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Analysis of bearings defaults using machine learning techniques

Abstract

Rotating machines have become ubiquitous in contemporary industries, playing a pivotal role in
various applications. The consequences of defects in these machines extend beyond mere
technical issues, potentially leading to substantial economic losses and posing a significant threat
to human safety. Operators often grapple with the intricacies of troubleshooting these complex
systems, where a single mistake can have catastrophic consequences.

One of the most critical elements in these machines is the bearings. Consequently, numerous
researchers have dedicated their time and efforts to addressing this matter.

While extensive studies have been conducted in this field, a common limitation is the focus on
constant-speed scenarios. In reality, rotating machines typically operate under non-stationary
conditions, making constant-speed techniques largely theoretical.

This thesis is divided into two essential parts. The first part addresses the challenges of
diagnostic resolution under time-varying conditions. Given the dynamic nature of the working
environment, understanding and mitigating faults in non-stationary conditions is imperative for
practical applications. Our method aims to tackle the diagnostic issue under time-varying
conditions. The technique was tested on a bearing database collected under time-varying
conditions, containing three types of faults. Vibrational signals are initially processed using the
Empirical Wavelet Transform (EWT) to extract AM-FM modes. Subsequently, a list of features is
extracted from these modes. For feature selection, the Clan-Based Cultural Algorithm (CCA) is
employed, and model training utilizes the Random Forest algorithm. The results demonstrate the
robustness of the diagnostic process despite varying conditions.

The second part focuses on feature selection, which plays a crucial role in controlling the quality
of the diagnostic system and reducing misleading factors. This area of research is increasingly
attracting attention, with numerous methods developed. However, many of these techniques
require in-depth domain knowledge, particularly concerning parameter tuning and result
interpretation. In this work, we introduce a robust technique based on standard deviation and
Random Forest methods for sequential feature selection. The method was tested on three
different bearing databases, including time-varying conditions, and three signal decomposition
techniques (EWT, EMD, and MODWPT). It provided promising results in terms of both quality
and quantity, being user-friendly and not demanding extensive knowledge in the optimization
field.

Keywords:

Rotating machines, fault classification, features selection, empirical wavelet transform, random
forest, time-varying conditions, signal processing.



Analyse des défauts de roulements a l'aide des techniques
d'apprentissage automatique.

Résumé

Les machines tournantes sont devenues omniprésentes dans les industries contemporaines,
jouant un role central dans diverses applications. Les conséquences des défauts de ces
machines vont au-dela des simples problémes techniques, pouvant entrainer des pertes
économiques considérables et représentant une menace importante pour la sécurité humaine.
Les opérateurs se retrouvent souvent a jongler avec les complexités du dépannage de ces
systémes complexes, ou une simple erreur peut avoir des conséquences catastrophiques.
L'un des éléments les plus critiques dans ces machines est les roulements. Par conséquent,
de nombreux chercheurs ont consacré leur temps et leurs efforts a résoudre ce probleme.
Bien que des études approfondies aient été menées dans ce domaine, une limitation
fréquente est la focalisation sur des scénarios a vitesse constante. En réalité, les machines
tournantes fonctionnent généralement dans des conditions non stationnaires, ce qui rend les
techniques a vitesse constante largement théoriques.

Cette thése est divisée en deux parties essentielles. La premiére partie aborde les défis de la
résolution diagnostique dans des conditions variables dans le temps. Etant donné la nature
dynamique de l'environnement de travail, comprendre et atténuer les défauts dans des
conditions non stationnaires est impératif pour les applications pratiques. Notre méthode vise
a traiter le probleme diagnostique dans des conditions variables dans le temps. La technique a
été testée sur une base de données de roulements collectée dans des conditions variables
dans le temps, comportant trois types de défauts. Les signaux vibratoires sont d'abord traités a
l'aide de la Transformée en Ondelette Empirique (EWT) pour extraire les modes AM-FM.
Ensuite, une liste de caractéristiques est extraite de ces modes. Pour la sélection des
caractéristiques, I'Algorithme Culturel Basé sur le Clan (CCA) est utilisé, et I'entrainement du
modéle utilise I'algorithme Random Forest. Les résultats démontrent la robustesse du
processus diagnostique malgré les conditions variables.

La deuxiéme partie se concentre sur la sélection des caractéristiques, qui joue un réle crucial
dans le contrdle de la qualité du systeme diagnostique et dans la réduction des facteurs
trompeurs. Ce domaine de recherche attire de plus en plus l'attention, avec de nombreuses
méthodes développées. Cependant, beaucoup de ces techniques nécessitent une
connaissance approfondie du domaine, notamment en ce qui concerne l'ajustement des
parameétres et l'interprétation des résultats. Dans ce travail, nous présentons une technique
robuste basée sur I'écart type et les méthodes Random Forest pour la sélection séquentielle
des caractéristiques. La méthode a été testée sur trois bases de données de roulements
différentes, incluant des conditions variables dans le temps et trois techniques de
décomposition du signal (EWT, EMD, et MODWPT). Elle a fourni des résultats prometteurs en
termes de qualité et de quantité, étant conviviale et ne nécessitant pas de connaissances
approfondies dans le domaine de I'optimisation.

Mots-clés :

Machines rotatives, classification des défauts, sélection des caractéristiques, transformée en
ondelettes empiriques (EWT), forét aléatoire (RF), conditions variables dans le temps,
traitement du signal).
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Chapter 1 — General Introduction

1.1 Introduction

Rotating machines are the workhorses of industry, serving as the mechanical heartbeats
that power, manufacture, and propel the modern world. These versatile devices, which
encompass a wide array of mechanical systems from engines to turbines, play a pivotal
role in various industrial sectors. Their significance is deeply intertwined with the ef-
ficient functioning of numerous industries, each relying on these machines for specific
tasks and applications.

The importance of rotating machines in industry cannot be overstated. They are in-
dispensable in sectors such as manufacturing, energy production, and transportation,
providing the necessary power and motion for a wide range of processes. Their ver-
satility and efficiency in converting energy into mechanical work make them essential
components in modern industrial operations. However, they are susceptible to failures
that can disrupt operations. Bearings, on the other hand, represent one of the most
critical elements in these types of machines. Bearings play a vital role in rotating
equipment. The type of bearing used is determined by factors such as the applica-
tion, load capacity, speed, and operating conditions. In rotating machines, bearings
are positioned between the rotating shaft and the supporting machine part to facilitate
smooth rotation by minimizing friction and wear. Their proper selection, maintenance,
and timely replacement are essential to prevent failures and ensure the reliable perfor-
mance of rotating machines. Bearings are integral to the functionality and longevity of
rotating equipment, making them indispensable components in the smooth operation
of various industrial processes.

Rolling bearings play a critical role within rotating machinery, functioning to mini-
mize friction between moving components [5]. Despite their relatively small size, even
minor flaws in these bearings can have far-reaching consequences, potentially disrupting
the entire operation of machinery systems. Astonishingly, bearing defects are account-
able for a significant share of machinery breakdowns, contributing to 40% of issues in
large-scale systems and an alarming 90% in smaller-scale machinery setups [6].

The health of bearings is influenced by a myriad of factors, encompassing design
irregularities, manufacturing imperfections, suboptimal mounting practices, misalign-
ment of bearing races, variations in rolling element dimensions, inadequate lubrication,
overloading, and fatigue [7]. These diverse factors can lead to substantial damage to
bearing components, incurring significant losses both in terms of equipment reliability
and financial expenses [6].

This situation underscores the urgent necessity to develop and deploy effective fault
diagnosis methods that can ensure the smooth operation of rolling bearings and preempt
unforeseen failures. These diagnostic techniques are specifically engineered to detect
and identify any issues or abnormalities within the bearings’ operational health. To
this end, a wide spectrum of indicators is utilized, including motor current analysis,
acoustic emissions, temperature measurements, and vibration analysis.

While vibration analysis and acoustic monitoring emerge as the most prevalent
techniques for bearing fault diagnosis, their prominence arises from their ability to con-
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duct diagnostics without disrupting machine operations or necessitating disassembly [8].
However, the acquisition of pristine acoustic signals can be a formidable challenge, often
hindered by environmental conditions, variations in recording software configurations,
and the interference of reflected acoustic signals [9)].

In contrast, vibration analysis assumes the role of the preferred method for assessing
machinery conditions. This technique furnishes a wealth of information about the
defective component and the severity of the damage. This information is extracted
from the amplitude and frequency characteristics inherent in the collected vibration
signatures. It is noteworthy that more than 82% of fault diagnosis techniques rely on
vibration analysis [8], which can define the non-stationary scenario precisely.

To effectively harness the insights embedded within raw vibration signals, a compre-
hensive processing framework is essential. This involves a multifaceted approach where
the extraction of pertinent features plays a pivotal role in unveiling hidden patterns
and anomalies. The feature selection step emerges as a critical juncture in this process,
assuming paramount significance in refining the dataset for subsequent analysis.

In this crucial stage, the dataset undergoes meticulous curation to discern and elim-
inate irrelevant, redundant, or noisy information that may obscure the underlying pat-
terns. Conversely, relevant features are carefully preserved and prioritized to optimize
the efficacy of subsequent data mining algorithms. By meticulously excising extraneous
data points and preserving salient features, the objective is to enhance the efficiency
of predictive models, bolster the accuracy of diagnostic predictions, and render the
resultant insights more interpretable and actionable.

Within the domain of bearing diagnosis, various feature selection algorithms have
been extensively employed, consistently yielding high-performance outcomes. These al-
gorithms leverage sophisticated techniques such as statistical analysis, machine learning,
and signal processing to identify and prioritize features that exhibit strong correlations
with fault conditions. Through rigorous experimentation and validation, these algo-
rithms have demonstrated their efficacy in distilling complex vibration datasets into
concise and informative feature sets, thereby facilitating more accurate and reliable
diagnostic outcomes.

This integrative approach displays a concerted task aimed at augmenting the re-
liability and precision of bearing fault diagnosis across a diverse array of operational
conditions and scenarios. Through the symbiotic amalgamation of state-of-the-art fea-
ture selection methodologies with advanced vibration analysis techniques, this research
initiative endeavors to catalyze substantial advancements in the domain of fault detec-
tion within machinery systems.

By synergistically harnessing the analytical prowess of advanced feature selection
algorithms alongside rigorous vibration analysis protocols, this research seeks to de-
velop robust and empirically grounded methodologies for the early detection and char-
acterization of bearing faults under non-stationary conditions. Through methodical
experimentation and meticulous validation, the overarching objective is to elucidate
the intricate dynamics governing the manifestation of fault signatures within vibration
signals, thereby furnishing engineers and maintenance practitioners with empirically
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validated tools and insights essential for proactive fault mitigation strategies and the
optimization of machinery reliability and performance.

As we have established the pivotal role of bearings in rotating machines and the
pressing need for effective fault detection methods, it’s imperative to outline the struc-
ture of our thesis. The upcoming chapters are organised as follows:

Chapter 1 offers a comprehensive introduction, delving into the motivations driv-
ing our research and its overarching objectives.

Chapter 2 provides a detailed review of bearings, covering their defects and factors
influencing their condition monitoring and fault detection.

Chapter 3 presents an analysis of existing fault detection techniques, showcasing
the latest advancements in the field.

Chapter 4 elucidates the procedural framework and technical tools utilized through-
out our research process.

Chapter 5 encapsulates our findings, offering a thorough analysis of the data col-
lected.

Finally, the concluding chapter ties together key insights and implications derived
from our study.

1.2 Research objectives

This thesis aims to achieve several key objectives aimed at advancing the field of fault
diagnostics for rotating machines. The first set of objectives focuses on enhancing diag-
nostic approaches to effectively address varying operational conditions. The goal is to
develop innovative diagnostic techniques that can seamlessly adapt to the dynamic na-
ture of operational scenarios experienced by rotating machines. By mitigating potential
economic losses and threats to human safety resulting from defects in these machines,
the research aims to overcome the common limitation identified in prior studies, where
diagnostic approaches were primarily focused on constant-speed scenarios.

Simultaneously, a parallel set of objectives aims to optimize the feature selection pro-
cess for improved fault diagnostics. Recognizing the challenge of identifying parameters
that accurately discriminate between different fault conditions, the research seeks to ex-
plore and implement an enhanced feature selection process. This involves considering
various statistical parameters commonly used in fault diagnostics and understanding
the crucial role of optimal features for effective pattern recognition and fault detection.
The overarching objective is to elevate the accuracy of fault diagnostics in real-world
scenarios.
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Ultimately, the research aims to advance the efficiency and reliability of the diagnos-
tic process by integrating the developed diagnostic techniques for varying operational
conditions with refined feature selection methods. The proposed techniques will be
rigorously evaluated and validated through comprehensive testing under diverse opera-
tional scenarios and fault conditions. By achieving these objectives, the research seeks
to contribute significantly to the broader field of machine health monitoring and fault
detection, ensuring a comprehensive improvement in the overall efficiency and reliability
of diagnostic procedures.

This integrated approach to fault diagnosis promises to deliver a holistic solution to
the challenges faced by rotating machines in contemporary industries. By addressing
the complexity of variable operational conditions and optimizing the feature selection
process, the research aims to establish a robust framework for accurate and timely
fault detection, ultimately contributing to the enhancement of equipment reliability
and safety. As a result, the research will lay the groundwork for future advancements
in the field of rotating machine diagnostics, setting new benchmarks for the industry
and promoting sustainable growth.

1.3 Limitations and research motivation

In the realm of rotating machines, rolling bearings emerge as indispensable components
crucial to their operational integrity. These bearings, fundamental to the functioning of
machinery, inherently generate vibrations that serve as vital indicators of their current
state, offering invaluable insights into machinery health.

This thesis tackles a key research challenge centered on achieving diagnostic preci-
sion for rotating machines. These machines, pervasive across modern industries, play
pivotal roles in diverse applications. However, their operation under non-stationary con-
ditions presents a formidable obstacle, rendering conventional diagnostic approaches tai-
lored to stationary conditions insufficient. Addressing the complexities of troubleshoot-
ing these systems becomes a multifaceted endeavor, as defects extend beyond mere
technical issues, potentially leading to substantial economic losses and posing tangible
risks to human safety.

Further complicating matters is the prevalent limitation observed in prior research—a
narrow focus on constant-speed scenarios. This limitation underscores the urgent need
for practical diagnostic techniques customized to the dynamic operational conditions of
rotating machines. The primary aim of this thesis is to develop a diagnostic procedure
capable of effectively navigating time-varying conditions, ensuring precise diagnoses in
real-world applications.

Another significant challenge in this diagnostic process pertains to the identification
of suitable parameters capable of accurately distinguishing between different fault con-
ditions of the bearing. The selection of optimal features represents a critical phase in
pattern recognition, necessitating a deep understanding of the relevant domain. Cho-
sen features must adeptly capture subtle behavioral changes induced by various fault
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conditions and exhibit robustness in efficiently describing faults under diverse operating
conditions, including varying speeds and loads.

In the contemporary landscape of data-driven applications, the identification of
pertinent features has emerged as pivotal for maximizing the effectiveness of data mining
algorithms. Various feature selection methods proposed in the literature aim to extract
the most relevant feature or feature subsets, facilitating classification and clustering
objectives in real-world scenarios.

However, selecting appropriate algorithms for this purpose poses its own array of
challenges. While many of these algorithms show theoretical promise, they often prove
time-consuming and impractical for online activities due to the delays they introduce.
Moreover, their effective utilization demands a profound comprehension of the domain
to fine-tune hyperparameters and interpret results accurately. This underscores the
pressing need for streamlined and efficient feature selection methods that align with
the practical demands of real-world diagnostic applications.

1.4 Structure of the Thesis

This section outlines the structure of the thesis. The upcoming chapters are organized
as follows:

Chapter 1: Provides a comprehensive introduction, discussing the motivations
behind the research, its objectives, and the scope of the study.

Chapter 2: Presents an in-depth review of bearings, focusing on their defects and
the various fault detection approaches.

Chapter 3: Explores signal processing techniques and the feature selection steps
integral to the research methodology.

Chapter 4: Investigates nature-inspired algorithms and machine learning classifi-
cation techniques.

Chapter 5: Summarizes the findings, offering a thorough analysis of the data
collected throughout the research process.

Finally, the concluding chapter synthesizes key insights and discusses the broader
implications of the study’s outcomes.
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2.1 Introduction

In this chapter, we’ll discuss rotating machines and bearings defects. We will demon-
strate bearings’ role in facilitating smooth rotation and operational efficiency across a
wide range of machinery applications. We’ll explore the significance of bearings in en-
suring the seamless functioning of rotating equipment, highlighting their contribution
to overall performance and reliability.

Additionally, we’ll examine the various types of defects that bearings may encounter
during their operational lifespan. From common issues such as wear and tear to more
complex challenges like misalignment and fatigue, we’ll discuss the diverse range of
factors that can affect bearing performance and longevity.

Moreover, we’ll explore the indicators and techniques used for monitoring the con-
dition of bearings in real time. Through methods such as vibration analysis, thermal
imaging, and lubricant analysis, we’ll uncover how engineers and maintenance profes-
sionals assess the health and performance of bearings to detect potential issues before
they escalate into major failures.

By delving into these topics, this chapter aims to provide a comprehensive under-
standing of the role of bearings in rotating machines, the challenges associated with
bearing defects, and the importance of proactive condition monitoring for ensuring
optimal performance and reliability.

2.2 rotating machines defects

Rotating machines are essential in various industries, their importance lies in their abil-
ity to change the state of working fluids, convey or transport fluids, extract energy, and
create propulsion. They are vital for power generation, various forms of transportation,
and a wide array of industrial processes. Hence, they play a vital role across diverse
industries, significantly enhancing the efficiency of various processes this is why they are
becoming indispensable in many factories. However, like any other mechanical system,
rotating machines are susceptible to failure and downtime due to numerous factors.
These factors include harsh environmental conditions, suboptimal maintenance prac-
tices, prolonged and intensive usage, and other circumstances. The intricate nature
of rotating machines, involving numerous interconnected components and continuous
operational demands, renders them particularly powerless to wear and tear. Exposure
to extreme temperatures, contaminants, and abrasive substances in the operating envi-
ronment can accelerate the deterioration of crucial components, ultimately leading to
operational malfunctions. Additionally, inadequate or irregular maintenance practices,
including lubrication, calibration, and component inspections, contribute significantly
to the degradation of machine performance and reliability. The sheer frequency and
intensity of usage, especially in industrial settings, can expedite the wear of essential
parts, thereby increasing the risk of unexpected breakdowns.

rotating machines are exposed to different damages related to their different parts,
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from rotor, stator, shafts, gears and bearings. Figure 2.1 represents the percentage of
different defects of the rotating machines.

Figure 2.1: rotating machines faults [2]

In figure 2.1 bearing represents bearing faults contribute to 41% of the faults expe-
rienced by a 200 hp motor [2]. The contribution of bearing faults may vary from 40%
to 90% in large to small-range machines [10]. These statistics highlight the significant
impact of bearing defects on the operation of rotating machinery and the importance
of detecting and diagnosing these defects. This is why focused our interest in studying,
detecting and identifying bearing defects.

2.3 Bearings Generalities

Bearings, as essential mechanical components, fulfill a paramount role in the realm of
machinery and equipment that encompass rotating motion. Their primary function is
to facilitate relative motion between two or more parts by mitigating the detrimental
effects of friction, thereby enhancing the overall efficiency of the system and prolonging
the operational lifespan of the machinery. This friction-reducing attribute is pivotal,
as it not only conserves energy but also mitigates wear and tear on vital components.
Furthermore, bearings exhibit remarkable versatility by adeptly supporting both ra-
dial loads, which act perpendicular to the axis of rotation, and axial loads, which act
parallel to the axis of rotation. This multifaceted support ensures that machinery can
adeptly handle an array of force types, ranging from the complex interplay of forces in
complex industrial systems to the more straightforward loads experienced by household
appliances.

In essence, the function of the bearing is to enable smooth and efficient operation. They
are everywhere in diverse applications, seamlessly transitioning from the inner workings
of small household devices, such as washing machines and ceiling fans, to the heavy-
duty demands of industrial giants like conveyor systems, construction equipment, and
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massive manufacturing machinery. In the industrial landscape, where precision, relia-
bility, and productivity are paramount, bearings are indispensable companions, silently
and efficiently facilitating the rotating dance of gears, shafts, and wheels, ultimately
driving the wheels of progress across diverse sectors.

Types of Bearings

Bearings come in various types, each designed for specific applications and load-bearing
requirements. Here is an overview of some common types:

¢ Rolling Bearings: consist of

— Ball Bearings: These bearings use spherical balls to separate the moving
parts and reduce friction. They are further categorized into:

x Deep Groove Ball Bearings: Suitable for high-speed and radial loads,
often used in applications like electric motors and appliances.

x Angular Contact Ball Bearings: Designed to handle both radial
and axial loads, commonly found in automotive wheels and machine
tool spindles.

x Thrust Ball Bearings: Primarily designed for axial loads, used in
applications like thrust reversers in aircraft engines.

— Roller Bearings: Roller bearings use cylindrical, tapered, or spherical
rollers to distribute loads and reduce friction. They include:

x Cylindrical Roller Bearings: Suitable for high radial loads, found in
applications like conveyor systems and large motors.

x Tapered Roller Bearings: Designed to handle both radial and axial
loads, commonly used in automotive transmissions and heavy machinery.

* Spherical Roller Bearings: Able to handle heavy radial and axial
loads, often used in applications where misalignment might occur, such
as in mining and construction equipment.

e Plain Bearings (Bushings): These bearings consist of a sliding surface [11],
often made of materials like bronze or plastic, that allows two parts to move
relative to each other smoothly. They are divided into:

— Sleeve Bearings: Used in applications where a shaft rotates within the
bearing, like in electric motors.
— Flanged Bearings: Similar to sleeve bearings but with a flange to aid in

positioning.

e Needle Bearings: Needle roller bearings use long, thin cylinders (needle rollers)
to support high radial loads in constrained spaces. They are commonly used in
automotive engines, transmissions, and motorcycle suspension systems.

10
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Thrust Bearings: These bearings are designed to handle axial loads (force along
the axis of rotation) and are divided into:

— Ball Thrust Bearings: Contain balls and are often used in applications
like automotive transmissions.

— Roller Thrust Bearings: Utilize cylindrical rollers and they are suitable
for heavy-duty applications, including large industrial machinery.

e Spherical Bearings: Allow for misalignment between two connected parts and
are used in applications where flexibility is needed. They include:

— Spherical Plain Bearings: Used in articulating joints, suspension systems,
and hydraulic cylinders.

— Spherical Roller Thrust Bearings: Designed for applications involving
heavy axial loads and misalignment.

e Mounted Bearings: These are pre-assembled bearings incorporated into hous-
ings for easy installation. They are commonly used in conveyor systems, agricul-
tural equipment, and HVAC systems.

e Linear Bearings: Linear bearings enable motion along a straight path and are
widely used in applications such as CNC machines, 3D printers, and industrial
robots.

e Air Bearings: These use a thin film of compressed air to support and guide mov-
ing parts, offering ultra-low friction and precision. They are used in high-precision
machinery like coordinate measuring machines (CMMs) and semiconductor man-
ufacturing equipment.

The choice of bearing type depends on factors such as load capacity, speed, environ-
mental conditions, and the specific needs of the machinery or equipment. In our study,
we focused our interest on rolling bearings, being the most utilized type in the indus-
try due to several advantages that make them suitable for a wide range of applications.
Rolling bearings offer a significant load-carrying capacity. Additionally, rolling bearings
contribute to increased efficiency by reducing friction and energy loss, which is crucial
for optimizing the performance of machines and systems. Their precision over motion
is essential in applications requiring accuracy and reliability, such as machine tools and
robotics. Furthermore, rolling bearings are available in various designs, materials, and
configurations, providing adaptability to different industrial settings. They benefit from
standardization, as they come in standardized sizes and specifications, simplifying the
selection and integration of bearings into diverse products and systems.

11
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2.4 Bearing faults causes

Rolling bearings are mechanical components that facilitate smooth rotation between
two or more parts. They are used in various industrial applications, such as automo-
tive, aerospace, and manufacturing machinery. The three primary components of a
rolling bearing are the inner ring, the outer ring, and the rolling elements [12]. The
inner ring is the part that rotates along with the shaft or rotating component, while the
outer ring remains stationary. The rolling elements (balls or rollers) reduce friction and
distribute the load evenly between the inner and outer rings. In addition to the three
primary components, most rolling bearings contain the cage, which holds the rolling
elements in place and ensures that they do not come into contact among themselves. It
is usually made of steel or plastic and may take various shapes depending on the design
of the bearing [13].

Rolling element bearings are designed to operate for a specified service life determined
during manufacturing based on expected operating conditions, load, and speed. How-
ever, despite careful design and manufacturing processes, premature bearing failures can
occur due to various factors [14]. In the literature, the bearing faults are categorised
based on the following:

e the fault’s location: inner race, outer race, balls, and cage.

e the fault signature: single-point defects and generalized roughness [15].

Single-point defects

A single-point defect is recognized for its ability to introduce discernible and distinctive
fault frequencies within the vibration spectrum of a machine. These fault frequencies,
often referred to as characteristic frequencies, are not random occurrences but can
be predicted. Their manifestation is intricately tied to the precise bearing surface
affected by the defect. Single-point defects manifest as periodic impulses within the
vibration signals of the machine. The key characteristics of these impulses, namely
their amplitude and periodicity, are intimately linked to several influential factors,
including the rotational speed of the machine’s shaft, the precise location of the fault
on the bearing surface, and the dimensions of the bearing itself. Consequently, each
component of a bearing can be associated with a specific and identifiable frequency.
In essence, when a single-point defect occurs within a machine’s bearing, it sets in
motion a chain of events that culminate in the creation of these distinct vibration
frequencies. The rotational speed of the machine’s shaft is a fundamental factor, as
it determines the periodicity of the impulses. Meanwhile, the precise location of the
fault on the bearing surface contributes to the unique spectral pattern associated with
the defect. Additionally, the bearing’s physical dimensions influence the amplitude of
the vibration frequencies generated. This inherent relationship between single-point
defects and vibration frequencies provides a valuable foundation for fault diagnosis
and localization. By analyzing the vibration spectrum and identifying the specific

12
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frequencies associated with each bearing component, maintenance professionals and
engineers can pinpoint the nature and location of faults in the bearing system. The
primary frequency associated with the cage’s motion can be mathematically defined as:

fo=73 (1 - %cos(a)) (2.1)

This expression encapsulates the essential parameters: f, symbolizing the rotor’s
speed, d representing the diameter of the ball, D denoting the pitch diameter of the
bearing, and « signifying the angle of contact. Together, these elements harmonize to
determine the cage’s fundamental frequency.

