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Abstract

In this thesis, we are interested to study the Ulam-Hyers stability in the general
case and particular case for a type of nonlinear Volterra itegro-differential equation using
the Banach fixed point.

Keywords:

Ulam−Hyers , Ulam−Hyers−Rassias stability, Nonlinear Volterra integro-deferentail
equation,Theorem of Banach fixed point.
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Résumé

Dans cet mèmoire, nous sommes intéressés à étudier la stabilité ulam-Hyers dans le
cas général et cas particulier pour un type d’une équation integro-différentiel de Volterra
non lineaire en utilisant le théorème de point fixe de Banach.

Mots clés:

Stabilité au sens d’ Ulam−Hyers, Stabilité au sens d’Ulam−Hyers −Rassias, Equation
integro-differentiel de Volterra, Theoreme de point fixe de Banach.

iv



Notations

•
∂

∂x
partial derivative operator .

•
∫ b
a

integral operator .

• N the set of positive integers, that is N = {0, 1, 2, · · · }.

• R the set of real numbers.

• C the set of complex numbers.

• Rn is the real space of dimension n.

• Cm(Ω) space of m times continuously differentiable functions on Ω, m ∈ N.

• C(Rd) the space of continuous function on Rd.

• C∞(Ω) = ∩
m∈N

Cm(Ω).

• C∞0 (Ω) the space of C∞(Ω) functions with compact support in Ω.

• Lp(Ω) Lebesgue space with norm ‖ · ‖p.
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GENERAL INTRODUCTION

In this thesis, we are interested to study the stability ofVolterra integro-differential
equations. This type of equations come out to light in 1896 when the Italian mathe-
matician Vito Volterra generalized Abel’s result, when Abel investigated a special case of
integral equation then volterra trated the general case and he got second kind of integral
equation which will be defined later[6]. From this interesting result, which he opened
a new horizon to the universe of mathematics and to a new type of integro differential
equations of Volterra (IDEVs).

Integro-differential equation is a type of differential equations that combine both of
differential an integral operator. The IDEVs are defined as an equation of the form
L[u] = f(x), where L is an integro-differential operator, u(x) is the unknown function
and f(x) is a given function.

However, these types of equations have a vast utilization in various scientific and engi-
neering such us in heat and mass transfer theory, electric circuit problems electromagnetic
theory, fluid dynamics, neuron transport theory neutron diffusion and biological species
coexisting together with increasing and decreasing rates of generating.
In addition, the Volterra integral equations are difficult to solve analytically because of
their complexity. Consequently, a variety of numerical methods have been used to solve
these issues in VIDEs. Though numerical methods can be sensitive to errors and pertur-
bation in initial conditions and parameters.

The solution of Volterra integral equation should be treated by studying the perturba-
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tion of solution using one of mathematical technique in our thesis we are talking about
the Ulam-Hyers stability witch is a concept in analysis that addresses the sensitivity of
solutions to small perturbations. Specifically, it refers to the stability of an approximate
solution under small perturbations of the initial conditions and parameters.

Ulam-Heyrs stability has been studied extensively for ordinary differential equations
and partial differential equations. However, it’s application to integro-differential equa-
tions is relatively new. If this technique for Ulam-Heyrs stability analysis can be provide it
has made an important insights into the behavior of numerical methods and their accuracy
in solving these equations, and that is the goal of our thesis.

Plan of thesis

This manuscript includes a general introduction and three chapters.

The first chapter:

The first chapter is an introduction to the integral equation and their classification,
also we will cite the Banach space, which play an important role in our study.

The second chapter:

The second chapter is interesting to study the existence of the solution of an integral
equation using a Banach fixed point then we treat the stability of the solution using the
Ulam-Heyrs stability after we will generalize the stability of the integral equation using
the general method of stability named with Ulam-Heyres-Rassias stability.

The third chapter:

The last chapter consist to use the same concept of the second chapter, but we will use
it and generalized on an integro-differential equation of Volterra. First we will study the
existence and uniqueness of the solution with two different conditions then we are going
to studding the stability with Ulam-Heyrs and Ulam-Hyers-Rassias methods.
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CHAPTER 1

PRELIMINARIES

I n this chapter we will introduce the concept of integral equations and integro-
differential equations and their classification also we will define the mathematical tools
using in solving our thesis problem with given definitions, theorems and examples to make
clear our reasoning and the understanding of readers.

1.1 Banach Space

Banach space has the name of Stefan Banach(1892-1945). A Polish mathematician
who is known as one of the founders of functional analysis[14].

Definition 1.1 [17] Consider thatX is a linear vector space (of finite or infinite dimension
over R or C). A mapping of X into [0,+∞[ satisfying the following norm axioms is a norm
‖ x ‖X=‖ x ‖:

1. It is positive on nonzero vectors, that is

‖ x ‖= 0 onlly if x = 0, (1.1)

2. For every vectorx and every scalar λ:

‖ λx ‖= |λ| ‖ x ‖ for all x ∈ X and λ ∈ R (orC), (1.2)

3. The triangle inequality holds; that is, for every vectors x and y

‖ x+ y ‖≤ ||x||+ ||y|| for all x, y ∈ X. (1.3)
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Remark 1.1 The pair(X, ||.||) represents a normed vector space. We use the symbol of
the space as a subscript for simplicity if there are multiple vector spaces or if the choice
of the norm is not evident, for example, ||.||X , ||.||Y .

Definition 1.2 [17] The normed linear space (X, ||.||) is called complete, if any Cauchy
sequence in X is also convergent

lim
m,n→∞

||Um − Un|| = 0.

Acauchy sequence is defined to be convergent so X is complete.

Definition 1.3 [17] A complete normed linear space is called a Banach space. Exam-
ples of Banach spaces that are simple to understand include finite-dimensional vector
spaces R with the maximum norm (1.4) or the Euclidean norm (1.5) for the vectors

||x||∞ = max|xi|, 1 ≤ i ≤ d, (1.4)

||x||2 = (
d∑
i=1

|xi|)
1
2 . (1.5)

Remark 1.2 Two norms ||.||1 and ||.||2 in the finite-dimensional are called equivalent if
they give the same topology, which is equivalent to the existence of constants c1 and C2
such that:

||v||1 ≤ c1 ||v ||2,

and
||v||2 ≤ C2 ||v ||1,

hold for all v .

1.2 Linear Bounded Operators

Definition 1.4 [11] An operwtor A : X → Y mapping a linear space X into a linear
space Y is named linear if:

A(αx1 + βx2) = α(x1) + βA(x2), (1.6)

for all x1, x2 ∈ X and α, β ∈ Ror (C).

Definition 1.5 [11] A linear operator A : X → Y from a normed space X into a normed
space Y is called bounded if there exists a positive number γ such

||A(x)|| ≤ γ||x||,
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for all x ∈ X. A number γ for which this inequality holds is called a bound for the
operator A.

Theorem 1.1 [11] For a linear operator A : X × Y mapping a normed space X into a
normed space Y the following properties are equivalent:

i ) A is continuous at one element.

ii ) A is continuous.

iii ) A is bounded.

Proof.

1. [i] =⇒ [ii], let A be continuous at x0 ∈ X then for every x ∈ X and every sequence
(xn) with xn → x, n→∞, we have:
Axn = A(xn − x+ x0) + A(x− x0)→ A(x0) + A(x− x0) = A(x), n→∞,
since
xn − x+ x0 → x0, n→∞.
Therefore, A is continuous at all x ∈ X.

2. [ii] =⇒ [iii], let A be continuous and assume there is no γ > 0 such that ||Ax|| ≤
γ||x|| for all x ∈ X. Then there exists a sequence (xn) in X with ||xn|| = 1 and
||xn|| = 1 and ||Axn|| ≥......
Consider the sequence yn := ||Axn||−1xn. Then yn → 0, n → ∞, since A is
continues Ayn → A(0) = 0, n→∞. This is a contradiction to ||Ayn|| = 1 for all n.

3. [iii] =⇒ [i] Let A be bounded and let (xn) be a sequence in X with xn → 0, n→∞.
Then from||Axn|| ≤ γ||xn||it follows that Axn → 0, n→∞. Thus, A is continuous
at x = 0.

Theorem 1.2 [11] The linear space L(X, Y ) of bounded linear operators from a normed
space X into a normed space Y is a normed space with the norm ||A|| = supx≤1 ||Ax|| <∞.
If Y is a Banach space then L(X, Y ) also is a Banach space.

Proof. The proof consists in carrying over the norm axioms and the completeness from
Y onto L(X, Y )

. For the second part, let (An) be a Cauchy sequence in L(X, Y ),i.e.,
||Am−An|| → 0,m, n→∞. Then for each x ∈ X the sequence (Anx) is a Cauchy sequence
in Y and converges, since Y is complete. Then Ax = limn→∞Anx defines a bounded linear
operator A : X → Y , which is the limit of the sequence (An), i.e., ||An−A|| → 0, n→∞.
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1.2.1 Integral Operators

An important class of operators will now be defined using integrated operators, whose
field of integration is a domain that can be measured in Rd.

Definition 1.6 [1] Let k(x, t) be a measurable function on Γ×Γ . Then the general form
of an integral linear operator A, is formally given by the expression:

Au(x) =

∫
Γ

k(x, t)u(t)dt. (1.7)

Au is defined once that integral exists.

