 
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● When it comes to the confusion matrix we can notice that it gave us a clear insight on 

how our model classified each class as its true class on the linear kernel.  

● For the RBF kernel we can notice that our model classified all classes as non defected 

and it didn’t actually perform on the other classes.  

B.  how fine tuning affected the performance:  

● The inclusion of the fine tuning on the features didn’t significantly improve the 

performance of our model when it comes to training; 

● We can notice that the accuracy of validation got lower when we fine tuned the features 

while the one of the training stayed as high as it was.  

C.  changing various hyperparameters during the training:  

● The previously showcased values are the ones depending only on changing two 

training factors. In Fact performing a grid search allowed to freeze the other factors; 

● Before applying the grid search we tried to play on other hyperparameters and we 

noticed that C (cost) parameter with a linear kernel had no effect while increasing it 

helped the RBF accuracy to augment but led it to overfit; 

● Exploring with a different range of gamma parameters with the RBF kernel didn’t 

indicate a great or an important improvement.  

D. training and validation accuracies:  

● In an adequate performing model the training and the validation accuracies should be 

almost the same, in our case we can clearly notice the huge drop in accuracy from 

training to validation. 
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4.2.7. Explanation and discussion 

A- Linearly separable data: taking the change in performance between linear and RBF 

kernels can potentially showcase that our data is linearly separable.  What led to sustain 

this opinion is the irrelevance of the cost values changing with the linear kernel because 

there’s no need to adjust the margin for few misclassifications. 

B- overfitting:  In this case so many results show that  our model is overfitting in all 

the previously proposed approaches and here’s a breakthrough of it:  

● When it comes to the best-case scenario “transfer learning X linear kernel” we 

noticed that the accuracy between training and validation isn’t the same or even 

close to be. It means that this model is learning the images as whole or both of 

relevant and irrelevant features which lead to its incapacity of generalisation; 

● We noticed also that validation accuracy got lower when we fine-tuned our 

features, this is because fine tuning increases the complexity of our features, 

amplifies noise and adds more irrelevant data to our training inputs, which makes 

our model more sensitive. This all will lead our model to perform poorly in the 

generalisation scenario; 

● The reason behind our trained model on an RBF kernel performed so poorly and 

couldn’t classify each class adequately can be also a potential problem of 

overfitting. As it was stated before our data is highly to be considered linearly 

separable, though in another hand if it wasn’t the case, we can assume that the 

model learnt only the “non defected class” and was capturing pipes as whole in 

the other classes rather than the specific defected area.  

4.2.8. conclusion 

We conclude from these results that the SVM algorithm even though it performed well 

on some aspects but it still had its own constraints that left it non optimal. This opens the 
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door to try on in this multi classification problem other algorithms that might perform 

better.  

4.3.  Random forest 

4.3.1. Description of a random forest 

The Random Forest Algorithm's broad appeal can be attributed to its versatility and 

ease of use, which allow it to effectively address problems related to both regression and 

classification. The method is a useful tool for a variety of machine learning predictive 

tasks because of its strength in handling complicated datasets and mitigating overfitting. 

The ability of the Random Forest Algorithm to handle data sets with both continuous 

variables as in regression and categorical variables as in classification is one of its most 

crucial properties. In tasks involving regression and classification, it performs better. We 

will learn how random forests operate in this tutorial and apply them to a classification 

job. 

4.3.2. Ensemble learning techniques 

4.3.2.1. Booting (bootstrap aggregation)  

 Using replacement data from the original dataset, bootstrapping entails generating 

multiple training datasets. This implies that a data point may be chosen more than once 

in a single training set, and that certain data points may be completely eliminated. 

These "bootstrapped" datasets have been created, and as a result, each dataset differs 

somewhat from the original data. This introduces variation into the process of training. 

Next, each bootstrapped dataset is used to train a learner (such as a decision tree). As 

a result, several models are produced, each with a slightly different learning curve. 
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Each model predicts something about a new data point during prediction, and the final 

forecast is usually the average (classification) or sum (regression) of the predictions made 

by each model separately. 

It is used mostly in random forest algorithms.  

4.3.2.2. Boosting:  

Using boosting, an ensemble is progressively built, with each new model learning from 

the mistakes of the older ones. 

