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ABSTRACT 

 
Healthcare MRI for brain tumor is a critical aspect of modern medicine, particularly in 

diagnosing and treating neurological disorders. Brain tumors pose significant health risks, and early 

detection is key to successful treatment outcomes. Traditional diagnostic methods often involve 

manual interpretation of MRI images by skilled radiologists, which can be time-consuming and 

subject to human error. 

Recent advancements in medical imaging and AI have paved the way for more efficient and 

accurate diagnosis of brain tumors using Deep Learning algorithms. This study proposes a Deep 

Learning-powered MRI-based system for automated detection and localization of brain tumors. 

Utilize Convolutional Neural Networks (CNNs) to analyze MRI scans and classify them into two 

classes: "Tumor" and "No tumor." To train and evaluate the four models, a dataset comprising of MRI 

images with corresponding labels indicating the presence or absence of tumors is utilized and then 

localization of a tumor if it exists. 

Evaluation metrics such as accuracy, F1-score, Precision and Confusion Matrix are employed 

to assess the performance of the models in distinguishing between tumor and non-tumor cases. The 

results demonstrate the efficacy of the proposed approach in accurately identifying brain tumors from 

MRI scans. 

 

Keywords: Brain tumor, Deep Learning, MRI , Convolutional Neural Network, Localization , 
Detection, VGG19 , Xception , Resnet50 
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General Introduction 

The detection and localization of brain tumors are pivotal tasks in medical image 

analysis, crucial for timely diagnosis and treatment planning. Traditional methods often rely 

on manual interpretation by medical experts, which can be time-consuming and prone to 

human error. However, recent advancements in deep learning offer promising avenues for 

automating these processes with high accuracy and efficiency. 

In this study, we present a comprehensive approach to the detection and localization of 

brain tumors using deep learning models. Specifically, we leverage the capabilities of well-

established architectures such as VGG19, ResNet50, Xception, and EfficientB0, which have 

demonstrated remarkable performance across various computer vision tasks. By harnessing 

the power of these models, we aim to enhance the precision and reliability of brain tumor 

detection from medical imaging data. 

Moreover, we integrate a specialized architecture, ResUNet, tailored for semantic 

segmentation tasks, to precisely localize detected tumors within brain images. This hybrid 

approach combines the strengths of both classification and segmentation models, enabling not 

only the identification but also the precise delineation of tumor boundaries. Such accurate 

localization is essential for guiding subsequent medical interventions, including surgery and 

radiation therapy. 

Through this thesis project, we seek to contribute to the advancement of automated brain 

tumor diagnosis, offering a scalable and efficient solution that holds great potential for 

improving patient care and outcomes. Our methodology not only demonstrates the 

effectiveness of deep learning in medical image analysis but also underscores the importance 

of interdisciplinary collaboration between computer science and healthcare domains for 

addressing complex healthcare challenges. 
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Chapter I 

 Introduction to Artificial Intelligence 

 

 

I.1 Introduction  

First of all, the cutting edge of technology is artificial intelligence (AI), which has the 

potential to drastically change the way we interact with the outside world. Artificial 

intelligence (AI) has the unquestionable potential to transform a wide range of industries, 

from improving decision-making skills to optimizing industrial processes [1]. Machine 

Learning (ML), a branch of AI that focuses on creating algorithms that can learn from and 

improve upon data, is one of the most dynamic and promising areas in the field. In-depth 

examinations of supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement learning are among the key areas and subfields of artificial intelligence and 

machine learning (AI and ML) covered in this work. Additionally, it covers the fundamental 

ideas of Artificial Neural Networks (ANNs) and the groundbreaking effects of Deep Learning 

(DL), especially with regard to architectures like Convolutional Neural Networks (CNNs) and 

Recurrent [1]. 

 

I.2 Artificial Intelligence 

Artificial Intelligence (AI) is a rapidly evolving field that has the potential to revolutionize 

the way we live and work. In recent years, it has been applied to a wide range of industries 

and has shown promising results in improving efficiency, accuracy, and decision-making. 

According to a recent report by McKinsey, AI could contribute up to $13 trillion to the global 

economy by 2030 [2]. 

At its core, AI is a discipline of study that focuses on creating intelligent machines that 

can perform tasks that typically require human intelligence, such as learning, problem-

solving, decision-making, and perception. The goal of AI is to develop systems that can 

operate autonomously, adapt to new situations, and interact with humans and the environment 

in a natural and seamless way [3]. 
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From an industrial perspective, AI can be defined as the brain that allows a system to 

detect its environment, interpret the data it collects, solve complicated issues, and learn from 

experience [4]. 

 

Figure I.1: Representation of Artificial Intelligence and its subfields [5] 

I.2.1 Machine Learning 

One of the key drivers of Artificial Intelligence is machine learning (ML), a subset of AI 

that focuses on developing algorithms that can learn from data and improve their performance 

over time. 

Machine learning algorithms organize the data, learn from it, gather insights, and make 

predictions based on the information it analyzed without the need for additional explicit 

programming. Training a model with data and after that using the model to predict any new 

data is the concern of Machine Learning [5]. 

One of the significant advantages of machine learning is its ability to handle complex and 

large-scale datasets. By processing vast amounts of data, machine learning algorithms can 

uncover intricate patterns and relationships that may not be apparent to humans. This enables 

applications in various domains, such as image and speech recognition, natural language 

processing, recommendation systems, fraud detection, and autonomous vehicles. 

ML is a powerful field of study that enables computers to learn from data, discover 

patterns, and make predictions or decisions. Through the use of sophisticated algorithms and 

statistical techniques, machine learning has the potential to transform industries and solve 

complex problems. As technology continues to advance, machine learning will play a crucial 

role in shaping the future of artificial intelligence and driving innovation in various domains. 

Machine learning techniques can be subdivided into supervised, unsupervised, semi- 

supervised, and reinforcement learning [6, 7]. 
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Figure I.2: Components of Machine Learning [5] 

I.2.2 Supervised Learning 

Supervised learning is a machine learning technique where the algorithm learns from 

labeled data, with each data point having corresponding input features and known output 

labels. The goal of supervised learning is to build a predictive model that can accurately map 

input data to the correct output labels based on the provided training examples [47]. 

The process of supervised learning begins with the collection of a labeled dataset, where 

each data instance is associated with a known output value. This dataset is then divided into 

two parts: the training set and the test set. The training set is used to train the model by 

presenting it with input features and their corresponding labels. The model learns from the 

training data by adjusting its internal parameters or weights based on the observed input-

output relationships. The objective is to minimize the difference between the predicted output 

and the actual label for each training example. 

Once the model is trained, it is evaluated using the test set, which consists of unseen data 

with known labels. The model's performance is assessed by comparing its predicted outputs 

with the true labels. 

The main advantage of supervised learning is its ability to make accurate predictions or 

classifications based on labeled data. It is widely used in various applications, including spam 

detection, sentiment analysis, image recognition, speech recognition, and medical diagnosis. 

Supervised learning models can also be extended to handle multiclass classification problems 

and support probabilistic predictions, providing valuable insights for decision-making. 

However, supervised learning also has limitations. It heavily relies on the availability of 

labeled data, which can be expensive and time-consuming to obtain. An insufficient or biased 
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dataset may lead to inaccurate models and poor generalization of unseen data. Additionally, 

supervised learning models may struggle when faced with data that falls outside the range of 

the training examples, making them sensitive to outliers and noise [47]. 

In summary, supervised learning is a powerful machine learning approach that leverages 

labeled data to build predictive models. It enables accurate predictions or classifications by 

learning from observed input-output relationships. While it has its limitations, supervised 

learning has proven to be valuable in solving a wide range of real-world problems and 

continues to be a fundamental technique in the field of machine learning. 

 

I.2.3 Unsupervised Learning 

In unsupervised learning, the data is not labelled, which means that the ML model aims to 

discover unknown patterns in the data, by searching for similarities between the data points 

for example. Algorithms are therefore formulated such that they can find patterns and 

structures in the data on their own [48]. 

The process of unsupervised learning begins with collecting a dataset consisting of input 

features without corresponding output labels. The goal is to find meaningful representations 

or groupings within the data. Clustering is one common technique in unsupervised learning, 

where similar data points are grouped based on their inherent similarities. Clustering 

algorithms, such as k-means, hierarchical clustering, and DBSCAN, are used to identify 

clusters and partition the data accordingly. 

Another key approach in unsupervised learning is dimensionality reduction, which aims to 

reduce the number of input features while preserving important information. This helps in 

visualizing high-dimensional data and extracting relevant features. Autoencoders are 

commonly used methods for dimensionality reduction. 

Unsupervised learning algorithms can also be used for anomaly detection, where the goal 

is to identify unusual or abnormal data points that deviate significantly from the norm. By 

learning the regular patterns in the data, unsupervised algorithms can detect outliers or 

anomalies that may indicate potential fraud, errors, or unusual behavior. 

Evaluation in unsupervised learning is more challenging than in supervised learning since 

there are no predefined output labels to compare against. Instead, the quality of unsupervised 

learning algorithms is assessed based on the coherence and meaningfulness of the discovered 

patterns, the compactness of clusters, or the ability to separate anomalies from normal data. 

However, unsupervised learning has its challenges. Since there are no ground truth labels, 
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evaluating the performance of unsupervised algorithms can be subjective and depend on 

domain knowledge. The algorithms heavily rely on the quality and representativeness of the 

data, making it crucial to preprocess and clean the data appropriately. Additionally, 

unsupervised learning algorithms can be computationally expensive, especially when dealing 

with large-scale datasets or complex structures. 

In summary, unsupervised learning is a valuable approach in machine learning that allows 

for exploring and extracting patterns from unlabeled data. By uncovering hidden structures 

and relationships, unsupervised learning algorithms provide insights, aid in data exploration, 

and serve as a foundation for various downstream tasks. 

I.2.4 Semi-Supervised Learning 

Semi-supervised learning is a branch of machine learning that combines elements of both 

supervised and unsupervised learning. It deals with datasets that contain a small portion of 

labeled data and a larger portion of unlabeled data. The goal of semi-supervised learning is to 

leverage the limited labeled data together with the unlabeled data to improve the model's 

performance and generalization [49]. 

The process of semi-supervised learning begins by partitioning the available data into 

labeled and unlabeled subsets. The labeled data consists of input features along with their 

corresponding output labels. The unlabeled data, on the other hand, contains input features 

without any associated labels. The labeled data is used to train a model using supervised 

learning techniques, while the unlabeled data is leveraged to enhance the model's 

performance. Semi-supervised learning algorithms often incorporate unsupervised learning 

methods to exploit the unlabeled data. By leveraging the inherent structure and patterns within 

the unlabeled data, the algorithms aim to improve the model's ability to generalize to unseen 

data. 