Remark 1.3 The equation (1.7) is called an integral operator with continuous kernel K.
It is a bounded linear operator with:

||A||∞ = max
x∈Γ

∫
Γ

|k(x, t)|dt , x ∈ Γ, (1.8)

Example 1.1 Let E = C(I) where I is a compact interval(I ⊂ R).The integral linear
operator A of E is taken to be defined by:

Au(x) =

∫
I

|k(x, t)u(t)|dt, (1.9)

where k a function of continuous real values in square e I × I. To determine ||A||, we
have

|Au(x)| ≤ ||u||
∫
I

|k(x, t)u(t)|dx, (1.10)

as well as,

||A||∞ ≤ max
x∈I

∫
I

|k(x, t)|dx, (1.11)

such as,

U(x) = max
x∈I

∫
I

|k(x, t)|dx, (1.12)

is continue on I,U reaches its maximum at some point t0 ∈ I.let define

ξ(x) =

{
|k(t0,x)|
|k(t0,x)| if k(t0, x) 6= 0

0 if not,
(1.13)

it clear that ξ is a integrable function on I, because it is a bounded and measurable. So
exist a mapping ξn in C(I) such that ||ξn|| ≤ 1 and ξn converge to ξ in L1(I). Because
C(I) dense on L1(I), 1 ≤ p ≤ ∞). So,

||A|| ≥ ||Aξ|| ≥ Aξ(t0)→
∫
I

k(t0, x)ξ(t)dx, (1.14)
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hence,

||A|| ≥ ||Aξ|| ≥ Aξ(t0) ≥
∫
I

k(t0, x)ξ(t)dx ≥
∫
I

|k(t0, x)|dx ≥ max
x∈I

∫
I

k(x, t)dx, (1.15)

Thus,according to (1.11) and (1.15)

||A||∞ ≤ max
x∈I

∫
I

|k(x, t)|dx, (1.16)

Example 1.2 let L an integral operator defined by:

Ls : [0, 1]→ C : x→ (Ls)(x) =

∫ 1

0

etx
3

s(t)dt, (1.17)

it is an integral operator with kernel k(x, t) = etx
3 .

1.2.2 Compact Operators

To provide the tools for establishing the existence of solutions to a wider class of integral
equations we now turn to the introduction and investigation of the compact Operators.

Definition 1.7 [11] let X and Y a normed space, A a linear operator A : X → Y is
called compact if it maps each bounded set in X into a relatively compact set in Y .
Since a subset U of a normed space Y is relatively compact if each sequence in U contains
a subsequence that converges in Y ,(for the proof see [11]).

In the rest we will give equivalents conditionts for a compact operator.

Theorem 1.3 [11] A linear operator A : X → Y is compact if and only if for each
bounded sequence (un) in X the sequence (Aun) contains a convergent subsequence in Y .

the proof of this theorem based on the basic properties of compact operators.(see the
proof in [11] )

Theorem 1.4 [11]. Compact linear operators are bounded.

Theorem 1.5 [11] Let X be a normed space and Y be a Banach space. Let the sequence
An : X → Y of compact linear operators be norm convergent to a linear operator
A : X → Y , i.e.,||An − A|| = 0 , n→∞. Then A is compact.

Proof. Let (um) be a bounded sequence in X, i.e., ||um| ≤ C for all m ∈ N and some
C > 0. Because the An are compact, by the standard diagonalization procedure (see
the proof of Theorem [11]), we can choose a subsequence (um(k)) such that (Anum(k))

converges for every fixed n as k → ∞. Given ε > 0, since ||An − A|| → 0n → ∞, there
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exists n0 ∈ Nsuch that||An0 − A|| < ε/3C. Because (An0um(k)) converges, there exists
N(ε) ∈ N such that:

||An0um(k) − An0um(l)|| ≤
ε

3
, (1.18)

for all k, l ≥ N(ε), But thwn we have

||Aum(k) − Aum(l)|| ≤ ||Aum(k) − An0um(l)||+ ||An0um(k) − An0um(l)||+ An0um(k) − um(l)||,
(1.19)

Thus (Aum(k)) is a Cauchy sequence, and therefore it is convergent in the Banach space
Y.

Theorem 1.6 [11] Let A : X → Y be a bounded linear operator with finite-dimensional
range A(X). Then A is compact.

Theorem 1.7 [11] A compact linear operator A : X → Y cannot have a bounded inverse
unless X has finite dimension

Theorem 1.8 [11] Integral operators with continuous kernel are compact linear operators
on C(G).

Proof. Let U ⊂ C(G) be bounded, i.e.,||U ||∞ ≤ C for all x ∈ U and some C > 0. Then
for the integral operator A defined by

|(AU)|(x) ≤ C|G| max
x,y∈G

|k(x, y)|, (1.20)

for all x ∈ Gand allU ∈ U,, i.e., A(U) is bounded. Since K is uniformly continuous on the
compact set G×G, for every ε > 0 there exists δ > 0 such that

|k(x, z)− k(x, y)| < ε

C|G|
, (1.21)

For all x,y,z ∈ G with |x− y| < δ,

|AU(x)− AU(y)| ≤ ε. (1.22)

For allx, y ∈ G with |x− y| < δ and all U ∈ U, i.e., A(U) is equicontinuous(definition ).
Hence A is compact by Arzela - Ascoli Theorem cited in [11]).
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1.3 Lp spaces

Definition 1.8 [16] Let Ω ⊂ Rd be a non-empty open set. In the study of Lp(Ω) spaces,
we identify functions (i.e. such functions are considered identical) which are equal a.e. on
Ω. For p ∈ [1,∞), Lp(Ω) is the linear space of measurable functions v : Ω→ R such that

‖v‖Lp(Ω) =

[∫
Ω

|v(x)|pdx
]1/p

<∞

The space L∞(Ω) consists of all essentially bounded measurable functions v : Ω→ R

‖v‖L∞(Ω) = inf
meas(Ω′)=0

sup
x∈Ω\Ω′

|v(x)| <∞

For p = 1, 2,∞, it is quite straightforward to show ‖ · ‖Lp(Ω) is a norm.

Theorem 1.9 [16] Let Ω be an open bounded set in Rd.
(a) For p ∈ [1,∞], Lp(Ω) is a Banach space.
(b) For p ∈ [1,∞], every Cauchy sequence in Lp(Ω) has a subsequence which converges

pointwise a.e. on Ω.
(c) If 1 ≤ p ≤ q ≤ ∞, then Lq(Ω) ⊂ Lp(Ω),

‖v‖Lp(Ω) ≤ meas(Ω)1/p−1/q‖v‖Lq(Ω) ∀v ∈ Lq(Ω)

and

‖v‖L∞(Ω) = lim
p→∞
‖v‖Lp(Ω) ∀v ∈ L∞(Ω)

(d) If 1 ≤ p ≤ r ≤ q ≤ ∞ and we choose θ ∈ [0, 1] such that

1

r
=
θ

p
+

(1− θ)
q

then

‖v‖Lr(Ω) ≤ ‖v‖θLp(Ω)‖v‖1−θ
Lq(Ω) ∀v ∈ Lq(Ω)

In (c), when q =∞, 1/q is understood to be 0 . The result (d) is called an interpolation
property of the Lp spaces. We can use the Hölder inequality to prove (c) and (d) (see the
proof in [16]).

For p ∈ (1,∞), we have the following Clarkson inequalities. Let u, v ∈ Lp(Ω). If
2 ≤ p <∞, then∥∥∥∥u+ v

2

∥∥∥∥p
Lp(Ω)

+

∥∥∥∥u− v2

∥∥∥∥p
Lp(Ω)

≤ 1

2
‖u‖pLp(Ω) +

1

2
‖v‖pLp(Ω).

If 1 < p ≤ 2, then
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∥∥∥∥u+ v

2

∥∥∥∥q
Lp(Ω)

+

∥∥∥∥u− v2

∥∥∥∥q
Lp(Ω)

≤
[

1

2
‖u‖pLp(Ω) +

1

2
‖v‖pLp(Ω)

]q−1

where q = p/(p − 1) is the conjugate exponent of p. A proof of these inequalities can be
found in [16]. Smooth functions are dense in Lp(Ω), 1 ≤ p <∞

Theorem 1.10 [16] Let Ω ⊂ Rd be an open set, 1 ≤ p < ∞. Then the space C∞0 (Ω) is
dense in Lp(Ω); in other words, for any v ∈ Lp(Ω), there exists a sequence {vn} ⊂ C∞0 (Ω)

such that

‖vn − v‖Lp(Ω) → 0 as n→∞

For any m ∈ Z+, by noting the inclusions C∞0 (Ω) ⊂ Cm(Ω̄) ⊂ Lp(Ω), we see that the
space Cm(Ω̄) is also dense in Lp(Ω).

1.4 Integral Equations

Definition 1.9 [16] An integral equation is an equation for an unknown function u, where
u appears also under the integral sign. The integral equation generally used to resolve an
ordinary differential equations.Consider the initial value problem

u′(x) = f(x, u(x)) for x > x0, u(x0) = u0. (1.23)

Integration from x0 to x reduces this to the integral equation.

u(x) = u0 +

∫ x

x0

f(s, u(s))ds for x > x0. (1.24)

The reformulation (1.24) is interesting for a variety of reasons, one of which is that it is
better suited than (1.23) to show that a solution exists and is unique.

1.5 Integral Equation Classification

Definition 1.10 [2] There are many kinds of integral equations. The types mostly de-
pend on the kernel of the problem and the integration boundaries. We will focus on the
following categories of integral equations in this section.

The ordinary form of a linear integral equation is given by

u(x) = f(x) + λ

∫ h(x)

g(x)

k(x, t)u(t)dx, (1.25)
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where g(x) and h(x) are the integration limits, λ is a constant parameter, where k(x, t) is
named by the kernel or the nucleus [2], a well-known function of the two variables x and t.
The unknown function u(x) that will be determined appears inside the integral sign.The
unknown function u(x) frequently appears both inside and outside the integral sign. In
advance, the functions k(x, t) and f(x) are given. We can classing the integral equations
depending the boundaries.