Moving beyond the cage, another crucial frequency emerges—the ball defect fre-
quency:

D d?
Joa = Efr (1 D2 COSQ(@) (2.2)
This frequency unveils potential issues within the bearings, providing valuable in-
sights into their health. It’s a frequency intricately intertwined with the dimensions of
the ball, the bearing’s pitch diameter, the rotor’s speed, and the angle of contact.
Now, let’s delve into the inner race frequency, a key parameter in bearing analysis:

r d
fia=n(fr—fo) = néf (1 ) Cos(a)) (2.3)
This frequency embodies the inner race’s dynamics, revealing important information
about potential faults or anomalies. It relies on the number of balls, the rotor’s speed,
the ball diameter, the pitch diameter of the bearing, and the angle of contact.
Completing the quartet of frequencies is the frequency of the outer race:

Joa =nfe= s (1 - = cos(a)> (2.4)

This frequency characterizes the behavior of the outer race and plays a crucial role
in identifying any irregularities. It relies on parameters such as the number of balls,
the rotor’s speed, the ball diameter, the pitch diameter of the bearing, and the angle
of contact.

In summary, these frequency equations provide valuable tools for diagnosing bear-
ing health and pinpointing potential defects, with each frequency shedding light on a
different aspect of the bearing’s condition. Understanding the interplay between these
parameters is essential for effective bearing fault diagnosis [15].

13
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Figure 2.2: Principal bearing dimensions and characteristic fault frequencies

Generalized roughness fault

Generalized roughness is the most common type of damage that occurs to rolling bear-
ings. It refers to a condition where the bearing surface becomes rough or uneven over
a wide area due to factors such as:

e Fatigue Surface contact fatigue is a frequently encountered factor in the failure of
rolling-element bearings. The degree of damage observed is affected by a combina-
tion of factors, including the contact loads, the curvature of the rolling elements,
and the relative motion between the contacting surfaces. The various types of
contact fatigue are as follows: Firstly, under pure rolling contact, microscopic
pits are formed. These pits serve as stress concentration sites and can result in
additional faults. Secondly, irregular-shaped pits are formed under rolling sliding
contact, which can accelerate the damage process when geometric inhomogeneities
such as corrosion pits, handling damage, and dents are present. Thirdly, flaking
occurs from the progression of pits formed under rolling and rolling-sliding con-
tact fatigue, which creates large, irregular-shaped pits. Lastly, spalling is the
development of large, deep pits with sharp edges, steep sides, and flat bases or
cracking at the case-core interface in case-hardened surfaces [14].

o Wear

Wear is a prevalent factor contributing to bearing failure. Its occurrence is mainly
attributed to the ingress of dirt and foreign particles into the bearing because
of inadequate sealing or lubricant contamination. The abrasive nature of these
foreign particles roughens the contacting surfaces, leading to a dull appearance.
In severe wear cases, the raceway profile is altered, and the rolling element profile
and diameter are affected, increasing the bearing clearance. Consequently, rolling
friction significantly increases, which leads to high levels of slip and skidding. The
culmination of these effects is a complete breakdown of the bearing [14].

14
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e Corrosion Corrosion damage is a significant factor contributing to the failure
of rolling-element bearings. It occurs when contaminants such as water, acids,
and other substances enter the bearing arrangement. Various factors as damaged
seals, acidic lubricants and condensation, can cause corrosion. For instance, when
bearings cool from a higher operating temperature in humid air, condensation
can occur, leading to rust formation on the running surfaces. Rust formation on
the rolling bearings’ surfaces produces uneven and noisy operation, as the rust
particles interfere with the lubrication and smooth rolling action of the rolling
elements. The corrosion process is affected by many factors, including the type
of lubricant used, operating temperature, and relative humidity. In addition, the
extent and severity of corrosion damage can be affected by the bearing material
used and its surface finish [14].

e Lubrication Inadequate lubrication is a significant contributor to premature bear-
ing failure, and it is crucial to maintain proper lubrication to ensure the longevity
of the bearing. The lack of lubrication can result in several issues as skidding,
slipping, increased friction, heat generation, and sticking. These problems can
cause significant damage to the bearing, which leads to a complete breakdown.
Insufficient lubrication can cause the contacting surfaces to weld together at the
highly stressed region of Hertzian contact. As the rolling element moves on, the
shells are separated, resulting in damage and increased wear. The damage caused
by inadequate lubrication can result in significant costs and downtime. The three
critical points of bearing lubrication include the cage-roller interface, the roller-
race interface, and the cage-race interface. It is essential to ensure that lubricant
is adequately supplied to these points to reduce friction and prevent damage.
Furthermore, proper lubrication can help dissipate heat, reduce wear, and extend
the life of the bearing [14].

e Plastic deformation Plastic deformation of the contacting surfaces in bearings is
a common phenomenon observed when bearings support excessive loads while
stationary or undergoing small movements. This phenomenon relates to local-
ized plastic deformation, which causes indentation of the raceway. This plastic
deformation leads to changes in the surface roughness, which alters the bearing
performance, leading to excessive vibration during rotation. The deformed bear-
ing will also experience an increase in operating temperature. This temperature
degrades the material properties and results in a decrease in the bearing life. [14].

2.5 Fault detection and diagnosis

Condition monitoring and fault detection (CMFD) techniques play a vital role in en-
suring the reliability and performance of bearings in diverse applications, They offer
insights into the operational state of machines that enable the detection of any deterio-
ration in its condition. Also, it allows timely implementation of preventive measures to
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avert catastrophic failures, these techniques empower proactive maintenance practices
by swiftly identifying and diagnosing faults in their early stages, thereby minimizing
costly downtime and preventing unexpected failures. Many indicators are available to
provide valuable insights into the type and severity of defects [16] by monitoring various
output parameters where the alterations observed in these parameters aid in identify-
ing the emergence of faults, diagnosing their root causes, and anticipating potential
failures. In the subsequent section, we will delve into the most commonly employed
indicators within the CMFD process.

e Current measurements Defects in bearings within a mechanical system driven

by an induction motor lead to changes in the spectrum of its stator current. These
bearing faults cause fluctuations in load irregularities within the magnetic field,
resulting in variations in mutual and self-inductance. Consequently, this gives rise
to side-bands that appear alongside the line frequency [17]. it is a non-invasive
technique. It offers a non-disruptive approach to bearing fault detection. It relies
on the pre-existing electrical current measurements, negating the need for addi-
tional sensors or equipment. This non-intrusive nature not only simplifies the
implementation process but also minimizes any potential interference with the
normal operation of the machinery system. By leveraging the existing electri-
cal current measurements, the method effectively taps into valuable information
already available within the system, eliminating the need for costly and time-
consuming sensor installations or modifications. [18].
The source of nearly all important frequency components in the stator current is
widely known, making it easy to eliminate components unrelated to bearing faults.
Moreover, it is possible to predict most of the significant frequency components in
the stator current based on fundamental information about the machine, such as
its speed. This comprehensive understanding of the spectral content of the stator
current enables the effective detection of most electric machine faults as soon as
their characteristic patterns become prominent [18].

e Acoustic measurements Acoustic Emission (AE) is a technique that captures
the generation of transient elastic waves due to different events, such as cyclic
fatigue and fractures. In the context of bearings, the application of AE becomes
particularly relevant [19]. It allows the detection of acoustic waves produced
from the formation of subsurface cracks caused by the Hertzian contact stress
created by the rolling action of the bearing elements on the inner and outer races
[20]. Additionally, the interaction between damaged mating surfaces within the
bearing leads to rubbing, which generates further acoustic emission. One of the
critical advantages of AE-based analysis is its remarkable capability to detect and
identify extremely low-energy signals associated with bearing failures, making it
highly effective in detecting issues at an early stage or even during operations at
low speeds [2]. By leveraging the sensitivity of AE to subtle acoustic emissions,
this method enables proactive monitoring and assessment of bearing health, fa-
cilitating timely maintenance and reducing the risk of unexpected failures [19].
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However, it is essential to notice that the propagation of Acoustic Emission (AE)
signals is subject to the influence of various factors that can significantly impact
its behaviour. One crucial aspect is the microstructure of the monitored material,
and its grain structure of the material can also affect the generation and trans-
mission of AE waves. The arrangement of free surfaces also plays a role in AE
propagation. The geometry and surface conditions of the structure or component
under inspection can affect the transmission and scattering of AE waves. Irreg-
ularities, roughness, or the presence of surface coatings can modify the path and
intensity of the AE signals [20].

e Infrared thermography Infrared Thermography (IRT) is a highly effective non-
invasive, and non-contact condition monitoring tool widely utilized in various
industries. This technique employs thermal imaging to detect and analyze the
temperature distribution on the surface of an object or system. With its ability to
capture infrared radiation emitted by objects, IRT provides valuable insights into
the thermal behaviour of components, including bearings. IRT relies on thermal
energy measurements (heat) radiated from the surface of a bearing housing, which
is transformed later into a thermal image or surface temperature map [21].

e Wear Debris and Lubricating Oil Analysis Lubricating oil is utilized in
machinery to minimize friction and provide cooling. It directly interacts with
bearings, which undergo gradual deterioration over time, resulting in the gen-
eration of small wear particles carried by the lubricating oil. Examining these
particles, called wear debris, can yield valuable insights into the machine’s con-
dition, as it directly corresponds to the underlying source of wear and its impact
on overall machine performance.

Wear occurs due to interactions between surfaces, leading to the production of
particles primarily through friction. In systems relying on oil lubrication, the
debris present in the lubrication system provides valuable information about the
nature and severity of faults. Analyzing the composition and properties of this
debris enables us to identify specific defects and evaluate the remaining opera-
tional lifespan of the machinery [22]. This method is widely used to directly assess
surface degradation in machines. It involves examining a representative sample
of the lubricating fluid to analyze the concentration, size, chemical composition,
colour, shape, and surface properties of the wear particles. This comprehensive
analysis helps in understanding the mechanisms driving wear and assists in evalu-
ating the overall health and performance of the machine. It is essential to obtain
an oil sample from the machine for analysis to interpret the results accurately.
Hence, sampling plays a crucial role in this process. These samples should be
wear particles homogeneously mixed with the oil and be picked from the return
line before reaching the oil filter. Wear particles can range in size from a few
microns to 1000 microns.

Various techniques are available to examine wear debris, including magnetic plugs,
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ferrography, and spectroscopic oil analysis (SOA). These techniques are sensitive
to different particle sizes. Magnetic plugs are effective for detecting particles
larger than 50 microns, ferrography is suitable for particles ranging from 10 to
300 microns, and SOA is sensitive to particles smaller than 10 microns. There-
fore, selecting the appropriate technique depends on the size range of the analyzed
particles.

e Vibration analysis Defective bearings in machinery give rise to vibrations,

which serve as valuable indicators of the bearing’s condition. During operation,
the condition of the bearings changes, leading to variations in the vibration pat-
terns [23]. Each machine has a characteristic level of vibration that is considered
normal or acceptable. However, there are instances when the vibration levels de-
viate from the expected range, indicating the presence of mechanical issues. A
noticeable increase in vibration is often indicative of the occurrence of mechanical
problems .
Vibration signals are particularly informative in bearing fault detection due to
the characteristic impulse components generated by localized defects or general
roughness within the bearing. These impulses arise as the ball bearing passes
through the points of the defects, resulting in consecutive and periodic patterns
within the machine’s vibration signal [24]. Vibration signals are collected using
sensors. These are proximity sensors, velocity transducers and accelerometers.
Accelerometers are the most used for vibration analysis due to their effectiveness
in measuring and recording vibrations accurately. These collected data contain a
large quantity of information that is often challenging to comprehend. As a re-
sult, the signals undergo diverse processing methods to emphasize specific aspects
within the overall signal [25].

2.6 Vibration Analysis for Bearing Fault Detection

Vibration analysis is preferred over other techniques for several reasons, including its
ability to monitor hard-to-access components without planned shutdowns, provide real-
time insight into the condition of critical assets, and offer established standard operating
procedures, methodologies, and software to simplify the analysis process. Additionally,
vibration analysis can be used remotely and has niche applications beyond rotating
machinery, such as monitoring the structural integrity of bridges, pipes, and other in-
frastructure. Furthermore, it helps identify issues like broken gear teeth early, and
there are various software solutions specifically designed for vibration analysis. More-
over, vibration analysis can improve plant efficiency, reduce costs, and help avoid sup-
ply chain issues by identifying and addressing abnormal vibrations before they cause
problems; thus improving machine performance and reducing the need for unnecessary
maintenance. Therefore, the advantages of vibration analysis, including its versatility,
real-time capabilities, and impact on cost savings, make it a preferred technique for
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many maintenance and reliability professionals. Numerous surveys consistently affirm
the widespread adoption of vibration signatures as the predominant method for fault
diagnosis, surpassing alternative techniques like temperature monitoring, current anal-
ysis, and acoustic emissions. The preeminence of vibration analysis can be attributed
to several key factors.

First and foremost, the acquisition of vibration data stands out for its relative
simplicity when compared to other diagnostic parameters. Vibration sensors are readily
available, and the installation and setup processes are notably straightforward. This
accessibility streamlines the collection of vital vibration signals from a diverse range of
machinery and systems.

Moreover, vibration analysis serves as a gateway to profound insights into the origin
and severity of faults. Vibration signatures encapsulate a wealth of information about
the dynamic behavior and mechanical state of the observed system. By meticulously
scrutinizing the frequency content, amplitude variations, and temporal patterns of vi-
brations, analysts are equipped to pinpoint underlying anomalies, detect the incipient
stages of faults, and gauge the severity of these faults. The rich information contained
within vibration signatures significantly enhances diagnostic capabilities [26].

Furthermore, in comparison to signals obtained from alternative sensors, such as
acoustic emissions, vibration signals derived from accelerometers offer the distinct ad-
vantage of covering a wide dynamic range and a broad frequency spectrum [27].

The utility of vibration signals in diagnostic applications has been widely recog-
nized, with a plethora of studies achieving remarkable accuracy. For instance, in the
work by Deng et al. [28], vibration signals served as inputs for their methodology,
which incorporated the Empirical Wavelet Transform (EWT) for signal decomposition.
Subsequently, fuzzy entropy was employed to assess the complexity of vibration sig-
nals, effectively capturing variations in intrinsic oscillations. The fuzzy entropy values
of the AM-FM (Amplitude Modulation-Frequency Modulation) components were then
computed and used as inputs for training and constructing a Support Vector Machine
(SVM) classifier, enabling fault pattern recognition.

In another notable study, Zarei et al. [24] utilized vibration signals along with a neural
network-designed filter known as the ”"removing non-bearing fault component (RNFC)
filter” to eliminate non-bearing fault components from the vibration signal. The filtered
signal was subsequently fed into a second neural network employing pattern recognition
techniques for fault classification.

Additionally, Attoui et al. [29] employed the principles of Discrete Wavelet Transform
(DWT) and Fast Fourier Transform (FFT) to extract the amplitude of the primary
frequencies associated with bearing defects from the vibration signal obtained from a
rotating machine. These extracted parameters were subsequently utilized by the Adap-
tive Neural Fuzzy Inference System (ANFIS) to automate the process of fault detection
and diagnosis.

Zair et al. [30] introduced a novel approach for the multi-fault diagnosis of rolling bear-
ings using vibration signals. This method combined the utilization of fuzzy entropy
derived from empirical mode decomposition for signal processing, principal component
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analysis for dimensionality reduction, and a self-organizing map neural network for
classification.

In yet another contribution, Altaf et al. [31] employed the second derivative of time
domain signals and the power spectral density of vibration signals, along with their cor-
responding frequency spectrum, to obtain a set of parameters. These parameters were
subsequently used in conjunction with machine learning algorithms such as K-nearest
neighbor, support vector machine, and kernel linear discriminant analysis.

A method introduced by Yang et al. [32] involved detecting bearing faults through
vibration analysis, utilizing the basis pursuit technique in combination with a neural
network (NN). In the study by Paya et al. [33], expert systems and fuzzy logic were
applied to the task of diagnosing faults in rolling element bearings by analyzing vibra-
tion characteristics.

Martin et al. [34] employed kurtosis and skewness measurements of vibration signals
to identify early-stage bearing faults. Heng et al. [35] explored the utilization of statis-
tical analysis techniques with sound pressure and vibration signals to detect defects in
rolling element bearings. It’s worth noting, however, that statistical analysis may have
limitations in identifying bearing defects in advanced stages of development.
Furthermore, a distinct method was introduced by [22], centered on cyclostationary
analysis, to examine vibration signals from bearings. In the study by Karacay et al.
[36], synchronous averaging was utilized to examine the calculation of the envelope
signal that emerges from the high-frequency vibrations caused by spalling damage in
rolling element bearings.

The versatility of vibration analysis lies in its ability to be applied to various applica-
tions, machinery, and vibration signals, as well as in conjunction with other techniques,
ultimately supporting more effective condition monitoring and fault diagnosis in vari-
ous industrial applications. However, as we can see in figure 2.3 bearings defects can
not be distinguished only from the vibration spectrum, hence, signal decomposition is
a crucial preprocessing step in vibration analysis that allows for the extraction of useful
knowledge and insight into the data and relevant underlying systems, particularly in
the context of non-stationary signals.

This process is essential as it enables the separation of non-stationary signals into
their constituent components, providing a better understanding of the dynamic behavior
of the system. Moreover, the use of adaptive signal decomposition methods has become
increasingly common in the industry for vibration-based condition monitoring and fault
diagnosis, contributing to the overall increase in machine availability and reliability.
Therefore, the importance of signal decomposition in vibration analysis is evident, as
it enables the extraction of valuable information from non-stationary vibration signals,
ultimately supporting more effective condition monitoring and fault diagnosis in various
industrial applications. This step will be explained deeply in the methodology and
contributions chapter.
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Figure 2.3: Bearings faults spectrum with X-axis representing frequency and the Y-axis
representing displacement in mm

2.7 Fault detection and diagnosis techniques: State
of art

Since its inception in the late 1960s, modern control theory has evolved into a corner-
stone in the field of control systems, with branches like system identification, adaptive
control, robust control, optimal control, variable structure control, and stochastic sys-
tem theory finding diverse applications. Despite its progress and versatility, the field
remains dynamic, offering numerous challenging topics for exploration from both the-
oretical and practical perspectives. As technological landscapes continually evolve and
systems become increasingly intricate, modern control theory faces new dimensions of
challenges. This evolution underscores the importance of addressing the growing com-
plexities in systems. This brings us to the focus on fault detection and classification,
which becomes paramount in ensuring the reliability and efficiency of these diverse sys-
tems. The need for robust methodologies to identify and categorize faults has grown
exponentially, prompting the emergence of a myriad of methodologies, each aiming to
refine the precision of fault detection processes.

Numerous methodologies have been developed to address the intricate challenge of
fault detection and classification, each striving to enhance the precision of this pivotal
process. These approaches broadly fall into three distinct groups (figure 2.4: model-
based techniques, data-driven techniques, and rule-based techniques [37].

21



Chapter 2 — Bearing Defects and Detection Approaches

Fault detection and diagnosis

techniques
Model-based Data-driven Rule-basad
Amodel of the system is A model of the system is ‘:r‘cfn‘?;; ';Lfi:;giﬁrf:n ;
built from historical data and built from first principles and P - g
) _ ) ; used to determine whether
used to predictivalidate data used to predict / validate e
from the system itself data from the system itself expe?:rted g

Figure 2.4: Fault detection and diagnosis techniques categories

Model-based approaches rely on theoretical models of system behavior, leveraging
a comprehensive understanding of system dynamics to detect and classify faults ef-
fectively. These methods often involve mathematical models, physical simulations, or
statistical representations of the system’s behavior [37].

Conversely, data-driven techniques harness the power of empirical data patterns, em-
ploying advanced machine learning algorithms and statistical methods to discern anoma-
lies and classify faults. The basis of these methods is the analysis of historical data,
feature extraction, and the application of various classification algorithms.

Rule-based techniques utilize expert knowledge and predefined rules to detect and di-
agnose faults. These techniques often involve the use of expert systems, fuzzy logic,
and rule-based reasoning.

The classification into these three distinctive groups underscores the diversity and so-
phistication of strategies deployed to fortify fault detection and classification mecha-
nisms. This diversity caters to the multifaceted requirements across different domains,
such as engineering, manufacturing, and process control, reflecting the dynamic nature
of fault detection methodologies [38].

2.7.1 Model-based techniques

Model-based algorithms represent a category of techniques grounded in the utilization
of theoretical models and expert knowledge to formulate decisions or predictions [39]. In
the realm of fault detection and diagnosis, these algorithms play a crucial role in iden-
tifying and diagnosing faults in rotating machines by capitalizing on a comprehensive
understanding of system dynamics. The application of model-based algorithms often
encompasses the integration of mathematical models, physical simulations, or statistical
representations to capture and interpret the intricate behavior of the system. Widely
employed across diverse domains such as machine learning, signal processing, and fault
detection, model-based algorithms prove particularly advantageous in situations where
the system’s behavior is well-understood and can be precisely modeled. Their ver-
satility and efficacy make them instrumental in enhancing decision-making processes
and predictive capabilities, contributing significantly to advancements in fault detection
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methodologies.
Model-based algorithms play a crucial role in fault detection and diagnosis for rotat-
ing machines by capitalizing on a comprehensive understanding of system dynamics.
These algorithms are widely used in various applications, including condition monitor-
ing strategies for fault diagnosis in rotating machines [40] [41], A model-based approach
to the detection and diagnosis of mechanical faults in rotating machinery is studied in
[42] which utilizes a theoretical model of the system to detect and diagnose faults.
Furthermore, a model-based fault diagnosis technique for rotating machinery is pro-
posed in [43] which employs a convolutional LSTM, Fast Fourier, and continuous
wavelet transforms for fault detection and diagnosis. This technique leverages the the-
oretical model of the system to detect and diagnose faults by analyzing the vibration
signals of the rotating machinery.
Moreover, a deep-learning-based data-driven fault diagnosis technique for rotating ma-
chinery is presented in [44], which uses a convolutional neural network (CNN) to classify
the faults based on the vibration signals. This technique utilizes a wide three-axis vi-
bration signal input as a high definition 1D image, enabling high classification accuracy.
Furthermore, model-based algorithms are highly effective in scenarios where the
underlying physics or dynamics of the system are well-established. By leveraging this
domain knowledge, these algorithms can provide valuable insights into the root causes
of faults and deviations in system behavior. This not only enables accurate fault diag-
nosis but also facilitates proactive maintenance and system optimization. Additionally,
the integration of model-based algorithms with real-time monitoring systems allows for
continuous assessment of equipment health, enabling early detection of potential issues
and preventing costly downtime.
In the context of machine learning, model-based algorithms are essential for developing
predictive models that align with the underlying principles governing the system. This
approach ensures that the generated models are interpretable and align with known
physical laws, making them suitable for applications where transparency and explain-
ability are paramount.

2.7.2 Data-driven techniques

Data-driven techniques in artificial intelligence (AI) are a category of approaches that
rely on large datasets to learn models from data, often using machine learning tech-
niques. These techniques are widely used in diverse domains such as machine learning,
signal processing, and fault detection. They are particularly advantageous in situations
where the system’s behavior is complex, non-linear, and changing, and where the under-
lying physics or dynamics of the system are not well-established. Data-driven techniques
encompass a wide range of methodologies, including supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning involves training a model on
labeled data, where the input and output pairs are known. Unsupervised learning in-
volves training a model on unlabeled data, where the model must identify patterns and
relationships in the data. Reinforcement learning involves training a model to make
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decisions based on feedback from the environment. The application of data-driven
techniques often encompasses the integration of various techniques and methodologies,
such as fuzzy logic, fuzzy and rough sets for handling uncertainty, neural networks for
approximating functions, global optimization and evolutionary computing, statistical
learning theory, and Bayesian methods. These techniques have found applications in
various fields, including economics, customer relations management, financial services,
medicine, and the military, among others. Machine learning, a subfield of artificial in-
telligence, is closely related to data-driven modeling as it also focuses on using historical
data to create models that can make predictions. In , Zhao discusses the significance of
data-driven fault diagnosis in ensuring the reliable operation of rotating machinery. It
highlights the reliance on data-driven approaches for fault diagnosis, emphasizing the
role of these methods in maintaining the operational integrity of machinery.

In [45], Mushtaq et al present a comprehensive review of deep learning-aided data-
driven fault diagnosis for rotatory machines, focusing on bearing fault diagnosis. It
delves into the use of deep learning algorithms like Convolutional Neural Networks
(CNN) for fault diagnosis, showcasing the advancements in this field and the potential
for high classification accuracy.

In [46], Calabrese et al discuss a data-driven fault detection and diagnosis method
based on deep representation clustering for rotating machinery. This method utilizes
unsupervised data to enhance fault diagnosis in rotating machinery, showcasing the
challenges and opportunities in real-world scenarios.

zhang et al in [47], address rotating machinery fault detection and diagnosis based
on deep domain adaptation. It highlights the challenges of collecting large-scale super-
vised data for training deep networks in mechanical fault detection and emphasizes the
importance of data-driven approaches in this context.

Data-driven techniques offer several advantages, including the ability to handle com-
plex, non-linear, and changing systems, adaptability to new patterns, and the ability
to handle uncertainty and unpredictability. They are also well-suited for handling large
datasets and can provide unmatched data efficiency. However, they may require ex-
tensive labeled data and may struggle with highly complex or inadequately captured
system behavior.

2.7.3 Rule-based techniques

Rule-based techniques in artificial intelligence (AI) are a category of approaches that
rely on a set of predefined rules to make decisions or predictions. These rules are often
created by experts or through trial and error and are used to represent domain-specific
knowledge. Rule-based systems are widely used in diverse domains such as machine
learning, signal processing, and fault detection. They are particularly advantageous in
situations where the system’s behavior is well-understood and can be precisely modeled.
A typical rule-based system has four basic components: a list of rules or rule base, an
inference engine or semantic reasoner, a database of facts, and a user interface. The
rules typically take the form of an 'IF:THEN expression’, where an individual rule is
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not in itself a model, since the rule is only applicable when its condition is satisfied.
Therefore, rule-based machine learning methods typically comprise a set of rules, or
knowledge base, that collectively make up the prediction model.

In [48], Zhou et al present a knowledge base system for fault detection and diagnosis
of rotating equipment, showcasing a rule-based fault detection system designed to assist
mechanics and engineers in dealing with fault diagnosis in rotating machinery systems.
This system provides a structured approach to fault diagnosis, enhancing the efficiency
and accuracy of fault identification processes

In [49], they introduced a rule-based intelligent method for fault diagnosis of ro-
tating machinery, aiming to empower non-experts to conduct diagnosis operations ef-
fectively. This method focuses on intelligent fault identification in rotating machinery
systems, emphasizing the importance of rule-based approaches in simplifying fault di-
agnosis procedures and in [50], Dou et al discuss a rule-based classifier ensemble for
fault diagnosis of rotating machinery, highlighting the integration of base classifiers us-
ing an improved weighted voting technique. This method is praised for its transparent
decision-making process, short diagnosis time, high reliability, and easy maintenance,
showcasing a significant increase in accuracy compared to individual base classifiers for
SKF6203 bearings.

