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ABSTRACT OF THE THESIS

First Order Linear Equations On Time Scales
by

Farai Nechikwira.
Master of Science in Mathematical Analysis

University of Boumerdes, 2023

Unification and extension of the concepts of difference calculus with that of
differential calculus led to the development of time scale calculus, by which we can
recover, as special cases the former and the latter concepts, plus more. We consider
First Order Linear Dynamic Equations (F.O.L.D.Es) on an arbitrary time scale. These
F.O.L.D.Es have as special cases the ordinary differential equations, difference
equations and many others e.g q-difference equations. We begin by taking a step back
and explain what a time scale is, covering the main theorems and special properties of
functions on a time scale. We then introduce the exponential function for a time scale
including its properties, and use these properties to derive solutions for F.O.L.D.Es
with constant coefficients. Several examples and applications, among them an insect
population model, and the logistics equation are considered.
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INTRODUCTION

Mathematicians are interested generalizing seemingly different mathematical

concepts into a unifying framework. Hence it is not unexpected that, after noticing a

lot of well-known multiple analogies in the concepts of difference calculus with the

difference operator

(∆hf)(t) =
f(t+ h)− f(t)

h

on one hand and the differential calculus with the differential operator

(
d

dt
f)(t) = lim

h→0

f(t+ h)− f(t)

h

on the other hand, mathematicians developed a higher ranging calculus called time

scale calculus or measure chains. The theory of time scales was introduced by Stefan

Hilger in his PhD thesis [2] in 1988 (supervised by Bernd Aulbach) inorder to unify

continuous and discrete calculus. Since then the work has received a lot of attention

from researchers and now it not only unifies the continuous with the discrete, but also

extends them both, for example in modeling hybrid systems (for example a bouncing

ball) that are a combination of both discrete and continuous calculus.

In this thesis, we focus on solving First Order Linear Dynamic Equations that

we abbreviate (F.O.L.D.Es) on time scales. To do this we first develop the necessary

background which means defining what a time scale is, its fundamental theorems and

an extensive treatment of examples that apply these theorems. After setting the ground

we dive into F.O.L.D.Es and prove results that work for an arbitrary time scale. Here

we see the main advantage of time scale calculus in play– it allows us to prove results

for dynamic equations once, instead of proving for the discrete and continuous cases

separately. To summarize, the goal is to establish a result for a dynamic equation in

which the domain of the unknown function is a time scale, which is an any

nonempty closed subset of the reals. By making the time scale a set of real

numbers, the general result offers a result for an ordinary differential equation, as

studied in a first differential equations course. Choosing the time scale to be the set of

integers, on the other hand, obtains the same basic result for difference equations.

However, because there are many more time scales than just the set of real numbers or

the set of integers, the result is far more broad.

We have set up the thesis as follows: In Chapter 1 the time scale calculus is

introduced covering the main definitions and theorems. Chapter 1 comprises of 7
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sections as seen in the table of contents. We begin by defining a time scale T as an

arbitrary nonempty closed subset of the real numbers. In order to rigorously describe

the distribution of points on time scales we define the forward jump σ(t) and the

backward jump ρ(t) that define the ‘closest’ point to the right and left respectively on a

time scale. For functions f : T → R we introduce the so-called Hilger derivative on an

arbitrary time scale. Fundamental results on Hilger derivatives are presented e.g. the

product rule and the quotient rule. To demonstrate these theorems in action, we treat

important examples of time scales in section 1.3. Such examples contain of course R
(which gives rise to differential equations), the set of all integer multiples of a number

h > 0 (hZ) and the set of Harmonic numbers Hk. Other examples include the quantum

numbers which are integer powers of a number q > 1, including 0. These give rise to

quantum calculus or q-difference equations see, e.g., [9].

In section 1.4 we introduce an integral on a time scale and treat results

concerning integrability as they are needed in Chapter 2 in order to solve F.O.L.D.Es.

As expected we treat interesting examples for example an integral on disjoint intervals

that reveals that time scales can extend continuous calculus to more sophisticated sets.

In section 1.5 we derives analogues of the chain rule on a time scale, where we

realize that the ordinary chain rule from calculus does not apply. We end the chapter

by presenting Taylor’s formula and L’Hôpital’s Rule, the former being helpful in the

study of boundary value problems.

In Chapter 2 we consider F.O.L.D.Es. In order to solve a F.O.L.D.E, we

introduce the Hilger complex plane which generalizes the common complex plane.

allows us to define the so-called cylinder transformation. The cylinder transformation

plays a crucial role since it is used to define the exponential function on time scales. It

turns out that this exponential function indeed verifies an initial value problem

involving a F.O.L.D.E. The natural thing is to extensively study this exponential

function hence we prove its interesting properties and use them to solve all initial value

problems involving first order linear dynamic equations. We cover both homogeneous

and non-homogeneous F.O.L.D.Es, and we employ a time scale equivalent of the

variation of constants technique.

We finish the chapter by applying the theory to real life applications, mainly

using the theory to solve the time scale version of the popular logistic growth equation

y′ = ry
(
1− y

K

)
.
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CHAPTER 1

Time scales essentials

1.1 Basic Definitions

Before delving deep into solving first order linear equations on time scales, we

need to know what a time scale is, including some basic properties of functions on

them. As a result, we begin this chapter by giving the basic definitions that will be

used in this work, and we consider the main theorems that will be used.

Definition 1.1. A time scale is an arbitrary nonempty closed subset of the real

numbers.

Thus R, Z, N, N0, i.e., the real numbers, the integers, the natural numbers, and

the nonnegative integers are examples of time scales, as are

[0, 1] ∪ [2, 3], [0, 1] ∪ N, and the Cantor set,

while

Q, R\Q, C, (0, 1),

i.e, the rational numbers, the irrational numbers, the complex numbers, and the open

interval between 0 and 1 are not time scales. Throughout this thesis, we will denote a

time scale by the symbol T. We assume throughout that a time scale T has the

topology that it inherits from the real numbers with the standard topology.

The calculus of time scales was initiated by Stefan Hilger [2] in order to create a

theory that can unify discrete and continuous analysis. Indeed, we will introduce the

delta (Hilger) derivative f∆ for a function f defined on T, and it turns out that

(i) f∆ = f ′ is the usual derivative if T = R.

(ii) f∆ = ∆f is the usual forward difference operator if T = Z.

In this section we introduce the basic notions connected to time scales and

differentiability of functions on them. However, the general theory is of course

applicable to many more time scales T, and we will treat some examples of such time

scales in Section 1.3. So let us start by defining the forward and backward jump

operators.
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The forward jump and backward jump operators represent the closest point in

the time scale on the right and left of a given point t, respectively. Formally:

Definition 1.2. Let T be a time scale. For t ∈ T we define the forward jump operator

σ : T → T by

σ(t) := inf{s ∈ T : s > t},

while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.

In this definition we put inf ∅ = supT (i.e., σ(t) = t if T has a maximum t) and

sup ∅ = inf T (i.e., ρ(t) = t if T has a minimum t), where ∅ denotes the empty set. If

σ(t) > t we say that t is right-scattered, while if ρ(t) < t we say that t is left-scattered.

Points that are right-scattered and left-scattered at the same time

Table 1.1. Classification of points.
t right-scattered t < σ(t)
t right-dense t = σ(t)
t left-scattered ρ(t) < t
t left-dense ρ(t) = t
t isolated ρ(t) < t < σ(t)
t dense ρ(t) = t = σ(t)

Figure 1.1. Classification of points

are called isolated. Also, if t < supT and σ(t) = t, then t is called right-dense,

and if t > inf T and ρ(t) = t, then t is called left-dense. Points that are right-dense and

left-dense at the same time are called dense. Finally, the forward graininess function

µ : T → [0,∞) is defined by

µ(t) := σ(t)− t.

See Table 1.1 for a classification of points in T. As illustrated by Figure 1.1 (a

schematic classification of points in T):

� Point t1 is dense
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� Point t2 is left-dense and right-scattered

� Point t3 is isolated

� Point t4 is left-scattered and right-dense

Note that in the definition above both σ(t) and ρ(t) are in T when t ∈ T. This is
because of our assumption that T is a closed subset of R. We also need below the set

Tκ which is derived from the time scale T as follows: If T has a left-scattered maximum

m, then Tκ = T− {m}. Otherwise, Tκ = T. In summary

Tκ =

T\(ρ(supT), supT] if supT < ∞

T if supT = ∞.

Similarly if T has a right-scattered minimum m, then we can define

Tκ = T− {m}, otherwise Tκ = T.
Finally, if f : T → R is a function, then we defined the function fσ : T → R by

fσ(t) = f(σ(t)) for all t ∈ T,

i.e., fσ = f ◦ σ.
Example 1.3. Let us briefly consider the two examples T = R and T = Z.

(i) If T = R, then we have for any t ∈ R

σ(t) = inf{s ∈ R : s > t} = inf(t,∞) = t

and

ρ(t) = sup{s ∈ R : s < t} = sup(−∞, t) = t

. Hence every point t ∈ R is dense. The graininess function µ turns out to be

µ(t) ≡ 0 for all t ∈ T.

(ii) If T = Z, then we have for any t ∈ Z

σ(t) = inf{s ∈ Z : s > t} = inf{t+ 1, t+ 2, t+ 3, · · · } = t+ 1

and similarly ρ(t) = t− 1. Hence every point t ∈ Z is isolated. The graininess

function µ in this case is

µ(t) ≡ 1 for all t ∈ T.
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For the two cases discussed above, the graininess function is a constant function.

Of course, for the case of a general time scale, the graininess function might very

well be a function of t ∈ T, as can be seen in a few examples treated below.

Example 1.4. For each of the following time scales T, find σ, ρ and µ, and classify

each point t ∈ T as left-dense, left-scattered, right-dense or right-scattered:

(i) T = {2n : n ∈ Z} ∪ {0};

(ii) T = { 3
√
n : n ∈ N0}

Solution

(i) The set T = {2n : n ∈ Z} ∪ {0} contains the following elements: all multiples of 2,

fractions of the form 1
2n

for negative integers and 0. It can be easily seen that the

forward jump σ(2n) = 2n+1 e.g σ(22) = 22+1 = 8, while the backward jump

ρ(2n) = 2n−1. Taking t = 2n we get

σ(t) = 2n+1 = 2 · 2n = 2t

Similarly ρ(t) = t
2
and finally for the point t = 0 we have σ(0) = 0 = ρ(0). Hence

the point t = 0 is both left-dense and right-dense whilst the rest of the points are

isolated.

(ii) With the same reasoning as in (i), the set T = { 3
√
n : n ∈ N0} = {0, 3

√
1, 3
√
2, . . .}.

We find that σ( 3
√
n) = 3

√
n+ 1. And taking t = 3

√
n we get σ(t) = 3

√
t3 + 1. The

graininess µ(t) = 3
√
tn + 1− t. One can easily find a formula for the backward

jump and finally we see that all the points in this set are isolated.

In time scales,we have the following induction principle which is a useful tool

when proving some important theorems as we shall see in later sections.

Theorem 1.5. (Induction Principle). Let t ∈ T and assume that

{S(t) : t ∈ [t0,∞)}

is a family of statements satisfying:

(i) The statement S(t0) is true.

(ii) If t ∈ [t0,∞) is right-scattered and S(t) is true, then S(σ(t)) is also true.

(iii) If t ∈ [t0,∞) is right-dense and S(t) is true, then there is a neighborhood U of t

such that S(s) is true for all s ∈ U ∩ (t,∞).
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(iv) If t ∈ (t0,∞) is left-dense and S(s) is true for all s ∈ [t0,∞), then S(t) is true.

Then S(t) is true for all t ∈ [t0,∞)

Proof. Let

S∗ := {t ∈ [t0,∞) : S(t) is not true}.

We want to show S∗ = ∅. To achieve a contradiction we assume S∗ ̸= ∅. But since S∗ is

closed and nonempty, we have

inf S∗ := t∗ ∈ T.

We claim that S(t∗) is true. If t∗ = t0, then S(t∗) is true from (i). If t∗ ̸= t0 and

ρ(t∗) = t∗, i.e. if t∗ is left-dense, then S(t∗) is true from (iv). Finally if ρ(t∗) < t∗ then

S(ρ(t∗)) is true because t∗ is defined as the minimum of all t for which S(t) is false.

Then from property (ii) it follows that S(σ(ρ(t∗)) is true (note ρ(t∗) is right-scattered

because ρ(t∗) < t∗). But σ(ρ(t∗)) = t∗ Hence, in any case,

t∗ /∈ S∗.

Thus, t∗ cannot be right-scattered, and t∗ ̸= max T either. Hence t∗ is right-dense. But

now (iii) leads to a contradiction since we can find an s such that S(s) is true and at

the same time s ∈ S∗.

Remark 1.6. A dual version of the induction principle also holds for a family of

statements S(t) for t in an interval of the form (−∞, t0]. The proof is similar to that of

the previous theorem.

1.2 Differentiation

We define what is a derivative of a function on an arbitrary time scale. The

derivative can be defined using the forward jump operator σ as well as the backward

jump operator ρ. However, in this thesis we will be using the definition with the

forward jump operator only since the results will be analogous with the backward jump

operator.

Now we consider a function f : T → R and define the so-called delta (or Hilger)

derivative of f at a point t ∈ Tκ.

Definition 1.7. (Bohner and Peterson [1]) Assume f : T → R is a function and let

t ∈ Tκ. Then we define f∆ to be the number (provided it exists) with the property that
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given any ε > 0, there is a neighborhood U of t (i.e., U = (t− δ, t+ δ) ∩ T for some

δ > 0) such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U.

We call f∆ the delta (or Hilger) derivative of f at t.