1.5.1 Fredholm integral equation

Definition 1.11 [2] Fredholm integral equations, the boundaries of integration are fixed
g(x) = b and h(x) = a.

u(x) = f(x) + λ

∫ b

a

k(x, t)u(t)dx, (1.26)

1. if, the unknown function u(x) appears only inside integral sign the Fredholm integral
equation called Fredholm integral equation of the first kind and it is given by the
form:

f(x) = λ

∫ b

a

k(x, t)u(t)dt, (1.27)

2. if the unknown function u(x) appears inside and outside the integral sign. the
Fredholm integral equation called Fredholm integral equation of second space.

u(x) = f(x) + λ

∫ b

a

k(x, t)u(t)dt, (1.28)

Example 1.3 Examples of the two kinds are given by:

sin(x)− xcosx =

∫ 1

0

k(x, t)u(t)dt, (1.29)

u(x) = ln(x) +

∫ 2

1

k(x, t)u(t)dt, (1.30)

1.5.2 Volterra integral equation

Definition 1.12 [2] The integral equation called Volterra integral equation if the integral
has at least one limit that is a variable, h(x) = x and g(x) = 0. It given by the form

u(x) = f(x) + λ

∫ x

0

k(x, t)u(t)dx, (1.31)
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1. if the unknown function u(x) appears only inside integral sign in the form the
Volterra equation called Volterra equation of the first kind and it is given by the for

f(x) = λ

∫ x

0

k(x, t)u(t)dx, (1.32)

2. if the unknown function u(x) appears inside and out side integral sign in the Volterra
equation called Volterra equation of the second kind and it is given in the form:

u(x) = f(x) + λ

∫ x

0

k(x, t)u(t)dx, (1.33)

Example 1.4 1. Examples of the Volterra integral equations of the first kind are:

xe−x =

∫ x

0

et−xdt, (1.34)

5x2 + x3 =

∫ x

0

u(t)dt, (1.35)

2. examples of the Volterra integral equations of the second kind are:

u(x) = 1−
∫ x

0

tu(t)dt, (1.36)

u(x) = x3 +

∫ x

0

(t− x)u(t)dt, (1.37)

1.5.3 Fredholm-Volterra Integral Equation

Definition 1.13 [2] The Volterra-Fredholm integral equations come from parabolic bound-
ary value problems, mathematical modeling of the spatio-temporal development of an
epidemic, and a variety of physical and biological models .
The Volterra-Fredholm integral equations can be found in two different formats in the
literature:

u(x) = f(x) + λ1

∫ x

a

k1(x, t)dt+ λ2

∫ b

a

k2(x, t)u(t)dt, (1.38)

and

u(x, t) = f(x, t) + λ
∫ t

0

∫
ω
F (x, tξ, τ, u(ξ, τ))dξdτ (x, t) ∈ Ω× [o,Γ], (1.39)

where f(x, t) and F (x, t, ξ, τ, u(ξ, τ)) are analytic functions on D = Γ × [0,Γ], and Ω is
a closed subset of Rn, n = 1, 2, 3... It is interesting to note that (1.38) contains disjoint

14



Volterra and Fredholm integral equations, whereas (1.39) contains mixed Volterra and
Fredholm integral equations. Moreover, the unknown functions u(x) and u(x, t) appear
inside and outside the integral signs. This is a characteristic feature of a second kind
integral equation. If the unknown functions appear only inside the integral signs, the
resulting equations are of the first kind, but will not be examined in this text.

Example 1.5 we give two exemples of the tow types:

u(x) = 6x+ 3x2 + 2−
∫ x

0

xu(x)dt−
∫ 1

0

tu(x)dt, (1.40)

u(x) = 6x+ t3 +
1

2
t2 −

∫ t

0

∫ 1

0

(τ − ξ)dt, (1.41)

1.5.4 Singular Integral Equations

Integral equations of the first kind:

f(x) = λ

∫ h(x)

g(x)

k(x, t)u(t)dx, (1.42)

or of the second kind:

u(x) = f(x) + λ

∫ h(x)

g(x)

k(x, t)u(t)dx, (1.43)

are defined as singular when one of the integration boundaries, g(x), h(x), or both are
infinite.The previous two equations are called singular if the kernel k(x, t) becomes un-
bounded at one or more points in the interval of integration.

Example 1.6

f(x) =

∫ x

0

1

(x− t)α
u(t)dt, (1.44)

u(x) = f(x)

∫ x

0

1

(x− t)α
u(t)dt, (1.45)

in this example the two equations(1.44)(1.45) are called generalized Abel’s integral equa-
tion and weakly singular integral equations respectively if α = 1

2
:

f(x) =

∫ x

0

1

(x− t) 1
2

u(t)dt, (1.46)

is called the Abel’ s singular integral equation. It is to be noted that the kernel in each
equation becomes infinity at the upper limit t = x.
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1.6 Classification of Integro-Differential Equations

Definition 1.14 [2] Integro-differential equations are used in many scientific applica-
tions, especially when integral equations are used to convert initial value or boundary value
problems. Differential and integral operators are both present in the integro-differential
equations.The unknown function´ s derivatives could arrive in any order. In classifying
integro-differential equations.

In classifying integro-differential equations, we will follow the same category used be-
fore.

1.6.1 Fredholm Integro-Differential Equations

Fredholm integro-differential equations appear when we convert differential equations
to integral equations. The Fredholm integro-differential equation contains the unknown
function u(x) and one of its derivatives u(x)(x) , n ≥ 1 inside and outside the integral sign
respectively. In this case, the integration’s bounds are fixed, similarly to the Fredholm
integral equations. The equation is labeled as integro-differential because it contains
differential and integral operators in the same equation. It is important to note that
initial conditions should be given for Fredholm integro-differential equations to obtain the
particular solutions.The Fredholm integro-differential equation appears in the form:

u(n)(x) = f(x) + λ

∫ b

a

k(x, t)u(t)dt, (1.47)

where u(n) represents the nth derivative of u(x). With u(n) at the left side, other derivatives
of lower order might also appear.

Example 1.7

u′(x) = 1− 1

3
x+

∫ 1

0

xu(t)dt u(0) = 0, (1.48)

u′′(x) + u′(x) = x− sin(x)−
∫ π

2

0

xtu(x)dt, (1.49)

1.6.2 Volterra Integro-Differential Equations

In Volterra Integro-Differential Equations. The Volterra integro-differential equation
contains the unknown function u(x) and one of its derivatives u(n)(x), n ≥ 1 inside and
outside the integral sign. At least one of the limits of integration this case is a variable
as in the Volterra integral equations. The equation is called integro-differential because
differential and integral operators are involved in the same equation. It is important to
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note that initial conditions should be given for Volterra integro-differential equations to
determine the particular solutions. The Volterra integro-differential equation appears in
the form:

u(n) = f(x) + λ

∫ x

0

k(x)u(t)dt, (1.50)

where u(n) indicates the nth derivative of u(x). Other derivatives of less order may appear
with u(n) on the left side.

Example 1.8

u′(x) = −1 + 1
2
x2 + xex −

∫ x
0
tu(t)dt, u(0) = 0, (1.51)

u′′(x) + u′(x) = 1− x(sin(x) + cos(x))−
∫ x

0
tu(x)dt, u(0) = −1, u′(0) = 1, (1.52)

1.6.3 Volterra-Fredholm Integro-Differential Equations

The Volterra-Fredholm integro-differential equations are formed similarly to the Volterra-
Fredholm integral equations, but with one or more ordinary derivatives in addition to the
integral operators. There are two ways that the Volterra-Fredholm integro-differential
equations can be found in the literature.

u(n) = f(x) + λ1

∫ b

a

k1(x, t)u(t)dt+ λ2

∫ x

a

k2(x, t)u(t)dt, (1.53)

and,

u(n)(x, t) = f(x, t) + λ

∫ t

0

∫
ω

F (x, t, ξ, τ, u(ξ, τ))dξdτ, (x, t) ∈ Ω× [0,Γ], (1.54)

where f(x, t) and F (x, t, ξ, τ, u(ξ, τ)) are analytic functions on and Ω is a closed subset
of Rn, n = 1, 2, 3....It’s important to note that (1.53) contains disjoint Volterra and
Fredholm integral equations, whereas (1.54 )contains mixed integrals. It is also possible
for equations with lower-order derivatives to exist. Moreover, the unknown functions u(x)

and u(x, t) appear inside and outside the integral signs. This is a characteristic feature of
a second kind integral equation. If the unknown functions appear only inside the integral
signs, the resulting equations are of the first kind. Initial conditions should be given to
determine the particular solution.
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Example 1.9 Examples of the two types are given by:

u′(x) = 24x+ x4 + 3 +
∫ x

0
(x− t)u(t)dt−

∫ 1

0
tu(t)dt, u(0) = 0, (1.55)

u′(x, t) = 1 + t3 + 1
2
t+ 1

3
t3
∫ t

0

∫ 1

0
(τ − ξ)dξdτ, u(0) = t3, (1.56)

1.7 Linearity and Homogeneity

Integral equations and integro-differential equations may also be classified into two
categories based on the concepts of linearity and homogeneity. These two concepts have a
significant role in the solutions structure. The definitions of these concepts are highlighted
in the phrases that follow.

1.7.1 Linearity Concept

Definition 1.15 [2] The integral equation or the integro-differential equation is referred
to as linear if the exponent of the unknown function u(x) inside the integral sign is one
[6]. The integral equation or the integro-differential equation is referred to as nonlinear
if the unknown function u(x) has an exponent other than one or if the equation involves
nonlinear functions of u(x), such as eu, sinh(u), cos(u), or ln(1 + u).