Unsupervised learning techniques such as clustering, dimensionality reduction, or 

generative models can be used to extract additional information from the unlabeled data. 

One common approach in semi-supervised learning is to use the unlabeled data to create a 

smoother decision boundary or to estimate the underlying data distribution. By considering 

the relationships and similarities among the unlabeled data points, the model can make more 

informed predictions for new, unseen instances. 

Semi-supervised learning is particularly useful in scenarios where obtaining labeled data is 

costly, time-consuming, or difficult. By making effective use of a small labeled dataset in 

conjunction with a larger unlabeled dataset, semi-supervised learning can achieve comparable 
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or even superior performance to supervised learning approaches that rely solely on labeled 

data. In conclusion, semi-supervised learning is a powerful approach that combines elements 

of supervised and unsupervised learning to leverage both labeled and unlabeled data. By 

effectively utilizing the unlabeled data, semi-supervised learning algorithms can improve the 

model's performance and generalization, particularly in scenarios where obtaining labeled 

data is limited or expensive. Despite its challenges, semi-supervised learning continues to be 

an active area of research, driving advancements in machine learning and expanding the range 

of problems that can be addressed. 

I.2.5 Reinforcement Learning 

In a reinforcement learning (RL) system, instead of providing input and output pairs, we 

describe the current state of the system, specify a goal, provide a list of allowable actions and 

their environmental constraints for their outcomes, and let the ML model experience the 

process of achieving the goal by itself using the principle of trial and error to maximize a 

reward [8]. 

An agent interacts with an environment sequentially. At each step, the agent observes the 

current state of the environment and takes action. The environment responds by transitioning 

to a new state and providing feedback in the form of a reward signal, which indicates the 

desirability of the agent's action. The goal of the agent is to learn a policy (a mapping from 

states to actions) that maximizes the expected cumulative reward over time [41]. 

One key aspect of reinforcement learning is the trade-off between exploration and 

exploitation. Initially, the agent explores different actions and learns about the environment. 

As it gathers more knowledge, it shifts towards exploiting its current knowledge to maximize 

rewards. 

Reinforcement learning has been successfully applied to various domains, such as 

robotics, game playing, autonomous vehicles, recommendation systems, and resource 

management. 

RL encompasses a wide range of algorithms that can be used depending on the problem at 

hand, the most common ones are Q-Learning and Actor-Critic Learning (ACL). 

• Q-Learning is a model-free algorithm used in reinforcement learning to learn the optimal 

action-value function, often referred to as the Q-function. The Q-function represents the 

expected cumulative reward for taking a particular action in a given state and following a 

specific policy. The Q-Learning algorithm iteratively updates the Q-values based on the 

observed rewards and the estimated future rewards. It uses a technique called Temporal 
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Difference learning, which calculates the difference between the estimated Q-value and 

the observed reward to update the Q-value. By repeatedly interacting with the 

environment and updating the Q-values, the agent can learn the optimal policy that 

maximizes the cumulative reward [45]. 

• Actor-Critic Learning (ACL) is an approach of RL that combines elements of both 

policy-based and value-based methods. It utilizes two components: an actor and a critic. 

The actor is responsible for learning and selecting actions based on the current policy. It 

explores the environment, take actions, and gathers experiences. On the other hand, the 

critic, evaluates the actions taken by the actor and provides feedback in the form of a 

value function or Q-values. The actor-critic architecture allows for continuous learning 

and policy improvement. The actor uses the feedback from the critic to update its policy, 

while the critic uses the observed rewards to update its value estimates. This way, the 

actor-critic algorithm can learn both the best actions to take and the value of those actions 

[46]. 

In summary, Q-Learning is a value-based algorithm that learns the optimal action-value 

function, while Actor-Critic Learning combines policy-based and value-based methods to 

learn both the policy and the value function simultaneously. Both approaches have been 

widely used in reinforcement learning and have contributed to many successful applications. 

 

I.2.6 Artificial Neural Network 

Artificial Neural Network (ANN) is a type of ML inspired by the principle of information 

processing in biological systems, ANNs consist of mathematical representations of connected 

processing units called artificial neurons [8]. 

Like synapses in a brain, each connection between neurons transmits signals whose 

strength can be amplified or attenuated by a weight that is continuously adjusted during the 

learning process. Signals are only processed by subsequent neurons if a certain threshold is 

exceeded as determined by an activation function. 

Typically, neurons are organized into networks with different layers. An input layer 

usually receives the data input and an output layer produces the ultimate result. In between, 

there are zero or more hidden layers that are responsible for learning a non-linear mapping 

between input and output. 

“Feed-forward” is the first, most common and simplest architecture. It is formed by 

stacked neurons creating layers, where all the neurons of a layer are connected to all the 
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neurons of the next layer by feeding their output to others’ input. However, there are no 

connections to neurons of previous layers or among neurons of the same layer [11]. 

Artificial neural networks are of particular interest since their flexible structure allows 

them to be modified for a wide variety of contexts across all types of ML, therefore, ANNs 

can be referred to as “Shallow” or “Deep” depending on the number of hidden layers it 

contains 

 

 

 

Figure I.3: Diagram of ML classes [8] 

I.3 Deep Learning 

Deep learning is a subset of machine learning that focuses on the development and 

application of artificial neural networks with multiple layers, known as deep neural networks. 

It aims to enable computers to learn and make predictions or decisions by mimicking the 

structure and function of the human brain. Deep learning has gained significant attention and 

popularity due to its remarkable ability to automatically learn hierarchical representations 

from raw data, leading to a state-of-the-art performance in various domains [50]. 

At the core of deep learning are artificial neural networks, which consist of interconnected 

nodes, called neurons, organized in layers. The neurons receive input signals, apply 

mathematical transformations, and produce output signals that are passed on to the next layer. 

The layers are stacked hierarchically, with each layer learning increasingly complex features 

or representations of the input data. 

One of the key advantages of deep learning is its ability to handle and extract meaningful 

features from large-scale datasets. Deep neural networks can learn intricate representations of 

images, text, audio, and other forms of data, leading to breakthroughs in computer vision, 
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natural language processing, predictive maintenance, and many other fields. Convolutional 

neural networks (CNNs) are widely used in image-related tasks, while recurrent neural 

networks (RNNs) are commonly employed for sequential and language-based data. 

Deep learning has also benefited from advancements in hardware and computational 

resources, as training deep neural networks often requires significant computational power. 

Graphics processing units (GPUs) and specialized hardware accelerators, such as tensor 

processing units (TPUs), have enabled faster training and inference of deep learning models.  

In conclusion, deep learning is a powerful branch of machine learning that uses deep 

neural networks to learn hierarchical representations from data. Its ability to automatically 

learn features from raw data has revolutionized numerous fields and led to breakthroughs in 

various applications. As hardware and algorithms continue to advance, DL is poised to drive 

further innovation and impact a wide range of industries, shaping the future of artificial 

intelligence. 

DL involves training artificial neural networks in order to detect patterns in large 

unstructured data sets. These ANNs, containing several hidden layers and performing 

complex tasks with minimal human interference, are mostly called Deep Neural Networks 

(DNNs). 

I.3.1 Deep Neural Networks 

A Deep Neural Network (DNN) is simply an artificial neural network containing a large 

number of hidden layers, which explains the term “deep”. 

 

 

Figure I.4: Structure of a deep neural network 
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Deep neural networks typically consist of more than one hidden layer, organized in deeply 

nested network architectures. Furthermore, they usually contain advanced neurons in contrast 

to simple ANNs. 

Therefore, DNNs may use multiple advanced operations in one neuron rather than using a 

simple activation function. These characteristics allow deep neural networks to be fed with 

raw input data and automatically discover a representation or output that is needed for the 

corresponding learning task. This is the networks’ core capability, which is commonly known 

as deep learning [8]. 

While there are numerous types of DNNs, the most widely known are Convolutional 

Neural Networks and Recurrent Neural Networks. 

I.3.2 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a type of neural networks commonly used for 

image and video processing tasks, such as image classification, object detection, and image 

segmentation. CNNs consist of multiple layers of convolutional and pooling operations that 

learn to extract features from images. In other words, CNNs have the human-like ability to 

recognize and classify objects based on their appearance [9]. 

One of the significant advantages of CNNs is their ability to automatically learn 

hierarchical representations from raw image data. By employing multiple layers, CNNs can 

capture increasingly complex and abstract features, enabling them to perform tasks such as 

image classification, object detection, and semantic segmentation. CNN architectures, such as 

AlexNet, VGGNet, ResNet, and InceptionNet, have achieved remarkable performance in 

various computer vision benchmarks and competitions. 

Based on the dimension of the training data, CNNs can be devised into 1D CNNs and 2D 

CNNs. Deep 2D CNNs with many hidden layers and millions of parameters have the ability 

to learn complex objects and patterns providing that they can be trained on a massive size 

visual database with ground-truth labels. With proper training, this unique ability makes them 

the primary tool for various engineering applications for 2D signals such as images and video 

frames. 

This may not be a viable option in numerous applications over 1D signals especially when 

the training data is scarce or application specific. To address this issue, 1D CNNs have 

recently been proposed and immediately achieved state-of-the-art performance levels in 

several applications such as anomaly detection and identification in power electronics and 
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electrical motor fault detection. Another major advantage is that a real-time and low-cost 

hardware implementation is feasible due to the simple and compact configuration of 1D 

CNNs that perform only 1D convolutions (scalar multiplications and additions) [10]. 

In summary, CNNs are a key architecture in deep learning, particularly for computer 

vision tasks. Their ability to automatically learn and extract features from images has led to 

significant advancements in various applications. By leveraging convolutional and pooling 

layers, CNNs can effectively capture spatial patterns and hierarchical representations, 

enabling them to achieve state-of-the-art performance in image recognition, object detection, 

and other computer vision tasks. 

I.3.3 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are a type of neural networks that excel in processing 

sequential data, such as time series, text, and speech. RNNs contain feedback connections that 

allow information to flow in both directions, unlike feedforward neural networks which only 

flow in one direction. The feedback connections in RNNs allow the network to process 

sequential data and capture temporal dependencies, by passing information from one step to 

the next. At each step, the current input is combined with the previous hidden state to produce 

a new hidden state and output. This process is repeated for each step in the sequence, allowing 

the network to capture the context and dependencies of the input data [12]. 

 

 

 

 

 

 

Figure I.5: An example of a fully connected RNN [13] 

 

In the last years, several RNN architectures have been developed to meet the industries’ 

standards, some of the most popular ones are the fully-connected RNN (FRNN), the long 

short- term memory (LSTM), and the gated recurrent unit (GRU). 