Moreover, we say that f is delta (or Hilger) differentiable (or in short:

differentiable ) on Tκ provided f∆(t) exists for all t ∈ Tκ. The function f∆ : T → R is

then called the (delta) derivative of f on Tκ.

Example 1.8. (i) If f : T → R is defined by f(t) = α for all t ∈ T, where α ∈ R is a

constant, then f∆(t) ≡ 0. This is clear because for any ε > 0,

|f(σ(t))− f(s)− 0.[σ(t)− s]| = |α− α| ≤ ε|σ(t)− s|

holds for all s ∈ T.
(ii) If f : T → R is defined by f(t) = t for all t ∈ T, then f∆(t) ≡ 1. This follows

since for any ε > 0,

|f(σ(t))− f(s)− 1 · [σ(t)− s]| = |σ(t)− s− (σ(t)− s)| = 0 ≤ ε|σ(t)− s|

holds for all s ∈ T.
Remark 1.9. It should be noted that the forward jump operator σ and the backward

jump operator ρ are not always differentiable. We will show as an example that the

forward jump operator is not always differentiable at the end of Section 1.3

Some easy and useful relationships concerning the delta derivative are given next.

Theorem 1.10. (Bohner and Peterson [1]) Assume f : T → R is a function and let

t ∈ Tκ. Then we have the following:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.



7

(iv) If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t).

Proof. See [[1], Theorem 1.16, p. 5]

Example 1.11. Again we consider the two cases T = R and T = Z.

(i) If T = R, then Theorem 1.10 (iii) yields that f : R → R is delta differentiable at

t ∈ R if and only if

f ′(t) = lim
s→t

f(t)− f(s)

t− s
exists,

i.e., if and only if f is differentiable (in the ordinary sense) at t. In this case we

then have

f∆(t) = lim
s→t

f(t)− f(s)

t− s
= f ′(t)

by Theorem 1.10 (iii).

(ii) If T = Z, then Theorem 1.10 property (ii) yields that f : Z → R is delta

differentiable at t ∈ Z with

f∆(t) =
f(σ(t))− f(t)

µ(t)
=

f(t+ 1)− f(t)

1
= f(t+ 1)− f(t) = ∆f(t),

where ∆ is the usual forward difference operator defined by the last equation

above.

Let us treat two examples that apply Theorem 1.10 to find f∆ for:

(i) f(t) = t2 for t ∈ T := N
1
2
0 := {

√
n : n ∈ N0};

(ii) f(t) = t3 for t ∈ T := N
1
3
0 := { 3

√
n : n ∈ N0}.

Solutions

(i) For f(t) = t2, we have σ(t) =
√
t2 + 1. Hence

f∆(t) =
f(σ(t))− f(t)

σ(t)− t

=
f(
√
t2 + 1)− f(t)√
t2 + 1− t

=
t2 + 1− t2√
t2 + 1− t

=
√
t2 + 1 + t, t ∈ N

1
2
0 , after rationalising the denominator
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(ii) By a similar approach we get f∆ = (t3 + 1)
2
3 + t(t3 + 1)

1
3 + t2, t ∈ N

1
3
0 .

As expected, we would like to be able to find the derivatives of sums, products,

and quotients of differentiable functions. This is possible according to the following

theorem.

Theorem 1.12. (Bohner and Peterson [1]) Assume f, g : T → R are differentiable at

t ∈ Tκ. Then:

(i) The sum f + g : T → R is differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t).

(ii) For any constant α, αf : T → R is differentiable at t with

(αf)∆(t) = αf∆(t).

(iii) The product fg : T → R is differentiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

(iv) If f(t)f(σ(t)) ̸= 0, then 1
f
is differentiable at t with(

1

f

)∆

(t) = − f∆(t)

f(t)f(σ(t))
.

(v) If g(t)g(σ(t)) ̸= 0, then g is differentiable at t and(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

Proof. We will prove parts (ii) and (iv). Assume that f and g are delta differentiable at

t ∈ Tκ.

Part (ii) If α = 0 then we are done. Suppose α ̸= 0. Let ε > 0. Define ε∗ = ε
|α| .

Then ε∗ > 0 and hence there exist a neighborhood U of t such that for all s ∈ U∣∣(αf)(σ(t))− (αf)(s)− αf∆(t)(σ(t)− s)
∣∣

= |α|
∣∣f(σ(t))− f(s)− f∆(t)(σ(t)− s)

∣∣
≤ |α|ε∗|σ(t)− s|

= ε|σ(t)− s|

Therefore αf is differentiable at t and (αf)∆ = αf∆ holds at t.
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Part (iv) Is a simple application of part (iii) and using the fact that 1∆ = 0. In

fact, since ( 1
f
× f) = 1 we use the product rule to get

1∆ = 0 =

(
1

f

)∆

(t)f(t) +
1

f(σ(t))
f∆(t)

and we get (
1

f

)∆

(t) = − f∆(t)

f(t)f(σ(t))

hence the result.

To illustrate the theorem 1.12 in action, we solve a few examples below.

Example 1.13. 1. Prove that if x, y, and z are delta differentiable at t, then

(xyz)∆ = x∆yz + xσy∆z + xσyσz∆

holds at t. Write down the generalization of this formula for n functions.

2. We have by Theorem 1.12 (iii)(
f 2
)∆

= (f · f)∆ = f∆f + fσf∆ = (f + fσ) f∆. (1.1)

Give the generalization of this formula for the derivative of the (n+ 1) st power of

f, n ∈ N, i.e., for (fn+1)
∆
.

Solutions

1. If x, y, and z are delta differentiable at t, we simply apply the product rule in two

stages. We know that for two differentiable functions, (yz)∆ = y∆z + yσz∆ hence;

(xyz)∆ = x∆(yz) + xσ(yz)∆

= x∆yz + xσ[y∆z + yσz∆]

and we get the desired result. Now for n functions, the trick is to write down the

product formula as we show below. To see the pattern we write the formula for 4

functions (f1 · · · f4). We have

(f1 · · · f4)∆ = f∆
1 f2f3f4 + fσ

1 f
∆
2 f3f4 + fσ

1 f
σ
2 f

∆
3 f4 + fσ

1 f
σ
2 f

σ
3 f

∆
4 .

Its easy to notice that we get fσ
j ’s for j < i where i is the indice in the function

we are taking the delta derivative i.e f∆
i , and fi’s when j > i. Putting this in
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symbols, for this example (n = 4) we get (note that the indice j should start from

1)

(f1 · · · f4)∆ =
4∑

i=1

f∆
i

(
4∏

j<i,j ̸=i

fσ
j

)(
4∏

j>i,j ̸=i

fj

)
By direct mathematical induction on n we get, for n functions,

(f1 · · · fn)∆ =
n∑

i=1

f∆
i

(
n∏

j<i,j ̸=i

fσ
j

)(
n∏

j>i,j ̸=i

fj

)

2. The trick to tackle these type of exercises is writing down the formulae for a few

powers of f and then noticing the pattern. We write down the formula for (f 4)∆

which is (f 4)∆ = f∆(f 3 + f 2fσ + f(fσ)2 + (fσ)3). For this case we realize that

(f 3+1)∆ = f∆

{
3∑

k=0

fk(fσ)3−k

}
which can be generalized (and proved by induction on n) to

(fn+1)∆ = f∆

{
n∑

k=0

fk(fσ)n−k

}
, n ∈ N

and we are done.

Up to now, we have defined and considered differentiability theorems using the

forwad jump σ. The name for these derivatives being Delta (∆) derivatives. But it is

worth knowing that the same theorems and definitions can be analogously defined using

the backward jump ρ and we call these the Nabla (∇) derivative. In fact, we provide

these definitions and analogues of the differentiability theorems in this section in the

Appendix of this thesis, basing on the work of Duke and Elizabeth R in [11].

The following theorem provides the delta derivative of a simple polynomial on

an arbitrary time scale.

Theorem 1.14. (Bohner and Peterson [1]) Let α be constant and m ∈ N.

(i) For f defined by f(t) = (t− α)m we have

f∆(t) =
m−1∑
ν=0

(σ(t)− α)ν(t− α)m−1−ν .

(ii) For g defined by g(t) = 1
(t−α)m

we have

g∆(t) = −
m−1∑
ν=0

1

(σ(t)− α)m−ν(t− α)ν+1
,

provided (t− α)(σ(t)− α) ̸= 0.
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Proof. See ([1], Theorem 1.24, p. 9)

Remark 1.15. Theorem 1.14 show that polynomials on time scales are likely to have

at most 1 delta derivative due to the fact that σ(t) is not always differentiable.

Example 1.16. The derivative of t2 is

t+ σ(t).

and the derivative of 1/t is

− 1

tσ(t)
.

Below is a theorem that one can use to find the nth derivative under certain

conditions. However this will not be our focus since the main goal is solving first order

equations hence derivative of at most 1 order!

Theorem 1.17. (Bohner and Peterson [1]). Let S
(n)
k be the set consisting of all

possible strings of length n, containing exactly k times σ and n− k times ∆. If

fΛ exists for all Λ ∈ S
(n)
k ,

then

(fg)∆
n

=
n∑

k=0

 ∑
Λ∈S(n)

k

fΛ

 g∆
k

(1.2)

holds for all n ∈ N.
The formula 1.2 is referred to as the Leibniz formula on time scales.

Proof. See ([1], Theorem 1.32, p. 11)

Example 1.18. If T = R, then

fΛ = f (n−k) for all Λ ∈ S
(n)
k ,

where f (n) denotes the nth (usual) derivative of f , if it exists, and since

∣∣∣S(n)
k

∣∣∣ = ( n

k

)
,

where |M | denotes the cardinality of the set M , we have

∑
Λ∈S(n)

k

fΛ =
∑

Λ∈S(n)
k

f (n−k) = f (n−k)
∑

Λ∈S(n)
k

1 =

(
n

k

)
f (n−k)
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and therefore

(fg)∆
n

=
n∑

k=0

 ∑
Λ∈S(n)

k

fΛ

 g∆
k

=
n∑

k=0

(
n

k

)
f (n−k)g(k).

This is the usual Leibniz formula that we know from calculus.

Remark 1.19. We can use the notation ∆n(fg) to represent (fg)∆
n

1.3 Examples of Time Scales

We treat a few examples to motivate what has been covered so far, mainly delta

derivative on some commonly encountered time scales.

Example 1.20. Let h > 0 and

T = hZ = {hk : k ∈ Z}.

Then we have for t ∈ T

σ(t) = inf{s ∈ T : s > t} = inf{t+ nh : n ∈ N} = t+ h

and similarly ρ(t) = t− h. Hence every point t ∈ T is isolated and

µ(t) = σ(t)− t = t+ h− t ≡ h for all t ∈ T

so that µ in this example is constant. For a function f : T → R we have

f∆(t) =
f(σ(t))− f(t)

µ(t)
=

f(t+ h)− f(t)

h
for all t ∈ T.

Next,

f∆∆(t) =
f∆(σ(t))− f∆(t)

µ(t)

=
f∆(t+ h)− f∆(t)

h

=
f(t+2h)−f(t+h)

h
− f(t+h)−f(t)

h

h

=
f(t+ 2h)− f(t+ h)− f(t+ h) + f(t)

h2

=
f(t+ 2h)− 2f(t+ h) + f(t)

h2
.
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Example 1.21. Let Hn be the so-called harmonic numbers

H0 = 0 and Hn =
n∑

k=1

1

k
for n ∈ N.

Consider the time scale

T = {Hn : n ∈ N0}

Then σ (Hn) = Hn+1 for all n ∈ N0, ρ (Hn) = Hn−1 when n ∈ N, and ρ (H0) = H0. The

graininess is given by

µ (Hn) = σ (Hn)−Hn = Hn+1 −Hn =
1

n+ 1

for all n ∈ N0. If f : T → R is a function, then

f∆ (Hn) =
f (Hn+1)− f (Hn)

µ (Hn)
= (n+ 1)∆f (Hn) .

Table 1.2. Examples of Time Scales.
T µ(t) σ(t) ρ(t)

R 0 t t
Z 1 t+ 1 t− 1
hZ h t+ h t− h
qN (q − 1)t qt t

q

2N t 2t t
2

N2
0 2

√
t+ 1 (

√
t+ 1)2 (

√
t− 1)2

We now discuss some examples for the time scale T = Z.
Definition 1.22. (Bohner and Peterson [1]) Let t ∈ C (i.e., t is a complex number)

and k ∈ Z. The factorial function t(k) is defined as follows:

i) If k ∈ N, then
t(k) = t(t− 1) · · · (t− k + 1).

ii) If k = 0, then

t(0) = 1.

iii) If −k ∈ N, then
t(k) =

1

(t+ 1)(t+ 2) · · · (t− k)

for t ̸= −1,−2, · · · , k.
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In general

t(k) :=
Γ(t+ 1)

Γ(t− k + 1)
(1.3)

for all t, k ∈ C such that the right-hand side of 1.3 makes sense, where Γ is the gamma

function.

Definition 1.23. (Bohner and Peterson [1]) We define the binomial coefficient

(
α

β

)
by (

α

β

)
=

α(β)

Γ(β + 1)

for all α, β ∈ C such that the right-hand side of this equation makes sense.
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1.4 Integration on Time Scales

In this section we introduce the notion of antiderivatives on time scales that will

allow us to define an integral on time scales. So, in order to describe classes of functions

that are “integrable”, we introduce the following two concepts.

Definition 1.24. (Bohner and Peterson [1]) A function f : T → R is called regulated

provided its right-sided limits exist (finite) at all right-dense points in T and its

left-sided limits exist (finite) at all left-dense points in T.