Example 1.10 1. The first two examples are Fredholm and Volterra integral linear
equations respectively:

u(x) = 1−
∫ 1

0

(t− x)u(t)dt, (1.57)

u(x) = ln2 +

∫ x

0

(t− x)u(t)dt, (1.58)

2. The last two examples are nonlinear Volterra integral equation and nonlinear Fred-
holm integro-differential equation respectively.

u(x) = 1 +

∫ x

0

(1 + x− t)u4(t)dt, (1.59)

u′(x) = 1 +

∫ 1

0

xteu(t)dt , u(0) = a, (1.60)
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1.7.2 Homogeneity Concept

Definition 1.16 [2] The second type of Volterra or Fredholm integral equations or integro-
differential equations are categorized as homogeneous if the function f(x) is identically
zero. The equation is described as inhomogeneous if the function f(x) is not identically
zero.

Remark 1.4 We should know that this property holds for equations of the second kind
only

Example 1.11 The first equation is an inhomogeneous Volterra integral equation

u(x) = sin(x) +

∫ x

0

txu(t)dt, (1.61)

the second equation is an inhomogeneous Fredholm integro-differential equation

u′(x) = x+

∫ 1

0

(t− x)u(t)dt, u(0) = 0, (1.62)

the third equation is an homogeneous Volterra integro-differential equation

u′(x) =

∫ x

0

(t− x)2u(t)dt, u(0) = 0, (1.63)

the third equation is an homogeneous fredholm integral equation

u(x) =

∫ 2

0

x2u(t)dt, (1.64)

1.8 About integro-differential equation classification

In this section we are going to speak about the classification of intigro-differential
equations depending the position of the derivatives of the unknown function u(n)(x) for
n = 1 inside and outside the integration sign, the derivative function is inside integration
sign and if , the derivative function is outside integration sign. Let the integro-differential
equation formula types depending the u′ position:

1. The unknown derivative function u′(x) are inside and out side
the integration sign:

u′(x) = f(x) + λ

∫ h(x)

g(x)

k(x, t, u(t), u′(t))dt, u0(x) = α, (1.65)
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(a) If g(x) and h(x) are fixed, the integro-equtionintegro-equation called Fredholm
integro-differential equation

u′(x) = f(x) + λ

∫ b

a

k(x, t, u(t), u′(t))dt, u0(x) = α, (1.66)

(b) If g(x) and h(x) are at least one of the integral limit is a variable. The Integro-
equtionintegro-equation called Volterra integro-differential equation :

u′(x) = f(x) + λ

∫ x

a

k(x, t, u(t), u′(t))dt, u0(x) = α, (1.67)

(c) If g(x) and h(x) are at least one of the integral limit is a variable in the first
integral and the second integral limit is fixed g(x) = a and h(x) = b

u′(x) = f(x)+λ1

∫ x

a1

k1(x, t, u(t), u′(t))dt+λ2

∫ b

a2

k2(x, t, u(t), u′(t))dt, u0(x) = α,

(1.68)
and,

u′(x, t) = f(x, t) +λ

∫ t

0

∫
ω

k(x, t, ξ, τ, u(ξ, τ), u′(ξ, τ))dξdτ , u0(x) = 0, (1.69)

forall (x, t) ∈ Ω× [0,Γ],
where f(x, t) and k(x, t, ξ, τ, u(ξ, τ)) are analytic functions on and Ω is a closed
subset of Rn, n = 1, 2, 3....

2. The unknown derivative function u′(x) are inside the integration sign

u(x) = f(x) + λ

∫ h(x)

g(x)

k(x, t, u(t), u′(t))dt, u0(x) = α, (1.70)

(a) If g(x) and f(x) are fixed, the integro-equation called Fredholm integro-
differential equation

u(x) = f(x) + λ

∫ b

a

k(x, t, u(t), u′(t))dt, u0(x) = α, (1.71)

(b) If g(x) and f(x) are at least one of the integral limit is a variable. The integro-
eqution called Volterra integro-differential equation

u(x) = f(x) + λ

∫ x

a

k(x, t, u(t), u′(t))dt, u0(x) = α, (1.72)
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(c) If g(x) and h(x) are at least one of the integral limit is a variable in the first
integral and the second integral limit is fixed g(x) = a and h(x) = b,

u(x) = f(x) + λ1

∫ x

a1

k1(x, t, u(t))dt+ λ2

∫ b

a2

k2(x, t, u(t))dt, u0(x) = α

(1.73)
and

u(x, t) = f(x, t) + λ

∫ t

0

∫
ω

k(x, t, ξ, τ, u(ξ, τ), u′(ξ, τ))dξdτ , u0(x) = 0, (1.74)

(x, t) ∈ Ω× [0,Γ],

where f(x, t) and k(x, t, ξ, τ, u(ξ, τ)) are analytic functions on and Ω is a closed
subset of Rn, n = 1, 2, 3....

1.9 Banach’s Fixed Point Theorem

Banach fixed-point theorem, also known as the principle contraction of Banach or
Picard fixed point theorem, has appeared for the first time in 1922 as part of solving
an integral equation. Note that this theorem is an abstraction of the classical method
successive approximations introduced by Liouville (in 1837) and subsequently developed
by Picard (in 1890). Due to its simplicity and utility, this theorem is widely used in
several branches of analysis especially, in the branch of differential equations. Banach
fixed-point theorem has known various generalizations in different spaces.

Definition 1.17 [17] Let X be a Banach space and A : X → X a contraction it is mean
there is a number 0 ≤ k < 1,

||A(x)− A(y)|| ≤ k||x− y||| for all x, y ∈ X
,

(1.75)

Hence, the following is true. The fixed point equation:

x∗ = A(x∗), (1.76)

has exactly one solution x∗ ∈ X.

Proof.

1 Existence :let (xn)n∈N, defined by:{
x0 ∈ X

xn+1 = Axn.
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Let’s prove that (xn)n∈N is of Cauchy. Let m, n ∈ N with m ≤ n :

||xm − xn|| ≤ ||xm − xm+1||+ ||xm+1 − xn||
≤ ||xm − xm+1||+ ||xm+1 − xm+2||+ ...+ ||xn−1 − xn||
≤ km||xm − xm+1||+ km+1||xm+1 − xm+2||+ ...+ kn−1||xn−1 − xn||
≤ (km + km+1 + ...+ kn−1)||x0 − x1||.

But
(km + km+1 + ...+ kn−1) = km(

1− kn−m

1− k
=

km

1− k
(1− kn−m),

Hence
||xm − xn|| ≤

km

1− k
(1− kn−m)||x0 − x1||,

we have
(1− kn−m) ≤ 1,

so
||xm − xn|| ≤

km

1− k
||x0 − x1||,

suppose that ||x0 − x1|| 6= 0 , for ||xm − xn|| ≤ ε, it is enough that ,

km

1− k
||x0 − x1|| ≤ ε,

so (xn)n∈N it a Cauchy sequence in X and (X, ||.||) it is a complete space, so (xn)n∈N

converging in X Let x∗ = limn→∞ xn , x∗ ∈ X, lets proof that x∗ is a fixed point of
A. A continuous, so :

∀n ∈ N, xn+1 = Axn,

⇒ lim
n→∞

xn = lim
n→∞

Axn,

⇒ x∗ = A( lim
n→∞

xn) = A(x∗).

2 Uniqueness: Let x∗ and x∗∗ be two solutions of (1.2).
From (1.1) one concludes ||x∗−x∗∗|| ≤ k||x∗−x∗∗|| with k < 1; hence, ||x∗−x∗∗|| = 0

proving the uniqueness of the solution.
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CHAPTER 2

ULAM− HYERS AND ULAM− HYERS−RASSIAS
STABILITY FOR A CLASS OF NONLINEAR VOLTERRA

INTEGRAL EQUATIONS

The stability is an important topic in the applications. The stability theory for func-
tional equations started with a problem related to the stability of group homomorphisms
that was considered by S.M. Ulam in 1940 (see [12] and [13]).

Ulam considered the following question:
Let G1 be a group and let G2 be a group endowed with a metric d. Given ε > 0, does

there exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(xy), h(x)h(y)) < δ,

for all x, y ∈ G1, then we can find a homomorphism θ : G1 → G2 such that

d(h(x), θ(x)) < ε,

for all x ∈ G1 ?
An affirmative answer to this equation was given by D. H. Hyers (see [5]) for the case

of Banach spaces. This answer, in this case, says that the Cauchy functional equation is
stable in the sens of Heyers-Ulam. In 1950.

In 1978, Th. M. Rassias [15] generalized the theorem of Hyers by considering the stabil-
ity problem with unbounded Cauchy differences. In [15], Th. M. Rassias has introduced
a new type of stability which is called the Hyers-Ulam-Rassias stability. In general, we
may say that the main issue in determining the conditions under which slightly different
solutions of an equation must approach the solution of the given equation is the stability
of functional equations. For the nonlinear Volterra integral equations of the type, we sug-
gest a Hyers-Ulam-Rassias stability research in the current work. For a given continuous
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function k and a fixed real number a, the integral equation

u(x) =

∫ x

a

k(x, s, u(s))ds, −∞ < a ≤ x < +∞, (2.1)

is called a Volterra integral equation of the second kind. We follow the fixed point argu-
ments used in [8] and prove the Hyers-Ulam-Rassias stability and the Hyers-Ulam stability
of the Volterra integral equation (2.1) for the case of compact domains.

Definition 2.1 (generalized metric space ) [3] Let X be a nonempty set. A function
d : X × X → [0,+∞] is called a generalized metric on X if and only if d satisfies the
following three propositions:

(P1) d(x, y) = 0 if and only if x = y.

(P2) d(x, y) = d(y, x) for all x, y ∈ X.
(P3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The Banach Fixed Point theorem will play an important role in proving our main stability
problem.