• FRNNs connect the output of the previous time step with the additional input of 

the next time step, preserving important information about different time steps in 

the network [13]. 
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• LSTM architecture has one cell state and three gates: an input gate, an output gate, 

and a forget gate. The cell state acts as a memory, while each gate functions like a 

conventional neuron, providing a weighted sum of its inputs. The forget gate 

decides what information to retain from previous steps. The input gate decides 

what information to add from the current step. The output gate decides what the 

next hidden state should be. Hence, only relevant information can pass through the 

hierarchy of the network. Thus, the LSTM has mechanisms to process both short- 

term and long-term memory components [14]. 

• GRU is similar to LSTM but has only two gates: an update gate and a reset gate. 

The update gate works similarly to the forget gate and the input gate of LSTM. It 

decides what information to throw away and what to add. The reset gate decides 

how much past information to forget. GRU has fewer parameters, uses less 

memory, and is faster to train than LSTM [14]. 

 

 

 

Figure I.6 : Diagram of different recurrent units [14] 

 

In conclusion, RNNs are powerful neural network architectures designed for processing 

sequential data. Their ability to capture dependencies across time steps enables them to model 

complex temporal patterns and make predictions or generate outputs based on sequential 

inputs. With variants like LSTM and GRU, RNNs have achieved state-of-the-art results in 

various sequential tasks, making them a fundamental tool in fields such as natural language 

processing, speech recognition, and time series analysis. 

 

 

 



Chapter I: Introduction to Artificial Intelligence  
 

    14 

 

I.4 Conclusion  

Artificial Intelligence, particularly through its subset Machine Learning, has emerged as a 

beacon of innovation, offering solutions to complex problems across various domains. From 

supervised learning's ability to make accurate predictions based on labeled data to 

unsupervised learning's knack for discovering hidden patterns in unlabeled data, the spectrum 

of AI techniques presents a formidable arsenal for tackling real-world challenges. Moreover, 

the integration of Deep Learning, epitomized by architectures like CNNs and RNNs, has 

propelled AI into uncharted territories, enabling it to decipher intricate relationships in vast 

datasets and deliver unprecedented insights. As AI continues to evolve, fueled by 

advancements in hardware and algorithms, its impact is poised to expand, ushering in a new 

era of technological sophistication and societal transformation. In this landscape of innovation 

and possibility, the journey towards realizing the full potential of AI is ongoing, promising 

boundless opportunities for progress and discovery. 
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Chaptre II 

 Convolutional Neural Networks  

 

 

II.1 Introduction  

This chapter is dedicated to presenting activation functions and how train convolution 

neural networks (CNN)  

II.2 Related Work  

A. N. Sayed, Y. Himeur. (2023). Presented a discussion paper on how the integration of 

artificial      intelligence (AI) and image analysis is transforming different realms within the 

healthcare sector. Deep learning empowers computers to analyze medical images, such as X-

rays and MRI scans, providing automated detection of conditions like tumors and fractures 

[3], [4]. 

Yingying Fanga , X.Xing ,. (2023). Published a paper offering a comprehensive analysis 

of diverse AI techniques that have emerged for the swift diagnosis of this new disease during 

this public health emergency [5]. Magnetic Resonance Imaging (MRI) scans are frequently 

employed as a standard medical screening procedure for identifying primary brain tumors [6]. 

Zhang, C., & Lu, Y. (2021) presented paper highlights that Magnetic Resonance Imaging 

(MRI) is a widely employed diagnostic tool for the detection and diagnosis of brain tumors. 

Nonetheless, the precise interpretation of MRI images can pose a challenge for human experts 

due to the intricate and variable nature of both anatomy and tumor characteristics. In recent 

years, deep learning algorithms, particularly convolutional neural networks (CNNs), have 

demonstrated remarkable success in computer vision tasks, including medical image analysis. 

[7]. 

N. A. Samee et al (2022) However, the quick development of deep learning methods, 

particularly in the area of computer vision, has created new opportunities for the automatic 

and precise diagnosis of brain tumors [8]. Researchers have been investigating the possibility 

of these methods for identifying and categorizing brain tumor’s from magnetic resonance 

imaging (MRI) data by using the capabilities of deep learning [9]. 

J. Amin, M. A. Anjum. (2020) Researchers have published an article outlining their 



Chapter II : Convolutional Neural Networks  
 

                                 16 

 

significant efforts in developing Convolutional Neural Networks (CNNs) capable of 

accurately identifying and classifying brain tumors, along with other types of medical 

imaging. This endeavor aims to improve medical diagnostic and treatment outcomes. Fueled 

by this potential, researchers are diligently working to construct advanced CNNs. [10]. 

                                                                                                                                                                                                                                                                                                

E. Lynch et al. (2023). provided the benefit of deep learning is that it can learn          intricate, 

hierarchical features directly from unprocessed data, eliminating the need for    explicitly rule-

based methods or hand-crafted features [11]. 

    M. M. Taye, et al. (2023). Specifically, Convolutional Neural Networks (CNNs) are 

designed to capture spatial relationships and local patterns within images, rendering them 

well-suited for tasks related to medical image processing. Consequently, deep learning has 

emerged as a highly valuable technique for interpreting medical images. Its application 

enables more precise diagnosis of illnesses compared to conventional approaches, and it 

facilitates the detection of abnormalities in imaging data. Furthermore, it can be employed to 

automate medical diagnoses, thereby reducing the workload for medical experts. [12]. 

J. Ker, L. Wang, et al. (2018). article aiming at image classification and segmentation have 

shown rapid growth during the past two decades with the introduction of machine learning 

and computer vision techniques. Deep learning has found applications in medical imaging, 

such as identifying local anatomical characters, detecting organs and body parts, and 

identifying cells of different shapes and sizes.[13]. 

Multimodal Brain Tumor Segmentation (BRATS) Challengeis the main competition on 

brain tumor classification which is organized by the Perelman School of Medicine at the 

University of Pennsylvania, Centre for Biomedical Image Computing & Analytics (CBICA) 

from 2012 onwards. The BRATS challenge focuses on automating the brain tumor detection 

and the survival rate estimation techniques and algorithms. Each year the dataset is updated 

and the overall performance of the proposed algorithms have shown a tremendous 

improvement over time. On the whole, the accuracy of the algorithms proposed using BRATS 

dataset falls around 90%  [14][15][16]. 

M. Soltaninejad et al. (2017). Some of these algorithms were developed using classical 

CNN architecture whereas some are developed using improved CNN algorithms like U- 

net[11],super pixel-based extremely randomized trees [17]. Another popular and publicly 

available brain tumor dataset is the Figshare MRI dataset [18] [19] which is the dataset 

employed in this paper. Due to the easy accessibility and the readily availability, Figshare 

MRI brain tumor dataset also has been used in many Brain tumor classification and 
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segmentation related research [20][21][22][23] 

However, A deep network was enhanced by employing cross channel normalization 

(CCN) and parametric rectified linear unit (PRELU) in [23] for brain tumor segmentation, In 

the previous work by the authors, a region proposal algorithm is proposed to address the 

problem of selecting a random number of objects in a single region [24][25]. 

In the proposed method, instead of searching the entire image for number of objects, the 

algorithm search for objects in several selective areas of the image, while treating each sub-

region as an independent sub-image. In [24], a fully autonomous learning algorithm was 

constructed using Region-based Faster Convolutional Neural Network (Faster R-CNN) to 

localize the meningioma tumor regions in MRI. Once the tumor is segmented, Prewitt and 

Sobel edge detection algorithms are applied to the segmentation output, with the expectation 

of detecting the exact tumor boundary. Both of these techniques compute an approximate 

tumor boundary using the gradient intensity function of the image [26]. 

 

A study was done on a subset of the BRATS 2018 dataset that contained 1,992 Brain MRI 

scans. The YOLOv5 model achieved an accuracy of 85.95% and the Fast Ai classification 

model achieved an accuracy of 95.78%. These two models can be applied in real-time brain 

tumor detection for early diagnosis of brain cancer [27]  

Another work was presented is prepared with the 29-layer YOLO Tiny and fine-tuned to 

work efficiently and perform task productively and accurately in most cases with solid 

execution. The outcome of the model is the highest like precision, recall and F1-score beating 

other previous results of earlier versions of YOLO and other studies like Fast R-CNN [28]. 

The darknet yolov4 is used, to perform the classification, and region of interest detection 

with the best accuracy scores. The model is trained with the Tesla GPU and obtained the 

results of the existing techniques in the field of fetal brain classification and localization. The 

accuracy of 97.92% and precision percentage of 96.70 is achieved in the research work [29]. 

Many research areas are being explored in medical image analysis. It includes medical 

imaging domains like identification, detection, and segmentation [30]–[31] 

Recently, deep learning (DL) methods have frequently been employed for brain MRI 

categorization [32]. While feature mining and classification were integrated into self-learning, 

deep learning methods do not necessitate a manual process for feature extraction. The DL 

approach requires a dataset, and minimal pre-processing is required for selecting salient 

features in a self-learning way [33]. 

Recently, in many studies, CNNs have been widely employed to classify brain MRI and 
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validated on a different dataset of brain tumors [34]– [35]. A deep CNN-based model was 

proposed in [36] for brain MRI images categorization into distinct classes. The authors used 

brain MRI images from a publicly available dataset to prevent model ambiguity. The 

suggested model has a classification accuracy of 91.4%. Deepak and Ameer [37] employed a 

pre-train deep CNN, GoogLeNet, to extract key attributes using brain MR images and classify 

tumors into three classes with 98% accuracy. Ahmet and Muhammad [38] categorized brain 

MR images using various CNN models and attained satisfactory accuracy. They modify a pre-

trained ResNet-50 DCNN by excluding the final five layers and introducing additional eight 

layers. The model achieved the highest among all pre-trained model’s accuracy of 97.2 %. 

Sultan et al. [39] suggested a CNNbased deep learning model utilizing two publicly accessible 

datasets have 3064 (glioma, meningioma, and pituitary tumors) and 516 (Grade II, Grade III, 

and Grade IV) brain medical scans. The proposed method has the best accuracy of 96.13 % 

and 98.7 %. Khwaldeh et al. [40] used several CNNs to classify brain MRI images and 

achieved good results. Using modified pre-trained Alexnet CNN, they achieved a higher 

accuracy of 97.2 %. Khan, M.A. et al. [41] developed a multi-model-based technique to 

differentiate brain tumors with DL. The presented system involves multiple stages, employing 

partial least squares (PLS) for feature concatenation and Extreme Learning Machine (ELM) 

for classification. Their methodology resulted in significant improvements of 97.8%, 96.9%, 

and 92.5% on BraTs-2015, BraTs-2017, and BraTs-2018 datasets, respectively. 

 

In a different approach, Özyurt et al. [42] proposed a technique for detecting brain tumors. 

They initiated the process with MRI tumor image segmentation using the NS-EMFSE 

algorithm. Features were then extracted from the segmented image using AlexNet. 