Definition 1.25. (Bohner and Peterson [1])A function f : T → R is called

rd-continuous provided it is continuous at right-dense points in T and its left-sided

limits exist (finite) at left-dense points in T.
The set of rd-continuous functions f : T → R will be denoted in this thesis by

Crd = Crd(T) = Crd(T,R)

The set of functions f : T → R that are differentiable and whose derivative is

rd-continuous is denoted by

C1
rd = C1

rd(T) = C1
rd(T,R)

Some results concerning rd-continuous and regulated functions are contained in

the following simple theorem.

Theorem 1.26. (Bohner and Peterson [1]) Assume f : T → R.

(i) If f is continuous, then f is rd-continuous.

(ii) If f is rd-continuous, then f is regulated.

(iii) The jump operator σ is rd-continuous.

(iv) If f is regulated or rd-continuous, then so is fσ.

(v) Assume f is continuous. If g : T → R is regulated or rd-continuous, then f ◦ g has

that property too.

Proof. The proof of the statements follows easily from the definitions.

Definition 1.27. (Bohner and Peterson [1]) A continuous function f : T → R is called

pre-differentiable with (region of differentiation) D, provided D ⊂ Tκ,Tκ\D is

countable and contains no right-scattered elements of T, and f is differentiable at each

t ∈ D.
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Example 1.28. Let T := P2,1 and let f : T → R be defined by

f(t) =

0 if t ∈
⋃∞

k=0[3k, 3k + 1]

t− 3k − 1 if t ∈ [3k + 1, 3k + 2], k ∈ N0.

Then f is pre-differentiable with

D := T\
∞⋃
k=0

{3k + 1}

One can see that Tκ\D is the union of singletons of the form {3k+ 1} hence it is

countable and does not contain any right-scattered elements of T.
Let us treat a few examples of some interesting functions to understand how

they can or fail to be pre-differentiable.

Example 1.29. For each of the following determine if f is regulated on T , if f is

rd-continuous on T, and if f is pre-differentiable. If f is pre-differentiable, find its

region of differentiability D.

(i) The function f is defined on a time scale T and every point t ∈ T is isolated.

(ii) Assume T = R and

f(t) =

{
0 if t = 0
1
t

if t ∈ R\{0}.

Solution

(i) Since every t ∈ T is isolated, then we cannot talk about limits on right-dense and

left-dense points hence we can say that the condition of f being regulated is

vacuously true. The same reasoning applies for rd-continuity of f . We conclude

that f is pre-differentiable with D = Tκ since T has no right-scattered points.

(ii) In this case the right-side limit at the point t = 0 is ∞ so the function fails to be

regulated. From theorem 1.26, this implies f is not rd-continous on T, and finally

not pre-differentiable.

Remark 1.30. If f is regulated or even if f ∈ Crd,maxa≤t≤b f(t) and mina≤t≤b f(t)

need not exist.

In what follows we introduce the mean value theorem which holds for

pre-differentiable functions. The theorem will be used to prove the main existence

theorems for pre-antiderivatives and antiderivatives later on in this section. Its proof is

an application of the induction principle that we proved earlier.
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Theorem 1.31. (Mean Value Theorem, Bohner and Peterson [1]). Let f and g be

real-valued functions defined on T , both pre-differentiable with D. Then∣∣f∆(t)
∣∣ ≤ g∆(t) for all t ∈ D

implies

|f(s)− f(r)| ≤ g(s)− g(r) for all r, s ∈ T, r ≤ s

Proof. See ([1], Theorem 1.67, p. 23)

Corollary 1.32. Suppose f and g are pre-differentiable with D.

(i) If U is a compact interval with endpoints r, s ∈ T, then

|f(s)− f(r)| ≤
{

sup
t∈Uκ∩D

∣∣f∆(t)
∣∣} |s− r|.

(ii) If f∆(t) = 0 for all t ∈ D, then f is a constant function.

(iii) If f∆(t) = g∆(t) for all t ∈ D, then

g(t) = f(t) + C for all t ∈ T,

where C is a constant.

Proof. (i) Suppose f is pre-differentiable with D and let r, s ∈ T with r ≤ s. If we

define

g(t) :=

{
sup

τ∈[r,s]κ∩D

∣∣f∆(τ)
∣∣} (t− r) for t ∈ T

then

g∆(t) = sup
τ∈[r,s]κ∩D

∣∣f∆(τ)
∣∣ ≥ ∣∣f∆(t)

∣∣ for all t ∈ D ∩ [r, s]κ.

By Theorem 1.31,

g(t)− g(r) ≥ |f(t)− f(r)| for all t ∈ [r, s]

so that

|f(s)− f(r)| ≤ g(s)− g(r) = g(s) =

{
sup

r∈[r,s]κ∩D

∣∣f∆(τ)
∣∣} (s− r).

This completes the proof of part (i).
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(ii) Part (ii) follows immediately from (i). Suppose that f∆(t) = 0 for all t ∈ D. By

part (i) we have

|f(s)− f(r)| ≤
{

sup
t∈Uκ∩D

∣∣f∆(t)
∣∣} |s− r| = 0,

which implies that f(s) = f(r) and hence f is a constant function on D.

(iii) If we define h(t) = g(t)− f(t) for all t ∈ D, then h∆(t) = 0 for all t ∈ D. By part

(ii), h(t) is a constant function, that is g(t) = f(t) + C for all t ∈ T where C is a

constant.

The main existence theorem for pre-antiderivatives now reads as follows.

Theorem 1.33. (Bohner and Peterson [1]). Let f be regulated. Then there exists a

function F which is pre-differentiable with region of differentiation D such that

F∆(t) = f(t) holds for all t ∈ D.

The generalisation of this theorem which involves more generalized measure

chains (time scales) can be found in Chapter 8 of [1].

Definition 1.34. (Bohner and Peterson [1]) Assume f : T → R is a regulated function.

Any function F as in Theorem 1.33 is called a pre-antiderivative of f . We define the

indefinite integral of a regulated function f by∫
f(t)∆t = F (t) + C

where C is an arbitrary constant and F is a pre-antiderivative of f . We define the

Cauchy integral by ∫ s

r

f(t)∆t = F (s)− F (r) for all r, s ∈ T.

A function F : T → R is called an antiderivative of f : T → R provided

F∆(t) = f(t) holds for all t ∈ Tκ.

Example 1.35. If T = Z, evaluate the indefinite integral∫
at∆t

where a ̸= 1 is a constant. Since(
at

a− 1

)∆

= ∆

(
at

a− 1

)
=

at+1 − at

a− 1
= at
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we get that ∫
at∆t =

at

a− 1
+ C

where C is an arbitrary constant.

Here are useful formulars that can be derived exactly in the same manner as the

previous example: If T = Z, k ̸= −1, and α ∈ R, then

(i)
∫
(t+ α)(k)∆t = (t+α)(k+1)

k+1
+ C;

(ii)
∫ ( t

α

)
∆t =

(
t

α + 1

)
+ C.

Theorem 1.36. (Bohner and Peterson [1]). Every rd-continuous function has an

antiderivative. In particular if t0 ∈ T, then F defined by

F (t) :=

∫ t

t0

f(τ)∆τ for t ∈ T

is an antiderivative of f .

Proof. See ([1], Theorem 1.74, p. 27)

Table 1.3. The two most important examples.
Time scale T R Z

Backward jump operator ρ(t) t t− 1
Forward jump operator σ(t) t t+ 1

Graininess µ(t) 0 1
Derivative f∆(t) f ′(t) ∆f(t)

Integral
∫ b

a
f(t)∆t

∫ b

a
f(t)dt

∑b−1
t=a f(t) (if a < b)

Rd-continuous f continuous f any f

Theorem 1.37. (Bohner and Peterson [1]) If f ∈ Crd and t ∈ Tκ, then∫ σ(t)

t

f(τ)∆τ = µ(t)f(t)

Proof. By Theorem 1.36, there exists an antiderivative F of f , and∫ σ(t)

t

f(τ)∆τ = F (σ(t))− F (t)

= µ(t)F∆(t)

= µ(t)f(t),

where the second equation holds because of Theorem 1.10 (iv).
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Theorem 1.38. (Bohner and Peterson [1]) If f∆ ≥ 0, then f is nondecreasing.

Proof. Let f∆ ≥ 0 on [a, b] and let s, t ∈ T with a ≤ s ≤ t ≤ b. Then

f(t) = f(s) +

∫ t

s

f∆(τ)∆τ ≥ f(s)

so that the conclusion follows.

Theorem 1.39. (Bohner and Peterson [1]) If a, b, c ∈ T, α ∈ R, and f, g ∈ Crd, then

(i)
∫ b

a
[f(t) + g(t)]∆t =

∫ b

a
f(t)∆t+

∫ b

a
g(t)∆t;

(ii)
∫ b

a
(αf)(t)∆t = α

∫ b

a
f(t)∆t;

(iii)
∫ b

a
f(t)∆t = −

∫ a

b
f(t)∆t;

(iv)
∫ b

a
f(t)∆t =

∫ c

a
f(t)∆t+

∫ b

c
f(t)∆t;

(v)
∫ b

a
f(σ(t))g∆(t)∆t = (fg)(b)− (fg)(a)−

∫ b

a
f∆(t)g(t)∆t;

(vi)
∫ b

a
f(t)g∆(t)∆t = (fg)(b)− (fg)(a)−

∫ b

a
f∆(t)g(σ(t))∆t;

(vii)
∫ a

a
f(t)∆t = 0

(viii) If |f(t)| ≤ g(t) on [a, b), then∣∣∣∣∫ b

a

f(t)∆t

∣∣∣∣ ≤ ∫ b

a

g(t)∆t

(ix) if g(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
g(t)∆t ≥ 0.

Proof. See ([1], Theorem 1.77, p. 28)

Note that the formulas in Theorem 1.39 (v) and (vi) are called integration by

parts formulas. Also note that all of the formulas given in Theorem 1.39 also hold for

the case that f and g are only regulated functions because rd-continuity implies that

the function is regulated.

Theorem 1.40. (Bohner and Peterson) [1] Let a, b ∈ T and f ∈ Crd.

(i) If T = R, then ∫ b

a

f(t)∆t =

∫ b

a

f(t)dt

where the integral on the right is the usual Riemann integral from calculus.
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(ii) If [a, b] consists of only isolated points, then

∫ b

a

f(t)∆t =


∑

t∈[a,b) µ(t)f(t) if a < b

0 if a = b

−
∑

t∈(b,a) µ(t)f(t) if a > b.

(iii) If T = hZ = {hk : k ∈ Z}, where h > 0, then

∫ b

a

f(t)∆t =


∑ b

h
−1

k= a
h
f(kh)h if a < b

0 if a = b

−
∑ a

h
−1

k= b
h

f(kh)h if a > b.

(iv) If T = Z, then ∫ b

a

f(t)∆t =


∑b−1

t=a f(t) if a < b

0 if a = b

−
∑a−1

t=b f(t) if a > b.

Let us treat an exercise that illustrates integration techniques on an arbitrary

time scale

Example 1.41. Evaluate
∫ t

0
s∆s for t ∈ T for T = [0, 1] ∪ [2, 3]

Response

Care must be taken since T in this case is a union of disjoint intervals. So we evaluate

the integral for each interval and also at the discontinuity at 1.

If t ∈ [0, 1], notice that points in this interval are dense.

Since we know that (s2)∆ = s+ σ(s), we get (s2)∆ = 2s since each point in [0, 1]

is dense. We deduce that ∫ t

0

s∆s =
1

2
[s2]t0 =

1

2
t2

when t ∈ [0, 1]

If t ∈ [2, 3], in order to calculate the integral from 0 up to t in [2, 3], we first add

the integral from 0 to 1 then add the part from 1 to t. Note that at t = 1, σ(1) = 2 and

so our integral becomes:∫ t

0

s∆s =

∫ 1

0

s∆s+

∫ 2

1

s∆s+

∫ t

2

s∆s.

The second integral can be expressed as
∫ σ(1)

1
s∆s, which by Theorem 1.37 is equal to

µ(1)(1) = 1.

(Note that we can subdivide integrals because of theorem 1.39).
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So for t ∈ [2, 3], by adding the 3 integrands we get:∫ t

0

s∆s =
t2

2
− 1

2

We next define the improper integral
∫∞
a

f(t)∆t as one would expect.

Definition 1.42. (Bohner and Peterson [1]) If a ∈ T, sup T = ∞, and f is

rd-continuous on [a,∞), then we define the improper integral by∫ ∞

a

f(t)∆t := lim
b→∞

∫ b

a

f(t)∆t

provided this limit exists, and we say that the improper integral converges in this case.

If this limit does not exist, then we say that the improper integral diverges.

We now give an exercise concerning improper integrals.

Example 1.43. (i) Assume a ∈ T, a > 0 and sup T = ∞. Evaluate∫ ∞

a

1

tσ(t)
∆t

Solutions

(i) Clearly this is an improper integral. However, by realizing that −1
t
is an

anti-derivative of 1
tσ(t)

, we simply put the limits on the anti-derivative to find the

answer 1
a

1.5 Chain Rules

When it comes to time scales, the usual chain rule from calculus does not hold

for all time scales as we will see in this section. However, there are several versions of

the chain rule that have been developed over the course of the development of the

theory.

If f, g : R → R, then the chain rule from calculus is that if g is differentiable at t

and if f is differentiable at g(t), then

(f ◦ g)′(t) = f ′(g(t))g′(t).

The next example shows that the chain rule as we know it in calculus does not hold for

all time scales.

Example 1.44. Assume f, g : Z → Z are defined by f(t) = t2, g(t) = 2t and our time

scale is T = Z. It is easy to see that

(f ◦ g)∆(t) = 8t+ 4 ̸= 8t+ 2 = f∆(g(t))g∆(t) for all t ∈ Z.