Rule-based techniques have several advantages, including interpretability, trans-
parency, and ease of use. They are particularly useful in situations where the decision-
making process needs to be transparent and explainable, such as in medical diagnosis or
legal decision-making. Rule-based systems are also easy to modify and update, as new
rules can be added or existing rules can be modified to reflect changes in the system.
In contrast to rule-based techniques, data-driven techniques rely on large datasets to
learn models from data, often using machine learning techniques. These techniques are
particularly advantageous in situations where the system’s behavior is complex, non-
linear, and changing, and where the underlying physics or dynamics of the system are
not well-established. Data-driven techniques encompass a wide range of methodologies,
including supervised learning, unsupervised learning, and reinforcement learning.

2.8 Comparison of Model-based, Data-driven, and
Rule-based Techniques

Fault detection and diagnosis are critical processes across diverse domains, necessitat-
ing sophisticated methodologies for accurate anomaly identification and classification.
These techniques fall into two primary categories: the data-driven and model-driven
techniques, each distinguished by fundamental principles and applications.

The data-driven approach prioritizes the quality, governance, and management of data
to address specific problem statements. By leveraging large datasets and relying on
machine learning techniques, it extracts models directly from data, minimizing depen-
dence on predefined models or algorithms. This approach proves practical in real-world
applications, especially when dealing with high-quality and well-managed data. Its
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effectiveness shines in scenarios where relationships between variables may not be well-
defined, such as in complex, non-linear, and changing systems.

Conversely, the model-driven approach focuses on developing new models and al-
gorithmic manipulations to enhance performance. It relies on predefined models or
algorithms, often crafted by experts or through trial and error. While efficient in some
scenarios, this approach may lack adaptability to new or changing data and demands
a deeper understanding of underlying problems and mathematical models. Its strength
is in systems where behavior is well-understood and can be accurately modeled.

In terms of interpretability, model-based techniques offer clarity through explicit
models, providing insights into system behavior. In contrast, data-driven techniques
are often perceived as ”black-box” models, prioritizing predictive accuracy over inter-
nal interpretability. Consequently, model-based techniques are preferable when inter-
pretability is crucial, while data-driven techniques excel when the focus is on predictive
accuracy, and understanding underlying mechanisms is less critical.

Handling changes presents another distinction: data-driven techniques demonstrate
adaptability by learning from data patterns, making them well-suited for systems with
evolving dynamics. In contrast, model-based techniques may require recalibration when
significant changes occur due to their reliance on theoretical models that may need
adjustments with shifting system dynamics.

Considering training requirements, data-driven techniques demand a substantial
amount of labeled training data for algorithm training, learning from historical patterns
to make predictions on new data. Conversely, model-based techniques necessitate a deep
understanding of system dynamics and precise knowledge of parameters, involving the
creation and fine-tuning of theoretical models. Thus, data-driven techniques require
extensive labeled data, while model-based techniques rely on a profound comprehension
of system dynamics.

In terms of generalization, data-driven techniques prove more adaptable to complex,
non-linear, and changing systems, handling situations where variable relationships may
be less well-defined. Conversely, model-based techniques may face challenges in complex
systems if the theoretical model inaccurately captures intricacies. This disparity arises
from the adaptive nature of data-driven techniques to new patterns, while model-based
techniques may struggle with highly complex or inadequately captured system behavior.

The dependency on models is another key distinction: data-driven techniques op-
erate without predefined models, learning patterns directly from available data. Con-
versely, model-based techniques depend on accurate system models, their effectiveness
hinging on the fidelity of the theoretical models employed.

Based on the preceding comparison of fault diagnosis techniques, it is evident that
data-driven methods surpass other categories, demonstrating superior adaptability to
complex and non-linear systems. These techniques are intricately linked to the extracted
features, and their effectiveness is heavily contingent upon the quality of the utilized
data. Consequently, the significance of the feature selection process is underscored,
a topic that will be further explored in the subsequent chapter. Moreover, delving
deeper into the realm of feature selection unveils its pivotal role in enhancing model
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Table 2.1:

proaches in Fault Detection and Diagnosis.

Comparison between Data-Driven, Model-Driven, and Rule-Based Ap-

Aspect Data-Driven Ap- Model-Driven Ap- Rule-Based Approach
proach proach
Principles Emphasizes data qual- Focuses on developing Relies on expert knowl-
ity, governance, and models and algorith- edge and rules for fault
management mic manipulations for detection and diagnosis
improved performance
Data Usage Leverages large Relies on predefined May involve expert sys-
datasets and machine models or algorithms tems, fuzzy logic, and
learning techniques to crafted by experts rule-based reasoning
learn models or through trial-and-
error
Applicability  Practical in real- Efficient in scenarios Preferred when expert
world applications with well-understood knowledge is required for
with high-quality, behavior; May lack fault diagnosis in less un-
well-managed  data; adaptability to new or derstood systems

Effective in complex,
non-linear, and chang-
ing systems

changing data

Interpretability Often

perceived as
"black-box”  models,
prioritizing predictive
accuracy

Offers clarity through
explicit models, pro-
viding insights into
system behavior

May offer transparency
through explicit rules
and reasoning

Handling
Changes

Demonstrates adapt-
ability by learning
from data patterns,

well-suited for sys-
tems with evolving
dynamics

May require recalibra-
tion when significant
changes occur due to
reliance on theoretical
models

May require updates to
rules and reasoning when
significant changes occur
in the system

Training Re-
quirements

Requires a substan-
tial amount of la-
beled training data
for algorithm training,
learning from histori-
cal patterns

Necessitates a deep
understanding of
system dynamics and
precise knowledge of
parameters for model
creation

May  require  expert
knowledge for creating
and maintaining rules
and reasoning

Generalization

More adaptable to
complex, non-linear,
and changing sys-
tems, handling less
well-defined  variable
relationships

May face challenges if
the theoretical model
inaccurately captures
intricacies in complex
systems

May face challenges if the
rules and reasoning inac-
curately capture intrica-
cies in complex systems

Dependency
on Models

Operates without pre-
defined models, learn-
ing patterns directly
from available data

Depends on accurate
system models, effec-
tiveiess  hinging on
the fidelity of theoret-
ical models

Depends on accurate and
up-to-date expert knowl-
edge and rules
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performance, refining predictive accuracy, and streamlining computational efficiency.

2.9 Conclusion

In this chapter, we have thoroughly explored the various fault detection categories that
currently exist, providing a detailed analysis of their performance and effectiveness.
We have delved into the intricacies of each category, examining their strengths, weak-
nesses, and suitability for different applications. Through this examination, we aim to
provide readers with a comprehensive understanding of the landscape of fault detection
techniques.

In the next chapter, our focus will shift to introducing the common general process
adopted in our study. We will outline each step of this process in detail, providing
insights of each stage. Additionally, we will introduce the technical tools and resources
utilized in each step of the procedure, offering readers a glimpse into the practical
implementation of our approach. By elucidating the process and tools employed, we
aim to provide readers with the necessary foundation to comprehend and engage with
the subsequent chapters of our study effectively.
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3.1 Introduction

In this chapter, we will explore the fundamental techniques of signal processing and
feature selection, which play a crucial role in enhancing the accuracy and efficiency of
our procedure. Signal processing allows us to refine and manipulate raw data, ensuring
it is suitable for further analysis, while feature selection enables us to identify the
most relevant variables, improving model performance and reducing complexity. By
thoroughly understanding and implementing these steps, we lay the groundwork for
more advanced methodologies in the subsequent sections, ultimately contributing to
the overall success of our approach.

3.2 Signal processing

A signal is a functional representation that serves as a valuable conduit for conveying
intricate insights into the intricate workings of a system or delineating the distinctive
attributes associated with a particular phenomenon. A signal encapsulates the essence
of an observed phenomenon, including its dynamics and nuances. On the other hand,
signal processing is an active and dynamic endeavor that engages with an initial input
signal, operates on it with a series of operations, and ultimately yields a refined and
transformed output signal. This process forms a crucial bridge between raw data and
actionable information, enabling us to extract meaningful knowledge, enhance signal
quality, or facilitate specific outcomes based on the input signal’s characteristics.
Real-world signals, are inherently non-stationary and exhibit significant complexity
[51]. Unlike stationary signals, which have constant statistical properties over time[52],
non-stationary signals undergo changes in their statistical characteristics, making them
challenging to analyze. This inherent non-stationarity represents an obstacle in de-
tecting concealed anomalies within the signals. Anomalies, representing deviations
from expected patterns or behaviors, can be critical indicators of underlying issues or
malfunctions. However, these non-stationary complex signals consist of multiple com-
ponents, i.e. each component can vary over time in amplitude, phase, and frequency. It
is possible to view each component as an oscillatory mode characterized by amplitude
modulation and frequency modulation (AM-FM). As a result, a complex signal with
multiple components is a combination or superposition of various AM-FM components
[53] as expressed in equation 3.2.

(t) = Z a(t) = Z a;(t) cos[¢i(t)] (3.1)

= > ault)coslt + / wi(t)d] (3.2)

where a;(t) represents the instantaneous amplitude, ¢;(t) represents the instantaneous
phase, w. denotes the carrier frequency, and w, + w;(t) = ¢;(t) indicates the instanta-
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neous frequency [53].

This superposition characteristic has led to the concept of decomposing the signal into
its elementary components, enabling the extraction of meaningful insights from complex
signals. Hence, various signal decomposition techniques have been developed. These
techniques aim to break down the complex signatures of signals into simpler compo-
nents, enabling a more detailed and comprehensive analysis. Consequently, analysts can
effectively discern the underlying patterns and structures hidden within the complexity.
This process enhances the understanding of the signal and facilitates its monitoring and
analysis in various applications.

Decomposing signals into their constituent components empowers analysts to investi-
gate anomalies more effectively. By isolating and examining specific parts, analysts
can focus on the relevant aspects of the signal and gain deeper insights into the
underlying causes of anomalies. This comprehensive analysis enables more informed
decision-making. An appropriate signal decomposition technique is required to extract
relevant information which contributes to better outcomes [54]. Signal decomposi-
tion techniques fall into three main categories: time-domain decomposition techniques,
frequency-domain techniques, and time-frequency domain techniques.

3.2.1 Time-domain techniques

Time-domain techniques are foundational tools for understanding signal behavior over
time. Within this domain, several techniques serve the purpose of decomposing signals
into their constituent parts or analyzing specific aspects. These decomposition tech-
niques are pivotal in extracting meaningful information from complex signals. Here are
some common time-domain decomposition techniques:

1. Empirical Fourier Decomposition (EFD): EFD is an accurate signal decom-
position method for nonlinear and non-stationary time series analysis. It decom-
poses a signal into its constituent frequency components, providing insights into
the underlying modal information.

2. Variational Mode Decomposition (VMD): VMD is a data-driven signal de-
composition technique that separates a signal into its constituent parts by exploit-
ing its sparsity in a suitable function space. VMD has been applied in various
fields, such as biomedical signal analysis and seismic signal analysis [54].

3. Adaptive Signal Decomposition (ASD): ASD is a flexible and efficient signal
decomposition method that adaptively decomposes a signal into its constituent
parts. It can handle both stationary and non-stationary signals, making it a
versatile tool for various applications ?7.

4. Empirical Mode Decomposition (EMD) EMD is a data-driven multireso-
lution technique employed to decompose a signal into components with physical
significance. EMD proves useful in the analysis of non-linear and non-stationary
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signals by autonomously segregating them into distinct components. The EMD
algorithm iteratively extracts various resolutions directly from the data, with-
out relying on fixed frequency filters. These extracted components in EMD are
denoted as intrinsic mode functions (IMF). EMD has found applications in di-
verse fields, including biomedical data analysis, power signal analysis, and the
examination of seismic signals.

In this signal decomposition category, we will focus on the Empirical Mode Decompo-
sition since it is one of the most frequent time domain signal decomposition techniques
utilized in condition monitoring, moreover, we are using it in our experiments.

3.2.1.1 Empirical Mode Decomposition (EMD)

In 1998, Huang and his collaborators introduced Empirical Mode Decomposition (EMD),
a groundbreaking approach to signal analysis that stands apart from traditional meth-
ods. What distinguishes EMD is its remarkable adaptability. Unlike conventional
techniques that rely on predefined function bases, EMD autonomously adjusts to suit
the unique characteristics of the analyzed signal, denoted as f(t). EMD’s core objective
remains consistent: to break down a signal into a finite sum of N + 1 Intrinsic Mode
Functions (IMFSs), expressed as:

F8) =" filt) (33)

These IMF's represent specific components of the original signal, enabling a compre-
hensive and meaningful decomposition.

An IMF, or Intrinsic Mode Function, can be described as a function that incorpo-
rates both amplitude modulation and frequency modulation, typically following this
format:

fe(t) = Fi(t) cos(o(t)), (3.4)

where: Fy(t), ¢}.(t) > 0 for all t.
The primary assumption underlying EMD is that f;, and ¢ change at a slower rate
compared to ¢,. The Intrinsic Mode Function (IMF) f; exhibits characteristics akin
to those of a harmonic component. Initially, Huang and colleagues employed a purely
algorithmic approach to extract these IMFs.

Envelopes Detection

To identify candidates for Intrinsic Mode Functions (IMFs), the first step is to
compute the upper envelope, represented as ¢(t), and the lower envelope, denoted as
¥ (t). This is accomplished through cubic spline interpolation, using the maxima and
minima points of f. Subsequently, the mean envelope is derived by calculating:
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f@) + 1)
2

A visual representation of envelope detection is depicted in Figure 3.1.

m(t) = (3.5)

Figure 3.1: Envelopes Detection

Candidate Selection for IMFs

The candidate, ri(t), as illustrated in Figure 3.2, typically does not exhibit the
characteristics of an IMF. A suitable candidate can be obtained by repeating the same
procedure for r; and the subsequent ry. The final retained IMF is denoted as fi(t) =
rn(t). Subsequently, the next IMF is obtained by applying the same algorithm to the
signal f(t) — fi(t). The remaining IMFs can be calculated by applying this algorithm
iteratively to the consecutive residues.

1.0
0.5

-0.5
-1.0

Figure 3.2: First IMF Candidate, r,
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Challenges and Adaptability

This algorithm showcases a remarkable ability to effectively capture the non-stationary
aspect of the original function. However, its primary limitation stems from its reliance
on an ad-hoc procedure. In other words, the EMD procedure is designed for a specific
purpose and lacks a generalized model or framework that can be universally applied
to all scenarios. This characteristic makes the formulation of a precise mathematical
model a challenging endeavor. As a result, gaining a thorough understanding of the
fundamental principles of EMD can be a complex task. For instance, complications
may arise when working with signals that include noise. difficulties may emerge when
dealing with signals that contain noise.

3.2.2 Frequency-domain techniques

Frequency domain techniques are a set of indispensable methods employed for signal
processing and analysis purposes. In contrast to their time domain counterparts, these
techniques focus on revealing and manipulating the spectral properties of signals, thus
shedding light on the intricate world of frequencies. This approach is invaluable in
diverse applications across science and engineering, offering profound insights into sig-
nals’ fundamental constituents and attributes. Moreover, frequency domain techniques
are instrumental in spectrum analysis, facilitating the comprehension of a signal’s fre-
quency content. These methods also find application in harmonic analysis, contributing
to the identification of the fundamental frequency and harmonics in periodic signals. In
cases where multiple signals intertwine, the frequency domain lends itself to coherence
analysis, a technique that assesses the degree of relatedness between signals within this
spectral realm. They are an essential toolkit, resonating across domains such as audio
signal processing, image analysis and communication systems. They not only empower
engineers and scientists to decipher the spectral signatures of signals but also drive
innovations in noise reduction, feature extraction, and modulation and demodulation.

3.2.2.1 Fourier transform

The Fourier transform is a fundamental mathematical technique with wide-ranging
applications across numerous disciplines, encompassing signal processing, mathemat-
ics, physics, engineering, and many more. Its name pays homage to the pioneering
French mathematician and physicist, Jean-Baptiste Joseph Fourier. This transforma-
tive mathematical concept serves as a powerful tool for the analysis of functions and
signals, unlocking a profound understanding of their frequency constituents.

In the most accessible terms, the Fourier transform performs a remarkable feat: it takes
a time-domain signal, essentially a representation of how a phenomenon changes over
time, and elegantly transmutes it into a frequency-domain counterpart. In this trans-
formed representation, the data is no longer conveyed in terms of time but rather by
revealing the presence of specific frequencies within the signal. In essence, it unveils how
much of each frequency component contributes to the overall character of the signal.
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The significance of this transformation lies in its practicality and versatility. It en-
ables researchers, engineers, and scientists to delve into the spectral content of a signal,
effectively dissecting it into its constituent frequencies. This capability is invaluable
for tasks ranging from filtering and enhancing signals to decoding complex phenomena
in the realms of acoustics, image processing, quantum mechanics, and various other
domains.

The mathematical foundation of the continuous Fourier transform is an elegant
expression that captures the essence of how a time-domain signal can be transformed
into its frequency-domain counterpart. The formula at the heart of this transformation
is as follows:

F(w) = /_ T ) e (3.6)

Breaking this down, each element plays a pivotal role in unraveling the spectral
secrets hidden within the signal:

e F(w): This represents the result of the transformation, a complex-valued function
of angular frequency (w). It is the gateway to understanding the frequency com-
ponents that constitute the original signal. The complex nature of F'(w) means
that it does not only reveal the amplitude of these components but also their
phase relationships. This intricate detail provides a comprehensive picture of
how different frequencies contribute to the signal’s overall character.

e f(t): This denotes the time-domain signal itself. It is a function of time (t)
that encapsulates the behavior of a physical or mathematical system over a con-
tinuous time interval. The Fourier transform allows us to transition from this
time-dependent representation to one that focuses on frequency, which is often
more insightful for analysis and processing.

e w (omega): Angular frequency is a fundamental parameter that determines the
frequency content of the signal in the frequency domain. It is defined as the rate
of change of phase of the complex exponential function e 7“! concerning time.
Different values of w correspond to different frequencies, and as we vary w, we
traverse the entire spectrum of frequency components within the signal.

e ¢ /' This component is a complex exponential function, a key element in the
transformation process. The complex exponential contains information about the
frequency being analyzed (w) and its phase. By multiplying the time-domain
signal f(t) with this complex exponential at various w values, we capture the
signal’s frequency components and their phase relationships. This step is central

to extracting the underlying frequency information.

35



Chapter 3 — Signal processing and feature selection techniques

Fast Fourier transform:

The Fast Fourier Transform (FFT) stands as a cornerstone in signal processing, offering
an efficient means to compute the Discrete Fourier Transform (DFT) and its inverse.
This algorithm plays a pivotal role in converting signals from their original domain, such
as time or space, into the frequency domain. By decomposing a sequence of values into
components of different frequencies, the FF'T provides a powerful tool for analyzing the
frequency content of signals [55]. Efficiency lies at the heart of the FFT, as it reduces the
computational complexity of the DFT from O(n?) to O(nlogn), where n represents the
data size. This efficiency is particularly advantageous when dealing with large datasets,
enabling swift processing and analysis [56]. The FFT’s ability to transform signals into
the frequency domain is fundamental for tasks like filtering, spectral analysis, and fea-
ture extraction. By revealing the frequency components of a signal, the FFT empowers
researchers and engineers to gain insights into the underlying characteristics of the data
being analyzed. In various fields, including engineering, telecommunications, audio pro-
cessing, image processing, and scientific research, the FF'T finds extensive applications.
Its versatility makes it indispensable for tasks such as signal analysis, system identifica-
tion, image compression, and spectral analysis. The algorithm’s significance extends to
real-time processing applications, where speed is paramount. Industries such as audio
processing, radar systems, and telecommunications benefit from the FFT’s efficiency
in swiftly analyzing signals and making real-time decisions based on frequency domain
information. Moreover, the FFT enables detailed spectral analysis, allowing for the
identification of dominant frequencies, anomaly detection, and feature extraction from
signals. Its ability to efficiently compute the inverse DFT further enhances its utility,
enabling the reconstruction of signals from their frequency components. In conclusion,
the Fast Fourier Transform stands as a powerful and versatile algorithm in signal pro-
cessing, offering a fast and efficient means to analyze signals in the frequency domain.
Its impact across various industries and its efficiency in processing large datasets make
it an indispensable tool for researchers and engineers alike.

3.2.3 Time-frequency domain techniques

Time-frequency analysis is a signal processing technique used to analyze and character-
ize signals simultaneously in both the time and the frequency domains. Unlike Fourier
analysis, which provides information about a signal’s frequency components but does
not capture time-varying characteristics well, time-frequency analysis allows the signal’s
frequency content examination over time. This is useful for non-stationary signals.

Short time Fourier transform:

The Short-Time Fourier Transform (STFT) is a mathematical technique closely related
to the Fourier transform, specifically designed to unveil the sinusoidal frequency compo-
nents and phase information within localized sections of a signal, as these characteristics
evolve [57] To compute the STFT, the standard approach involves the segmentation
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of a longer time-domain signal into shorter, uniform-length segments. Each of these
segments is then subjected to its own Fourier transform operation, effectively uncovers
the frequency spectrum peculiar to that segment. By performing this process across
multiple time segments, the result is a dynamic depiction of how the signal’s frequency
content changes over time. This dynamic representation is commonly visualized as a
spectrogram or waterfall plot, which provides a detailed, time-varying perspective on
the signal’s spectral characteristics. Such analyses are widely utilized in various fields,
including audio and speech processing, music analysis, and image texture character-
ization, enabling researchers and engineers to gain valuable insights into how signals
evolve both temporally and spectrally.

Wavelets

This section explores the intriguing and powerful concept of wavelets, which provide a
versatile approach to approximating complex functions [58]. Wavelet analysis involves
meticulously deconstructing intricate functions into manageable components known as
basis functions. These basis functions, akin to puzzle pieces, are thoughtfully weighted
and assembled to create a coherent representation of the original function. This method-
ology serves as a valuable tool, enabling us to decipher the intricacies of complex func-
tions, enhance our understanding, and facilitate practical applications, including data
compression [58].

While Fourier’s pioneering work, employing sinusoidal functions as fundamental
building blocks, advanced our comprehension of frequency composition, it faced inher-
ent limitations when dealing with non-stationary signals. To address this limitation,
the field of time-frequency representations (TFRs) emerged, offering a nuanced perspec-
tive on signals by considering not only their spectral content but also their temporal
localization.

The transition from Fourier’s frequency-based approach to TFRs marked a pro-
found milestone in signal analysis. The introduction of the short-time Fourier trans-
form (STFT) represented a decisive departure from Fourier’s global perspective. This
transformative approach allowed for the analysis of signals within localized time win-
dows. Pioneers in the field, including luminaries like Dennis Gabor and Jean Ville,
made indispensable contributions to this paradigm shift.

In the late 1970s, J. Morlet introduced a groundbreaking innovation—the concept
of wavelets with compact support in both the time and frequency domains. In collab-
oration with A. Grossman, not only introduced these wavelets but also formalized the
wavelet transform, thereby ushering in a new era of signal analysis. This pivotal transi-
tion from Fourier to STFT to wavelet analysis can be aptly described as revolutionary
in the realm of signal processing and analysis.

Yves Meyer’s observations in 1984 regarding the remarkable parallels between Mor-
let’s work and Calderén’s contributions were particularly noteworthy. His subsequent
work in 1985 aimed at enhancing wavelet localization, a pursuit that would significantly
impact the field. It is intriguing to note that J.O. Stromberg had independently dis-
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covered similar wavelets before these developments. It is essential to acknowledge that
the foundation of orthonormal wavelets was laid by Alfred Haar in 1909, although it
is worth noting that Haar wavelets while pioneering, had certain limitations in terms
of frequency localization. Furthermore, it came to light that Haar’s pioneering work
had been expanded upon in the 1930s by Paul Levey, who delved into the realm of
random signals of Brownian motion. Concurrently, Littlewood and Paley were engaged
in exploring the localization of a function’s contributing energies, contributing to the
rich history of wavelet development [58].

During this period, Ingrid Daubechies, a former graduate student of Grossman at
the Free University of Brussels, introduced the innovative concept of wavelet frames.
This pioneering idea offered greater flexibility in selecting basis functions, albeit with
some trade-offs in terms of redundancy. Alongside Stephane Mallat, she played a pivotal
role in the transition from continuous to discrete signal analysis. Particularly in 1986,
Mallat, a graduate student at the University of Pennsylvania, introduced the concept of
multiresolution analysis (MRA) for discrete wavelet transform (DWT) in collaboration
with Meyer. The concept involved the meticulous decomposition of a discrete signal
into its dyadic frequency bands, accomplished through a series of lowpass and highpass
filters, ultimately facilitating the computation of its DW'T from the approximations at
these various scales. Intriguingly, this concept had already been familiar to electrical
engineers for nearly two decades under the name of quadrature mirror filters (QMF) and
subband filtering, a realm pioneered by A. Croisier, D. Esteban, and C. Galand around
1976. Mallat’s work seamlessly extended the concept of time localization to comple-
ment the well-established concept of frequency localization found in QMF and subband
coding. Additionally, in 1988, with the development of Daubechies’ orthonormal bases
of compactly supported wavelets, the foundational principles of modern wavelet theory
were firmly established.

In recent years, we have witnessed a significant wave of exploration in search of
alternative wavelet basis functions and refinements in multiresolution analysis (MRA)
algorithms. Notably, developments in compactly supported biorthogonal wavelets and
wavelet packets have emerged as noteworthy milestones in the ongoing journey of ad-
vancing wavelet theory and its diverse applications [58].

Wavelet Overview

The Fourier series, which had its origins in the early 19th century, was a ground-
breaking development in mathematical analysis. Initially devised for the study of con-
tinuous and periodic signals, it laid the foundation for a profound understanding of
signal decomposition and representation. This revolutionary concept introduced the
notion that complex functions could be expressed as a sum of simpler components,
thus opening the door to a new realm of mathematical insight and practical applica-
tions.

In mathematical terms, the Fourier series is elegantly expressed as:
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w(t) = > o™ (3.7)

k=—0o0

Here, z(t) signifies the signal under scrutiny, 7" represents the signal’s fundamental
period, and ¢, denotes the Fourier coefficients, given by:

1 (T2 '
k=17 /T/ x(t)e 92T gt (3.8)
~T/2

These coefficients are obtained by integrating the product of the signal x(¢) and the
complex exponential functions /27T gver one complete period, a process that pro-
vides the spectral representation of the signal.