Subsequently, using Support Vector Machine (SVM), they successfully detected and 

classified brain tumor images as benign or malignant, achieving an impressive accuracy of 

95.62%. 

A widely adopted solution involves integrating information obtained from multimodal 

paired MRI. This approach is grounded in the recognition that different pulse sequences or 

modalities of MRI offer complementary information about brain tumors from various 

perspectives [43]–[44]. By leveraging data from multiple modalities, researchers and 

practitioners aim to enhance the overall understanding and characterization of brain tumors, 

facilitating more comprehensive and accurate analyses. 

In [45], a Convolutional Neural Network (CNN) was employed for tumor detection 

through MRI. The images underwent processing by the CNN, and a Softmax layer yielded an 
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impressive accuracy result of 98.67%. Additionally, precision analysis of the CNN was 

conducted using the Radial Basis Function (RBF) classifier, achieving a high precision rate of 

97.34%. The Decision Tree (DT) classifier was also utilized, providing a respectable accuracy 

of 94.24%. Beyond accuracy, the evaluation of the network's performance included criteria 

such as sensitivity, specificity, and precision. 

 

In [46], MRIs were organized using CNNs in a public dataset to classify tumors as benign 

or malignant. This was done to extract characteristics with enhanced precision. The proposed 

hybrid model combined CNN and Support Vector Machine (SVM). The CNN-SVM hybrid, 

as well as the SVM alone for comparison, demonstrated notable efficiency. The hybrid model 

achieved an accuracy of 98.6702%, showcasing the effectiveness of the combined CNN-SVM 

approach in tumor classification. 

In [47], MRI data was utilized to train a hybrid paradigm that combined Neural 

Autoregressive Distribution Estimation (NADE) and a Convolutional Neural Network (CNN). 

The model was subsequently tested with 3064 images representing three types of brain 

tumors. The results demonstrated that the NADE-CNN hybrid achieved a high level of 

classification performance, boasting an accuracy of 94.49%. 

 

In [48], the authors proposed a CNN method with the addition of clustering to extract 

features, enabling classification into two categories: healthy patients and sick patients. Their 

dataset consisted of 1892 images, with 1666 used for training and 256 for testing. To reduce 

computational times, a preprocessing phase was conducted by resizing the images to 227×227 

pixels. The authors compared their proposed method against other types of CNNs with 

different activation functions, all sharing the same structure. The CNN with the Softmax 

activation function achieved the highest accuracy at 98.67%. They then implemented their 

clustering method into the same network, further enhancing the network's performance to an 

impressive 99.12% accuracy. 

In [49], the authors aimed to classify MRI images of individuals with brain tumors and 

those without this condition. They employed a Convolutional Neural Network (CNN) with a 

method of their own design. Additionally, they compared the accuracy of their proposed CNN 

method against Support Vector Machine (SVM) and Deep Neural Network (DNN). To 

enhance accuracy during training, a loss layer was added at the end of the training phase to 

provide feedback to the neural network. The achieved accuracies were 83% for SVM, 97% 

for DNN, and 97.5% for their proposed CNN method. 
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In [50], NMR images were classified using an ACNN (presumably an Advanced 

Convolutional Neural Network). The authors utilized 253 NMR images, transforming them 

into grayscale and resizing to 256×256 pixels. The dataset was augmented to 2912 images, 

with 50% representing healthy patients and 50% representing unhealthy patients. The ACNN, 

with Softmax as the activation function, achieved an impressive accuracy of 96.7%. 

II.3 Activation Functions:  

An activation function determines the output of each node given its input and is used to 

compute the output of a neural network in each layer. When a neuron receives n inputs (X1, 

X2,..., Xn), its output, or activation, is denoted by A, which has the following definition [51]: 

 

𝐴 = 𝐺(𝑊1 ∗ 𝑋1 +𝑊2 ∗ 𝑋2 +𝑊3 ∗ 𝑋3 +⋯𝑊𝑛 ∗ 𝑋𝑛 + 𝐵)……………. (II.1) 

 

Where W is a vector of real-valued weights, B is the bias, and G is the activation function. 

 

II.3.1 Linear activation function 

The input is multiplied by the weights assigned to each neuron by the linear activation 

function, which is a straight line that produces a signal proportionate to the input. This 

formula can be used to describe a linear activation function: A signal that is proportionate to 

the input is produced by the linear activation function, which is a straight line that multiplies 

the input by the weights of each neuron. The formula below describes a linear activation 

function: 

y mX= ……………………….………………. (II.2) 

where Y is the output signal, X is the input, and m is the weight of each neuron.  

As learning is not aided by neurons doing linear regression or classification, linear activations 

are not used in the learning process of any model. 

 

 II.3.2 Non-linear activation functions: 

Activation functions are typically utilized in neural networks, where their primary role is 

to introduce nonlinearity to the network. A few nonlinear activation functions that are 

frequently employed in neural networks are briefly described in the following sections: 

• ReLU (Rectified Linear Unit): The rectified linear activation function is defined as the 
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positive part of its variable; it is given by the equation:  

𝐹(𝑥) = max(𝑥, 0)……………………………….. (II.3) 

The rectified linear unit (ReLU) activation function takes an input, denoted as 

x, to a neuron. It directly outputs the input value if it's positive; otherwise, it outputs 

zero. This function is commonly employed in various neural network architectures by 

default due to its facilitation of easy model training and improved performance. Figure 

II.1 depicts the graph of the ReLU activation function. 

 

Figure II.1: ReLU activation function [52] 

 

• Sigmoid: The sigmoid activation function, also called the logistic function, is a function 

with a characteristic “S”-shaped curve used in neural networks. The input to the sigmoid 

function is transformed into a value between 0.0 and 1.0 as shown in Fig II.2, and 

therefore, it is used for models that require a binary classification task. The equation for 

the sigmoid function is as follows: 

1
( )

1 x
f x

e−
=

+ ……………………………………..( II.4 ) 
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Figure II.2: Sigmoid activation function [53] 

• Softmax : The softmax activation function serves as an extension of the logistic 

function (sigmoid) into multiple dimensions. It finds application in multi-class 

classification tasks and is typically employed as the final activation function in neural 

networks, typically at the last layer. Below is the formula for the softmax function: 

1

( )
i

j

x

i k
x

j

e
f x

e
=

=



………………………………..….(II.5) 

             

Where : f : Softmax Function 

              x  : Input vector. 

              ex
i : Standard exponential function f or input vector. 

               K : Number of classes in the multi-class classifier  

               ex
j : Standard exponential function f or output vector. 

                          

II.4 Convolutional Neural Network Structure:  

A Convolutional Neural Network (CNN) comprises an input layer, hidden layers, and an 

output layer. CNNs process input images or feature vectors by passing them through hidden 

blocks using nonlinear activation functions. These hidden layers include convolutional layers, 

which perform convolutions. CNNs are constructed by stacking convolutional layers, pooling 

layers, and fully-connected (FC) layers together. The architecture of CNNs is depicted in 

Figure II.3, illustrating the arrangement of these layers. 
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Figure II.3 : Convolutional Neural Network layers [54] 

 

Before the advent of CNNs, experts in various fields manually performed feature extraction. 

In contrast, CNNs offer a significant advantage by automating the feature extraction process. 

In CNNs, convolutional and pooling layers serve as automatic feature extractors from the 

input image, while the fully connected layer acts as a classifier. This means that instead of 

relying on domain experts to handcraft features, CNNs can learn relevant features directly 

from the input data, streamlining the overall process and potentially improving performance. 

The following are the typical building blocks of a Convolutional Neural Network: 

• Input layer: The input layer serves as the entry point for the entire network, typically 

containing the pixel matrix of the input image. For instance, consider an RGB input image 

with dimensions of 64 pixels in height, 64 pixels in width, and a depth of 3 for the red, 

green, and blue color channels. In this case, the input layer would have dimensions of 

64x64x3, representing the height, width, and depth of the input image, respectively. 

• Convolutional layer: The convolutional layer is fundamental to a Convolutional Neural 

Network (CNN) as it handles the majority of computational tasks. This layer applies the 

convolution operation to the input data and passes the output to the subsequent layer. 

Illustrated in Figure II.4, convolution involves sliding a filter (also known as a kernel) 

across the input image, computing the dot product between the filter and the overlapped 

region of the input image. This process generates feature maps, where each pixel 

represents a single value obtained from convolving the filter with the input data.  

These feature maps capture different levels of abstraction: lower-level convolutional 

layers extract basic features such as edges and lines, while higher-level layers learn more 

complex and abstract features. This hierarchical representation allows CNNs to 
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automatically learn and extract meaningful features from the input data, facilitating tasks 

such as image recognition and classification. 

 

Figure II.4: 3x3 kernel convolution operation in a CNN [55] 

The size of the feature map is controlled by the three parameters described below: 

• Stride: The number of pixels by which the filter matrix slides over the input matrix. 

• Depth: The number of channels of filters used for the convolution operation (for 

example RGB filters have a depth of 3). 

• Padding: The number of pixels added to an image when it is being processed by the 

kernel. An example of padding is shown in figure II.4 

 

Figure II.5: Convolution operation with zero-padding [56] 
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• Rectified Linear Unit (ReLU) layer: Following each convolution operation, this layer 

applies an elementwise activation function. One commonly used activation function is ReLU 

(Rectified Linear Unit), which is applied independently to each pixel in the feature map. 

ReLU replaces all negative values in the feature map with zero, while leaving positive values 

unchanged. This non-linear operation introduces non-linearity into the network, enabling it to 

learn complex patterns and representations. Importantly, ReLU does not alter the size of the 

feature map, preserving its spatial dimensions throughout the network. 

• Pooling Layer: The pooling layer, also known as subsampling or downsampling, is typically 

added after the nonlinearity (ReLU) in a Convolutional Neural Network (CNN). Its primary 

function is to reduce the dimensions of the feature maps, thereby decreasing the number of 

network parameters. This reduction helps control overfitting and computational complexity.  

The pooling operation is defined by a pooling function, often max pooling or average pooling. 

Similar to the convolution operation, the pooling layer operates independently on each feature 

map. It spatially resizes each feature map by sliding a filter over each channel of the feature 

map. 

In the case of max pooling, which is illustrated in Figure II.6, a commonly used configuration 

is a pooling layer with filters of size 2x2 connected with a stride of 2. This means that the 

pooling filter moves across the feature map in steps of 2 pixels at a time. In each step, the 

maximum element from the selected block of the feature map is retained, effectively reducing 

the spatial dimensions of the feature map while preserving important features. 

 

Figure II.6 : Max-pooling layer operation [57] 
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• Flatten Layer: Flattening is a crucial step in a Convolutional Neural Network (CNN) that 

transforms the multidimensional output from the previous layers into a one-dimensional 

vector. This transformation, as depicted in Figure II.7, is necessary to prepare the data for 

connection to the final classification layer, typically a fully connected layer. 