Hence the chain rule as we know it in calculus does not hold in this setting.
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Sometimes the following substitute of the “continuous” chain rule is useful.

Theorem 1.45. (Chain Rule, Bohner and Peterson [1]). Assume g : R → R is

continuous, g : T → R is delta differentiable on Tκ, and f : R → R is continuously

differentiable. Then there exists c in the real interval [t, σ(t)] with

(f ◦ g)∆(t) = f ′(g(c))g∆(t). (1.4)

Proof. See ([1], Theorem 1.87, p. 32-33)

Example 1.46. Given T = Z, f(t) = t2, g(t) = 2t, find directly the value c guaranteed

by Theorem 1.45 so that

(f ◦ g)∆(3) = f ′(g(c))g∆(3)

and show that c is in the interval guaranteed by Theorem 1.45. Using the calculations

we made in Example 1.44 we get that this last equation becomes

28 = (4c)2.

Solving for c we get that c = 7
2
which is in the real interval [3, σ(3)] = [3, 4] as we are

guaranteed by Theorem 1.45.

Now we present a chain rule which calculates (f ◦ g)∆, where

g : T → R and f : R → R

This chain rule is due to Christian Pötzsche, who derived it first in 1998 (see also

Stefan Keller’s PhD thesis [3] and [4]).

Theorem 1.47. (Chain Rule). Let f : R → R be continuously differentiable and

suppose g : T → R is delta differentiable. Then f ◦ g : T → R is delta differentiable and

the formula

(f ◦ g)∆(t) =
{∫ 1

0

f ′ (g(t) + hµ(t)g∆(t)
)
dh

}
g∆(t)

holds.

Proof. First of all we apply the ordinary substitution rule from calculus by letting

τ = hg(σ(t)) + (1− h)g(s), and also noting that

g(t) + hµ(t)g∆(t) = hg(σ(t)) + (1− h)g(t), to find

f(g(σ(t)))− f(g(s)) =

∫ g(σ(t))

g(s)

f ′(τ)dτ

= [g(σ(t))− g(s)]

∫ 1

0

f ′(hg(σ(t)) + (1− h)g(s))dh.
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Let t ∈ Tκ and ε > 0 be given. Since g is differentiable at t, there exists a neighborhood

U1 of t such that∣∣g(σ(t))− g(s)− g∆(t)(σ(t)− s)
∣∣ ≤ ε∗|σ(t)− s| for all s ∈ U1,

where

ε∗ =
ε

1 + 2
∫ 1

0
|f ′(hg(σ(t)) + (1− h)g(t))| dh

.

Moreover, f ′ is continuous on R, and therefore it is uniformly continuous on

closed subsets of R, and (observe also that g is continuous as it is differentiable, see

Theorem 1.10 (i)) hence there exists a neighborhood U2 of t such that

|f ′(hg(σ(t)) + (1− h)g(s))− f ′(hg(σ(t)) + (1− h)g(t))| ≤ ε

2 (ε∗ + |g∆(t)|)

for all s ∈ U2. To see this, note also that

|hg(σ(t)) + (1− h)g(s)− (hg(σ(t)) + (1− h)g(t))| = (1− h)|g(s)− g(t)|

≤ |g(s)− g(t)|

holds for all 0 ≤ h ≤ 1. We then define U = U1 ∩ U2 and let s ∈ U . To avoid very long

formulae, we put

α = hg(σ(t)) + (1− h)g(s) and β = hg(σ(t)) + (1− h)g(t).

Then we have (note we use the triangle inequality in the third last equality i.e.

|f ′(α)| = |f ′(α)− f ′(β) + f ′(β)| ≤ |f ′(α)− f ′(β)|+ |f ′(β)|
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So we have∣∣∣∣(f ◦ g)(σ(t))− (f ◦ g)(s)− (σ(t)− s)g∆(t)

∫ 1

0

f ′(β)dh

∣∣∣∣
=

∣∣∣∣[g(σ(t))− g(s)]

∫ 1

0

f ′(α)dh− (σ(t)− s)g∆(t)

∫ 1

0

f ′(β)dh

∣∣∣∣
=|
[
g(σ(t))− g(s)− (σ(t)− s)g∆(t)

] ∫ 1

0

f ′(α)dh

+ (σ(t)− s)g∆(t)

∫ 1

0

(f ′(α)− f ′(β)) dh |

≤ |g(σ(t))− g(s)− (σ(t)− s)g∆(t)|
∫ 1

0

|f ′(α)|dh

+ |σ(t)− s||g∆(t)|
∫ 1

0

|f ′(α)− f ′(β)|dh

≤ ε∗|σ(t)− s|
∫ 1

0

|f ′(α)|dh+ |σ(t)− s∥|g∆(t)|
∫ 1

0

|f ′(α)− f ′(β) | dh

≤ ε∗|σ(t)− s|
∫ 1

0

|f ′(β)| dh+
[
ε∗ +

∣∣g∆(t)∣∣] |σ(t)− s|
∫ 1

0

|f ′(α)− f ′(β)| dh

≤ ε

2
|σ(t)− s|+ ε

2
|σ(t)− s|

= ε|σ(t)− s|.

Therefore f ◦ g is differentiable at t and the derivative is as claimed above.

Example 1.48. We define g : Z → R and f : R → R by

g(t) = t2 and f(x) = exp(x).

Then

g∆(t) = (t+ 1)2 − t2 = 2t+ 1 and f ′(x) = exp(x)

Hence we have by Theorem 1.47

(f ◦ g)∆(t) =
{∫ 1

0

f ′ (g(t) + hµ(t)g∆(t)
)
dh

}
g∆(t)

= (2t+ 1)

∫ 1

0

exp
(
t2 + h(2t+ 1)

)
dh

= (2t+ 1) exp
(
t2
) ∫ 1

0

exp(h(2t+ 1))dh

= (2t+ 1) exp
(
t2
) 1

2t+ 1
[exp(h(2t+ 1))]h=1

h=0

= (2t+ 1) exp
(
t2
) 1

2t+ 1
(exp(2t+ 1)− 1)

= exp
(
t2
)
(exp(2t+ 1)− 1).
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On the other hand, it is easy to check that we have indeed

∆f(g(t)) = f(g(t+ 1))− f(g(t))

= exp
(
(t+ 1)2

)
− exp

(
t2
)

= exp
(
t2 + 2t+ 1

)
− exp

(
t2
)

= exp
(
t2
)
(exp(2t+ 1)− 1).

In the remainder of this section we present some results related to results in the

paper by C. D. Ahlbrandt, M. Bohner, and J. Ridenhour [5]. Let T be a time scale and

ν : T → R be a strictly increasing function such that T̃ = ν(T) is also a time scale. By

σ̃ we denote the jump function on T̃ and by ∆̃ we denote the derivative on T̃. Then
ν ◦ σ = σ̃ ◦ ν. You can prove the latter by just defining σ̃(x) := ν(σ(t)) for x = ν(t).

Theorem 1.49. (Chain Rule). Assume that ν : T → R is strictly increasing and

T̃ := ν(T) is a time scale. Let w : T̃ → R. If ν∆(t) and w∆̃(ν(t)) exist for t ∈ Tκ, then

(w ◦ ν)∆ =
(
w∆̃ ◦ ν

)
ν∆.

Proof. See ([1], Theorem 1.93, p. 34)

Example 1.50. Let T = N0 and ν(t) = 4t+ 1. Hence

T̃ = ν(T) = {4n+ 1 : n ∈ N0} = {1, 5, 9, 13, . . .}.

Moreover, let w : T̃ → R be defined by w(t) = t2. Then

(w ◦ ν)(t) = w(ν(t)) = w(4t+ 1) = (4t+ 1)2

and hence
(w ◦ ν)∆(t) = [4(t+ 1) + 1]2 − (4t+ 1)2

= (4t+ 5)2 − (4t+ 1)2

= 16t2 + 40t+ 25− 16t2 − 8t− 1

= 32t+ 24.

Now we apply Theorem 1.49 to obtain the derivative of this composite function. We

first calculate ν∆(t) ≡ 4 and then

w∆̄(t) =
w(σ̃(t))− w(t)

σ̃(t)− t
=

(t+ 4)2 − t2

t+ 4− t
=

8t+ 16

4
= 2t+ 4

and therefore(
w∆̄ ◦ ν

)
(t) = w∆̄(ν(t)) = w∆̄(4t+ 1) = 2(4t+ 1) + 4 = 8t+ 6.
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Thus we obtain [(
w∆̄ ◦ ν

)
ν∆
]
(t) = (8t+ 6)4 = 32t+ 24 = (w ◦ ν)∆(t).

As a consequence of the above Theorem 1.49 we can now write down a formula

for the derivative of the inverse function.

Theorem 1.51. (Derivative of the Inverse). Assume ν : T → R is strictly increasing

and T̃ = ν(T) is a time scale. Then

1

ν∆
= (ν−1)∆̃ ◦ ν (1.5)

at points where ν∆ is different from zero.

Proof. Let ω = ν−1 : T̃ → T in the previous theorem.

1.6 Polynomials on Time scales

An antiderivative of 0 is 1, an antiderivative of 1 is t, but it is not possible to

find a closed formula (for an arbitrary time scale) of an antiderivative of t. Certainly t2

is not the solution, as the derivative of t2 is

t+ σ(t)

which is, as we know is not even necessarily a differentiable function (although it is the

product of two differentiable functions): Similarly, none of the “classical” polynomials

are necessarily more than once differentiable, see Theorem 1.14. So the question arises

which function plays the role of e.g., t2/2, in the time scales calculus. It could be either∫ t

0

σ(τ)∆τ or

∫ t

0

τ∆τ.

In fact, if we define

g2(t, s) =

∫ t

s

(σ(τ)− s)∆τ and h2(t, s) =

∫ t

s

(τ − s)∆τ,
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we find the following relation between g2 and h2:

g2(t, s) =

∫ t

s

(σ(τ)− s)∆τ

=

∫ t

s

(σ(τ) + τ)∆τ −
∫ t

s

τ∆τ −
∫ t

s

s∆τ

=

∫ t

s

(τ 2)∆∆τ +

∫ s

t

τ∆τ − s(t− s)

=

∫ t

s

(τ − t)∆τ

= h2(s, t).

In this section we give a Taylor’s formula for functions on a general time scale.

As it turns out Taylor monomials are important as they are intimately related to

Cauchy functions of certain dynamic equations which are important in variation of

constants formulas. Many of the results in this section can be found in R.P. Agarwal

and M.Bohner [6]. The generalized polynomials, that also occur in Taylor’s formula, are

the functions gk, hk : T → R, k ∈ N0, defined recursively as follows: The functions g0

and h0 are

g0(t, s) = h0(t, s) ≡ 1 ∀s, t ∈ T, (1.6)

and given gk and hk for k ∈ N0 the functions gk+1 and hk+1 are

gk+1(t, s) =

∫ t

s

gk(σ(τ), s)∆τ ∀s, t ∈ T (1.7)

and

hk+1(t, s) =

∫ t

s

hk(τ, s)∆τ ∀s, t ∈ T. (1.8)

Note that the functions gk and hk are all well defined according to Theorem 1.26

and Theorem 1.36. If we let h∆
k (t, s) denote for each fixed s the delta derivative of

hk(t, s) with respect to t, then

h∆
k (t, s) = hk−1(t, s) for k ∈ N, t ∈ Tκ.

Similarly

g∆k (t, s) = gk−1(σ(t), s) for k ∈ N, t ∈ Tκ. (1.9)

The above definitions obviously imply

g1(t, s) = h1(t, s) = t− s for alls, t ∈ T.

However, finding gk and hk for k > 1 is not easy in general. But for a particular given

time scale it might be easy to find these functions. We will consider several examples

first before we present Taylor’s formula in general.



29

Example 1.52. For the cases T = R and T = Z it is easy to find the functions gk and

hk:

(i) First consider T = R. Then σ(t) = t for t ∈ R so that gk = hk for k ∈ N0. We have

g2(t, s) = h2(t, s) =

∫ t

s

(τ − s)dτ

=
(τ − s)2

2

∣∣∣∣τ=t

τ=s

=
(t− s)2

2
.

We claim that for k ∈ N0

gk(t, s) = hk(t, s) =
(t− s)k

k!
for all s, t ∈ R (1.10)

as we will now show using the principle fo mathematical induction. Obviously

(1.10) holds for k = 0. Assume (1.10) holds with k replaced by some m ∈ N0.

Then

gm+1(t, s) = hm+1(r, s)

=

∫ t

s

(τ − s)m

m!
dτ

=
(τ − s)m+1

(m+ 1)!

∣∣∣∣τ=t

τ=s

=
(t− s)m+1

(m+ 1)!
,

i.e., (1.10) holds with k replaced by m+ 1. We note that, for an n-times

differentiable function f : R → R, the following well-known Taylor’s formula

holds: Let α ∈ R be arbitrary. Then, for all t ∈ R, the representations

f(t) =
n−1∑
k=0

(t− α)k

k!
f (k)(α) +

1

(n− 1)!