However, it’s important to note that the complex exponential functions associated
with discrete frequencies of 27jk/T do not have compact temporal support, as they
extend infinitely in time. Nevertheless, they possess perfect frequency localization,
manifesting as delta functions at their respective frequencies in the Fourier domain. As
mentioned earlier, this inherent characteristic renders the Fourier representation unsuit-
able for the analysis of non-stationary signals. In simpler terms, due to their infinite
temporal reach, complex exponentials offer a global perspective of the signal across time
and only reveal the spectral components contained within it. Consequently, the Fourier
representation cannot provide information about when these spectral components occur
in time. While this limitation is not problematic when dealing with stationary signals,
where all spectral components persist uniformly over time, it becomes a significant con-
straint when working with non-stationary signals that exhibit changes in their spectral
characteristics over time. Unfortunately, many individuals, unaware of this limitation,
have erroneously applied the Fourier representation to analyze non-stationary signals
in practical scenarios, despite the fact that a majority of real-world signals, irrespective
of their origin, display non-stationary behavior.

The Short-Time Fourier Transform (STFT) represented a crucial improvement, ad-
dressing the challenge of analyzing non-stationary signals by dividing them into rela-
tively short, quasi-stationary segments and subsequently calculating the Fourier repre-
sentation for each of these segments. This process is mathematically defined as:

S(r, f) = / w(t)w(t — 7)e 2ty (3.9)

Where S(7, f) denotes the STFT at frequency f and time translation 7.

In this equation, w(t) represents the windowing function, f is the frequency parame-
ter, 7 is the time translation parameter, and % denotes the complex conjugate operator.
Notably, for each frequency f, the temporal localization is achieved by segmenting x(t)

39



Chapter 3 — Signal processing and feature selection techniques

using w(t — 7), which is a windowing function centered at ¢ = 7. The Fourier transform
of this segmented signal subsequently provides frequency localization, aligning with the
strength of the Fourier transform.

However, this approach presents a drawback in that it maintains a consistent res-
olution for all frequencies due to its reliance on the same window for analyzing the
entire signal. When dealing with signals that encompass high-frequency components
over a short duration, optimal time resolution necessitates the use of a narrow window,
which is compactly supported in time. It’s important to note that narrow windows in-
herently result in wider frequency bands, consequently leading to diminished frequency
resolution. Conversely, if the signal incorporates low-frequency components spanning
a longer duration, a broader window must be employed to achieve superior frequency
resolution, albeit at the cost of diminished time resolution.

The wavelet transform (WT) was developed to overcome this limitation by using
windows of varying durations, allowing for variable time and frequency resolutions.
The WT operates differently from the Short-Time Fourier Transform (STFT), first
decomposing the signal into distinct frequency bands and subsequently analyzing them
in the time domain. This process is mathematically represented by the continuous
wavelet transform equation:

W(a,b) = / ()07 (1) dt (3.10)
Here, 1,,(t) represents the scaled and translated version of the mother wavelet ¢(t),
where the mother wavelet is also known as the basis function is the fundamental build-
ing block used in wavelet transform analysis. Different types of mother wavelets are
designed to capture specific features or characteristics of signals or data. The choice
of a mother wavelet depends on the particular application and the nature of the data
being analyzed as shown in figure 3.3 and it is given:

Va a

In this equation 3.10, a > 0 and b are scale and translation parameters, respectively, v is
the mother wavelet, and W (a,b) is the continuous wavelet transform of x(t). Equation
3.10 can be interpreted as an inner product of x(t) with the scaled and translated
versions of the basis functions :

Yap(t) = iw (t — b) (3.11)

W(a,b) = / (t) - 5 (t) dt (3.12)

The scaled and translated versions of these basis functions are derived from a single
prototype function, the mother wavelet. It’s worth noting that the term ’wavelet’
originates from the admissibility condition, which mandates that basis functions have
finite support and an oscillatory nature, hence 'wavelet’ (small wave).
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Figure 3.3: Visualization of various mother wavelet functions
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To derive the Discrete Wavelet Transform (DWT), it is necessary to discretize the
parameters a and b. Daubechies demonstrated that by discretizing with @ = 2/ and
b = 27% it leads to orthonormal basis functions for specific selections of v, often referred
to as Daubechies wavelets. This discretization is expressed as follows:

bin(t) = 275277t — k) (3.13)

Mallat subsequently illustrated that Multiresolution Analysis (MRA) can be em-
ployed to obtain the DW'T of a discrete signal. This process involves iteratively ap-
plying both lowpass and highpass filters and subsequently downsampling them by a
factor of two. Figure 1 illustrates this procedure, featuring the highpass filter g[n] and
lowpass filter h[n], along with discrete frequency bands for each level. At each level,
this procedure computes the following equations:

yeln] = xln] - hifn] (3.14)
yeln] = x[n] - giln] (3.15)

Where:

hIN —1—n] = h[l — n]

and N represents the total number of samples in z[n].
The process of reconstructing the original signal can be achieved by reversing the
previous steps or by performing the following computation:

ol = 3 Goul] - hsln) + g 4] - 1)
k
In this equation, ypgn and ¥4, represent the outputs of highpass and lowpass filters,
respectively, at each level. The summation is performed over all relevant k values. This
procedure effectively combines the filtered outputs to reconstruct the original signal.

3.2.3.1 Maximal overlap discrete wavelet-packet transform

The Discrete Wavelet Transform (DWT) is a highly effective method for signal analysis
because it allows the examination of an input signal in both the time and frequency
domains. The DWT decomposes the input signal into approximation and detail coeffi-
cients. This process involves passing the input signal (x) through both a high-pass filter
(h) and a low-pass filter (g), followed by down-sampling by a factor of 2 [59]. The low
pass filter produces an approximated signal (a), and the high pass filter generates the
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detail coefficients (d). This iterative process can be performed multiple times, utilizing
the approximated signal as input for further DW'T decomposition. Each filter generates
a set of coefficients that effectively represent and compress the original signal. As a
result, the DW'T decomposes the input signal into multiple sub-bands or levels. The
DWT offers numerous benefits, including improved data compression, efficient signal
reconstruction, and effective signal denoising [60]. However, one drawback of the DWT
is its requirement for the sample size to be a power of 2 to perform the full transform
effectively this limitation arises due to the down-sampling step involved in the DWT
process. Furthermore, it exhibits limited frequency resolution when analyzing signals
with high frequencies. [61].

The maximal overlap discrete wavelet packet transform (MODWPT) has been devel-
oped []. This technique does not only improve the frequency resolution, but it also
liberates signal analysis from the constraints of specific sample sizes since it is a non-
downsampling technique where each level of decomposition retains an equal number
of wavelet coefficients. This design ensures the preservation of vital information re-
lated to bearing vibrations and maintains consistent cyclic timing between successive
fault-induced impulses at various locations. Additionally, the MODWPT is an energy-
conserving transformation, meaning that the total energy of the MODWPT coefficients
corresponds to the energy of the original signal [62].

Let us consider a discrete time sequence X = {zg,x1,...,2y_1} of N samples obtained
by sampling a continuous-time signal z(¢) with a sampling frequency Fs;. The MOD-
WPT can be obtained by convolving X with a subset of the MODWPT filters. The
low-pass scaling filter can be expressed as {g,, : m =0,1,..., M — 1}, and its quadratic
mirror high-pass wavelet filter can be represented as {h,, : m =0,1,..., M —1}, where
M is the length of the filter and M < N. The filters g,, and h,, are related to each
other as:

hm = (_1)mgM—m—1 or gm = (_l)mhM—m—l (316)

To maintain energy conservation, the MODWPT filters are scaled. The scaled filters
are denoted as g, = % and h,, = h—\/’% The corresponding transfer functions, G(f) and

H(f), can be defined as:

B M—-1
G(f) = ) Gme 72 (3.17)
m=0
H(f) =) hpye2mm (3.18)
m=0

At the first level, j = 1, Woo(= X) is circularly filtered by H(f) and G(f) to obtain
correspondingly, the first level coefficients Wyg = {Wiox : £ = 0,1,..., N — 1} and
Wiw={Wiik: k=0,1,..., N — 1}. Next, the filters h,, and Jm of the second level
(j = 2) are expanded by adding one zero between the elements of filter coefficients
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to give gm = {go, 0, §1, O, ceey gM_Q, 0, ,§~]M—1} and hm = {ho, O, hl, 0, ceey hM_Q,NO, hM—l};
respectively. Moreover, their corresponding transfer functions are given by H(2f) and
G(2f). Now, Wy o and Wy ; are circularly filtered by H(2f) and G(2f) to give the second
level vectors Wa o, Wa 1, w22, and Wy 3. For subsequent levels j of the transform, 2971 —1
zeros are inserted between the elements of h,, and g, whose transfer functions are given
by H(2/71f) and G(2/-'f), and the filtering process continues until the desired level
Jo.

3.2.3.2 Empirical wavelet transform

The wavelet transform has garnered widespread adoption within the realm of signal
analysis and processing, as noted in studies such as Sifuzzaman et al. (2009) . It
has emerged as a potent and versatile instrument for scrutinizing signals that exhibit
characteristics like nonlinearity and non-stationarity, effectively unveiling intricate pat-
terns and anomalies within these signals. However, a notable limitation of the wavelet
transform lies in its utilization of fixed basis functions, a constraint that curtails its
adaptability to the multifaceted landscapes of real-world signals. These pre-defined ba-
sis functions are, at times, ill-suited to capture the intricate nuances and unique traits
exhibited by various types of signals, thus impeding the full realization of the wavelet
transform’s potential, as highlighted in the research by Liu et al. (2019) [63]. In stark
contrast, Empirical Mode Decomposition (EMD) offers a distinctive approach to sig-
nal decomposition. It employs a methodology that dissects a given signal into discrete
oscillatory components referred to as modes, a concept introduced by Boudraa and
Cappé (2004) [64]. These modes are instrumental in capturing and revealing specific
characteristics, inherent behaviors, and unique features embedded within the original
signal. EMD is celebrated for its remarkable capability to derive these fundamental
functions directly from the original input signal, essentially providing a flexible and
data-driven mechanism for signal decomposition, as emphasized in the study by Grasso
et al. (2016) [65]. EMD excels in adapting to the distinctive attributes of each signal
it encounters, making it a valuable tool for interpreting complex and diverse datasets
across various domains. EMD has demonstrated its effectiveness in many applications
across different fields. Its ability to accurately capture the inherent dynamics of com-
plex signals has proven valuable in diverse domains [63]. Researchers have successfully
employed EMD to extract meaningful information from signals that exhibit nonlinear-
ity, non-stationarity, and transient behaviours. However, it is important to note that
despite the achievements and practical applications of EMD, it still lacks a compre-
hensive mathematical theory [66]. The absence of a rigorous mathematical framework
limits its theoretical understanding and places constraints on its widespread acceptance
and adoption.

To address these constraints, Gilles introduced the empirical wavelets transform (EWT)
[3], inspired by both the wavelet transform (WT) and empirical mode decomposition
(EMD) to construct adaptive wavelets that can adjust or adapt to the characteristics
of a particular signal unlike fixed basis wavelets, which have predefined shapes and
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properties, adaptive wavelets are intended to capture the local features and nuances
of the signal being analyzed. They can extract finite AM-FM components, denoted as
fr(t), or modes. These modes represent specific intrinsic behaviours or characteristics
embedded within the original signal. Each mode provides valuable insights into the un-
derlying dynamics of the signal. The relationship between the modes and the original
signal can be expressed as follows:

F6)=>" fult) (3.19)

The key idea of the empirical wavelet transform (EWT) involves the establishment
of a set of N wavelet filters, consisting of one low-pass filter and N-1 band-pass filters
that correspond to the approximation and detail components, respectively [67].

We denote the real value signal and its corresponding Fourier spectrum as f(¢) and

~

f (Aw),respectively. Initially, the boundaries of each Fourier support in signal f(w) are
identified as per the following procedure. For the sake of convenience, our analysis is
constrained to the interval [0, 7], which is subsequently partitioned into N sub-intervals
A, with A, = [wp, wype1] and UN. | A, = [0, 7] as shown in 3.4, The process begins by
computing the local maxima from the Fourier spectrum of f(¢). These local maxima
serve as crucial reference points for identifying the boundaries. By locating the centres
between two subsequent peaks, we divide the spectrum into segments, each representing
a distinct frequency range. This step lays the foundation for constructing the empirical
wavelets, which are essential for breaking down the signal into its constituent parts.

Figure 3.4: Segmenting the Fourier axis [3]

Expressions 3.20 and 3.21 define the empirical scaling function and the empirical
wavelets, respectively [3]. They form the basis of the empirical wavelet transform and
allow us to adaptively analyze different frequency components of the signal, providing
valuable insights into its approximation and detail characteristics.
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1 if |w| <wp, — T
dn(w) = { cos {gﬁ (% (Jw] — wn + Tn))} iy — T < W] <wntme  (3.20)

0 otherwise

( .

1 if Wn + Ty S |W| S Wnt1 — Tpil
dale) = cos |53 (27;1 (Jw| = Wny1 + Tn+1))i| if Wny1 = Tng1 < |w| < Wiyt + T
sin |53 (%(!w[—wn—km))] if w, — 7 < |w| <wp+ 7,
L0 otherwise

(3.21)
Expression 3.20 represents the empirical scaling function, denoted as (;Sn(w) This func-
tion captures the scaling properties of the wavelet transform and allows us to explore
the low-frequency components of the signal. The function (ﬁn(w) is defined piecewise
based on the frequency scope. If the frequency |w| is less than or equal to w,, — 7, the
scaling function is set to 1. If the frequency falls within the range of w,, — 7, to w, + 7n,
the function takes the form of a cosine function with a parameter S that controls the
shape. Outside these ranges, the scaling function is zero.

Expression 3.21 defines the empirical wavelets, denoted as zﬂn(w) These wavelets
capture the details and high-frequency components of the signal. Similar to the scal-
ing function, the empirical wavelets are defined piecewise. The function Q/Am(w) takes
the value 1 in the frequency range w, + 7, to wn+1 — ™n 4+ 1. Within the range
of wpi1 — Tyt 10 Wpi1 + Tuy1, it is a cosine function, and within the range of w, — 7,
to w, + Ty, it becomes a sine function. Outside these ranges, the wavelet function is zero.

The function B(z) is an arbitrary C*([0,1]), such that

(3.22)

_Jo if <0 and B(z)+B(x—-1)=1 Vrel0,1]
P@ =31 it 231

The expression 3.23 is frequently employed among various functions that fulfil the given

properties.
B (z) = z* (35 — 84z + 70z* — 20z°) (3.23)

T, is half the length of the transition phase, 7, = Aw,. To guarantee the absence
of overlap between two successive transition regions, parameter A must satisfy the
following equation:

A < min, <M) (3.24)
Wn41 + Wn,
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Equation 3.24 limits the maximum value that lambda can take, ensuring that the
transition regions between different wavelets do not overlap and thus preserving the
integrity of the wavelet decomposition process.

The EWT W¢ (n, ) is defined as for the classical WT, the coefficients are obtained
by the inner product of the original signal and the empirical wavelets [3].

W (n,t) = (f,1n) =/f(r) U (T — t)dr (3.25)

- (f@ ¥ @) (3.26)

The approximation coefficients are calculated using equation 3.27.

W5 0.0) = (00) = [ 105G Diar (3.27)
So the signal’s empirical modes f; can be calculated as follows:
Jo(t) = W5 (0,1) % ¢ (2) (3.28)
Ji (€) = Wy (k1) =y (1) (3.29)
The original signal can be reconstructed using the equation 3.30.
N
F) =W 0,8) %1 (£)+ Y Wi (n,t) %1y, (1) (3.30)
n=1

3.3 Feature extraction and selection

The feature selection stage serves as a crucial initial step aimed at improving the overall
quality of the underlying clustering process. Not all features carry the same level of
relevance in the classification process, as some may introduce more noise than others.
Hence, it’s crucial to eliminate these noisy and irrelevant features. It’s important to
note that feature selection and dimensionality reduction are closely intertwined. In
feature selection, we pick specific subsets of the original features, while dimensionality
reduction, as seen in techniques like principal component analysis, may involve creating
linear combinations of features to refine the selection process.

The classification accuracy heavily relies on the quality of the extracted features. There-
fore, selecting relevant and informative attributes that accurately describe the state of
the diagnosed element is crucial in the diagnosis process. Also, a precise and deliber-
ate selection of features can enhance the performance of the inductive learner. This
improvement can be observed in various aspects, such as accelerated learning speed,
increased capacity to generalize effectively, and the creation of a more simplified and
manageable model. There are many feature selection techniques to optimize the feature
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set for training classification models, achieve efficient data reduction, and extract the
most salient features from the raw data.

A typical feature selection process comprises four essential steps to identify the most
relevant subset of features. These steps include subset generation, subset evaluation,
stopping criterion, and result validation as demonstrated in figure 3.5. Subset genera-
tion refers to the process of creating potential feature subsets for evaluation, employing
a specific search strategy. Each candidate subset is then assessed and compared to the
previously identified best subset using a designated evaluation criterion. The iteration
of subset generation and evaluation continues until a predetermined stopping criterion
is met [68]. The commonly employed stopping criteria are as follows:

e Completion of the search: This criterion indicates that the search process has
been exhaustively performed, considering all possible subsets of features.

e Feature performance plateau: This criterion comes into play when subsequent
addition or deletion of any feature fails to yield a noticeable improvement in
the performance or evaluation metric. It suggests that the current subset under
evaluation represents a peak or plateau in terms of performance, and further
modifications are unlikely to lead to significant enhancements.

e Achievement of a sufficiently good subset: This criterion focuses on reaching a
subset of features that meets predefined criteria or performance thresholds. It
ensures that the feature selection process terminates once a subset that satisfies
the desired level of quality or performance has been identified.

e Specified limit or bound: This criterion involves setting a predetermined limit on
the number of iterations or the number of selected features. Once this limit is
reached, the feature selection process concludes, even if an optimal solution has
not been achieved.
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Figure 3.5: Feature selection procedure

Feature selection encompasses two primary approaches: individual evaluation and
subset evaluation. Individual evaluation also referred to as feature ranking, involves as-
signing weights to individual features based on their relevance degrees [69]. In contrast,
subset evaluation generates candidate feature subsets using a specific search strategy.
Additionally, feature selection methods can be further categorized into four models:
filters, wrappers, embedded, and hybrid methods[70].

3.3.1 Filter techniques

Filter feature selection techniques are methods used to select relevant features inde-
pendently of a specific learning algorithm. These techniques assess the features based
on their intrinsic properties, such as information, distance, consistency, similarity, and
statistical measures [1]. Filter methods rank or score features individually without con-
sidering the interaction between them. Table 3.1 summarizes the most common filter
methods

Examples of commonly used filter feature selection techniques include correlation-
based feature selection, chi-squared test, mutual information, and variance threshold-
ing. These techniques provide a preliminary filter to identify the most informative
features before applying more complex and computationally expensive learning algo-
rithms. Filter methods can be divided into univariate and multivariate methods. Uni-
variate feature filters analyze and typically rank individual features, while multivariate
filters assess an entire subset of features. The feature subsets’ generation in multivari-
ate filters relies on the chosen search strategy. Four common starting points for feature
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subset generation: are forward selection, backward elimination, bidirectional selection,
and heuristic feature subset selection.

Forward selection starts with an empty feature set and gradually adds one or more
features. Backward elimination, on the other hand, begins with the entire feature set
and considers removing one or more parameters. Bidirectional search simultaneously
explores larger and smaller feature subsets by starting from both an empty set and
a complete set. Finally, heuristic feature subset selection utilizes a specific heuristic
approach to determine the most relevant feature subset.

The search strategies used in multivariate filters are divided into exponential, sequen-
tial, and randomized algorithms. Exponential algorithms evaluate subsets that expo-
nentially increase in size with the number of features. Sequential algorithms add or
remove features one at a time, potentially leading to local minima. Randomized algo-
rithms incorporate randomness into the search process, which helps avoid local minima
[71].

Table 3.1: Common filter feature selection methods [1]

‘ Name ‘ Filter Class ‘ Applicable to Task ‘

Information gain Univariate Classification

Gain ratio Univariate Classification
Correlation Univariate Regression

Chi-square Univariate Classification

Minimum redundancy, maximum relevance Multivariate | Classification, Regression
Correlation-based feature selection (CFS) Multivariate | Classification, Regression
Fast correlation-based filter (FCBF) Multivariate | Classification

Fisher score Univariate Classification

Relief and ReliefF Univariate Classification, Regression
Feature selection for sparse clustering Multivariate | Clustering

Localized Feature Selection Based on Scatter Separability (LFSBSS) | Multivariate | Clustering

Multi-Cluster Feature Selection (MCFS) Multivariate | Clustering

Feature weighting Kmeans Multivariate | Clustering

ReliefC Univariate Clustering

Filter methods utilize ranking techniques to assess the importance of each variable
in the database. These methods have garnered popularity due to their simplicity and
effectiveness in real-world applications. The assessment starts by ordering the variables
according to a suitable criterion and then eliminating all variables falling below a prede-
termined threshold. Filter methods are known as ranking methods because they work
by filtering out variables deemed to be irrelevant before classification. A crucial aspect
of a distinguishing feature is that the variable should possess relevant information for
the different classes within the database [72].

Filter methods have several advantages, including computational efficiency, the abil-
ity to avoid overfitting, and their proven effectiveness on specific databases. Unlike
learning algorithms, filter methods used in feature ranking are not biased, which pre-
vents data from being manipulated to fit a particular algorithm. However, one potential
drawback of ranking methods is that they may not always yield an optimal subset of
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features. Additionally, some ranking methods, such as the Pearson correlation crite-
ria and mutual information, do not distinguish between highly correlated variables,
potentially resulting in a smaller subset being sufficient.

3.3.2 Embedded techniques

Embedded techniques incorporate feature selection directly into the learning algorithm
[72]. The feature selection process is an inherent part of the algorithm itself. During the
training phase, the embedded algorithm dynamically assesses the relevance and impor-
tance of various features. It carefully examines the input data and identifies the most
informative and discriminative features that affect the model’s performance. Embed-
ded techniques typically use feature importance or regularization methods to determine
relevant elements. The algorithm defines the feature importance or coefficients during
training, and it selects features based on their impact on the model’s performance or
through specific regularization techniques. These techniques don’t only consider the
relationships between individual input features and the output labels but perform local
searches to identify features that enable improved discrimination. They employ inde-
pendent criteria to determine the best subsets for a specific cardinality then they utilize
a learning algorithm to choose the ultimate optimal subset from the optimal subsets
obtained for different cardinalities.

Embedded methods share similar benefits to wrapper methods when it comes to how
feature selection and classification interact. Additionally, they have a superior com-
putational complexity due to incorporating feature selection directly into the training
process of the classifier [73].

3.3.3 Wrapper techniques

Wrapper techniques involve assessing the relevance of features by utilizing a classifier
and selecting only the most significant subset of features [74]. Feature selection consists
of three key components: the search algorithm, the induction algorithm, and the eval-
uation metric. The initial feature space comprises N features, while the desired target
feature space is a subset of the original features, encompassing k features selected from
the N available options, where k ranges from 1 to N. Given that the number of possible
feature subsets is equivalent to the power set of N, the search algorithm focuses on
exploring the feature subset space to obtain the target feature subset. In the wrap-
per model, the search algorithm identifies feature subsets, which are then subjected to
training and testing using a classifier designed for evaluating the performance of the
selected feature subset. This classifier is known as the induction algorithm. During
the evaluation stage, the classification results obtained from the wrapper model are
compared with the correct data labels. Based on the prediction error, further search
iterations are determined, or the search process is halted. This evaluation step is crucial
in guiding the subsequent search actions or terminating the search process [68].
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Table 3.2: Comparison of Feature

Selection Methods

Method Advantage Disadvantage
e Computationally much
more efficient than wrapper
and embedded
e Independent of the classifier e Usually evaluates features
one by one and ignores cor-
: e Easy and fast to implement relation among features
Filter
e Better generalization abil- e Ignores interaction with the
ity than wrapper and em- classifier
bedded
e Easily scale up to very high-
dimensional data
e Computationally more ex-
pensive than filter and em-
bedded
e Requires building many
e Interacts with classifier models which is very time-
Wrapper e Usually evaluates features COUSHIIING
jointly and considers the de- e More susceptible to overfit-
pendency among them ting
e Low generalization ability
e (lassifier-dependent selec-
tion
e Interacts with classifier
e Evaluates features jointly
and considers the depen-
dency among them
Embedded o Less susceptible to over- e (lassifier-dependent selec-

fitting than wrapper tech-
niques

e Better computational com-
plexity than wrapper tech-
niques 02
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3.4 Conclusion

In conclusion, the techniques of signal processing and feature selection are foundational
to the success of our procedure. By refining the data through careful processing and
selecting the most relevant features, we ensure that our model remains both accurate
and efficient. These crucial steps not only optimize the analysis but also pave the way
for more sophisticated methodologies in future chapters. Understanding and applying
these processes will provide a solid foundation for achieving more advanced and reliable
outcomes in the later stages of our work. In the next chapter, we will explore nature-
inspired techniques and examine the final step of our procedure: classification.
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Chapter 4

Nature-Inspired Optimization
Algorithms and Machine Learning
Classification

4.1 Introduction

In this chapter, we will delve into nature-inspired algorithms, which draw inspira-
tion from natural processes and phenomena to solve complex computational problems.
These algorithms have gained significant attention due to their ability to efficiently
explore vast solution spaces and adapt to dynamic environments. Alongside these algo-
rithms, we will also focus on the classification process using machine learning techniques.
Classification plays a pivotal role in many applications, as it involves categorizing data
into predefined classes based on learned patterns. By combining nature-inspired algo-
rithms with machine learning classification, we aim to enhance the performance, robust-
ness, and flexibility of our models, providing a powerful toolset for tackling real-world
challenges.