By flattening the data, the spatial structure of the feature maps is removed, and the          

resulting one-dimensional vector contains all the extracted features concatenated together. 

This vector is then passed as input to the fully connected layer, which performs classification 

or regression tasks based on the learned features. Flattening thus plays a vital role in enabling 

CNNs to effectively process and analyze complex data, such as images, for various 

applications. 

 

Figure II.7: Flattening for a three-dimensional data [58] 

• Fully connected layer: A fully connected (FC) layer is similar to a convolution layer 

that uses the multilayer perceptron principle shown in Figure II.3. In most CNN 

models, the last few layers are fully connected that compile the data extracted by 

previous layers to form the final output. The FC layer computes the input image’s 

class probability using the softmax activation function as presented in Figure 06 

Training a Convolutional Neural Network. 

II.4.1 Forward Propagation  

Forward propagation, or the forward pass, involves computing and storing intermediate 

variables and the final output of a neural network from the input layer to the output layer. In 

Convolutional Neural Networks (CNNs), this process includes passing input data through 

various layers such as convolutional, pooling, activation, and fully connected layers. During 

forward propagation, weights, biases, and filters are randomly initialized and treated as 
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parameters of the CNN algorithm. These parameters are adjusted during training through 

backpropagation to minimize a predefined loss function. Overall, forward propagation is 

essential for neural networks to process input data and generate predictions for tasks like 

image classification and natural language processing. 

 

II.4.2 Cost function:  

The cost function, also called the loss function, evaluates a Deep Learning model's 

performance by measuring the error between predicted and expected values, producing a 

single real number. Its form varies based on the problem. The model's goal is to minimize this 

function by adjusting parameters and weights. Common cost functions include mean squared 

error (MSE) and cross-entropy, chosen based on the problem's characteristics. The model 

iteratively updates parameters to minimize the chosen cost function during training, 

enhancing predictive accuracy. 

• Mean Square Error (MSE):  

The Mean Squared Error (MSE) is a measure of error in mathematical models, calculated 

as the average squared distance between predicted and observed values. A perfect model 

yields an MSE of zero, while increasing errors result in higher MSE values. The MSE 

quantifies model performance and can be computed using a specific equation. 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖)̂𝑁
𝑖=1 ………………..……. (II.6) 

 

 

In the case of neural networks :  

Ŷ̂̂̂
I  : is the predicted value 

Yi : is the actual value  

N : is the number of data points. 

• Cross Entropy 

Cross entropy is often referred to as “cross-entropy”, “logarithmic loss”, “logistic loss”, or 

“log loss” for short. It is the average number of bits required to send a message from 

distribution A to distribution B. The notion of entropy can also be useful as a cost function in 

classification problems, producing faster learning results than MSE. The cross-entropy 

equation is also known as a negative loglikelihood [58]. The cross-entropy cost can be 
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calculated using the following equation:  

 

𝐶𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 
1

𝑁
∑ (𝑦 ∗ 𝑙𝑜𝑔�̂� − (1 − 𝑦) log(1 − �̂�))𝑁
1 ……..… (II.7) 

• Gradient descent:  

Gradient descent is an iterative optimization technique used to locate a local minimum of a 

differentiable function, as depicted in Figure II.07. In this approach, steps are taken in 

proportion to the negative gradient of the function at the current point to move towards a local 

minimum. Conversely, steps proportional to the positive gradient lead towards a local 

maximum of the function. Neural networks often employ gradient-based learning, utilizing 

gradients of the cost function for training [59]. Like other machine learning domains, neural 

networks aim to minimize the cost function. However, due to the non-linear nature of neural 

networks, many cost functions are non-convex, making it more beneficial to move in the 

direction opposite to the gradient for better results [59]. 

Utilizing the cost function C, expressed in terms of the weights w, biases b, and the 

learning rate 𝔶 of the neural network, gradient descent can be applied to update these 

parameters efficiently towards minimizing the cost function [58]. The weights and biases are 

iteratively adjusted using equations, respectively. 

 

         W̓ = W − ŋ
𝑑𝑐(𝑊,𝑏)

𝑑𝑊
 ………………………………….. (II.8) 

                           b̓ = b − ŋ
𝑑𝑐(𝑊,𝑏)

𝑑𝑊
 ………………………………… ....( II.9) 

 

Due to the often-large data volumes involved in training and testing neural networks, 

computing an average change for the entire dataset can be infeasible. An alternative approach 

is stochastic gradient descent. In stochastic gradient descent, a batch of data, or a subset 

thereof, is selected, and the average change for that batch is computed. This batch can 

comprise any number of data points, with a trade-off between noisy fluctuations, computation 

time, and memory [59]. 
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Figure II.8 : Schematic of gradient descent [60] 

• Backward propagation: The neural network adjusts the weights of its neurons to 

approximate desired outputs based on provided inputs. Analytically updating neuron 

weights in a multi-layer network poses challenges, but the backpropagation algorithm 

offers a straightforward and efficient iterative solution. Backpropagation is extensively 

employed in training feed-forward neural networks for supervised learning. Although 

strictly speaking, "backpropagation" refers solely to the gradient computation 

algorithm and not its application, it's commonly used more broadly to encompass the 

entire learning process, including methods like stochastic gradient descent. 

The backpropagation algorithm operates by computing the gradient of the loss function with 

respect to each weight, employing the chain rule. It calculates the gradient layer by layer, 

moving backward from the final layer to prevent redundant intermediate term calculations. In 

the initial stage, an input vector undergoes forward propagation through the neural network, 

producing an output which is then compared to the desired output using a cost function. 

Subsequently, the gradient of the cost function, representing error values, is computed. These 

error values are then propagated backward through the network to determine the error values 

of the hidden layer neurons. Finally, the weights are adjusted accordingly. This process is 

reiterated with different inputs until the weights converge. The relationship between gradient 

descent and backpropagation is illustrated in fig 08 
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Figure II.9 : Propagation and weights update in backpropagation algorithm [61] 

 

• Overfitting  

. Overfitting arises when an analysis closely matches a specific dataset, potentially 

leading to a failure in generalization to new data or accurate prediction of future 

observations. This phenomenon is common in Deep Learning algorithms, where the 

model attempts to capture all nuances within the training data, including noise and 

random fluctuations. Overfitting often occurs due to the utilization of overly complex 

networks to account for anomalies in the dataset under examination. It manifests when 

a model becomes overly tailored to the original data, resulting in potentially unreliable 

outcomes when applied to new data and subsequently leading to suboptimal decision-

making. Refer to Figure II.10 for a detailed depiction of this concept. 
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Figure II.10: The difference between a good fit (left) and overfitted function (right) [62] 

 

Overfitting can be mitigated through various techniques such as reducing the network size, 

increasing the size of the training dataset, and implementing Dropout regularization. By 

decreasing the network size, the model's capacity to fit noise and irrelevant patterns is limited, 

promoting better generalization to unseen data. A larger training dataset provides the model 

with a more diverse range of examples, helping it learn more robust and generalizable 

patterns. Dropout regularization randomly deactivates a fraction of neurons during training, 

forcing the network to learn redundant representations and reducing its reliance on specific 

features, thus enhancing its ability to generalize. 

• Dropout regularization  

Dropout serves as a regularization technique employed to combat overfitting in 

artificial neural networks by discouraging the development of complex co-adaptations 

during training. During its application, a subset of neurons is randomly deactivated 

(turned off or ignored) during training, as illustrated in Fig II.11. This temporary 

elimination of their contribution to subsequent neuron activations occurs during the 

forward pass, with no weight adjustments applied during the backward pass. Dropout 

is typically implemented per layer in the neural network, including dense fully 

connected layers and convolutional layers, but it's not applied to the output layer. 
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Figure II.11 : Dropout regularization [63] 

• Batch normalization  

Batch normalization, often referred to as Batch norm, is a training method designed 

for intricate Deep Neural Networks, which involves standardizing the inputs of a layer 

for each mini-batch. This technique aims to enhance the speed, stability, and 

efficiency of Neural Networks while notably diminishing the number of training 

epochs needed to effectively train deep networks. 

II.5 Conclusion  

In this chapter, we have discussed the theory of Convolutions neural networks, starting 

with a general introduction to Neural Networks going through CNN, we introduced activation 

functions, Convolutional Neural Networks techniques, and how they are trained. 

 

file:///C:/Users/dell/Desktop/PFE%20project.docx


 

 

 

 

 

 

 

 

 

 

 

 

 

Chaptre III 

Models Explanations 

 

 



Chapter III:  Models Explanations  

 

                                                                                         33 
 

Chapter III 

Models Explanations 

 

III.1 Introduction  

In the landscape of deep learning architectures, Xception, VGG19, ResNet50 

EfficientNet80 emerge as notable contenders, each presenting distinctive approaches to image 

recognition tasks. ResNet50, a variant of the ResNet model, boasts a deep convolutional neural 

network with 50 layers, specifically trained on ImageNet data. It excels in image classification 

across a diverse array of object categories, leveraging rich feature representations learned from 

extensive training. In contrast, EfficientNet80 embodies a systematic scaling approach, 

optimizing convolutional neural networks with a structured increase in depth, width, and 

resolution. By incorporating innovative building blocks like MBConv with squeeze-and-

excitation optimization, EfficientNet80 aims for superior accuracy and efficiency in image 

recognition. 

 

III.2 Xception Algorithm  

Brain tumors pose a significant threat to human health, requiring accurate and timely 

diagnosis for effective treatment and management. While medical imaging techniques, 

such as magnetic resonance imaging (MRI), provide valuable insights into brain 

abnormalities, the manual interpretation of these images is labor-intensive, prone to 

error, and often relies on limited expert availability. As a result, there is a pressing need 

for automated and reliable methods for brain tumor classification to enhance diagnostic 

accuracy, streamline clinical workflows, and improve patient outcomes. 

In this project, we aim to develop and evaluate convolutional neural network (CNN) 

models for the classification of brain tumors using MRI data. Specifically, we will 

explore the performance of four CNN architectures: VGG19, Xception, ResNet50, and 

EfficientNET80. These models offer varying complexities and capabilities, allowing for 

comprehensive analysis of their effectiveness in brain tumor classification tasks. 
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III.2.1 Xception Model Explanation: 

The Xception architecture figure III.1 is an advanced deep learning model that is an 

extension of the Inception architecture. It employs depthwise separable convolutions 

which factorize a standard convolution into two separate operations: depthwise and 

pointwise convolutions. This design reduces the computational cost and the number of 

parameters, leading to a more efficient and often more effective model. 

 

Figure III.1: Xception Model Architecture 

III.2.2 Components of the Xception Architecture 

• Inception Module: A building block that applies convolutions of different 

sizes and concatenates the results. 