Theorem 2.1 [7] Let (X, d) be a generalized complete metric space and A : X → X a
strictly contractive operator with a Lipschitz constant L < 1. If there exists a nonnegative
integer k such that d

(
Ak+1x,Akx

)
<∞ for some x ∈ X, then the following propositions

hold true:

(A) the sequence (Anx)n∈N converges to a fixed point x∗ of A.

(B) x∗ is the unique fixed point of A in

X∗ =
{
y ∈ X | d

(
Akx, y

)
<∞

}
, (2.2)

(C) if y ∈ X∗, then

d (y, x∗) ≤ 1

1− L
d(Ay, y). (2.3)

2.1 The Hyers-Ulam-Rassias stability of the Volterra
integral equation

In this part, we will examine if the Volterra integral equation (2.1) accepts the stability
of Hyers-Ulam-Rassias. This is assembled put together in the ensuing theorem.
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Theorem 2.2 [8] Let C and L be positive constants with 0 < CL < 1 and assume that
k : [a, b]× [a, b]×C→ C is a continuous function which additionally satisfies the Lipschitz
condition

|k(x, s, u)− k(x, s, z)| =≤ L|u− z|, (2.4)

for any x, s ∈ [a, b] and all u, z ∈ C.∣∣∣∣u(x)−
∫ x

a

k(x, s, u(s))ds

∣∣∣∣ ≤ τ(x), (2.5)

for all x ∈ [a, b], and where s : [a, b]→ (0,∞) is a continuous function with∣∣∣∣∫ x

a

τ(s)ds

∣∣∣∣ ≤ Cτ(x), (2.6)

for each x ∈ [a, b], then there exists a unique continuous function u0 : [a, b]→ C such that

u0(x) =

∫ x

a

f (x, s, u0(s)) ds, (2.7)

|u(x)− u0(x)| ≤ 1

1− CL
τ(x), (2.8)

for all x ∈ [a, b].
Proof. We will consider the space of continuous functions

X = {g : [a, b]→ C | g is continuous }, (2.9)

endowed with the generalized metric on X defined by:

d(g, h) = inf{C ∈ [0,∞] | g(x)− h(x) |≤ Cu(x), for all x ∈ [a, b]}. (2.10)

It is evident that (X, d) is a complete generalized metric space introducing the A :

X → X is operator, which is given by:

(Ag)(x) =

∫ x

a

k(x, s, g(s))ds, (2.11)

for all g ∈ X and x ∈ [a, b]. Thus, due to the fact that k is a continuous function, it mean
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that Ag is also continuous and this ensures that A is a well defined operator. Indeed,

|(Ag)(x)− (Ag) (x0)| =
∣∣∣∣∫ x

a

k(x, s, g(s))ds−
∫ x0

a

k (x0, s, g(s)) ds

∣∣∣∣
= |

∫ x

a

k(x, s, g(s))−
∫ x

a

k (x0, s, g(s)) ds

+

∫ x

a

k (x0, s, g(s))−
∫ x0

a

k (x0, k, g(s)) ds |

≤
∣∣∣∣∫ x

a

k(x, s, g(s))−
∫ x

a

k (x0, s, g(s)) ds

∣∣∣∣
+

∣∣∣∣∫ x

a

k (x0, s, g(s))−
∫ x0

a

k (x0, s, k(s)) ds

∣∣∣∣
≤
∫ x

a

|k(x, s, g(s))− k (x0, s, g(s))| ds

+

∣∣∣∣∫ x

x0

k (x0, s, g(s)) dτ

∣∣∣∣ x→x0−→ 0.

We will now verify that A is strictly contractive on X. For any g, h ∈ X, let us consider
Cgh ∈ [0,∞] such that

|g(x)− h(x)| ≤ Cghτ(x), (2.12)

for any x ∈ [a, b]. Note that this is always possible due to the definition of (X, d). From
the definition of A and (2.1), (??) and (2.12), it follows

|(Ag)(x)− (Ah)(x)| =
∣∣∣∣∫ x

a

[k(x, s, g(s))− f(x, s, h(s))]ds

∣∣∣∣
≤
∣∣∣∣∫ x

a

∣∣∣∣ f(x, s, g(s))− k(x, s, h(s))|ds|

≤ L

∣∣∣∣∫ x

a

∣∣∣∣ g(s)− h(s)|ds|

≤ LCgh

∣∣∣∣∫ x

a

τ(s)ds

∣∣∣∣
≤ LCghCτ(x),

for all x ∈ [a, b]. Therefore, d(Ag,Ah) ≤ LCghC. This allows us to say that
dA(g, Ah) ≤ LCd(g, h) for any g, h ∈ X, and since CL ∈ (0, 1) the (strictly) contraction
property is verified. Let us take g0 ∈ X. From the continuous property of g0 and Ag0 it
means that there exists a constant C1 ∈ (0,∞) such that

d (Ag0, g0) <∞. (2.13)

As a result, we use the Banach Fixed Point theorem and determine that there is a
continuous function. u0 : [a, b]→ C such that

Ang0
n→∞−→ g0 in (X, d), (2.14)
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and Au0 = g0. It follows that X may be recast in the new form shown below for any g0

with the condition (2.13).

X = {g ∈ X | d (g0, g) <∞} . (2.15)

Therefore, once again the Banach Fixed Point theorem ensures that u0 is the unique
continuous function with the property (2.7).

Now, from (2.5) it follows that d(y, Ay) ≤ 1, and so the Banach Fixed Point Theorem
leads to

d (u, u0) ≤ 1

1− CL
d(Au, u) ≤ 1

1− CL
. (2.16)

Inequality (2.8) is produced as a result of the previous inequality and the extended metric
definition d.

2.2 Hyers-Ulam-Rassias stability of the Volterra inte-
gral equation in the infinite interval case

Theorem 2.3 [8] Let C and L be positive constants with 0 < CL < 1 and assume that
k : R × R × C → C is a continuous function which additionally satisfies the Lipschitz
condition (2.4), for any x, τ ∈ R and all y, z ∈ C.

If a continuous function u : R→ C satisfies (2.5), for all x ∈ R and for some δ ∈ R, where
u : R→ (0,∞) is a continuous function satisfying (2.6), for each x ∈ R, then there exists
a unique continuous function y0 : R → C which satisfies (2.7) and (2.8) for all x ∈ R.
Proof. Proof. First we will prove that u0 is a continuous function.

For any n ∈ N, let us define In = [δ − n, δ + n]. According to Theorem (2.2), there
exists a unique continuous function u0,n : In → C such that:

u0,n(x) =

∫ x

δ

k (x, s, u0,n(s)) ds, (2.17)

|u(x)− u0,n(x)| ≤ 1

1− CL
τ(x), (2.18)

for all x ∈ In. Because u0,n is unique, it implies that if x ∈ In, then

u0,n(x) = u0,n+1(x) = u0,n+2(x) = . . . (2.19)

For any x ∈ R, let us define ζ(x) ∈ N as

ζ(x) = min {n ∈ N | x ∈ In} . (2.20)

We also define the following function u0 : R→ C by

u0(x) = u0,ζ(x)(x), (2.21)
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and we can say that u0 is continuous. Indeed, for any x1 ∈ R, let ζ1 = n (x1). Then x1

belongs to the interior of Iζ1+1 and there exists an ε > 0 such that u0(x) = u0,ζ1+1(x) for
all x ∈ (x1 − ε, x1 + ε). By Theorem (2.2), u0,ζ1+1 is continuous at x1, so it is u0. We shall
now demonstrate that for any x ∈ R, u0 satisfies conditions (2.7) and (2.8). We have to
select ζ(x) for any x ∈ R. Once x is ∈ Iζ(x), it follows from (2.17) that

u0(x) = u0,ζ(x)(x) =

∫ x

δ

k
(
x, s, u0,ζ(x)(s)

)
ds =

∫ x

δ

k (x, s, u0(s)) ds, (2.22)

where the last equality is correct since every value of tau within Iζ(x) has ζ(s) ≤ ζ(x),
and it is evident from (2.19) that

u0(s) = u0,ζ(s)(s) = u0,ζ(x)(s), (2.23)

Additionally, (2.18) implies that for any x ∈ R

|u(x)− u0(x)| =
∣∣u(x)− u0,ζ(x)(x)

∣∣ ≤ 1

1− CL
τ(x). (2.24)

We shall demonstrate that u0 is unique in the end. Suppose that u1 is another contin-
uous function which satisfies (2.7) and (2.8), for all x ∈ R. Since the restrictions
u0|Iζ(x) = u0,ζ(x) and u1|Iζ(x) both satisfy (2.7) and (2.8) for all x ∈ Iζ(x), the uniqueness
of u0|Iζ(x) = u0,ζ(x) implies that

u0(x) = u0|Iζ(x) (x) = ζ1|Iζ(x) (x) = u1(x). (2.25)

2.3 The Hyers-Ulam stability of the Volterra integral
Equation

The Hyers-Ulam stability is attained for the Volterra integral equation under con-
sideration (in the finite interval case) in this final part by applying additional stricter
assumptions.