4.2 Nature-inspired optimization algorithms

Nature-inspired optimization algorithms constitute a remarkable category of problem-
solving techniques that derive their innovative power from emulating the fundamental
principles and intricate behaviors exhibited within the natural world. These algorithms
serve as invaluable tools in the pursuit of discovering optimal solutions to intricate and
multifaceted challenges by mirroring the highly efficient and adaptive processes wit-
nessed in the domains of biology, physics, and various other natural phenomena. By
replicating the remarkable strategies that underpin the success of living organisms and
the laws governing physical phenomena, these algorithms offer a unique avenue for tack-
ling complex problems across diverse fields. With their widespread applicability and
adaptability, nature-inspired optimization algorithms have become indispensable tools
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for addressing optimization challenges in an ever-expanding array of domains, exempli-
fying the incredible potential that can be harnessed from nature’s profound wisdom [].
Nature-inspired optimization algorithms constitute a remarkable category of problem-
solving techniques that derive their innovative power from emulating the fundamental
principles and intricate behaviors exhibited within the natural world. These algorithms
serve as invaluable tools in the pursuit of discovering optimal solutions to intricate and
multifaceted challenges by mirroring the highly efficient and adaptive processes wit-
nessed in the domains of biology, physics, and various other natural phenomena. By
replicating the remarkable strategies that underpin the success of living organisms and
the laws governing physical phenomena, these algorithms offer a unique avenue for tack-
ling complex problems across diverse fields. With their widespread applicability and
adaptability, nature-inspired optimization algorithms have become indispensable tools
for addressing optimization challenges in an ever-expanding array of domains, exem-
plifying the incredible potential that can be harnessed from nature’s profound wisdom
[75].

Many algorithms were developed based on this inspiration, notably the genetic algo-
rithm (GA) introduced by Holland in 1975 [76], and swarm intelligence (SI) based al-
gorithms. Indeed, a diverse array of SI-based techniques has surfaced over the past few
decades. This assortment encompasses influential methods like ant colony optimization
(ACO), a concept pioneered by Dorigo in 1992 [77], and particle swarm optimization
(PSO) [78]. Additionally, other notable approaches include the bat algorithm (BA),
innovatively proposed by Yang in 2010 [79], the firefly algorithm (FA) introduced by
Yang in 2009 [80], and the cuckoo search (CS) algorithm detailed by Yang and Deb in
2009 [81].

These cutting-edge algorithms are inspired by the collaborative behaviors witnessed
in the natural world, where the power of evolution and the synergy of swarming or-
ganisms have been harnessed for solving complex problems. Genetic algorithms, for
instance, simulate the process of natural selection to evolve optimal solutions itera-
tively. Ant colony optimization draws inspiration from the foraging patterns of ants
to find the shortest path in complex networks. Similarly, particle swarm optimization
replicates the social interactions of birds and fish to optimize problem solutions. The
bat algorithm, firefly algorithm, and cuckoo search, on the other hand, are further ex-
amples of nature-inspired algorithms that utilize various natural phenomena to address
intricate challenges.

4.2.1 Ant colony optimization

In the early 1990s, Marco Dorigo and his team introduced the initial ACO algorithms
[82], drawing inspiration from the collective behavior of ant colonies. Ants, as social
insects, prioritize the survival of their colony over individual survival. The particular
behavior that served as a model for ACO pertains to how ants efficiently discover the
shortest routes between their nest and food sources. When foraging, ants initially ex-
plore their surroundings randomly while leaving chemical pheromone trails along their
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Figure 4.1: An experiment demonstrates how ant colonies find the shortest path. Two
paths of different lengths connect the nest to the food source. In the visuals, pheromone
trails are shown as dashed lines, with thickness indicating trail strength. a) There are
two pathways linking the nest to the food source. b) When neither road has any
pheromones, the chance of choosing either road is 50% for each. ¢) Ants, depicted as
circles, that arrive first are more likely to opt for the shortest path. d) The shortest
route will have a greater concentration of pheromones, and all ants will choose it.

paths. These pheromone markers are detectable by other ants, influencing their path
choices, and favoring routes with higher pheromone concentrations. Upon finding a
food source, an ant assesses both the quantity and quality of the food and transports
some back to the nest. During this return journey, the amount of pheromone deposited
on the ground may depend on the food’s attributes. These pheromone trails effectively
guide other ants to the food source. The indirect communication among ants through
pheromone trails, a concept known as stigmergy, facilitates the discovery of the shortest
paths between their nest and food sources, as depicted in an idealized setting in Figure
4.1 [reference 27]. On the other hand, feature selection involves the process of selecting
a subset of relevant features (variables) from a larger set. In this context, we can draw
an analogy between features and ”paths” leading to a well-optimized model. Just as
ants explore and exploit paths to efficiently locate food sources, feature selection algo-
rithms explore and exploit various feature combinations to enhance the performance of a
machine learning model. Feature importance measures, such as information gain, corre-
lation, or importance scores generated by tree-based models, serve as the ” pheromones”
of the feature selection process. They provide guidance by assigning a significance level
to each feature. Just as ants are drawn to trails marked with higher pheromone concen-
trations, feature selection algorithms favor features with greater importance scores, as
they are deemed more likely to contribute to model success. While ant optimization al-
gorithms continuously adjust pheromone levels and make probabilistic decisions to find
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optimal solutions, feature selection algorithms take on the role of iterative methods or
heuristic search strategies. They systematically explore and evaluate different feature
subsets, striking a balance between exploration and exploitation to maximize the util-
ity of selected features. In both cases, the iterative nature of the process allows for
continual refinement and adaptation, ultimately leading to the discovery of paths and
feature subsets that offer the most efficient and successful solutions to their respective
problems.

4.2.2 Grey wolf optimization algorithm

The Grey Wolf Optimization (GWO) is part of a class of algorithms known as meta-
heuristic algorithms. It is a nature-inspired optimization algorithm that was introduced
by Mirjalili et al in 2014 [83]. It is inspired by the social hierarchy and hunting behavior
of grey wolves in the wild. The grey wolves are really good at hunting and are at the
top of the food chain. They usually like living in groups, and these groups usually have
about 5 to 12 wolves in them grouped into 4 classes as shown in figure 4.2. What’s
interesting is that they have a strict social order, like a leader, and the leaders are a
male and a female called alphas. The alpha wolves make decisions about things like
hunting, where to sleep, and when to wake up, and the rest of the pack follows their
lead. Sometimes, though, they all work together to make decisions. When they gather,
the whole group shows respect to the alphas by lowering their tails. The alphas are
the only ones allowed to have babies in the group. Surprisingly, the alpha isn’t always
the strongest wolf, but they’re the best at leading the pack. This shows that being
organized and following the rules is more important than being the strongest.

A&\

LB
\§\\

Figure 4.2: Hierarchy of grey wolf community

The second level in the group is called beta. Beta wolves help the alphas make
decisions and do other things for the group. Beta wolves can be male or female, and
they might become the alpha if one of the alpha wolves can’t do the job anymore. Betas
have to respect the alphas but also give orders to the lower-ranking wolves. They are
like advisors and disciplinarians for the pack, making sure everyone follows the rules.
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The lowest-ranked wolf is called omega. Omega wolves have to obey all the other
higher-ranking wolves and are the last to eat. Even though they might not seem
important, the group can have fights and problems if the omega is missing. This is
because the omega helps release tension and frustration among the other wolves. This
keeps the group together and organized. In some cases, omegas also take care of the
young wolves in the pack.

If a wolf is not an alpha, beta, or omega, they are called subordinate or delta.
Subordinate wolves have to listen to the alphas and betas but are in charge of the
omegas. They have different roles in the group, like scouts, sentinels, elders, hunters,
and caretakers. Scouts watch the territory’s boundaries and alert the group to danger.
Sentinels protect the pack. Elders are wise wolves who used to be alphas or betas.
Hunters help find food for the pack. Caretakers look after sick or injured wolves in the
group.

Apart from the social order, grey wolves have a fascinating way of hunting together.
They follow a few steps: tracking, chasing, getting close to the prey, pursuing, sur-
rounding and bothering the prey until it stops, and then attacking.

4.2.3 Squirrel search algorithm

The Squirrel Search Algorithm (SSA) stands out as a sophisticated optimization method-
ology drawing inspiration from the intricate workings of nature. This innovative ap-
proach intricately replicates the dynamic foraging behaviors observed in flying squirrels,
particularly emphasizing their adept gliding locomotion. The art of gliding, known for
its efficiency in enabling small mammals to traverse extensive distances, takes center
stage as a pivotal element within the SSA [84]. At its core, SSA integrates fundamen-
tal concepts that mirror the resourceful strategies observed in squirrels. The algorithm
harnesses the power of random exploration, local exploitation, and a food storage mech-
anism to refine and optimize solutions systematically. In this algorithmic framework,
squirrels act as symbolic representations of candidate solutions, and their movements
mimic the intricate exploration patterns within the search space [84].

The algorithm embarks on its optimization journey through a series of well-defined
steps. It initiates the process by creating an initial population of squirrels, each rep-
resenting a potential solution, with random generation adding an element of diversity
to the candidate pool. As the algorithm progresses, these virtual squirrels navigate the
search space, delicately balancing exploration to uncover new possibilities and exploita-
tion to exploit promising areas [84].

Crucially, the fitness of each squirrel is meticulously assessed based on the predefined
objective function, allowing the algorithm to discern the efficacy of each solution in the
context of the optimization problem. The positions of the squirrels dynamically evolve
as a result of the interplay between exploration and exploitation strategies, ensuring
adaptability and responsiveness in the search for the optimal solution.

One distinctive feature of SOA lies in its incorporation of a memory mechanism,
mirroring the food storage behavior observed in real-world squirrels. This mechanism
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enables the algorithm to retain and recall promising solutions, enhancing its ability to
converge towards optimal outcomes over time.

In essence, the comprehensive set of steps within the SOA reflects the intricacies
of nature-inspired foraging behaviors translated into a systematic and efficient opti-
mization process. The algorithm not only encapsulates the essence of squirrel foraging
but also leverages these behaviors to create a powerful optimization tool capable of
addressing complex problems across diverse domains.

4.2.4 Grasshopper Optimization Algorithm

Grasshopper Optimization Algorithm (GOA) is a modern swarm intelligence algorithm
that draws inspiration from grasshoppers’ natural foraging and swarming behaviors
[85]. Drawing on the intricate coordination and communication within a group of
grasshoppers, the algorithm is structured around two fundamental concepts. Firstly, it
emulates the swarming behavior of grasshoppers, where individuals collaboratively work
together to discover optimal paths or solutions. Secondly, it incorporates a communica-
tion mechanism, allowing grasshoppers to exchange information about their positions
and experiences, influencing the overall movement of the swarm. The algorithm un-
folds through a series of well-defined steps. It commences with the initialization of a
population of grasshoppers, randomly generated to represent potential solutions to the
optimization problem at hand. The fitness of each grasshopper is then evaluated based
on the objective function of the problem. Subsequently, grasshoppers dynamically move
within the search space, adjusting their positions based on individual experiences and
the information shared within the swarm. To prevent being confined to local optima,
the algorithm strategically balances local exploration (exploitation of nearby solutions)
and global exploration (exploration of distant solutions). Crucially, the update of po-
sitions is a dynamic process, influenced not only by individual experiences but also by
the experiences of other grasshoppers within the swarm. This collaborative approach
contributes to the algorithm’s effectiveness in finding high-quality solutions. The com-
munication mechanism is pivotal in fostering a collective and cooperative search strategy
among grasshoppers. The GOA algorithm improves its chances of converging towards
optimal solutions by sharing information about positions and the quality of solutions
found.

4.2.5 Simulated Annealing

Simulated Annealing (SA) is a probabilistic approach employed to estimate the global
optimum of a specified function, particularly suitable for expansive search spaces char-
acterized by numerous local optima. It is a metaheuristic for global optimization and is
inspired by the physical annealing process in materials science. The simulated annealing
(SA) algorithm emulates the gradual heating of a material until it attains an annealing
temperature, causing its molecular structure to weaken and become more amenable to
alterations. Upon cooling, the molecular structure solidifies, becoming more resistant
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to further changes [86]. The SA algorithm can be summarized in the following steps:
Initialize: Start with an initial solution s = Sy and an initial temperature ¢t = .

Move: Perturb the current solution s through a defined move, such as displacement
of a block to a new position, interchange of blocks, or orientation change for a block.

Calculate Score: Calculate the change in the objective function value (energy)
between the current solution s and the perturbed solution s'.

Acceptance Probability: Calculate the probability of accepting the perturbed
solution s’ using the equation Prob(accepting uphill move) ~ 1 — exp (%), where
AFE is the amount by which the objective function value is worsened (i.e., energy is
increased), k is a constant related to temperature and energy, and T is a parameter
analogous to temperature in an annealing system.

Temperature Reduction: At higher values of 7', uphill moves are more likely
to occur, while as T' tends to zero, they become more unlikely. The temperature
decreases according to an annealing schedule, making suboptimal moves less likely as
the algorithm proceeds.

Acceptance: If the perturbed solution s is better than the current solution s (i.e.,
energy is decreased), it is always accepted. If it is worse (i.e., energy is increased), it is
accepted with a probability given by the acceptance probability equation.

Repeat: Repeat steps 2-6 until a stopping criterion is met, such as reaching a
minimum temperature or a maximum number of iterations. Simulated Annealing (SA)
proves advantageous in scenarios characterized by numerous local minima. In such
cases, traditional gradient descent methods may become trapped in a local minimum,
impeding their ability to reach the global minimum.

4.2.6 Firefly algorithm

The Firefly Algorithm, conceived by Xin-She Yang in 2008, draws inspiration from
the flashing patterns exhibited by fireflies in the tropical summer sky. Functioning as
a metaheuristic optimization algorithm, it has found applications in diverse domains
such as digital image compression, image processing, feature selection, fault detection,
antenna design, structural design, and scheduling [87].

The Firefly Algorithm can be summarized in the following steps [88]:

1. Objective Function: Define the objective function f(z) for the optimization
problem, where x = (x1, 29, ..., 24).

2. Initial Population: Generate an initial population of fireflies z; (i = 1,2,...,n).

3. Light Intensity: Formulate the light intensity I so that it is associated with
f(x) (for example, for maximization problems, I « f(x) or simply I = f(x)).

4. Absorption Coefficient: Define the absorption coefficient n for all fireflies.
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5. Movement: For each firefly ¢, compare its light intensity I; with the light in-
tensity I; of other fireflies j within its communication range. If I; > I;, vary the
attractiveness with distance r via exp(—~r) and move firefly i towards j.

6. Evaluation and Update: Evaluate the new solutions and update the light
intensity of the fireflies.

7. Ranking and Update: Rank the fireflies and find the current best solution.

8. Repeat: Repeat steps 5-7 until a stopping criterion is met, such as reaching a
maximum number of iterations or a satisfactory solution.

4.2.7 Binary Differential Evolution

The Binary Differential Evolution (BDE) algorithm is an iterative optimization ap-
proach designed to enhance a candidate solution. This binary optimization technique
integrates the principles of binary differential evolution (BDE) with a binary local search
optimizer (BLSO).

The steps of the BDE algorithm can be outlined as follows [89]:

1. Initialization: Generate an initial population of candidate solutions (agents) x.
2. Selection: Select three agents xy, zo, and x3 from the population.

3. Crossover: Generate a trial solution v by combining the selected agents using a
crossover operation, such as binary crossover.

4. Mutation: Generate a mutant solution u by adding a scaled difference between
two agents to the trial solution v.

5. Acceptance: Compare the trial solution v with the current agent x. If v is an
improvement, update the agent x with v.

6. Repeat: Repeat steps 2-5 for all agents in the population.

7. Termination: Repeat steps 2-6 until a stopping criterion is met, such as reaching
a maximum number of iterations or a satisfactory solution.

4.2.8 Clan-based Cultural Algorithm

Cultural Algorithms (CAs) represent a computational optimization approach inspired
by the dynamics of human societies. At its core, a Cultural Algorithm revolves around
the concept of individuals forming groups or clans within a broader community. These
clans typically consist of closely related individuals who share common beliefs and
values. They often engage in collective social activities, somewhat autonomously from
other segments of society.
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Within this societal framework, clans interact with each other, adhering to prede-
fined rules and regulations and sometimes following scheduled events or rituals. These
interactions can encompass a wide range of activities, such as trade, alliances, and
collaborations, all aimed at improving the overall well-being of society.

The influence of each individual within a clan is subject to their adherence to clan-
specific rules and norms. Additionally, there is a concept known as ”clan influence,”
which represents the collective impact of all clan members. This influence extends
beyond the clan’s boundaries and can significantly impact the larger society. Clans
with substantial influence often dominate the societal landscape, and their values and
beliefs tend to become dominant.
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Figure 4.3: Clan-based Cultural Algorithm

The Clan-based Cultural Algorithm (CCA) is depicted in Figure 4.3. It commences
by generating an initial population for each clan, denoted as P,, where 'n’ corresponds
to the clan’s unique identifier. Each clan is responsible for a distinct portion of the
search space, allowing multiple clans to focus their search efforts on specific regions.
During the initialization process, both the local belief spaces for each clan, represented
as b,, and the global belief space G are populated.

The population within each clan consists of individual solutions, denoted as I(i,n).
These solutions are created randomly and are presented as binary strings. The length
of these binary strings aligns with the number of features in the dataset. For example,
if the dataset comprises fifty features, each solution will comprise fifty binary digits.
A binary ’1’ signifies the selection of a feature, while ’0’ signifies its exclusion. With
a fixed population size of thirty individuals per clan, referred to as popSize, each clan
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houses thirty individual solutions, resulting in a total of 120 solutions encompassing all
populations [90].

Each individual solution is subjected to evaluation using the k-nearest neighbor
(kNN) classifier. This classifier determines the class label of data points based on their
proximity to the 'k’ nearest neighbors.

The belief space encompasses two distinct types of knowledge: situational and nor-
mative. Situational knowledge contains information about the best solution achieved
within the population throughout generations. Normative knowledge defines the poten-
tial range of values that a solution can assume. Furthermore, attributes shared across
all clans within the society are stored in the global belief space, denoted as G. The
determination of G is facilitated through the utilization of Equation 4.1 [90].

G:maX(BN) BN:b17-~~7bn (41)

The search process utilized by CCA follows an iterative approach, with each iteration
considered as a "year.” Each year leads to the generation of a new set of solutions, and
this iterative process is depicted as a loop. In each generation, multiple clans evolve
simultaneously within the societal context. At the onset of each year, the algorithm
categorizes it into one of three types: migration year, global year, or normal year [90].

The algorithm checks whether the current year is a migration year. During migration
years, there is an exchange of clan members within the society, fostering interactions
among different clans. These inter-clan interactions serve to inject diversity into the
population and expand the influence of each clan, thereby enhancing the overall search
capabilities of the algorithm [9]. Although interactions can manifest in various ways,
CCA models interactions as reproductive events between members of different clans.
To enable reproduction, selected members from clan "n” migrate to randomly chosen
destination clan "m” (Eq. 4.2), with the stipulation that the destination clan differs
from the originating one [90].

d(I(i,n)) =p(Pn), n=m; nm=1,...,c (4.2)

The value of "¢’ represents the overall count of clans within the society. The individ-
uals chosen for migration are randomly selected from the population and are determined
by equation 4.3.

mP,, = mRatio - popSize (4.3)

The migrating population, denoted as mPop, is determined by a migration ratio,
mRatio, which is restricted to values below 0.6. Migrating individuals are merged with
the original clan population, forming a unified mating pool. Offspring are generated
through a combination of crossover and mutation operations. The crossover process
employs a 3-point crossover technique at randomly selected locations, increasing the
likelihood of producing offspring that differ from their parents, particularly when both
parents are similar. The mutation rate is set at 10%. Subsequently, the combined
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population of parents and offspring undergoes evaluation, with weaker solutions be-
ing eliminated to ensure that the population retains the best solutions following the
reproductive process.

At the global year, the global belief space influences all the clans. The global belief
space, G, represents clan interactions at the topmost societal level. At this level, all
decisions made affect all the clans. The global belief space contains the best solution
across all clans (equation. 4.1) and represents the global acceptance function (Fig 4.3).
This information is used to create new solutions across all clans. The global influence
function creates new solutions similar to the best in the global belief space across all the
clans, to direct the search process towards the global optimum. The global belief space
influences the clans at every 10th generation to reduce the risk of homogeneity, and
its influence affects only a percentage of the total population. This procedure ensures
that the impact of the clan with the strongest influence will be propagated across all
clans in the society, and thus the search will be directed towards the best solution in
the search space [90].

Every member within a clan directly interacts with its dedicated local belief space.
During each generation, all individual solutions are evaluated, and their fitness is cal-
culated. Fitness is determined by the classification accuracy evaluated by the kNN
classifier. Each solution’s fitness is compared to the best solution stored in the local
belief space’s situational knowledge for the respective clan. The influence function iden-
tifies solutions with lower fitness and regenerates them within the bounds defined by
the situational knowledge of the local belief space [90].

4.3 Machine learning and classification

4.3.1 Introduction to Machine Learning

Rather than encoding explicit principles into computers, machine learning (ML) at-
tempts to acquire significant connections and patterns from instances autonomously
and observations[91].

ML is a subfield of Artificial intelligence(AlI). It is a revolutionary field that gathers
computer science, statistics, and artificial intelligence. It has replaced the traditional
way of problem-solving and decision-making by enabling computer systems to learn
from data and make predictions or decisions without being explicitly programmed. In-
stead, ML uses algorithms and models that can improve their performance on a specific
task through experience. This experience results after analyzing and learning patterns
from large datasets. This ability to learn and adjust makes ML systems adaptable and
valuable in various domains. However, the performance of these algorithms, in the first
place, relies on the amount and the quality of data used for training, which led to the
era of big data, where organizations collect and leverage vast datasets. ML algorithms
ingest these data to gain insights, recognize patterns, and then use these patterns to
make predictions or decisions for future data.
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4.3.2 Types of Machine Learning

Machine learning algorithms are the spine of artificial intelligence. These algorithms
are divided into four fundamental categories based on their learning approach and data
nature, as shown in Figure 4.4.

Machine Learning

b
Supervised Unsupervised Reinforcement

—» Classification = Clustering = Clustering

—m» Fegression ) ) . . -
—» Dimensionality Reduction =» Association

Figure 4.4: Machine learning categories.

4.3.2.1 Supervised Learning

Supervised learning is one of the fundamental categories of machine learning, where the
model trains over labelled datasets. Within supervised learning, every data point in
the training dataset belongs to a known and predefined target or class label. The core
objective that drives supervised learning is to interpret and establish a robust mapping
or correlation between the input features and their corresponding labels. Supervised
learning aims to extract a mapping or relationship between the input features and their
classes by processing the data and adjusting its internal parameters to minimize the
difference between its predictions and the true labels, this mapping is captured by the
algorithm in the form of a predictive model that allows the predictions or classifications
of new data.

In essence, supervised learning forms the cornerstone of numerous real-world appli-
cations, playing a pivotal role in fields as diverse as mechanical diagnosis, healthcare
diagnostics, natural language understanding, and recommendation systems.
Supervised learning can be further categorized into two main types:

4.3.2.1.1 Classification

Classification is a crucial technique in data mining and finds pervasive utility across
diverse domains. In the classification procedure, data undergoes meticulous scrutiny,
giving rise to definitive grouping rules, which, in turn, are harnessed to predict group
associations for future data. This procedure is essential in revealing latent patterns
and gaining profound insights from the expansive databases at our disposal. Types of
classification

There are two distinct classification types [92] :
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Figure 4.5: Classification procedure.

1. Binary Classification:

Binary classification is supervised machine learning. It aims to categorize data
into one of two possible classes or categories where the target variable can take
on only two distinct values, often referred to as positive and negative.

The primary objective of binary classification is to build a model that can learn
to discriminate between the two classes based on input features. Various algo-
rithms like logistic regression, support vector machines (SVM), decision trees,
random forests, and many types of neural networks use binary classification. The
performance of a binary classification model is evaluated using metrics such as
accuracy, precision, recall, Fl-score, and the area under the Receiver Operating
Characteristic (ROC-AUC) curve.

2. Multi-label Classification:

Multi-label classification belongs to supervised machine learning, where each data
point can belong to one or more classes or categories. In contrast to binary
classification, where each data point belongs to one of two exclusive classes, multi-
label classification allows for more complex and flexible categorization.
Multi-label classification is challenging because it requires handling dependencies
between classes and addressing the potential overlap between labels. The choice
of approach depends on the specific problem and dataset. Performance evaluation
in multi-label classification often involves metrics like Hamming Loss, F1-score,
and micro/macro-average precision and recall.

Fundamentals of Classification
Classification is a fundamental concept in machine learning as it serves as the foundation
for a wide range of applications. It plays the role of a compass that guides us through
unlabeled data, enabling us to categorize and uncover hidden insights from complex
data. Before delving into classification, it is essential to understand its core principles.
In this section, we will explain the fundamental aspects of classification.
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e Categories or Classes: In classification, the set of predefined categories or
classes you want to assign data points to. These classes represent the different
possible outcomes or labels for data.

e Features: The set of features or attributes describes the data points. These
features are the characteristics or properties of the data that the classification
model uses for predictions. For example, in image classification, the features
might be pixel values.

e Training Data: In supervised learning, data are used to build a classification
model. This dataset consists of examples associated with known class labels. The
model learns from this training data to make predictions. While in unsupervised
learning, where we work with unlabeled data and data points lack known class
labels. The model uses this training data to analyze and identify inherent patterns
or groupings without the guidance of predefined categories.

e Model building: Machine learning algorithms, such as decision trees, support
vector machines, and neural networks, are used to build classification models.
These algorithms learn patterns in the training data and create a model that
predicts the class of new and unseen data.

e Prediction: After training the classification model, it can be used to predict the
class labels of new, unlabeled data points. The model analyses the features of the
new data and assigns it to one of the predefined classes.

e Evaluation: The performance of a classification model is typically evaluated
using various metrics such as accuracy, precision, recall, F1-score, and ROC-AUC,
depending on the nature of the problem and the importance of false positives and
false negatives. where:

— Accuracy:
Accuracy measures the proportion of correctly classified instances over the
total instances in the testing dataset. It provides a general sense of the
classification model’s performance across all classes.

— Precision:
Precision measures the accuracy of positive predictions made by a model. It
is crucial when false positives are costly.
Formula:

TP

—_— 4.4
TP+ FP (44)

— Recall (Sensitivity or True Positive Rate): Recall measures the ability
of a model to correctly identify all relevant instances (true positives). It is
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essential when false negatives are costly.
Formula:

TP

—_— 4.
TP+ FN (45)

— F1-Score:
The F1-Score is the harmonic mean of precision and recall. It provides a
balanced measure of a model’s performance, considering both false positives
and false negatives. It is useful when there is an uneven class distribution
or when you want to strike a balance between precision and recall.
Formula:

F1 — Seore — 2 x (Precision x Recall)

4.6
Precision + Recall (4.6)

— ROC-AUC (Receiver Operating Characteristic: Area Under the
Curve):
It evaluates the performance of binary classification models. It measures the
area under the Receiver Operating Characteristic curve, which plots the true
positive rate (recall) versus the false positive rate at various thresholds.
A higher ROC-AUC score indicates a better ability of the model to distin-
guish between positive and negative instances.
Where:

« True Positive (TP): The model accurately predicts a positive instance.