Using the original data, the first model is trained. Next, using a different set of data, a 

second model is trained with an emphasis on data points that the first model incorrectly 

identified. These incorrectly identified points have higher weights, which causes the 

second model to focus more on them. 

This approach is iterative, with each new model concentrating on the "hard" examples 

that proved difficult for the earlier models to solve. 

The ultimate forecast is frequently a weighted total of the predictions made by each 

separate model, much like bagging. 

 

 

 

 

 

 

Figure 4-10:descriptive scheme of bootstrapping and boosting 
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4.3.3. Random forest algorithm building 

● Constructing the Forest 

○ Random Sampling (with Replacement): The algorithm selects a random sample 

(with replacement) from the initial training data for every tree in the forest. This 

implies that a data point may be chosen more than once inside a single tree, resulting 

in forest diversity. Usually, the size of the original dataset (or a subset of it) is the 

same as the number of data points drawn; 

○ Feature Subset Selection: A random subset of features is selected from the complete 

feature set at each node of the tree. Typically, this subset is equal to the square root 

of the total features. By doing this, the tree-building process is made more random 

and overfitting on any particular feature is avoided; 

○ Best Split Selection: To divide the data into two child nodes, the algorithm 

determines which split among the selected features is the best. The split that 

optimises a certain criterion—variance reduction for regression, for example, or Gini 

impurity for classification—is selected; 

○ Recursive splitting: Until a stopping requirement is satisfied, the process of choosing 

the optimal split and producing child nodes continues. This could be a minimal 

amount of data points in a node, reaching a specific depth in the tree, or attaining a 

sufficiently pure node (all data points belong to the same class). 

● Educating Several Trees: 

To build many decision trees (usually hundreds or thousands), you repeat steps 2(a) 

through 2(d) one after the other. The result is a diversified ensemble of trees, with each 

tree having a unique random feature subset and random data sample. 

● Forming Forecasts: 
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Classification: Each tree in the forest classifies a new data point independently in order 

to make a forecast. Out of all the individual forecasts made by each tree, the final 

prediction has the highest frequency (majority vote). 

4.3.4. Hyperparameters to Increase the Predictive Power 

● n_estimators: The number of trees the algorithm constructs prior to averaging the 

predictions; 

● max_features: The most features that a random forest will take into account before 

splitting a node; 

● mini_sample_leaf: Ascertains the bare minimum of leaves needed for an internal node 

to split; 

● Criteria: In each tree, it is how should the node be divided (Log Loss/Entropy/Gini 

Impurity); 

● max_leaf_nodes: Each tree's maximum number of leaf nodes. 

4.3.5. Approaches taken and their respective results 

The upcoming table 2-5 shows different values and choices of the random forest 

hyperparameters. 
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N.B: The evaluation matrices used are the same as the SVM ones except A different 

validation set is not used by Random Forest. Rather, it uses "out-of-bag" data points, that 

is, data points that were not chosen for a specific tree's training to calculate the 

generalisation error of the model.  Overfitting can be avoided by keeping an eye on this 

error throughout training. 

A. Set  A of hyperparameters: 

 

 

 

 

 

 

  Approaches taken  

 A B C D 

n_estimators 2000 1500 2000 1500 

min_samples_split 10 8 8 10 

min_samples_leaf 2 4 4 2 

random_state 42 42 42 42 

oob_score TRUE TRUE TRUE TRUE 

Table 4-5: approaches taken for Random Forest classifier 

classes Precision Recall 
F1-

Score 
Support 

Training 

Accuracy 
oob_score macro avg 

weighted 

avg 

corrosion 1 0.6 0.75 304 

81% 0.2 0.8 0.82 

crack 0.91 0.71 0.8 258 

dent 0.93 0.64 0.76 267 

non 

defected 
0.73 1 0.84 722 

 

Table 4-6: random forest with set A of hyperparameters results 
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B. Set B of hyperparameters:  

 

 

 

 

 

 

Figure 4-11:random forest with set A of hyperparameters 
confusion matrix 

 

 

classes Precision Recall 
F1-

Score 
Support 

Training 

Accuracy 
oob_score macro avg weighted avg 

corrosion 1 0.58 0.73 304 

79,17% 0.2 0.78 0.8 

crack 0.91 0.66 0.77 258 

dent 0.91 0.61 0.73 267 

non 

defected 
0.71 0.99 0.83 722 

 
Table 4-7:random forest with set B of hyperparameters results: 