• Depthwise Separable Convolutions: These convolutions include a 

depthwise convolution that filters input data followed by a pointwise 

convolution that combines these outputs. 

• Entry Flow: The initial layers of the network which process the input data 

with standard convolutions. 

• Middle Flow: Consists of repeated depthwise separable convolutions 

which form the core of the network. 



Chapter III:  Models Explanations  

 

                                                                                         35 
 

• Exit Flow: The final layers which prepare the data for output, typically 

including pooling, fully connected layers, and a softmax activation for 

classification. 

The Xception model is widely used for tasks such as image classification, 

III.3 VGG19 Algorithm 

III.3.1 VGG19 Architecture: 

VGG19 is a model that was developed figure III.2 by the Visual Graphics Group 

(VGG) at the University of Oxford and was introduced in the paper "Very Deep 

Convolutional Networks for Large-Scale Image Recognition" by K. Simonyan and A. 

Zisserman. The '19' in VGG19 indicates that it has 19 layers that have weights; this 

depth is one of the key attributes that made it notable at the time of its creation. 

 

 

 

Figure III.2: VGG19 Model Architecture. 
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III.3.2 Components of the VGG19 Architecture 

The architecture is characterized by its simplicity, using only 3x3 convolutional 

layers stacked on top of each other in increasing depth. Reducing volume size is handled 

by max pooling. Two fully connected layers, each with 4096 nodes are then followed 

by a softmax classifier. Figure III.2 gives a brief explanation of his architecture. 

• Input Layer: The network takes an input image of size 224x224 pixels with 3 

color channels (RGB) 

• Convolutional Layers (conv): There are several convolutional layers in 

VGG19, each performing convolutions on the input data with filters to extract 

features. These are denoted as `conv1_1`, `conv1_2`, etc. The number after 

'conv' refers to the stage in the network, and the second number refers to the 

layer within that stage. For example, `conv3_3` is the third convolutional layer 

in the third stage. The notation `3x3` refers to the size of the filters (3 pixels by 

3 pixels), and the depth (e.g., 64, 128, 256, 512) refers to the number of filters 

used at that stage. 

• Max Pooling Layers (maxpool): These layers are interspersed between the 

convolutional layers and are used to reduce the spatial dimensions (width and 

height) of the input volume for the next convolutional layer. It helps to reduce 

the computation required and also helps in making some of the features detected 

by the convolutions more robust. 

• Fully Connected Layers (FC): Towards the end of the network, there are three 

fully connected layers. The first two have 4096 channels each, and the third 

performs classification and has 1000 channels (one for each class in the dataset 

for which VGG was originally trained, which is ImageNet). 

• Softmax Function: This is the last layer in the network and is used to convert 

the output of the last fully connected layer into probability distributions - each 

number from this layer will represent the probability that the input image 

belongs to one of the 1000 classes. 

As for equations, in a CNN like VGG19, several operations are performed, the most 

notable are: 
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• Convolution: For a given input image I  and a filter F , the convolution (I * F) 

at a location (x, y) is given by: 

(I ∗  F) (x, y)  =  ∑ai =  −a ∑aj =  −a I ( x +  i , y +  j). F( i , j)………..( III.1) 

• ReLU Activation: This function is applied after each convolution operation to 

introduce non-linearity: 

F(x) =  max(0, x) … … … … … … … … … … … … … … (III.2) 

• Max Pooling: This operation reduces the spatial size of the input volume. For a 

2x2 pooling window, the operation can be defined as:  

M(x, y) =  max(I(x, y), I(x + 1, y), I(x, y + 1), I(x + 1, y + 1)) … . . . . ( III.3) 

III.4 Resnet 50 Model Explanation 

III.4.1 Resnet50 Model Architecture: 

The ResNet50 model is a variant of the ResNet model which has 50 layers deep as figure 

III.3. It is a convolutional neural network that is 50 layers deep and is trained on a large number 

of images from the ImageNet database. The model is designed to recognize images with 

minimal preprocessing. It can classify images into 1000 object categories, such as keyboard, 

mouse, pencil, and many animals. As a result, the model has learned rich feature representations 

for a wide range of images. The model has an image input size of 224x224. 

 

Figure III.3: Resnet50 Model Architecture 
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III.4.2 Components of the Resnet50 Architecture 

• Input Layer 

The input for ResNet50 is an image of size 224x224x3 (height, width, channels), 

where the image is preprocessed as per the model's requirements. 

• Zero Padding 

Zero Padding is applied to the input image to preserve the spatial dimensions of the output 

after convolution. For a kernel size of 7x7, a typical padding of 3 pixels is applied on all sides. 

 

• Initial Convolutional Block 

This block consists of a convolutional layer with filters of size 7x7, a stride of 2, followed 

by batch normalization and ReLU activation. A max pooling layer with a stride of 2 is then 

applied to reduce the spatial dimensions. 

• Convolutional Blocks 

Each convolutional block consists of three main operations in sequence: a convolutional 

layer, batch normalization, and a ReLU activation. These blocks are repeated multiple times, 

with varying numbers of filters and strides to capture features at different scales. 

 

• Identity Blocks 

Identity blocks are the blocks that have a shortcut connection that skips one or more 

layers. The shortcut connections simply perform identity mapping, and their outputs are added 

to the outputs of the stacked layers. 

 

• Average Pooling 

Average pooling is used to reduce the spatial dimensions of the feature maps by taking 

the average of elements in the pooling window. 

• Flattening 

The flattened layer is used to convert the final feature maps into a single vector of values, 

which is then fed into the fully connected (FC) layer. 

 



Chapter III:  Models Explanations  

 

                                                                                         39 
 

• Fully Connected (FC) Layer 

The fully connected layer uses the features from the flattened layer to classify the input 

image into one of 1000 classes. It is usually implemented with a softmax activation function. 

The ResNet50 model utilizes residual connections to enable training of deep neural 

networks without the vanishing gradient problem. By incorporating identity blocks with 

shortcut connections, it allows the model to learn identity functions that are crucial for 

preserving the learned features through the depth of the network. 

III.5 EfficientB0 Model Explanation 

III.5.1 EfficientNET80 Model Architecture 

EfficientNET80 is a scaling of baseline model architecture that uses a compound 

coefficient to scale up CNNs in a more structured manner. Unlike conventional scaling methods 

that arbitrarily scale these factors, the EfficientNet scaling method uniformly scales network 

width, depth, and resolution with a set of fixed scaling coefficients. The architecture figure III.4  

is designed to achieve better accuracy and efficiency. 

 

 

                                Figure III.4: EfficientNET80 Model Architecture 

 

 III.5.2 Components of the EfficientNET80 Architecture 

• Input Layer 

The input for EfficientNet80 is an image of size 224x224x3 (height, width, channels). 

The model employs a systematic approach to scaling the dimensions of the depth, width, and 

resolution of the network. 
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• Stem 

The stem of the network consists of an initial convolutional layer with a 3x3 kernel size, 

followed by batch normalization and a SiLU (Swish) activation function. 

• MBConv Blocks 

MBConv blocks, also known as inverted residuals with linear bottleneck, are the main 

building blocks of the EfficientNet80. Each block typically starts with an expansion phase 

(using 1x1 convolutions), followed by a depthwise convolution (3x3 or 5x5), and then a 

projection phase that reduces the number of channels. 

 

III.5.3 MB Conv Block Descriptions:  

• Block 1 

The block uses a mobile inverted bottleneck convolution (MBConv) with a kernel size 

of k3x3. It includes a squeeze-and-excitation optimization that recalibrates channel-wise feature 

responses by explicitly modelling interdependencies between channels. 

• Block 2 

The block uses a mobile inverted bottleneck convolution (MBConv) with a kernel size 

of k3x3. It includes a squeeze-and-excitation optimization that recalibrates channel-wise feature 

responses by explicitly modelling interdependencies between channels. 

• Block 3 

The block uses a mobile inverted bottleneck convolution (MBConv) with a kernel size 

of k5x5. It includes a squeeze-and-excitation optimization that recalibrates channel-wise feature 

responses by explicitly modelling interdependencies between channels. 

• Block 4 

The block uses a mobile inverted bottleneck convolution (MBConv) with a kernel size 

of k3x3. It includes a squeeze-and-excitation optimization that recalibrates channel-wise feature 

responses by explicitly modelling interdependencies between channels. 

• Block 5 

The block uses a mobile inverted bottleneck convolution (MBConv) with a kernel size 

of k5x5. It includes a squeeze-and-excitation optimization that recalibrates channel-wise feature 

responses by explicitly modelling interdependencies between channels. 
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• Block 6 

The block uses a mobile inverted bottleneck convolution (MBConv) with a kernel size 

of k5x5. It includes a squeeze-and-excitation optimization that recalibrates channel-wise feature 

responses by explicitly modelling interdependencies between channels. 

 

• Block 7 

The block uses a mobile inverted bottleneck convolution (MBConv) with a kernel size 

of k3x3. It includes a squeeze-and-excitation optimization that recalibrates channel-wise feature 

responses by explicitly modelling interdependencies between channels. 

• Block 8 

The block uses a mobile inverted bottleneck convolution (MBConv) with a kernel size 

of k5x5. It includes a squeeze-and-excitation optimization that recalibrates channel-wise feature 

responses by explicitly modelling interdependencies between channels. 

• Block 9 

The block uses a mobile inverted bottleneck convolution (MBConv) with a kernel size 

of k5x5. It includes a squeeze-and-excitation optimization that recalibrates channel-wise feature 

responses by explicitly modelling interdependencies between channels. 

• Top Layer 

After the final MBConv block, the network includes a convolutional layer with a 1x1 

kernel size, followed by batch normalization and a SiLU activation. This is followed by a global 

average pooling layer and a fully connected layer that outputs the probabilities for each class. 

The EfficientNet80 model utilizes compound scaling and a carefully balanced design of 

network depth, width, and resolution, which contributes to its efficiency and effectiveness. The 

inclusion of MBConv blocks with squeeze-and-excitation optimization further enhances the 

model's performance. 

 

III.6 Conclusion  

In conclusion, the utilization of advanced CNN architectures such as VGG19, Xception, 

ResNet50, and EfficientNET80 holds immense promise in revolutionizing brain tumor 

classification through MRI analysis. These models offer varying complexities and capabilities, 
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allowing for a comprehensive assessment of their effectiveness. By automating the 

classification process, these models have the potential to significantly enhance diagnostic 

accuracy, alleviate the burden on healthcare professionals, and ultimately improve patient 

outcomes. As technology continues to advance, further refinement and optimization of these 

CNN models will undoubtedly continue to propel the field of medical imaging towards more 

efficient and reliable diagnostic methodologies. 
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Chapter IV 

Experiments & Results 

 

 

 

IV.1 Introduction  

This chapter will cover the training and the evaluation of Brain tumor identification and 

models using several DL classification architectures and localization. Considering the 

importance of choosing the right dataset, we decided to use the “MRI for brain tumor  

“Dataset” datasets available on Kaggle platform that are described in the following sections. 