∫ t

α

(t− τ)n−1f (n)(τ)dτ

=
n−1∑
k=0

hk(t, α)f
(k)α +

∫ t

α

hn−1(t, σ(τ))f
(n)(τ)dτ (1.11)

=
n−1∑
k=0

(−1)kgk(α, t)f
(k)(α) +

∫ t

α

(−1)n−1gn−1(σ(τ), t)f
(n)(τ)dτ (1.12)

are valid, where f (k) denotes the usual kth derivative of f . Above we have used

the relationship

(−1)kgk(s, t) = (−1)k
(s− t)k

k!
=

(t− s)k

k!
= hk(t, s), (1.13)

which holds for all k ∈ N0.
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(ii) Next, consider T = Z. Then σ(t) = t+ 1 for t ∈ Z. We have for s, t ∈ Z

h2(t, s) =

∫ t

s

h1(τ, s)∆τ =

∫ t

s

(τ − s)(1)∆τ

=

[
(τ − s)(2)

2

]t
s

=
(t− s)(2)

2!
=

(
t− s

2

)
.

We claim that for k ∈ N0, we have

hk(t, s) =
(t− s)(k)

k!
=

(
t− s

k

)
for all s, t ∈ Z. (1.14)

Assume (1.14) holds for k replaced by m. Then

hm+1(t, s) =

∫ t

s

hm(τ, s)∆τ

=

∫ t

s

(τ − s)(m)

m!
∆τ

=
(t− s)(m+1)

(m+ 1)!
,

which is (1.14)with k replaced by m+ 1. Hence by mathematical induction we get

that ( (1.14) holds for all k ∈ N0. Similarly it is possible to show that

gk(t, s) =
(t− s+ k − 1)(k)

k!
for all s, t ∈ Z (1.15)

holds for all k ∈ N0. As before we observe that the relationship

(−1)kgk(s, t) = (−1)k
(s− t+ k − 1)(k)

k!

= (−1)k
(s− t+ k − 1)(s− t+ k − 2) · · · (s− t)

k!

=
(t− s) · · · (t− s+ 2− k)(t− s+ 1− k)

k!

=
(t− s)(k)

k!

= hk(t, s)

holds for all k ∈ N0. The well-known discrete version of Taylor’s formular (see e.g

[7]) reads as follows: Let f : R → Z be a function, and let α ∈ Z. Then, for all
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t ∈ Z with t > α + n, the representations

f(t) =
n−1∑
k=0

(t− α)(k)

k!
∆kf(α) +

1

(n+ 1)!

t−n∑
τ=α

(t− τ − 1)(n−1)∆nf(τ)

=
n−1∑
k=0

hk(t, α)∆
kf(α) +

t−n∑
τ=α

hn−1(t, σ(τ))∆
nf(τ) (1.16)

=
n−1∑
k=0

(−1)kgk(α, t)∆
kf(α) +

t−n∑
τ=α

(−1)n−1gn−1(σ(τ), t)∆
nf(τ) (1.17)

hold, where ∆k is the usual k-times iterated forward difference operator.

Now we will present and prove Taylor’s formula for the case of a general time

scale T. First we need three preliminary results.

Lemma 1.53. (Bohner and Peterson [1]) Let n ∈ N. Suppose f is n-times

differentiable and pk, 0 ≤ k ≤ n− 1, are differentiable at some t ∈ T with

p∆k+1(t) = pσk(t) for all 0 ≤ k ≤ n− 2. (1.18)

Then we have at t [ n−1∑
k=0

(−1)kf∆k

pk

]∆
= (−1)n−1f∆n

pσn−1 + fp∆0

Proof. Using Theorem (1.12 ) (i), (ii), (iii) and (1.18) we find that[ n−1∑
k=0

(−1)kf∆k

pk

]∆
=

n−1∑
k=0

(−1)k
[
f∆k

pk
]∆

=
n−1∑
k=0

(−1)k
[
f∆k+1

pσk + f∆k

p∆k
]

=
n−2∑
k=0

(−1)kf∆k+1

pσk + (−1)n−1f∆n

pσn−1 +
n−1∑
k=1

(−1)kf∆k

p∆k + fp∆0

=
n−2∑
k=0

(−1)kf∆k+1

pσk + (−1)n−1f∆n

pσn−1 −
n−2∑
k=0

(−1)kf∆k+1

p∆k+1 + fp∆0

= (−1)n−1f∆n

pσn−1 + fp∆0

holds at t. This proves the lemma.

Lemma 1.54. (Bohner and Peterson [1]) The functions gk defined in (1.6) and (1.7)

satisfy for all t ∈ T

gn(ρ
k(t), t) = 0 for all n ∈ N and all 0 ≤ k ≤ n− 1.



32

Proof. We prove this result by induction. First, for k = 0, we have

gn(ρ
0(t), t) = gn(t, t) = 0.

To complete the induction it suffices to show that

gn−1(ρ
k(t), t) = gn(ρ

k(t), t) = 0 with 0 ≤ k ≤ n

implies that

gn(ρ
k+1(t), t) = 0.

If ρk(t) is left-dense, then ρk+1(t) = ρk(t) so that

gn
(
ρk+1(t), t

)
= gn

(
ρk(t), t

)
= 0.

If ρk(t) is not left-dense, then it is left-scattered, and σ
(
ρk+1(t)

)
= ρk(t) so that by

Theorem 1.10 (iv) and (1.9)

gn
(
ρk+1(t), t

)
= gn

(
σ
(
ρk+1(t)

)
, t
)
− µ

(
ρk+1(t)

)
g∆n
(
ρk+1(t), t

)
= gn

(
ρk(t), t

)
− µ

(
ρk+1(t)

)
gn−1

(
σ
(
ρk+1(t)

)
, t
)

= gn
(
ρk(t), t

)
− µ

(
ρk+1(t)

)
gn−1

(
ρk(t), t

)
= 0

(observe n ̸= 1 ). This proves our claim.

Lemma 1.55. (Bohner and Peterson [1]) Let n ∈ N, t ∈ T, and suppose that f is

(n− 1) times differentiable at ρn−1(t). Then we have

n−1∑
k=0

(−1)kf∆k (
ρn−1(t)

)
gk
(
ρn−1(t), t

)
= f(t), (1.19)

where the functions gk are defined by (1.6) and (1.7).

Proof. See ([1], Lemma 1.110, p. 43 -44)

Theorem 1.56. (Taylor’s Formula, Bohner and Peterson [1]). Let n ∈ N. Suppose f is

n times differentiable on Tκn
. Let α ∈ Tκn−1

, t ∈ T, and define the functions gk by (1.6)

and (1.7, i.e.,

g0(r, s) ≡ 1 and gk+1(r, s) =

∫ r

s

gk(σ(τ), s)∆τ for k ∈ N0.

Then we have

f(t) =
n−1∑
k=0

(−1)kgk(α, t)f
∆k

(α) +

∫ ρn−1(t)

α

(−1)n−1gn−1(σ(τ), t)f
∆n

(τ)∆τ.
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Proof. By Lemma 1.53 we have[
n−1∑
k=0

(−1)kgk(·, t)f∆k

]∆
(τ) = (−1)n−1gn−1(σ(τ), t)f

∆n

(τ)

for all τ ∈ Tκn
. Since α, ρn−1(t) ∈ Tκn−1

, we may integrate the above equation from α

to ρn−1(t) to obtain∫ ρn−1(t)

α

(−1)n−1gn−1(σ(τ), t)f
∆n

(τ)∆τ =

∫ ρn−1(t)

α

[
n−1∑
k=0

(−1)kgk(·, t)f∆k

]∆
(τ)∆τ

=
n−1∑
k=0

(−1)kgk
(
ρn−1(t), t

)
f∆k (

ρn−1(t)
)
−

n−1∑
k=0

(−1)kgk(α, t)f
∆k

(α)

= f(t)−
n−1∑
k=0

(−1)kgk(α, t)f
∆k

(α),

where we used formula (1.19) from Lemma 1.53.

1.7 L’Hôpital’s Rule on Time Scales

In this short section we present a few basic results that have proofs analogous to

their respective results in ordinary calculus. These include the intermediate value

theorem, and L’Hôpital’s Rule. The proofs can be found on pages (46-49) in [1]. We

now state the intermediate value theorem for a continuous function on a time scale.

Theorem 1.57. (Intermediate Value Theorem). Assume x : T → R is continuous,

a < b are points in T, and
x(a)x(b) < 0

Then there exists c ∈ [a, b) such that either x(c) = 0 or

x(c)xσ(c) < 0

By f∆(t, τ) in the following theorem we mean for each fixed τ the derivative of

f(t, τ) with respect to t.

Theorem 1.58. (Bohner and Peterson [1])Let a ∈ Tκ, b ∈ T and assume

f : T× Tκ → R is continuous at (t, t), where t ∈ Tκ with t > a. Also assume that

f∆(t, ·) is rd-continuous on [a, σ(t)]. Suppose that for each ε > 0 there exists a

neighborhood U of t, independent of τ ∈ [a, σ(t)], such that∣∣f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)
∣∣ ≤ ε|σ(t)− s| for all s ∈ U,
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where f∆ denotes the derivative of f with respect to the first variable. Then

(i) g(t) :=
∫ t

a
f(t, τ)∆τ implies g∆(t) =

∫ t

a
f∆(t, τ)∆τ + f(σ(t), t);

(ii) h(t) :=
∫ b

t
f(t, τ)∆τ implies h∆(t) =

∫ b

t
f∆(t, τ)∆τ − f(σ(t), t).

Finally, we present several versions of L’Hôpital’s rule. We let

T = T ∪ {supT} ∪ {inf T}

If ∞ ∈ T, we call ∞ left-dense, and −∞ is called right-dense provided −∞ ∈ T. For
any left-dense t0 ∈ T and any ε > 0, the set

Lε (t0) = {t ∈ T : 0 < t0 − t < ε}

is nonempty, and so is Lε(∞) =
{
t ∈ T : t > 1

ε

}
if ∞ ∈ T. The sets Rε (t0) for

right-dense t0 ∈ T and ε > 0 are defined accordingly. For a function h : T → R we define

lim inf
t→t−0

h(t) = lim
t→0+

inf
t∈Lε(t0)

h(t) for left-dense t0 ∈ T,

and lim inft→t+0
h(t), lim supt→t−0

h(t), lim supt→t+0
h(t) are defined analogously.

Theorem 1.59. (L’Hôpital’s Rule, Bohner and Peterson [1]). Assume f and g are

differentiable on T with

lim
t→t−0

f(t) = lim
t→t−0

g(t) = 0 for some left-dense t0 ∈ T. (1.20)

Suppose there exists ε > 0 with

g(t) > 0, g∆(t) < 0 for all t ∈ Lε (t0) . (1.21)

Then we have

lim inf
t→t−0

f∆(t)

g∆(t)
≤ lim inf

t→t−0

f(t)

g(t)
≤ lim sup

t→t−0

f(t)

g(t)
≤ lim sup

t→t−0

f∆(t)

g∆(t)

Proof. See ([1], Theorem 1.119, p. 48)

Theorem 1.60. (L’Hôpital’s Rule, Bohner and Peterson [1]). Assume f and g are

differentiable on T with

lim
t→t−0

g(t) = ∞ for some left-dense t0 ∈ T. (1.22)

Suppose there exists ε > 0 with

g(t) > 0, g∆(t) > 0 for all t ∈ Lε (t0) . (1.23)

Then limt→t−0

f∆(t)
g∆(t)

= r ∈ R implies limt→t−0

f(t)
g(t)

= r.
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Proof. See ([1], Theorem 1.120, p. 49)
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CHAPTER 2

First Order Linear Equations

After having set up the ground work in the previous chapter, we now turn to the

main goal of this thesis, that is applying the theory of time scale calculus to solve first

order linear dynamic equations. We proceed by defining a new version of the

exponential function on time scales, study its properties and prove that it is indeed a

solution of the dynamic equations that we will define. We will also prove existence and

uniqueness of solutions defined in terms of the exponential functions or first order

equations.

This chapter provides an introduction to first order linear dynamic equations,

extended by its applications. A first order dynamic equation is of the form

y∆(t) = f(t, y, yσ), (2.1)

for y : T → Rn and f : T× Rn × Rn → Rn with n ∈ N = {1, 2, 3, · · · }. A first order

initial value problem (short: IVP) is then given by (2.1) with an initial condition

y(t0) = y0 ∈ Rn for t0 ∈ T. A function y : T → Rn is called a solution of (2.1) if y

satisfies the equation for all t ∈ Tκ.

We call (2.1) linear if

f(t, y, yσ) = f1(t)y + f2(t), or f(t, y, yσ) = f1(t)y
σ + f2(t),

where f1, f2 : T → Rn. We say the linear dynamic equation is homogeneous, if f2 ≡ 0.

The theorems and definitions in this chapter are analogous to the corresponding

results on the classical time scale. We therefore follow the original proofs, which are

given in the monograph by Martin Bohner and Allan Peterson [1]. So the theorems and

definitions in this chapter are from [1] unless stated otherwise. Also when we mention

the term exponential in this chapter we refer to the Hilger exponential function unless

stated otherwise.

We will first start by constructing the solution of the initial value problem

y∆ = p(t)y, y(t0) = 1

explicitly, and the solution will be called the exponential function associated with the

given time scale, and then proceed to the more general initial condition y(t0) = t0.

Let’s start by introducing the so-called Hilger complex plane.
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2.1 The Hilger complex plane

Definition 2.1. For h > 0, define the Hilger complex numbers, the Hilger real axis, the

Hilger alternating axis, and the Hilger imaginary circle by

Ch :=
{
z ∈ C : z ̸= − 1

h

}
, Rh :=

{
z ∈ R : z > − 1

h

}
,

Ah :=
{
z ∈ R : z < − 1

h

}
, Ih :=

{
z ∈ C :

∣∣z + 1
h

∣∣ = 1
h

}
,

respectively. For h = 0, let C0 := C,R0 := R,A0 := ∅, and I0 := iR. See Figure 2.1 .

Figure 2.1. (Left) The Hilger complex plane. (Right) The cylinder and inverse
cylinder transformations map the familiar stability region in the continuous
case to the interior of the Hilger circle in the general time scale case

The figure above was sourced from [13].