Chapter 4: machine learning model building 

 

72 | P a g e  

 

 

 

 

 

 

 

 

  

 

Figure 4-12:random forest with set B of hyperparameters confusion 
matrix 
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C. Set C of hyperparameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

classes Precision Recall F1-Score Support 
Training 

Accuracy 
oob_score macro avg 

weighted 

avg 

corrosion 1 0.56 0.72 304 

79.11% 0.2 0.78 0.8 

crack 0.91 0.66 0.76 258 

dent 0.92 0.63 0.75 267 

non 

defected 
0.71 0.99 83 722 

 
Table 4-8:random forest with set C of hyperparameters results 

 

Figure 4-13:random forest with set C of hyperparameters confusion 
matrix 
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D. Set D of hyperparameters:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

classes Precision Recall 
F1-

Score 
Support 

Training 

Accuracy 

oob_scor

e 
macro avg 

weighted 

avg 

corrosion 1 0.59 0.74 304 

80.53% 0.19 0.8 0.82 

crack 0.9 0.72 0.79 258 

dent 0.94 0.63 0.76 267 

non 

defected 
0.73 1 0.84 722 

 
Table 4-9:random forest with set D of hyperparameters results 
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4.3.6. observations 

A.  changing the n_estimators:  

This hyperparameter specifies the number of the decision trees in our random forest. 

We notice that with the sets A /D or B/C even the number of estimators are changed yet  

it didn’t much affect the performance of our model.  

B. changing min sample split:  The min sample splits controls the number of how 

few samples are needed to split an internal node in a Random Forest decision tree. 

  

Figure 4-14: random forest with set D of hyperparameters confusion matrix 

 



Chapter 4: machine learning model building 

 

76 | P a g e  

 

We notice that augmenting the number of samples betters the performance of our 

model.  

C. changing min sample leaf:  

The min sample leaf determines the number of samples required to split an internal 

node in a Random Forest decision tree as shown in the figure 4-15. We can notice that 

increasing it while reducing the min sample splits decreased our model’s performance. 

 

 

  

 

Figure 4-15: Visualization of a part of a tree in the random forest of set A 
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Remark:  The choice of varying the previously stated hyperparameters came from 

applying a grid search on the RFclassifier, I took close values to the optimal ones to 

showcase their influence on the overall performance.  

4.3.7. Explanation and discussion: 

A. Tree Structure and Overfitting: The Random Forest's individual trees' structures 

are directly impacted by the values of min_samples_split and min_samples_leaf. 

Too low of these values can result in: 

● Trees that are Shallow: If too few samples are permitted for splitting, the trees may 

grow excessively shallow and fail to depict the nuanced relationships present in 

the data. This may reduce the overall accuracy of the model; 

● Overfitting: Trees that are able to split on extremely small subsets of data may 

acquire patterns unique to the training set that are poorly generalised to new data. 

 

B. Ensemble averaging:  

Random Forests average the predictions from multiple decision trees. This inherent 

averaging helps mitigate overfitting to some extent. Even if some individual trees overfit 

due to low min_samples_split or min_samples_leaf values, the averaging process can 

help reduce the overall impact. 

C. Effect on individual trees vs. whole Forest:  

Although n_estimators boost the total number of trees, it has no direct effect on how 

each tree is arranged. Without the proper values for min_samples_split and 

min_samples_leaf, each tree remains vulnerable to overfitting. 
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4.3.8. Conclusion: 

min_samples_split and min_samples_leaf have a more direct impact on the structure 

and potential overfitting of individual trees within the Random Forest. 

n_estimators influence the overall complexity of the forest, but its impact on overfitting 

is often less pronounced compared to the other two parameters. 

It's crucial to tune all three parameters (min_samples_split, min_samples_leaf, and 

n_estimators) through techniques like grid search or randomised search to find the 

optimal combination for your specific dataset and task. This ensures you achieve a good 

balance between model complexity, reducing overfitting, and achieving optimal 

performance. 