 

IV.2 Datasets 

To Provide an accurate model that can be used for plant disease identification, it is essential 

to use a dataset with a large number and good quality of images. After an intense search, we 

decided to use two different datasets (with the same classes); one dataset to train the model and 

the other one to evaluate its performance. Fortunately, we found the two available datasets on 

Kaggle that are described below 

 

IV.3 MRI For Brain Tumor Dataset  

The “MRI For Brain Tumor” contains around 3929 RGB (Red, Green, Blue) images of 

tumor classified into 2 distinct classes. Out of 2 classes 2556 are no tumor (No Mask), and 1373 

are diseased with tumor (with mask) classes. The entire data is divided into 85 percent and 15 

percent for training and validation respectively preserving the directory structure. This dataset 

was used to train our models. Sample images from the MRI for Brain tumor dataset are shown: 
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Figure IV.1: Some MRI brain tumors images 

IV.4 Dataset image Distribution    

Table 1 summarizes the datasets presented in this section along with the number of images 

for each class of the training, validation, and testing directories. 

 

Classes  Training Images  Testing Images  Validation Images  

With Mask  2190 336 109 

Without Mask  1149 224 57 

 

Table IV.1 : Dataset Distribution 

 

IV.5 Data Augmentation  

Data augmentation serves as a method for enhancing the resilience of Deep Learning models by 

generating altered versions of existing training data, thereby obviating the need for fresh data collection. 

When training Deep Neural Networks with extensive datasets, a notable outcome is the refinement of 

model accuracy and the generation of diversified image representations. These variations contribute to 

the models' adeptness in extrapolating learned patterns to novel data. Predominantly, common 

techniques employed in data augmentation include cropping, zooming, and horizontal flipping. 

IV.6 Tools  

This segment will delve into the ecosystem and various tools leveraged in our model training process. 

Our algorithms were developed utilizing the Python programming language and trained through the 

TensorFlow framework in conjunction with the Keras library. Furthermore, our models underwent 

training on the Kaggle platform. 



Chapter IV: Experiments & Results   

 

                                                                                         45 
 

 

IV.6.1 Python Programming Language  

Python stands as an open-source, interpreted, object-oriented, and high-level programming language. 

Rooted in a design philosophy that prioritizes code readability to alleviate the burden of program 

maintenance [42], Python offers support for modules and packages. This versatility fosters its utilization 

across a spectrum of applications, spanning web development (server-side), software engineering, 

mathematical computations, and system scripting. 

 

 IV.6.2 TensorFlow 

TensorFlow (TF) emerges as a freely available, open-source software framework designed for 

facilitating data flow within programming environments. Its primary function encompasses serving as a 

mathematical library for computations, accommodating diverse platforms such as CPUs and GPUs. 

Originating from the collaborative efforts of researchers and engineers affiliated with the Google Brain 

team, TensorFlow made its debut on November 9, 2015. Renowned for its prowess in Machine Learning 

and Deep Learning applications, this library boasts an extensive array of pre-trained models, facilitating 

the training of additional models through transfer learning techniques. 

IV.6.3 Keras  

Keras stands as an open-source, high-level library crafted in Python, designed to 

seamlessly execute algorithms atop frameworks like TensorFlow, Theano, PlaidML, and 

various other machine learning libraries. Boasting Python as its programming language of 

choice, Keras aims to expedite Deep Neural Network processing. Its appeal lies in its simplicity 

and ease of use, offering a user-friendly, high-level Python interface while affording the 

flexibility of selecting different back-ends for computations. Additionally, Keras prioritizes 

modularity and extensibility, further enhancing its appeal to developers. 

 

IV.6.4 Kaggle  

Kaggle is the world’s largest data scientist and Machine Learning engineer’s community 

platform. Kaggle allows users to find and publish datasets in many fields, collaborate with other 

users, compete with other data scientists to solve data science challenges, and build models in 

a web-based data-science environment using GPU-integrated notebooks. Kaggle CHAPTER 3 

EXPERIMENTS AND RESULTS 24 started by offering Machine Learning challenges and has 

now expanded to include a public data platform, a cloud-based data science workbench. 
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IV.6.5 Hyperparameters  

Hyperparameters represent the parameters defined prior to the training of neural 

networks. These parameters, crucial in the realm of Deep Learning, encompass a broad 

spectrum, ranging from a few to potentially hundreds in complex models like Convolutional 

Neural Networks (CNNs). They exert influence over the learning process throughout training 

and ultimately impact the performance of the final model. 

IV.6.6 Batch size 

Batch size is a term used in machine learning that represents the number of training samples 

used in one iteration. 

IV.6.7 Learning Rate  

The learning rate serves as a pivotal tuning parameter within optimization methods, 

regulating the step size undertaken at each iteration as the model progresses towards minimizing 

a loss function during the training of Deep Neural Networks. The task of selecting an 

appropriate learning rate presents a challenge, as opting for a value that is too small may prolong 

the learning process, while one that is too high may lead to rapid convergence towards 

suboptimal weight configurations or even result in an unstable training regimen. Hence, an 

optimal learning rate strikes a delicate balance, being sufficiently low to foster accuracy 

improvements within the network while simultaneously ensuring that the training process 

remains expedient. 

IV.6.8 Optimizer  

During the training of a Deep Learning model, it is imperative to iteratively adjust the 

weights across each epoch to minimize the loss function. This pivotal task is facilitated by 

optimizers, which are algorithms tasked with dynamically modifying the attributes of the neural 

network, including weights and learning rates. By iteratively refining these parameters, 

optimizers contribute to the overarching objective of reducing the overall loss while 

concurrently enhancing the model's accuracy. 

IV.6.9 Epoch  

Within the domain of Artificial Neural Networks, an epoch denotes a single iteration 

through the entirety of the training dataset. Typically, training a neural network necessitates 

multiple epochs to effectively learn from the data. In essence, conducting training over multiple 

epochs, encompassing various patterns within the data, contributes to improved generalization 

when the model is subsequently evaluated on unseen data. 
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IV.6.10 Evaluation Metrics  

Evaluation metrics play a crucial role in assessing and quantifying the performance of 

neural networks, with specific metrics tailored to the unique requirements of each use case. 

These metrics vary based on the nature of the problem being addressed and are instrumental in 

gauging the effectiveness of classifiers. Some commun evaluation metrics include: 

• True Positive (TP): The test result that correctly indicates the presence of a class or a 

characteristic. 

• True negative (TN): The test result that correctly indicated the absence of a class or a 

characteristic 

• False Positive (FP): The test result that wrongly indicates the presence of a class or a 

characteristic. 

• False Negative (FN): The test result that wrongly indicates the absence of a class or a 

characteristic 

Based on the four indicators defined above, all the evaluation metrics used for classification are 

as follows: 

IV.6.11 Confusion matrix  

Indeed, a confusion matrix serves as a widely used tool for evaluating the performance 

of classification models and addressing associated challenges. It proves valuable for both binary 

and multiclass classification tasks. Particularly in scenarios involving unbalanced datasets, 

where there may be unequal observations across classes, traditional classification metrics can 

be misleading. 

By contrast, a confusion matrix provides a more granular understanding of the model's 

performance by explicitly detailing the types of errors made. It categorizes predictions into true 

positives, true negatives, false positives, and false negatives, enabling a deeper analysis of the 

model's strengths and weaknesses across different classes. 
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 Predicted class  

 Normal Attack 
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True Negative 

(TN ) 

False positive 

(FP) 

False Negative 

(FN ) 

True positive 

(TP) 

 

Table IV.2: Confusion Matrix for multiclassification 

 

This nuanced perspective afforded by the confusion matrix enhances the interpretability 

of classification results, making it an indispensable asset for evaluating and refining 

classification models, especially in the face of imbalanced datasets. 

IV.6.12 Accuracy  

Classification accuracy is the proportion of correct predictions to the total number of input samples,                               

 𝑎ccuracy =  
Number of correct predictions

Total number of predictions made
………………….….(IV.1 ) 

IV.6.13 Sensitivity (Recall):  

Sensitivity, also known as recall, indeed measures a model's capability to correctly predict true 

positives in each class. It quantifies the proportion of true positives identified by the model out of all 

actual positive instances. Mathematically, sensitivity can be calculated using the following formula: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑅𝑒𝑐𝑎𝑙𝑙) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
…………………....(IV.2) 

 

This metric is particularly valuable in scenarios where correctly identifying positive instances is 

crucial, as it highlights the model's ability to capture all positive cases, minimizing false negatives. 

IV.6.14 Precision:  

Precision serves as a key metric for evaluating the performance of a classification model, 

focusing on its ability to accurately identify relevant data points while minimizing false positives. 

Mathematically, precision can be calculated using the formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
……………………………………..(IV.3) 
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This metric quantifies the proportion of true positive predictions made by the model out of all 

instances predicted as positive. Precision is particularly valuable when the cost of false positives is high, 

as it ensures that the model's positive predictions are highly accurate and reliable. 

IV.6.15 F1-Score   

The F1-score serves as a composite metric that harmoniously combines a classifier's precision 

and recall into a single value by computing their harmonic mean. This metric is particularly useful for 

comparing the overall performance of two classifiers. 

The used equation to calculate the F1-score is as follows: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
………………………...(IV.4) 

The F1-score reaches its best value at 1 (perfect precision and recall) and worst at 0. It strikes a 

balance between precision and recall, providing a holistic assessment of a classifier's performance. This 

makes it a valuable metric for comparing the effectiveness of different classifiers, especially in scenarios 

were achieving both high precision and high recall is equally important. 

IV.7 Experiments and Results   

This section outlines the training and evaluation procedures for Four models, each 

employing architectures detailed in section 2.6 and assessed using metrics defined in section 

3.5. The dataset underwent an 85/15 split, with 80% allocated for training and 15% for 

validation. To enrich the training data, we employed data augmentation techniques via the 

ImageDataGenerator class from the Keras library. 

For model training, we adopted transfer learning methodology. The process commenced 

with loading the respective architectures from the Keras library, followed by sequential layers 

including batch normalization, a dense layer, dropout (with a rate of 0.5 to mitigate overfitting), 

a flatten layer, and finally, a dense layer featuring 38 neurons and a softmax activation function, 

serving as the output layer. 

 

After iterative experimentation, the following hyperparameters were determined optimal for 

training our models: 

- Batch size: 187 (default value) 

- Epochs: 40 epochs (ceasing when training loss and accuracy plateaued) 

- Optimizer: Adam (widely utilized for training CNNs) 

- Learning rate: 0.002 
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IV.7.1 Experiment 1 : VGG19 

TensorFlow, the Keras library, and the VGG19 architecture were used to train the initial 

model in our project. Fig. III.2 shows the number of trainable parameters and the layers 

employed to fine-tune this architecture. 