Theorem 2.4 [8] Let K = b − a and consider L>0 constant such that 0 < KL < 1.
Assume that : [a, b]× [a, b]×C→ C is a continuous function which satisfies the Lipschitz
condition

|k(x, s, u)− k(x, s, v)| ≤ L|u− v|, (2.26)

for any x, s ∈ [a, b] and u, v ∈ C. If a continuous function u : [a, b]→ C fulfills∣∣∣∣u(x)−
∫ x

a

k(x, s, u(s))ds

∣∣∣∣ ≤ W, (2.27)
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for each x ∈ [a, b] and some W ≥ 0, then there exists a unique continuous function
u0 : [a, b]→ C such that:

u0(x) =

∫ x

a

k (x, s, u0(s)) ds, (2.28)

|u(x)− u0(x)| ≤ W

1−KL
, (2.29)

for all x ∈ [a, b].
Proof. Let’s consider the space of continuous functions shown in (2.9) and given with
the generalized metric delineated by

d(f, g) = inf{C ∈ [0,∞]||f(x)− g(x) |≤ C, for all x ∈ [a, b]}. (2.30)

Introducing the A : X → X operator, which is given by:

(Af)(x) =

∫ x

a

k(x, s, f(s))ds, (2.31)

for all f ∈ X and x ∈ [a, b]. As we’ve shown before, Af is continuous for each continuous
function f . Proving that operator A is strictly contractive on X. For any f, g ∈ X, let
us consider Cf,g ∈ [0,∞] such that

|f(x)− g(x)| ≤ Cfg, (2.32)

in [a, b] forall x. It follows from the definition of A in clauses (2.26) and (2.28).

|(Ag)(x)− (Ah)(x)| =
∣∣∣∣∫ x

a

[k(x, s, f(s))− k(x, s, h(s))]ds

∣∣∣∣
≤
∣∣∣∣∫ x

a

|f(x, s, g(s))− f(x, s, h(s))

∣∣∣∣ ds
≤ L

∣∣∣∣∫ x

a

|g(s)− h(s)|ds
∣∣∣∣

≤ LCfgK.

(2.33)

For all x ∈ [a, b]. Hence, d(Ag,Ah) ≤ LCghK. This allows us to conclude that d(Ag,Ah) ≤
LKd(g, h) for any f, g ∈ X, since KL ∈ (0, 1) the (strict) contraction property is proven.
In a manner similar to that used in the demonstration of Theorem (2.2), we can select
f0 ∈ X using

d (Af0, f0) <∞. (2.34)

As a result, we are in a position to use the Banach Fixed Point Theorem to prove that
a continuous function u0 : [a, b]→ C

Anf0
n→∞−→ u0 in (X, d), (2.35)
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thus, Au0 = u0. It follows that X may be transform in the new form shown below for any
f0 with the condition (2.34).

X = {f ∈ X | d (f0, f) <∞} . (2.36)

As a result, the Banach Fixed Point Theorem once more assures that y0 is the only
continuous function with the condition ( 2.28). Additionally, Theorem (2.1)’s third propo-
sition results in

|y(x)− y0(x)| ≤ θ

1−KL
, (2.37)

for all x ∈ [a, b].
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CHAPTER 3

ULAM −HYERS AND ULAM − HYERS − RASSIAS
STABILITY OF VOLTERRA INTEGRO − DIFFERENTIAL

EQUATION

intoduction

In this chapter we are going to study Ulam-Hyers and Ulam-Hyers-Rassias stability of
the equation given at the bottom which was posed by Pachpat [4], using the Banach fixed
point theorem and the Lipchtiez condition with constant Lipchtiz and variant Lipchtiz
condition. Let the integro-differential equation given by:

u(x) = f(x) +

∫ x

0

k (x, s, u(s), u′(s)) ds, (3.1)

for all x, s ∈ I = [0, 1], where u, fandk are n-dimensional real vectors, with the derivative
denoted by the symbol’. Let R represent the set of real numbers and Rn represent the
n-dimensional Euclidean space with the appropriate norm indicated by |.|. Let
I = [0, 1] be the given subset of R. The functions f(x) and k(x, s, u(s), u′(s)) are contin-
uous and are continuIusly differentiable with respect to x.

A continuous function u(x) for x ∈ R that is continuously differentiable with respect
to x and satisfies the related equation (3.1) is known as a solution of equation (3.1).
We denote |u(x)|1 = |u(x)| + |u′(x)| for every continuous function u(x) in Rn with its
continuous first derivative u′(x) for all x ∈ I. Let C1(Rn) be the set of continuous
functions u(x) in C1(Rn) and it is continuous first derivative u′(x) in C1(Rn) that satisfy
this condition

‖u(x)‖1 = sup
x∈I
|u(x)|1. (3.2)
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3.1 Hyers-Ulam stability of Volterra integro− differen-
tial equations

We prove the Hyers-Ulam stability of the nonlinear Volterra intego-differential equation
(3.1), in this section under many realistic circumstances. The following is the first main
result we have:

Theorem 3.1 (The alternative of fixed point) [7] Suppose we are given a complete gener-
alized metric space (X, d) and a strictly contractive mapping : X → X, with the Lipschitz
constant L. Then, for each given point
(i) d (Anx,An+1x) <∞ for all natural number n ≥ k0.

(ii) The sequence {Anx} converges to a fixed point y∗ of A.
(iii) y∗ is the unique fixed point of A in the set

Y =
{
y ∈ X : d

(
Ak0x, y

)
<∞

}
. (3.3)

(iv) If y ∈ Y , then

d (y, y∗) ≤
1

1− L
d(Ay, y). (3.4)

Theorem 3.2 Let set I := [0, 1]. Let X = C1(Rn), it’s clear that X is Banach space
over the (real or complex) . Let L = 2max(γ1, γ2) + max(β1, β2) be a positive constant
with 0 < L < 1. Assume that k : I × I × R × R → X is a continuous function which
fulfills the next Lipschitz condition.

Assume that the function k in equation (3.1) and its derivative with respect to x satisfy
this conditions, such that for any x, s ∈ [0, 1] and u, v ∈X, we have

|k (x, s, u(s), u′(s))− k (x, s, v(s), v′(s)) |,
≤ γ1|u(x)− v(x)|+ γ2|u′(x)− v′(x)|

(3.5)

and
| ∂
∂x
k (x, s, u(s), u′(s))− ∂

∂x
k (x, s, v(s), v′(s)) |

≤ β1|u(x)− v(x)|+ β2|u′(x)− v′(x)|.
(3.6)

Suppose that a continuous function v : I ∈ C1 satisfies

‖v(x)− f(x)−
∫ x

0

k(x, s, u(x), u′(x))ds‖1 ≤ τ, ∀x ∈ I, (3.7)

for some positive number τ . Then a unique continuous function u0 : I ∈ C1 exists such
that
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u0(x) = f(x) +

∫ x

0

k (x, s, u0(s), u′0(s)) ds, ∀x ∈ I, (3.8)

(As a result, u0 is a solution to the equation (3.1)) and

‖v(x)− u0(t)‖1 ≤
τ

1− L
, (3.9)

for all x ∈ [0, 1].

Proof. Let X be the set of all continuous functions from I to X. For v, u ∈ C1, we set

d1(v, u) = inf{τ ∈ [0,∞] : |v(x)− u(x)|1 ≤ τ, ∀x ∈ I}. (3.10)

That much is clear to observe (C1(Rn), d1) is a complete generalized metric space.

Now, consider the operator A : x→ x defined by

Au(x) = f(x) +

∫ x

0

k(x, s, u(s), u′(s))ds, ∀x ∈ I. (3.11)

We prove that A is strictly contractive on the space X. Let v, u ∈∈ C1 and let
C(v, u) ∈ [0,∞] be an arbitrary constant such that d1(v, u) ≤ C(v, u).
Then, by (3.11), we have

Let u(x) ∈ X and define the operator A given by

Au = f(x) +

∫ x

0

k (x, s, u(s), u′(s)) ds. (3.12)

Differentiating both sides of (3.6) with respect to x we get

A′u(x) = f(x) + k((x, x, u(x), u′(x)) +

∫ x

0

∂

∂x
k (x, s, u(s), u′(s)) ds. (3.13)

Now, we verify that the operator A is a contraction map. Let u(x), v(x) ∈ X. from
(3.6) and (3.13) and using the hypotheses we have for any x ∈ I, we verify that the
operator A is a contraction map. Let u(x), v(x) ∈ X. From (3.6) and (3.13) and using
the hypotheses we have
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|Au(x)− Av(x)| = |f(x) +

∫ x

0

k (x, s, u(s), u′(s)) ds− f(x)−
∫ x

0

k (x, s, v(s), v′(s)) ds|

= |
∫ x

0

k (x, s, u(s), u′(s)) ds−
∫ x

0

k(x, s, v(s), v′(s))ds|

≤
∫ x

0

|k (x, s, u(s), u′(s))− k(x, s, v(s), v′(s))|ds

≤
∫ x

0

γ1|u(s)− v(s)|+ γ2|u′(s)− v′(s)|ds

≤
∫ x

0

max(γ1 + γ2)|u(s)− v(s)|1ds

≤ max(γ1 + γ2)‖u(x)− v(x)‖1 (i)

and

|A′u(x)− A′v(x)| = |f(x) + k(x, x, u(x), u′(x)) +

∫ x

0

∂

∂x
k (x, s, u(s), u′(s)) ds− f(x)

− k((x, x, v(x), v′(x))−
∫ x

0

∂

∂x
k (x, s, v(s), v′(s)) ds|

= |k((x, x, u(x), u′(x)) +

∫ x

0

∂

∂x
k (x, s, u(s), u′(s)) ds− k((x, x, v(x), v′(x))

−
∫ x

0

∂

∂x
k (x, s, v(s), v′(s)) ds|

≤ |k((x, x, u(x), u′(x))− k((x, x, v(x), v′(x))|+
∫ x

0

| ∂
∂x
k (x, s, u(s), u′(s))

− ∂

∂x
k (x, s, v(s), v′(s)) |ds

≤ γ1|u(x)− v(x)|+ γ2|u′(x)− v′(x)|+
∫ x

0

β1|u(x)− v(x)|

+ β2|u′(x)− v′(x)|ds

≤ max(γ1 + γ2)|u(x)− v(x)|1 +

∫ x

0

max(β1 + β2)|u(x)− v(x)|1ds

≤ max(γ1 + γ2)‖u(x)− v(x)‖1 + max(β1 + β2)‖u(x)− v(x)‖1ds

From (i) and(ii) we have

‖Au(x)− Av(x)‖1 ≤ [2max(γ1, γ2) +max(β1, β2)]‖u(x)− v(x)‖1,

we suppose that [2max(γ1, γ2) + max(β1, β2)] < 1. As a result, the Banach Fixed Point
Theorem once more assures that ther existe one and only solution u0(x) ∈ X .
Let u be any arbitrary element in C1(Rn). By continuity of the mappings v, u and A , τ
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on the compact set I, there exists a constant τ ∈ R∗ such that

‖Au(x)− u(x)‖1 = ‖f(x) +

∫ x

0

k(x, s, u(s), u′(s))ds− u(x)‖1 ≤ τ, (3.14)

for all x ∈ I.
We conclude that

d1(u,Au) < +∞, ∀u ∈ X. (3.15)

Let v0 ∈ X be given, then by virtue Banach fixed point, there exists a continuous
function u0 in X such that Au0 = u0, that is u0 is a solution to the equation (3.1).