4.4. Comparison between the two models:  

4.4.1. Strength of the SVM classifier:  

● High Accuracy: Based on my results, SVM performed well on my particular task. When 

the data can be efficiently transferred to a higher dimension for separation or is linearly 

separable, support vector machines (SVMs) are excellent at identifying the best 

hyperplanes for classification, resulting in high accuracy. 

● SVMs prioritise maximising the margin between classes, which can result in strong 

generalisation on data that hasn't been seen before. This is so that there is less chance 

of overfitting to the training set since the model learns the most discriminative features. 

● Interpretability: Compared to Random Forests, SVMs, especially linear SVMs are easier 

to understand. By identifying the decision boundary and the most significant data 

points, I could get understanding of the reasoning behind the model. 

● Memory Efficiency: Random Forests need storing all trained trees in memory, but 

SVMs can be more memory economical for smaller datasets. 
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4.4.2. How can random forest perform well in some scenarios:  

● Non-linear Data: SVMs may handle non-linear data by using kernel functions, 

however selecting the appropriate kernel and setting its hyperparameters might be 

difficult. By integrating several decision trees, Random Forests automatically manage 

non-linearity and may even outperform other methods when applied to datasets that 

are naturally non-linear. 

● High-Dimensional Data: SVMs can become computationally costly and prone to 

overfitting when dealing with datasets that have a large number of features. When 

feature significance ratings are used to identify irrelevant features, Random Forests can 

be more resilient to high dimensionality. 

● Noisy Data: When compared to SVMs, Random Forests are typically more resilient to 

noisy data. They can lessen the impact of individual noisy data points by averaging 

predictions from several trees. 

● Imbalanced Classes: In situations when one class has substantially less samples than 

the other, Random Forests are frequently a better fit for managing imbalanced datasets. 

Compared to SVMs, they are less prone to problems with class imbalance. 
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4.4.3. Side by side comparison: 

 

 

 

 

 

 

 

 

As figure 4-16 shows the best cases of the SVM and the random forest gave almost 

similar results, yet they both showcased overfitting issues. This is due to the lack of data, 

random forest usually deals with big amounts of data and in my case my dataset wasn’t 

big enough.  

Since SVMs performed well on my task, it appears that the data may be a good fit for 

SVMs because of either the kernel function's efficacy or its intrinsic linear separability as 

it was previously concluded. Random Forests, however, might be more advantageous in 

handling non-linearity, large dimensionality, noisy data, or imbalanced classes, 

depending on the features and priorities of my particular dataset.  

 

 

 

Figure 4-16: SVM & RF approaches side by side comparison 
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4.5. Conclusion:  

This chapter discussed the two most powerful machine learning classification 

algorithms: Support Vector Machines (SVMs) and Random Forests. We investigated their 

inner workings, seeing how SVMs methodically design hyperplanes to distinguish classes 

and how Random Forests leverage crowd wisdom via ensembles of decision trees. 

The empirical data revealed the strengths of both methods. SVMs, with their emphasis 

on maximizing margins, obtained high accuracy, especially when dealing with linearly 

separable data. Random Forests, on the other hand, demonstrated their adaptability by 

successfully managing nonlinear difficulties and noisy data. 

Our comparison investigation revealed further pros and limitations. While SVMs 

provide interpretability and memory efficiency, they might be difficult to use due to 

nonlinearity and high dimensions. Random Forests excel in these areas but may take more 

memory and be less interpretable. 

 While both algorithms have inherent resistance, the search for optimal performance 

necessitates more investigation. In the following chapter, we'll go on an optimization. 

journey, studying approaches avoiding the hazards of overfitting, guaranteeing our 

chosen model generalises flawlessly to previously unexplored data journey, studying 

approaches avoiding the hazards of overfitting, guaranteeing our chosen model 

generalises flawlessly to previously unexplored data 
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5.  

Chapter 5: optimisation and deployment 

 

 

5.1.  Introduction 

In the previous chapter various approaches to classify and detect the defects in 

pipelines were mentioned, we have noticed that they didn’t give the desired applicable 

results.  

In this chapter a new method is going to be introduced with a whole new algorithm.  

5.2. Binary tree of SVMs with YOLOv8 

The logic behind this approach is disassociating the classes and making the 

classification by steps or as a tree.  