 

 
 

Figure IV.2: The architecture of the model using VGG19 

We trained the model and plotted the training and validation loss and accuracy. The graphs 

are shown by the Following figures.  
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Figure IV.3: Training and validation loss 

 

 

Figure IV.4: Training and Validation accuracy 
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In the previous analysis, it appears that there was a hint of underfitting observed in the graph 

for both accuracy and loss, despite employing a dropout of 0.3 for regularization. Subsequent 

to assessing the model's performance on the test set, we generated a confusion matrix illustrated 

in Fig IV.5 and computed various evaluation metrics for individual classes along with their 

average. 

 

Figure IV.5: Confusion matrix of the VGG19 model 

Classification report of VGG19 model: 

 Precision Recall f1-score Support 

0 0.63 1.00 0.78 497 

1 0.00 0.00 0.00 287 

Micro avg 0.63 0.63 0.63 784 

Macro avg 0.32 0.50 0.39 784 

Weighted avg 0.40 0.63 0.49 784 

 

Table IV.3 Classification report of the VGG19 model 
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IV.7.2 Experiment 2: Xception 

The second model was trained using the Xception architecture following the same procedures 

as the VGG19 architecture. The architecture of the entire model is provided in Fig IV.6. 

 

 

Figure IV.6 : The architecture of the model using Xception 

We trained the model and plotted the training and validation loss and accuracy. The graphs 

are shown in Figure IV.7. Moreover 
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Figure IV.7: Xception model training and validation loss 

 

 

Figure IV. 8 : Xception model training and validation accuracy 

 

From the previous graphs, we notice better performance in terms of training and validation 

accuracies. To evaluate the performance of this model we need to display the confusion 

matrix as given in Fig 10 and compute the evaluation metrics. 
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Figure IV.9 : Confusion matrix of the Xception model 

Classification report of Xception model: 

 

 Precision Recall f1-score Support 

0 0.95 1.00 0.97 357 

1 0.99 0.91 0.95 219 

Micro avg 0.96 0.96 0.96 576 

Macro avg 0.97 0.95 0.96 576 

Weighted avg 0.97 0.96 0.96 576 

 

 

Table IV.3: Classification report of the Xception model 
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IV.7.3 Experiment 3: Resnet50 

In the third experiment of our project, the model was trained using the first version of 

Resnet50 architecture. The architecture of the entire model is provided in Fig IV.10. 

 

 

 

Figure IV.10: The architecture of the model using Resnet50 
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The training and validation performance is shown in the graphs below: 

 

Figure IV.11: Resnet50 training and validation loss 

 

 

  

Figure IV.12: Resnet50 training and validation accuracy 
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The performance of this model is somehow similar to Xception. Likewise, we plotted the 

confusion matrix to better evaluate the model. 

 

Figure IV.13: Confusion matrix of the Resnet50 Model 

 

Classification report of Resnet50 model : 

 Precision Recall f1-score Support 

0 0.95 0.96 0.95 357 

1 0.93 0.92 0.92 219 

Micro avg 0.94 0.94 0.94 576 

Macro avg 0.94 0.94 0.94 576 

Weighted avg 0.94 0.94 0.94 576 

 

Table IV.4: Classification report of the Resnet50 model 
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IV.7.4 Experiment 4: EfficientB0 

The last model of this project was trained using the EfficientB0 architecture. The architecture 

of the last model is provided in Fig IV.14. 

 

Figure IV.14 The architecture of the model using Efficient B0 

 
 

Training and validation accuracy and loss are shown below. 

 

 
Figure IV.15: Training and Validation loss 
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Figure IV.16: Training and Validation accuracy 

 

In the last our model the validation loss remains relatively stable despite oscillations in the 

training loss, it suggests that our model is generalizing well to unseen data 

 

 

Figure IV.17 : Confusion matrix of the EfficientB0 Model 
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 Precision Recall f1-score Support 

0 0.96 0.99 0.98 357 

1 0.98 0.94 0.96 219 

Micro avg 0.97 0.97 0.97 576 

Macro avg 0.97 0.97 0.97 576 

Weighted avg 0.97 0.97 0.97 576 

 

Table IV.5 : Classification report of the EfficientB0 model 

 

 

IV.8 Summary of Results :  

The following table summarizes the results obtained from the previous experiments with 

an overall comparison between the architectures 

 

Architecture Overall Accuracy Balanced accuracy Average PRE Average REC Average F1-Score Model Size

VGG19 62% 50% 0% 0% 39% 109,14 MB

Xception 97% 96% 99% 91% 96% 87,40 MB

Resnet50 94% 94% 93% 92% 93,50% 98,48 MB

EfficientB0 98% 96% 98% 94% 97% 15,45 MB
 

Table IV.6: Summary of the results and an overall comparison between experiments 
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Figure IV.18: Comparison of evaluation metrics across the implemented models 
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In the following table, an overall comparison between our study and some of the related works 

is presented:  

 

Study 

 

Method 

Training 

Images 

Testing 

Images 

 

PRE 

 

REC 

F1-Score  

ACC 

 

Jonayet M 

(2021) 

 

  CNN+RBF 

 

 

  1151 

 

   170 

97,59% 

 

89,28% 

 

100% 

 

97,59% 

 

CNN+Softmax 

 

99.28% 

 

99.27% 

 

99.27% 

 

99.28% 

 

 

 

 

Jayanthi Vajiram 

(2020) 

 

Resnet50 

 

2839 

 

240 

95,09% 

 

68,75% 

 

99% 

 

96% 

 

VGG16 89,61% 

 

84,19% 97% 

 

96% 

 

Resnet 97.11% 

 

97.04% 

 

97.07% 

 

97.04% 

 

DNN 94,66 % 

 

89,19% 

 

98 % 

 

97% 

 

 

 

Rahul  Sharma  

et  al (2022) 

 

VGG16 

 

 

 

1651 

 

 

 

   412 

 

 

98.76% 

 

 

98.74% 

 

 

98.74% 

 

 

98.74% 

  ResNet50 

 

 

 98.85% 

 

 

 98.84% 

 

 

98.83% 

 

 

98.84% 

 

    

 

   Our Study 

VGG19  

 

  3390 

 

 

 

  566 

 

   62% 

 

    39%   50% 

 

   0% 

 

    Xception     97% 

 

    96% 91% 

 

96% 

 

   EfficientB0     85% 

 

   92%  87%   86% 

    Resnet50   94%   94%   93%   92% 

 

                 Table IV.7: Comparison of deep learning methods for MRI Classification 
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IV.9 Tumor Localization 

IV.9.1 Context and Experiment  

ResUNet is an advanced deep learning model that combines the strengths of the U-Net 

architecture with residual connections. U-Net is renowned for its effectiveness in biomedical 

image segmentation due to its encoder-decoder structure, which allows for precise localization 

and context understanding. By integrating residual connections, ResUNet addresses the 

vanishing gradient problem and improves training efficiency, leading to better performance in 

segmentation tasks 

 

Figure IV.19 : UNet with Res-Blocks 

The training and validation performance is shown in the graphs below: 
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Figure IV.20 : Training and validation accuracy 

The fluctuations in both the training and validation scores indicate variability in the 

model's performance per epoch. - The validation score being consistently higher than the 

training score could suggest that the model might not be overfitting. In a typical scenario, 

overfitting would show higher training scores compared to validation scores. - The consistent 

peaks and troughs in the validation score could indicate that the model's performance is 

sensitive to the specific batches of data used in each epoch, or there could 
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Figure IV.21 :  Detection and Localization of Brain Tumor [61] 

IV.9 Dicussion   

Recently, there have been significant advancements in utilizing Deep Learning 

algorithms for the early detection of Tumor in human Brain. Our proposed methodology 

revolves around employing a deep-learning-based algorithm for diagnosing Brains diseases by 

tumor. We trained four models using the "Healthcare MRI for brain tumor " dataset from 

Kaggle, which comprises approximately 3929 images, and evaluated their performance on 560 

images from the "MRI for Brain Tumor" dataset, also available on Kaggle. As anticipated, due 

to the extensive dataset used for training, the model training process took approximately 3 

hours. 

Upon individual evaluation of the models, it became apparent that the VGG19 model with 

high-size (109,14 MB) architecture performed the poorest compared to other architectures, 

yielding an overall accuracy of 62%, an overall loss of 50%, and a balanced accuracy of 50%. 

This discrepancy between balanced and overall accuracies suggests class imbalance issues. 

Conversely, the EfficientB0 architecture demonstrated superior performance metrics, striking 
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a better balance with an overall accuracy of 98%, balanced accuracy of 96%, and an overall 

loss of 30%, albeit at the expense of larger model size. 

 

Additionally, other architectures exhibited acceptable performance, maintaining a good 

balance between overall and balanced accuracy metrics relative to their model sizes. Ultimately, 

when considering deploying DL models on mobile applications, it is essential to weigh both 

performance and model size. Hence, we opted for Resnet50 and Xception due to its optimal 

performances across evaluation metrics while maintaining a manageable model size. 

 

 IV.10 Conclusion  

In this section, diverse Deep Learning models were employed to categorize which human 

brain has a tumor or not. The assessment outcomes differed for each model. Consequently, it 

was observed that the VGG19 architecture exhibited the least satisfactory performance, whereas 

the Resnet50 and Xception models achieved a more equitable distribution across evaluation 

criteria. Nonetheless, we designated the EfficientB0 model as the optimal choice. 
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General Conclusion 

Brain tumor have long been a significant concern in medicine for years. Precision 

healthcare has offered early disease identification and loss minimization by providing effective 

decisions based on DL methods. This work presented the design and implementation of a DL-

powered for Brain tumor identification that allows fast and accurate diagnosis diseases in 2 

categories. We used four different DL architectures (VGG19, Resnet50, EfficientB0, Xception) 

to train four CNN models using transfer learning using an imagery dataset of about 3929 

pictures of healthy and diseased Brains. After evaluating the models, we found promising 

results except for some classes which had a poor evaluation performance compared to the other 

classes. To increase the system’s usability, and using the Flutter framework. 

We implemented the EfficientB0 model on the application as it showed the best 

assessment results compared with the remaining architectures. In less than a second, our 

algorithm could interpret most of other architectures. 

This proves that our system is capable of doing real-time predictions by detection and 

localization a tumor while maintaining promising prediction accuracy and response time. 

However, because of the DL limitations,  

The main contributions of this work can be summarized below:  

➢ The choice of the best DL architectures and their corresponding hyperparameters that suit 

our field of application.  

➢ Two asks of deep learning in the real time ( Detection and Localization of tumor ).  

➢ Compensating for the lack of infrastructure medical instruments.  
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