* True Negative (TN): The model predicts a negative event with accuracy.

« False Positive (FP): The model assigns a positive label to a data point
when it is negative.

« False Negative (FN): Occurs when the model predicts an instance to be
negative when it is positive.

* Hamming Loss: Hamming Loss is a metric used to evaluate the per-
formance of multi-label classification models. It measures the fraction
of the incorrectly predicted labels by the model for a given dataset. In
essence, it quantifies the degree of disagreement between the true labels
and the predicted labels across all data points. It is calculated as follows:

1. For each data point, the true labels and the predicted labels are
compared.

2. For each label, if the true label and the predicted label match, there
is no loss for that label. If they do not match, there is a loss for that
label.

3. The total number of label mismatches across all data points is di-
vided by the total number of labels in the dataset to compute the
Hamming Loss.
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The mathematical equation of the hamming loss is as follows:

N L
) 1 .
Hamming Loss = NI Z Z 5(yij # i) (4.7)

i=1 j=1

Exemples of supervised classification algorithm:

Among the supervised classification techniques, Decision Trees and Random Forest
stand out as prominent examples, each with its unique approach and strengths in han-
dling classification problems. In this section, we explore these two prominent supervised
classification algorithms, which were used in our study for a better understanding.

1. Decision Tree
Decision trees are foundational components of machine learning, representing ver-
satile tools for prediction and classification tasks, they involve a series of straight-
forward tests as shown in figure 4.6, where each test compares either a numeric
attribute to a specific threshold value or a nominal attribute to a set of poten-
tial values [93]. They hold historical significance as one of the earliest statistical
algorithms implemented in the later decades of the 20th century [94].

Ves Mo
es Mo /Yes No\
Condition 4 @ Cy Cz
Yes No fes Mo
~ 7 “
Ca Cy Cs Cg

Figure 4.6: A decision tree
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Condition 1 | Condition 2 | Condition 3 | Condition 4 | Condition 5 | Label
No - Yes - - Cy
No - No - - Cs
Yes Yes - Yes - Cs
Yes Yes - No - Cy
Yes No - - Yes Cs
Yes No - - No Cs

Table 4.1: Training dataset

At their core, decision trees exhibit a distinctive characteristic: a recursive sub-
division of a target dataset based on the values of relevant input features or
predictors. This recursive process leads to the formation of nodes or leaves, each
representing a distinct partition and associated descendant data subsets. These
partitions, known as leaves or nodes, exhibit a remarkable property: they con-
tain instances with increasingly similar target values as one delves deeper into
the tree’s hierarchy. Conversely, the differences in target values between different
nodes or leaves become more pronounced at any given level of the tree.

Decision trees offer a unique advantage in interpretability, making them acces-
sible and comprehensible to human users. The resulting tree structure provides
transparent insights into the decision-making process, enabling users to grasp the
rationale behind model predictions.

Moreover, decision trees find application across a broad spectrum of domains,
encompassing classification, regression, and feature selection tasks. Beyond their
standalone utility, decision trees serve as the foundational building blocks for
advanced ensemble methods, including Random Forests which leverage multiple
decision trees to enhance predictive accuracy and robustness.

In the process of constructing the tree and deciding which attributes to use for
node splitting, three key parameters are considered: Information Gain (IG), Gain
Ratio, and Gini Value.

(a) Information Gain (IG): Information Gain measures the reduction in un-
certainty or entropy achieved by partitioning a dataset based on a specific
attribute. It quantifies how much information is gained about the target
variable (class labels) when the dataset is split using a particular attribute.
The formula for Information Gain is typically defined as [93]:

IG(T, A) = H(T) — H(T|A) (4.8)

Where:
e /G(T,A): Information Gain for attribute A in tree 7'
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e H(T): Entropy of the original dataset T

e H(T|A): Conditional entropy of T" given attribute A.
A higher Information Gain indicates that the attribute is more informative
for splitting the data.
Gain Ratio:
Gain Ratio is an extension of Information Gain that takes into account the
number of categories or values an attribute can take. It aims to reduce the

bias towards attributes with a large number of values. The formula for Gain
Ratio is [93]:

o IG(T, A
GainRatio(T, A) = Splithgfo(ﬂz ) (4.9)

Where:

e GainRatio(T, A): Gain Ratio for attribute A in tree 7.
e /G(T, A): Information Gain for attribute A.

e Splitinfo(T, A): Split Information, which measures the potential infor-
mation generated by splitting attribute A in tree T. It is calculated
as:

~ || T
SplitInfo(T, A) = =Y =2 -log, (—J) (4.10)
2 1] 7
Where:
— k is the number of partitions created by attribute A.
— |7}| is the number of instances in partition 7j.
— |T| is the total number of instances in dataset T'.
The Gain Ratio normalizes the Information Gain by the intrinsic information

of the attribute, helping prevent overfitting when dealing with attributes that
have many values.

Gini Value (Gini Index or Gini Impurity): Gini Value measures the
impurity of a dataset, indicating how often a randomly chosen element from
the set would be incorrectly classified. In the context of decision trees, Gini
Value is used to evaluate how well a particular attribute separates the data
into classes. The formula for Gini Value is [93]:

C

Gini(T) =1-> (p;)* (4.11)

i=1

Where:
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e Gini(T): Gini Value for dataset T'.
e c: The number of classes.
e p;: The probability of an element in T belonging to class 1.

A lower Gini Value implies that the attribute is better at separating the data
into pure classes, meaning the data is more homogeneous when split by that
attribute.

These metrics play a crucial role in the attribute selection process of decision tree
algorithms (e.g., CART or C4.5) to determine the best attribute for splitting a
node and building an effective decision tree for classification tasks.

2. Random Forest
Random Forest (RF) is a powerful ensemble classifier renowned for its robustness
and effectiveness in various machine-learning tasks. This classifier is constructed
from a multitude of decision trees, each generated using random vectors indepen-
dently sampled from the input vector [95]. One of RF’s key innovations lies in the
controlled randomness it introduces during the tree-building process. Specifically,
it limits the number of parameters used to determine the optimum split at each
node to a carefully selected subset of the total parameters, chosen at random [96].

RF leverages Breiman’s Classification and Regression Tree (CART) method as its
foundation for determining splits in the training data and constructing individual
trees. This process begins by producing a bootstrap sample from the training set,
ensuring that each tree’s training dataset is a distinct subset of the original data
[97].

In a classifier tree, each node represents a specific condition or feature, and it
makes a binary decision, taking either one path or another, thus giving rise to
two subnodes. The critical objective at each node is to maximize the homogene-
ity between the two resulting subnodes. Various measures can be employed to
quantify this homogeneity, but one of the most popular methods for categorical
classification is the Gini Index, which serves as a measure of impurity. The Gini
Index for a node p is defined by Equation 4.12 [97].

Ip=np. Y I(c)[1 - I,(c)] (4.12)

c=1

Here, np represents the total number of training instances, I1p denotes the pro-
portion of occurrences of class ¢ in node p, and c signifies the class. The decrease
in impurity, or equivalently, the increase in homogeneity resulting from the split
of nodes R and L, can be quantified using Equation 4.13.

AI(P,L,R) = Ip — (I, + Ir) (4.13)
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In the tree-building process, the split that maximizes AI(P, L, R) is selected after
evaluating all alternative splits, and this process continues until it reaches the
predefined maximum depth.

In the context of classification, each tree in the Random Forest provides a unit vote
for the most popular class. The true power of RF emerges when these individual
tree predictions are aggregated. RF makes its final prediction for each sample by
taking a majority vote from all predictor trees. This ensemble approach helps RF
achieve robustness and high predictive accuracy, making it a versatile choice for
a wide range of machine-learning tasks.

RF offers several advantages, including its ability to handle high-dimensional
data, its resistance to overfitting, and its capability to provide feature impor-
tance rankings. Additionally, RF is capable of handling missing data, which is a
common challenge in real-world datasets. This makes it a valuable tool for both
classification and regression.

4.3.2.1.2 Regression

Regression is a supervised machine-learning technique for modeling and analyzing the
relationships between a dependent variable (target) and one or more independent vari-
ables (predictors or features). The primary goal of regression analysis is to understand
how changes in the independent variables relate to changes in the dependent variable.
In essence, it helps us to predict or estimate a continuous numerical outcome based on
input data, while classification involves predicting discrete labels for the input. Regres-
sion is categorized into two primary types: Simple Linear and Multiple, as shown in

Figure 4.7.

h h

Simple linear regression
Non-linear
regression

Figure 4.7: Regression types.

Multiple regression

Linear
regression

Simple Linear Regression

Simple Linear Regression is a fundamental concept in regression analysis used to model
the linear relationship between a dependent variable (target) and a single independent
variable (predictor) by finding the best-fit line (a straight line) that minimizes the
difference between the predicted values (Y) and the actual data points as shown in
Figure 4.8. The simple linear regression model is represented by the equation:
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»

L Dependent variable

> X
Independent variable
Figure 4.8: Linear regression.
y=axr+b (4.14)

e x: is the independent variable (the variable used for prediction)
e y: is the dependent variable (the variable we want to predict)
e a: is the slope of the line

e b: is the y-intercept, indicating the value of Y when X is zero.

Multiple regression

Multiple regression is a statistical technique used in data analysis to investigate the
relationship between a dependent variable and two or more independent variables. It
extends the simple linear regression concept, which examines the relationship between
a dependent variable and a single independent variable, to a situation where multiple
independent variables may influence the dependent variable simultaneously. In multiple
regression, the goal is to create a linear equation or model that predicts the dependent

variable value based on the independent variables. The model is represented by equation
4.15:

y = fo+ Biz1 + Paxa + .o + Bray + € (4.15)
Where:
e Y represents the dependent variable.

e X, Xo, ..., X: represent the independent variables.
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e [(y: represents the intercept (the value of Y when all independent variables are
Z€r0).

e 31, B2, ..., Br: coefficients represent the effect of each independent variable (X7,
Xa, ..., Xi) on the dependent variable (V).

e ¢: represents the error.

The coefficients 31, B, ..., B are estimated using statistical methods that minimize
the sum of squared differences between the predicted values and the actual values of
the dependent variable. Once the coefficients are determined, the multiple regression
model can be used to make predictions about the dependent variable based on specific
values of the independent variables.

4.3.2.2 Unsupervised Learning

Unsupervised learning is a category of machine learning. It investigates how systems can
learn to define specific input patterns in a way that represents the statistical structure
of the entire collection of input patterns [98]. Unsupervised learning uses unlabeled
data where the algorithm is not provided with a target variable to predict or classify.
Instead, it tries to find patterns or structures within the data.

The goal of unsupervised learning is to reveal the underlying data structure or reduce
the dimensionality of the data. There are two common types of unsupervised learning
techniques:

4.3.2.2.1 Clustering

Clustering, within the domain of unsupervised learning, consists of object grouping
based on shared inherent similarities. It entails organizing data patterns into subsets,
where each shares some resemblances. This process results in a structured arrangement
that characterizes the sampled population. In a formal and traditional context, the

clustering structure is represented as a collection denoted as S, consisting of subsets
labelled as Sy, Ss... Sk, such that:

S1NSyN..Sg =10 (4.16)

This implies that each element within the set S (comprising S1 through Sk) is
exclusively assigned to a single subset. The clustering process also finds relevance
in characterizing the distinctive attributes of individuals, facilitating their recognition
based on shared similarities. In a broader context, we can categorize individuals into
distinct clusters based on many factors like gender, height, weight, color, voice, and
other physical characteristics. Therefore, clustering encompasses many interdisciplinary
fields, from mathematics and statistics to biology and genetics. Across these domains,
various terminologies are employed to elucidate the topological structures derived from
the application of this clustering analysis technique.

Clustering is generally regarded as a more challenging task compared to supervised
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classification due to the absence of predefined labels associated with data patterns. In
supervised classification, these labels serve as valuable cues for grouping data objects
comprehensively. However, in clustering, the absence of such labels poses a significant
challenge in determining which group a pattern should be assigned to. Additionally,
the complexity is amplified by the presence of multiple parameters or features that
could potentially be used for clustering. The curse of dimensionality exacerbates this
situation, as high-dimensional data further compounds the difficulty [99].

Types of clustering

Various clustering methods have been suggested, each employing distinct inclusion prin-
ciples. Fraley and Raftery in [100] recommended categorizing these clustering methods
into two main groups: hierarchical methods and partitioning techniques as shown in
Figure 4.9.

m @ Model based Density based

Figure 4.9: Clustering types.

Agglomerative

Hierarchical clustering

In hierarchical clustering techniques, clusters are created by progressively dividing
the data patterns using either a top-down or a bottom-up approach as illustrated in
Fig.4.10. There are two variations of hierarchical methods, known as agglomerative
clustering and divisive clustering [101].
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Figure 4.10: Cluster Dendrogram.

Agglomerative clustering, adopting a bottom-up strategy, begins by forming clusters
with individual objects and subsequently combines these smaller clusters into progres-
sively larger ones. This process continues until all objects form a single set or specific
termination criteria are satisfied. On the other hand, divisive hierarchical clustering
employs a top-down approach, starting with a single cluster encompassing all objects
and then progressively subdividing it into smaller clusters. This process continues until
each object forms its own cluster or termination conditions are met.

Partitional clustering

Partitional clustering, in contrast to hierarchical clustering, involves assigning data into
K clusters without forming any hierarchical structure. This process is carried out by
optimizing a specific criterion function[99]. This category can be divided into three
main classes: distance-based, model-based and density-based.

e Distance based

Distance-based clustering algorithms rely on the notion of distance between data
points to create clusters. These algorithms work by defining a distance metric,
the most commonly used criterion is the Euclidean distance, which identifies the
minimum distance between data points and each available cluster, subsequently
assigning the data point to the most suitable cluster after measuring the simi-
larity or dissimilarity between data points. Common examples of distance-based
clustering algorithms include K-Means and K-Medoids. K-Means, for instance,
partitions data points into K clusters by minimizing the sum of squared distances
between data points and the centroid of their assigned cluster.

e Model-based
Model-based clustering algorithms assume that the data is generated from a prob-
abilistic model. They attempt to fit statistical models to the data and use these
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models to identify clusters. Expectation-Maximization (EM) is a popular model-
based clustering algorithm. It iteratively tunes the model parameters until it
converges to a solution that explains the observed data well.

¢ Density-based

Density-based clustering aims to identify clusters of various shapes within spatial
databases, even in the presence of noise. It forms groups based on the largest
group of densely connected data points. At the heart of density-based clustering
are two crucial concepts: density-reachability and density-connectivity. This ap-
proach relies on two input parameters. "€’ represents the radius, and "MinPts”
denotes the minimum number of points necessary to constitute a cluster. The pro-
cess initiates with an arbitrary, unvisited starting point. Subsequently, it retrieves
the ”¢€”-neighborhood, and if this neighborhood contains a sufficient number of
points, a cluster is initiated [102].

Exemple of supervised classification algorithm:
One powerful approach within the realm of unsupervised learning is the Expectation-
Maximization (EM) algorithm applied to Gaussian Mixture Models (GMM) which was
used for feature selection in our study.

Expectation-Maximization Gaussian Mixture Model (EM-GMM)

Model-based clustering methods offer the advantage of creating flexible, soft partitions
within datasets. These methods employ mixture distributions to model the data, al-
lowing for the assignment of probabilistic labels based on conditional probabilities. The
Gaussian Mixture Model (GMM) holds a prominent position among the frequently used
mixture models for clustering. In a GMM, each Gaussian density is referred to as a
component of the mixture and possesses its unique mean and covariance. In various
applications, these component parameters are estimated through maximum likelihood,
often employing the Expectation-Maximization algorithm (EM) [103].

Gaussian Mixture Model (GMM)

The Gaussian Mixture Model (GMM) is a versatile probabilistic model used for clus-
tering and modeling data that is assumed to be generated by a mixture of multiple
Gaussian distributions. Each Gaussian density in a GMM represents a fundamental
function or a "latent” unit. This modeling approach aims to provide a more compre-
hensive representation of data compared to a single Gaussian distribution [104].

In mathematical terms, a GMM can be defined as a linear combination of M com-
ponent Gaussian densities:

M
p(al) = wig(a|w, T:) (4.17)
=1
Where:
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e p(z|\) is the probability density function (PDF) of the data vector x given the
GMM parameters A.

e M is the number of mixture components in the GMM.

e w; represents the weight assigned to each mixture component ¢, with ¢ ranging
from 1 to M.

o g(z|u;, %) is the Gaussian density function for each component i, defined as:

ool ) = s o0 (30— WS-} (ay
Where:
e i; represents the mean vector for component .
e Y, is the covariance matrix for component 7.
e D is the number of dimensions in the data vector x.

GMDMs are widely applied in various machine learning and statistical applications,
including clustering, density estimation, and classification.

Parameter Estimation with the EM Algorithm

The estimation of the characterizing parameters, including means, covariances, and mix-
ture weights, is a crucial step in implementing GMMs. The Expectation-Maximization
(EM) algorithm is an efficient tool commonly used for this purpose [105] [106].

In the context of GMMs, maximum likelihood estimation aims to find the parameter
values that maximize the likelihood of the observed data. In the case of continuous data
distributions, the likelihood is defined as the joint probability of the data. Assuming
that each data point is independent, the likelihood of all data points is expressed as the
product of the likelihood of each data point:

n

L(®) = [ P(x:l®©) (4.19)

i=1

Here, © represents the set of parameters to be estimated, including means and
covariances. To find the maximum likelihood estimates, we need to maximize this
likelihood function. However, directly maximizing the product of probabilities is a
complex task.

As a solution, the EM algorithm simplifies this optimization by introducing the log-
likelihood function. Taking the logarithm of the likelihood transforms the product of
probabilities into a sum:
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log [ P(2:©) =) log P(x,]0©) (4.20)
=1 i=1

We denote the parameter values that maximize this log-likelihood as ©:

n
O = arg maleog P(z;]©) (4.21)
i=1

Where arg max represents the arguments of maxima, and it refers to the values of
© that maximize the log-likelihood function.

The EM algorithm iteratively refines the parameter estimates, alternating between
two steps: the Expectation (E) step, which computes the expected values of the latent
variables, and the Maximization (M) step, which maximizes the expected log-likelihood
for the model parameters.

In summary, Gaussian Mixture Models and the Expectation-Maximization algo-
rithm provide a robust framework for modeling complex data distributions and esti-
mating their underlying parameters, making them valuable tools in the fields of machine
learning and statistics.

4.3.2.2.2 Dimensionality Reduction

The Dimensionality Reduction (DR) objective is to minimize the distance between

distributions of various datasets within a latent space, facilitating efficient transfer
learning. The outcomes reveal that when considering each device separately, the re-
sults obtained through Dimensionality Reduction (DR) are significantly more favorable.
Transforming the data into a lower-dimensional representation effectively addresses the
challenge posed by high dimensionality, making data analysis, processing, and visual-
ization more accessible. This underscores the advantages of employing dimensionality
reduction techniques on a dataset [107].
Typically, Dimensionality Reduction (DR) techniques fall into two fundamental cat-
egories: Feature Selection (FS) and Feature Extraction (FE). Feature Selection (FS)
holds paramount importance in the context of increasing data generation rates. This
methodology is crucial in mitigating substantial challenges associated with dimensional-
ity, including effective redundancy reduction, removing extraneous data, and enhancing
the result interpretability. In contrast, Feature Extraction (FE) addresses the intricate
task of identifying the most distinctive and informative feature set, thereby augmenting
the efficiency of both data processing and storage systems [108].

4.3.2.3 Reinforcement learning

Reinforcement learning (RL) offers qualitative and quantitative frameworks that facili-
tate the comprehension and modeling of adaptive decision-making processes in response
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to rewards and penalties [109], as shown in Figure 4.11. It is the problem faced by an
agent that must learn behavior through trial-and-error interactions with a dynamic
environment.

St+1

Environment

Mg

State 5 Reward r; Action a;

)

Agent J

Figure 4.11: The standard reinforcement-learning model.

RL algorithms can be broadly classified into two main categories: model-based and
model-free approaches, each characterized by unique optimization techniques[110].

e Model-based RL: In model-based reinforcement learning, experience is em-
ployed to build an internal representation of how the environment transitions and
yields immediate results. Decisions regarding suitable actions are subsequently
made by exploring or strategizing within this internal model of the world. This
approach is statistically efficient, as it enables the storage of environmental infor-
mation in a statistically accurate and computationally manageable manner. As
long as continuous replanning remains feasible, this approach facilitates adapt-
able action selection in response to alterations in transition patterns and outcome
values [110].

e Model-free RL Model-free RL refers to a category of reinforcement learning

methods where an agent learns how to make decisions (select actions) directly
from its interactions with the environment, without building an explicit model of
how the environment works [110].
Model-free approaches are statistically less effective when compared to model-
based methods. This is due to the fact that model-free methods combine current
information from the environment with past, and potentially incorrect, estima-
tions or assumptions about state values, instead of utilizing information directly.
Additionally, these methods store information in singular numerical values, mak-
ing it difficult to later separate specific details about rewards or state transitions.
Consequently, model-free methods are less capable of rapidly adjusting to alter-
ations in environmental conditions and outcome values.[110]
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4.4 Conclusion

This chapter has provided an overview of the nature inspired optimization algorithms
and the machine learning classification. By outlining the step-by-step process and high-
lighting the significance of each stage, we have offered transparency into the method-
ologies employed. This chapter serves to provide clarity on the methodologies driving
our study and lays the foundation for the subsequent discussion and analysis presented
in the following chapter.
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5.1 Introduction

Our primary objective is to address real-world problems and provide practical solutions
in the field of diagnosis. One of the most critical challenges is to detect anomalies and
pinpoint their location accurately under unstable conditions, especially in the presence
of irrelevant parameters within the training model that mislead the diagnosis process
and result in inaccurate results, ultimately leading to decreased efficiency and increased
maintenance costs. All results obtained in subsequent work were rigorously assessed
using MATLAB 2018a on a HP ProBook 450 with an Intel i3 processor,
ensuring the reliability and consistency of the analysis and results.

In this thesis, our primary focus was improving the quality of the model attributes
used in the diagnosis procedure. We shine a light on the feature selection step to identify
the most relevant parameters that better describe the state of the diagnosed bearings.
The precision of the diagnosis depends mainly on the quality and representativeness of
the selected features. To address this critical issue, we proposed three novel procedures
to improve the diagnosis process under time-varying conditions. Our contributions
provide innovative approaches to tackle the challenges of diagnosis in real-world cases
and increase the reliability and efficiency of the diagnosis process.

5.1.1 Bearing fault detection under time-varying speed based
on empirical wavelet transform, cultural clan-based op-
timization algorithm, and random forest

Motivation

Anomaly detection stands as a fundamental imperative in a range of academic and
practical domains. It assumes heightened significance due to its formidable nature,
particularly when confronted with datasets sourced from varying conditions.

Our first contribution is the proposition of a novel procedural framework. This
framework is strategically designed to address the intricate challenge of effective anomaly
monitoring and detection within the specialized context of bearing systems.

Our approach leverages advanced techniques encompassing machine learning and
sophisticated statistical modeling. This methodological amalgamation empowers our
system to proficiently discern and isolate anomalies, even amidst the relentless dy-
namism and volatility that characterize the underlying operating conditions.

The database used in this study contains data acquired under conditions charac-
terized by significant temporal variations. This database serves as the foundational
bedrock upon which we construct a robust and adaptive methodology. It is specifically
designed to navigate the inherent complexities of authentic real-world scenarios.
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/ T

Healthy Bearing Accelerometer

Encoder

Figure 5.1: SpectraQuest machinery fault simulator set-up [4]

5.1.1.1 Database description

Vibration signals are of paramount importance in the field of condition monitoring and
fault diagnosis for mechanical systems. They provide critical insights into the health and
performance of various components, with bearings being a prime area of focus due to
their ubiquitous presence in machinery. In this article, we specifically discuss bearing
faults, a topic of great relevance for ensuring the reliability and safety of industrial
equipment.

One of the key challenges in bearing failure diagnosis is addressing inherent vari-
ability in operating conditions. Bearings often operate in dynamic environments with
fluctuating speeds, such as those encountered in real-world industrial applications. To
mirror these complex and dynamic scenarios, we turn our attention to the dataset known
as "Bearing vibration data collected under time-varying rotational speed” a resource
curated by Huang and Baddour in 2018 [4].

This dataset stands out for its meticulous curation and its ability to capture the
multifaceted nature of bearing operations, the data are obtained using the set-up shown
in figure 5.1. The data set encompasses a range of bearing health conditions, including
the pristine state of healthy bearings and those afflicted with specific types of defects,
namely inner race and outer race defects. The inclusion of various health states enables
us to examine the distinctive vibration patterns associated with these conditions, which
is vital for accurate fault detection and diagnosis. One of the standout features of
this dataset is its incorporation of variations in operational speed. This is a critical
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consideration, as bearings in real-world settings frequently operate under conditions of
changing rotational speed. To encapsulate the intricate dynamics of speed fluctuations,
the dataset presents four specific scenarios:

1. Increasing Speed: In this scenario, the rotational speed of the bearing progres-
sively rises. This mirrors situations where equipment accelerates during its oper-
ation.

2. Decreasing Speed: Conversely, the dataset models the case where the rotational
speed steadily decreases. This scenario is representative of equipment deceleration
or gradual shutdown.

3. Increasing then Decreasing Speed: Here, the rotational speed undergoes a cycle of
ascent followed by descent. Such variations are common in equipment subjected
to cyclic operational patterns.

4. Decreasing then Increasing Speed: This scenario mirrors situations where rota-
tional speed initially decreases and subsequently increases, which is a pattern
often seen in equipment startup and shutdown sequences.

Increasing speed
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Figure 5.2: Healthy bearing vibration signals
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Figure 5.3: Vibration signals of bearings with inner race defects
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Figure 5.4: Vibration signals of bearings with outer race defects

To ensure the robustness and reliability of the dataset, each of these speed scenarios
was subjected to three separate trials. This meticulous approach results in the creation
of 36 subdatasets, allowing for comprehensive exploration and analysis of the various
operating conditions.

The data collection process itself is worth noting. The dataset was meticulously
assembled using a SpectraQuest machinery fault simulator (MFS-PK5M), a sophisti-
cated setup that offers precise control over rotational speed through a DC drive. An
accelerometer, a critical instrument in capturing vibration data, was employed to mon-
itor the mechanical vibrations associated with bearing operations. Furthermore, an
encoder was integrated into the setup to accurately measure the rotational speed of the
shaft. This multi-sensor approach ensures that the dataset is well-rounded and captures
essential parameters for comprehensive analysis.