As figure 5-1 shows our model will firstly detect if our input is of a defected pipeline 

or of a non defected one, by that if the pipe is defected it will see if it is corroded or not 

and at the end it will do a segmentation of the cracks and the dents in both the corroded 

or the non corroded pipelines as the following figure shows:  
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5.2.1. Binary tree of SVMs 

To do the first classifications, the models that are trained are both binary classification 

with SVM. We will firstly build an SVM model with a linear kernel to classify whether 

our pipelines are defected or non defected. Another separately built model  will also 

classify a certain data of pipelines if they are corroded or non corroded.  

N.B: check chapter4 for all the details that concern Support Vector Machines. 

5.2.2. Crack & dent segmentation using YOLOv8 

5.2.2.1. Data annotation 

For this specific task, a data annotation was necessary to identify the segments or the 

parts of cracks “figure 5-3”  and dents “figure 5-2” in the corroded and the non corroded 

pipelines.  

The software used for this process is Roboflow. You can directly highlight the part of 

your defect and store it in the database.  

 

 

Figure 0-1: classification and segmentation structure 
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5.2.2.2. Data augmentation 

Roboflow also offers the possibility to do different types of augmentations. After 

saving your dataset you can set the augmentation factor as you want. The operations 

made on the dataset to vary it were:  

● Flip: Horizontal; 

● 90° Rotate: Clockwise, Counter-Clockwise; 

● Rotation: Between -15° and +15°; 

● Grayscale: Apply to 20% of images; 

● Brightness: Between -15% and +15%; 

● Exposure: Between -10% and +10%. 

 

5.2.2.3. YOLOv8 concept 

YOLOv8, which is well recognized for its object detection skills, may also be used for 

instance segmentation jobs. 

 

Figure 0-2: segmentation of a dent 

 

 

Figure 0-3: segmentation of a 
crack 
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In normal object detection, YOLOv8 generates bounding boxes around objects in an 

image and assigns them class labels. This method identifies the presence of objects and 

their locations but does not provide precise information about their shapes. 

Instance segmentation advances object detection. It seeks to not only recognize and 

locate things, but also to precisely define their borders or shapes at the pixel level. By 

forecasting a segmentation mask for every object in the picture, YOLOv8 is able to do 

instance segmentation. This mask is a grayscale image with values set to each pixel that 

represent different item classes. Background pixels are usually assigned a value of 0, 

whereas individual object pixels have distinct values (usually encoded using one-hot 

encoding). You may determine an object's presence and class as well as its exact shape 

and interactions with other objects in the image by examining the segmentation mask. 

● Evaluation matrices of the YOLOv8:  

- Box_loss: represents the loss incurred when attempting to anticipate an object's 

bounding box in a picture. A smaller box_loss value suggests that the bounding boxes 

of the objects in the image better match the ground truth (actual) bounding boxes 

predicted by the model. IOU (Intersection over Union) functions are used by YOLOv8 

to quantify the overlap between predicted and ground truth bounding boxes. In order 

to update the model's weights during training, the loss function computes the amount 

that the predicted boxes depart from the ideal boxes. This value is then back 

propagated; 

 

- Seg_loss: reflects the loss incurred when attempting to forecast segmentation masks 

for visual objects. Grayscale pictures known as segmentation masks include each 

pixel's value indicating  whether it belongs to the background or a certain class of 

objects. When the seg_loss is smaller, it means that the predicted masks of the model 

more closely match the actual shapes and bounds of the objects in the image. YOLOv8 
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may use specific loss functions appropriate for segmentation applications, taking into 

account aspects such as object boundary preservation and pixel-wise accuracy; 

 

- Cls _loss: represents the loss incurred in the process of classifying items found in the 

image. YOLOv8 assigns a class label to every object it finds. The degree to which these 

predicted labels agree with the objects' actual class labels is measured by the class_loss. 

A smaller cls_loss shows that the objects the model identifies are being correctly 

classified by the model. This is frequently the loss function used in classification tasks 

such as cross-entropy loss; 

 

- Instances: The model is trained using data that includes annotations for the items that 

are seen in the pictures. Each object's location, size, and class are described in these 

annotations. The total number of objects that are truly present in the current image or 

batch of photos is known as the number of ground truth instances. 