We observe that d is actually a metric. Therefore, u0 : I → X is the unique continuous
function such that

u0(x) = f(x) +

∫ x

0

k (x, s, u0(s), u′0(s)) s, ∀x ∈ I. (3.16)

By assumption (3.14), we deduce that d1(v, Av) ≤ τ , thus by virtue of (iv) of Theorem
(3.1) , we get the following estimate

d1 (v, u0) ≤ τ

1− L
, (3.17)

which implies that

‖v(x)− u0(x)‖1 ≤
τ

1− L
. (3.18)

Also, by (ii) of Theorem (3.1), the sequence of iterates {Anv} converges to u0 in the
metric space (X, d1). The proof is finished.

3.2 Hyers-Ulam-Rassias stability of Volterra integro−
differential equations

Theorem 3.3 Let set I := [0, 1]. Let X be a Banach space over the (real or complex).
Let L be positive constants with 0 < δL < 1. Let τ : I → (0,∞) be a continuous function
such that ∫ x

0

τ(s)ds ≤ δτ(x), ∀x ∈ [0, 1]. (3.19)

Assume that k : I × I ×R×R→ X is continuous and it is continuously differentiable
with respect to x which satisfies Lipschitz condition in theorem (3.2). Suppose that a
continuous function v(x) for x ∈ R that is continuously differentiable with respect to x,
satisfies:
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‖v(x)− f(x)−
∫ x

0

k(x, s, v(s), v′(s))ds‖1 ≤ τ(x), ∀x ∈ I. (3.20)

Then a unique continuous function u0 : I → X that is continuously differentiable with
respect to x exists such that

u0(x) = f(x) +

∫ x

0

k (x, s, u0(s), u′0(s)) ds, ∀x ∈ I, (3.21)

consequently, u0 is a solution to the equation (3.1) and

‖v(x)− u0(x)‖1 ≤
1

1− δL
τ(x), (3.22)

for all x ∈ [0, 1].

Proof. We consider the set X = C1(Rn) of all continuous functions from I to X. For
v, u ∈ X, we set

d1(v, u) := inf{δ ∈ [0,∞] : |v(x)− u(x)|1 ≤ δτ(x),∀x ∈ I}, (3.23)

the generalized metric space (C1(Rn), d1) is easily observable. Also, it is clear that
(C1(Rn), d1) is complete.

Now, we define the operator A : X → X

(Av)(x) = (x) +

∫ x

0

k(x, s, v(x), v′(x))ds, ∀x ∈ I. (3.24)

We prove that A is strictly contractive on the space X. Let v, u ∈ X and let

δ(v, u) ∈ [0,∞] be an aribitrary constant such that d1(v, u) ≤ δ(v, u). Then, by(3.23), we
have

‖v(x)− u(x)‖1 ≤ δ(v, u)τ(x),∀x ∈ I. (3.25)

For any x ∈ I, we have Now, we verify that the operator A is a contraction map. Let
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u(x), v(x) ∈ X.From (3.6) and (3.13) and using the hypotheses we have

|Au(x)− Av(x)| = |f(x) +

∫ x

0

k (x, s, u(s), u′(s)) ds− f(x)−
∫ x

0

k (x, s, v(s), v′(s)) ds|

= |
∫ x

0

k (x, s, u(s), u′(s)) ds−
∫ x

0

k(x, s, v(s), v′(s))ds|

≤
∫ x

0

|k (x, s, u(s), u′(s))− k(x, s, v(s), v′(s))|ds

≤
∫ x

0

γ1|u(s)− v(s)|+ γ2|u′(s)− v′(s)|ds

≤
∫ x

0

max(γ1 + γ2)|u(s)− v(s)|1ds

≤ max(γ1 + γ2)‖u(x)− v(x)‖1 (i)

and

|A′u(x)− A′v(x)| = |f(x) + k(x, x, u(x), u′(x)) +

∫ x

0

∂

∂x
k (x, s, u(s), u′(s)) ds− f(x)

− k((x, x, v(x), v′(x))−
∫ x

0

∂

∂x
k (x, s, v(s), v′(s)) ds|

= |k((x, x, u(x), u′(x)) +

∫ x

0

∂

∂x
k (x, s, u(s), u′(s)) ds− k((x, x, v(x), v′(x))

−
∫ x

0

∂

∂x
k (x, s, v(s), v′(s)) ds|

≤ |k((x, x, u(x), u′(x))− k((x, x, v(x), v′(x))|+
∫ x

0

| ∂
∂x
k (x, s, u(s), u′(s))

− ∂

∂x
k (x, s, v(s), v′(s)) |ds

≤ γ1|u(x)− v(x)|+ γ2|u′(x)− v′(x)|+
∫ x

0

β1|u(x)− v(x)|

+ β2|u′(x)− v′(x)|ds

≤ max(γ1 + γ2)|u(x)− v(x)|1 +

∫ x

0

max(β1 + β2)|u(x)− v(x)|1ds

≤ max(γ1 + γ2)‖u(x)− v(x)‖1 + max(β1 + β2)‖u(x)− v(x)‖1ds,

from (i) and (ii) we have

|Au(x)− Av(x)|1 ≤ [2max(γ1, γ2) +max(β1, β2)]‖u(x)− v(x)‖1

≤ [2max(γ1, γ2) +max(β1, β2)]δ(v, u)τ(x).

We suppose that [2max(γ1, γ2)+max(β1, β2)] < 1. As a result, the Banach Fixed Point
Theorem once more assures that ther existe one and only solution u(x)0 ∈ X .
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for all x ∈ I and L = [2max(γ1, γ2) +max(β1, β2)]. Hence we have
d1(Av,Au) ≤ Lτ(x)(v, u). We conclude that

d1(Av,Au) ≤ δLd1(v, u), ∀v, u ∈ C1(Rn). (3.26)

Let u be any arbitrary element in C1(Rn). Since τ(I) ⊂ (0,+∞), then by continuity of
the mappings v, u, Au and τ on the compact set I, there exists a finite constant δ ∈ (0,∞)

such that

‖Au(x)− u(x)‖1 = ‖f(x) +

∫ x

0

k(x, s, u(s), u′(x))ds− u(x)‖1 ≤ δτ(x), (3.27)

for all x ∈ I.
We deduce that d1(u,Au) < +∞, ∀u ∈ X. Let u0 ∈ X be given, then by virtue of

Theorem (3.1), there exists a continuous function v0 in C1(Rn) such that the sequence
{Anv0} converges to u0 and Au0 = u0, that is u0 is a solution to the equation (3.1).

Since min{τ(x) : x ∈ I} > 0, then d1 is actually a metric. Therefore, u0 : I → X is
the unique continuous function such that

u0(x) = f(x) +

∫ x

0

k (x, s, u0(s), u′0(s)) ds, ∀x ∈ I. (3.28)

By assumption (3.20), we know that d1(u,Au) ≤ 1, thus by virtue of (iv) of Theorem
(3.1), we get the following estimate

d1 (v, u0) ≤ 1

1− δL
τ(x),

which implies that

‖v(x)− u0(x)‖1 ≤
1

1− δL
τ(x). (3.29)

3.3 Ulam-Hyers stability and Ulam-Hyers-Rassias sta-
bility with variant Lipchtiz conditions

In this section we are going to study the Ulam-Hyers stability and the Ulam-Hyers-
Rassias stability with variant Lipchtiz conditions, how was treated in B. G Pachpatte’s
paper [4] to study the existence, uniqueness and the continuity of Fredholm equation

38



3.3.1 Existence and uniqueness with variant Lipchtiz conditions

Theorem 3.4 Consider that:
(i) the function k in equation (3.1) and its derivative with respect to x achieve the condi-

tions
|f(x, s, u, v)− f(x, s, u1, v1)| ≤ h1(x, s)[|u− u1|+ |v − v1|]∣∣∣∣ ∂∂xf(x, s, u, v)− ∂

∂x
f(x, s, u1, v1)

∣∣∣∣ ≤ h2(x, s)[|u− u1|+ |v − v1|]
(3.30)

where for i = 1, 2 and a ≤ s ≤ x <∞, hi(x, s) ∈ C (I2).

(ii)Non-negative constants exist: a1, a2 such that a1 + a2 < 1 and∫ x

a

h1(x, s)ds ≤ a1 (3.31)

h1(x, x) +

∫ x

a

h2(x, s)ds ≤ a2, (3.32)

for x ∈ I.
(iii) there exist nonnegative constants U1, U2 such that

|f(x)|+
∫ x

α

|f(x, s, 0, 0)|ds ≤ U1, (3.33)

|f ′(x)|+ |f(x, s, 0, 0)|+
∫ x

α

∣∣∣∣ ∂∂xk(x, s, 0, 0)

∣∣∣∣ ds ≤ U2, (3.34)

where f, k are defined in equation (3.1). Then equation (3.1) has a unique solution u(x)

in X.