The Hilger complex plane, pictured on the left in Figure 2.1 , is akin to the s

plane of the one-sided Laplace transforms and the z plane of the one-sided z transform.

Stability is associated with the shaded interior of the Hilger circle. The circle, centered

at −1/µ(t), opens to the entire left plane as µ → 0+, i.e. when the time scale becomes

continuous. We are, in essence, in the s domain. When µ = 1, the Hilger circle is the

shifted unit circle in the z plane 1.

Definition 2.2. Let h > 0 and z ∈ Ch. We define the Hilger real part of z by

Reh(z) :=
|zh+ 1| − 1

h

and the Hilger imaginary part of z by

Imh(z) :=
Arg(zh+ 1)

h
1The unit circle in the z plane is typically centered around the origin. The circle’s shift comes from

our consideration of equations of the form x∆(t) = px(t) rather than of the form of the equivalent
difference type equation of the form x(t+ µ(t)) = (µ(t)p+ 1)x(t)
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where Arg(z) denotes the principal argument of z (i.e., −π < Arg(z) ≤ π ). Note that

Reh(z) and Imh(z) satisfy

−1

h
< Reh(z) < ∞ and − π

h
< Imh(z) ≤

π

h

respectively. In particular, Reh(z) ∈ Rh

Definition 2.3. Let −π
h
< ω ≤ π

h
. We define the Hilger purely imaginary number ı̊ω by

ı̊ω =
eiωh − 1

h
.

For z ∈ Ch, we have that ı̊ Imh(z) ∈ Ih.

2.1.1 The cylinder transformation

Definition 2.4. For h > 0, define the strip Zh :=
{
z ∈ C : −π

h
< Im(z) ≤ π

h

}
, and for

h = 0, set Z0 := C. Then we can define the cylinder transformation ξh : Ch → Zh by

ξh(z) =
1

h
log(1 + zh), h > 0

where Log is the principal logarithm function. When h = 0, we define ξ0(z) = z, for all

z ∈ C. The cylinder transformation maps the interior of the Hilger circle to the left half

plane.

The inverse cylinder transformation ξ−1
h : Zh → Ch is given by

ξ−1
h (z) =

ezh − 1

h

We call ξh the cylinder transformation because when h > 0 we can view the strip

Zh as a cylinder if we glue the bordering lines Imh(z) = −π
h
and Imh(z) =

π
h
together to

form a cylinder.

2.2 Algebra on Ch

We give a brief overview of the algebraic structures attached to the Hilger

complex plane Ch. As we will see latter, some of the algebraic properties we will define

will be used to simplify long expressions involving the exponential function. More

interestingly, these algebraic operations allow the definition of abelian (topological)

groups and hence the emergence of group homomorphisms(i.e. a map between two

groups such that the group operation is preserved), one of which the cylinder

transformation is. We remind the reader again that theorems and definitions in this and
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following sections are from the monograph by Bohner and Peterson [1] unless explicitly

stated. Some proofs of the latter can also be found in the monograph in Chapter 2.

Theorem 2.5. If we define the “circle plus” addition ⊕ on Ch by

z ⊕ w := z + w + zwh

then (Ch,⊕) is an Abelian group.

Remark 2.6. The additive inverse of z under the operation ⊕ is

⊖ :=
−z

1 + zh
(2.2)

Definition 2.7. We also define the “circle minus” substraction ⊖ on Ch by

z ⊖ w := z ⊕ (⊖w). (2.3)

Theorem 2.8. For z ∈ Ch we have

z = Reh z ⊕ ı̊ Imh z

Proof. Let z ∈ Ch. Then

Reh z ⊕ i Imh z =
|zh+ 1| − 1

h
⊕ ı̊

Arg(zh+ 1)

h

=
|zh+ 1| − 1

h
⊕ exp(iArg(zh+ 1))− 1

h

=
|zh+ 1| − 1

h
+

exp(iArg(zh+ 1))− 1

h

+
|zh+ 1| − 1

h

exp(iArg(zh+ 1))− 1

h
h

=
1

h
{|zh+ 1| − 1 + exp(iArg(zh+ 1))− 1

+ [|zh+ 1| − 1][exp(iArg(zh+ 1))− 1]}

=
1

h
{|zh+ 1| exp(iArg(zh+ 1))− 1}

=
(zh+ 1)− 1

h
= z,

which proves the claim.

Theorem 2.9. The cylinder transformation ξh is a group homomorphism from (Ch,⊕)

onto (Zh,+), where the addition + on Zh is defined by

z + w := z + w

(
mod

2πi

h

)
for z, w ∈ Zh. (2.4)
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Proof. Let h > 0 and z, w ∈ Ch and consider

ξh(z ⊕ w) =
1

h
log(1 + (z ⊕ w)h)

=
1

h
log
(
1 + zh+ wh+ zwh2

)
=

1

h
log[(1 + zh)(1 + wh)]

=
1

h
log(1 + zh) +

1

h
log(1 + wh)

= ξh(z) + ξh(w).

This proves our result for h > 0. The case h = 0 is trivial.

2.3 Explicit representation of the Exponential

function

In this section we use the cylinder transformation introduced in Section 2.1.1 to

define a generalized exponential function for an arbitrary time scale T. First we make

some preliminary definitions. Things get interesting as this exponential function lies at

the heart of solving F.O.L.D.Es!

Definition 2.10. We say that a function p : T → R is regressive provided

1 + µ(t)p(t) ̸= 0 for all t ∈ Tκ

holds. The set of all regressive and rd-continuous functions f : T → R will be denoted

in this book by

R = R(T) = R(T,R)

We also define the set R+of all positively regressive elements of R by

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}

Remark 2.11. It can be easily showed that R is an Abelian group under the “circle

plus” addition ⊕ defined by

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ Tκ,

p, q ∈ R. This group is called the regressive group. If p, q ∈ R, then the function p⊕ q

and the function ⊖p defined by

(⊖p)(t) := − p(t)

1 + µ(t)p(t)
for all t ∈ Tκ
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are also elements of R.‘

Definition 2.12. We define the “circle minus” subtraction ⊖ on R by

(p⊖ q)(t) := (p⊕ (⊖q))(t) for all t ∈ Tκ. (2.5)

Lemma 2.13. Suppose p, q ∈ R, then

(i) p⊖ p = 0;

(ii) ⊖(⊖p) = p;

(iii) p⊖ q ∈ R;

(iv) p⊖ q = p−q
1+µq

(v) ⊖(p⊖ q) = q ⊖ p

(vi) ⊖(p⊕ q) = (⊖p)⊕ (⊖q).

Proof. Follows easily by substituting the p formula and simple algebraic

manipulations.

Definition 2.14. If p ∈ R, then we define the exponential function by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T, (2.6)

where the cylinder transformation ξh(z) is introduced in Definition 2.4.

Lemma 2.15. If p ∈ R, then the semigroup property

ep(t, r)ep(r, s) = ep(t, s) for all r, s, t ∈ T

is satisfied.

Proof. Suppose p ∈ R. Let r, s, t ∈ T. Then we have by Definition 2.14

ep(t, r)ep(r, s) = exp

(∫ t

r

ξµ(τ)(p(τ))∆τ

)
exp

(∫ r

s

ξµ(τ)(p(τ))∆τ

)
= exp

(∫ t

r

ξµ(τ)(p(τ))∆τ +

∫ r

s

ξµ(τ)(p(τ))∆τ

)
= exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
= ep(t, s)

where we have used Theorem 1.39 (iv).
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Definition 2.16. If p ∈ R, then the first order linear dynamic equation

y∆ = p(t)y (2.7)

is called regressive.

Up to now we have defined what regressive functions are, but why are they

important? Well, we find out that regressivity plays a crucial role in developing the

fundamental theory of linear dynamic equations. When we consider the generalized

time scale exponential function, we need the concept of regressiveness since the

exponential function ep(t, t0) is defined only for p(t) satisfying the regressivity

condition, i.e. 1 + µ(t)p(t) ̸= 0.

Let us prove a new lemma that was posed as a research exercise by Ronald

Mathsen (see [1] Exercise 2.34 p. 61), that is useful in the following existence theorem

for the solution of an initial value problem of a linear dynamic equation.

Lemma 2.17. Let p ∈ R and t ∈ Tκ be such that σ(t) = t. Then

lim
r→t

ξµ(r)(p(r)) = ξ0(p(t)). (2.8)

Proof. Let h := µ(r)p(r) for r ∈ Tκ. Since σ is rd-continuous, then h → 0 when r → t

in Tκ. This implies that

lim
r→t

ξµ(r)(p(r)) = lim
r→t

log(1 + µ(r)p(r))

µ(r)p(r)
.p(r)

= lim
h→0

log(1 + h)

h
.p(t)

= p(t)

= ξ0(p(t)).

Theorem 2.18. Suppose (2.1) is regressive and fix t0 ∈ T. Then ep (·, t0) is a solution

of the initial value problem

y∆ = p(t)y, y (t0) = 1 (2.9)

on T.

Proof. Fix t0 ∈ Tκ and assume (2.7) is regressive. First note that

ep (t0, t0) = 1
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It remains to show that ep (t, t0) satisfies the dynamic equation y∆ = p(t)y. Fix t ∈ Tκ.

There are two cases.

Case 1. Assume σ(t) > t. By the inverse cylinder transformation formula in

definition 2.4 and Lemma 2.15,

e∆p (t, t0) =
exp

(∫ σ(t)

t0
ξµ(r)(p(r))∆r

)
− exp

(∫ t

t0
ξµ(r)(p(r))∆r

)
µ(t)

=
exp

(∫ σ(t)

t
ξµ(r)(p(r))∆r

)
− 1

µ(t)
ep (t, t0) (semigroup property)

=
eξµ(t)(p(t))µ(t) − 1

µ(t)
ep (t, t0)

= ξ−1
µ(t)

(
ξµ(t)(p(t))

)
· ep (t, t0) (inverse cylinder transformation)

= p(t) · ep (t, t0) .

Case 2. Assume σ(t) = t. If y(t) := ep (t, t0), then we want to show that

y∆(t) = p(t)y(t). Using Lemma 2.15 we obtain

|y(t)− y(s)− p(t)y(t)(t− s)| = |ep (t, t0)− ep (s, t0)− p(t)ep (t, t0) (t− s)|

= |ep (t, t0)| · |1− ep(s, t)− p(t)(t− s)|

= |ep (t, t0)|
∣∣∣∣1− ∫ t

s

ξµ(τ)(p(τ))∆τ − ep(s, t) +

∫ t

s

ξµ(τ)(p(τ))∆τ − p(t)(t− s)

∣∣∣∣
≤ |ep (t, t0)| ·

∣∣∣∣1− ∫ t

s

ξµ(τ)(p(τ))∆τ − ep(s, t)

∣∣∣∣
+ |ep (t, t0)| ·

∣∣∣∣∫ t

s

ξµ(τ)(p(τ))∆τ − p(t)(t− s)

∣∣∣∣
≤ |ep (t, t0)| ·

∣∣∣∣1− ∫ t

s

ξµ(τ)(p(τ))∆τ − ep(s, t)

∣∣∣∣
+ |ep (t, t0)| ·

∣∣∣∣∫ t

s

[
ξµ(τ)(p(τ))− ξ0(p(t))

]
∆τ

∣∣∣∣ .
Let ε > 0 be given. We now show that there is a neighborhood U of t so that the

right-hand side of the last inequality is less than ε|t− s|, and the proof will be

complete. Since σ(t) = t and p ∈ Crd, it follows that (see lemma 2.17)

lim
r→t

ξµ(r)(p(r)) = ξ0(p(t)).

This implies that there is a neighborhood U1 of t such that∣∣ξµ(τ)(p(τ))− ξ0(p(t))
∣∣ < ε

3 |ep (t, t0)|
for all τ ∈ U1.



44

Let s ∈ U1. Then

|ep (t, t0)| ·
∣∣∣∣∫ t

s

[
ξµ(τ)(p(τ))− ξ0(p(t))

]
∆τ

∣∣∣∣ < ε

3
|t− s|. (2.10)

Next, by L’Hôpital’s rule

lim
z→0

1− z − e−z

z
= 0

so there is a neighborhood U2 of t so that if s ∈ U2, then∣∣∣∣∣1−
∫ t

s
ξµ(τ)(p(τ))∆τ − ep(s, t)∫ t

s
ξµ(τ)(p(τ))∆τ

∣∣∣∣∣ < ε∗,

where

ε∗ = min

{
1,

ε

1 + 3 |p(t)ep (t, t0)|

}
.

Let s ∈ U := U1 ∩ U2. Then

|ep (t, t0)| ·
∣∣∣∣1− ∫ t

s

ξµ(τ)(p(τ))∆τ − ep(s, t)

∣∣∣∣ < |ep (t, t0)| ε∗
∣∣∣∣∫ t

s

ξµ(τ)(p(τ))∆τ

∣∣∣∣
≤ |ep (t, t0)| · ε∗

{∣∣∣∣∫ t

s

{
ξµ(τ)(p(τ))− ξ0(p(t))

]
∆τ

∣∣∣∣+ |p(t)||t− s|
}

≤ |ep (t, t0)| ·
∣∣∣∣∫ t

s

[
ξµ(τ)(p(τ))− ξ0(p(t))

]
∆τ

∣∣∣∣+ |ep (t, t0)| ε∗|p(t)||t− s|

≤ ε

3
|t− s|+ |ep (t, t0)| ε∗|p(t)||t− s|

≤ ε

3
|t− s|+ ε

3
|t− s|

=
2ε

3
|t− s|

using (2.10).