Each data sample within the dataset is structured to contain two distinct chan-
nels. The first channel records the vibration data, offering valuable insights into the
mechanical condition of the bearing. The second channel is dedicated to capturing
the rotational speed, providing a critical parameter for assessing the dynamics of the
system. Both of these channels were sampled at a high rate of 200 KHz, ensuring that
detailed and time-sensitive information is available for analysis. The duration of each
data point was set at 10 seconds, a decision aligned with the methodology established
by Huang and Baddour in their 2018 study.

5.1.1.2 Experimental procedure

In Figure 5.20, we present the schematic representation of our novel methodology de-
signed for bearing faults classification. This methodology is structured into three fun-
damental phases: signal processing, feature extraction and selection, and classification.
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Figure 5.5: Process flowchart

The process begins with the decomposition of the vibration signals corresponding
to three distinct health states. To achieve this, we employ the Empirical Wavelet
Transform (EWT), a powerful technique that decomposes each signal into 10 amplitude-
modulated frequency-modulated (AM-FM) modes.

The number of extracted modes is justified through a comparative analysis in which
we evaluate the performance of the decomposition using different numbers of modes.
By testing various modes (for example, 5, 10, and 15 modes), we determine the optimal
number that provides the best trade-off between capturing relevant signal character-
istics and avoiding overfitting. This comparison ensures that the chosen number of
modes (10 in this case) sufficiently represents the underlying vibration patterns while
maintaining computational efficiency. The decomposition step is essential, as it allows
us to separate the signal into distinct components, each capturing unique characteristics
of the system’s vibration behavior. These components are expected to hold valuable
information about the system’s health condition, revealing specific changes that occur
across different states.
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Once the signals are decomposed into their AM-FM modes, the next step involves
feature extraction. From each of the 10 modes, a set of features is calculated, includ-
ing statistical measures, spectral characteristics, and other relevant signal descriptors.
These features serve as a comprehensive representation of the vibration signals and are
the foundation for further analysis. The extracted features provide valuable insights
into the system’s behavior under different health conditions.

To ensure that only the most relevant and discriminative features are utilized in the
subsequent classification step, we employ a Clan-Based Cultural Algorithm (CBCA)
for feature selection. CBCA is an optimization technique inspired by the process of
cultural evolution, which allows for effective exploration of feature subsets. It iterates
through the feature set, considering both local knowledge (individual features) and
global knowledge (interrelationships between features), enabling the selection of the
most informative, non-redundant features. This process reduces the dimensionality
of the feature space while retaining the essential characteristics that differentiate the
health states.

Once the most relevant features are selected, we move on to the final step: model
training. We use the Random Forest classifier, an ensemble learning method that con-
structs multiple decision trees during the training phase. Random Forest is particularly
suited for handling high-dimensional data, managing feature interactions, and ensur-
ing robust classification performance. By training the model on the selected features,
we aim to develop a reliable classifier capable of accurately distinguishing between the
health states of the system.

To assess the effectiveness and resilience of our proposed method, we have subjected
it to a rigorous validation process. This validation procedure relies on a meticulously
crafted database that includes data from healthy bearings, inner race defects, and outer
race defects. It contains a wide range of rotational speeds, which simulate the dynamic
variations encountered in real-world scenarios. By carefully selecting this dataset for
validation, we enhance our confidence in the method’s ability to perform reliably and
withstand the dynamic conditions commonly encountered in real-world applications.

5.1.1.3 Signal processing

Initially, distinguishing between the states of the bearings using the original vibration
signatures proves to be challenging. Consequently, we initiate the process by subjecting
the signals to Empirical Wavelet Transform (EWT). EWT decomposes the signals into
10 modes, as depicted in Figure 5.6, revealing substantial distinctions among the 10
modes corresponding to the three states.
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Figure 5.7: Inner signal decomposition using EWT
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Figure 5.8: Outer signal decomposition using EWT

The selection of the number of modes is validated through a comparative analy-
sis involving 3, 5, 7, and 10 modes, in addition to the original (unprocessed) signal.
This evaluation is summarized in Table 5.1, where the results demonstrate that the de-
composition into 10 modes outperforms other scenarios in terms of accuracy, achieving
a remarkable accuracy rate of 100%, along with stability as indicated by a standard

deviation of 0.11.

Table 5.1: Comparison between processed and unprocessed signal

processed signal with EWT
Unprocessed signal Without CCA With CCA

Iter Without CCA | With CCA | 3 modes | 5 modes | 7 modes | 10 modes | 3 modes | 5 modes | 7 modes | 10 modes
1 50.35% 51.73% 97.91% | 98.26% | 98.26% 98.61% 98.61% | 98.26% 100% 100%
2 48.96% 55.20% 98.95% | 98.96% | 97.22% 99.31% 98.96% | 99.31% 100% 100%
3 49.31% 50.34% 98.61% | 97.22% | 99.65% 98.26% 97.92% | 99.31% 100% 100%
4 50.35% 53.47% 98.26% | 98.61% | 98.61% 99.31% 98.61% | 98.96% | 97.92% 99.65%
5 48.26% 49.65% 98.95% | 98.96% | 98.61% 98.61% 98.96% | 98.61% 100% 100%
6 48.96% 46.18% 97.91% | 98.61% | 97.91% 97.92% 97.57% | 98.61% | 98.61% 100%
7 53.82% 48.95% 98.61% | 98.26% | 99.30% 98.61 99.31% | 97.57% 100% 100%
8 47.22% 55.20% 98.61% | 97.57% | 98.26% 97.57% 97.22% 100% 100% 100%
9 45.49% 50.69% 98.61% | 98.61% | 98.61% 98.96% 98.61% | 99.31% 100% 100%
10 46.88% 48.26% 98.95% | 98.88% | 98.95% 97.57% 98.61% | 98.61% 100% 100%

Mean 48.96% 50.96% 98.53% | 98.39% | 98.50% 98.49% 98.43% | 98.86% | 99.65% 99.96%
std 2.29 2.96 0.39 0.63 0.67 0.64 0.66 0.67 0.74 0.11
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Subsequent to signal decomposition, we observe that the plots of the modes for
the three states exhibit distinctive characteristics, with each mode encapsulating both
frequency and temporal information. In our methodology, we place particular emphasis
on time domain parameters. These parameters, outlined in Table 5.11, are computed
for each mode.

5.1.1.4 Features Selection and Optimization

The effectiveness of any classification method relies heavily on the choice of input
features. Some features may provide redundant or duplicate information, while others
offer more valuable insights that carry greater weight in the classification process.

To address this issue, we’ve introduced an optimization step in our proposed pro-
cedure. This step is designed to ensure that we select the most informative features
for our classification task. It involves the careful selection of relevant parameters and
the removal of redundant ones, achieved through the Clan-based Cultural Optimization
Algorithm (CCA). The CCA algorithm helps us find the best combination of features
that maximize the accuracy of our classification results.

To evaluate the impact of the optimization step, we conducted a comparison be-
tween our method with optimization and the same method without optimization. The
results, summarized in Table 5.1, clearly demonstrate that the optimization step leads
to significant improvements in accuracy. Our proposed method with optimization con-
sistently achieved the highest accuracy levels, highlighting the importance of eliminating
redundant parameters in enhancing classification accuracy.

Furthermore, the results in Table 5.1 reveal that the optimized feature set not
only improves accuracy but also enhances stability. Additionally, the optimization
step reduces the number of input features required for classification, which, in turn,
reduces processing time and speeds up the classification process. Based on these results,
we conclude that the feature selection step is crucial for achieving high classification
accuracy and improving computational efficiency. By removing redundant features, the
optimization technique effectively boosts the performance of the classification method,
making it more efficient and dependable.

To strengthen this conclusion, we compared the CCA algorithm with four other
powerful nature-inspired optimization algorithms. This comparison involved a set of 130
features derived from 13 attributes across 10 modes. To ensure a fair comparison and
visualize the effects of the algorithms, we used a K-Nearest Neighbors (K-NN) classifier,
known for its simplicity and effectiveness. We conducted twenty simulations for each
optimization algorithm and summarized the results in Table 5.2. This comparison
provides compelling evidence of the significant improvement that the CCA algorithm
brings to the classification process.
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Table 5.2: Comparison between CCA, Ant, grasshopper, wolf, and firefly optimization
algorithms with K-NN classifier

CCA Ant Grasshopper Wolf Firefly
Algorithm | Accuracy | Feat | Accuracy | Feat | Accuracy | Feat | Accuracy | Feat | Accuracy | Feat
Max 99.51% 72 98.80% 15 99.18% 66 99.17% 46 97.36% 60

Min 99.10% o1 93.20% 15 96.25% 46 96.25% 32 92.63% 60
Mean 99.40% 64 97.27% 15 98.51% 56 98.39% 46 95.63% 60
Std 0.1186 1.262 0.7164 0.8032 1.288

The outcomes elucidated in Table 5.2 offer a revealing perspective. They showcase
that the ant algorithm, while commendably compact in its feature selection, attains an
accuracy of 97.27%. However, when viewed through the lens of accuracy, the Cultural
Clan-based Algorithm emerges as the undisputed champion among the four algorithms.
It achieves this feat by streamlining the feature pool, effectively halving the number
of considerations required in the classification process, all while substantially elevating
accuracy and stability levels.

This judicious culling of pertinent features begets a classification framework that
is not only more efficient but also more precise—a pivotal consideration, especially in
the context of industrial applications. The significance of this precision becomes all the
more apparent when we recognize that classification relying on feeble classifiers driven
by inconsequential features can yield erroneous outcomes, potentially misclassifying
faults.

In our proposed methodology, we place our trust in the Random Forest (RF) clas-
sifier. This robust classifier is equipped to handle time domain features extracted from
ten distinct modes corresponding to the three states. These features are meticulously
selected by the Cultural Clan-based Optimization Algorithm. The RF classifier, rein-
forced by a forest of 100 trees, operates with 80% of the data dedicated to training and
20% for testing.

To substantiate the appropriateness of our RF classifier choice, we pitted it against
several other well-established classifiers, including K-nearest neighbor, Decision tree,
Extra tree, Extreme learning machine, and Least squares support vector machine. The
comparative results are diligently laid out in the accompanying table.
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Table 5.3: Comparison between classifiers

Simulation Random Forest K-nearest neighbor ELM  Decision Tree Extra Tree LSSVM
1 100% 98.95% 50.34% 98.95% 100% 99.65%
2 100% 98.61% 74.30% 100% 99.65% 100%
3 100% 98.95% 58.31% 98.95% 99.30% 99.65%
4 100% 98.95% 66.31% 98.95% 100% 99.65%
5 100% 98.61% 61.80% 99.30% 99.30% 100%
6 100% 98.95% 83.33% 99.55% 99.30% 99.30%
7 99.65% 98.61% 55.90% 99.30% 99.65% 100%
8 100% 99.30% 56.25% 99.30% 99.65% 100%
9 100% 98.61% 63.19% 99.30% 99.65% 99.30%
10 100% 99.30% 42.70% 98.61% 100% 99.65%
mean 99.96% 98.88% 61.24% 99.22% 99.65% 99.72%
std 0.11 0.27 11.60 0.38 0.28 0.27
B Decision tree . ELm \%‘
4 Er . KNN
4 LSS‘VM 4 Randon‘l Forest

Figure 5.9: The plot of the classification using different classifiers.
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Figure 5.10: Confusion matrices of classification with different classifiers.

The results in Table 5.3 demonstrate the robustness of the ”Random Forest” classi-
fier compared to other powerful algorithms, such as ET, LSSVM, and DT. The highest
accuracies belong to the RF classifier, which outperforms the rest of the classifiers re-
garding stability, with a standard deviation of only 0.1. Figure 5.9 depicts the predicted
states versus the labels by RF and the other selected classifiers. Notably, RF achieved
perfect classification with no misclassifications, as shown in the confusion matrix in
Figure 5.10.

5.1.2 Rolling bearing fault feature selection based on standard
deviation and random forest classifier using vibration
signals

Motivation

The classification accuracy heavily depends on the quality and representativeness of
the parameters used in the training process. In this context, our research introduces
a novel optimization algorithm designed to enhance diagnostic accuracy by selecting
the most informative and relevant parameters. The proposed algorithm synergizes the
standard deviation (STD) parameter with the random forest classifier to identify the
optimal parameters. The STD parameter assumes a pivotal role in ensuring the selec-
tion of parameters with the highest consistency and stability. Through the integration
of this parameter with the random forest classifier, we can refine parameter selection
and, consequently, elevate the accuracy of the diagnostic process.

To validate the effectiveness of our approach, we conducted experiments using three dis-
tinct databases, including one characterized by non-stationary data reflecting real-world
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conditions. The non-stationary database presents a particularly formidable challenge
for fault diagnosis, and our approach demonstrated superior accuracy and stability com-
pared to existing methods. These results underscore the effectiveness and resilience of
our proposed algorithm, which has the potential to substantially improve the accuracy
and efficiency of fault diagnosis in real-world applications.

5.1.2.1 Databases Description

In this contribution, our proposed method was evaluated using three different databases
to evaluate its effectiveness. These databases consist of vibration data collected from
bearings in various health states, operating under different conditions.

Database 1

The first database utilized is ”Bearing vibration data collected under time-
varying rotational speed” used for the first contribution to assess whether our
proposed algorithm can effectively handle time-varying conditions.

Database 2

The second database, MaFaulDa (Machinery Fault Data), is sourced from SpectraQuest’s
Machinery Fault Simulator (MFS) figure 5.11, known as Alignment-Balance-Vibration

(ABVT). ABVT is a specialized system designed to provide comprehensive vibration

signals along the three axes, accompanied by acoustic signals, specifically to investi-

gate the behavior of faulty bearings with various defective parts. These defective parts

include the outer track, the rolling element, and the inner track.

Figure 5.11: The SpectraQuest machine fault simulator.
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To summarize the contents of this database, we present the following details, with
distinct sequences for each bearing and two different positions:

e Bearing placed between the rotor and the motor (Underhang).

e Rotor positioned between the bearing and the motor (Overhang).
Below, a table provides an overview of the database’s characteristics:

e having the bearing between the rotor and the motor (underhang).

e having the rotor between the bearing and the motor (overhang).

Table 5.4: Characteristics of the second database

State defect element | masses | sequence
Normal - - 49
Og 49
6g 48
outer track 20g 19
35g 42
Og 49
. 6g 49
Underhang | Rolling element 20g 19
35g 37
Og 50
6g 49
Inner track 20g 19
35g 38
Og 49
6g 49
outer track 20g 19
35g 41
Og 49
. 6g 49
Overhang | Rolling element 208 49
35g 41
Og 49
6g 43
Inner track 20g 95
35g 20

The bearings used in this database are equipped with eight balls, each with a diameter
of 7.145 mm. The data were sampled at a rate of 50 kHz, with each sequence lasting
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5 seconds. The operating frequency ranges from 737 to 3686 rpm, with incremental
steps of approximately 60 rpm. MaFaulDa provides a rich and comprehensive dataset
for studying machine failure diagnosis and condition monitoring, particularly in the
context of bearing behavior under various conditions and defects.

Database 3

The third database used for the validation of our suggested algorithm is from the Case
Western Reserve University Data Center website. It consists of vibration test data for
ball bearings, both in normal and faulty conditions. The tests were performed using a
2 hp Reliance Electric motor, with acceleration data collected at both near and remote
locations from the motor bearings. The test conditions, including motor operational
parameters and bearing fault status, are carefully documented for each experiment.
Faults in the motor bearings were artificially introduced using electro-discharge ma-
chining (EDM), with fault sizes ranging from 0.007 to 0.040 inches in diameter. These
faults were placed at three locations: the inner raceway, the rolling element (ball), and
the outer raceway. After the introduction of the fault, the bearings were re-installed
in the test motor and vibration data was recorded for motor loads ranging from 0 to 3
horsepower (motor speeds between 1797 and 1720 RPM).

Figure 5.12: Bearing test rig of Case Western Reserve University Data Center.
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5.1.2.2 Experimental procedure

The flowchart in Fig. 5.13 illustrates the method proposed for feature selection in the
bearing diagnosis process.

Assessment &
Features ranking Selection

Set the step_size & coeff
start=floor(size(Features,1)* coeff)
target=100

Accuracy=0

Determine the number of
classes from the label vector.

|

Calculate the centroids of all
classes

l

Calculate the standard deviation

i=start

|
1
1
|
1
|
|
1
|
: While Accuracy < target
*| Accuracy
1
|
|
1
|
1
1
|
1
|
|
1

for each column of the =Assess_with_Random_forest{Features(:,vec(1:i)),label);

centroids” matrix

l

Sort the STDs in descending
order and store the indices of
the features in vector (vec)

i=i + step_size;

If  i=size(features,2)/2
target=target-(1/size(dataTest, 1))* 100
i=start

| Input Features & label |

Figure 5.13: Flowchart of the proposed method

The following steps outline the proposed method:
1. Determine the number of classes and their corresponding number of samples.

2. Calculate the centroid coordinates for each class. C is the centroid of an arbi-
trary class K, and we calculate it as follows:

Samples
Oy = _225amp (5.1)

size(DataTest)
Where:

11 T12 ... T1IN

X221 22 ... T2 N

Classy =

i1 Tj2 ... TN
[ is the size of samples in class K and N is the number of features.
we expand equation 5.1 into:

L1150y T1,N —+ ... + Zi1y -y TjN
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CK _ ($171+.l..+$l71’ '''' 7I17N+.l..+$l,]v> (53)
l l
N N
Cre = (Zﬂ—; L Zﬂ—} Ny (5.4)

Then, the centroid’s coordinates are equal to the means of the corresponding
class’s columns as shown in figure.5.14.

Features

II |
Class 1 |I

1 1

II

Observations

Class K

Figure 5.14: The calculation of the centroids’ coordinates

3. Compute the standard deviation using equation.5.5 for each column of the cen-
troids matrix.

myy1 Mi2 ... M1N

moy1 Moo .... M2 N
Centroids =

mp1 Mp2 ... MpN

Where p is the number of classes,

STD, = \/ZZ 1(miy = M;)* (5.5)

And,

p
=1 ml?]

M; = ==——= (5.6)
We obtain a vector S of N STD value.
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S=[STD, STD, ... STDy]

4. Sort the vector S in descending order and save the indices of the corresponding
features in vector V.

5. Execute a sequential forward selection on the indices’ vector v and assess the
performance of the corresponding features with the Random forest classifier. The
process starts from start and stops once the accuracy reaches the Target.

e start is the initial index for the sequential selection. It helps to preserve
time by considering the indices from 1 to start highly significant features.

start = size( features) x coef (5.7)

In our application, we set the coef=5%, assuming that the first 5% are
relevant features.

e Target is initially equal to 100%, it is used as a termination criterion in
the selection process. If the intended accuracy is not reached with less than
half of the features, the Target is adjusted using equation5.8 to provide the
highest possible accuracy.

1

1 .
size(DataTest) x 100) (58)

Target = Target — (

5.1.2.3 Results and analysis

On three datasets of rolling bearings collected under different conditions, we apply
three signal processing techniques: Empirical Wavelet Transform (EWT), Empirical
Mode Decomposition (EMD), and Maximal Overlap Discrete Wavelet Packet Transform
(MODWPT). For the resulting signals, we compute the features listed in table 5.11.
Then, we apply the STD-RF selection method to the obtained feature set. We consider
the execution time, the number of features opted for, and the obtained accuracy.

We decompose the signal into 10 Amplitude Modulation-Frequency Modulation (AM-
FM) modes for the EWT technique.

The number of intrinsic modes functions (IMF) for the EMD technique varies be-
tween 12 and 16 for the three databases. We chose 16 as the maximum value to adjust
the features matrix without losing any information.

For the three datasets, the MODWPT technique extracts 16 terminal nodes.
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Table 5.5: Table depicting the performance of the STD-RF algorithm with EWT.

Dataset1 Dataset2 Dataset3
TF 130 520 130
selected features Execution time (s) selected features Execution time (s) selected features Execution time(s)
1 14 10.20 49 13.44 17 17.71
2 23 42.19 50 12.57 17 12.77
3 14 10.28 49 16.02 17 24.26
4 14 9.95 49 10.70 20 22.49
5 16 17.53 50 13.86 21 26.40
6 14 7.01 49 15.29 20 34.09
7 16 17.53 49 11.30 17 12.83
8 16 12.61 49 12.10 20 29.96
9 19 24.65 49 11.11 23 42.90
10 20 27.06 49 15.80 22 27.39
mean 17 17.90 49 13.21 19 25.08
STD 3.09 - 0.42 - 2.27 -
% of selected features 13.07% - 9.42% - 14.61% -

Table 5.6: Table depicting the performance of the STD-RF algorithm with EMD.

Dataset1 Dataset2 Dataset3
TF 208 832 208
selected features Execution time (s) selected features Execution time (s) selected features Execution time(s)
1 7 16.40 132 301.20 13 22.43
2 7 31.82 132 311.70 17 50.80
3 11 25.79 130 283.97 13 19.71
4 10 25.89 129 294.46 14 47.77
5 6 13.93 132 303.46 13 15.84
6 14 46.12 130 281.63 13 18.66
7 12 34.74 132 291.80 13 16.62
8 18 62.31 132 348.93 13 14.74
9 7 15.46 132 338.05 15 32.55
10 12 31.31 135 330.55 13 33.77
mean 11 27.78 132 308.57 14 27.28
STD 3.8 - 1.64 - 1.33 -
% of selected features 5.28% - 15.86% - 6.73% -

Table 5.7: Table depicting the performance of the STD-RF algorithm with MODWPT.

Dataset1 Dataset2 Dataset3
TF 208 832 208
selected features Execution time (s) selected features Execution time (s) selected features Execution time(s)
1 21 14.92 83 125.02 20 41.85
2 21 18.03 84 67.85 20 13.10
3 20 8.46 83 49.53 20 10.82
4 20 8.99 83 45.63 20 11.27
5 20 8.25 83 48.69 20 9.30
6 20 7.29 83 50.43 20 12.42
7 20 9.99 83 52.07 21 14.37
8 20 8.07 83 54.84 20 11.31
9 20 8.91 84 64.93 20 27.78
10 20 10.10 83 55.30 21 18.64
mean 20 10.30 83 61.42 20 17.08
STD 0.42 - 0.42 - 0.42 -
% of selected features 9.61% - 9.97% - 9.61% -

Tables 5.5, 5.6, 5.7 present the features selected by the STD-RF method for three
databases processed by EWT, EMD and MODWPT, respectively.
The tables contain the results of ten simulations using the STD-RF selection method
and the execution time for each case. As we can see, our proposed method could reduce
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Table 5.8: Number of features selected and accuracies obtained by different optimization
algorithms on database 1

Squirrel Wolf BDE  GOA SA STD-RF

simulation —=2 50 124 55 51 16
P 57 56 120 59 53 17

3 54 50 107 58 51 15

4 71 35 122 68 48 20

5 69 42 123 55 57 14

6 59 46 117 59 59 16

7 66 32 72 52 53 20

8 70 44 122 59 60 15

9 68 54 97 62 58 16
10 73 40 126 64 53 21
mean 65 46 117 60 54 17

Accuracy  98.61% 100% 100% 99.06% 99.02% 100%

=

Features

1%

Figure 5.15: STD values of the selected features for the three databases processed by
EWT

the sets of features to less than 15% using the EWT, less than 16% using EMD and less
than 10% while using MODWPT and hence help to boost the diagnosis process speed.
From tables 5.5, 5.6 and 5.7, we observe that the STD-RF’s results remain in the same
scope despite the signal decomposition technique tool involved in the data processing.
Also, the number of selected features for the ten simulations affirms the stability of
our method in both quantity and quality terms because of the features’ ordering at
the beginning of the process. We put our method in comparison with five robust
optimization algorithms in the bearing diagnosis field. Our method was compared to
the squirrel search algorithm, grey wolf optimization algorithm, binary coded differential
evolution (BDE), Grasshopper optimization algorithm (GOA), and simulated annealing
(SA).
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Table 5.9: Number of features selected and accuracies obtained by different optimization
algorithms on database 2

Squirrel ~ Wolf BDE GOA SA STD-RF

simulation —5-7 112 303 65 61 49
9 247 125 442 58 57 49

3 236 148 123 61 60 50

4 231 143 A15 62 60 49

5 244 108 224 69 67 50

6 244 113 441 65 63 49

7 240 131 469 67 71 49

8 251 182 137 69 67 49

9 210 192 458 60 64 49
10 229 169 248 63 63 49
Mean 233 142 305 64 63 49

Accuracy  99.46% 99.78% 99.78 % 99.71% 99.67%  99.89%

Table 5.10: Number of features selected and accuracies obtained by different optimiza-
tion algorithms database 3

Squirrel  Wolf  BDE GOA SA STD-RF

simufation — ¢ 33 110 5 18 17
2 69 15 94 60 48 17
3 7 50 104 52 53 17
1 65 37 75 62 52 20
5 64 14 97 58 54 21
6 66 32 72 52 53 20
7 240 131 469 67 71 17
8 251 182 437 69 67 20
9 210 192 458 60 64 23
10 220 169 248 63 63 22
66 12 96 56 53 53 19

Accuracy  99.46% 99.7% 99.78% 99.71% 99.67%  99.89%
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Squirrel Wolf BDE

GOA STD-RF

Selected features B unselected features

Figure 5.16: Comparison graph illustrating the percentage of selected features by dif-
ferent optimization methods for the first dataset.
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Figure 5.17: Comparison graph illustrating the number of selected features by different
optimization methods for the first dataset.
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Figure 5.18: Comparison graph illustrating the number of selected features by different
optimization methods for the second dataset
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Figure 5.19: Comparison graph illustrating the number of selected features by different
optimization methods for the third dataset

Tables 5.14, 5.15 and 5.16 demonstrate that the STD-RF selection method ex-
hibits superior performance compared to the other algorithms concerning the accuracy
and the number of selected features. Additionally, the table reveals that for the same
dataset, if n simulations yield the same number of selected features, this implies that
the n sets are identical, as the vector of indices v is consistently ordered irrespective
of the initial arrangement of the data. This independence of the output from the ini-
tial data’s position enhances the system’s stability, unlike algorithms where the search
procedure is initiated randomly and is influenced by the order of the features, leading
to varying feature sets in different simulations.
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Figure 5.16 provides a clear representation of the power of our proposed method in
feature selection using the first database processed by the EWT technique. It reduces
the number of parameters involved in the classification process to just 12% without
affecting the classification’s accuracy.

The accuracies listed in TableS 5.14, 5.15 and 5.16 were assessed using the RF' classi-
fier, We have tested our proposed method using the holdout cross-validation and we
repeated it 10 times as an explicit 10-fold cross-validation to detect any hidden variance
between the 10 folds, and this because the k-fold cross validation provides the average of
the k simulations without giving an idea about the stability of the system. We split the
data randomly into 80:20 to have a larger amount of data for testing, and we repeated
the process 10 times then we calculated both the average and the STD.