5.3. Results: 

A. Binary SVM of the defected and non defected class:  

 

 

 

 

 

 

 

 

 

 

 

classes Precision Recall F1-Score Support 
Training 

Accuracy 

validation 

accuracy 

macro 

avg 

weighted 

avg 

defected 0.89 0.93 0.92 30 

85% 80% 0.87 0.89 non 

defected 
0.9 0.8 0.83 15 

 

Table 0-1: results of binary classification "defected/ non defected" 
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B. Binary SVM of corroded pipeline and no corroded:  

 

 

 

 

 

 

 

 

 

Figure 0-4:Confusion matrix of binary classification 
"defected/ non defected" 

 

classes Precision Recall F1-Score Support 
Training 

Accuracy 

validation 

accuracy 

macro 

avg 

weighted 

avg 

corroded 0.81 0.87 0.84 15 

84% 83% 0.83 0.83 non 

corroded 
0.86 0.8 0.83 15 

 
Table 0-2:results of binary classification "corroded/ non corroded" 
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C. YOLOv8 results on some epochs:  

 

 

 

 

 

 

 

 

Figure 0-5:Confusion matrix of binary classification 
"corroded/ non corroded" 

 

epochs box_loss seg_loss cls_loss Instances 

1514/2000 0.43 0.81 0.31 11 

1518/2000 0.44 0.8 0.32 10 

1523/2000 0.44 0.74 0.31 11 

 
Table 0-3: results of segmentation "crack  &  dent" 
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Some detected images:  

 

 

 

 

 

 

 

 

5.4.  Discussion:  

A. Defected and non defected classes:  

● The previous results  suggest that the model is doing well on the classification problem; 

● The model's high precision (0.86-0.90) for both classes suggests that it can predict 

courses with a fair degree of accuracy; 

● Additionally, recall is strong (0.80-0.93), indicating that the model detects the majority 

of real events in the data; 

● A balanced picture is presented by F1-scores of approximately 0.83, which validate a 

good trade-off between recall and precision; 

● With an overall accuracy of 0.89, the model is properly categorising the majority of the 

data points; 

 

Figure 0-7: YOLOv8 results on a 
cracked unseen image 

 

 

Figure 0-6: YOLOv8 results on a 
dented unseen image 
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● Taking the gap between both, validation and training accuracy is acceptable, which 

means that our model is able to generalise on unseen data.  

 

B. Corroded and non corroded pipelines:  

● Balanced Performance: For each class, recall and precision are both in the high 0.8 

range, indicating that the model finds the majority of real objects while avoiding a large 

number of false positives; 

● F1-Scores: For both classes, scores of 0.83 or higher show a solid balance between recall 

and precision; 

● Accuracy: With an overall accuracy of 0.83, the model appears to be accurately 

categorising the majority of data items; 

● Validation and training accuracy are almost the same which indicates that the model 

performed well and learnt the features.  

 

C. YOLOv8:  

● In all, the model is running through 2000 epochs; the previous results demonstrate 

development from epochs 1514 to 1523; 

● box_loss (0.43 - 0.44): This shows the loss incurred when attempting to forecast 

bounding boxes for picture objects. Although there's certainly opportunity for 

improvement, the numbers here (around 0.4) indicate the model is making some 

headway in learning to predict bounding boxes. Better overlap between the anticipated 

bounding boxes and the ground truth (actual) boxes is indicated by a lower box_loss; 

● Seg_loss (0.74 - 0.81): The values here (around 0.8) are rather high but during the 

training it keeps on decreasing until it reaches lower points at the end of the batches; 

● Cls_loss (0.31 - 0.32): This is the loss that comes from categorising items that are found 

in the picture. These numbers, which are close to 0.3, indicate that the model may have 

some potential for classifying the items it finds. Reduced cls_loss suggests that the 

model performs better at classifying the items it detects correctly; 
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● This is a reference to the quantity of items found in the image that is currently being 

processed. The numbers (10 - 11) indicate that only a small number of objects are being 

detected by the model in each image. 