As we have just confirmed, the generalized exponential function ep(t, t0) exists

as a solution to the initial value problem (2.9). The natural thing to do next in the

theory of equations in general is to verify if indeed this solution is unique. The result is

affirmative, as we see in the following theorem.

Theorem 2.19. If (2.7) is regressive, then the only solution of (2.9) is given by ep (·, t0)
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Proof. Assume y is a solution of (2.9) and consider the quotient y/ep (·, t0) (note that by
Definition 2.14 we have that ep(t, s) ̸= 0 for all t, s ∈ T). By Theorem 1.12 (v) we have(

y

ep (·, t0)

)∆

(t) =
y∆(t)ep (t, t0)− y(t)e∆p (t, t0)

ep (t, t0) ep (σ(t), t0)

=
p(t)y(t)ep (t, t0)− y(t)p(t)ep (t, t0)

ep (t, t0) ep (σ(t), t0)

= 0

so that y/ep (·, t0) is constant according to Corollary1.32 (ii). Hence

y(t)

ep (t, t0)
≡ y (t0)

ep (t0, t0)
=

1

1
= 1

and therefore y = ep (·, t0).

We now know that there exists a solution for a first order linear dynamic

equation (F.O.L.D.E) that is homogenous, that is given explicitly as the generalized

exponential function over an arbitrary time scale. Interestingly enough, this solution is

unique. Before we proceed to non-homogenous first order linear dynamic equations, we

state and prove some important properties of the exponential function that will make it

easy when solving typical F.O.L.D.Es. We proceed by collecting some important

properties of the exponential function.

Theorem 2.20. If p, q ∈ R, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii) 1
ep(t,s)

= e⊖p(t, s);

(iv) ep(t, s) =
1

ep(s,t)
= e⊖p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vii) ep(t,s)

eq(t,s)
= ep⊖q(t, s);

(viii)
(

1
ep(·,s)

)∆
= − p(t)

eσp (·,s)
.
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Proof. Note that the proofs are a straightforward application of the definition of the

exponential function and an application of the existence and uniqueness theorems we

have just proved. Thus we prove (ii), (v) and (vii), for brevity sake as other parts of the

proof can be found in [1].

Part (ii). By Theorem 1.10 (iv) we have

ep(σ(t), s) = eσp(t, s)

= ep(t, s) + µ(t)e∆p (t, s)

= ep(t, s) + µ(t)p(t)ep(t, s)

= (1 + µ(t)p(t))ep(t, s),

where we have used Theorem 2.18.

Part (v). This semigroup property was already shown in Lemma 2.15, based on

the definition of the exponential function in terms of the cylinder transformation.

However, let us here deduce the semigroup property using only the fact that

exponential functions are unique solutions of initial value problems (2.18). Consider the

initial value problem

y∆ = p(t)y, y(r) = 1. (2.11)

We show that y(t) := ep(t, s)ep(s, r) satisfies (2.11), and then the claim follows from

Theorem 2.18 and Theorem 2.19. It is obvious that y∆(t) = p(t)y(t), and

y(r) = ep(r, s)ep(s, r) = 1

follows from part (iv).

Part (vii). One can see that

ep (t, s)

eq (t, s)
= exp

(∫ t

s

log(1 + µ(τ)p(τ))

µ(τ)
∆τ

)
· exp

(
−
∫ t

s

log(1 + µ(τ)q(τ))

µ(τ)
∆τ

)
= exp

(∫ t

s

1

µ(τ)
log

1 + µ(τ)p(τ)

1 + µ(τ)q(τ)
∆τ

)
= exp

(∫ t

s

1

µ(τ)
log

(
1 + µ(τ)

p(τ)− q(τ)

1 + µ(τ)q(τ)

)
∆τ

)
= ep⊖q (t, s)

The following results simplify calculations that involve integrals of exponential

functions and we will use this technique in an example to follow.

Theorem 2.21. If p, q ∈ R, then

e∆p⊖q (·, t0) = (p− q)
ep (·, t0)
eσq (·, t0)
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Proof. We have, and use Theorem 2.20 (ii) and (vii)

e∆p⊖q (t, t0) = (p⊖ q)(t)ep⊖q (t, t0)

=
p(t)− q(t)

1 + µ(t)q(t)

ep (t, t0)

eq (t, t0)

=
(p(t)− q(t))ep (t, t0)

eq (σ(t), t0)

Theorem 2.22. If p ∈ R and a, b, c ∈ T, then

[ep(c, ·)]∆ = −p [ep(c, ·)]σ

and ∫ b

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

Proof. We use many of the properties from Theorem 2.20 to find

p(t)ep(c, σ(t)) = p(t)e⊖p(σ(t), c)

= p(t)[1 + µ(t)(⊖p)(t)]e⊖p(t, c)

= p(t)

[
1− µ(t)p(t)

1 + µ(t)p(t)

]
e⊖p(t, c)

= p(t)
1

1 + µ(t)p(t)
e⊖p(t, c)

= −(⊖p)(t)e⊖p(t, c)

= −e∆⊖p(t, c)

= − [ep(c, t)]
∆ ,

where ∆ denotes differentiation with respect to t. Thus∫ b

a

p(t)ep(c, σ(t))∆t = −
∫ b

a

[ep(c, ·)]∆ (t)∆t

= ep(c, a)− ep(c, b)

which proves our desired identity.

And now an example to illustrate how we can use the previous theorem to

quickly solve integrals involving the exponential function

Example 2.23. Assume 2
t
, 5
t
are regressive on T ∩ (0,∞) and let t0 ∈ T ∩ (0,∞).

Evaluate the integral ∫ t

t0

e 5
s
(s, t0)

seσ2
s

(s, t0)
∆s.
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We use Theorem 2.21 by choosing p = 5
s
and q = 2

s
.∫ t

t0

e 5
s
(s, t0)

seσ2
s

(s, t0)
∆s =

1

3

∫ t

t0

3

s

e 5
s
(s, t0)

eσ2
s

(s, t0)
∆s

=
1

3

∫ t

t0

e∆p⊖q (s, t0)∆s

=
1

3

(
ep⊖q (t, t0)− ep⊖q (t0, t0)

)
and now using Lemma 2.13, p⊖ q = 3

t+2µt
and the fact that ep⊖q (t0, t0) = 1 we finally

get ∫ t

t0

e 5
s
(s, t0)

seσ2
s

(s, t0)
∆s =

1

3
e 3

t+2µt
(t, t0)−

1

3
.

Unlike the classical exponential function which is never negative, the Hilger

exponential function can be negative sometimes. In some time scales like T = Z the

exponential function changes sign at every point and is said to be oscillatory.

However, In particular, the Hilger exponential function ep(, , t0) is a real-valued function

that is never equal to zero.

In the remainder of this section we study the sign of the exponential function.

We state the theorems without proof which can be found in [1] and more specifically

Lemma 2.24 below appear in Akın, Erbe, Kaymakçalan, and Peterson [8].

Lemma 2.24. Let p ∈ R. Suppose there exists a sequence of distinct points

{tn}n∈N ⊂ Tκ such that

1 + µ (tn) p (tn) < 0 for all n ∈ N.

Then limn→∞ |tn| = ∞. In particular, if there exists a bounded interval J ⊂ Tκ such

that 1 + µ(t)p(t) < 0 for all t ∈ J , then |J | < ∞.

Proof. See Lemma 13 in [8]

Theorem 2.25. Assume p ∈ R and t0 ∈ T.

(i) If 1 + µp > 0 on Tκ, then ep (t, t0) > 0 for all t ∈ T.

(ii) If 1 + µp < 0 on Tκ, then ep (t, t0) = α (t, t0) (−1)nt for all t ∈ T, where

α (t, t0) := exp

(∫ t

t0

log |1 + µ(τ)p(τ)|
µ(τ)

∆τ

)
> 0

and

nt =

{
|[t0, t)| if t ≥ t0

|[t, t0)| if t < t0
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Proof. See Theorem 2.44 in [1]

In view of Theorem 2.25 (i), we notice that for positively regressive elements of

R, the exponential function is strictly positive.

We now turn to examples of exponential functions where we try to derive the

exponential function equivalent of an arbitrary time scale. For some time scales the

resulting exponential function is rather unexpected and involve therefore factorials,

binomial coefficients and even the Wallis product! And hence it is interesting to take a

look at several of these:

2.4 Examples of Exponential Functions on

Arbitrary Time Scales

Example 2.26. Let T = hZ for h > 0. Let α ∈ R be constant, i.e.,

α ∈ C\
{
−1

h

}
.

Then

eα(t, 0) = (1 + αh)
t
h for all t ∈ T. (2.12)

We will first derive 2.12 from first principles i.e. by using the properties of the

time scale hZ and the definition of the exponential function. And then we go on to

show it is indeed the exponential function (solution) for F.O.L.D.Es (first order linear

dynamic equations) defined on hZ.
Note that the graininess (µ(t)) of hZ is h, and in this case our regressive

function p is the constant function α.

eα(t, 0) = e
∫ t
0 ξh(α)∆τ

= e
∫ t
0

log(1+αh)
h

∆τ (definition of cylinder transformation)

= e
∑ t

h
−1

0 log(1+αh) by Theorem 1.40 (iii)

= e
t
h
log(1+αh)

= (1 + αh)
t
h

Let us now show that this exponential function is a solution of a F.O.L.D.E on hZ. To
show this we note that y defined by the right-hand side of (2.12) satisfies

y(0) = (1 + αh)0 = 1
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and

y∆(t) =
y(t+ h)− y(t)

h

=
(1 + αh)

t+h
h − (1 + αh)

t
h

h

=
(1 + αh)

t
h (1 + αh− 1)

h

= α(1 + αh)
t
h

= αy(t)

for all t ∈ T.
Example 2.27. Consider the time scale

T = N2
0 =

{
n2 : n ∈ N0

}
We claim that

e1(t, 0) = 2
√
t(
√
t)! for t ∈ T. (2.13)

Let y be defined by the right-hand side of (2.13). Clearly, y(0) = 1, and for t ∈ T
we have

y(σ(t)) = 2
√

σ(t)(
√

σ(t))!

= 21+
√
t(1 +

√
t)!

= 2 · 2
√
t(1 +

√
t)(

√
t)!

= 2(1 +
√
t)y(t)

= (1 + µ(t))y(t)

= y(t) + µ(t)y(t)

so that y∆(t) = y(t)

We consider an interesting time scale formed by the so called quantum numbers

below, which is mainly used to solve q-difference equations.

Example 2.28. We consider the time scale T = qN0 .

Let p ∈ R. The problem

y∆ = p(t)y, y(1) = 1

can be equivalently rewritten as

yσ = (1 + (q − 1)tp(t))y, y(1) = 1.

The solution of this problem obviously (easily derived using the cylinder transformation

formular and the definition of the exponential function) is

ep(t, 1) =
∏

s∈T∩(0,t)

(1 + (q − 1)sp(s)). (2.14)
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If α ∈ R is constant, then we have

eα(t, 1) =
∏

s∈T∩(0,t)

(1 + (q − 1)αs).

For q = 2 this simplifies as

eα(t, 1) =
∏

s∈T∩(0,t)

(1 + αs).

Now consider the special case when

p(t) =
1− t

(q − 1)t2
for t ∈ T

Using (2.14), we find

ep(t, 1) =
∏

s∈T∩(0,t)

(1 + (q − 1)sp(s))

=
∏

s∈T∩(0,t)

(
1 +

1− s

s

)
=

∏
s∈T∩(0,t)

1

s

=
k−1∏
n=0

1

qn

=
1

qk(k−1)/2

= q
k
2 q−

k2

2

where we put t = qk. Substituting t = qk we finally get that

ep(t, 1) =
√
te−

ln2(t)
2 ln(q)

Definition 2.29. If q > 1, then any dynamic equation on either of the time scales

qZ or qN0

is called a q-difference equation (see, e.g., Bézivin [9]).

We now give an application where we would want to find the exponential

function e1(·, 0) for P1,1. The following example seems to be the favorite among time

scale researchers! Certainly because it captures the dynamic nature of nature by

modelling both continuous and discrete points. More details below.
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Let N(t) be the number of plants of one particular kind at time t in a certain

area. By experiments we know that N grows exponentially according to N ′ = N during

the months of April until September. At the beginning of October, all plants suddenly

die, but the seeds remain in the ground and start growing again at the beginning of

April with N now being doubled. We model this situation using the time scale

T = P1,1 =
∞⋃
k=0

[2k, 2k + 1]

where t = 0 is April 1 of the current year, t = 1 is October 1 of the current year, t = 2

is April 1 of the next year, t = 3 is October 1 of the next year, and so on. We have

µ(t) =

{
0 if 2k ≤ t < 2k + 1

1 if t = 2k + 1

On [2k, 2k + 1), we have N ′ = N , i.e., N∆ = N . However, we also know that

N(2k + 2) = 2N(2k + 1), i.e., ∆N(2k + 1) = N(2k + 1), i.e., N∆ = N at 2k + 1. As a

result, N is a solution of the dynamic equation

N∆ = N

Thus, if N(0) = 1 is given, N is exactly e1(·, 0) on the time scale T. We can

calculate N as follows: If k ∈ N0 and t ∈ [2k, 2k + 1], then N satisfies N ′ = N so that

N(t) = αke
t for some αk ∈ R

Since N(0) = 1, we have

1 = N(0) = α0e
0 = α0 and N(t) = α0e

t = et for 0 ≤ t ≤ 1.

Thus N(1) = e and N(2) = 2N(1) = 2e. Now

2e = N(2) = α1e
2 and N(t) = α1e

t =
2

e
et = 2et−1 for 2 ≤ t ≤ 3.