Proof. Let u(x) ∈ X and define the operator

(Au)(x) = f(x) +

∫ x

α

k (x, s, u(s), u′(s)) ds, (3.35)

differentiating both sides of (3.35) with respect to x we get

(Au)′(x) = f ′(x) + k (x, x, u(x), u′(x)) +

∫ x

α

∂

∂x
k (x, s, u(s), u′(s)) ds. (3.36)

Now, we show that Au maps X into itself. Evidently, (Au), (Au)′ are continuous on I
and (Au), (Au)′ ∈ X. We verify that (3.1) is fulfilled. From (3.35), (3.36) and using the
hypotheses and (3.35) we have:

|(Au)(x)| ≤ |f(x)|+
∫ x

α

|k (x, s, x(s), u′(s))− k(x, s, 0, 0) + fk(x, s, 0, 0)| ds

≤|f(x)|+
∫ x

α

|k(x, s, 0, 0)|ds+

∫ x

α

h1(x, s)|u(s)|1ds

≤U1 + ‖u‖1

∫ x

α

h1(x, s)ds

≤[U1 + a1]

(3.37)
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and

|(Au)′(x)| ≤ |f ′(u)|+ |k (x, x, u(x), u′(x))− k(x, x, 0, 0) + k(x, x, 0, 0)|

+

∫ x

α

∣∣∣∣ ∂∂xk (x, s, u(s), u′(s))− ∂

∂x
u(x, s, 0, 0) +

∂

∂x
k(x, s, 0, 0)

∣∣∣∣ ds
≤ |f ′(x)|+ |k(x, x, 0, 0)|+

∫ x

α

∣∣∣∣ ∂∂xk(x, s, 0, 0)

∣∣∣∣ ds+ h1(x, x)‖u(x)‖1

+

∫ x

α

h2(x, s)|u(s)|1ds

≤U2 + ‖u‖1h1(x, x) + ‖u‖1

∫ x

α

h2(x, s)ds

≤[U2 + a2] .

(3.38)

From (3.37) and (3.38) we get

‖(A)(x)‖1 ≤ [U1 + U2 + (a1 + a2)] . (3.39)

From (3.39) it follows that Au ∈ X. This proves that A maps X into itself.

Now, we verify that the operator A is a contraction map. Let u(x), v(x) ∈ X. From
(3.35) and (3.36) and using the hypotheses we have

‖(Au)(x)− (Av)(x)‖1 ≤
∫ x

α

|k (x, s, u(s), u′(s))− k (x, s, v(s), v′(s))| ds

≤
∫ x

α

h1(x, s)|u(s)− v(s)|1ds

≤ ‖u− v‖1

∫ x

α

h1(x, s)ds

≤ ‖u− v‖1a1

(3.40)

and

|(Au)′(x)− (Av)′(x)| ≤ |k (x, x, u(x), u′(x))− f (x, x, v(x), v′(x))|

+

∫ x

α

∣∣∣∣ ∂∂xk (x, s, x(s), x′(s))− ∂

∂x
k (x, s, v(s), v′(s))

∣∣∣∣ ds
≤ h1(x, x)|u(x)− v(x)|1 +

∫ x

α

h2(x, s)|u(s)− v(s)|1ds

≤ ‖u− v‖1h1(x, x) + ‖u− v‖1

∫ x

α

h2(x, s)ds

≤ ‖u− v‖1a2.

(3.41)

From (3.40) and (3.41) we get

‖(Au)(x)− (Av)(x)‖1 ≤ ‖x− y‖1 (a1 + a2) . (3.42)
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From (3.42) we obtain

‖Au− Av‖1 ≤ (a1 + a2) ‖x− y‖1. (3.43)

Since a1 + a2 < 1, it follows from Banach fixed point theorem that A has a unique
solution u0 in X. The fixed point of A is however a solution of equation (3.1). The proof
is complete([4]).

3.3.2 Hyers−Ulam−stability with variant Lipchtiz conditions

Theorem 3.5 Let set I := [0, 1]. Let X = C1(Rn), it’s clear that R is Banach space over
the (real or complex). Let M = (a1 + a2) be a positive constant with 0 < M < 1. Assume
that k : I × I ×R×R→ R is continuous and are continuously differentiable with respect
to x, which fulfills the varinat Lipschitz condition mentioned in (3.30).
Suppose that a continuous function v : I → X, that satisfies

‖v(x)− f(x)−
∫ x

0

k(x, s, u(x), u′(x))ds‖1 ≤ Ψ, ∀x ∈ I, (3.44)

for some positive number Ψ. Then a unique continuous function u0 : I → X exists such
that

u0(x) = f(x) +

∫ x

0

k (x, s, u0(s), u′0(s)) ds, ∀x ∈ I, (3.45)

(As a result, u0 is a solution to the equation (3.1)) and

‖v(x)− u0(x)‖1 ≤
Ψ

1−M
, (3.46)

for all x ∈ [0, 1].

Proof. Let X represent the set of all continuous real-valued functions on I initially.
Moreover, we construct a generalized metric on X by:

d1(v, u) = inf{ζ ∈ [0,∞] : |v(x)− u(x)|1 ≤ ζΨ, ∀x ∈ I}. (3.47)

It is clear to see that (X, d1) is a complete generalized metric space now, we define the
operator A : X → X by

Au(x) = f(x) +

∫ x

0

k(x, s, u(s), u′(s))ds, ∀x ∈ I, (3.48)

for all u ∈ X.

Now, should we prove the cntraction of the operator A how was proved before in the-
orem(3.4) by Pachpat (in[4]).
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We conclude that

d1(Av,Au) ≤MζΨ(v, u) ∀ u, v ∈ X. (3.49)

For all u ∈ X. Let v0 be any arbitrary element in X.

‖Av0 − v0‖1 = ‖f(x) +

∫ x

0

k(x, s, v(s), v′(s))ds− v0‖1 ≤ Ψ. (3.50)

Thus, (3.50) implies that d(Av0, v0) ≤ ∞. Consequently, theorem (3.1) (i) implies that a
continuous function u0 exists. Such that Anv0 → u0 in (X, d1) as n→∞, and such that
Au0 = u0, that is, u0 satisfies equation (3.45) for all x ∈ I. We conclude that u0 given by
(3.45), is the unique continuous function from theorem (3.1) (ii).

Lastly, theorem (3.1) (iii) and (3.49) imply that

d1(u− u0) ≤ Ψ

1−M
, (3.51)

which implies that

‖v(x)− u0(x)‖1 ≤
1

1−M
Ψ. (3.52)

the inequality (3.6) holds true for all x ∈ I this case.

3.3.3 Ulam−Hyers−Rassias stability with variant Lipchtiz condi-
tions

This section will demonstrate the Hyers-Ulam-Rassias stability of the nonlinear Volterra
integro-differential equation given in our thesis with variant Lipchtiz condition.

Theorem 3.6 Let set I := [0, 1]. Let X = C1(Rn), it’s clear that X is Banach space over
the (real or complex) . LetM = (a1+a2) be a positive constant with 0 < ζM < 1. Assume
that k : I × I × R × R → R is a continuous function witch is continuously differentiable
with respect to x , which fulfills the varinat Lipschitz condition mentioned in (3.30).
Suppose that a continuous function v : I → X satisfies

‖v(x)− f(x)−
∫ x

0

k(x, s, u(x), u′(x))ds‖1 ≤ Ψ(x), ∀x ∈ I, (3.53)

for a continuous function Ψ(x), where Ψ : I → X is a continuous function with∫ x

0

Ψ(s)ds ≤ ζΨ(x), ∀x ∈ [0, 1]. (3.54)

For each x ∈ I, then there exists a unique continuous function u0 : I → x such that

u0(x) = f(x) +

∫ x

0

k (x, s, u0(s), u′0(s)) ds, ∀x ∈ I. (3.55)
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Proof. Let X denote the set of functions once derivable I. For u, v ∈ X we set

d1(v, u) = inf {ζ) ∈ [0,∞[: v(x)− u(x)|1 ≤ ζΨ(x), ∀x ∈ I} . (3.56)

It is clear that (X, d1) represents a complete generalized metric space.

Now, consider the operator A : X → X defined by

Au(x) = f(x) +

∫ x

0

k(x, s, u(s), u′(s))ds, ∀x ∈ I, (3.57)

for all u ∈ X.

We have from [4] that the operator A is strictly contractive on X.
that is, d1(Av,Au) ≤ ζMΨ(x)(u, v). Hence, we can conclude that d1(Au,Av) ≤ ζMd1(u, v)

for any u, v ∈ X, where we note that 0 < ζM < 1. It follows from (3.55) that for arbitrary
v0 ∈ X, there exists a continuous function Ψ(x) with

‖v(x)− f(x)−
∫ x

0

k(x, s, v0(x), v′0(x))ds‖1 ≤ Ψ(x), ∀x ∈ I, (3.58)

Thus, (3.56) implies that
d1(Av, u0) ≤ ∞. (3.59)

As a result, Theorem (3.1)(i) states that, there exists a continuous function u0 : I → X

such that Anv0 → u0 in (X, d1) and Au0 = u0, that is, u0 satisfies equation (3.55) for
every x ∈ I. From Theorem 3.1 (ii), we deduce that u0, given by (3.55), is the unique

continuous function. From (3.56), we have

d1 (v, u0) ≤ 1

1− ζM
Ψ(x),

which implies that

‖v(x)− u0(x)‖1 ≤
1

1− ζM
Ψ(x). (3.60)

We have investigated at the Hyers-Ulam-Rassias stability of the Volterra integro-differential

equation (3.1), which is based on Theorem 3.6.
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