Figures 5.17, 5.18 and 5.19 illustrate clearly the strength of our proposed method in
reducing the size of the features set compared to the total features(TF) and the outputs
of strong optimization algorithms as the squirrel, grey wolf, BDE and others, without
affecting the accuracy of classification as seen in tables 5.14, 5.15 and 5.16.

The accuracy of fault diagnosis can be notably enhanced by utilizing feature ranking.
Figure 5.15 represents a histogram, which illustrates the selected features in the three
datasets processed by EWT. These features are arranged in a particular order corre-
sponding to their importance, which is determined based on their standard deviation
(STD). The histogram visually depicts the distribution of the selected features and their
relative significance.

5.1.3 Multi-fault Bearing Diagnosis Under Time-Varying Con-
ditions Using Empirical Wavelet Transform, Gaussian
Mixture Model and Random Forest Classifier

Motivation

Our research journey was motivated by a compelling need to address complex real-
world challenges in fault diagnosis and classification. We turned to the EM-GMM
(Expectation-Maximization Gaussian Mixture Model) clustering algorithm to infuse
the unsupervised perspective into our feature selection process. This choice was driven
by our desire to unravel hidden insights within our data and, in turn, enhance the
effectiveness of our diagnostic approach. The unsupervised clustering facilitated by
the EM-GMM algorithm revealed latent patterns and relationships that traditional su-
pervised techniques might overlook. We recognized the potential of these insights to
revolutionize our understanding of fault detection. Therefore, we selected features that
emerged from this process, confident that they held the key to more accurate and robust
classification.

Our commitment to addressing real-world scenarios led us to choose a database that
replicated the dynamic, time-varying conditions often encountered in practical appli-
cations. This database intentionally included combined fault cases to reflect the com-
plexity of actual operational environments.
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Through our research, we aimed not only to enhance the state-of-the-art in fault diag-
nosis but also to empower industries facing intricate challenges. By integrating unsu-
pervised clustering, feature selection, and classification within the context of dynamic,
combined fault scenarios, our work aspired to offer practical solutions and advance the
field in meaningful ways.

5.1.3.1 Database

The database selected for this study is essentially the same as the first database but
includes more complex cases. The dataset consists of vibration signals collected from
bearings under various health conditions, operating at time-varying rotational speeds
[111]. In total, there are 60 datasets, with each dataset corresponding to two exper-
imental settings: bearing health condition and varying speed condition. The bearing
health conditions are as follows: (i) healthy, (ii) faulty with an inner race defect, (iii)
faulty with an outer race defect, (iv) faulty with a ball defect, and (v) faulty with com-
bined defects on the inner race, outer race, and ball. The rotational speed conditions
include: (i) increasing speed, (ii) decreasing speed, (iii) increasing followed by decreas-
ing speed, and (iv) decreasing followed by increasing speed. Consequently, there are 20
distinct experimental cases. To ensure data reliability, three trials are conducted for
each experimental setting, resulting in a total of 60 datasets. Each dataset contains two
channels: ’Channel 1’, which represents vibration data measured by the accelerometer,
and ’Channel 2’, which represents rotational speed data measured by the encoder. All
data are sampled at a frequency of 200,000 Hz, with a sampling duration of 10 seconds.
The encoder’'s CPR (Cycles Per Revolution) is 1024.

5.1.3.2 Experimental procedure

Figure 5.20 summarizes the process of our proposed method for the classification of
bearing faults. Our procedure consists of three pivotal steps. In the initial step, we
employ the Empirical Wavelet Transform (EWT) to extract the AM-FM (Amplitude
Modulation-Frequency Modulation) modes from the vibration signatures. This powerful
technique excels at precisely decomposing the signal into a predefined number of modes.
In our study, we opt for 10 modes, as visually depicted in Figure 5.21, as this choice
effectively captures the intricate characteristics inherent in the vibration signatures.

Subsequently, we calculate a set of features outlined in Table 5.11 for each of these
ten modes. This process results in a total of 170 attributes, providing a comprehensive
and nuanced understanding of the underlying characteristics within the vibration sig-
natures. This in-depth analysis empowers us to discern subtle variations and patterns
that may carry diagnostic significance.
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In the second pivotal step of our procedure, we turn to the powerful EM-GMM
(Expectation-Maximization Gaussian Mixture Model) clustering algorithm to unravel
the most pertinent set of features for each of the three distinct stages artfully depicted in
Figure 5.23. Our approach involves a meticulous examination of the data at each level
independently, seeking to pinpoint the attributes that exhibit the highest discriminatory
potential among the diverse classes under consideration.

As we delve into this feature selection process, we feed the extracted features sequen-
tially to the EM-GMM algorithm. For each set of features, the algorithm is applied,
and we select only those elements that can effectively distinguish the exact number of
predefined groups, ensuring that the resulting features are truly relevant to the task
at hand. This iterative process allows us to refine the feature set step-by-step, select-
ing only those features that contribute to clearly separating the data into well-defined,
meaningful clusters.

The goal of this process is to identify those distinctive features that can effectively
segregate the data into precisely delineated groups. This process is visually exemplified
in Figure 5.22, where the features’ ability to delineate the distinct clusters becomes
evident. The final set of selected features is one that maximizes the algorithm’s ability
to distinguish between the different stages, thereby enhancing the overall performance
of the subsequent modeling and analysis steps.

It’s worth noting that this feature selection procedure is not a one-size-fits-all ap-
proach. Rather, it is repeated for each of the three stages, custom-tailored to the
unique characteristics and intricacies of each level. This iterative and comprehensive
analysis ensures that we capture the discriminative features that are most relevant and
informative at every stage of our diagnostic journey.

By dedicating attention to the specifics of each stage and carefully selecting the
features that best serve the diagnostic purpose, our methodology aims to enhance the
precision and effectiveness of our fault identification process, ultimately contributing to
more accurate and reliable outcomes.
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Table 5.11: Table of Extracted Features

Feature Definition Equation/Description
Maximum The highest value in the sig- | Max = max(z)
nal.
Minimum The lowest value in the sig- | Min = min(z)
nal.
Median The middle value when the | Calculate the median of x.

Peak to Peak

Root Mean Square

Mean

Standard Deviation

Kurtosis

Crest Factor

Skewness

Variance

Root Sum of Squares

Energy

Peak Frequency

Mean Frequency

Median Frequency

Signal-to-Noise Ratio (SNR)

data is sorted.

The difference between the
maximum and minimum
values.

The square root of the aver-
age of the squared values.

The average value of the sig-
nal.

A measure of the dispersion
of data points.

A measure of the "tailed-
ness” of the data distribu-
tion.

The ratio of the peak value
to the RMS value.

A measure of the asymme-
try of the data distribution.

The average of the squared
differences from the Mean.

The square root of the sum
of the squares of the values.

The total energy of the sig-
nal.

The frequency correspond-
ing to the maximum ampli-
tude in the spectrum.

The weighted average of the
frequencies in the spectrum.

The frequency below which
half of the energy is con-
tained in the spectrum.

The ratio of the
power to mnoi
decibels.

signal
power in
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Figure 5.22: Flowchart of features selection using EM-GMM

The final step in our comprehensive process involves harnessing the three meticu-
lously selected feature sets, denoted as SF;, to construct three distinctive and indepen-
dent classifier models, which we designate as M DL;. These models are meticulously
tailored to accommodate the unique characteristics of the data within each set and are
trained using the robust Random Forest classifier. Each classifier, M DL;, is designed
to address a specific set of classes, precisely defined by Label;. This strategic segrega-
tion of classes allows us to encapsulate the nuanced distinctions within the data. It’s
important to highlight that these classifiers are intricately nested within our overarch-
ing algorithm, as elegantly detailed in Algorithm 1. This nesting concept is visually
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Figure 5.23: Multi-stage classification

elucidated in the illustrative Figure 5.23, where the interplay of the classifiers is repre-
sented. This multistage classification framework is designed to provide a holistic and
nuanced approach to fault identification. By employing distinct classifiers tailored to
different subsets of classes, we empower our methodology to excel in recognizing and
distinguishing between intricate fault patterns.
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Algorithm 1 Multi-stage classification pseudo-code
Input: SFy, SF,, SF3, Data_Test,Label_Test, MDLy, MDLo, MDL;
Output: Accuracy

Labely = [healthy, faulty]
Labely = [one_fault, combined_faults]
Labels = [inner_race, outer_race, ball]

for i = 1: size(data_Test, 1) do

predicted(i) = M DLy (Data_Test(i, SF))

if (predicted(i) == faulty) then
predicted(i) = M D Ly(Data_Test(i, SFy))
if (predicted(i) == one_fault) then

predicted(i) = M DLs(Data_Test(i, SF3))

end if

end if

end for
correct < 0
for i = 1: size(Data_Test,1) do

if (predicted(i) == Label Test(i)) then
correct <+ correct + 1
end if

end for
Accuracy < correct/size(data_Test, 1)

False alarm detection using Binary Classification:

First, we perform binary classification using the Random Forest algorithm for three dis-
tinct scenarios: the inner race, outer race, and ball cases. The features selected for this
classification are determined using the Gaussian Mixture Model (GMM). Subsequently,
the results of this classification process are compiled and presented in a comprehensive
format within table 5.12. This table serves as a concise summary, offering insights into
the outcomes of our analysis for each of the aforementioned cases.

Table 5.12: Binary classification results

Element | Inner Race | Outer Race | Ball
Accuracy 100% 100% 100%
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The results obtained from the binary classification process exhibit a high degree of

accuracy, underscoring the effectiveness of the initial classification. In the subsequent
step, we extend our analysis to encompass combined fault scenarios, which involve
multiple fault types coinciding. This expanded assessment includes the combination of
faulty conditions alongside healthy data. To address this complex scenario, we employ
a cascading approach that integrates all three previously trained classifiers. Algorithm
2 outlines the procedure for this multi-classifier cascade.
The rationale behind employing this cascade is to leverage the collective detection
capabilities of the individual classifiers. In the case of combined faults, it becomes
crucial to ensure that all three parts—inner race, outer race, and ball—demonstrate
some form of defect. Therefore, by employing this cascading approach, we aim to
enhance the accuracy and reliability of fault detection, as all three components must
be deemed defective for the combined fault scenario to be detected successfully.

Algorithm 2 Combined fault detection using binary classifiers

Input: Inner_race, Outer_race, Ball, Label.
Output: Accuracy
if Inner_race == defected N\ Outer_race == defected N Ball == defected then

predicted = combined

else if Inner_race == normal N Outer_race == normal N Ball == normal then
predicted = normal

else
predicted = unde fined

end if

Correct =0

for i =1 : size(Label) do
if predicted(i) == Label(i) then
Correct = Correct 4+ 1
end if
Accuracy = Correct/size(Label)
end for

Table 5.13 provides a comprehensive overview of the results acquired through the
utilization of the binary classifiers within the context of the combined fault scenario. In
this extended analysis, we consider situations where multiple fault types coexist, thus
presenting a more intricate and realistic assessment of the system’s performance.

To obtain these results, we apply the same rigorous binary classification techniques
employed previously for individual fault types (inner race, outer race, and ball). How-
ever, in this scenario, the classifiers are challenged to detect and differentiate between
various fault combinations, showcasing their adaptability and robustness in the face of
complex real-world conditions.
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The data presented in Table 5.13 is instrumental in evaluating the overall effective-
ness and reliability of our classification system when confronted with combined fault
scenarios. It offers valuable insights into the system’s ability to identify and classify
complex faults accurately.

Table 5.13: Confusion matrices for the combined fault case using the 3 binary classifiers

Classifiers Inner Race Outer Race Ball
Normal | Faulty || Normal | Faulty || Normal | Faulty
Normal 100% 0% 100% 0% 100% 0%
Combined 13% 87% 78% 22% 0% 100%

The precision of our three classification models when applied to healthy data was
truly commendable. However, the true challenge emerged when we turned our attention
to the combined fault dataset, where each classifier was tasked with identifying specific
faults within distinct components of the system. Here’s a detailed breakdown of their
performance in this complex scenario:

Ball Classifier: The ball classifier emerged as the standout performer in our eval-
uation. It demonstrated impeccable precision in detecting any damage within bearing
combinations that included the ball component. Its ability to identify issues in this
context was virtually flawless.

Inner Race Classifier: In stark contrast, the inner race classifier encountered
significant challenges. It struggled to correctly classify a substantial portion of the
defective bearing combinations, accounting for a notable 13% of the total dataset. This
indicates that it had difficulty distinguishing between normal and faulty conditions in
the inner race component.

Outer Race Classifier: The outer race classifier, too, faced difficulties when pre-
sented with the combined fault cases. It managed to achieve accurate classifications
for only 22% of the combined fault data, reflecting its limited ability to handle these
complex scenarios.

To quantitatively assess the overall performance, we employed accuracy as a key
metric. Accuracy is calculated by summing the number of true positives and true nega-
tives and then dividing this sum by the total size of the predicted dataset. Regrettably,
the resulting accuracy rate stands at 35%, underscoring the classification system’s no-
table limitations in detecting combined fault cases.

This accuracy figure serves as a clear indicator of the classification system’s chal-
lenges when dealing with multifaceted fault scenarios. It highlights the importance
of further research, potential model enhancements, or the exploration of alternative
approaches to improve fault detection accuracy in such intricate contexts.
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5.1.3.3 Multi-Stage Classification

To illustrate the robustness and efficiency of our proposed multi-stage classification
procedure, as depicted in Figure 5.23, aimed at simultaneously enhancing accuracy and
stability for diverse diagnostic scenarios, we harnessed the power of a Random Forest
classifier combined with the EM-GMM optimization algorithm for early fault detection
and classification. Our approach unfolds across three pivotal stages, each contributing
to a comprehensive diagnosis:

Stage 1: Healthy vs. Faulty Classification

In the initial stage, our procedure distinguishes between healthy and faulty bearings.
This crucial step forms the foundation for subsequent, more nuanced assessments.

Stage 2: Single vs. Combined Fault Detection

The second stage builds upon the initial classification, aiming to pinpoint whether the
fault is singular or a combination of multiple issues. This additional layer of analysis
adds granularity to the diagnosis.

Stage 3: Fault Localization

The final level of our multi-stage process localizes the specific element within the bearing
that exhibits defects. This precise localization is vital for targeted maintenance and
repair.

Our journey commences with the selection of features for each stage, depicted in Fig-
ure 5.23, through the application of the Gaussian Mixture Model (GMM). To validate
the efficacy of the GMM clustering algorithm in the feature selection process, we con-
ducted a rigorous comparative study against commonly used optimization algorithms
in the domain of bearing diagnosis.

5.2 Experimental Evaluation

Table 5.16 showcases the accuracy results obtained during the feature selection process
across these three stages. We employed a variety of optimization algorithms, including
EM-GMM, Simulated Annealing Algorithm (SA), Grasshopper Optimization Algorithm
(GOA), Grey Wolf Optimization Algorithm (GWO), Squirrel Algorithm, and Clan-
Based Cultural Algorithm (CCA). The evaluation of these results was performed using
the Random Forest classifier.

Our assessment utilized the holdout cross-validation method, repeating the process
ten times to uncover any potential variations across ten distinct data splits. For each
iteration, the data was randomly divided into 90% for training and 10% for testing.
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5.3 Results and Discussion

Table 5.16 underscores the remarkable performance of the EM-GMM method in terms
of both accuracy and stability. Across all three diagnostic stages, the achieved accuracy
consistently hovers around the 100% mark, while the standard deviation (STD) remains
nearly negligible. This signifies the superiority of EM-GMM as a feature selection tool,
reaffirming its pivotal role in elevating the precision and reliability of our diagnostic

process.

Table 5.14: Performance of optimization algorithms in Stage 1

itr | EM-GMM SA GOA  GWO Squirrel CCA
1 99.58%  98.33% 98.75% 97.91% 99.17% 97.91%
2 100% 98.75% 97.08% 97.50% 98.75%  98.95%
3 99.58%  98.75% 98.33% 98.75% 99.16% 97.91%
4 100% 98.33% 96.66% 98.75% 98.75%  99.16%
5 100% 99.58% 97.08% 97.08%  100%  99.58%
6 100% 98.66% 98.33%  100%  98.75%  99.58%
7 100% 97.91% 98.75% 97.91% 99.58%  98.95%
8 99.17%  99.16% 98.75% 97.91% 98.75%  99.58%
9 100% 98.33% 97.91% 98.75% 99.58%  96.66%
10 99.58%  99.16% 98.75% 98.33% 98.75% 97.91%
Mean | 99.79%  98.69% 98.03% 98.28% 99.12% 98.61%
STD 0.29 0.49 0.81 0.82%  0.45%  0.97%

Table 5.15: Performance of optimization algorithms in Stage 2

itr | EM-GMM SA GOA | GWO | Squirrel | CCA
1 100% 98.75% | 98.75% | 98.75% | 100% | 99.37%
2 100% 100% | 99.37% | 100% | 98.75% | 100%
3 100% 100% | 99.37% | 99.37% | 100% 100%
4 100% 98.75% | 98.75% | 100% | 99.37% | 99.37%
5 100% 100% 100% | 99.37% | 100% 100%
6 100% 99.37% | 99.37% | 100% | 99.37% | 99.37%
7 100% 100% | 99.37% | 100% 100% | 98.75%
8 100% 98.12% | 100% | 99.37% | 98.12% | 98.75%
9 100% 100% | 99.37% | 98.75% | 98.75% | 98.12%
10 100% 98.12% | 98.75% | 100% 100% | 99.37%
Mean 100% 99.31% | 99.31% | 99.56% | 99.43% | 99.31%
STD 0 0.80 0.46 0.51 0.68 0.62
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Table 5.16: Performance of optimization algorithms in Stage 3

itr | EM-GMM SA GOA | GWO | Squirrel | CCA
1 100% 100% 100% 100% | 99.16% | 100%
2 100% 100% | 99.16% | 100% | 99.16% | 100%
3 100% 100% 100% 100% 100% 100%
4 100% 99.16% | 99.16% | 99.16% | 99.16% | 100%
5 100% 100% 100% 100% 100% | 99.16%
6 100% 100% | 99.16% | 99.16% | 100% 100%
7 100% 99.16% | 100% 100% | 99.16% | 100%
8 100% 100% | 99.16% | 99.16% | 97.5% 100%
9 100% 100% | 99.16% | 100% | 99.16% | 99.16%
10 100% 99.16% | 100% 100% 100% 100%
Mean 100% 99.48% | 99.58% | 99.74% | 99.33% | 99.83%
STD 0 0.4 0.44 0.4 0.76 0.35

After training three-stage models, we cascade them according to the diagram in
Figure 5.23 to classify the five states of the bearing. This method has been able to
achieve a 100% accuracy rate. However, this accuracy is significant only when each
class has an equal number of samples, which is not always the case. As a result,
this metric is not a reliable measure of the classifier’s performance. To overcome this
limitation, we employ the Polygon Area Metric (PAM) [112], which takes into account
five other metrics in addition to CA, including Sensitivity (SE), Specificity (SP), Area
Under Curve (AUC), Jaccard index (JI), kappa (K), and F-measure (FM). The Polygon
Area Metric’s parameters are defined as follows:

TP+TN
cA= TP+TN:[FP+FN (5:9)
TP
SE= b (5.10)
TN
SP= i Fp (5.11)
TP
= TP FP L PN (5.12)
2T P
F=orprrp+rp (5.13)

The Polygon Area Metric (PAM) serves as a comprehensive evaluation framework
that encapsulates the performance of a classification system through a geometric rep-
resentation. This metric draws upon a hexagonal shape, meticulously constructed to
incorporate six fundamental evaluation parameters: CA (Classification Accuracy), SE
(Sensitivity), SP (Specificity), AUC (Area Under the Curve), JI (Jaccard Index), and
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Table 5.17: Polygon Area Metric parameters

‘ Parameter ‘ Polygon Area ‘ CA ‘ Sensitivity ‘ Specificity ‘ AUC ‘ Kappa ‘ JI ‘ F-measure
Unselected features 0.83 0.93 0.99 0.80 0.90 0.90 | 0.90 0.95
All features 0.96 0.98 0.99 0.96 0.98 0.98 |0.98 0.99
Selected features 1 1 1 1 1 1 1 1

FMI (Fowlkes-Mallows Index). These parameters are pivotal in assessing the accuracy,
sensitivity, specificity, and overall effectiveness of a classification model.

The hexagon’s design is regular, characterized by six equal sides and angles, facilitat-
ing a consistent and intuitive representation of the classification system’s performance.
To ensure an equitable and interpretable measure, we normalize the hexagonal area by
dividing it by the value 2.59807. This normalization factor is derived from the area of a
regular hexagon composed of six equilateral triangles, each with a side length of 1 unit.

Table 5.17 stands as a testament to the effectiveness of our multi-stage classification
procedure. It provides a comprehensive overview of the performance evaluation using
the Polygon Area Metric (PAM) across three distinct scenarios: the utilization of all
available features, the employment of the selected feature subset, and the use of the
unselected feature subset.

By leveraging the PAM, we gain valuable insights into how the classification sys-
tem’s performance varies under these different feature utilization scenarios. This nu-
anced analysis empowers us to make informed decisions about feature selection and
optimization, ultimately contributing to the refinement and enhancement of our diag-
nostic methodology.

Figures 5.24, 5.25 and 5.26 provide a more comprehensive visualization of the results,
clearly illustrating that the classification using the selected features achieves the highest
level of performance.

0.5

0.5

) -1.5 -1 -0.5 0 0.5 1 1.5

Figure 5.24: Polygon area metric for classification results using the selected features
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Figure 5.26: Polygon area metric for classification results using the unselected features.

5.3.1 Conclusion

Bearing fault diagnosis is an increasingly critical field, demanding the development of
advanced methodologies to attain heightened accuracy in classification, particularly
when faced with non-stationary conditions. This article introduces a robust multi-
stage classification process tailored for the detection of combined faults in dynamic and
time-varying operational settings.

Our methodology commences with the decomposition of vibration signatures sourced
from the 'Bearing vibration data collected under time-varying rotational speed con-
ditions’ database. We employ the Empirical Wavelet Transform (EWT), a potent
technique adept at extracting AM-FM (Amplitude-Modulated Frequency-Modulated)
modes. These modes yield a richer data representation, encapsulating variations and
patterns across both the amplitude and frequency domains.
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From the extracted AM-FM modes, we derive an extensive array of time and fre-
quency domain parameters. These parameters serve as the building blocks of our di-
agnostic process, affording us an intricate insight into the underlying characteristics of
the vibration signatures.

In the subsequent stage, we meticulously select features with the Expectation-
Maximization Gaussian Mixture Model (EM-GMM) clustering method. This selection
process is pivotal, as it ensures the chosen features possess the discriminative power
required to accurately differentiate between diverse fault classes.

Moving forward, we implement a multi-stage classification strategy employing the
Random Forest classifier. Each classification model corresponds to a specific diagnostic
level within our hierarchical approach. This tailored modeling aligns seamlessly with
our method’s tiered structure, enhancing the precision of fault identification.

To rigorously evaluate the performance of our proposed procedure, we turn to the
Polygon Area Metric (PAM), encompassing six distinct evaluation parameters. This
comprehensive evaluation framework scrutinizes the classification results from multiple
angles, providing a holistic perspective on the effectiveness of our methodology.

The outcomes of our multi-stage classification process firmly establish the prowess of
our approach, particularly in the intricate task of combined defect detection in bearings
operating under rigorous and time-varying conditions. Our methodology emerges as a
robust solution, bolstering the realm of fault diagnosis, and contributing significantly to
the reliability and maintenance efficiency of rotating machinery across diverse industrial
domains.
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Conclusion

This work marks a significant advancement in the realm of rotating machine diagnos-
tics, driven by the necessity to address the repercussions of defects in these ubiquitous
components within modern industries. The core motivation behind this study origi-
nates from the critical requirement for a proactive and effective diagnostic strategy to
mitigate financial losses and uphold human safety.

The comprehensive investigation commences by addressing the challenges posed by
the dynamic operating conditions of rotating machines. Recognizing the limitations
of constant-speed scenarios in capturing true operational dynamics, our methodology
aims to bridge this gap. Through rigorous testing on a bearing database featuring
time-varying conditions and three distinct faults, our proposed approach utilizes the
Empirical Wavelet Transform (EWT) to extract AM-FM modes from vibrational sig-
nals. Feature extraction from these modes, supported by the Clan-Based Cultural Al-
gorithm (CCA) for selection and Random Forest for training, highlights the resilience
of our diagnostic process even in dynamic conditions. Expanding on these founda-
tions, the subsequent phase of our study focuses on feature selection, acknowledging
its pivotal role in enhancing diagnostic system quality and reducing misleading factors.
Our thesis introduces a robust technique based on standard deviation and Random
Forest for sequential feature selection, demonstrating effectiveness across diverse bear-
ing databases and signal decomposition techniques. Furthering in the feature selection
process we a clustering algorithm EM-GMM for feature selection. This method excels
in selecting features that accurately identify the distinct health states within bearing
data, encompassing five categories (healthy, inner race defect, outer race defect, ball
defects, and combined faults). The data collected under time-varying speed condi-
tions presents a challenging backdrop for classification. The classification process is
intricately divided into three stages: fault detection, differentiation between simple or
combined faults, and fault localization. A comparison with binary classification high-
lights the superior performance of the three-stage classification approach, particularly
for combined faults. Beyond presenting innovative solutions, the practical implications
of our research are substantial. Our diagnostic approach and feature selection meth-
ods offer tangible benefits in real-world applications by enhancing the reliability and
safety of rotating machines. Implementation of these methods can facilitate proactive
fault identification, thereby minimizing economic losses and ensuring human well-being.
Recognizing the importance of transparency in our research, we acknowledge the lim-
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itations of our methods under specific conditions. This transparency delineates the
scope of our research and suggests avenues for future development. The novelty of our
work extends beyond diagnostic approaches to encompass innovative feature selection
methods. The unique advantages offered by our diagnostic approaches and feature se-
lection methods over existing techniques position our work as a notable advancement
in the field. Looking ahead, this study lays a robust foundation for future research in
rotating machine diagnostics. The potential extension of our research to other machine
types or its integration with complementary diagnostic methods presents promising av-
enues for enhancing accuracy. These recommendations serve as inspiration for future
advancements in the field. In essence, this work not only identifies challenges but also
provides innovative solutions with practical implications while acknowledging limita-
tions, emphasizing novelty, and showcasing promising findings from incorporating a
clustering algorithm for feature selection. The research significantly propels the field
forward, promising tangible benefits for industries, safety, and technological evolution.
The knowledge generated sets the stage for a proactive and reliable approach to rotating
machine diagnostics, shaping the trajectory of future advancements.
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