 

5.5. Deployment:  

The process of making a trained machine learning model available for practical 

application is known as a deployment. In order to receive user requests and produce 

predictions, it entails packing the model, creating its environment, and putting up the 

necessary infrastructure. In this process the previously trained models will be linked and 

associated as a tree, so the model will perform the way it is supposed to. And it goes 

through the following process:  

● Training and Evaluating the Model: First, we used historical data to create and train 

our machine learning models. We built three models as it was stated before; two binary 

classifications using SVM algorithm combined with YOLOv8 for crack/dent 

segmentation; 

● Model Serialization: After a model has been trained and verified, it must be saved in 

a file format that is easily loaded and utilised in production settings. This process is 

known as serialisation. For this project we saved our models as pytorch (a python API) 

format to be used later in our deployment script; 

● Deployment script: the script is written in a development environment and it follows 

a certain logic to ensure the well coordination of our trained model and to be able to 

give the desired results when deployed. Our code started firstly by decoding the 

images into base-64 encoding which is a method for encoding binary data using a set 

of 64 printable ASCII characters to be used as JSON format. Afterwards a detection 

loop was initialised; it is structured in a way as fig 5-1 indicates; 
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● Containerization (Optional): To guarantee consistency and portability across various 

contexts, ML models are frequently deployed inside containers. The model can be 

packaged together with its dependencies and runtime environment into a single 

container image using containerization technologies like Docker; 

● Deployment to Production Environment and strategy: In our case we used azureML, 

it also supports the idea of deployment slots. Multiple versions of the model can be 

deployed into distinct environments (such as development, testing, and production) 

using deployment slots, all without interfering with the current production 

environment; 

● Execution of Deployment: After everything is ready, the deployment procedure is 

carried out. This includes setting up the application servers, updating databases as 

appropriate, and moving the produced code and related files to the production 

environment. And it shows on the application as figure 5-2 shows the input and figure 

5-3 indicates the output of JSON:  

 

 

 

 

 

 

 

 

 

 

Figure 0-8: AzureML evaluation  interface 
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5.6. Conclusion:  

In this chapter we viewed how we could build alternative models and find new ways 

to overcome our overfitting issues.  

These previous processes need to always stay monitored and surveilled, even after 

deployment it may include updating documentation, notifying stakeholders, and 

gathering feedback from users. 

 

 

Figure 0-9: AzureML evaluation  results interface 
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General conclusion

  

1. General conclusion 



General conclusion 
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6. General conclusion 

 

 

Our dissertation delves into the application of sophisticated machine learning methods 

for pipeline inspection, with an emphasis on enhancing the precision of feature extraction 

and categorization. In order to detect and classify pipeline anomalies, we first employed 

Random Forest classifiers and Support Vector Machines (SVM) after feature engineering 

with the VGG16 convolutional neural network. Although these techniques showed 

promise, they suffered greatly from overfitting, especially because of the intricate nature 

of the inspection data and the scarcity of samples with labels.     

 

In order to tackle these problems, we suggested an improved approach that makes use of 

the YOLOv8 object identification framework along with two SVM binary classifications. 

This dual-SVM method sought to improve binary classification precision, while YOLOv8 

offered strong object identification capabilities, greatly enhancing the significantly 

improving the overall performance of the inspection system. 

Important conclusions and contributions from this study include: 

• Feature Extraction using VGG16: Using VGG16 for feature extraction helped to extract 

detailed information from pipeline inspection photos, which made the classification 

jobs that  followed easier; 
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• Performance of SVM and Random Forest: The need for more reliable techniques was 

highlighted by the initial models' good baseline performance but propensity for 

overfitting; 

• Optimized Approach with Dual SVM and YOLOv8: By combining YOLOv8 with a 

two-stage SVM binary classification framework, overfitting was significantly reduced. 

Combining these two improved the model's generalization from the training set to 

unknown inspection circumstances, which raised classification accuracy and 

dependability; 

• Overfitting Mitigation: The dual-SVM method addressed the overfitting problems 

seen with the original models by managing the complexity and unpredictability of 

the dataset by decomposing the problem into easier binary categories. 

The integration of YOLOv8 with dual-SVM classifications presents a promising 

direction for future research, potentially extending to other areas of industrial inspection 

and defect detection. Future work could further refine these models and explore 

additional techniques to enhance robustness, scalability, and real-time application 

potential. In summary, this dissertation shows that combining deep learning-based 

feature extraction with a strategic optimization of classification models can significantly 

improve the effectiveness of pipeline inspection systems. 
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