Hence N(3) = 2e2 and N(4) = 2N(3) = 4e2. Next

4e2 = N(4) = α2e
4 and N(t) = α2e

t =
4

e2
et = 4et−2 for 4 ≤ t ≤ 5.

We now use mathematical induction to show that

N(t) =

(
2

e

)k

et for t ∈ [2k, 2k + 1].

The statement is already shown for k = 0. Assume it is true for k = m ∈ N0. Then
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Table 2.1. Plant Population
t 0 1 2 3 4 5 6 7

e1(t, 0) 1 e 2e 2e2 4e2 4e3 8e3 8e4

N(t) = (2/e)met for t ∈ [2m, 2m+ 1] so that

N(2m+ 1) =

(
2

e

)m

e2m+1 = 2mem+1

and

N(2m+ 2) = 2N(2m+ 1) = 2 · 2mem+1 = (2e)m+1

Therefore

(2e)m+1 = N(2m+ 2) = αm+1e
2m+2

and

N(t) = αm+1e
t =

(
2

e

)m+1

et for 2m+ 2 ≤ t ≤ 2m+ 3.

In Table 2.1 we collected a few values of this exponential function.

We cannot exhaust the list of exponential functions on arbitrary time scales, and

below we list without demonstrating, several versions of exponential functions on

mostly encountered time scales.

Table 2.2. Exponential functions
T eα (t, t0)

R eα(t−t0)

Z (1 + α)t−t0

hZ (1 + αh)(t−t0)/h

1
n
Z

(
1 + α

n

)n(t−t0)

qN0
∏

s∈[t0,t)[1 + (q − 1)αs] if t > t0
2N0

∏
s∈[t0,t)(1 + αs) if t > t0{∑n

k=1
1
k
: n ∈ N

} (
n+ α− t0
n− t0

)
if t =

∑n
k=1

1
k
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2.5 Initial Value Problems (IVPs)

In this final section of this expository work, we study the first order

non-homogeneous linear equations. This will provide a strong framework to solve most

F.O.L.D.Es that are non-homogenous that one might encounter.

We study the equation

y∆ = p(t)y + f(t) (2.15)

and the corresponding homogeneous equation

y∆ = p(t)y (2.16)

on a time scale T. The results from Section 2.3 immediately yield the following theorem.

Theorem 2.30. Suppose (2.16) is regressive. Let t0 ∈ T and y0 ∈ R. The unique

solution of the initial value problem

y∆ = p(t)y, y (t0) = y0 (2.17)

is given by

y(t) = ep (t, t0) y0

Proof. Simple delta differentiation of the function y given above verifies the Theorem

directly.

Definition 2.31. For p ∈ R we define an operator L1 : C
1
rd → Crd by

L1y(t) = y∆(t)− p(t)y(t), t ∈ Tκ.

Then (2.16) can be written in the form L1y(t) = 0 and (2.15) can be written in the

form L1y(t) = f(t). Since L1 is a linear operator we say that (2.15) is a linear equation.

We say y is a solution of (2.15) on T provided y ∈ Cl
rd and L1y(t) = f(t) for t ∈ Tκ.

Definition 2.32. The adjoint operator L∗
1 : C

1
rd → Crd is defined by

L∗
1x(t) = x∆(t) + p(t)xσ(t), t ∈ Tκ.

Theorem 2.33. (Lagrange Identity). If x, y ∈ C1
rd, then

xσL1y + yL∗
1x = (xy)∆ on Tκ.
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Proof. Assume x, y ∈ C1
rd and consider

(xy)∆ = xσy∆ + x∆y

= xσ
(
y∆ − py

)
+ y

(
x∆ + pxσ

)
= xσL1y + yL∗

1x

on Tκ.

The next result follows immediately from the Lagrange identity.

Corollary 2.34. If y and x are solutions of L1y = 0 and L∗
1x = 0, respectively, then

x(t)y(t) = C for t ∈ T,

where C is a constant.

It follows from this corollary that if a nontrivial y satisfies L1y = 0, then x := 1
y

satisfies the adjoint equation L∗
1x = 0.

Bohner and Peterson [1] proceed to give the following existence and uniqueness

result for the adjoint initial value problem.

Theorem 2.35. Suppose p ∈ R. Let t0 ∈ T and x0 ∈ R. The unique solution of the

initial value problem

x∆ = −p(t)xσ, x (t0) = x0 (2.18)

is given by

x(t) = e⊖p (t, t0)x0.

Proof. Theorem 2.35 follows directly from Corollary 2.34. It can also be easily proved

by showing directly that the function y given in Theorem 2.35 solves the initial value

problem (2.18).

Let us focus on the non-homogeneous problem below

x∆ = −p(t)xσ + f(t), x (t0) = x0. (2.19)

Let us assume that x is a solution of (2.19). We multiply both sides of the

dynamic equation in (2.19) by the so-called integrating factor ep (t, t0) and obtain

[ep (·, t0)x]∆ (t) = ep (t, t0)x
∆(t) + p(t)ep (t, t0)x

σ(t)

= ep (t, t0)
[
x∆(t) + p(t)xσ(t)

]
= ep (t, t0) f(t),

and now we integrate both sides from t0 to t to conclude

ep (t, t0)x(t)− ep (t0, t0)x (t0) =

∫ t

t0

ep (τ, t0) f(τ)∆τ



56

This integration is possible according to Theorem 1.36 provided f ∈ Crd. Hence the

following definition is useful.

Definition 2.36. The equation (2.15) is called regressive provided (2.16) is regressive

and f : T → R is rd-continuous.

We are equipped to attack the non-homogenous F.O.L.D.E defined by the

adjoint equation L∗
1x = f . We next give the variation of constants formula for the

adjoint equation L∗
1x = f .

Theorem 2.37. (Variation of Constants). Suppose (2.15) is regressive. Let t0 ∈ T and

x0 ∈ R. The unique solution of the initial value problem

x∆ = −p(t)xσ + f(t), x (t0) = x0 (2.20)

is given by

x(t) = eΘp (t, t0)x0 +

∫ t

t0

e⊖p(t, τ)f(τ)∆τ

Proof. (See [1], Theorem 2.74 p. 77)

Remark 2.38. Because of Theorem 2.20 (v), an alternative form of the solution of the

initial value problem (2.20) is given by the following

x(t) = e⊖p (t, t0)

[
x0 +

∫ t

t0

e⊖p (t0, τ) f(τ)∆τ

]
.

Finally we can give the variation of constants formula for L1y = f .

Theorem 2.39. (Variation of Constants). Suppose (2.15) is regressive. Let t0 ∈ T and

y0 ∈ R. The unique solution of the initial value problem

y∆ = p(t)y + f(t), y (t0) = y0 (2.21)

is given by

y(t) = ep (t, t0) y0 +

∫ t

t0

ep(t, σ(τ))f(τ)∆τ

Proof. (See [1], Theorem 2.77 p.77)

Let us use conclude by using the theorems in this section to solve some

F.O.L.D.Es

We start by the simple F.O.L.D.E

y∆ = 2y + 3t, y(0) = 0 where T = Z (2.22)
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Solution Note that 2.22 is a non-homogenous and of course linear dynamic

equation with the function p represented by 2 and f by 3t. We apply Theorem 2.39

which says the answer is given by

y(t) = ep (t, t0) y0 +

∫ t

t0

ep(t, σ(τ))f(τ)∆τ

Lets break down each part and join them in the above formula for brevity sake. The

first term of the right hand of the equal sign is 0 because y0 = 0. ep(t, σ(τ)) in our case

is e2(t, τ + 1) which is equal, from Table 2.2, (1 + 2)t−(τ+1). Lets put this in the general

form of the solution, we get

y(t) =

∫ t

0

3t−1−τ3τ∆τ

= 3t−1

∫ t

0

3−τ3τ∆τ

= 3t−1

∫ t

0

1∆τ

= 3t−1

t−1∑
0

1 (by Theorem 1.40)

= t3t−1

And now let us develop and solve an example that takes the well known logistic

growth differential equation in literature and writes the corresponding time scales

version of it. The example is left as an exercise in the paper by Sabrina Streipert, see

[10] and we solve it below.

Example 2.40. Let us consider a time scales analogue of the popular logistic growth

model y′ = ry
(
1− y

K

)
, namely,

y∆ = ryσ
(
1− y

K

)
, y (t0) = y0 (2.23)

with growth rate r > 0, and carrying capacity K > 0, and initial population size

y (t0) > 0 at time t0 ∈ T.
Even though this is an example of a nonlinear dynamic equation of first order,

we can apply the substitution z = 1
y
for y ̸= 0, to obtain the linear dynamic equation

z∆ =

(
1

y

)∆

z∆ =
−y∆

yyσ
(apply Theorem 1.12 (v))

= −rz +
r

K
, and the initial condition is z (t0) =

1

y0
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Again note that our p is −r and our f is r
K
.

For −r ∈ R, the solution is then given by Theorem 2.39. Using also Theorem

2.22 and re-substituting later yields

z(t) = e−r (t, t0) y0 +

∫ t

t0

e−r (t, σ(τ))
r

K
∆τ (by Theorem 2.39)

= e−r (t, t0) y0 −
1

K

∫ t

t0

−re−r (t, σ(τ))∆τ

= e−r (t, t0) y0 −
1

K

[
e−r (t, t0)− e−r (t, t)

]
(by applying Theorem 2.22 )

=
Ke−r (t, t0)− y0

(
e−r (t, t0)− 1

)
y0K

=
e−r (t, t0)

[
K − y0 + y0

]
yoK

And then by re-substituting to get the solution in terms of y,

y(t) =
y0K

e−r (t, t0) (K − y0) + y0
. (2.24)

It can be easily checked that y (t0) = y0 and that y solves (2.23), Note that for T = R,
((2.23)) collapses to the Verhulst model y′ = ry

(
1− y

K

)
and the solution (2.24) reads in

this case as

y(t) =
y0K

e−r(t−t0) (K − y0) + y0
,

which coincides with the classical solution.

We can visualize the Logistic Dynamic model on several time scales as show in

2.2 where we can see that the shape of the graph is the same for different time scales.

The visualisation is due to Tom Cutcha who also runs a TimeScales wiki page.

The above equation has many uses that include modelling population growth

under certain constraints, in medicine to model growth of tumors and even modelling

pandemics for example the COVID-19 pandemic!
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Figure 2.2. Visualization of Logistic dynamic equation on various time scales
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CHAPTER 3

Conclusions

We have seen that Time Scale Calculus provides a rigorous framework that not

only unifies differential and difference calculus together, but also extends them to

different underlying time domains (dynamic equations). The major advantage of using

time scales is to avoid proving results twice, once for continuous/ordinary calculus and

once again for discrete calculus. So when one proves the result or theory on an

arbitrary time scale (measure chain), they are basically done. Another advantage is

that dynamic equations allows the modeling of hybrid systems that are a combination

of discrete and continuous parts.

Together with my supervisor Prof. Seba we are now currently working on a research

article that focuses on oscillation criteria for solutions of dynamic equations on

time scales. The abstract of the latter has been accepted for presentation and

participation at the INTERNATIONAL CONFERENCE ON NONLINEAR SCIENCE

AND COMPLEXITY, July 2023 held in Turkey.
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.1 Appendix

In this thesis we have considered formulae, definitions and theorems involving

the forward jump operator and the related delta (∆) derivatives. This means we have

considered time scales that contain left-scattered suprema and with interest in how

functions change as time moves forward.

In this section we consider the definitions, theorems and differentiability formulae

involving the backward jump operator. The former and the latter look very similar,

that is why for brevity sake we proceeded using Delta derivatives. But care should be

taken in that for time scales that contain right-scattered infinima, it is preferable to use

a derivative that uses ρ(t) in its definition rather σ(t). In fact the whole thesis could be

written using results for the so-called Nabla derivatives that use the backward jump

operator ρ. The results in this section are due to Duke and Elizabeth, see [11].

Definition .1. (Backward Graininess Function). The backwards graininess function,

ν : T → [0,∞] is defined by

ν(t) := t− ρ(t)

Definition .2. (Tk). If T has a right-scattered minimum a, then Tk = T− {a}.
Otherwise, Tk = T

Further, Tk ∩ Tk is denoted Tk
k. To describe a subset of an existing time scale

with m left-scattered right endpoints removed and n right-scattered left endpoints

removed, we use the notation Tkm

kn
, where m,n = 0, 1, 2 . . ., e.g. Tk0 = T,Tk1 = Tk.

Likewise, Tk2 = Tk − {ρ(b)} if ρ(b) is left-scattered and Tk2 = Tk otherwise.

Definition .3. (The Nabla Derivative). A function defined on T is nabla differentiable

on Tk if for every ϵ > 0, there exists a δ > 0 with s ∈ (t− δ, t+ δ) ∩ T such that the

inequality ∣∣f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)
∣∣ < ϵ|ρ(t)− s|

holds. f∇(t) is called the nabla derivative of f at t.

And finally we give the theorem that gives differentiation formulae for nabla

derivatives.

Theorem .4. For f : T −→ R and t ∈ Tk, we have the following:

(i) If f is ∇-differentiable at t, then f is continuous at t.
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(ii) If f is d-continuous at a backward scattered point t, then it is ∇-differentiable at

t and

f∇(t) =
f(ρ(t))− f(t)

ρ(t)− t

(iii) If f is ∇-differentiable at a backward dense point t, then

f∇(t) = lim
r→t

f(t)− f(r)

t− r

(iv) If f is ∇-differentiable at t, then

f(ρ(t)) = f(t)− ν(t)f∇(t).

Proof. Same procedure as with forward jump operators.

For more analogue theorems including nabla anti-derivatives, see [12].
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